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Abstract

Motivation: Current statistics show that the population of seniors and the incidence rate of

age-related neuromuscular disorders are rapidly increasing worldwide. Improving medical

care is likely to increase the survival rate but will result in even more patients in need of

Assistive, Rehabilitation and Assessment (ARA) services for extended periods which will place

a significant burden on the world’s healthcare systems. In many cases, the only alternative is

limited and often delayed outpatient therapy. The situation will be worse for patients in remote

areas. One potential solution is to develop technologies that provide efficient and safe means of

in-hospital and in-home kinesthetic rehabilitation. In this regard, Haptics-enabled Interactive

Robotic Neurorehabilitation (HIRN) systems have been developed.

Existing Challenges: Although there are specific advantages with the use of HIRN tech-

nologies, there still exist several technical and control challenges, e.g., (a) absence of direct in-

teractive physical interaction between therapists and patients; (b) questionable adaptability and

flexibility considering the sensorimotor needs of patients; (c) limited accessibility in remote

areas; and (d) guaranteeing patient-robot interaction safety while maximizing system trans-

parency, especially when high control effort is needed for severely disabled patients, when the

robot is to be used in a patient’s home or when the patient experiences involuntary movements.

These challenges have provided the motivation for this research.

Research Statement: In this project, a novel haptics-enabled telerobotic rehabilitation frame-

work is designed, analyzed and implemented that can be used as a new paradigm for delivering

motor therapy which gives therapists direct kinesthetic supervision over the robotic rehabilita-

tion procedure. The system also allows for kinesthetic remote and ultimately in-home rehabili-

tation. To guarantee interaction safety while maximizing the performance of the system, a new

framework for designing stabilizing controllers is developed initially based on small-gain the-

ory and then completed using strong passivity theory. The proposed control framework takes

into account knowledge about the variable biomechanical capabilities of the patient’s limb(s)

in absorbing interaction forces and mechanical energy. The technique is generalized for use



for classical rehabilitation robotic systems to realize patient-robot interaction safety while en-

hancing performance. In the next step, the proposed telerobotic system is studied as a modality

of training for classical HIRN systems. The goal is to first model and then regenerate the pre-

scribed kinesthetic supervision of an expert therapist. To broaden the population of patients

who can use the technology and HIRN systems, a new control strategy is designed for patients

experiencing involuntary movements. As the last step, the outcomes of the proposed theoreti-

cal and technological developments are translated to designing assistive mechatronic tools for

patients with force and motion control deficits.

This study shows that proper augmentation of haptic inputs can not only enhance the trans-

parency and safety of robotic and telerobotic rehabilitation systems, but it can also assist pa-

tients with force and motion control deficiencies.

Keywords: Safe Physical Patient-Robot Interaction, Rehabilitation Robotics, Haptics,

Telerobotics, Time delay, Passivity Theorem, Small-gain Theorem, Kinesthetic Strategy

Regeneration Through Modeling, Manipulation of Haptic Perception, Assistive Robotics,

Medical Technologies, Tele-rehabilitation.
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Chapter 1

Introduction

1.1 Society Aging and the Need

Based on official numbers and statistics from the World Health Organization (WHO) as well

as existing demographic data, the world’s population is aging rapidly. The population of senior

adults worldwide over the age of 60 is expected to more than double by 2050 (from 841 million

in 2013 to more than 2 billion by 2050). It is anticipated that by 2047 the number of senior

adults will exceed the number of children. This trend is expected to continue due to increased

life expectancy, and reduced fertility rate. It can become a global public health challenge in the

near future and have significant social and economic effects on healthcare systems worldwide

[1–4].

The rapid aging of our society is likely to increase the incidence of age-related neuromus-

cular and sensorimotor degeneration and corresponding disabilities and adverse events. Many

of these age-related disorders such as post-stroke disabilities [5], Parkinson’s disease (PD) [6],

disabilities caused by brain tumors, and essential tremor (ET), in addition to musculoskeletal

impairments (such as osteoporosis [7], sarcopenia [8] and spinal cord problems [9]), result in

sensorimotor dysfunction and impaired mobility in addition to long-lasting motor disabilities.

This directly affects the health-related quality of life of senior adults [10].

Among age-related neuromuscular and sensorimotor problems, stroke is the leading cause

of major motor disabilities [11–14] and results in excessive economic pressures on health-care

systems. For example, stroke costs the Canadian economy $3.6 billion per year. Annually,

1
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patients with stroke spend more than 639,000 days in acute care in Canadian hospitals and 4.5

million days in residential care facilities [15], [16]. A similar trend has been reported globally.

Repetitive, task-specific, interactive and goal-oriented motor rehabilitation is a key factor

that helps patients to accelerate neural plasticity (NP) in their brain and consequently regain

some of their lost motor functions. In fact, NP is a phenomenon that helps recovery of brain

functions at the synaptic and non-synaptic levels. It is believed that NP can enhance damaged

neural pathways of the brain and activate redundant, less-damaged pathways. This results in

an increase in the quality of mobility and ultimately higher quality of life and level of indepen-

dence. [17, 18].

Improving rehabilitation, together with pharmaceutical care is likely to increase the sur-

vival rates of patients with age-related neuromuscular problems and reduce hospital costs but

will result in even more patients in need of Assistance, Rehabilitation and Assessment (ARA)

services. Particularly, many stroke survivors experience permanent or long-lasting motor dis-

abilities and often require labor-intensive motor therapy as early as possible and for extended

periods. This places a significant burden on the healthcare system. The likely outcome is that,

with a healthcare system that is already under-resourced, many patients suffering from a major

functional deficit would not receive sufficient ARA services.

One potential solution is to develop intelligent Neuro-Rehabilitation Mechatronic (NRM)

technologies that provide interactive, efficient, effective, safe and affordable means of ARA

services for patients with neuromuscular disabilities, in clinics and ultimately in their homes

[19].

In this chapter we review the existing categories of NRM technologies which have been

developed for the above-mentioned goals. The specific focus of this review is Haptics-enabled

Interactive Robotic Neuro-Rehabilitation (HIRN) systems which are being used in modern

clinics to provide patients with an intelligent interactive repetitive computerized environment

to accelerate NP and ultimately enhance the patient’s quality of mobility and life.

The rest of this chapter is organized as follows. In Section 1.2, the relevant definitions

regarding NRM technologies are provided to highlight the main differences between the two

major categories of NRM systems and better define the category which is studied in this chap-

ter, i.e., HIRN technologies. In addition, some of the major commercialized NRM technologies
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Figure 1.1: Some examples for Neural Engineering, Bio-Mechatronics and Neuro-
Rehabilitation Mechatronics.

are introduced in Section 1.2. Details about the design and effectiveness of HIRN systems are

given in Section 1.3. In Section 1.4 the existing challenges and the possible future vision of

HIRN technologies are presented. In Section 1.5, scope, structure and the focus of this thesis

are provided. Finally, in Section 1.6, the main contributions of this project are briefly presented.

1.2 Neuro-Rehabilitation Mechatronic Systems: Definition

and Categories

This section introduces the definition of Neuro-Rehabilitation Mechatronic Systems and pro-

vides the existing categorizes.

1.2.1 Definition

The science of design and implementation of NRM systems falls within an overlapping region

between two relatively new interdisciplinary fields of applied sciences, namely Neural Engi-

neering (NE) and Bio-Mechatronics (BioM), whose definitions are given below. This concept

is shown in Fig.1.1.

Neural Engineering: The definition of NE given in the literature is “an interdisciplinary

research area that brings to bear methods from neuroscience and engineering to analyze neuro-

logical functions and to design solutions to problems associated with neurological limitations

and dysfunctions” [20].
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Figure 1.2: Patient-Robot Interaction Information Flow for NRM technologies. In this figure,
PMA-M refers to “Patient-Machine Action Modalities” which are generated by the patient and
include Position, Force, EMG, EEG, Gaze modalities. In addition, PMR-M refers to “Patient-
Machine Reaction Modalities” which are generated by the mechatronic system and include
Position, Force and Electrical Muscle Stimulations. Also, CIS-M refers to “CNS Input Sens-
ing modalities” which include Force, Rigidity, Tactile and Visual perceptions in addition to
Proprioception. Also, NM-DDD refers to Neuromusclar Motor Disorder, Deficit, and Disabil-
ity which affects the patient’s sensorimotor system. In addition, P-PMI refers to “Physical
Patient-Machine Interaction”.

Bio-Mechatronics: The definition of BioM in the literature is “an applied interdisciplinary

science that aims to integrate mechanical elements in the human body, both for therapeutic uses

(e.g., artificial hearts) and for the augmentation of existing abilities” [21].

Considering the above definitions, NRM can be defined as the science of designing and

implementing mechatronic solutions to help patients with Neuromuscular Motor Deficits, Dis-

orders and Disabilities (NM-DDD) in rebuilding and regaining their lost motor functions. An

NRM system has three major components (mechanical, electrical and computerized systems)

which are fused to address the above-mentioned goal. Consequently, systems such as neural

sensors and electrical nerve stimulators can be considered as components of an NRM system

but they are not standalone NRM technologies. The diagram shown in Fig. 1.2 represents

the information flow between a patient and an NRM technology. Consequently, a technology

which cannot be modeled using the diagram given in Fig. 1.2 is not an NRM technology.

It should be noted that all NRM systems include a close physical interaction between a

disabled patient and a powerful source of mechanical stimulation. If the interaction modali-

ties (such as force, velocity, acceleration) go beyond certain limits, they can cause bone, joint
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and/or soft tissue damages. This is why Physical Patient-Machine Interaction (P-PMI) safety is

an important requirement of NRM systems and, for safety purposes, may result in conservative

restrictions on the amount of allowable forces that can be generated by the system [22–24].

High limitations in generating therapeutic and assistive forces can result in reduced perfor-

mance (such as slow guidance or low-intensity interaction). Consequently, guaranteeing the

safety of physical patient-machine interaction while maximizing the allowable force genera-

tion is an ongoing field of research which will be explained in more details in this chapter.

1.2.2 Categories

As shown in Fig. 1.1 there are two major categories for NRM systems, namely:

• Haptics-enabled Interactive Robotic Neuro-Rehabilitation (HIRN) Systems,

• Assistive Neural Technologies (Smart Active Prosthetics and Orthotics).

Although the main focus of this chapter is HIRN technologies, the authors believe that it is

essential to have a good understanding of the boundaries of each category to allow for better

interpretation of the main mission of HIRN technologies in comparison to that of the second

category. The two categories are briefly introduced below and examples are provided.

Haptics-enabled Interactive Robotic Neuro-Rehabilitation (HIRN) Systems: The main

purpose of HIRN technologies is to provide patients with a force-enabled interactive medium

(mostly based on virtual-reality environments) that either assists or resists a patient’s upper-

limb or lower-limb movements while performing a repetitive tasks. Examples for upper-limb

HIRN systems can be found in [25–27] and examples for lower-limb HIRN systems can be

found in [28–31].

For upper-limb rehabilitation, conventional tasks include reaching motions where the user

needs to track and reach a moving target in a Virtual Reality (VR) environment. The target

switches (a) if the user reaches it, or (b) if a specific task completion time limit has elapsed.

There are more sophisticated game-like virtual environments designed to keep the patient en-

gaged during a rehabilitation session. Widely used commercialized examples of the upper-limb

HIRN robots include the InMotion ARMTM system (Interactive Motion Inc. Watertown, MA,
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(a)

(b)

Figure 1.3: Commercialized HIRN systems: (a)∗ The Armeo system [36], (b)∗∗ The InMotion
ARMTM system [37, 38].

United States), which is the clinical version of the MIT-Manus [25, 32], and the Armeo technol-

ogy (Hocoma AG, Zurich, CH) [33, 34] (which is based on ARMIN [35] technology). These

systems are shown in Figs. 1.3a and 1.3b, respectively.

The situation is slightly different for lower-limb HIRN systems which have two subcate-

gories. The first type of lower-limb HIRN systems work in a similar manner as the above-

mentioned upper-limb technologies. The patient needs to be in a sitting or a lying position,

and the robot is connected to a part of their lower-extremity (which is usually their ankle) and

the patients should perform a task in a virtual reality environment. Examples are the Rutgers

Ankle system [39, 40] and the Anklebot [41] shown in Fig. 1.4. Other examples can be found

in [42, 43].

∗ [Figure 1.3(a)] Copyright c©Hocoma AG, Switzerland, www.hocoma.com
∗∗[Figure 1.3(b)] Copyright c©Bionik Laboratories Corp.
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(a) (b)

Figure 1.4: Lower-limb HIRN systems: (a)∗ The Anklebot system, Interactive Motion Inc.
Watertown, MA, United States [44], (b)∗∗ The Rutgers Ankle system, Rutgers University, Pis-
cataway, New Jersey, United States [40, 45].

The second subcategory of lower-limb HIRN technology is treadmill based robotic gait

trainers [28, 31]. This category aims to rehabilitate cyclic gait motion and the patients should

be in the walking position while wearing the robot. The patient walks on a treadmill while

their weight is usually supported to prevent falls. The robot provides assistive, coordinative

or resistive forces while the patient walks. A virtual reality environment might be used for

providing visual cues. An Example of this subcategory is Lokomat system (Hocoma AG,

Switzerland) [46, 47] shown in Fig. 1.5.

The main targeted populations for HIRN technology is post-stroke patients and the major

use is to harness neural and muscular plasticity and recovery over time. However, the same

technology has been applied for other neuromuscular conditions, such as for assessment and

better understanding of Parkinson’s Disease in adults [49–51], and for rehabilitation of Cerebral

Palsy in children [52–55].

It should be noted that HIRN technologies do not aim to instantly assist a patient in per-

forming Activities of Daily Livings (ADLs) through augmenting their movement capabilities.

∗ The reference for Figure 1.4(a): [A. Roy, L. W. Forrester, R. F. Macko, H. I. Krebs, “Changes in passive
ankle stiffness and its effects on gait function in people with chronic stroke,” Journal of Rehabilitation Research
and Development, vol. 50, no. 4, pp. 555–572, 2013.]

∗∗[Figure 1.4(b)] Copyright c©1999, ASME. [M. Girone, G. Burdea, M. Bouzit, “The Rutgers ankle ortho-
pedic rehabilitation interface,” Proceedings of the ASME, Dynamic Systems and Control Division, vol. 67, pp.
305–312, 1999.]
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Figure 1.5: ∗An example of lower-limb HIRN systems (the second category), the Lokomat gait
trainer system, Hocoma AG, Switzerland [48].

Instead, this technology aims to accelerate neural and muscular recovery and enhance motor

performance of patients over time [56]. This is discussed further in the next section and is the

main difference when compared with the second category of NRM systems.

Assistive Neural Technologies (ANT), Smart Active Prosthetics and Orthotics: In con-

trast to HIRN technologies, the mission of the second category is to provide instant active as-

sistance for patients with neuromuscular deficits to help them in performing their ADLs. The

control strategy for proper tuning of the functionality of this technology is usually complicated

and requires fusion of data collected from the patient’s body (such as muscles, brain, nerves

and the kinematics of motion) in addition to interactive data (such as measured forces from

the walking surface). This data fusion is required to properly and actively tune the mechanical

characteristics of the device (such as impedance of the robot’s joints) and the generated forces

while performing tasks. In [57, 58], examples of existing control strategies and existing ANT

technologies can be seen.

In this regard, active intelligent prosthetics (artificial limbs) have been designed for both

upper-limb [59, 60] and lower-limb [61] deficits to help amputees in performing ADLs. An

example of this technology for the lower-limb is the active emPOWER Ankle (from BionXTM

∗[Figure 1.5] Copyright c©Hocoma AG, Switzerland, www.hocoma.com
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(a) (b)

Figure 1.6: (a)∗ An example of a lower-limb Active Prosthetic, the emPOWER Ankle system
from BionXTM Medical Technologies, Inc. [63]; (b)∗∗ Three examples of upper-limb active
prostheses (from left to right) the Bebionic hand from RSL Steeper, the Vincent hand from
Vincent Systems GmbH, and the i-LIMB Ultra system from Touch Bionics [62].

Medical Technologies, Inc., Bedford, MA, USA). In addition, some examples for upper-limb

active prosthetics are the Bebionic hand (RSL Steeper, United Kingdom), the Vincent hand

(Vincent Systems GmbH, Germany), and the i-LIMB Ultra (Touch Bionics, United Kingdom)

[62]. The above-mentioned examples are shown in Fig. 1.6.

In addition to active prosthetics, smart assistive orthoses have been developed to instantly

augment the capabilities of disabled patients (such as those with post-stroke impairments and

spinal cord injuries) in performing ADLs, using their own limbs. An example of this technol-

ogy is the Vanderbilt Lower-limb Exoskeleton that is designed for patients with paraplegia [65].

More examples can be found in [66]. In contrast to the assistive prosthetics, active orthoses are

wearable exoskeleton-like mechatronic devices which aim to manipulate the limbs of patients

to perform ADLs. In this regard, the EKSO GTTM system has been commercialized as an ac-

tive orthosis which is claimed to be the first FDA-approved exoskeleton to be used for patients

with post-stroke impairments and spinal cord injuries [67, 68]. The EKSO system is shown in

Fig. 1.7.

∗[Figure 1.6(a)] Copyright c©BionX Medical Technologies, Inc.
∗∗ [Figure 1.6(b)] Copyright c©2013, IEEE. [T. Tommasi, F. Orabona, C. Castellini, B. Caputo, “Improving

control of dexterous hand prostheses using adaptive learning,” IEEE Transactions on Robotics, vol. 29, no. 1, pp.
207-219, 2013.]
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Figure 1.7: ∗ Lower-limb Active Exoskeleton: the Ekso system [64].

1.3 HIRN Technology: Design and Effectiveness

1.3.1 Design

Conventional HIRN systems have three major components whose definition and functionality

are explained below [20, 25, 69, 70]. A representative schematic is given in Fig. 1.8 which

shows how the components are interconnected.

(a) A Powerful Haptic Device: The first components of a HIRN system is an active medi-

cal robotic device which usually can provide multi-directional high-amplitude and high band-

width kinesthetic forces in order to enable delivery of various type of kinesthetic rehabilitation

exercises for patients with neuromuscular deficits. The medical robotic component used in

HIRN systems should be powerful-enough to allow for generating high-intensity forces for pa-

tients with a wide-range of biomechanics and neuromuscular deficits. For example, patients

may show strong imbalanced muscular tone symptoms (such as the one in post-stroke patients

with spasticity and hypertonia [71, 72]), and the system should be capable of manipulating and

stretching the affected muscles. In addition, the kinematic and biomechanical characteristics

of the patients’ limbs can be very different. A patient may have a small workspace of motion

∗ [Figure 1.7] Copyright c©2012, IEEE. [L. Mertz, “The Next Generation of Exoskeletons: Lighter, Cheaper
Devices Are in the Works,” in IEEE Pulse: A Magazine of the IEEE Engineering in Medicine and Biology Society,
vol. 3, no. 4, pp. 56-61, DOI: 10.1109/MPUL.2012.2196836, July 2012.]
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Figure 1.8: A representative schematic of the components involved in HIRN systems. The
main components are shown by green rectangles.

with light-weight and compliant limbs and with no involuntary movement, while another pa-

tient may have a large workspace of motions and/or have heavy rigid limbs and/or tremor-like

involuntary movements.

In addition to the above, the robot should be responsive-enough (having high bandwidth)

to provide a transparent feel of interaction and to minimize potential latencies which can affect

the quality of force feedback. In other words, “the robot should be invisible [73]” for the

patient. The concept of transparent haptic interaction has been investigated in depth in the area

of haptic and telerobotic systems [74, 75].

In addition, the electromechanical parts of the robot should be able to accommodate the

generation of repetitive force-enabled tasks over a long period of time, while mechanically

tolerate the uncoordinated external disturbances applied by patients with sensorimotor deficits.

Also, the robot should provide various hardware and software safety features to avoid danger-

ous situations for disabled patients who are usually attached to the device (sometimes using

velcro-like constraints) [73, 76]. Detailed discussions on safety is provided in Section IV.

The above-mentioned notes represent considerable existing technical and technological

challenges and the need for particular attention to the design of HIRN systems [69, 73, 76, 77].

As a result, electromechanical design of HIRN technologies is a distinct area of research which

requires close communication and partnership between engineers and clinicians to optimally

meet the requirements [26, 77, 78].
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In order to reduce the complexity of the design, some of HIRN systems have targeted a

limited number of joints and provided limited degrees of freedom for delivery of rehabilita-

tion therapies. In this regard, rehabilitation robots have been separately designed for finger,

wrist, arm and shoulder therapies. Commercial examples for different segments of the upper-

extremity can be found in [79–82]. Modular designs have also been considered which allow for

combining two standalone devices (for example wrist and arm robots) into one system [81].

In addition, pediatric rehabilitation systems have been separately designed and optimized to

make them compatible with specific needs of pediatric patients and their kinematics and force

capabilities [52].

Regarding the functionality of HIRN technologies, it should be noted that, two low-level

control schemes have been commonly utilized in the literature [27, 73, 76], namely: (a) Impedance-

Domain Control (IDC), such as the one used in the MIT-Manus system [83]; and (b) Admittance-

Domain Control (ADC), such as the one used in the HapticMaster system [84].

For the case of IDC schemes, the robot measures the movement of the patient and provides

therapeutic forces in response. If the scheme uses only the kinematic calculations of the robot

to generate end-point forces by applying the calculated torques at the joints, the controller is

called open-loop IDC. If the robot utilizes a closed-loop force control algorithm (based on

the measured forces) to accurately tune the end-point force, it is called closed-loop IDC. An

impedance-controlled robot is naturally in free-motion. For the case of open-loop IDC, the

user may feel residual dynamics (such as friction in the joints and inertia) of the robot when

the commanded force is zero. For this reason, the mechanical design of IDC-based robots

is usually light-weight, back-drivable, low-friction and low-inertia [27, 85, 86]. The other

solution to deal with the residual dynamics of the robot, in the case of open-loop IDC, is to

utilize an inverse dynamics algorithm to compensate for the residual dynamics of the robot [27].

For the case of ADC schemes, the robot measures the forces applied by the patient and provides

therapeutic motion profiles in response. In other words, the robot is naturally locked due to an

inherently-implemented position control loop in ADC schemes.

In theory, the aforementioned low-level control schemes are identical from the point of

view of rendering similar quality of kinesthetic interaction for a user. However, from a prac-

tical point of view, in ADC schemes, force measurement is an inherent feature of the system
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which cannot be avoided. This can increase the cost of the system in comparison to the open-

loop IDC-based robots that do not require force measurement. In addition, as mentioned above,

ADC schemes have inevitable internal position control loops which command the robot to track

a position profile with respect to the measured forces. This may challenge the stability and the

complexity of the control strategy since it increases the number of control loops. The stability

concern will be more serious in the presence of noise, delay, and latency of the force measure-

ment system. In summary, mechanical designs of IDC-based robots are more complicated (in

comparison to ADC-based robots) to minimize the residual haptic effect (resulting from the

robot’s dynamics); however, it requires less complicated control designs and provides a more

robust behavior for rendering a kinesthetic feeling for the patient [27, 85, 86]. In general, using

IDC, more responsive and accurate interaction [85], and better stability [86] can be expected.

It should be noted that when high forces are needed, for example for lower-limb rehabilitation,

ADC schemes might be more appropriate.

(b) Game-like Virtual Reality Environment: Due to significant progress in the field of

real-time 2D/3D video rendering software and gaming technology during the last two decades,

task-oriented VR environments have become an inherent component of HIRN technologies

[78, 87]. The purpose of these VR environments is to provide the patient with multi-modal

(mostly visual and auditory) cues during tasks performed by patients. Research has shown

that the use of VR environments can significantly augment the effectiveness of robotic reha-

bilitation systems. This has been done by comparing VR-based and non-VR-based robotic

training systems [88, 89]. A recent systematic review of the effectiveness of VR environments

for upper-limb post-stroke recovery reports strong supporting scientific evidence [90]. Further

reports can be found in [91].

The first generation of VR environments was mostly 2D and the tasks were usually simple

reaching movements where the patient was required to track a moving object or to reach sev-

eral stationary targets one-by-one. However, the recent generation of VR environments used

in HIRN technologies, provide more sophisticated interaction allowing the user to perform

tasks in the simulated environments similar to normal ADLs. In addition, taking advantage of

existing relatively-inexpensive 3D rendering technologies, the recent generation of VR envi-

ronments can provide the user with visual depth information, as well. One of the main purposes
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of using VR environments in HIRN technologies is to maximize the engagement and participa-

tion of the patient. For the case of pediatric rehabilitation, the design of the VR environments

is more challenging and it should be motivating and interesting-enough to keep the pediatric

patient engaged in the loop of rehabilitation [76, 78, 91–93].

(c) Programmable Virtual Therapist (PVT) algorithm: The third component of a HIRN

system is an algorithm responsible for calculating the needed therapeutic forces to be applied

by the robot to the patient’s limb in order to deliver kinesthetic rehabilitation exercises. The

algorithm is called a “high-level” control strategy in some articles. The main goal of this

algorithm is to enhance motor capabilities of patients by (a) stimulating motor plasticity and

neuromuscular recovery, and (b) preserving the health of the musculoskeletal system of patients

[25, 27, 70].

The possible types of rehabilitation exercises generated using PVT algorithms can be cate-

gorized into two major groups of high-level control algorithms (a) passive movement therapy

and (b) interactive therapy. For the first category, the patients’ motor control and their decision

making procedure are not involved. Instead, the robot controls the position of the patient’s

limb to track a desired trajectory. In other words, the control algorithm of the robot considers

the patient’s inputs as disturbing forces that should be compensated for to enable tracking the

predefined motion trajectory. Although, this therapy can be useful mostly for preserving and

enhancing the health of joints and muscles (for example through muscle stretching exercises),

it is not expected to significantly enhance motor learning since it does not allow the patient to

(a) be engaged in the procedure of motion control and task accomplishment, and (b) make mis-

takes (which is a key factor in motor learning). It should be noted that, for extremely-impaired

or completely disabled patients who are not capable of providing the minimum required motor

capabilities that can be registered by the robot (this is needed for the second category), this

option is still useful and can help the patient to regain some minimum motor capabilities which

might be enough to make the patient a candidate for the second category of robotic therapy that

is directly aimed at neural recovery [94, 95].

The second category is mostly considered for brain rehabilitation and neural recovery. This

category has been specifically designed to allow patients to be involved in task performance. In

this regard, the patient needs to track a trajectory while the robot provides interactive therapeu-
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tic forces. There are two major types of widely-used and commercialized therapeutic actions

under the second category: (a) Resistive Therapy (RT), and (b) Assistive Therapy (AT).

The functionality of RT is to challenge patients’ motor capabilities during task performance

and to urge them to generate more muscle activities and contractions and more forceful motor

control during task performances. This can help patients to enhance their motor capabilities and

equalize their muscle activation. During RT, the robot may damp out or oppose the mechan-

ical power generated by the patient to make the tasks (motion generation and target tracking)

kinesthetically difficult and challenging for the patient. On the other hand, AT (denoted as

“sensorimotor robotic therapy” or “coordinative therapy” in some articles) is designed to am-

plify the mechanical power of the patient’s hand and help to finish several repetitions of the

task. In general, candidates of RT need to have considerable residual motor capability and it

is not possible to perform this type of rehabilitation for severely-disabled patients. However,

highly-disabled patients with minimum residual mechanical power can take advantage of in-

teractive rehabilitation exercises through AT. This is why robotic rehabilitation is known as a

tool which has significantly broaden the range of patients who can take advantage of receiv-

ing interactive exercises (which is a key factor for triggering brain plasticity). Clinical studies

support effectiveness of both RT and AT. However, statistically-significant differences have not

been reported yet between the effectiveness of RT and AT for those patients who can undergo

both types of interactive robotic therapy (RT and AT) [27, 70, 96–98].

Although, the design of high-level control algorithms of RT is relatively straightforward,

the situation is not the same for AT, as explained next. For RT, the high-level controller usu-

ally works like a viscoelastic or viscous environment which restricts or challenges the patient’s

movement when they try to move the robotic handle away from the origin and towards the tar-

get for task performance. The intensity (forcefulness) of the environment is usually tuned by a

clinician after some trials. In addition to viscosity-based resistive therapies, there are simpler

formats of RT that only generates constant resistive forces (independent of the patient’s move-

ment) during task performance. A clarifying example for the constant resistive forces is gravity

which always resists the hand motion in one direction and the intensity of it is independent of

the kinematic characteristics of the movement. In addition, it should be noted that generally RT

algorithms do not require a desired trajectory. The above-mentioned notes represent relatively
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straightforward design of RT algorithms [27, 94, 96, 99, 100].

In contrast to RT, for the case of AT, the design of the high-level control algorithm is

more complicated. There are several ways to assist a patient for tracking a trajectory. Novel

techniques have been and are being developed and/or are under clinical trials. This is a top

line of research and is still under new development. In this regard, a major goal of the ongoing

studies is to find the best way of intelligently assisting severely-disabled patients to enable them

to perform tasks while maximizing their engagement and participation. Active involvement and

participation of the patient is a key factor which can promote neural plasticity and has been

enabled using task-oriented assistive therapies. The goal of AT is to help severely-disabled

patients in recovering their motor performance as quickly and permanently as possible [95, 96,

101].

As mentioned above, for the case of AT the high-level control algorithm may be designed

in different ways. One existing possibility is an error-reducing force field which does not

apply forces if a patient follows a trajectory/path within an acceptable time/position threshold.

However, once the patient deviates from the trajectory/path the force field starts pushing the

patient towards the needed trajectory/path. The force can be proportional to the amount and

derivative (velocity) of deviation. This strategy is called “impedance-based assistive therapy”

or “active-assistance” in some articles. It should be noted that the difference between the path-

control techniques and trajectory-control techniques is the “time” factor. For path control,

the time factor is not considered. However, for trajectory control, the timing of movement is

taken into account. This means that for the trajectory-control strategies, if a patient moves

towards the target, even in the correct path, but deviates from the timing profile, the force-

field starts assisting the patient and pushes them towards the correct trajectory considering the

defined timing of the motion. The existence of the above-mentioned time/position thresholds

is one of the main difference between interactive AT and the first category, mentioned earlier in

this section, i.e., passive movement therapy. The use of the aforementioned thresholds allows

patients to make mistakes and follow their own pattern of target tracking within an acceptable

window. As mentioned above, being involved in generating the pattern of motion and being

allowed to make mistakes during motor execution are important factors for stimulation motor

learning and neural plasticity. Although, the AT can address several issues for promoting
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neural plasticity, tuning of the thresholds and the characteristics of the considered impedance

of the generated force field (the dependency of the therapeutic forces on the deviation from the

desired path/trajectory) is questionable and in some cases has been approached using adaptive

algorithms. This topic is discussed further in the next section. The relevant citations regarding

the discussion given above are [95, 96, 102–106] and the references therein.

The other type of AT has been called “counter-balancing” or “gravity-compensation” strate-

gies in some references. The main purpose of this type of AT is to compensate for the weight of

the patient’s limb to make tasks easier and allow patients to conduct more repetitions. In other

words, the basic aim of this type of high-level control strategy is not to guide a patient’s arm to-

wards a trajectory or path. The aim is to help the patient in using the residual motor capabilities

to perform repetitive tasks instead of using the capabilities to compensate for the weight of the

musculoskeletal system. This type of AT has been motivated by classical passive counterbal-

ancing devices used for rehabilitation therapies. The amount of compensation may be tuned to

modify the level of assistance. Consequently, this type of AT can increase motion capabilities

of patients by partially or totally counterbalancing the weight of their limbs. The conventional

designs could not help patients with considerable increased muscle tone and agonist muscle

weakness who are in need of considerable kinesthetic help in performing movement tasks.

There are however hybrid designs of this type of AT which allow for balancing forces more

than the weight of a patient’s limb to account for other symptoms such as increased muscle

tone or to provide some level of impedance-based guiding forces. [107–111].

The other type of AT is power-assistive therapy which is also called “negative-viscosity as-

sistance”, “negative-damping assistance”, “self-directed movement”, “energetic assistive ther-

apy” and “positive feedback control” in various articles. The main concept of this type of

assistive strategy is to directly amplify the mechanical power generated by the patient. For

this purpose, the rehabilitation robot may generate forces in the same direction of the velocity

provided by the patient. In other words, the robot can register the direction in which the patient

intends to move and amplify the patient’s power by reflecting back the assistive forces to the

patient’s limb in the intended direction of motion. This is done to help the patient in complet-

ing the intended movement task in a faster and easier manner. This type of assistive strategy is

relatively new compared to conventional impedance-based assistance. Recent studies have sup-
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ported the effectiveness of this type of AT in enhancing motor learning and motor performance

for post-stroke patients. This high-level control technique allows patients to utilize their own

motion strategies and residual motor capabilities for task accomplishment. The strategy en-

ables patients to achieve “greater agency over their sensorimotor interactions [112]” through

active involvement which is an essential factor supported by motor learning studies, instead of

relying on external control from a robot. It should be noted that this type of high-level control

strategy has also been viewed as a tool which brings more awareness of the existing motor

control errors for the patient, which is also an important factor for motor learning. The afore-

mentioned viewpoint considers this type of AT as a new kinesthetic tool which provides “error

enhancement” or “error augmentation”. This is a well-studied and widely-accepted strategy in

the literature for motor-learning. Relevant discussions on this can be found in [106, 112–119].

The concept of detecting the patient’s intention of motor control and amplifying the in-

tended motion has also been realized and clinically validated using surface EMG measurements

of the muscle activities (instead of using kinematic measurements, such as velocity and accel-

eration) for detecting the intention of motion. The motivation is similar to the above-mentioned

negative-damping AT and is to provide active involvement through direct motor agency for the

patient. For this purpose, the EMG-based motion amplification assistive strategy analyzes the

EMG activities of the corresponding muscles; then, it identifies the patient intention of move-

ment (and possibly the direction of the intended motion) and finally, it amplifies the detected

motion. Hybrid techniques which use EMG measurements in order to trigger impedance-based

AT have also been developed and validated [120–122].

Although there are several clinical studies supporting the effectiveness of the above-mentioned

high-level control strategies (i.e., AT and RT), there are many parameters which need to be

tuned properly considering the rehabilitation need, the biomechanical characteristics of the pa-

tient’s limbs, in addition to the pattern of neuromuscular deficits and the progress of the motor

learning. Examples of those parameters are the kinesthetic and kinematic characteristics of the

desired trajectory to be tracked by the patient, and the strength/forcefulness (extent of reaction)

of the RT and AT strategies. Improper tuning of these parameters and inappropriate choice of

the rehabilitation strategy can convert a potentially effective robotic rehabilitation treatment to

an ineffective therapy. This topic is further discussed in the next part.
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1.3.2 Effectiveness

Programmable VR-based HIRN technologies have shown a great potential in accelerating neu-

ral recovery and has resulted in enhancing the quality of motor performance for post-stroke

patients [25, 123–125]. There are several contributing factors which may have attracted a great

deal of interest for using HIRN technology to enhance motor performance of neurologically-

impaired patients. Some examples are given below:

a) Robots can be programmed to repeat an interactive task for several iterations while keep-

ing patients engaged in the loop of rehabilitation.

b) Robots are powerful and precise, so they can generate accurate high- and low-intensity

assistive and resistive force fields to deliver kinesthetic therapy for a wide range of pa-

tients with different biomechanics, over a long period of time.

c) Robots are computerized and can measure and log kinematic and kinesthetic data (such

as motion and force profiles in different parts of the workspace) during rehabilitation

therapies. This enables precise and repeatable objective assessment of motor perfor-

mance that is important for clinicians to tune the dose, strategy, type, and intensity of

therapy, while monitoring the progress of motor enhancement.

d) VR environments coupled with HIRN systems provide interactive visual and auditory

cues, enable goal-oriented sensorimotor tasks which keep patients engaged and urge

them to use their decision making capabilities. This is a key factor for stimulating neural

recovery in comparison with passive limb movement therapy [25, 126].

The effectiveness of HIRN systems in enhancing neural recovery has been widely accepted

in the literature [25, 127]. In this regard, the American Heart Association (AHA) has endorsed

upper-limb robotic therapy in its guidelines as a standard for post-stroke therapy [52, 127, 128].

However, there are two major controversial questions about the performance of HIRN systems.

The first question is: Does the enhanced motor performance achieved by the use of HIRN

technology remains for a significant period of time after robotic rehabilitation? This question

has been investigated in the literature [56, 129, 130] and it is shown that motor enhancement

benefits remain even for three years after robotic therapy.
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The second question is: Can the trained skills be translated and generalized in perform-

ing ADLs? In other words, the question is whether patients subjected to robotic therapy only

adapt to the trained exercises (which may result in better performance of the trained tasks),

or they learn motor skills and can generalize them for better performance of ADLs? To an-

swer this question, a clinical study has been conducted including 158 recovering post-stroke

patients [56]. The outcome of this study shows promising results regarding the functionality

of HIRN systems in enhancing motor skills. In particular, the results show that kinematic en-

hancement achieved by robotic rehabilitation can be generalized to untrained tasks (in a similar

workspace). This means that motor performance enhancement “better resembles motor learn-

ing than motor adaptation [56]”.

In addition to the above two conventional questions, there is a third research question which

is a current major line of research: Can HIRN technologies and the corresponding concept

of virtual therapist be a “replacement” for conventional manual rehabilitation therapies de-

livered through interpersonal kinesthetic interaction between a human therapist and a pa-

tient? [131]. Based on the current state of HIRN technologies and conducted research in this

area, it can be interpreted that the current available technology has not been accepted as a

replacement for conventional therapy [131, 132]. However, it is widely accepted for enhanc-

ing the outcomes (as an adjunct to conventional rehabilitation therapy) through (a) increasing

the hours of rehabilitation that a patient may receive and (b) exposing the patient to an inter-

active rehabilitation environment where their decision making procedure is involved for task

accomplishment. In addition, it is believed that this technology can provide more indepen-

dence for patients during rehabilitation, and has the potential to save the therapist’s time and

ultimately reduce some burden on the healthcare systems [92, 128, 131–134]. This has been

the motivation for (a) recent modern robotic gyms developed for upper-extremity rehabilita-

tion [55, 127, 134], and (b) the current rising tendency towards developing in-home kinesthetic

rehabilitation, tele-rehabilitation and cyber-rehabilitation systems. These systems have the po-

tential to considerably increase the duration for which a post-stroke patient receives interactive

kinesthetic rehabilitation and can also result in more accurate objective assessment of patients’

motor performances during a larger time window [78, 92, 134, 135]. This topic is discussed in

the next section.
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In summary, after 30 years of research in the area of robotic rehabilitation, the current trend

is not anymore towards replicating or replacing manual therapies [69], but is targeting develop-

ment of novel means of therapy and assessment that can be safely supervised by clinicians and

can be performed by robots because of their unique features including advanced, interactive,

repetitive, multi-modal, computerized, power-full and kinesthetic environment which has been

realized by HIRN technologies. This trend is now targeting future homes of patients, in the

context of smart modern homes. Further discussion is provided in the next section.

1.4 HIRN Technology: The Journey, Challenges and Future

Vision

In this section, the existing challenges concerning the use and implementation of HIRN tech-

nologies are introduced and the future of this technology is discussed while looking at the

ongoing journey of development that started around 30 years ago.

1.4.1 Background on the Evolution of HIRN Technologies

The earliest designs of HIRN technologies were published between 1992 and 1995 [32, 136–

138] and a version of the technology was patented by researchers from Massachusetts Institute

of Technology in 1995 [139]. Clinical studies have been conducted from the earliest stages of

generation (reported around 1997 [83, 140]) until now (such as [141] published in 2015), in

order to evaluate different aspects of the effectiveness of this new paradigm of rehabilitation.

The goals of the conducted clinical studies have been mostly targeted towards answering re-

search questions such as the ones below.

a) Are rehabilitation robots effective in accelerating neural recovery?

b) Can rehabilitation robots replace manual therapy?

c) Can robots augment the effectiveness of conventional interpersonal therapies?

d) What type of robotic rehabilitation is more effective?

e) How can the effectiveness of a robotic therapy regime be increased?

f) How can the functionality of rehabilitation robots be adapted to the needs of patients?
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g) Can rehabilitation robots be used in patients’ homes?

The list given above shows some examples of important research questions. Although, some of

these questions (such as (a) and (c)) have been deeply investigated during the last two decades

of clinical research and the results have convinced several associations (such as AHA) to en-

dorse the effectiveness of this technology, other questions (such as (b), (f) and (g)) are still

under investigation and form the ongoing lines of research.

As mentioned in the previous section, although, the effectiveness of robotic rehabilitation

systems has been widely accepted (at least as an effective adjunct therapy for manual reha-

bilitation), there are still conflicting clinical studies with contradictory conclusions (this will

be explained more in the rest of this section). One possible reason for this controversy can

be an improper generalization of the term “robotic rehabilitation”. In fact, due to the current

large and growing size of the corresponding market and research effort there are several differ-

ent commercialized and experimental rehabilitation robots with different implementations and

modes of operation. Even for one specific product, there are several modes and parameters to

be tuned in order to deliver a kinesthetic rehabilitation regime. As mentioned earlier, improper

tuning of robotic therapy, or improper choice of the robot, or the strategy of rehabilitation can

totally change the outcomes. It may even convert a possibly effective regime of rehabilitation

to an improper or ineffective exercise. One well known example in this regard is an improper

choice of parameters for impedance-based AT (introduced earlier in this chapter) which can

result in excessive reliance of the patient on the actions of the robot that can reduce the engage-

ment of the patient in the therapy and ultimately degrade the results of the prescribed regime

of rehabilitation. Consequently, the existence of different opinions about HIRN technology

might be translated into the fact that (a) the results from one specific evaluation cannot be

generalized to all possible uses and formats of this technology; and (b) properly tuning the pa-

rameters which match the patient’s biomechanics and needs is a challenging procedure which

can affect the outcomes. The aforementioned issues have been discussed in [103] and several

other publications which focus on adaptive algorithms for therapy (as explained in the next

subsection).

It is expected that we will shortly face the second major movement in the field of HIRN

technologies during the following decade. Major goals would be (a) to make robots more
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flexible and intelligent to better match the patients needs and biomechanics, and (b) to move

rehabilitation robots into patients’ homes which will increase the duration for which a patient

can be exposed to an interactive rehabilitation environment and thereby improve the outcomes

while reducing the cost of rehabilitation. The latter goal comes under the umbrella of cyber-

medicine and tele-rehabilitation which has recently been introduced and is a growing field of

research. Relevant discussions about these issues can be found in [77, 135, 142–145].

With the use of smart and portable technologies, a significant increase in the exposure of

patients to intelligent, interactive rehabilitation environments is envisioned. It can be expected

that this will have a considerable effect on the rate at which patients regain their lost motor

functions and will reduce the burden on healthcare systems. There are several challenges facing

this area of research and further development of HIRN technologies. In the next subsections

we introduce the two major challenges together with possible solutions which form current and

the future lines of research in the field of HIRN technologies.

1.4.2 Adaptability Challenge

As explained in the previous section, the current state of robotic rehabilitation technology

has been accepted mostly just as an optional adjunct strategy for manual therapy and not as a

replacement or a replication. One of the major challenges which contributes to this viewpoint is

the compatibility issue of the robotic therapy with the needs and biomechanical characteristics

of patients. It is still uncertain how to optimize robotic rehabilitation strategies for patients in

need [56] considering the fact that stroke affects patients in different manners and the effect

of stroke is different for each patient. “There is no reason to believe that a one-size-fits-all

optimal treatment exists [102]”. To move towards a possible solution for this issue and enhance

the performance of robotic rehabilitation systems, adaptive algorithms have been suggested, as

discussed below.

The need for making the assigned motor learning task compatible with the requirements

of each user has been identified in several publications, for example in [95], [96], and refer-

ences therein. As discussed in [95], a research question which is under investigation by several

research teams is how to design the characteristics of high-level control algorithms for reha-

bilitation robots to match the sensorimotor requirements of each user. Some examples of the
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characteristics are: (a) the strength/forcefulness of robotic therapy, (b) the allowed threshold for

making errors and deviation from a desired trajectory during impedance-based assistive ther-

apy, and (c) the amount and strength of power amplification provided during power-assistive

therapy. These factors directly correlate with the choice of the parameters of the utilized high-

level control strategy. The conventional choice of parameters is usually fixed values for the

whole workspace of motion and might be changed (not frequently) by an operator after some

trials. This has not been seen in the literature as an optimal solution. In the field of motor learn-

ing and rehabilitation sciences, it is widely accepted that the parameters of a robotic training

system should be adapted (preferably in an automated manner and in real-time) considering

(i) the motor control capability, kinematics and biomechanical characteristics of the patient,

(ii) the characteristics of the neuromuscular deficits, and (iii) the rate and pattern of motor im-

provement. These three factors are denoted as Three Key Factors of Motor Training in this

section and have been identified in the corresponding literature such as [96, 102, 103], and the

references therein.

As an example for the above-mentioned compatibility need, it should be noted that high

level of assistance during impedance-based assistive therapy can result in excessive reliance

of the patient on the movement of the robot. This can result a phenomena called “slacking”

which means that the patient reduces the participation and tries to minimize the needed effort

for accomplishing the task over time, by relying on the robot and allowing it to “take over”

and finish the task. This reduces stimulation of neural plasticity and may have an inverse

effect on the progress of improvement. In fact, it is believe that a robotic device may result in

decelerating recovery if it results in the slacking phenomena. The reason is that slacking may

decrease the level of motor output and the generated mechanical power by a patient, and their

involvement in task accomplishment. On the other hand, high level of resistance can make the

task too difficult to accomplish for a patient. Relevant discussions regarding the above issues

can be found in [95, 96, 146], and references therein.

The lack of “flexibility” in tuning the parameters of robotic therapy have been discussed

in [95] as a possible factor affecting some studies (such as [147, 148]) which have not reported

statistically-significant benefits of using robots over manual interpersonal therapy where the

therapist has full authority to instantly and directly modify the strategy and the extent of kines-
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thetic guidance in different parts of the workspace [95, 96]. This authority for the therapists

which allows them to properly tune the therapy is known as a key factor in rehabilitation stud-

ies [149]. If the issue of flexibility is not resolved, robots can only be seen as an optional

adjunct therapy whose performance might be uncertain to some extent. However, the existence

of extensive clinical studies reporting significant benefits of rehabilitation robots under some

specific circumstances has motivated research on ways to deal with this challenge and to ulti-

mately allow for using this technology with minimum concern about how to manually tune the

parameters.

Accordingly, an accelerated trend of research and development for designing high-level

control algorithms is to determine how to design intelligent adaptive techniques which auto-

matically (or semi-automatically) tune the parameters and match the three key factors of motor

training. Motivated by this, adaptive control techniques such as “assist-as-needed”, “fading

force feedback”, “progressive-based assistive/resistive therapy” have been proposed in the lit-

erature to autonomously or semi-autonomously tune the control parameters of the robots (con-

sidering some measures such as completion time, motion characteristics and/or quality of task

accomplishment). Some of the developed adaptive techniques include algorithms such as “for-

getting factors” (which decrease the assistance level after each successful task accomplishment

or gradually over time) or “regions of no action in space-time coordinate” (in which the robot

does not apply therapeutic forces) to keep challenging the patient for maximizing the participa-

tion and engagement. In summary, the common goal for adaptive high-level control techniques

is to tune the strategy of therapy (considering (a) the biomechanical, kinesthetic and kinematic

state of the patient over the workspace of the task, (b) performance of the task accomplish-

ment and (c) the rate of progress in acquiring motor skills) to maximize the engagement of the

patient, while addressing the concern of subjective manual tuning of the parameters. In this

regard, assist-as-needed techniques are well known for adaptively tuning the assistance and

keeping it at the minimum level that is just enough to allow the patient to finish the task while

keeping the patients engaged in the loop and avoid slacking. In this regard, it is envisioned

that more intelligent and flexible adaptive techniques may result in better outcomes of robotic

therapy. Relevant discussions in this regard which support the above-mentioned issues can be

found in [95, 96, 150–152].
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Although the use of adaptive techniques is promising, and there are clinical studies sup-

porting the effectiveness of these techniques (such as [102]), there are still several concerns

which indicate the need for a more flexible, and perhaps more intelligent algorithm [146]. One

of the issues with the widely-used conventional adaptive techniques is the requirement of nu-

merous observations of motor performance (sometimes distinct observation for each separate

task is needed) before identifying an appropriate base level of assistance/resistance to be used

for tuning the parameters of the adaptive technique. This is a time consuming strategy and

can depend on the subjective opinion of the operator (who runs the system for a patient) and

may not result in a close-to-optimal or accurate tuning of the parameters. In addition, most of

the existing techniques do not consider the biomechanical characteristics of the patient’s limb

and do not take into account the amount of kinesthetic effort provided by the patient during

task completion, though they are important factors which can define the extent of therapeutic

forces to be applied. In addition to the above, the motor capabilities of the patient may vary

in different parts of the workspace and a position-independent performance measure (which is

commonly used in adaptive techniques) may not be the best representation of the patient’s need

in different parts of the work space. These challenges clarify the need for developing more in-

telligent and more flexible techniques that minimize the required number of observations and

subjective hand tuning of the control parameters of the adaptive techniques. It should be noted

that resolving these challenges in this regard is a step towards moving HIRN technologies to

the homes of patients. The ultimate goals of the ongoing research in this field are (a) enhancing

the performance of the system in enhancing neural recovery and (b) making the effectiveness

of the robots less dependent to the tuning of settings and fine modifications provided by a

system operator. This is an ongoing line of research and new controllers and algorithms are

being developed to handle the mentioned issues by considering new measures such as a pa-

tient’s limb biomechanical characteristics, kinesthetic efforts during task accomplishment and

motor capabilities in different parts of the workspace. Relevant examples and discussions re-

garding the above-mentioned issues can be found in [24, 146, 153–156]. It can be envisioned

that using advanced artificial intelligent techniques, the next generation of HIRN technologies

will represent better compatibility to patients’ needs and impairments while showing higher

autonomy.
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In addition to the use of intelligent adaptive techniques, the other alternative which can

help to deal with the above-mentioned compatibility issue is to directly bring the knowledge

of a human therapist into the loop of kinesthetic robotic rehabilitation through development

of Haptics-enabled Interactive Telerobotic Neuro-Rehabilitation (HITN) systems. This tech-

nology allows a human therapist to kinesthetically interact with the patient and intervene in

a robotic therapy regime through a haptics-enabled telerobotic medium, while also coopera-

tively working with the patient on a shared VR environment. This concept is motivated by the

reported lack of interpersonal interaction between human therapists and patients through the

use of HIRN technologies which has resulted in the need for adaptive algorithms, as discussed

earlier in this section. Considering the fact that no adaptive technique can replace or replicate

knowledge of a human therapist, implementation of HITN systems makes it possible to fuse

the capabilities of robotic rehabilitation systems (such as power, data logging, computerized as-

sessment, repetition) and the knowledge and expertise of trained human therapists. In contrast

to the HIRN systems, HITN technology avoids bypassing the knowledge of human therapists.

In other words, through the use of HITN systems it is possible to deliver augmented therapy

instead of virtual therapy. It is believed that HITN systems will play an important role in the

future of robotic rehabilitation technologies and will be able to offer the following benefits:

A) Enabling kinesthetic interaction between a human therapist and a patient (through the

use of a haptics-enabled telerobotic medium) for (i) allowing therapists to directly tune

the difficulty and strategy of therapeutic force generation based on their knowledge; and

(ii) allowing therapists to directly feel the patient’s motor performance during robotic

therapy sessions besides the use of conventional computerized metrics.

B) Enabling remote interaction between a clinic-based therapist and a home-based patient.

This will resolve the accessibility issues and comes under the umbrella of tele-medicine.

In other words, haptics-enabled telerobotic rehabilitation can become a modality of tele-

rehabilitation which has been identified in the literature as a possible future line of de-

velopment for modern healthcare systems and can significantly increase the number of

hours in which a remote patient can have access to ARA services.

C) Enabling hybrid techniques which can use a HITN platform to correct or intervene in the
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therapy delivered by a HIRN system. The system can also learn from the intervention

delivered by the therapist and can correct the pattern of force generation to better match

the therapist’s intention with regard to therapy.

The concept of haptics-enabled telerobotic rehabilitation, and in general, modern tele-rehabilitation

systems have been recently proposed and the number of papers published on this topic is grow-

ing due to the envisioned capabilities. Relevant discussions supporting the above-mentioned

notes and examples regarding telerobotic rehabilitation systems (including the publications

associated with this thesis) can be found in [157–168]. In addition, the potential of tele-

rehabilitation systems in the context of smart-home environments has been explained in [169–

174], and the references therein.

1.4.3 Safety Challenge

Patient-robot interaction safety is an an absolutely necessary criterion which cannot be violated

under any circumstances. In this regard, the following points should be specifically considered:

a) Users of rehabilitation robotic technologies are usually disabled patients who work very

closely with robotic devices and may even be physically attached to them. They share a

common workspace with the robot.

b) Rehabilitation robots are powerful mechatronic devices with high bandwidth in force

generation (that is needed to provide responsive, transparent and sufficient therapeutic

efforts).

As a result, it is very important to evaluate and guarantee physical patient-robot interaction

safety and stability for this technology.

Although, unsafe systems are not acceptable for use in close contact with patients, conser-

vative designs of algorithms for providing safety can also affect the performance and effective-

ness of this technology, as discussed below. The safety concern is more serious for exoskeleton

HIRN technologies where a patient’s limbs are partially enclosed by the robot’s components.

The need for addressing the safety challenge in rehabilitation robotic systems is one of the most

important top lines of research and has been identified and discussed in the recent literature,

such as [23, 161, 175–178] and the references therein.
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The concern of safety is a major obstacle for moving HIRN and HITN technologies into

homes of patients in need. As mentioned, in-home robots can significantly extend the intensity

(duration in which a patient is exposed to rehabilitation exercises) of interactive therapy which

can accelerate motor recovery. However, since robotic rehabilitation systems are sources of

high mechanical power, they can be dangerous if they are used in homes of patients and under

minimal, indirect or remote supervision [22, 176, 179–181].

An accident due to safety issues during robotic therapy can result in incompatible, un-

planned and out of control growth of interaction modalities (such as force, velocity and accel-

eration) beyond certain limits. The unacceptable increase in the interactive modalities results

from injection of high mechanical energy into the patient-robot interaction which cannot be

damped by the biomechanics of the patient’s limb. Due to the close physical interaction be-

tween the patient’s musculoskeletal system and the powerful source of mechanical energy gen-

erated by rehabilitation robots, an unsafe accident can cause serious injuries including bone,

joint and soft tissue damage [22–24, 182].

Despite the importance of patient-robot interaction safety, current rehabilitation robots lack

specific standard safety techniques and frameworks. The field is still under development and is

an ongoing line of research. In this regard, some of the active topics of research are aimed at

answering the following questions: (a) how to enhance robustness and safety using compliant

or partially-compliant mechanical design of actuators and smart actuators [182–186], (b) how

to monitor an inherently unsafe device to be used for rehabilitation purposes (e.g., [177]),

and (c) how to guarantee the safety and stability of patient-robot interaction by intelligently

controlling or limiting the transfered mechanical energy to the patient’s limb while maximizing

performance (e.g., [23, 161, 187, 188]).

It should be noted that for industrial robots, ISO 10218 standard was established in 1992

which highlighted that robots “should to be isolated from humans and that they must be turned

off when they cannot be isolated”. Unfortunately, this type of standard frameworks cannot

be implemented for rehabilitation robots since these robots work in direct kinesthetic contact

with disabled patients [22, 175]. New standards which can specifically standardize techniques

to address safety challenges for rehabilitation robots are under development at present. An

example is the IEC/NP 80601-2-78 standard which will address “particular requirements for
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basic safety and essential performance of medical robots for rehabilitation, compensation or

alleviation of disease, injury or disability [189]”.

The technique to include safety in most of the existing rehabilitation systems is to limit

the amount of force, acceleration, and velocity applied to a patient’s hand (such as the one

suggested in [188] or that in [126]). Although, these techniques can enhance safety, they have

some restrictions as mentioned below.

The first challenge is that a high amplitude of force generated by a robot is not always

equivalent to an unsafe situation. For example, for a patient with hypertonia (high muscular

tone after stroke) or heavy limbs, the robot should apply high forces to be able to deliver a

prescribed therapeutic regime. For such a patient, limiting the force can affect the performance

and effectiveness of the system. On the other hand, a patient may show involuntary movements

(such as post-stroke hand tremor), which can result in high acceleration, high-frequency and

high-amplitude interactive forces which would be applied by the patient to the robot (and not in

the opposite direction). This condition is not equivalent to instability or an undesirable event,

while it can be misleading for conventional safety techniques. In addition to the above, limiting

just the interactive forces or just the accelerations is not enough when an unsafe event occurs. In

other words, an adverse event can result from an unsafe increase in only one of the mentioned

interaction modalities while the other modality can remain within the predefined acceptable

threshold. Consequently, both force and acceleration need to be limited. This can however

result in excessive conservatism. In addition, the acceptable threshold(s) is not a particular

identifiable value and can be different for each patient considering their neuromuscular deficits

and biomechanical characteristics and can even be different in different parts of the workspace

of the patient. Relevant discussions for this are given in [22] which evaluates a conventional

risk assessment and risk reduction technique (initially developed for machinery, i.e., ISO/TR

12100-1 and ISO 14121:1999 standards). As discussed in [22], the definition and calculation

of “risk” in the context of rehabilitation is very dependent on the state of the patient. This is an

obstacle for generalizing conventional standards for rehabilitation robots.

The above issues, can result in a conservative choice of techniques for guaranteeing safety

which can affect the performance of the rehabilitation system. For example, the following

phrase is taken from [70] where a fixed 28 N force limit is considered to enhance safety while
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the study compares the performance of an assistive and a resistive therapy for a population

of post-stroke patients: “The absence of any difference between groups receiving progressive-

resistance therapy and active-assistance therapy may simply mean that this robotic form of

progressive-resistance exercise was not optimal in terms of duration, repetition, or intensity;

for example, one limitation of this study was the relatively modest amount of resistance pro-

vided by the robot (for safety reasons). [70]”. In this regard, [22] has also defined potential

challenges affecting the performance of HIRN technologies (such as limited power and veloc-

ity) raised by implementing conventional safety enhancing mechanisms.

In addition to the above, it should be highlighted that for in-home and remote rehabilitation

systems, communication delays can give rise to an additional stability concern. The poten-

tial delay-induced instability is known in the literature of classical telerobotic and haptic sys-

tems and there are several stabilizers which have been proposed in the literature to deal with

this instability by modifying the feedback of forces. Examples can be found in [190]. Two

well-known state-of-the-art conventional control schemes developed for classical haptic and

telerobotic systems are Wave-Variables Controller (WVC) [191] and Time-Domain Passivity

Control (TDPC) [192, 193].

Although there are several existing techniques in the literature to stabilize haptics-enabled

robotic and telerobotic systems, the performance of these controllers should be evaluated, cus-

tomized and possibly enhanced in the context of rehabilitation robotics. The reason is that

there are distinct differences between the components and requirements of a haptics-enabled

robotic/telerobotic rehabilitation system and those for the classic and general-purpose teler-

obotic and haptic systems.

The first difference can be observed by investigating the energy characteristic of the envi-

ronment component (the component that generates forces in response to the motion provided

by the user). In a haptics-enabled robotic/telerobotic rehabilitation system, the therapy termi-

nal (which can be assistive or resistive) plays the role of the environment component. The

therapy terminal can be non-passive (generates more energy than it consumes) particularly

when the goal is set to be assistive therapy which requires the robot to amplify the mechanical

power of the patient by providing assistive forces. However, in classical systems, the environ-

ment is usually a passive remote/local object which either only consumes energy or consumes
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more energy than it generates. The energy characteristics of the impaired human user (the

other component) of robotic/telerobotic rehabilitation systems is also different compared to the

conventional users of haptics-enabled systems who are usually unimpaired and maybe experts

(such as surgeons). Conventionally, the user is assumed to behave in a passive manner and

does not challenge the stability of the system (such as the assumptions made in [193, 194]).

However, the passivity assumption cannot be made for neurologically-impaired patients par-

ticularly for those who have “abnormal reflex feedback and altered muscle mechanics [187]”.

Relevant discussions in this regard can be found in [161, 187] and [195].

Considering the above discussion, the assumption of passivity, which is a fundamental

requirement for most of the conventional stabilizers, is not always valid in the context of reha-

bilitation robotics.

The other difference can be explained as follows. In classical haptics-enabled robotic and

telerobotic systems, non-passivity and energy amplification is usually treated as an undesirable

phenomena which occurs due to the phase lag caused by the communication delay and should

be damped out to guarantee stability for a wide range of users [196]. In the context of reha-

bilitation robotics, however, this is not straight forward. A relevant example is given in [183]

where it has been shown that guaranteeing passivity requirements for a lower-extremity re-

habilitation robot with compliant actuators, can directly affect the performance, mechanical

capabilities and bandwidth of the system. Further discussions on this topic are as follows. First

of all, damping the amplified assistive energy, generated by the therapy terminal, is equivalent

to canceling all the assistive and active behavior of the therapist. This defeats the very purpose

of the system. Secondly, adding damping forces to the reflected force from the therapy terminal

is equivalent to sacrificing the quality of force reflection (and transparency) of the system to

guarantee stability. This could be acceptable when direct force feedback is an optional source

of sensory information, such as in surgical robots where the direct force feedback may be even

turned off (for example in commercialized examples) or substituted by other novel formats of

sensory feedback [197–200]. However, in the context of rehabilitation, direct force feedback

is the key factor which is needed to accomplish the very purpose of the system, i.e., delivering

kinesthetic rehabilitation. Consequently, the frequency of occasions in which force is modi-

fied and the intensity of force modification and subsequently the conservatism of transparency
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manipulation should be minimized in the context of rehabilitation robotics.

There is therefore a need for an intelligent safety technique and an advanced control strat-

egy which can guarantee patient-robot interaction safety while maximizing the performance

of rehabilitation robots, avoiding excessive conservatism, and relaxing the conventional as-

sumptions on the energy behavior of the human limbs and the interactive environment. This

is an ongoing line of research. In this regard, it can be envisioned that by taking into ac-

count the biomechanical characteristics of a patient’s limb, it may be possible to automatically

and intelligently customize the parameters of the safety and control schemes of rehabilitation

systems and enhance their performance in delivering interactive kinesthetic exercises. Re-

alizing this aim will enable us to move towards equipping homes with safe haptics-enabled

in-home robotic and telerobotic rehabilitation systems. Relevant discussions on this can be

found in [24, 161, 167, 187, 195, 201, 202].

1.5 Thesis Scope, Structure and Focus

1.5.1 Scope

The work described in this thesis is developed based on the common impedance-based design

of Haptics-enabled Interactive Robotic Neuro-Rehabilitation (HIRN) systems and specifically

directed towards solving the challenges mentioned in Sections 1.3 and 1.4 (i.e. safety con-

cern for in-clinic and in-home HIRN technologies and the lack of direct kinesthetic interaction

between a human therapist and a patient during robotic rehabilitation). In this thesis, guarantee-

ing stability of patient-robot interaction and avoiding amplification of the energy of involuntary

movements are two major factors which we consider for guaranteeing patient-robot interaction

safety. In parts of this thesis, a brief title is used for HIRN technology which is Haptics-enabled

Robotic Rehabilitation (HRR). As a result, both HIRN and HRR abbreviations refer to the same

technology. In a similar manner, the term Haptics-enabled Telerobotic Rehabilitation (HTR) is

used as a shorter terminology for HITN systems.

As mentioned in the previous section, HIRN technologies are usually connected to virtual

reality environments which provide patients with repetitive tasks to be accomplished. We have

implemented a simple point-to-point target reaching task in a virtual reality environment de-
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veloped in this project. The use of more sophisticated virtual environments and modalities of

interaction other than kinesthetic and visual are not considered in this work. In the rest of this

thesis, the term “haptics” is used to denote kinesthetic inputs which are in fact forces applied

by the robot to the patient’s limb for delivering rehabilitation exercises and in response to the

patient’s movements. The study presented in this thesis focuses on upper-extremity interac-

tion, while parts of the results can be extended to lower-extremity interaction, as well. All the

theoretical developments in this project are for general multi-dimensional interactions. The

experimental system used provides two degrees of freedom for the interaction.

1.5.2 Structure

Chapter 2: The goal is to bring the direct kinesthetic supervision of a human therapist into the

interaction between a patient and a rehabilitation robot through a telerobotic medium. This is

a move from virtual therapy toward augmented therapy.

Chapters 3 and 4: In these chapters, we investigate and guarantee safety of patient-robot

interaction for robotic/telerobotic rehabilitation systems while maximizing the performance

and fidelity of force feedback regardless of the unconventional existing restrictions which are

associated with this category of haptic systems;

Chapter 5: This chapter is concerned with maximizing the use of a therapist’s time through

learning the kinesthetic behavior of the therapist and to replicate it for the patient during several

repetitions when the therapist is not in the loop.

Chapter 6: Here the goal is to expand the population of patients who can take advantage of

robotic and telerobotic rehabilitation technologies. The outcome of this chapter allows patients

with pathological tremors to benefit from non-passive robotic assistive/coordinative therapy in

a safe manner.

Chapters 7 and 8: In these chapters, we extend the theoretical and technological findings

of the thesis not only for rehabilitation purposes but also for assisting patients with force and

motion control deficits (particularly individuals living with Cerebral Palsy and Focal Hand

Dystonia).

Chapters 9: Concluding remarks on the research described in the thesis and suggestions for

future research directions are provided.
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1.5.3 Focus

In this project, we consider patient-robot interaction safety as the highest priority while we try

to enhance the performance of robotic and telerobotic rehabilitation systems. In this regard,

we aim to relax several restrictive assumptions such as passivity, linearity, time-independent

behavior of the patient and the therapist, together with an assumption of the absence of involun-

tary movements and time delays. This allowed us to realize a safety-guaranteed patient-robot

interaction platform to be used under direct, indirect, or recorded supervision of a therapist.

In addition, the second highest priority of this project is to maximize the quality of force

feedback under the safety-guaranteed condition. This topic is known in the literature as en-

hancing transparency and fidelity of haptic systems. The reason is that in the context of reha-

bilitation robotics, the quality of force feedback is a key factor which directly correlates with

the effectiveness of the system. As discussed before, utilizing conservative safety-guaranteeing

techniques can affect the performance of these systems. The proposed framework can guaran-

tee the stability of interaction; and in contrast to the existing stabilizers it takes into account

the variable biomechanical capabilities of the patient’s limb to maximize the transparency. To

achieve the above-mentioned goals, we have developed a new theoretical framework based on

small-gain theory and strong passivity theory.

The theoretical and technological findings of this project can not only be used for any

haptics-enabled robotic and telerobotic systems but they can also help to develop new assistive

systems for patients with force and motion control deficits. The aforementioned topic is studied

at the end of this thesis for two specific applications (one is developed for individuals living

with cerebral palsy and the other for focal hand dystonia patients).

1.6 Main Contributions

The contributions of this thesis are briefly explained in this section. In this regard, chapter

outlines are also included.
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1.6.1 Contribution 1:

In Chapter 2, the design of a novel bilateral telerobotic architecture for tele-rehabilitation pur-

poses is proposed, and the feasibility, stability and control challenges are studied. The objective

of the proposed tele-rehabilitation framework is to incorporate the supervision of a local or re-

mote human therapist into haptics-enabled rehabilitation systems and to allow the therapist to

provide non-passive nonlinear assistive/resistive forces in response to the patient’s movements.

The proposed architecture is a new paradigm for delivering motor therapy that gives thera-

pists direct kinesthetic supervision over robotic rehabilitation procedures and is a step towards

in-home supervised kinesthetic rehabilitation therapy. This can address a challenge of conven-

tional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy and

the lack of direct kinesthetic interaction between a human therapist and the patient. As a result,

the proposed framework can fuse the capabilities of conventional robotic therapy systems and

the knowledge of a human therapist. To guarantee patient-robot interaction safety, a new design

framework and a stabilizing controller are developed based on the small-gain theory. System

stability and transparency are analyzed in the presence of the non-passive, nonlinear, nonau-

tonomous behavior of the terminals (the therapist and the patient) and time-varying delays for

the case of remote and cloud-based therapy. The proposed framework shows mathematically

what particular conditions the system should have to preserve transparency and stability even

in the presence of time-varying delays. Based on the developed framework a new stabilizer is

proposed and is denoted as the Small-Gain Control (SGC) technique. Practical considerations

have been considered to match the clinical needs and minimize the implementation cost.

1.6.2 Contribution 2:

In Chapter 3 the main focus is to increase the performance of the proposed telerobotic rehabil-

itation system. The result of Chapter 3 is developed for a general case and can also be used

to enhance the transparency and performance of conventional robotic rehabilitation systems. It

should be noted that although the stabilizer proposed in Chapter 2 can ensure system stability,

under some specific conditions, it may result in conservative behavior in adjusting the forces

reflected to the hand of a patient. More accurately, the SGC technique stabilizes the system
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regardless of the passivity of the terminals, the type of therapy and the existing delay in the

communication network. This has been done to relax the conventional assumption of passivity

on the behavior of the terminals which are not always valid particularly (a) for a neurologically-

impaired patient, and (b) for an active human therapist who injects energy into the intercon-

nection to deliver assistance. However, since the SGC technique indirectly observes the loop

gain (and not the energy characteristics of the terminals), under low delay values and when the

therapy terminal is highly passive, the force modulation component of the SGC technique may

become active and modify the reflected forces while the terminal does not challenge stability.

This can result in a conservative behavior in the context of tele-rehabilitation. Motivated by

this, in Chapter 3, a novel passivity-based technique is proposed to (a) develop a new stability

analysis technique and (b) guarantee the stability of haptics-enabled robotic/telerobotic reha-

bilitation systems. The proposed approach can be used for robotic, cloud-based, and remote

rehabilitation systems together with conventional haptic systems. The objective of the con-

troller is to perform as little alteration as possible to the system transparency, in a dynamic and

patient-specific manner. The technique utilizes a quantifiable biomechanical capability of the

user’s limb (i.e., excess of passivity) in absorbing interactive therapeutic energy to guarantee

patient–robot interaction safety, in the context of the strong passivity theory. The proposed

controller is called Modulated Time-Domain Passivity Control (M-TDPC) approach.

Remark 1.1. The designs of the proposed stabilizers (SGC and M-TDPC) are supported by

recent literature which denotes that (a) the assumption of passivity might be questionable for

post-stroke patients; and (b) guaranteeing passivity may lead to concerns about “excessively

conservative” behavior, and (c) “less conservative designs can be achieved if a quantitative

knowledge of human interactive dynamics is available” [187]. The outcome of the stability

analysis developed in this thesis is in agreement with the results reported in [201] which denotes

the effect of linear damping of an operator’s arm on the stability margin of a teleoperated

system. In this thesis, we identify and utilize a quantitative lower bound for a biomechanical

characteristic of the patient’s limb in absorbing therapeutic forces (for the SGC technique), and

energy (for the M-TDPC technique). A major difference between the conventional controllers

and stabilizers proposed in this thesis is the consideration of the mentioned characteristics with

the goal of enhancing the transparency of the system while guaranteeing stability. •
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1.6.3 Contribution 3:

It should be noted that, a human operator usually changes the biomechanical characteristics

during task execution. In addition, in various directions of interaction, different biomechanical

characteristics can be expected. As a result, considering the constant lower bound for the ca-

pability of the patient’s limb in absorbing therapeutic energy can still result in some degrees of

conservatism. Relaxing this however requires extensive theoretical development but can signif-

icantly enhance the performance of the system. In Chapter 4, the variability in biomechanical

capabilities of the human upper-limb in absorbing physical interaction energy is analyzed. The

outcome is a graphical map that can quantitatively correlate (a) the extent of grasp pressure and

(b) the geometry of interaction to the extent of hand passivity. For this purpose, a user study

has been conducted for 11 healthy human subjects to characterize energy absorption capabil-

ity in their arms and wrists. The above correlation is statistically confirmed. The identified

user-specific Grasp-based Passivity Signature (GPS) map can be used as a graphical tool to

assess the biomechanical capabilities of the upper-limb. In Chapter 4, the proposed GPS map

is utilized in the design of a novel augmented nonlinear stabilizer, for haptics-enabled robotic

and telerobotic rehabilitations systems. The controller, called a GPS-map Stabilizer, takes into

account the variation in energy absorption during haptic task execution.

1.6.4 Contribution 4:

Chapter 5 proposes a new framework for supervised training of intensity and strategy for

haptics-enabled robotic rehabilitation systems. Two alternative approaches are proposed, namely:

(a) Haptics-enabled Teleoperated Supervised Training (HTST) and (b) EMG-based Indirect Su-

pervised Training (EIST). The design of both techniques includes two phases: (a) to character-

ize and learn the required therapeutic intensity and strategy when a therapist delivers robotics-

assisted rehabilitation to a patient (demonstration phase), and (b) to enable regeneration of

the learned therapeutic behavior when the therapist is out of the loop (regeneration phase),

e.g., when the therapist is working with another patient. This work is motivated by the exist-

ing challenges regarding the need for tuning the strategy and intensity of robotic therapy in a

patient-specific manner. The framework is also expected to be beneficial for under-resourced
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healthcare systems because it enables therapists to share their time between several patients.

1.6.5 Contribution 5:

The outcome of Chapter 6 allows patients with pathological tremors to take advantage of non-

passive robotic and telerobotic rehabilitation systems in a safe manner. This would not be

possible using conventional systems due to the possibility of tremor amplification in an ener-

getically active environment. The new haptics-enabled rehabilitation strategy, is called Aug-

mented Haptic Rehabilitation (AHR). This architecture is capable of delivering therapeutic

forces (in an assist-as-needed manner) while keeping hand tremor under control and avoiding

unsafe amplification of tremor energy. To implement the AHR architecture, a new adaptive

filter (Enhanced Band-limited Multiple Fourier Linear Combiners (E-BMFLC)) is proposed to

characterize pathological tremors. The accuracy, robustness and effectiveness of the designed

filter is statistically confirmed through a patient-based study involving data from 14 PD and

13 ET patients. The proposed filter is then used to develop a safe haptics-enabled robotic

rehabilitation architecture (i.e., AHR), designed for patients having hand tremors.

Remark 1.2. The results presented in Chapters 2-6 include the main theoretical and techno-

logical developments of this thesis with a focus on safe patient-robot interaction in the context

of telerobotic rehabilitation. The results can be used for conventional robotic rehabilitation

systems as well as general purpose haptics-enabled systems. In Chapters 7 and 8, we show

that the outcomes obtained have the potential to be used for developing assistive technologies

and strategies for patients with force and motion control deficits. For this purpose, two specific

case studies were conducted, as discussed below. •

1.6.6 Contribution 6:

The first specific application (reported in Chapter 7) directly utilizes the results of Chapter 6

to design and implement a new telerobotics-assisted platform for enhancing interaction with

physical environments for people living with cerebral palsy. The main objective is to modulate

the capabilities of individuals through the proposed telerobotic medium and to enhance their

control over interaction with objects in a real physical environment. The proposed platform
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is motivated by evidence showing that lack of interaction with real environments can develop

further secondary sensorimotor and cognitive issues for people who grow up with CP. The

proposed telerobotic system assists individuals by (a) mapping their limited but convenient

motion range to a larger workspace needed for task performance in the real environment, (b)

transferring only the voluntary components of the hand motion to the task-side robot, and (c)

kinesthetically dissipating the energy of their involuntary motions using a viscous force field

implemented in the high frequency domain. The voluntary and involuntary components are

extracted based on the design of the BMFLC filter described in Chapter 6. Consequently, using

the proposed telerobotic system, an individual with CP will be capable of providing smooth

and large-scale motions while presenting enhanced coordination during task performance.

1.6.7 Contribution 7:

The second specific application (reported in Chapter 8) utilizes the basic concept behind the

theoretical developments given in Chapters 2 regarding the performance of an interconnected

system and the concept of the loop gain. Increasing the loop gain increases the sensitivity to

small changes which increases the sensitivity to potential abnormalities. To control an inter-

connected system, the loop gain can be reduced such as in the technique shown in Chapter

2. This concept can be applied to many interconnected systems. In Chapter 8, we considered

the sensorimotor integration loop in humans during task execution (conducted by neuromus-

cular system) as an interconnected system. Here, the first subsystem is the human brain which

generates motor commands (outputs) based on the received sensory data (inputs). The sec-

ond subsystem is the physical environment (such as a writing surface during a writing task)

on which we apply mechanical energy generated by our muscular system. As a result, we hy-

pothesized that by reducing the loop gain we may be able to assist patients with sensorimotor

integration deficits. For this goal, patients with Focal Hand Dystonia (FHD) participated in

the study. Abnormality of sensorimotor integration in the basal ganglia and cortex has been

reported in the literature for FHD patients. In this application, we investigated the effect of

manipulation of kinesthetic input with the goal of reducing the loop gain. For this purpose,

severity of dystonia was studied for 11 participants while the symptoms of 7 participants were

tracked during 5 sessions of assessment and Botulinum toxin injection (BoNT-A) therapy. In
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each session, the tasks were repeated twice when (a) a participant used a normal pen, and (b)

when the participant used a robotics-assisted system which provides a compliant virtual writ-

ing surface to reduce the loop gain. The results show that reducing the writing surface rigidity

significantly decreases the severity of dystonia and results in better control of grip pressure (an

indicator of dystonic cramping). It was also shown that using the proposed strategy, it is possi-

ble to augment the effectiveness of BoNT-A therapy. The outcome was then used in the design

of an actuated pen as an assistive tool that can provide compliant interaction during writing for

FHD patients.

To conclude this chapter, it is worth mentioning that the work presented in this thesis shows

that proper augmentation of haptic information can not only enable new modalities for su-

pervised therapy and enhance the transparency and safety of robotic/telerobotic rehabilitation

systems, but also has the potential to assist patients with force and motion control impairments.
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Chapter 2

A Small-Gain Approach for Non-Passive

Bilateral Telerobotic Rehabilitation:

Stability Analysis and Controller

Synthesis

The material presented in this chapter has been accepted for publication in the IEEE Transac-

tions on Robotics, 2016.

2.1 Introduction

Haptics-enabled robotic rehabilitation has attracted a great deal of interest during the last

decade [1]. It is anticipated that the population of people suffering a stroke worldwide each

year will reach 23 million by 2030 [2]. This population will require motor rehabilitation to lead

a normal life. Haptics-enabled robotic therapy is a candidate that can provide a better quality

of life for this increasing population. There are significant advantages with the use of haptics-

enabled robotic rehabilitation systems such as accelerating recovery of disabled patients [1], [3]

and helping therapists in quantifying the severity of movement disorders [4], [5].

c©[2016] IEEE. Reprinted, with permission, from [Seyed Farokh Atashzar, I. G. Polushin, and R.V. Patel,
“A Small-Gain Approach for Non-Passive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller
Synthesis,” IEEE Transactions on Robotics, DOI: 10.1109/TRO.2016.2623336, 2016; accepted.]
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Commercially available robotic rehabilitation systems use a haptics-enabled software-based

environment equipped with a Programmable Virtual Therapist (PVT) [1, 4, 6, 7]. The PVT is

an interactive virtual-reality-based environment that can provide the patient with assistive and

resistive therapeutic forces during various tasks [1], [8]. The forces are applied by the robotic

device to the affected part of the patient’s body [4], [5], [1]. Considerable research has been

conducted to evaluate the effectiveness of PVT-based systems [1], [3], [4].

One of the problems of PVT-based systems is how to modify the assistive/resistive ex-

ercises. Research has shown that the key to an effective therapy is to modify the therapy

considering the state and progress of the patient [9]. Since there is no direct supervision and

physical-interaction by a human therapist during PVT-based exercises, considerable research

has focused on how to program flexibility, for a virtual therapist, to adjust the level of assis-

tance/resistance for different patients with various states of impairment, body dynamics and

needs for rehabilitation [10–12]. As a result, improved motor performance has been reported

using adaptive virtual therapy techniques [13, 14]. However, although the adaptive techniques

provide some degree of flexibility, they cannot replace the advantages of having a direct phys-

ical interaction between a skilled therapist and patient during rehabilitation/assessment exer-

cises. As a result, the main goal of the proposed architecture is to fuse the advantages of an

expert therapist in-the-loop with the specific features of robotic systems such as force amplifi-

cation and data logging.

To achieve the above-mentioned goal, in this chapter, a novel haptics-enabled telerobotic

rehabilitation framework is designed and analyzed as a new paradigm for delivering resis-

tive/assistive motor therapy (locally/remotely) that gives the therapist full supervision over

the rehabilitation procedure while taking advantages of robotic technology. The proposed

bilateral telerobotic rehabilitation architecture deals with the aforementioned main challenge

of conventional assistive/resistive robotics-assisted rehabilitation, which is the lack of direct

force/position exchange and intuitive supervision by an experienced human therapist during

the therapy. The structure of the proposed bilateral telerobotic rehabilitation system, imple-

mented in this chapter, is shown in Figure 2.1. In this system, the patient provides motion

trajectories by moving a master device to complete a reaching task which is given to him/her

through a shared virtual reality environment. The generated movements will be then copied by
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Figure 2.1: Structure of the proposed telerobotic rehabilitation system and the implemented
experimental setup. The patient-side robot is an upper-limb Quanser rehabilitation robot and
the therapist-side device is an HD2 haptic device. The shared virtual reality display is shown
as the big black squares.

the slave robot at the therapist’s side. As a result, the therapist can either kinesthetically feel

the movements generated by the patient or visually see the corresponding trajectories in the

shared virtual environment. The therapist can then provide the patient with resistive/assistive

therapeutic forces (through the proposed telerobotic rehabilitation system) in response to the

motion trajectories generated by the patient. Depending on the particular goal of the therapy,

the therapist can either help the patient to perform the task by applying assistive/coordinative

forces or make the task more difficult by applying resistive forces. It should be noted that the

proposed design also makes it possible to perform remote rehabilitation under the direct su-

pervision of a skilled therapist. This is a need for the current state of healthcare systems [15]

especially for delivering therapies to patients far from sophisticated rehabilitation centres.

It should be mentioned that the environment of the proposed telerobotic rehabilitation ar-

chitecture (the human therapist) has a non-passive, nonlinear, non-autonomous dynamical be-

havior that is needed to deliver various types of complex therapies and also inject non-passive
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energy into the interconnection for providing assistance and coordination. Also, both the pa-

tient’s and the therapist’s dynamics will be subjected to nonlinear non-autonomous mutual

adaptation which cannot be modeled by linear time-invariant systems. In addition, the commu-

nication system could be exposed to time-varying delays which would be the case for remote

and cloud-based rehabilitation. The above mentioned points can challenge the stability, per-

formance and safety of the human-robot interaction, which will be addressed in this chapter.

Regarding the dynamical behavior of the therapist, it should be noted that if the therapist per-

forms assistive therapy (or mixed assistive-resistive therapy), she/he essentially supplies the

power/energy to the teleoperator (to guide/coordinate the patient towards the correct path of

motion) thus behaving as a nonlinear active (non-passive) network. There is, therefore, a need

for a method to analyze and guarantee the stability and safety of the proposed telerobotic reha-

bilitation system.

In this chapter, we develop a small-gain framework for the analysis and design of such

systems. The stability and transparency properties of the proposed tele-rehabilitation system

is analyzed for the case of intrinsically non-passive, nonlinear, non-autonomous behavior of

the therapist and the patient. The proposed technique is also capable of dealing with potential

instability induced by irregular time-varying delays (which exists for remote/cloud-based re-

habilitation). The framework also demonstrates the possibility of a “perfectly transparent” and

“stable” telerobotic system while the environment behaves as a non-passive nonlinear network

and the communication is subjected to time-varying delays. Finally, we present a stabilization

scheme, denoted by the Small-Gain Controller (SGC), which guarantees stability regardless

of the specific actions of the therapist. The proposed SGC technique utilizes the available re-

sources in the system (in terms of the capability of the patient’s hand in absorbing forces) to

reduce the frequency and intensity of transparency manipulation (performed during episodes

of having the controller active) while guaranteeing stability and having a positive stability mar-

gin. In other words, if during a time episode, it is determined that the stability margin can

remain positive, the SGC technique does not degrade the transparency, even if the commu-

nication and the terminals are non-passive, nonlinear and time-varying. The results can be

extended to conventional haptic and telerobotic systems. In this work, the two terminals of the

“networked telerobotic” systems are called the patient and therapist terminals. In addition, the
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term “viscoelasticity” refers to a system with both “viscosity” and “elasticity” components.

Remark 2.1. The contributions of this chapter are as follows:

Theoretical Contributions:

(1) A new framework is proposed to analyze the stability of haptics-enabled systems, regardless

of linearity, time-dependence and passivity requirements and in the presence of time-varying

delays. The framework shows mathematically what particular conditions a teleoperated inter-

action should have to preserve transparency and stability (with no active controller) even in the

presence of time-varying delays.

(2) A new stabilizing scheme is proposed to guarantee stability regardless of the linearity, time-

dependence and passivity of the terminals and passivity of the communication. The scheme

can also be used for conventional telerobotic systems.

(3) A telerobotic architecture is proposed that can support velocity, position, and viscoelastic

domain tracking.

Practical Contributions:

Designing, implementing and analyzing the feasibility of an augmented therapeutic platform

that (1) fuses the capabilities of conventional robotic therapy systems and the actions of a

human therapist; (2) can be used to deliver therapeutic actions of a therapist over distances;

and (c) allows to scale up the therapist’s efforts, so that he/she can rehabilitate patients having

various biomechanical characteristics with no limit on the therapist’s capabilities. •

The following notation is used throughout the chapter. Symbols In and On denote the

n×n identity matrix and the n×n zero matrix, respectively. For a finite-dimensional object

a ∈ Rn×n, |a| denotes its Euclidean norm. The Laplace transform and the inverse Laplace

transform are denoted by L (·) and L −1(·), respectively. A rational transfer function z(s) :=

q(s)/p(s) is called proper if deg p(s) ≥ deg q(s) (or, equivalently, its relative degree r :=

deg p(s)− deg q(s)≥ 0); it is called strictly proper if deg p(s)> deg q(s) (or r := deg p(s)−
deg q(s) > 0); furthermore, z(s) := q(s)/p(s) is called bi-proper, if deg p(s) = deg q(s)

(equivalently, r := deg p(s)− deg q(s) = 0). A rational transfer matrix Z(s) ∈ Cn×n is called

proper (strictly proper, bi-proper) if every element of Z(s) is a proper (strictly proper, bi-proper)

transfer function. A rational transfer matrix Z(s) ∈ Cn×n is said to be positive real if it: i) does

not have poles in the open right-hand side of the complex plane, ii) is real for positive real
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s, and iii) satisfies Z(s)+Z∗(s) ≥ 0 for all s ∈C such that Res > 0, where Z∗(s) denotes the

conjugate transpose of Z(s) [16]. A rational transfer matrix Z(s) ∈ Cn×n is said to be strictly

positive real if Z(s) . 0 and there exists ε > 0 such that Z(s− ε) is positive real. For a positive

real transfer function (matrix), its relative degree is either 0 or 1.

2.2 The Proposed Telerobotic Rehabilitation System: Mod-

eling and Control Design

The proposed telerobotic rehabilitation system considers the patient at the master device while

the therapist interacts with the slave robot. The master device is described by

Zm(s)Vp(s) = ucm(s)+Fp(s), (2.1)

where s is the Laplace operator, Vp(s) ∈ Cn is the velocity of the patient’s hand, Zm(s) ∈ Cn×n

is a strictly positive real transfer matrix of the master device, Fp(s) ∈ Cn is the force applied

by the patient, and ucm(s) ∈ Cn is the master control effort. The slave device is described as

Zs(s)Vth(s) = ucs(s)−Fth(s), (2.2)

where Vth(s)∈Cn is the velocity of the therapist’s hand (equivalently, the velocity of the slave),

Zs(s) ∈ Cn×n is a strictly positive real transfer matrix of the slave manipulator, Fth(s) ∈ Cn are

the forces applied by the therapist, and ucs(s) ∈ Cn is the control effort.

Remark 2.2. The linear models (2.1) and (2.2) have been used in the literature (e.g., [17,

18]) and can be derived considering two local feedback linearization controllers to compensate

for nonlinearities of the robots. In this work, we use (2.1) and (2.2) and focus on uncertain

nonlinear behavior of the terminals. •

A general form of the teleoperation architecture used in this work is defined below which is

a modified version of the conventional Extended Lawrence Four-Channel (ELFC) teleoperation

[18]. Note that the architecture below uses just two communication channels while providing
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some flexibility through the use of force rejection gain ζ (discussed later).

ucm(s) = Ẑm(s)Vp(s)−αF̂th(s), (2.3)

ucs(s) = β Zs(s)P(s)V̂p(s)+ζ Fth(s)

+(1−ζ )η(s)
(
βP(s)V̂p(s)−Vth(s)

)
.

(2.4)

In (2.3), (2.4), F̂th(s) and V̂p(s) are the therapist’s forces available at the master (patient) side

(transmitted through the first channel) and the patient velocity available at the slave (therapist)

side (transmitted through the second channel), respectively; Ẑm(s) ∈ Cn×n is a positive real

transfer matrix used for compensation of the master robot impedance. It should be noted that

potential uncertainty in Ẑm(s) and the corresponding effect are discussed later in this section.

The relevant notes are given at the end of Section 2.2. To reduce uncertainty, our team is in the

process of developing a sensorized handle for the robot which can directly measure velocity

and acceleration profiles, instead of calculating them based on the measurements provided by

the encoders. In addition, η(s) ∈ Cn×n is a transfer matrix that corresponds to the velocity

control gain, and P(s) ∈ Cn×n is a low-pass filter (explained later). α and β > 0 represent the

force and the velocity scaling factors, respectively; and ζ ∈ {0,1} is the force rejection gain

that determines the type of telerobotic architecture. More precisely, in this work we propose

two special cases of the slave control signal (2.4) that correspond to ζ = 1 and ζ = 0, as

ucs(s) = β Zs(s)P(s)V̂p(s)+Fth(s) for ζ = 1, (2.5)

ucs(s) = β Zs(s)P(s)V̂p(s)+

η(s)
(
βP(s)V̂p(s)−Vth(s)

)
for ζ = 0.

(2.6)

The control signal (2.5) that corresponds to ζ = 1 is a transparency-oriented control law. Con-

sidering ζ = 1 results in local cancellation of the force at the therapist’s side. This force

cancellation is similar to ELFC architecture [17], [18]. It will be shown that the control signal

(2.5) allows for perfect transparency of the system using two communication channels. Imple-

mentation of (2.5), however, requires information about the therapist’s forces Fth(s) which can

be obtained by installing force sensor(s). On the other hand, control signal (2.6) that corre-

sponds to ζ = 0 is a cost-oriented control law (proposed in this chapter) which does not require
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the force sensor (that is an expensive component). In fact, considering ζ = 0, the effect of

force at the slave side will be alleviated, instead of directly canceling the force. However, it

may require higher control effort which should be monitored. It will be shown that considering

ζ = 0 and by proper tuning the velocity feedback matrix η(s) the transparency can converge to

ideal transparency and the resulting patient-therapist interconnection will converge to the case

of ζ = 1. A detailed discussion about parameter tuning for the case of ζ = 0 will be given in

Section 2.7 where practical considerations (such as cost) are discussed.

In this work, we address the situation where the communication is subject to delays which,

in particular, can be time-varying, and discontinuous. The communication processes are de-

scribed as follows,

v̂p(t) := vp
(
t− τ f (t)

)
+σ f (t), (2.7)

f̂th(t) := fth (t− τb(t))+σb(t), (2.8)

where vp(·) and fth(·) are time-domain signals that describes the patient’s velocity and the ther-

apist’s force, respectively; in other terms, vp(t) := L −1 [Vp(s)], fth(t) := L −1 [Fth(s)]. Also,

τ f (·), τb(·) are the communication delays in the forward (master to slave) and the backward

directions, respectively. σ f (t), σb(t) ∈ Rn×1 are the errors introduced during the communica-

tion process in the forward and backward channels, respectively. The errors σ f (t), σb(t) are

assumed to be Lebesgue measurable and uniformly essentially bounded, ı.e.,

sup
t≥0
|σ f (t)| ≤ σ

∗
f , sup

t≥0
|σb(t)| ≤ σ

∗
b ,

for some σ∗f , σ∗b ≥ 0. The assumptions imposed on the delays τ f (t), τb(t) in our work are

described as follows.

Assumption 2.1. [19, 20] The communication delays τ f ,τb : R→R+ are Lebesgue mea-

surable functions with the following properties:

i) there exist τ∗ > 0 and a piecewise continuous function τ∗ : R→ R+ satisfying τ∗ (t2)−
τ∗ (t1)≤ t2− t1, such that the inequalities τ∗ ≤min

{
τ f (t),τb(t)

}
≤max

{
τ f (t),τb(t)

}
≤ τ∗ (t)

hold for all t ≥ 0;

ii) t−max
{

τ f (t),τb(t)
}
→+∞ as t→+∞. •

Remark 2.3. Assumption 1 imposes very mild constraints on the communication process.
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The constraints can always be satisfied in any real-life network unless the communication is

completely lost on a semi-infinite time interval. The fulfillment of this assumption does not de-

pend on the characteristics of the channel, such as bandwidth and information loss percentage

(see, [20, 21]). One potential issue which may arise in the presence of discontinuous delays is

that v̂p(t) which is reference velocity for the slave device may become discontinuous. To avoid

this situation, a filter P(s) ∈ C n×n is introduced in (2.4) to smooth out the reference trajectory

for vth(t). •

One specific case allowed by Assumption 1 is that of an ideal communication channel, i.e.,

τ f (t)≡ τb(t)≡ 0, σ f (t)≡ σ f (t)≡ 0, (2.9)

which, in particular, implies

F̂th(s)≡ Fth(s), V̂p(s)≡Vp(s). (2.10)

In this case, ideal transparency can be achieved by an appropriate choice of control parameters

in (2.3), (2.4). The term “ideal” refers to the situation where the dynamics of master and slave

are eliminated so that the patient experiences undistorted interaction with the therapist (only

subject to scaling factors α and β > 0). The ideal transparency is characterized as

Fp = α ·Fth, (2.11)

Vth = β ·Vp. (2.12)

Considering definition of hybrid matrix H(s) [22] as: Fp(s)

−Vth(s)

= H(s)

Vp(s)

Fth(s)

 , (2.13)

ideal transparency corresponds to the following formula [23]:

H(s) = Hideal :=

 On α · In

−β · In On

 . (2.14)
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Under the assumption in (2.10), the ideal transparency can be achieved in system (2.1)-(2.4)

by choosing Ẑm(s) ≡ Zm(s) in (2.3) and ζ = 1, P(s) = I in (2.4). This method is a modified

version of the one proposed in [24]. In the 1-DOF (degree-of-freedom) case, it corresponds to

the following choice of the parameters in the extended Lawrence architecture: c1 = Zs, c2 = 1,

c3 = c4 = c6 = 0, c5 = −1. However, we will consider below a situation where the master’s

dynamics (2.1) cannot be fully compensated due to uncertainties (Ẑm(s) . Zm(s)). To address

this case, let us denote Z̃m(s) := Zm(s)− Ẑm(s); the relationship (2.11) between Fp and Fth(s)

then becomes

Z̃m(s) ·Vp(s) = Fp(s)−α ·Fth(s).

It is assumed that Ẑm(s) is chosen such that Z̃m(s) is positive real (which is also valid for

Ẑm(s)≡ Zm(s)).

2.3 The Patient and Therapist Models

To conduct stability analysis of the tele-rehabilitation system, dynamics of the patient and the

therapist are modeled as follows. Since the patient is at the master side and takes force as input

and provides motion as output, admittance model can better represent patient-robot interaction.

The patient’s velocity is decomposed into “active” and “reactive” components as

vp(t) := va
p(t)−L −1 [Zp(s)−1Fp(s)

]
, (2.15)

where Zp(s)∈Cn×n is a positive real transfer matrix that represents the patient’s hand impedance

( L −1 [Zp(s)−1Fp(s)
]

describes the reactive component). Also, va
p(t) ∈ Cn are the active

components voluntary generated by the patient’s muscles through applying voluntary forces

f a
p(t) ∈ Cn.

At the therapist side, the impedance model that describes the therapist’s forces is given by

fth(t) := f a
th(t)+L −1 [Zth(s)Vth(s)] , (2.16)

where Zth(s) ∈ Cn×n is a positive real transfer matrix of the reactive impedance of the thera-
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pist’s hand, and f a
th(t) ∈ Cn are the voluntary generated active therapeutic forces.

Remark 2.4. The active forces voluntary generated by the therapist f a
th(t) and the active

velocity components on the patient’s side va
p(t) are not independent on the movement of the

master/slave devices; they are also subjected to nonlinear non-autonomous mutual adaptations,

and can also include remaining nonlinear terms of the corresponding user’s hand dynamics.

If the purpose of the therapy is to create a resistance to the patient’s movement, the therapist

generates resistive forces considering the represented patient’s movement. Mathematically, this

therapeutic action can be interpreted as actions of a strictly passive system, where the therapist

actively dissipates the kinetic energy generated by the patient. If the purpose of the therapy

is to provide assistance in executing a task, the therapist voluntary generates assistive forces

that result in increasing the kinetic energy. In the latter case, the therapist behaves as a non-

passive system that generates energy. Dissipation of this non-passive energy is generally not

acceptable as this would defeat the purpose of the assistive therapy. It should be also noted that

the hand dynamics of the therapist and patient can contain nonlinear components due to mutual

interaction during the bilateral teleoperated therapy that allows the two users to kinesthetically

interact. Consequently, the dynamic models of the terminals should not require any assumption

on the linearity, passivity and time-dependency. •

In this chapter, we develop a small-gain approach to the problem of tele-rehabilitation in

the presence of delays that does not impose the requirement of linearity/passivity on the ther-

apist’s and the patient’s voluntary actions. So, it is suitable for the proposed teleoperated

assistive/resistive therapy.

Remark 2.5. The voluntary actions of the therapist and the patient may be very complex

and, in particular, may depend on the current and past trajectories of the tele-rehabilitation

system as well as the therapist’s/patient’s intentions and potential mutual adaptation. To reflect

this complexity, we use a very general model of the voluntary actions of the therapist and the

patient dynamics which is represented by a system of unknown nonlinear non-autonomous

functional-differential equations (FDEs) as explained in the rest of this section. •

The notation below is borrowed from [25]. Given functions x : R→ Rn and td : R→ R+,

then xd(t) denotes the restriction of x(·) on the interval [t− td(t), t], i.e., xd(t) := {x(τ), τ ∈ [t− td(t), t]}.

The active component f a
th(t) := L −1 [Fa

th(s)
]

of the therapist’s forces is represented in the
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time-domain as an output of the following system,

ẋa
th = Fth

(
xa

thd,v
tr
d ,w

th) ,
f a
th = Gth

(
xa

thd,v
tr
d ,w

th) , (2.17)

where xa
thd is the state of the system, vtr

d := L −1 [β ·P(s) ·V̂p(s)
]

is the signal that represents

(in the time domain) the information regarding the (scaled and filtered) velocity of the patient’s

hand available to the therapist, and wth(·) is an arbitrary locally essentially bounded external

signal that reflects the therapist’s intention.

Similar to the above, the active component va
p(t) := L −1 [V a

p (s)
]

of the patient’s action is

represented in the time-domain as an output of the following system,

ẋa
p = Fp

(
xa

pd, f tr
d ,wp

)
,

va
p = Gp

(
xa

pd, f tr
d ,wp

)
,

(2.18)

where xa
pd is the state of the system, f tr

d := L −1 [α · F̂th(s)
]

is the signal that represents (in the

time domain) the information regarding the scaled force of the therapist’s hand available to the

patient, and wp(·) is an arbitrary locally essentially bounded external signal that reflects the

patient’s intention.

Note that Fth(·), Gth(·), Fp(·), Gp(·) are assumed to be unknown locally Lipschitz func-

tionals of their arguments. The assumption imposed on (2.17) and (2.18) is the weak input-to-

output stability, explained in Appendix I (Section 2.9), [20]. The exact form of the assumption

for (2.17) and (2.18) is given below:

Assumption 2.2. The model (2.17) that describes the voluntary actions of the therapist is

weakly input-to-output stable (WIOS) with linear IOS gains γv
th ≥ 0, γw

th ≥ 0. Specifically,

there exist β th ∈K∞ such that for any initial condition xa
thd(t0), t0 ∈ R+, and any uniformly

essentially bounded inputs vtr
d (t), wth(t), the solution xa

thd(t) of (2.17) is well-defined for all

t ∈ R+ and the following two properties hold:
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i) uniform boundedness:

sup
t≥t0

∣∣ f a
th(t)

∣∣≤ β th (|xa
thd(t0)|

)
+γv

th · sup
t≥t0

∣∣vtr
d (τ)

∣∣+ γw
th · sup

t≥t0

∣∣wth(τ)
∣∣ ; (2.19)

ii) convergence:

limsup
t→+∞

∣∣ f a
th(t)

∣∣≤ γv
th · limsup

t→+∞

∣∣vtr
d (τ)

∣∣
+γw

th · limsup
t→+∞

∣∣wth(τ)
∣∣ . • (2.20)

Assumption 2.3. The model (2.18) that describes the voluntary actions of the patient is

WIOS with linear IOS gains γv
p ≥ 0, γw

p ≥ 0. Specifically, there exist β p ∈K∞ such that for

any initial condition xa
pd(t0), t0 ∈ R+, and any uniformly essentially bounded inputs f tr

d (t),

wp(t), the solution xa
pd(t) of (2.18) is well-defined for all t ∈ R+ and the following hold:

i) uniform boundedness:

sup
t≥t0

∣∣va
p(t)
∣∣≤ β p

(
|xa

pd(t0)|
)
+ γv

p · sup
t≥t0

∣∣ f tr
d (τ)

∣∣+ γw
p · sup

t≥t0
|wp(τ)| ; (2.21)

ii) convergence:

limsup
t→+∞

∣∣va
p(t)
∣∣≤ γv

p · limsup
t→+∞

∣∣ f tr
d (τ)

∣∣+ γw
p · limsup

t→+∞

|wp(τ)| . • (2.22)

Remark 2.6. The exact form of the functionals Fth(·), Gth(·), Fp(·), Gp(·) in (2.17) and

(2.18) is assumed to be unknown and is not used in the subsequent development. The only

information about (2.17) and (2.18) that is used to develop the stability analysis (in Section 2.4)

is the IOS gains γv
th and γv

p. Moreover, in the development of the stabilizing scheme (presented

in Section 2.5) for the tele-rehabilitation system, the exact value of γv
th and γv

p is also assumed

unknown; thus, the only information about (2.17) and (2.18) that is used in Section 2.5 is the

fact that the models (2.17) and (2.18) are WIOS.•
Remark 2.7. The simplified intuitive implication of Assumption 2 and 3 is that both the

therapist’s and the patient’s dynamics map finite inputs (the slave velocity for the therapist and

the master force for the patient) to finite responses (bounded therapeutic forces at the therapist’s

side and bounded patient velocity at the patient’s side). This is a realistic assumption.•
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2.4 Stability Analysis

Although the tele-rehabilitation system described above has a negative feedback interconnec-

tion structure, the nonlinearity, non-passivity, and non-autonomous behavior of the human vol-

untary dynamics (2.17) and (2.18) as well as the presence of networked induced constraints,

such as time-varying delays and information losses, make it challenging to analyze and guar-

antee the stability of the system. In this section, we present a new approach to the stability

analysis of the proposed tele-rehabilitation system based on the small-gain theorem.

To formulate the nonlinear small-gain stability conditions for the proposed tele-rehabilitation

system, let us start by recalling the notion of L1-gain (or peak gain) of a MIMO linear system.

Consider a MIMO linear system with a proper transfer matrix G(s) ∈ Cn×n. The L1 gain is

defined according to the formula (see, for example, [26, Section 5.3.3]):

‖G(s)‖1 := max
i=1,...,n

∫ +∞

0

n

∑
j=1

∣∣gi j(τ)
∣∣dτ, (2.23)

where g(t) := [gi j(t)]i, j=1,...,n ∈ Rn×n is impulse response matrix corresponding to G(s), i.e.,

g(t) := L −1 (G(s)). For a stable linear system, its peak gain is well-defined if the transfer

matrix is proper; in this case, the peak gain of a system is equal to its IOS gain [27]. The latter

fact allows for the application of some general nonlinear IOS small-gain theorems to derive

stability conditions for the proposed tele-rehabilitation system.

Let us first consider ζ = 1. The following result is valid.

Theorem 2.1. Consider the tele-rehabilitation system described by (2.1), (2.2), (2.3), (2.4),

(2.5), (2.7), (2.8), (2.15), (2.16), (2.17), and (2.18). Suppose Assumptions 1, 2, 3 hold. Suppose

also that Zth(s)P(s), (Zp(s)+ Z̃m(s))−1, and P(s) are stable and proper transfer matrices. If

(∥∥∥Zth(s)P(s)
∥∥∥

1
+ γv

th

∥∥∥P(s)
∥∥∥

1

)
·
(∥∥(Zp(s)+ Z̃m(s))−1

∥∥
1 + γv

p ‖Q(s)‖1
)

< 1/(α ·β ), where Q(s) = Zp(s)(Zp(s)+ Z̃m(s))−1,
(2.24)

then the trajectories of the tele-rehabilitation system are uniformly bounded and convergent.

Proof of Theorem 1. Substituting (2.3), (2.15) into (2.1), the following closed-loop master-
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patient dynamics are obtained

Vp(s) = (Zp(s)+ Z̃m(s))−1 ·
[
Zp(s)V a

p (s)−α · F̂th(s)
]
. (2.25)

On the other hand, substituting (2.5), (2.16) into (2.2), the closed-loop slave-therapist dynamics

for ζ = 1 are obtained as:

Fth(s) = β ·Zth(s) ·P(s) ·V̂p(s)+Fa
th(s). (2.26)

Consider the interconnection of (2.25), (2.26) with the system (2.17) and (2.18) that describes

the active component of the therapist’s dynamics. Taking into account Assumption 2 and 3 also

the fact that the L1-gain of a stable proper transfer function is the IOS gain of the corresponding

linear system, one can verify that (2.24) is essentially a small-gain stability condition for system

(2.25), (2.26), (2.17), (2.18) with communication channels (2.7), (2.8). Applying Theorem 5

from Appendix I (Section 2.9), with δ1 = δ2 = 0, σ1 := σ f , σ2 := σb, w1 := f a
p , and w2 := wth,

we can conclude that the trajectories of the system are uniformly bounded and convergent. This

completes the proof. •

Remark 2.8. The assumption that both Zth(s) and (Zp(s)+ Z̃m(s))−1 are proper transfer

matrices is perfectly reasonable considering the experimental results reported in [28]. It was

experimentally found in [28] that the frequency response of the human hand (considering force

as input and position as output) has a slope of -20 dB/decade at high frequencies. Accordingly,

in [28] two different models are proposed for the human hand interacting with a teleoperator

system. Both models have relative degree zero when force is the input and velocity is the

output. Therefore, using any of the two models given in [28], both Zth(s) and Z−1
p (s) are

bi-proper (their relative degrees are equal to zero). The fact that (Zp(s)+ Z̃m(s))−1 is proper

now follows from the assumption that Z̃m(s) is positive real. This justifies the corresponding

assumptions of Theorem 1. •

Remark 2.9. One interesting aspect of the proposed stability analysis approach can be

clarified by considering the case where α = β = 1, Z̃m(s) = 0, P(s) = I, and the communication

channel is ideal, i.e., (2.10) holds. As explained in Section 2.2, this choice of parameters results

in a perfectly transparent teleoperator system. On the other hand, in this case the small-gain
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stability condition (2.24) becomes

(
‖Zth(s)‖1 + γ

a
th

)
·
(∥∥Z−1

p (s)
∥∥

1 + γ
a
p

)
< 1. (2.27)

We can therefore, conclude that fulfilment of the condition in (2.27) implies that the telerobotic

system under consideration is both perfectly transparent and robustly stable (i.e., stable with

nonzero stability margin). This represents a drastic difference from the conventional analysis,

where it was demonstrated that stability and transparency are conflicting goals; more precisely,

a perfectly transparent system has zero stability margin [29]. This can be attributed to the

different assumptions imposed on the dynamic behavior of the human operator (patient) and

environment (therapist) within our framework in comparison with the conventional one; this

also reflects the potential advantages of the proposed approach. •

In order to formulate a result similar to Theorem 1 for the case ζ = 0, let us denote

Z1(s) := Zth(s)[Zth(s)+Zs(s)+η(s)]−1 [Zs(s)+η(s)] , (2.28)

Z2(s) := I−Zth(s) [Zth(s)+Zs(s)+η(s)]−1 . (2.29)

The following result is valid.

Theorem 2.2. Consider the tele-rehabilitation system described by (2.1), (2.2), (2.3), (2.6),

(2.7), (2.8), (2.15), (2.16), (2.17) and (2.18). Suppose Assumptions 1, 2 and 3 hold. Suppose

also that Z1(s)P(s), Z2(s), (Zp(s)+ Z̃m(s))−1, and P(s) are stable and proper transfer matrices.

If (∥∥∥Z1(s)P(s)
∥∥∥

1
+ γv

th

∥∥∥Z2(s)
∥∥∥

1

∥∥∥P(s)
∥∥∥

1

)
·
(∥∥(Zp(s)+ Z̃m(s))−1

∥∥
1 + γv

p ‖Q(s)‖1
)

< 1/(α ·β ),
(2.30)

then the trajectories of the tele-rehabilitation system are uniformly bounded and convergent.

Proof of Theorem 2 follows along line of reasoning as the proof of Theorem 1 with the

difference that for ζ = 0, the closed-loop slave-therapist dynamics (2.2), (2.6), (2.16) have the

form of

Fth(s) = β ·Z1(s) ·P(s) ·V̂p(s)+Z2(s) ·Fa
th(s). (2.31)
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It is straightforward to verify that (2.30) is the small-gain stability condition for the system

(2.25), (2.31), (2.17), (2.18) with communication system (2.7), (2.8). Applying Theorem 5

from Appendix I (Section 2.9), with δ1 = δ2 = 0, σ1 := σ f , σ2 := σb, w1 := f a
p , and w2 := wth,

the statement of Theorem 2 follows. •
Remark 2.10. The stability conditions (2.24) and (2.30) provide a new mathematical tool

which shows how a telerobotic system can remain stable and transparent when the commu-

nication delay is not zero and is time varying (without any consideration of the linearity and

passivity of the terminals). The developed small-gain stability condition is the basis for propos-

ing a new stabilizer in the next section. The same stability calculation will be performed while

considering the proposed controller in the loop of teleoperation to analyze the effect of the

controller on the stability condition of the system. •

2.5 Stabilizing Scheme for The Proposed Tele-Rehabilitation

System

Theorems 1 and 2 present conditions for stability of the tele-rehabilitation system in the pres-

ence of communication constraints. However, the stability should be guaranteed even if the

given stability conditions do not hold. Also, the proposed stability conditions (2.24), (2.30)

depend on the gain γv
th and γv

p that characterize the therapist’s and the patient’s dynamics. In

practice, these gains may not be exactly known beforehand. The natural question, therefore,

is how to guarantee stability of the overall tele-rehabilitation system and relax the calculated

stability conditions (2.24), (2.30). Our solution is described as follows. First, consider a known

constant γp > 0 such that

(∥∥(Zp(s)+ Z̃m(s))−1∥∥
1 + γ

v
p ‖Q(s)‖1

)
≤ γp. (2.32)

The inequality given in (2.32) essentially implies that there exists a known upper bound for

the peak gain (IOS gain) of the patient’s side biomechanical admittance; equivalently, there

exists a known lower bound for the peak gain of the patient’s “side” impedance. For the case

of Z̃m(s)≡ 0, the inequality (2.32) is equivalent to find an upper bound for the patient’s “hand”
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admittance
(∥∥Z−1

p (s)
∥∥

1 + γa
p

)
.

The above given upper bound on the IOS gain of the patient’s side admittance can be

estimated using and identification procedure (prior to the operation). During the procedure

force perturbations are applied to the patient’s hand and corresponding motions are logged to

find the mentioned bound on the IOS gain of the patient’s side dynamics. An example of this

procedure is explained later in this chapter. Suppose (2.32) holds; picking a sufficiently small

ε0 > 0, denote

γth := (α ·β · γp + ε0)
−1 . (2.33)

Furthermore, denote

χ(t) := γth · sup
τ∈[t−T,t]

∣∣v̂p(τ)
∣∣+δth, (2.34)

where T > 0 and δth≥ 0 are arbitrarily chosen parameters. Essentially, χ(t) represents an upper

bound for the therapist’s force that is admissible in terms of the small-gain stability condition

proposed in the previous section, where T > 0 is the time horizon for the input and δth ≥ 0 is

an offset. To guarantee overall stability, the force signal (sent to the patient’s side) should be

modified at each t by the proposed small-gain stabilizer, defined as follows

f ∗th(t) :=

 fth(t) if | fth(t)| ≤ χ(t),
fth(t)
| fth(t)| ·χ(t) otherwise.

(2.35)

Consequently, the force reflected to the patient’s side is

f̂th(t) := f ∗th (t− τb(t)) . (2.36)

Remark 2.11. The synthesized Small-Gain Controller (SGC), defined in (2.35) and (2.36), is

implemented on the therapist’s side processor and is designed to guarantee stability (in the con-

text of the small-gain theorem) regardless of any change in the dynamical behavior of the ther-

apist. The proposed SGC modifies the therapeutic forces based on the quantified IOS gain of

the patient’s upper-limb biomechanical impedance (γp). Consequently, the SGC allows higher

intensity of therapy to be delivered for patients having heavy rigid upper-limbs. In fact, the

controller customizes the therapeutic forces for each patient. It prevents the therapist providing
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“too much” assistance for a patient with light-weight soft limbs. If the proposed controller ob-

serves that the defined small-gain stability condition is not violated during rehabilitation, it will

not change the transmitted therapy (the transparency will be unaffected), even if the communi-

cation is delayed. If the developed small-gain condition is violated, the controller modifies the

therapeutic forces and transmitted therapy to stabilize the system based on the identified IOS

gain of the patient’s hand. •
In order to show how the proposed technique can guarantee system stability, let us first

consider the case ζ = 1. The following result is valid.

Theorem 2.3. Consider the tele-rehabilitation system described by (2.1), (2.2), (2.3), (2.5),

(2.7), (2.8), (2.15), (2.16), (2.17), and (2.18) with the stabilizing algorithm (2.34), (2.35),

(2.36), where γth > 0 is calculated based on (2.33). Suppose Assumptions 1, 2, and 3 hold.

Suppose also that Zth(s)P(s) and P(s) are stable and proper transfer matrices. Then the trajec-

tories of the tele-rehabilitation system are uniformly bounded and convergent.

Proof of Theorem 3. Substituting (2.5), (2.16) into (2.2), the closed-loop slave-therapist

dynamics for ζ = 1 are described by equations (2.17), (2.18) and (2.26). This interconnec-

tion is WIOS as a cascade/parallel interconnection of WIOS subsystems. Let this system be

augmented with the new output f ∗th defined by (2.35). The augmented slave-therapist intercon-

nection can be represented as a system of FDEs of the form

ẋst = Fst(xstd, v̂pd,wth)

f ∗th = Hst(xstd, v̂pd,wth),
(2.37)

where xstd is a combination of states of the subsystem (2.17) and those of the minimal realiza-

tion of (2.26). By construction,

| f ∗th(t)| ≤ γth ·
∣∣v̂pd(t)

∣∣+δth (2.38)

holds for all t ≥ 0. Picking an arbitrary β y ∈K∞, (2.38) then implies

sup
t≥0
| f ∗th(t)| ≤ β

y (|xstd(0)|)+ γth · sup
t≥0

∣∣v̂pd(t)
∣∣+δth, (2.39)

i.e., the system (2.37) has the uniform boundedness property (Definition 1 in Appendix I (
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Section 2.9). On the other hand, (2.38) also implies that

limsup
t→+∞

| f ∗th(t)| ≤ limsup
t→+∞

γth ·
∣∣v̂pd(t)

∣∣+δth. (2.40)

Thus, the system (2.37) is WIOS (Definition 1 in Appendix I) with linear gain γth and offset δth.

The overall tele-rehabilitation system can now be represented as a feedback interconnection of

(2.37) and (2.25) implemented over the communication channels (2.7), (2.36). The small-gain

stability condition for this feedback interconnection is

α ·β ·
(∥∥(Zp(s)+ Z̃m(s))−1∥∥

1 + γ
v
p ‖Q(s)‖1

)
· γth < 1, (2.41)

which is guaranteed to be satisfied due to (2.32), (2.33). Application of the small-gain result

of Theorem 5 in Appendix I (Section 2.9) with δ1 = 0, δ2 = δth, σ1 := σ f , σ2 := σb, w1 := f a
p ,

and w2 := 0 concludes the proof. •

A result analogous to Theorem 3 for the case ζ = 0 can be formulated as follows.

Theorem 2.4. Consider the tele-rehabilitation system described by (2.1), (2.2), (2.3), (2.6),

(2.7), (2.8), (2.15), (2.16), (2.17), (2.18) with the stabilizing algorithm (2.34), (2.35), (2.36),

where γth > 0 is chosen such that (2.33) holds. Suppose Assumptions 1, 2, and 3 hold. Sup-

pose also that Z1(s)P(s), Z2(s), and P(s) are stable and proper transfer matrices. Then the

trajectories of the system are uniformly bounded and convergent.

Proof of Theorem 4 is analogous to the proof of Theorem 3 with the only difference being

that in the description of the closed-loop slave-therapist dynamics for ζ = 0, equation (2.31)

should be used in place of (2.26). The rest of the arguments are the same as those used in the

proof of Theorem 3. •

It can be concluded that the proposed force reflection technique (2.35), designed for the

proposed tele-rehabilitation system is capable of ensuring system stability regardless of any

non-passivity, and nonlinearity of the therapist’s and patient’s dynamics and existing commu-

nication delays in the system.

Remark 2.12. It should be noted that using any type of controller for haptic systems, trans-

parency modulation is inevitable for guaranteeing stability. An example can be the definition of

Z-width developed in the literature for linear haptic rendering systems [30]. One specific fea-
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ture of the proposed SGC is that it tries to use the available resources in the system to reduce the

frequency and intensity of transparency modulation. For this purpose, the biomechanical char-

acteristics of the patient’s hand in the context of small-gain theorem is utilized. If the dynamics

of the patient’s hand is capable of keeping the stability margin positive, the controller will not

change the reflected forces (and as a result the felt impedance). However, if the stability is

questionable, the controller modifies the reflected forces since patient safety is the first priority.

Consequently, SGC gives complete authority to the therapist to tune the therapy, “as long as

the stability margin remains positive”. However, it puts a limit on the impedance transmitted

to the patient’s side. This limit is based on the capabilities of the patient’s hand in absorbing

therapeutic forces. As a result, in this chapter, the definition of “too much assistance” corre-

sponds to the situation that the developed stability condition is not satisfied and this situation

is diagnosed by SCG, as a fault in the bilateral interaction. The proposed tele-rehabilitation

architecture provides the therapist with an auditory cue (a beeping sound) which shows that

the extent of therapy is going to violate the stability condition, so the controller is going to be

activated. This helps the therapist to realize how much assistance he/she can apply. •

2.6 Simulations and Experimental Results

Pilot results are given in this section.

2.6.1 Simulation A: Assistive and Resistive Therapy

In Simulation A, we investigate stability and transparency of the tele-rehabilitation system

(without including the controller) where the therapist acts in both resistive and assistive modes.

It is assumed that Z̃m(s) = 0. The voluntary actions of the therapist is simulated by Kth(s).

This transfer function is called the “therapist’s gain”. In simulation A, the impedance of the

patient’s hand is Zp(s) = 110+ 70s−1, and the one for the therapist’s hand is assumed to be

negligible. It should be noted that this assumption has not been imposed by the proposed

theoretical framework. This is assumed here only to allow for conducting a particular analysis

of the passive and non-passive behavior of the therapist in this simulation. The simulated

therapist’s gain is Kth(s) = 90+ 50s−1 for the resistive phase (phase 1) and Kth(s) = −90−
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Figure 2.2: Simulation A: a) Velocity of the patient’s hand (master device) vp vs. velocity of
the therapist’s hand (slave device) vth, b) Patient’s force fp vs. therapist’s force fth, c) Energy
generated by the therapist.

50s−1 for the assistive phase (phase 4). The scaling factors are α = β = 1. The simulated

communication delay is a Gaussian noise with the mean value of 0.2 sec in each direction.

Simulation A consists of four phases:

Phase 1) The patient generates external forces as f a
p(t) = 100(sin t) N. The therapist acts in

the resistive mode.

Phase 2) The patient continues to generate active forces ( f a
p(t) = 100(sin t) N), while the

therapist releases the slave, so that no assistive/resistive forces are generated.

Phase 3) The magnitude of f a
p(t) is decreased by a factor of three, f a

p(t) =
100

3 sin t N to

simulate a stroke. No assistive/resistive forces are generated.

Phase 4) The patient continues to generate f a
p(t) =

100
3 sin t N. The therapist acts in the

assistive mode.

Theoretically, it can be checked that during all four phases, the system satisfies the assump-

tions of Theorem 1 and stability condition (2.24). As a result, it is expected that the system

behaves in a stable manner regardless of the non-passive behavior of the therapy terminal and

existence of the delay. The results are shown in Fig. 2.2 and confirm the stability of the system

during all four phases. As expected, during resistive therapy (Phase 1) the therapist dissipates
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Figure 2.3: Simulation B (mild assistance): (a) Velocity trajectories, (b) Force trajectories (the
generated therapeutic force versus the one modified by SGC).

energy and the amplitude of velocity is reduced, while during assistive therapy (Phase 4), the

therapist generates energy, thus acting as an active (non-passive) system. The overall tele-

rehabilitation system remains stable and transparent (the force felt by the patient matches the

therapeutic force) during all four phases.

2.6.2 Simulation B: The Proposed Small-Gain Controller

Simulations B illustrates the performance of the tele-rehabilitation system with the proposed

SGC technique (2.34), (2.35) for assistive therapy. The communication delay is the same as in

the previous simulation. Here, by “mild” assistance, we mean a situation where the impedance

of the patient’s hand Zp(s) is larger (in the sense of its 1-norm) than the therapist’s gain Kth(s).

In this case, the small-gain stability condition is satisfied. By “strong” assistance, we mean the

opposite situation. The therapy starts after t = 40 sec.

Mild Assistance. The patient’s hand impedance is Zp(s) = 110+40s−1 and the therapist’s

transfer function is Kth(s) = −60− 10s−1. γth is calculated based on the estimate of the pa-

tient’s hand impedance which is 20% lower than the actual impedance. The external force in

this case is f a
p(t) = 30sin(0.7t) N. The result is shown in Figs. 2.3a and 2.3b which show that

the assistive therapy increases the magnitude of the patient’s movement, while the system re-

mains stable. Since the small-gain condition is satisfied, the SGC does not alter the therapist’s

assistive forces.

Strong Assistance. The patient’s hand impedance is Zp(s) = 80+ 10s−1 while the thera-

pist’s transfer function is Kth(s) =−150−20s−1. The external force is f a
p(t) = 30sin(0.7t) N.
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Figure 2.4: Simulation B (strong assistance): The small-gain condition is not satisfied and the
SGC is turned off. The trajectories are diverging.
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Figure 2.5: Simulation B (strong assistance): The SGC controller is on and the system is stable.
(a) Velocity trajectories, (b) Force trajectories.

It can be checked that the small-gain condition is not satisfied in this case. Fig. 2.4 shows the

divergent (unstable) system’s response when the SGC is off. In this case even assuming zero

delay did not help the instability and the system remained divergent. Turning on the proposed

SGC technique, the result is shown in Figs. 2.5a, 2.5b. Here, γth is calculated based on the esti-

mate of the patient’s hand impedance (20% lower than the actual impedance). Fig. 2.5a shows

that the strong assistive therapy leads to significant increase in the magnitude of the movement

and the system remains stable. The actions of the SGC can be seen in Fig. 2.5b. The controller

modulates the magnitude of the therapist’s assistive forces to keep the overall system stable.

2.6.3 Simulation C: Transparency Modulation (Comparative Study)

Simulation C compares the behavior of the proposed Small-Gain Controller with the conven-

tional state-of-the-art Time-domain Passivity-based Control (TDPC) technique for the pro-

posed application. The focus of this simulation is on modification of system transparency (aris-

ing from the need to guarantee system stability) performed by SGC in comparison with that
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of TDPC. For this purpose, the TDPC technique (initially formulated in [31]) is implemented.

The technique for comparing the transparency of TDPC and SGC is based on the algorithm

introduced in [32]. The simulation has been conducted in two parts. For the first part, the com-

munication delay is considered to be ideally zero. The effect of time delay (which introduces

phase-lag in the system) is separately analyzed in the second part. During both parts, each

technique (TDPC and SGC) is simulated for handling ten different therapeutic environments

which range from “very high power assistive therapy” to “very high power resistive therapy”,

as explained below. The resistive environment is a positive viscous force field ( fth = Bth · vth

where Bth > 0) which has been used in the literature [33] to challenge the motor capability of

patients and encourage them to provide higher motor activity for task performance. On the

other hand, the power assistive environment is considered to be a negative viscous force field

( fth = Bth.vth where Bth < 0) which amplifies the mechanical power of the patient. More de-

tails on this type of robotic assistive rehabilitation technique can be found in [34]. The goal of

the utilized power assistive rehabilitation is to help patients using their own (reduced) mechan-

ical power to perform tasks. The ten coefficient Bth which corresponds to the ten simulated

therapeutic environments consists of −20N.s/m (very high assistance), −15N.s/m (high as-

sistance), −10N.s/m (moderate assistance), −5N.s/m (mild assistance), −2N.s/m (very low

assistance), +20N.s/m (very high resistance), +15N.s/m (high resistance), +10N.s/m (mod-

erate resistance), +5N.s/m (mild resistance), +2N.s/m (very low resistance). Each of the

above-mentioned therapeutic environments is simulated for 10 seconds. The reason for choos-

ing these values is explained below.

In this simulation, the patient’s hand and rehabilitation robot are modeled by mass-damping

dynamics. For the patient’s hand the mass and damping parameters are 1 Kg and 11 N.m/s,

respectively; and those for the robot are 2 Kg and 3 N.m/s. The force generated by the patient

is f a
p(t) = 2(sin(1t)+sin(2t)+sin(3t)+sin(4t)). The identified IOS gain of the patient’s hand

is 10.7 N.m/s. Considering a 0.7 N.m/s margin, the value used in the SGC for the IOS gain of

the patient’s hand is 10 N.m/s. As a result, the cases of very low and mild assistive/resistive

therapies are when the proposed stability condition for the patient-therapist interaction is sat-

isfied since Bth < 10N.m/s. The cases of moderate assistive/resistive therapies are when the

stability condition is marginally satisfied (since Bth = 10N.m/s), and the cases of high and
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very high assistive/resistive therapies are when the stability condition is not satisfied (since

Bth > 10N.m/s).

During the second part of the simulation, the same rehabilitation environments and the pa-

rameters specified above have been used while the communication delay is considered from

zero round-trip delay to 500ms round-trip delay. The step between the simulated communi-

cation delays is 25ms. This means that in total 21 simulations have been conducted for each

control technique (TDPC and SGC). In the first simulation, a zero communication delay is

considered; in the second simulation, a 25 ms delay is considered; and in the 21st simulation,

a 500 ms delay is considered. This allows us to analyze the trend of transparency modification

delivered by the two control techniques when the communication delay changes from zero to

high values. The reason for separately analyzing the effect of time delay is that phase lag can

affect the therapeutic impedance felt by the patient. For example a phase lag of 180 degrees

can totally convert the feeling of an assistive environment to a resistive one, and vice versa.

As a result, we first compare the SGC and TDPC techniques under an ideal no-delay condition

(part 1), then we gradually increase the communication delay up to 500 ms (part 2).

To analyze the effect of the two controllers on the transparency of the system (that cor-

relates with the feel of assistance/resistance delivered to the patient) in comparison to the

planned therapy, the transparency visualization technique proposed in [32] for general hap-

tic systems is used. For this purpose, in [32] a transparency map is proposed which plots

the parameters of the reflected impedance to the user’s hand (which is the extent of the de-

livered assistive/resistive therapy to the patient’s hand here), with respect to the parameters

of the environmental impedance (which is the extent of the generated assistive/resistive ther-

apy). To calculate the parameters, in [32], a conventional parameter identification scheme is

utilized considering a Linear Time-Invariant (LTI) model for the reflected and environmental

impedances. However, since both TDPC and SGC are nonlinear controllers which introduce

time-varying damping and force modification into the system, we used a nonlinear energy-

based identification scheme which calculates the average energy dissipation/generation felt

by the patient (Dre f lect) in comparison to the one generated by the therapeutic environment
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Figure 2.6: Graph of the transparency map of an ideal imaginary system (with infinite trans-
parency width) that remains stable for infinite positive/negative loop gains.

(Dtherapy), as given in (2.42).

Dtherapy =

10∫
0

fth(t)vth(t)dt

10∫
0

vth(t)2dt
; Dre f lect =

10∫
0

fp(t)vp(t)dt

10∫
0

vp(t)2dt
. (2.42)

Please note that for an LTI positive/negative viscous environment the outputs of the calculations

given in (2.42) are equal to the amplitudes of the viscosity coefficient. Consequently, for the ten

simulated therapeutic environments, since the therapy has an LTI model ( fth = Bth · vth where

Bth ∈ [−20,−15,−10,−5,−2,+2,+5,+10,+15,+20
]
), the output of the calculation in (2.42)

for the therapeutic environment Dtherapy is equal to Bth. This can be shown by replacing fth of

(2.42) with Bth · vth. The end time for the simulation is t = 10sec which is used in the limits of

the integrals in (2.42).

Now, consider an imaginary ideal interaction which remains stable and fully transparent

for infinite positive and negative loop gains. The transparency map for that ideal interaction

would be as the one drawn (not simulated) in Fig. 2.6, where the felt and the planned therapies

would be identical for any arbitrary choice of the therapeutic environment. In the control

theory and telerobotics literature, it is known that stable behavior cannot be expected for infinite

loop gain with an arbitrary sign. Regarding the issue with the arbitrary sign, an example is

the case of positive feedback loops which usually corresponds to a destabilizing behavior (in
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Figure 2.7: The transparency map calculated for the SGC technique (solid blue line) and the
TDPC technique (solid red line). Each map is calculated based on the results of 10 simulated
therapeutic environments.

contrast with negative feedback). Regarding the issue with infinite magnitude of the loop gain,

an example is the known stability issues of telerobotic systems during hard environmental

contacts. Consequently, to guarantee interaction stability, the infinite transparency width shown

in Fig. 2.6 is usually limited and modified by stabilizers. We compare below the modifications

suggested by the proposed SGC technique in comparison with the one for the TDPC technique.

Part 1 (Zero Communication Delay): As mentioned earlier, the first part of the results

for Simulation C evaluates the transparency of the two controllers (SGC and TDPC) when the

communication delay is set to zero. After simulating both controllers for all the ten rehabil-

itation environments, the transparency maps are developed as shown in Fig. 2.7. As can be

seen in this figure, to guarantee stability, both techniques have modified the transparency map

(compared to the map of the ideal system shown in Fig. 2.6). The proposed SGC controller, has

opened a transparency width based on the identified IOS gain of the user’s hand (i.e. 10 N.m/s

in this simulation). It allows both negative and positive viscous environments to be felt by the

user if the amplitude of the therapeutic environment (Bth) is located within the mentioned width

(which is from -10 N.s/m to +10 N.s/m). The controller saturates the reflected transparency if

the amplitude of the environment’s coefficient goes beyond this width. In comparison to the

TDPC technique, under the zero communication delay condition, the SGC technique allows

higher negative viscosity to be felt by the user. However, SGC reduces the allowable range of

positive viscosity to be reflected back to the patient’s hand, in comparison to TDPC.
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To further compare the behavior of the two controllers, distributions of the resulting hand

velocities of the patient are shown in Fig. 2.8. In this figure, the resulting velocities during

the maximum resistance and the maximum assistance provided through the two controllers are

compared. The distributions of velocities delivered through the SGC technique are denoted by

SGC-A (for the maximum assistance) and SGC-R (for the maximum resistance). Similarly, the

distributions of the velocities delivered through the TDPC technique are denoted by TDPC-A

(for the maximum assistance) and TDPC-R (for the maximum resistance). For resistive ther-

apy, lower velocities correspond to delivery of higher resistance (which is desirable for this type

of therapy). For assistive therapy, higher velocities corresponds to delivery of higher assistance

(which is desirable for this type of therapy). In order to statistically compare the distributions,

the widely-used two-sample t-test statistical analysis was conducted for each of the four pairs

of distributions shown in Fig. 2.8. The resulting p-values (output of t-test) were less than 0.001

for all four pairs shown in Fig. 2.8. This statistically validates the results. It implies that (a) (as

expected) the velocities during resistive therapy for both SGC and TDPC techniques were (on

average) lower than the velocities during assistive therapy and the difference was statistically

significant; (b) the SGC controller resulted in higher velocities during assistive therapy in com-

parison to TDPC and the difference was statistically significant; (c) during resistive therapy,

the TDPC technique resulted in lower velocities (compared to SGC) and the difference was

again statistically significant. In summary, SGC performs better for negative viscosities while

TDPC performs better for positive viscosities. This result is in agreement with the calculated

transparency map shown in Fig. 2.7. As mentioned earlier, a communication delay can affect

the transparency maps, as discussed in Part 2.

As the last evaluation of Part 1, to better clarify the behavior of the proposed SGC tech-

nique, the generated environmental force and the force felt by the patient (the modified force)

are compared and the comparison is shown in Fig. 2.9 for moderate (|Bth| = 10N.s/m) and

for very-high (|Bth| = 20N.s/m) resistance and assistance. As can be seen in this figure, dur-

ing moderate therapy, the reflected force to the patient’s hand is equal to the one generated at

the environment. However, when the intensity of the environment has gone beyond the trans-

parency width of SGC, the controller reduces the amplitude of the reflected forces to guarantee

stability.
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Figure 2.8: Four pairs of distribution of velocities achieved using SGC and TDPC techniques.
SGC-A and SGC-R stand for maximum assistance and maximum resistance delivered through
the SGC technique. TDPC-A and TDPC-R stand for maximum assistance and maximum resis-
tance delivered through the TDPC technique. Each side-by-side pairs of distribution has been
separately analyzed using two-sample t-test which resulted in p-values less than 0.001 for all
pairs.

Part 2 (Non-zero Communication Delay): In this part, the effect of a communication

delay is analyzed while evaluating the transparency of the system using SGC and TDPC con-

trollers. For this purpose the communication delay is increased from a zero round-trip delay

up to 500ms in 25ms increments between every two consecutive simulations. The transparency

visualization technique used in Part 1 of Simulation C is used here. The results can be seen

in Fig. 2.10 for the SGC technique and in Fig. 2.11 for the TDPC technique. The figures are

plotted in 3D space where (a) the generated therapeutic behavior Dtherapy, (b) the therapeutic

behavior felt by the patient Dre f lect , and (c) the simulated delay are the three axes. As men-

tioned earlier, each of the two control techniques (TDPC and SGC) has been simulated for 21

communication delay values (ranging from 0 to 500 ms in increments of 25 ms) and for 10

different therapeutic behavior Bth (ranging from -20 N.s/m to +20 N.s/m). As can be seen in

Figs. 2.10 and 2.11, increasing the delay reduces the transparency width for both controllers.

In other words, an increase in the communication delay has resulted in greater modification of

transparency resulting from both the TDPC and SGC techniques in order to guarantee stability.
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Figure 2.9: The force modification applied by the SGC technique for moderate (left) and very
high (right) resistance (top) and assistance (bottom) therapies.

For example, comparing Fig. 2.10c and Fig. 2.7c, and also comparing Fig. 2.11c and Fig. 2.7b,

it can be seen that the reflected transparency range is reduced by increasing the delay. Con-

sidering Figs. 2.10d and 2.11d, it can be seen that for high delay values, SGC shows higher

transparency width in comparison to TDPC. However, for low values of delays, the TDPC

shows higher transparency width for positive viscous environment while SGC shows higher

transparency width for negative viscous environments.

2.6.4 Experiment A: (Time-varying Resistive/Assistive Therapy)

The goal of this set of experiments was to investigate the performance of the proposed con-

troller when the therapist behaves in a non-autonomous (time-varying) passive and non-passive

manners. Note that the proposed small-gain framework allows for having nonlinear time-

varying non-passive behavior for the therapist and the patient. In this set of experiments, a

human operator (which includes intrinsic nonlinear dynamics) plays the role of the patient,

interacts with the haptic device (Phantom Omni from 3D Systems), and provides movement

trajectories. Both assistive and resistive actions of the therapist are simulated in a time-varying

manner to match with the main goal of this experiment. It is demonstrated that the proposed

controller ensures system stability regardless of the time-varying behavior of the therapist. The
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Fig. 8. Four pairs of distribution of velocities achieved using SGC and TDPC
techniques. SGC-A and SGC-R stand for maximum assistance and maximum
resistance delivered through the SGC technique. TDPC-A and TDPC-R stand
for maximum assistance and maximum resistance delivered through the TDPC
technique. Each side-by-side pairs of distribution has been separately analyzed
using two-sample t-test which resulted in p-values less than 0.001 for all pairs.

Fig. 9. The force modification applied by the SGC technique for moderate
(left) and very high (right) resistance (top) and assistance (bottom) therapies.

in higher velocities during assistive therapy in comparison
to TDPC and the difference was statistically significant; (c)
during resistive therapy, the TDPC technique resulted in lower
velocities (compared to SGC) and the difference was again
statistically significant. In summary, SGC performs better for
negative viscosities while TDPC performs better for positive
viscosities. This result is in agreement with the calculated
transparency map shown in Fig. 7. As mentioned earlier, a
communication delay can affect the transparency maps, as
discussed in Part 2.

As the last evaluation of Part 1, to better clarify the behavior
of the proposed SGC technique, the generated environmental
force and the force felt by the patient (the modified force) are
compared and the comparison is shown in Fig. 9 for moderate
(|Bth| = 10N.s/m) and for very-high (|Bth| = 20N.s/m)
resistance and assistance. As can be seen in this figure, during
moderate therapy, the reflected force to the patient’s hand is
equal to the one generated at the environment. However, when
the intensity of the environment has gone beyond the trans-
parency width of SGC, the controller reduces the amplitude
of the reflected forces to guarantee stability.

Part 2 (Non-zero Communication Delay): In this part, the
effect of a communication delay is analyzed while evaluating
the transparency of the system using SGC and TDPC con-
trollers. For this purpose the communication delay is increased
from a zero round-trip delay up to 500ms in 25ms increments
between every two consecutive simulations. The transparency

(a) (b)

(c) (d)

visualization technique used in Part 1 of Simulation C is used
here. The results can be seen in Fig. 10 for the SGC technique
and in Fig. 11 for the TDPC technique. The figures are plotted
in 3D space where (a) the generated therapeutic behavior
Dtherapy, (b) the therapeutic behavior felt by the patient
Dreflect, and (c) the simulated delay are the three axes. As
mentioned earlier, each of the two control techniques (TDPC
and SGC) has been simulated for 21 communication delay
values (ranging from 0 to 500 ms in increments of 25 ms)
and for 10 different therapeutic behavior Bth (ranging from
-20 N.s/m to +20 N.s/m). As can be seen in Figs. 10 and 11,
increasing the delay reduces the transparency width for both
controllers. In other words, an increase in the communication
delay has resulted in greater modification of transparency
resulting from both the TDPC and SGC techniques in order
to guarantee stability. For example, comparing Fig. 10(c) and
Fig. 7(c), and also comparing Fig. 11(c) and Fig. 7(b), it can
be seen that the reflected transparency range is reduced by
increasing the delay. Considering Figs. 10(d) and 11(d), it
can be seen that for high delay values, SGC shows higher
transparency width in comparison to TDPC. However, for low
values of delays, the TDPC shows higher transparency width
for positive viscous environment while SGC shows higher
transparency width for negative viscous environments.

Experiment A: (Time-varying Resistive/Assistive Therapy)

The goal of this set of experiments was to investigate the
performance of the proposed controller when the therapist
behaves in a non-autonomous (time-varying) passive and non-
passive manners. Note that the proposed small-gain framework
allows for having nonlinear time-varying non-passive behavior
for the therapist and the patient. In this set of experiments, a
human operator (which includes intrinsic nonlinear dynamics)
plays the role of the patient, interacts with the haptic device
(Phantom Omni from 3D Systems), and provides movement
trajectories. Both assistive and resistive actions of the therapist
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Figure 2.10: The 3D transparency map considering the effect of communication time delays
for the SGC technique: (a) the 3D view, (b) the Delay-Dtherapy plane, (c) the Dreflect-Dtherapy
plane, (d) the Dreflect-Delay plane.



2.6. SIMULATIONS AND EXPERIMENTAL RESULTS 97-20 0 20
0

100

200

300

400

500  

D
therapy

(N.s/m)

 

D
e
la

y
 (

m
s

)

-20

-10

0

10

20

-20
0

20

0

500

-20

0

20

 

Delay(ms)

D
therapy

(N.s/m)
 

-20 0 20
-20

-10

0

10

20  

D
therapy

(N.s/m)

 

D
re

fl
e

c
t
(N

.m
/s

)

-20

-10

0

10

20

0 200 400
-20

-10

0

10

20  

Delay (ms)

 

D
re

fl
e

c
t
(N

.m
/s

)

-20

-10

0

10

20

-20 0 20
0

100

200

300

400

500  

D
therapy

(N.s/m)

 

D
e
la

y
 (

m
s

)

-20

-10

0

10

20

-20
0

20

0

500

-20

0

20

 

Delay(ms)

D
therapy

(N.s/m)

 

-20

-10

0

10

20

-20 0 20
-20

-10

0

10

20  

D
therapy

(N.s/m)

 

D
re

fl
e

c
t
(N

.m
/s

)

D
re

fl
e

c
t
(N

.m
/s

)

-20

-10

0

10

20

0 200 400
-20

-10

0

10

20  

Delay (ms)

 

D
re

fl
e

c
t
(N

.m
/s

)

-20

-10

0

10

20

-20

0

20

0

100

200

300

400

500

 

D
therapy

(N.s/m)

 

D
e
la

y
 (

m
s

)

-20

-10

0

10

20

-20

0

20

0

500

-20

0

20  

Delay(ms)

D
therapy

(N.s/m)

 

-20

0

20

-20

-10

0

10

20

 

D
therapy

(N.s/m)

 

D
re

fl
e
c
t
(N

.m
/s

)

-20

-10

0

10

20

0
200

400

-20

-10

0

10

20

 

Delay (ms)

 

D
re

fl
e
c
t
(N

.m
/s

)

-20

-10

0

10

20

-2
0

0

20

0

100

200

300

400

500

 

D th
era

py
(N

.s
/m

)

 

D
el

a
y 

(m
s
)

-2
0

-1
0

0

10

20

-2
0

0

20

0

500

-2
0

0

20

 

Dela
y(

m
s)

D th
era

py
(N

.s
/m

)

 

-2
0

0

20

-2
0

-1
0

0

10

20

 

D th
era

py
(N

.s
/m

)

 D
re

fl
e
c
t(N

.m
/s

)

-2
0

-1
0

0

10

20

0

200

400

-2
0

-1
0

0

10

20

 

Dela
y (

m
s)

 D
re

fl
e
c
t(N

.m
/s

)
-2

0

-1
0

0

10

20

(a)

- 20
0

100

200

300

400

500

D
el

ay
(m

s)

-20

-10

0

10

20

-20
0

20

0

500

-20

0

20

Delay(ms)
Dtherapy(N.s/m)

-20 0 20
-20

-10

0

10

20

Dtherapy(N.s/m)

D
re

fle
ct

(N
.m

/s
)

-20

-10

0

10

20

0 200 400
-20

-10

0

10

20

Delay (ms)

D
re

fle
ct

(N
.m

/s
)

-20

-10

0

10

20

D
re

fle
ct

(N
.m

/s
)

(b)

12

(b)

(d)

Fig. 11. The 3D transparency map considering the effect of communication
time delays for the TDPC technique: (a) the 3D view, (b) the Delay-Dtherapy

plane, (c) the Dreflect-Dtherapy plane, (d) the Dreflect-Delay plane.

(a) (b)

(c) (d)

Fig. 12. Experiment A: (a) Varying therapeutic gain, (b) Passive and non-
passive behavior of the therapist during the time-varying therapy, (c) Oper-
ator’s velocity trajectory during the time-varying therapy, d) The generated
therapeutic force versus the modified force reflected to the operator’s hand.

are simulated in a time-varying manner to match with the
main goal of this experiment. It is demonstrated that the
proposed controller ensures system stability regardless of
the time-varying behavior of the therapist. The plot of the
chosen time-varying therapeutic gain used in this experiment
is shown in Fig. 12(a). As can be seen in this figure, the
therapist gradually increases the level of resistance starting
from t = 10 sec until t = 25 sec. At t = 25 sec, the therapist
suddenly switches to assistive therapy and starts to gradually
increase the level of assistance. The maximum assistive gain
is achieved at t = 38 sec with its value equal to 20 N ·sec/m.
The controller parameters in this simulation are chosen as
γth = 5, and δth = 0. The time-varying time delays are
τf (t) = τb(t) = 0.1 + 0.01 · sin 30t sec. Fig. 12(b) presents
a plot of the power produced by the therapist. It can be seen
that during the period from t = 10 sec to t = 25 sec, the
therapist absorbs power thus behaving like a passive system,
while after t = 25 sec, the therapist starts injecting power into
the system which results in non-passive behavior.

The results are shown in Fig. 12(c) and 12(d), where Fig.
12(c) shows the velocity profile of the operator’s movement,

and Fig. 12(d) shows the forces generated by the therapist
as well as the ones reflected to the operator (patient) which
are modified by the controller to ensure system stability. This
experiment demonstrates that the amplitude of the patient’s
motion decreases during the resistive phase and increases
during the assistive phase in a safe and stable manner as
expected, while the therapist’s behavior is changing over time
and represents both passive and non-passive actions. Also, the
proposed controller modifies the reflected forces and preserves
stability in both time-varying resistive and assistive modes (in
the presence of varying communication delays).

VII. FULL SYSTEM IMPLEMENTATION

In this section, the full system implementation is ad-
dressed where two humans interact through the proposed tele-
rehabilitation system (in the roles of therapist and patient) and
the parameters are tuned based on practical requirements. The
implemented system shown in Fig. 13 consists of:
• Master haptic device at the patient side

This is a 2-DOF planar upper-limb rehabilitation robot from
Quanser Inc. that moves in the horizontal (X-Y) plane allowing
for arm flexion-extension movements. The robot measures the
patient’s movements and applies the received forces from the
therapist on the patient’s arm.
• Slave haptic device at the therapist side

This is a 6-DOF Quanser HD2 haptic device locked by soft-
ware to have a fixed orientation. The vertical Zaxis direction
is used as an additional supervisory input from the therapist
(explained later). So, the implemented system is a 2-DOF
telerobotic interconnection in the X-Y plane. The role of the
slave robot is to provide the therapist with motion trajectories
generated by the patient and estimates the corresponding
interaction forces provided by the therapist in response. Both
haptic devices are run in Matlab/Simulink using the QUARC
2.2 real-time environment [36].
• Shared monitored virtual-reality environment

The virtual-reality environment is monitored for the patient
using a head-mounted display (to provide the patient with
visual cueing about the required task and tell him/her when
and where to move) and for the therapist using a computer
monitor. In Fig. 13 the orange circle represents the patient’s
position, the yellow circle is the therapist’s position, and
the green square is the target to be tracked by the patient.
The purple squares are all possible locations of the target
during rehabilitation. During the experiments, the patient
attempts to track the target, while the therapist provides
assistive/resistive/coordinative forces through the implemented
system. For resistive therapy, the therapist pushes the yellow
circle against the direction of the patient’s movement or
follows it with a position lag. This will result in generating re-
sistive forces which will be reflected to the patient’s hand. For
assistive therapy, the therapist pushes the yellow circle while
leading/coordinating the orange circle. The target switches its
location in a randomized manner after a specific amount of
time (which is set to 5sec here considering the size of the
workspace). The target switching scenario could be based on
tracking accuracy threshold. Having a therapist in the loop
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Figure 2.11: The 3D transparency map considering the effect of communication time delays
for the TDPC technique: (a) the 3D view, (b) the Delay-Dtherapy plane, (c) the Dreflect-Dtherapy
plane, (d) the Dreflect-Delay plane.
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Figure 2.12: Experiment A: (a) Varying therapeutic gain, (b) Passive and non-passive behavior
of the therapist during the time-varying therapy, (c) Operator’s velocity trajectory during the
time-varying therapy, d) The generated therapeutic force versus the modified force reflected to
the operator’s hand.

plot of the chosen time-varying therapeutic gain used in this experiment is shown in Fig. 2.12a.

As can be seen in this figure, the therapist gradually increases the level of resistance starting

from t = 10 sec until t = 25 sec. At t = 25 sec, the therapist suddenly switches to assis-

tive therapy and starts to gradually increase the level of assistance. The maximum assistive

gain is achieved at t = 38 sec with its value equal to 20 N·sec/m. The controller parame-

ters in this simulation are chosen as γth = 5, and δth = 0. The time-varying time delays are

τ f (t) = τb(t) = 0.1+ 0.01 · sin30t sec. Fig. 2.12b presents a plot of the power produced by

the therapist. It can be seen that during the period from t = 10 sec to t = 25 sec, the therapist

absorbs power thus behaving like a passive system, while after t = 25 sec, the therapist starts

injecting power into the system which results in non-passive behavior.

The results are shown in Fig. 2.12c and 2.12d, where Fig. 2.12c shows the velocity profile

of the operator’s movement, and Fig. 2.12d shows the forces generated by the therapist as well

as the ones reflected to the operator (patient) which are modified by the controller to ensure

system stability. This experiment demonstrates that the amplitude of the patient’s motion de-

creases during the resistive phase and increases during the assistive phase in a safe and stable
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manner as expected, while the therapist’s behavior is changing over time and represents both

passive and non-passive actions. Also, the proposed controller modifies the reflected forces

and preserves stability in both time-varying resistive and assistive modes (in the presence of

varying communication delays).

2.7 Full System Implementation

In this section, the full system implementation is addressed where two humans interact through

the proposed tele-rehabilitation system (in the roles of therapist and patient) and the parame-

ters are tuned based on practical requirements. The implemented system shown in Fig. 2.13

consists of:

• Master haptic device at the patient side

This is a 2-DOF planar upper-limb rehabilitation robot from Quanser Inc. that moves in the

horizontal (X-Y) plane allowing for arm flexion-extension movements. The robot measures the

patient’s movements and applies the received forces from the therapist on the patient’s arm.

• Slave haptic device at the therapist side

This is a 6-DOF Quanser HD2 haptic device locked by software to have a fixed orientation. The

vertical Zaxis direction is used as an additional supervisory input from the therapist (explained

later). So, the implemented system is a 2-DOF telerobotic interconnection in the X-Y plane.

The role of the slave robot is to provide the therapist with motion trajectories generated by the

patient and estimates the corresponding interaction forces provided by the therapist in response.

Both haptic devices are run in Matlab/Simulink using the QUARC 2.2 real-time environment

[35].

• Shared monitored virtual-reality environment

The virtual-reality environment is monitored for the patient using a head-mounted display (to

provide the patient with visual cueing about the required task and tell him/her when and where

to move) and for the therapist using a computer monitor. In Fig. 2.13 the orange circle repre-

sents the patient’s position, the yellow circle is the therapist’s position, and the green square is
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Figure 2.13: Implemented System: Left) Patient-side robot and Head-mounted display, Mid-
dle) Virtual Environment, Right)Therapist-side Robot

the target to be tracked by the patient. The purple squares are all possible locations of the target

during rehabilitation. During the experiments, the patient attempts to track the target, while the

therapist provides assistive/resistive/coordinative forces through the implemented system. For

resistive therapy, the therapist pushes the yellow circle against the direction of the patient’s

movement or follows it with a position lag. This will result in generating resistive forces which

will be reflected to the patient’s hand. For assistive therapy, the therapist pushes the yellow

circle while leading/coordinating the orange circle. The target switches its location in a ran-

domized manner after a specific amount of time (which is set to 5sec here considering the size

of the workspace). The target switching scenario could be based on tracking accuracy thresh-

old. Having a therapist in the loop allows him/her to provide inputs by pushing a foot pedal

to switch the target location and tune the needed difficulty. The time-out scenario is chosen

here. In a clinical environment, if the time-out scenario is chosen, it should be based on the

capabilities of the patient in producing motions.

2.7.1 Control Parameters Tuning

In order to implement the proposed tele-rehabilitation architecture, ζ and η should be tuned

(which are needed for implementation of (2.4) ). For the results given in this section, the

following choice of parameters is considered.

ζ = 0, and η(s) =−Zs(s)+
(Ks +θvs)
(as+b)

. (2.43)
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The choice given in (2.43) generates a viscoelastic coupling between the therapist and the pa-

tient without the need of a force sensor (as mentioned in Section II). The therapist can provide

resistive/assistive forces through this viscoelastic coupling. In (2.43), Ks≥ 0, and θv≥ 0 are the

stiffness and viscosity coefficients of the viscoelastic coupling, and (as+b) is the characteris-

tic equation of a filter (a,b ≥ 0). These parameters can be tuned to achieve various desirable

compliances. Note that the designed viscoelastic coupling is an inclusive case and it can be eas-

ily switched to position-tracking tele-rehabilitation or velocity-tracking tele-rehabilitation by

changing the tuning factors (a,b,Ks,θv). In Appendix II (Section 2.10), details concerning the

assignment of parameters in (2.43) and how these parameters can be tuned to address different

practical requirements and specific needs are provided. In the experimental results reported in

this section, we have used a = 1, b = 0.001, Ks = 50 N/m and θv = 10 N·sec/m. In addition to

the above, in order to implement the proposed SGC technique, an estimate of the lower bound

for the IOS gain of the patient’s hand impedance is also needed. The identification procedure

is presented later in this section.

2.7.2 Experimental Results For the Implemented System

In this subsection, we discuss some results of experimental studies performed using the imple-

mented system.

Experimental Results (Part A): Passivity Analysis of the Implemented Resistive/ As-

sistive Therapy: In the first set of the experiments (Part A), the communication delay was

considered to be zero. In this part, the goal is to test the system performance and passivity for

mild assistive and resistive therapy. For this goal, the second user (who plays the role of the

therapist) delivers mild assistive/resistive therapeutic forces using the implemented telerobotic

medium. Also the first user (playing the role of the patient) uses the master device while pro-

viding a high muscular tone. As a result, the proposed stability condition is expected to be

satisfied so the system should remain stable, based on the developed theory and without using

any controller. The functionality of the proposed controller for the situation when the stability

condition is not satisfied is explained in Part C of this section. There are three phases in Part

A. First, the patient tries to track the moving target resulting in a star-shaped 2D path, while
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Figure 2.14: Experimental Results (Part A): (a) Resulting motions in 2D plane during: no-force
(normal) phase, resisted phase and assisted phase; (b) Mean velocity during assistive/resistive
therapy compared to no-force phase; (c) The therapeutic energy during assistive and resistive
therapy.

the therapist applies “no force”. The resulting 2D path is shown by the solid red line in Fig.

2.14a (this phase is also called normal phase). The second phase (resistive therapy) starts at

t = 150sec. As a result, the magnitude of the movement should decrease as validated in Fig.

2.14a by the solid black line. During the second phase, the mean velocity of the movement is

also decreased, compared to the first phase, as shown in Fig. 2.14b. During the second phase,

the therapeutic behavior damps out the energy provided by the patient, as validated in Fig.

2.14c. The assistive therapy (the third phase) is started at t = 230sec, which should result in a

higher mean velocity and a larger movement magnitude as validated in Fig. 2.14a and 2.14b.

During the assistive therapy, the therapist behaves as a non-passive subsystem and injects en-

ergy into the interconnection, as shown in Fig. 2.14c, while the system still performs in a stable

manner, as validated in Fig. 2.14a. This is in complete agreement with the proposed stability

condition which holds under the conditions of this experiment.



2.7. FULL SYSTEM IMPLEMENTATION 103 14

(a) (b)

Fig. 15. Experimental Results (Part B): (a) Velocity in the X direction and
the corresponding supremum, (b) Estimated IOS gain in the X-direction

then a supremum for the hand velocity is found considering 5
second buffering (as shown, for the X direction, Fig. 15(a)).
With a constant-amplitude stimulation force and the recorded
supremum of the hand velocity in 2DOF, an estimate for the
IOS gain of the operator’s hand is obtained for the X and
Y directions. The result for the X direction is shown in Fig.
15(b). From the results of this experiment, a conservative lower
bound value for γth is 35 N ·sec/m. This value is used in the
proposed SGC technique to stabilize the system in Part C, in
the presence of varying communication delays.

Experimental Results (Part C): Stabilizing Control Im-
plementation and Performance in Presence of Commu-
nication Delays: In this part, the delay is τf (t) = τb(t) =
75 + 25 · sin(6t) msec. In contrast to Part A, the operator
(who plays the role of the patient) does not provide a high
muscular tone while the therapist provides strong assistance.
So it is expected that the stability condition is not satisfied
and without the controller the system is unstable. Also, it
is expected that by applying the SGC technique, the system
remains stable while the therapist is capable of delivering
assistive therapy. To show these, first, the haptic feedback is
turned off so the therapist is not in the loop while the patient
provides some movements. After t = 40 sec, the bilateral
teleoperation system including the proposed SGC technique
is turned on, while the therapist tries to assist the movement.
The profile of the movement in the X direction is given in
Fig. 16(a). Also, the 2D path of the movements is given in
Fig. 16(b). As can be seen, the movement is larger and the
velocity amplitude is increased after t = 40 sec, which shows
that the assistance has been delivered through the proposed
controller. At t = 70 sec the stabilizing controller is turned
off. As expected, it results in interaction instability. This can
be observed in Fig. 16 as the high-frequency uncoordinated
movements. This validates the functionality of the proposed
SGC technique in guaranteeing stability while allowing for
delivering assistance when no assumption is made on the
passivity and linearity of the terminals.

VIII. CONCLUSIONS

In this paper, we have addressed the design, feasibility,
safety and control synthesis for a new telerobotic architecture
which is developed to allow for haptics-enabled bilateral
teleoperated rehabilitation. The proposed architecture makes
it possible to fuse the advantages of (local/remote) skilled
human therapists and powerful sensorized robotic rehabilita-
tion systems. Patient-robot interaction stability was studied in
the context of the small-gain theorem. The major goal of the

(a)

(b)

Fig. 16. Experimental Results (Part C): (a) Position in the X direction; (b) 2D
path for the assistive therapy: when the SCG is on (red), when the controller
is off (blue), and when no therapy is administered (black)

proposed new stability framework was to analyze and guar-
antee interconnection stability while putting no constraint on
the passivity, time-dependency and linearity of the terminals
and the network. The designed controller utilizes available
resources to reduce transparency manipulation needed for sys-
tem stabilization. Simulations and experimental results were
presented to validate the proposed approach.
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Figure 2.15: Experimental Results (Part B): (a) Velocity in the X direction and the correspond-
ing supremum, (b) Estimated IOS gain in the X-direction

Experimental Results (Part B): IOS Gain Identification: As mentioned in Section 2.5,

to implement the proposed SGC technique, first we need to have an estimate of the lower

bound for the IOS gain of the patient’s side impedance. Consequently, in this part (Part B), an

identification procedure is presented to find this value that will be used in Part C to implement

the SGC technique. For this purpose, a sinusoidal signal with amplitude equal to 5N and

a varying frequency from 0.2 Hz− 2 Hz is applied to the operator’s hand in both X and Y

directions (when the operator is asked to keep the hand in a relaxed configuration). The hand

velocity is measured; then a supremum for the hand velocity is found considering 5 second

buffering (as shown, for the X direction, Fig. 2.15a). With a constant-amplitude stimulation

force and the recorded supremum of the hand velocity in 2DOF, an estimate for the IOS gain

of the operator’s hand is obtained for the X and Y directions. The result for the X direction is

shown in Fig. 2.15b. From the results of this experiment, a conservative lower bound value for

γth is 35 N·sec/m. This value is used in the proposed SGC technique to stabilize the system in

Part C, in the presence of varying communication delays.

Experimental Results (Part C): Stabilizing Control Implementation and Performance

in Presence of Communication Delays: In this part, the delay is τ f (t) = τb(t) = 75+ 25 ·
sin(6t) msec. In contrast to Part A, the operator (who plays the role of the patient) does not

provide a high muscular tone while the therapist provides strong assistance. So it is expected

that the stability condition is not satisfied and without the controller the system is unstable.

Also, it is expected that by applying the SGC technique, the system remains stable while the

therapist is capable of delivering assistive therapy. To show these, first, the haptic feedback

is turned off so the therapist is not in the loop while the patient provides some movements.
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then a supremum for the hand velocity is found considering 5
second buffering (as shown, for the X direction, Fig. 15(a)).
With a constant-amplitude stimulation force and the recorded
supremum of the hand velocity in 2DOF, an estimate for the
IOS gain of the operator’s hand is obtained for the X and
Y directions. The result for the X direction is shown in Fig.
15(b). From the results of this experiment, a conservative lower
bound value for γth is 35 N ·sec/m. This value is used in the
proposed SGC technique to stabilize the system in Part C, in
the presence of varying communication delays.

Experimental Results (Part C): Stabilizing Control Im-
plementation and Performance in Presence of Commu-
nication Delays: In this part, the delay is τf (t) = τb(t) =
75 + 25 · sin(6t) msec. In contrast to Part A, the operator
(who plays the role of the patient) does not provide a high
muscular tone while the therapist provides strong assistance.
So it is expected that the stability condition is not satisfied
and without the controller the system is unstable. Also, it
is expected that by applying the SGC technique, the system
remains stable while the therapist is capable of delivering
assistive therapy. To show these, first, the haptic feedback is
turned off so the therapist is not in the loop while the patient
provides some movements. After t = 40 sec, the bilateral
teleoperation system including the proposed SGC technique
is turned on, while the therapist tries to assist the movement.
The profile of the movement in the X direction is given in
Fig. 16(a). Also, the 2D path of the movements is given in
Fig. 16(b). As can be seen, the movement is larger and the
velocity amplitude is increased after t = 40 sec, which shows
that the assistance has been delivered through the proposed
controller. At t = 70 sec the stabilizing controller is turned
off. As expected, it results in interaction instability. This can
be observed in Fig. 16 as the high-frequency uncoordinated
movements. This validates the functionality of the proposed
SGC technique in guaranteeing stability while allowing for
delivering assistance when no assumption is made on the
passivity and linearity of the terminals.

VIII. CONCLUSIONS

In this paper, we have addressed the design, feasibility,
safety and control synthesis for a new telerobotic architecture
which is developed to allow for haptics-enabled bilateral
teleoperated rehabilitation. The proposed architecture makes
it possible to fuse the advantages of (local/remote) skilled
human therapists and powerful sensorized robotic rehabilita-
tion systems. Patient-robot interaction stability was studied in
the context of the small-gain theorem. The major goal of the

(a)

(b)

Fig. 16. Experimental Results (Part C): (a) Position in the X direction; (b) 2D
path for the assistive therapy: when the SCG is on (red), when the controller
is off (blue), and when no therapy is administered (black)

proposed new stability framework was to analyze and guar-
antee interconnection stability while putting no constraint on
the passivity, time-dependency and linearity of the terminals
and the network. The designed controller utilizes available
resources to reduce transparency manipulation needed for sys-
tem stabilization. Simulations and experimental results were
presented to validate the proposed approach.
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Figure 2.16: Experimental Results (Part C): (a) Position in the X direction; (b) 2D path for the
assistive therapy: when the SCG is on (red), when the controller is off (blue), and when no
therapy is administered (black)

After t = 40sec, the bilateral teleoperation system including the proposed SGC technique is

turned on, while the therapist tries to assist the movement. The profile of the movement in

the X direction is given in Fig. 2.16a. Also, the 2D path of the movements is given in Fig.

2.16b. As can be seen, the movement is larger and the velocity amplitude is increased after

t = 40sec, which shows that the assistance has been delivered through the proposed controller.

At t = 70sec the stabilizing controller is turned off. As expected, it results in interaction

instability. This can be observed in Fig. 2.16 as the high-frequency uncoordinated movements.

This validates the functionality of the proposed SGC technique in guaranteeing stability while

allowing for delivering assistance when no assumption is made on the passivity and linearity

of the terminals.

2.8 Conclusions

In this chapter, we have addressed the design, feasibility, safety and control synthesis for a

new telerobotic architecture which is developed to allow for haptics-enabled bilateral teleoper-

ated rehabilitation. The proposed architecture makes it possible to fuse the advantages of (lo-

cal/remote) skilled human therapists and powerful sensorized robotic rehabilitation systems.

Patient-robot interaction stability was studied in the context of the small-gain theorem. The

major goal of the proposed new stability framework was to analyze and guarantee interconnec-

tion stability while putting no constraint on the passivity, time-dependency and linearity of the

terminals and the network. The designed controller utilizes available resources to reduce trans-



2.9. APPENDIX I 105

parency manipulation needed for system stabilization. Simulations and experimental results

were presented to validate the proposed approach.

2.9 Appendix I: The notion of weak input-to-output stability

and the IOS small gain theorem

Here, some stability notions regarding the small-gain theorem used throughout this chapter are

explained. The following notation is borrowed from [25]. Given functions x : R→ Rn and

td : R→ R+, then xd(t) denotes the restriction of x(·) on the interval [t− td(t), t], i.e., xd(t) :=

{x(τ), τ ∈ [t− td(t), t]}. Also, |xd(t)| := sup
τ∈[t−td(t),t]

|x(τ)|. Consider a system of functional

differential equations (FDEs) of the form

ẋ = F(xd,u1
d, . . . ,u

l
d),

y = H(xd,u1
d, . . . ,u

l
d),

(2.44)

where xd is a state, xd(t) := {x(τ), τ ∈ [t− td(t), t]}, x∈Rn, ui ∈Rmi , i= 1, . . . , l, are the inputs,

ui
d(t) :=

{
ui(τ), τ ∈ [t− td(t), t]

}
, and y ∈Rp is an output. It is assumed that both F and H are

Lipschitz continuous operators, and the function td : R→ R+ satisfies td(t2)− td(t1) ≤ t2− t1

for each t1 ≤ t2 ∈ R, and limt→+∞ t− td(t) = +∞. In the special case where td(t)≡ 0, we have

xd(t) = x(t), ud(t) = u(t), and (2.44) becomes a system of ordinary differential equations with

an output.

Definition 2.1. [20] The system (2.44) is said to be weakly input-to-output stable with

linear IOS gains γ i ≥ 0, i = 1, . . . , l, and offset δ ≥ 0 if there exist β ∈ K∞ such that for

any initial condition xd(0) and any uniformly essentially bounded input u(·) : R+→ Rm, the

solution x(t) of (2.44) is well-defined for all t ∈ R+ and the following properties hold:

i) uniform boundedness:

sup
t≥0
|y(t)| ≤ β

w (|xd(0)|)+
l

∑
i=1

γ
i · sup

t≥0

∣∣ui
d(τ)

∣∣+δ ; (2.45)

ii) convergence:
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limsup
t→+∞

|y(t)| ≤
l

∑
i=1

γ
i · limsup

t→+∞

|ud(τ)|+δ . • (2.46)

The following small-gain theorem is the main theoretical tool used in this chapter.

Theorem 2.5. Consider two systems of FDEs of the form

ẋi = Fi(xid,uid,wi)

yi = Hi(xid,uid,wi),
i = 1,2, (2.47)

whose inputs and outputs are interconnected according to the following formulas: u1(t) ≡ 0,

u2(t)≡ 0 for t < 0, and

u2(t) := y∗1
(
t− τ f (t)

)
+σ2(t), (2.48)

u1(t) := y∗2 (t− τb(t))+σ1(t) (2.49)

for t ≥ 0, where y∗i (t) ≡ 0 for t < 0 and y∗i (t) ≡ yi(t) for t ≥ 0, i = 1,2, w1(·), w2(·), σ1(·),
σ2(·) are uniformly essentially bounded external inputs, σ1(t) ≡ 0, σ2(t) ≡ 0 for t < 0, and

sup
t≥0
|w1(t)| ≤ w∗1, sup

t≥0
|w2(t)| ≤ w∗2, sup

t≥0
|σ1(t)| ≤ σ∗1 , sup

t≥0
|σ2(t)| ≤ σ∗2 , limsup

t→+∞

|w1(t)| ≤ w̄∗1,

limsup
t→+∞

|w2(t)| ≤ w̄∗2, limsup
t→+∞

|σ1(t)| ≤ σ̄∗1 , limsup
t→+∞

|σ2(t)| ≤ σ̄∗2 , w∗1 ≥ w̄∗1 ≥ 0, w∗2 ≥ w̄∗2 ≥ 0,

σ∗1 ≥ σ̄∗1 ≥ 0, σ∗2 ≥ σ̄∗2 ≥ 0 and τ f (·), τb(·) are the time delay functions that satisfy Assump-

tion 1 of this chapter. Suppose both the systems in (2.47) are WIOS with linear IOS gains

γu
1 ,γ

w
1 ≥ 0, γu

2 ,γ
w
2 ≥ 0, respectively, and offsets δ1 ≥ 0, δ2 ≥ 0, respectively. If the following

small-gain condition holds
γ

u
1 · γu

2 < 1, (2.50)

then the interconnected system is bounded and convergent; specifically, the trajectories of the

closed-loop interconnected system are well-defined for all t ≥ 0 and the following inequalities

hold
sup
t≥0
|y1(t)| ≤ β1 (|x1d(0)|)+ γu

1 ·β2 (|x2d(0)|)

+γu
1 · γw

2 ·w∗2 + γw
1 ·w∗1 + γu

1 · γu
2 ·σ∗2

+γu
1 ·σ∗1 + γu

1 ·δ2 +δ1,

sup
t≥0
|y2(t)| ≤ β2 (|x2d(0)|)+ γu

2 ·β1 (|x1d(0)|)

+γu
2 · γw

1 ·w∗1 + γw
2 ·w∗2 + γu

2 · γu
1 ·σ∗1 + γu

2 ·σ∗2
+γu

2 ·δ1 +δ2,
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limsup
t→+∞

|y1(t)| ≤ γu
1 · γu

2 · σ̄∗2 + γu
1 · σ̄∗1

+γu
1 · γw

2 · w̄∗2 + γw
1 · w̄∗1 + γu

1 ·δ2 +δ1,

limsup
t→+∞

|y2(t)| ≤ γu
2 · γu

1 · σ̄∗1 + γu
2 · σ̄∗2

+γu
2 · γw

1 · w̄∗1 + γw
2 · w̄∗2 + γu

2 ·δ1 +δ2. •

2.10 Appendix II: Practical Requirements and Parameter

Tuning

To implement the proposed tele-rehabilitation system, different aspects of its practical require-

ments were investigated. Particular attention was paid to choosing the parameters of the system

to ensure its effectiveness and compatibility with the requirements. Based on consultation with

specialists in the field of post-stroke rehabilitation, the following requirements were considered

for parameter tuning:

Requirement I: To provide a compliant/safe human-robot interaction and limit transmission

of all unsmooth trajectories, it is proposed to consider a tunable viscoelastic constraint between

the actions of the patient and those of the therapist.

Requirement 2: In addition to viscoelastic interaction, it is desirable that the therapist in-

teracts with the patient in both position and velocity domains to assess/rehabilitate different

aspects of the motor capabilities of the patient.

Requirement 3: During rehabilitation, therapists may wish to give more flexibility/freedom

to the patient and allow for deviation from the trajectory. Also, therapists may choose an

opposite scenario to provide strong hand-over-hand coordination and to minimize the allowed

deviation.

Requirement 4: Delivering strong resistive or assistive therapies requires a relatively high

level of physical power for the therapist. Therapists usually prefer to limit this amount to

minimize their potential long-term musculoskeletal risks while delivering therapy on a daily

basis. To address Requirements 3 and 4, an authority amplification feature is desirable.

Requirement 5 The cost of the system can be reduced while ensuring acceptable perfor-

mance by omitting the use of a force sensor in the system. This corresponds to setting ζ to
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zero.

2.10.1 Control Parameters Tuning

As mentioned in (2.43), to achieve the above-mentioned practical requirements, the following

design is considered.

ζ = 0, and η(s) =−Zs(s)+
(Ks +θvs)
(as+b)

. (2.51)

In (2.51), Ks ≥ 0, and θv ≥ 0 are tuning parameters of the viscoelastic impedance introduced

to create compliant interaction between the therapist and the patient, and (as+b) is the char-

acteristic equation of a filter (a,b≥ 0).

Discussion I: Here, we explain why the parameter assignment (2.51) addresses the above-

mentioned requirements and how each parameter can be tuned based on a specific need. For

this goal, first substitute (2.51) into the slave’s control signal (2.4). The resulting closed-loop

slave subsystem has the form

(Ks +θvs)
(as+b)

(
Vth(s)−β ·P(s) ·V̂p(s)

)
=−Fth(s). (2.52)

Equation (2.52) describes the interaction between the therapist and the patient. Considering

(2.52), the practical requirements are evaluated as follows:

• Cost Reduction:

Since the local force rejection gain ζ is considered zero, the need for the force sensor is elimi-

nated which can significantly reduce the cost. Although dropping the need for a force sensor is

desirable, the motion tracking performance in the absence of the force sensor should be eval-

uated; and the force reflection algorithm should be also checked since a measure or estimate

of the therapist’s force is still needed to be transferred to the patient’s side. This is explained

below for three types of interactions (which correspond to different choices of parameters).

• Velocity-Domain Tele-rehabilitation:



2.10. APPENDIX II 109

To implement velocity-domain tele-rehabilitation, the following choice should be used in (2.52):

θv = 0, a = 0, and b = 1. In this case, the closed-loop slave subsystem is described by:(
Vth(s)−β ·P(s) ·V̂p(s)

)
=−Fth(s)/Ks. (2.53)

Considering (2.53) it can be seen that a high value for the proposed Ks (which corresponds

to a strong constraint) can asymptotically eliminate the effect of the not-compensated force of

the therapist and results in a high velocity tracking performance for the teleoperated system

(Vth(s)−→ β ·P(s) ·V̂p(s)) without using a force sensor and with no local force rejection control

loop at the slave side. P(s) and β are the low-pass filter and velocity amplification gain intro-

duced earlier. The formula (2.52) is also utilized to estimate the therapist’s force Fth(s) which

is transmitted to the patient’s side according to (2.3) to deliver therapy.

• Position-Domain Tele-rehabilitation:

Therapists often need to evaluate and challenge different parts of the patient’s hand workspace.

To enable the tele-rehabilitation system for this common therapy, position tracking between

the slave and master devices should be considered. This feature is called position-domain

rehabilitation here. To achieve this, first consider a, b, non-zero while still keeping θvisc equal

to zero, in (2.52). As a result we have:(
Vth(s)−β ·P(s) ·V̂p(s))

)
·
(

1
as+b

)
=−Fth(s)/Ks. (2.54)

Considering (2.54), 1/(as+b) acts as a low-pass filter which enables tracking in the position

domain if a −→ 1,b −→ 0. The aforementioned choice of a and b makes the left side of (2.54)

the position tracking error. Similar to the case of velocity-domain rehabilitation, increasing Ks

will asymptotically make the position tracking error equal to zero.

• Compliant Visco-Elastic-Domain Tele-rehabilitation:

As mentioned earlier, to provide safe and compliant interaction between the therapist and the

patient, it is required to have compliant coupling. For this goal, consider a, b, and θv as nonzero

values in (2.52). This allows for tuning the viscoelastic coupling between the therapist and the
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patient. In this context, Ks changes the elasticity and θv tunes the viscosity. By implementing

the visco-elastic-domain tele-rehabilitation, the therapist’s force is calculated from

(Ks+θvs)
(as+b)

(
Vth(s)−β ·P(s) ·V̂p(s)

)
=−Fth(s), where a,b,Ks,θv > 0. (2.55)

As a result, the system parameters can be tuned to achieve desirable compliances. The designed

viscoelastic-domain is the most inclusive case and it can be easily switched to position-domain

or velocity-domain tele-rehabilitation by changing the parameters (a,b,Ks,θv).

• Therapist’s Authority Amplification:

The proposed system allows the therapist to change Ks in real-time by moving the vertical

degree of freedom (Zaxis) of the slave robot as an input from the therapist. This allows the

therapist to modify the authority of his/her actions and gradually change the type of therapy

from rigid hand-over-hand coordination to free-motion and vice versa. In other words, this

allows the therapist to change the characteristics of the viscoelastic constraint. To give an

intuitive feel of the provided authority, a kinesthetic cueing force is applied to the therapist’s

hand in the Zaxis direction proportional to the amplification/reduction factor.
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Chapter 3

A Passivity-based approach for Stable

Patient-Robot Interaction in

Haptics-enabled Rehabilitation Systems:

Modulated Time-domain Passivity

Control (M-TDPC)

The material presented in this chapter has been accepted for publication in the IEEE Transac-

tions on Control Systems Technology, 2016; in press.

3.1 Introduction and Preliminaries

Based on the World Health Organization statistics and according to epidemiology studies, there

are more than 15 million people who experience stroke each year [1], [2]. In addition, official

numbers show that the population of senior adults are rapidly increasing and is expected to be

more than double by 2050 compared to the numbers in 2013 [3]. This fact is called society

c©[2016] IEEE. Reprinted, with permission, from [Seyed Farokh Atashzar, M. Shahbazi, M. Tavakoli, R.
V. Patel, “A Passivity-based approach for Stable Patient-Robot Interaction in Haptics-enabled Rehabilitation Sys-
tems: Modulated Time-domain Passivity Control,” IEEE Transactions on Control Systems Technology, DOI:
10.1109/TCST.2016.2594584, 2016; in press.]
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Figure 3.1: The HRR system and the VR environment used in this chapter.

ageing, which directly increases the incidence of age-related conditions including post-stroke

motor disabilities. The affected population require labour-intensive motor therapy services

for extended periods which places a significant burden on therapists and healthcare systems.

In many cases, the only offered service is limited and often delayed outpatient therapy. The

situation is worse for patients in remote areas with limited access to sophisticated rehabili-

tation clinics [4]. One solution is to develop cloud-based technologies that provide efficient,

optimal and affordable means of in-hospital and in-home rehabilitation to help patients regain

their lost motor functions through utilizing Neural Plasticity (NP). NP is brain remodeling that

happens in chemical (synaptic) and structural (non-synaptic) levels and can result in regaining

lost motor functions and enhancement of standard sensorimotor performance metrics in post-

stroke patients [5, 6]. In this context, Haptics-enabled Robotic Rehabilitation (HRR) has been

demonstrated to accelerate NP and neural recovery [7–9].

There are two types of therapeutic procedures that can be delivered using HRR systems: (a)

Assistive Therapy (AT), mostly administered in early stages of rehabilitation, and (b) Resistive

Therapy (RT), mostly considered for later stages of therapy. During the AT, the haptic robot

helps patients to perform task-based movements that need high power/force, large motion range

and good targeting accuracy. AT is mostly applied in order to trigger and accelerate NP. During

RT, the haptic robot resists the movements initiated by the patient [7, 9] with the goal of helping

patients to develop and equalize musculoskeletal strength.
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Conventional HRR systems are composed of three major components: (a) a powerful hap-

tic robot that registers the patient’s impaired limb force/motion profiles and applies the assis-

tive/resistive forces; (b) a game-like virtual reality (VR) software environment that provides

visual cues and demonstrates the desired path of motion; and (c) a Programmable Virtual Ther-

apist (PVT) algorithm that uses the measured patient’s force/motion data and determines the

needed AT/RT to be delivered to the patient’s impaired limb [7, 9, 10]. A representative HRR

system used in this chapter is shown in Fig. 3.1.

Research has shown that key to an effective therapy is to modify the type, duration and

intensity of exercises, considering the state and progress of the patient’s motor recovery [11].

There are some adaptive techniques proposed in the literature to tune the parameters of the PVT

[12, 13] based on some sensorimotor measurements. However, direct, intuitive and interactive

contribution of a human therapist is bypassed using PVT-based HRR systems. This limits the

ability of the human therapist in choosing the best position/force therapeutic trajectories and

tasks for patient rehabilitation and motor assessment.

In order to deal with this issue, the authors have recently proposed and simulated a bilat-

eral Haptics-enabled Telerobotic Rehabilitation (HTR) architecture [14, 15] that can fuse the

advantages of conventional HRR systems and the skills of a human therapist in the loop and

provide patients with an “augmented” therapeutic environment instead of virtual therapy. The

concept is close to comparing the augmented reality over virtual reality, thus we proposed to

call HTR an augmented therapy framework. A schematic of the implemented HTR system,

including the proposed stabilizer (which will be explain later), is given in Fig. 3.2. By virtue

of telerobotics-aided telepresence, HTR also enables remote/in-home assessment and therapy

delivery for post-stroke patients. This directly responds to a need of patients in areas far from

sophisticated rehabilitation centres and is helpful given the current trend in modern healthcare

systems to embrace the possibilities offered by “telemedicine” (providing medical services and

stroke cares over distance to enhance accessibility) [4], [16], [17].

Besides clear advantages to the use of HRR and HTR technologies for in-clinic and in-

home assessment and rehabilitation, the safety of human-robot interactions (and specifically

patient-robot interaction) could be a major concern [18], which should be considered, studied

and guaranteed in an appropriate manner, while maximizing the system transparency and ef-
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fectiveness. Realizing the aforementioned need is more challenging when high control efforts

are needed for a patient during rehabilitation to deliver a prescribed therapy (especially when

the system is used for in-home usages). To make it more clear, consider a patient who has

unbalanced high tone of muscular system (this condition is a common side effect of stroke). In

order to assist this patient in executing rehabilitation exercises (such as workspace stretching

during object tracking), it is needed to apply high forces compare to a patient who does not

have this symptom. In this case, the behavior of the rehabilitative system should be different

for these two patients while the stability must be guaranteed for both. Also, as shown in the rest

of this chapter, assistive forces generated by a remote human or a cloud-based software result

in a nonpassive interconnection which can potentially challenge the stability. Consequently,

proper stability analysis and development of new stabilization techniques which perform min-

imal transparency modification is a practical need. In this chapter, the mentioned concern is

studied for haptics-enabled systems (specifically for HRR and HTR architectures). We study

and guarantee patient-robot interaction safety using a novel passivity-based technique enti-

tled Modulated Time Domain Passivity Control (M-TDPC), which can optimize the delivered

transparency by utilizing the passivity characteristics of the user’s hand biomechanics, while

guaranteeing stability. For this purpose first a new stability condition is developed, in the con-

text of SPT. Then, the proposed M-TDPC approach is defined. The stability condition shows

that under specific quantifiable conditions, it is possible to avoid applying damping into the

interconnection, during the operation, while still guarantee the system stability regardless of

nonpassivity of the communication and/or the environment.

The rest of this chapter is organized as follows. In Section 3.2, the motivation and an

overview of the proposed M-TDPC technique are given. In Section 3.3, the mathematical

modeling and transparency analysis are presented. In Section 3.4, the therapy passivity is

analyzed. In Section 3.5 the proposed stability analysis for assistive and resistive therapies is

introduced. In Section 3.6, the M-TDPC stabilizing scheme is explained. Simulations results

are given in Section 3.7 and the experimental evaluations are presented in Section 3.8. Finally,

the chapter is concluded in Section 3.9.
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Figure 3.2: A schematic of the implemented HTR system used in this chapter. The virtual
environment is shared between the therapist and the patient where the orange and yellow circles
correspond to the patient’s and therapist movements, respectively.

3.2 Motivation and Overview of M-TDPC Scheme

The propose M-TDPC technique answers how one can minimally adjust the intensity of the

potentially nonpassive therapeutic interventions prescribed by the virtual/human therapist in

an HRR/HTR system (in the context of SPT) to ensure patient safety and human-robot interac-

tion stability. The proposed controller is a new member of the family of state-of-the-art TDPC

controllers [19], [20], [21]. In this chapter, we will show how to utilize biomechanical charac-

teristics of the user’s hand, in the context of SPT [22], to deliver patient-specific customized

therapeutic forces that can guarantee the system stability and causes minimal disruptions to

transparency.

Note that some of the stabilizers developed in the literature such as the wave variable ap-

proach are composed of two transformations: one before the communication channel and one

after. If the delay in the system converges to zero, the two transformations cancel each other

out to keep the transparency ideal. However, in this chapter, we need the controller to be func-

tional even if the delay is zero since there is a second source of nonpassivity in the system under

study (which can be due to assistive could-based virtual software or a human therapist in the

loop or a combination of the two). This has been realized by the proposed M-TDPC approach,

which can deal with both delay-induced and environment-induced nonpassivities separately

and simultaneously.
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The proposed M-TDPC approach is also motivated by ensuring human-robot interaction

stability without imposing the pre-fixed conservative saturating force caps (such as those in

[8], [23]). Using M-TDPC the haptic rehabilitation robot will be able to apply maximum

forces considering the specific biomechanical capabilities of the patient’s limb in absorbing

therapeutic energies. This promises to result in therapeutic interventions much closer to those

prescribed.

The design framework is based on the core hypothesis that “when there is nonpassivity in

haptics-enabled rehabilitation systems (HRR and HTR) caused by (a) the nonpassive behavior

of a virtual/human therapist and/or (b) the delayed communication network, the closed-loop

haptics-enabled system remains passive and stable if the quantifiable Excess of Passivity (EOP)

of the nonlinear biomechanical impedance of the patient’s limb can compensate for the total

Shortage of Passivity (SOP) caused by the aforementioned nonpassivities”. The hypothesis is

validated in this chapter in the context of SPT.

This principle is then used to design the M-TDPC strategy that (a) identifies the EOP of the

patient’s limb prior to the therapeutic task execution, (b) monitors the extent of nonpassivity of

the administered therapy delivered through the communication network during the operation,

(c) calculates in real-time the “minimum necessary” energy, to be damped by the proposed

controller, and (d) injects a time-varying damping factor to compensate for the energy. The

controller keeps the injected damping as small as possible, using the identified patient’s limb

EOP, causes minimal alterations to the prescribed therapy and allows the nonpassive energy

(i.e., therapeutic assistance) to optimally flow from the (virtual or actual) therapist to the pa-

tient.

The M-TDPC technique can not only be used for (a) HRR and HTR systems (to relax the

limitation on the therapy intensity and passivity and deal with potential delays), but can also be

used for (b) conventional haptic interactions (to deal with the delay-induced instabilities and

enhance the system transparency).
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3.3 System Modeling and Transparency Analysis

In order to model human-robot interaction to analyze the stability and implement appropriate

stabilizing controller for high-intensity therapy, transparent two-channel bilateral model [24]

is considered which is an extension of Lawrence’s four-channel architecture [25]. For both

the HTR and HRR architectures, the patient is at the master robot to allow him/her to apply

different motion trajectories. Also, for the HTR architecture, the human therapist is at the

slave robot so that he/she can feel the patient’s motions and provide resistive/assistive forces in

response in order to administer the desired therapy. For the case of HRR architecture, software-

based therapy is provided by a virtual environment that generates therapeutic forces in response

to the measured patient’s movements. The virtual-reality environment provides visual cues for

the patient using a head-mounted display or a table-top screen.

3.3.1 Local Interaction Modeling

In this subsection, the models considered regarding (a) patient-robot interaction for both HTR

and HRR architectures, (b) therapist-robot interaction for HTR architecture, and (c) virtual

therapist for HRR architecture are presented.

• Patient-robot Interaction

A local feedback linearization algorithm [26] is considered for the master robot to compensate

for nonlinear dynamics of the robot. As a result, the linearized model for the Patient-Robot

(P-R) interaction are

zm(t)∗ vp(t) = ucm(t)+ fp(t) (3.1)

In (3.1), t is time, ∗ is the convolution operator, zm(t) is the impulse response of the linearized

master robot dynamics, ucm(t) is the control input for the master robot delivering needed ther-

apy, vp(t) is the patient’s hand velocity, and fp(t) is the force applied by the patient to the

master robot. The patient’s force can be decomposed into “voluntary”, i.e. f ∗p(t), and “reac-

tive”, i.e. freact(t), components as

fp(t) = f ∗p(t)− freact(t), where freact = zp(vp, t) (3.2)
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In (3.2), zp(vp, t) is the non-autonomous nonlinear impedance model considered for the me-

chanical reaction of the patient’s limb in response to the master robot movements. This relaxes

the conventional assumption on linearity of the operator’s hand, which is not the case in practi-

cal situations. Also, f ∗p(t) is the voluntary component of force applied by the musculoskeletal

system of the patient’s hand to generate motion and perform tasks. The other possible rep-

resentation of the aforementioned patient’s force decomposition is admittance notation, given

in

vp = Ωp( f ∗p(t)− fp(t), t) (3.3)

• Therapist-Robot Interaction

This part focuses on the dynamical behavior of the in-the-loop human therapist for the HTR

architecture. A general model is considered for the therapist’s behavior to cover a wide range

of nonlinear, non-autonomous and nonpassive dynamical effects of the therapists, in realistic

cases. Placing the human therapist at the slave side of the tele-rehabilitation system allows

him/her to intuitively assist/resist patient’s trajectories based on his/her therapeutic skills. Same

as the master side, a local feedback linearization algorithm is considered for the slave robot to

compensate for the robot nonlinearities. The Therapist-Robot (T-R) interaction model is

zs(t)∗ vth(t) = ucs(t)+ fth(t), (3.4)

where zs(t) is the impulse response of the linearized slave robot’s dynamics, ucs(t) is the control

input for the slave robot, vth(t) is the therapist’s hand velocity, and fth(t) is the force, applied

by the therapist to the slave robot in order to administer therapy. The therapist’s force model is

fth(t) = zth(vth(t), f ∗th(t), t) (3.5)

In (3.5), zth is the nonlinear non-autonomous reaction provided by the therapist to deliver a

therapeutic response. In this chapter, zth is called “therapeutic reaction dynamics” and is func-

tion of the delivered movement to the therapist by the slave robot vth, the exogenous force of

the therapist f ∗th, and time. f ∗th can be considered as an additive term. During a therapy session,

the therapist tunes her/his reaction zth to generate a desirable therapeutic response based on the
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patient’s need. This behavior can result in either dissipating the energy provided for the thera-

pist (when the therapist is performing a resistive therapy), or elevating the provided energy to

perform faster/larger movements (when the therapist is performing an assistive therapy). That

is why resistive therapy is passive in contrast to assistive therapy (more discussions are given

later in this chapter).

• Considered Modeling Assumptions

As a result of the defined interaction models, the following assumptions are considered to

analyze the stability of the system and design stabilizer for realistic conditions:

1. The therapist is allowed to behave as a nonpassive dynamical terminal for the intercon-

nection. This enables him/her to inject energy into the interaction as is needed in assistive

therapy.

2. The therapist can behave as a nonlinear non-autonomous system. This enables him/her

to administer various types of therapy, tune the therapy intensity, and switch between

different therapeutic regimes.

3. The reaction component of the patient’s hand zp(vth, t) is considered to be a passive

nonlinear non-autonomous mechanical system. This model is in agreement with the

one introduced in [27]. Special case for zp(vth, t) is the common passive mass-spring-

damper model widely used in the literature to model the dynamical reaction of human

upper-limb [28–31]. In this work no restriction is considered for linearity of zp(vth, t) to

analyze/guarantee the stability in a more realistic condition.

4. The communication network can be subject to time-varying delays (which is the conven-

tional source of nonpassivity in haptics-enabled systems).

• The Case of Virtual Therapist

The virtual therapist model is in fact a subcategory of the above-given therapist-robot in-

teraction dynamics where there is no slave robot. Instead of having a general nonlinear model

for a human therapist zth we have a multiplicative linear model (defined below) that generates
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therapeutic forces. Similar to the behavior of a human therapist, there are two major types of

virtual therapy that can be programmed, namely, resistive and assistive therapies. For resistive

virtual therapy in HRR systems, the therapist’s side model is

fth(t) = Dth(t) · vth(t) where vth(t) = v̂p(t), Dth(t)< 0 (3.6)

In (3.6), fth(t) is the therapeutic force generated by the programmed virtual therapist in re-

sponse to the measured patient’s hand movement v̂p(t); Dth(t) is the therapeutic intensity gain

which is negative for the case of Resistive Therapy (RT), when the patient feels a viscous

interaction resisting against her/his movement.

For the case of assistance, two different behaviors can be programmed, namely, Power

Assistive Therapy (PAT) and Coordination Assistive Therapy (CAT). For PAT, we have

fth(t) = Dth(t) · vth(t) where vth(t) = v̂p(t), Dth(t)> 0 (3.7)

Positive values for Dth(t) lets the patient feel amplified power while providing movements and

performing tasks. Using PAT, the system provides assistive forces in the same direction as that

of the patient’s movements. As a result, the patient with reduced muscular power can perform

tasks require higher power, larger workspace, and faster motions.

For the second type of assistance (CAT), the goal is to coordinate the patient’s movements

towards the desirable path of therapy. This is useful when patients have coordination deficits

due to stroke. CAT provides patients with a correct model of sensorimotor fusion during task

performance. The therapist-side interaction model for CAT is

fth(t) = Dth(t) · eth(t), Dth ≥ 0

where: eth(t) = x∗goal(t)− xth(t),

xth(t) =
∫ t

0
vth (τ) dτ,

and vth(t) = v̂p(t).

(3.8)

In (3.8), x∗goal is the varying target position displayed to the patient, and the therapeutic intensity

gain Dth is a corrective factor that makes the patient movement follow the target.
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3.3.2 Transparency Analysis

In order to provide the patient with high-fidelity administered therapy and the therapist (for the

case of HTR) with an accurate feel of the patient’s limb movement trajectories, a two-channel

transparent teleoperation architecture, proposed by the authors in [24], is considered. The uti-

lized architecture is a modification of the Lawrence’s four-channel scheme [25], which uses

the minimum number of communication channels (two) while guaranteeing the system’s trans-

parency. To implement the aforementioned architecture, the control signals ucm(t) is designed

at the master side (for both HTR and HRR systems) as

ucm(t) = c1(t)∗ vp(t)+ f̂th(t) where c1(t) = zm(t). (3.9)

Also, the control signal ucs(t) is implemented at the slave side for the case of HTR system as

ucs(t) =− fth(t)+ c2(t)∗ v̂p(t) where c2(t) = zs(t). (3.10)

In (3.9) and (3.10), f̂th(s) is the delayed received therapeutic force at the patient-side, sent

through the first (slave to master) communication channel, and v̂p(t) is the received patient’s

hand velocity at the therapist-side, sent through the second (master to slave) communication

channel. In order to enable the case of remote rehabilitation, the communication is considered

subjected to time-varying delays defined by τ1(t) for the first channel and by τ2(t) for the

second channel. Consequently, we have f̂th(t) = fth(t− τ1(t)), and v̂p(t) = vp(t− τ2(t)). The

schematic of the designed transparent two-channel haptics-enabled architecture for the case of

HTR is given in Fig. 3.3.

It should be noted that for conventional HRR systems, τ1(t) and τ2(t) might be zero. How-

ever, considering the recent tendency in the literature for implementing internet-based cloud

rehabilitation systems [32] and to keep the generality of the technique, in this chapter, we have

considered τ1(t) and τ2(t) to have non-zero values for both HRR and HTR systems. Combin-

ing the control signals defined in (3.9) and (3.10) with the dynamics of the master and slave

robots given in (3.1) and (3.4), for the HTR architecture, the force-feedback transparency and
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Figure 3.3: The utilized transparent Two-channel HTR architectures.

velocity tracking of the teleoperation system can be shown as

fp(t) =− f̂th(t), (3.11)

vth(t) = v̂p(t). (3.12)

For HRR systems, force-feedback transparency (3.11) can be achieved through similar calcu-

lations based on the defined ucm(t) given in (3.9). In addition, velocity tracking (3.12) is set

through software for HRR systems as there is no slave robot at the therapist’s side.

Consequently, the resulting dynamics for both HTR and HRR systems is a two-channel

interconnection (shown in Fig. 3.4) between the admittance model of the patient’s dynamics

Σ3 and impedance model of the therapist’s reaction dynamics Σ0, communication through the

network. Note that the admittance Σ3 has force as input and motion as output and is defined

by (3.3) as Ωp. Also, the impedance model Σ0 has motion as input and force as output, and is

defined by (3.5) for HTR, by (3.6) for HRR-RT, by (3.7) for HRR-PAT, and by (3.8) for HRR-

CAT. As shown in Fig. 3.4, the sources of potential nonpassivity (therapist’s behavior and

communication delays) can be bundled as the therapy terminal Σ1. This enables us to analyze

the HTR and HRR interconnections from the perspective of input-output energy exchange

between Σ1 and Σ3. As a result, in the rest of this chapter, we will focus on the inclusive

interconnection shown in Fig. 3.4 and will developed the stability condition and stabilizing

scheme for this interconnection. Consequently, studying the interconnection shown in Fig. 3.4
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Figure 3.4: The overall schematic of the resulting interconnection. The subsystem Σ1 is called
the “therapy terminal” which consists of the communication and any behavior of the therapist.
Also, Σ2 is the entire interaction which gets f ∗p as the input and provides vp as the output. Σ3 is
the admittance model of the patient’s limb mechanical reaction

accounts for any behavior of the therapist, including assistance, resistance, coordination and

mixed therapy together with different possibilities of therapists including virtual therapist and

human therapist, plus communication delays.

3.4 Passivity Evaluation for Assistive/Resistive Therapies

In order to resist a patient’s movements, the therapist needs to dissipate the energy provided by

the patient. This results in giving the patient feel of moving in a viscous environment. Also,

in order to assist movements of a disabled patient, the therapist needs to elevate the energy by

injecting it into the interconnection to allow for having faster movements, higher workspaces

and more accurate task executions.

Intuitively speaking, it can be said that energy dissipation during resistive therapy is passive,

while energy elevation resulting from assistive therapy is nonpassive. To show this concept, in

this section, we mathematically evaluate PAT, CAT and RT cases using the developed models

for HRR presented in the previous section. The goal is to show differences between the nature

of resistance and that of assistance by analyzing their energy characteristics. The main state-

ment of this section is: resistive therapy is passive by it’s nature and assistive therapy is either

nonpassive or potentially-nonpassive.
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To show this, first, the mathematical definition of a passive system with input vector uin(t),

output vector yout(t), and initial energy β at t = 0 is [22]:

Definition I. If there is a constant β such that for all t ≥ 0 we have

∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β , (3.13)

the system is passive. •
First, consider the therapy terminal Σ1 in Fig. 3.4. To focus on studying the passivity

of therapies, the communication time delays (τ1(t) and τ2(t)) are considered zero. Also, we

assume that the system starts from a rest condition, so the initial energy β is considered to

be zero. Note that for Σ1, we have uin = vp and yout = fp. Consequently, considering (3.11),

(3.12), and (3.13), the passivity of Σ1 can be evaluated by determining the sign of

∫ t

0
− fth(τ)T · vth(τ)dτ. (3.14)

Combining (3.14) and model (3.6), defined for PAT and RT, we have:

∫ t

0
− fth(τ)T · vth(τ)dτ =∫ t

0
−vth(τ)

T ·Dth(τ)
T · vth(τ)dτ.

(3.15)

Considering (3.15) and assigning negative definite diagonal Dth for resistive behaviors results

in positive sign for the integral in (3.14). This means that, the resistive behavior of a therapist

dissipates energy of the system and it is passive (considering the definition of passive systems

(3.13)). Similar calculations can be performed for PAT where we have positive definite Dth.

This results in having negative value for the integral in (3.14), which means that PAT injects

energy into the system and is nonpassive.

For the case of CAT, we have

∫ t

0
− fth(τ)T · vth(τ)dτ =∫ t

0
−eth(τ)

T ·Dth(τ)
T · vth(τ)dτ.

(3.16)

In this case, the sign of the passivity integral can not be defined and is directly related to the
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sign of tracking error eth (which can be positive or negative in each time stamp) and the history

of it. As a result, it is not possible to assign a definite sign for the passivity integral which

means that the system can inject energy into the interconnection and challenge the stability of

the system. Consequently, CAT is potentially nonpassive.

In summary, the natures of increasing the power during task performance or coordinating

the patient during rehabilitation can render therapy terminal Σ1 nonpassive and challenge the

stability of the system, even if the communication delay is zero. In contrast, resistive therapy

dissipates the interconnection energy as a passive component.

It should be noted that in the presence of the communication delays, there will be two

sources of nonpassivity in the system. As mentioned earlier, in this chapter both possible

sources of nonpassivity are bundled into the one-port therapy terminal Σ1. In Section 3.5,

a new framework will be proposed that allows for evaluating the stability condition of the

system even if Σ1 is nonpassive. Then in Section 3.6, the framework will be used to develop

the proposed stabilizing scheme (M-TDPC).

It should be highlighted that since the analysis and stabilizing schemes proposed in this

chapter account for any nonpassive behavior of Σ1, not only they can be used for nonpassive

rehabilitation systems, but also they can be used for conventional time-delayed telerobotic

architectures and haptics systems to handle delay-induced instability.

3.5 Proposed Stability Analysis Framework Using EOP/SOP

Definitions

Considering Fig. 3.4, in order to analyze the stability of the system and calculate the stability

condition of the interconnection in the presence of nonpassive Σ1, the following hypothesis is

proposed and mathematically proven in this section:

Hypothesis I. When there is a nonpassive therapy terminal (Σ1) in a haptics-enabled re-

habilitation system due to (a) nonpassive behavior of a therapist and/or (b) nonpassive com-

munication network, the closed-loop system can still remain stable if the excess of passivity

of the patient’s limb mechanical dynamics can compensate for the shortage of passivity of the

therapy terminal Σ1. •
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The remainder of this section focuses on how this hypothesis can be mathematically proven.

It should be noted that, there is an important difference between the conventional use of pas-

sivity theory and the way used in this chapter based on SPT, as discussed below.

Remark 3.1. In the conventional use of passivity theory [22, 33], assuming passive oper-

ator and environment terminations for a haptics-enabled system, ensuring the communication

passivity provides an interconnection of cascaded passive subsystems, which remains stable.

This is called the Weak Passivity Theorem (WPT), which is widely used in the literature of

conventional telerobotic systems [21] to analyze and guarantee system stability [34]. The com-

munication delay is considered to be the sole source of nonpassivity in this regard. However,

for the case of assistive HTR and HRR systems, even if the communication channel is ideally

passive, the passivity of the resulting cascaded interconnection Σ2 is not guaranteed because

Σ1 is still nonpassive. •

Remark 3.2. Contrary to conventional haptics-enabled teleoperation systems, the nonpas-

sive behavior caused by assistive therapy is exactly what is needed for therapeutic application,

should not be interpreted as an unwanted, and should not be cancelled out by the control sys-

tem. It is counterproductive to separately passify the nonpassive therapist since it defeats the

very purpose of power assistance and coordination by damping all the needed therapeutic en-

ergy. Consequently, to preserve the patient-robot interconnection safety while still allowing

the nonpassive therapy terminal Σ1 to inject energy, the passivity of the entire interconnection

Σ2 should be analyzed (instead of passivity of isolated components considered in WPT-based

approaches). This has correlations with the definition of the SPT given in [22, 35] and utilized

in this chapter to analyze and guarantee the entire system’s passivity. •

For this goal and to validate Hypothesis I, first the mathematical definitions of input-passive

modeling, output-passive modeling, EOP and SOP for a system with input vector uin(t), output

vector yout(t), and initial energy β at t = 0 are taken from [22, 36, 37], as given below. Note

that the system is considered to be square which means that the number of inputs and outputs

are equal.

Definition II. If there is a constant β such that for all t ≥ 0 we have

∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β +δ ·
∫ t

0
uin(τ)

T ·uin(τ)dτ, (3.17)
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for δ ≥ 0, the system is Input Strictly Passive (ISP) with an excess of passivity (EOP) equal to

δ . Also, if we have δ < 0, the system is Input Nonpassive (INP) with the Shortage of Passivity

(SOP) of δ . •

Definition III. If there is a constant β such that for all t ≥ 0 we have

∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β +ξ ·
∫ t

0
yout(τ)

T · yout(τ)dτ, (3.18)

for ξ ≥ 0, the system is Output Strictly Passive (OSP) and the EOP is ξ . Also if we have ξ < 0,

the system is Output Nonpassive (ONP) and the SOP is ξ . •

Remark 3.3. It has been shown that passive systems (including ISP and OSP) are asymp-

totically stable. In addition, an OSP systems is also L2 stable with finite L2 gain less than or

equal to 1/ξ , where ξ is the EOP of the OSP model [26]. The mathematical description of L2

stability for an OSP system is given below (where α0 ≥ 0 is related to the initial energy and is

zero in this chapter since the system is assumed to start from rest):

‖yo(t)‖L2 ≤ 1/ξ · ‖ui(t)‖L2 +α0. (3.19)

Considering (3.19), ξ defines an upper-bound on the energy of the system’s output, based on

the input energy. •

In order to validate Hypothesis I, consider the entire system as the one-port network Σ2

shown in Fig. 3.4. Σ2 consists of a nonpassive therapy-terminal impedance Σ1 and a passive

patient’s reaction admittance Σ3. The exogenous force f ∗p(t) is the input for Σ2 and the velocity

of the patient’s hand vp(t) is the response to this input. Consequently, considering (3.13),

to first guarantee the passivity of the entire interconnection, the following passivity condition

should be held (assuming the initial energy at t = 0 is zero):

∫ t

0
f ∗p(τ)

T · vp(τ)dτ ≥ 0, (3.20)
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Considering (3.20) and the force decomposition (3.2), we have

∫ t

0
f ∗p(τ)

T · vp(τ)dτ =∫ t

0
fp(τ)

T · vp(τ)dτ +
∫ t

0
freact(τ)

T · vp(τ)dτ.
(3.21)

As a result, the passivity condition for the entire system Σ2 can be evaluated by the following

passivity integral:

∫ t

0
fp(τ)

T · vp(τ)dτ +
∫ t

0
freact(τ)

T · vp(τ)dτ ≥ 0. (3.22)

It can be seen from Fig. 3.4 that
∫ t

0 freact(τ)
T · vp(τ)dτ is the passivity integral of the patient’s

hand reaction dynamics Σ3 and
∫ t

0 fp(τ)
T · vp(τ) dτ is the passivity integral of the therapy

terminal Σ1. Consequently, considering the passivity condition (3.22), if the therapy terminal

Σ1 behaves as a nonpassive system, the entire system Σ2 can still remain passive if the

energy of patient hand’s reaction dynamics, i.e.
∫ t

0 freact(τ)
T · vp(τ) dτ , can compensate

for the energy injected by the therapy terminal.

Considering the passivity condition (3.22) and the definition of L2 stability given in Remark

3.3, when initial energy at t = 0 is zero, we have

the entire system Σ2 is L2 stable if ∃ ξr > 0 s.t.∫ t

0
fp(τ)

T · vp(τ)dτ +
∫ t

0
freact(τ)

T · vp(τ)dτ

≥ ξr ·
∫ t

0
vP(τ)

T · vp(τ)dτ.

(3.23)

Consequently, if (3.23) is satisfied and the input energy provided to the entire system through

f ∗p is bounded, the output energy of the entire system will remain bounded and the system Σ2

will remain L2 stable.

Let us consider an INP model for the therapy terminal impedance Σ1 with shortage of

passivity of δ̂th ≤ 0 as

∫ t

0
fp(τ)

T · vp(τ)dτ ≥ δ̂th ·
∫ t

0
vP(τ)

T · vp(τ)dτ,

s.t. δ̂th ≤ 0,
(3.24)
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and an OSP model for the patient reaction admittance Σ3 with excess of passivity ξp ≥ 0 as

∫ t

0
freact(τ)

T · vp(τ)dτ ≥ ξp ·
∫ t

0
vP(τ)

T · vp(τ)dτ,

s.t. ξp ≥ 0.
(3.25)

Combining (3.23), (3.24), and (3.25) the following will result:

the entire interconnection Σ2 is L2 stable if

(ξp + δ̂th−ξr) ·
∫ t

0
vP(τ)

T · vp(τ)dτ ≥ 0
(3.26)

Considering (3.26) and a small positive arbitrary value ξr, the novel L2 stability condition of

the entire system Σ2 is

ξp + δ̂th−ξr ≥ 0 (3.27)

This validates Hypothesis I that is a new analysis of stability for haptics-enabled systems. It

should be noted that in (3.27), ξr is a tunable factor that defines a flexible stability margin for

the system. Higher values for ξr provide a more conservative stability condition for the system

which can be used if uncertainty in the system dynamics is considerable.

As a result, the entire system Σ2 will remain L2 stable with the stability margin ξr, if the

EOP of the reaction dynamics of the patient’s hand Σ3 can compensate for the SOP of the

therapy terminal Σ1. This result is in strong agreement with that reported in [27] which high-

lights the effect of linear damping of an operator’s arm on the stability margin of a teleoperated

system.

Based on (3.27), the minimum required value for the EOP of the patient’s limb is ξp >

|ξr|+ |δ̂th|. If the above-mentioned condition is not satisfied, damping should be added to

compensate only for the extra energy not dissipated by the EOP of the patient’s limb. In the

next section, the M-TDPC approach is proposed to stabilize the system, when the stability

condition (3.27) is not met due to insufficient EOP. The approach, customizes the delivered

therapeutic energy to achieve the performance goals.

Remark 3.4. Note that the EOP of a person’s hand is the capabilities of his/her limb in

absorbing the interactive energies, and is linked to the biomechanical characteristics of the

corresponding limb. As a result, if a patient has a rigid or spastic hand with high muscular
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activity tone (a common symptom of stroke), he/she has a higher EOP compared to a patient

with softer limbs. •

3.6 Proposed Stabilizing Control Design: M-TDPC Scheme

In this section, the proposed control scheme is presented, which is capable of guaranteeing

stability of the system when the stability condition (3.27) is not satisfied. The controller is a

new member of the TDPC approach family and is named M-TDPC. The goal is to utilize the

biomechanics of the patient’s hand to enhance transparency while allowing the nonpassive as-

sistive energy to flow and ensuring passivity and stability of the entire system. The philosophy

of the proposed M-TDPC controller is to provide the minimum necessary damping injection,

taking advantage of our knowledge about the EOP of the patient’s hand, and is capable of elim-

inating just the extra energy while letting the therapist provide assistance to the patient. The

proposed controller has two major components: (a) a Passivity Differential (PD) calculator, (b)

a stabilizing core. The roles of the mentioned components are as follows.

3.6.1 Passivity Differential (PD) Calculator

This component of the controller is responsible to find the minimum amount of energy that

results in deviation from stability condition (3.27) and needs to be dampened out. As a result,

the PD calculator takes into account the EOP of the patient’s limb and the SOP of the deliv-

ered therapy to calculate the minimum amount of energy to be dampened out that guarantees

stability in the context of SPT. Considering (3.26) and (3.27), let us define

Ep(t) := (ξp−ξr) ·
∫ t

0
vP(τ)

T · vp(τ)dτ,

Eth(t) :=
∫ t

0
fP(τ)

T · vp(τ)dτ,
(3.28)

Based on (3.28), the PD can be calculated as

PD(t) := Ep(t)+Eth(t). (3.29)
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PD represents the difference between the energy that can be damp out by the user’s limb,

i.e. Ep(t), and the energy delivered by the therapist through the communication network, i.e.

Eth(t). Based on the definition of PD given in (3.29), the Lack of Passivity (LOP) is defined as

LOP(t) =

0 i f PD≥ 0

PD i f PD < 0
(3.30)

Considering (3.30), if the passivity of the patient’s limb (Ep) can compensate for the nonpassiv-

ity of the therapy terminal (|Ep| > |Eth|), the LOP(t) is zero. This is because in this situation,

there is no need to compensate for any energy, even if the therapy terminal (combination of

environment and communication) is nonpassive (Eth ≤ 0). In addition to the above, LOP(t)

remains zero if the therapy terminal is passive (Eth ≥ 0). However, if Ep +Eth ≤ 0, which

means that the EOP of the patient’s limb is not capable of providing enough dissipation to

compensate for the nonpassivity of the therapy terminal, the LOP(t) will be equal to the differ-

ences between |Ep| and |Eth| and will have a negative sign. This defines the minimum energy

required to be dampened out by the controller to keep the entire interconnection stable.

Remark 3.5. Considering (3.30), to calculate PD(t) and LOP(t), we need to have access

to Ep and Eth. Based on the definitions given in (3.28), Eth is accessible in real-time since both

vp and fp are measurable. However, this is not the case for Ep. In fact, Ep is a property of the

dynamics of the patient’s limb and is a function of ξp, which is directly related to freact as can

be seen in (3.25). freact is not directly accessible in real-time since (3.2) is an undetermined

equation. As a result, the question is: “how to identify the excess of passivity of the patient’s

hand in order to calculate PD(t)?”. In order to deal with this issue, we have proposed an

identification technique for ξp, as given in the next subsection.

EOP Identifier for the Patient’s Hand :

As mentioned, there is no direct way to quantify the EOP of the reaction dynamics of the

patient’s limb, i.e., ξp, and passivity integral
∫ t

0 freact(τ)
T · vp(τ)dτ , during task performance,

when the operator is applying f ∗p . The aforementioned issue arises since the only measurable

component of the force decomposition (3.2) is fp. Consequently, freact(t) is not accessible

when the exogenous force f ∗p(t) in (3.2) is not zero. As a result, during rehabilitation tasks,
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since patient is applying f ∗p , it is not possible to calculate ξp. In this part, an identification

scheme is proposed to estimate the EOP for the reaction dynamics of the patient’s limb that

can be used in the proposed PD calculator (3.29).

For this purpose, an off-line identification scheme is used before the start of the therapy.

This allows us to estimate ξp for each patient in order to customize the allowed therapeutic

energy for him/her during the therapy. As a result, the proposed technique will be able to

distinguish between a patient with rigid limbs versus a one who has compliment limbs. To

achieve the above-mentioned goal, during the identification phase (before the start of therapy),

the patient is asked to hold the robotic handle in a “relaxed” condition and let the robot perturb

her/his hand. The definition of the relaxed condition and why this condition is considered

will be detailed later in Remarks 3.7 and 3.8. The robot provides movements of different

frequencies/trajectories while recording motion and force information.

Since during identification procedure the patient is not asked to track any trajectory, he/she

does not apply exogenous forces: f ∗p = 0. Consequently, during the identification procedure,∫ t
0 freact(τ)

T · vP(τ) dτ =
∫ t

0 fp(τ)
T · vP(τ) dτ , while both fp(t) and vp(t) are measured. As a

result, based on (3.25) and using the collected data from the identification phase, the estimated

EOP for the patient’s limb in the relaxed condition can be calculated as

ξp−relax =

∫ Te

0
freact(τ)

T · vP(τ)dτ∫ Te

0
vp(τ)

T · vP(τ)dτ

(3.31)

In (3.31), ξp−relax is the estimated EOP for the patient’s limb in the relaxed condition and Te is

the duration of identification procedure. Then during the rehabilitation phase, ξp−relax is used

in (3.28),(3.29) and (3.30) to calculate PD(t) and LOP(t). For this purpose, after estimating

ξp−relax for each patient, PD(t) and LOP(t) are calculated as

LOP(t) =

0 i f PD≥ 0

PD i f P̂D < 0
(3.32)
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Figure 3.5: The 2D trajectories used for perturbation during the EOP identification procedure.

where PD(t) := Ep−relax(t)+Eth(t),

Ep−relax(t) := (ξp−relax−ξr) ·
∫ t

0
vP(τ)

T · vp(τ)dτ

(3.33)

In (3.33), vp(t) is the real-time measurment of the patient’s hand velocity during the rehabilita-

tion phase and ξp−relax is the EOP of the patient’s limb in the relaxed condition and as identified

during the identification phase.

Remark 3.6. In this work, two degrees of freedom (DOF) horizontal Cartesian perturbation

is considered for the identification phase. The user’s limb is perturbed for 60 second, using a

stimulation trajectory that is a summation of ten sinusoidal, in the range 0− 3Hz (to cover

rehabilitation requirements) with a maximum amplitude of 1.5 cm. The perturbation signal is

shown in Fig 3.5. •

Remark 3.7. The reason that the relaxed condition of the limb is considered in the iden-

tification procedure for the EOP is that the patient may vary the properties of his/her grasp

during the rehabilitation phase. As a result, he/she may provide a rigid grasp at some time

episodes while providing a loose grasp at some others. We need to make sure that the system

performs appropriately in any condition. Consequently, we have considered the minimum EOP

that can be delivered by the operator to find the minimum energy that can be observed by the

patient’s limb. The minimum ξp happens in the relaxed condition, when the patient grasp the

robotic handle in a relaxed manner. For consistency and to make sure that the patient remains

in the relaxed condition, during the identification phase, a sensorized handle is constructed and

connected to the end-effector of the rehabilitation robot as shown in Fig. 3.6. The relaxed con-

dition is defined as when the grasp pressure is at a very low value (between 2%− 5% of the
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Figure 3.6: The sensorized handle connected to the rehabilitation device

user’s maximum achievable grasp pressure). The mentioned range is monitored to the patient

(using a head-mounted display) and the patient is asked to keep the grasp pressure within the

monitored range regardless of the motion of the robot, during the identification phase. •
Remark 3.8. To illustrate the effect of grasp pressure on ξp, we have calculated the EOP for

a healthy participant under an ethics approval from the University of Alberta Research Ethics

Board (Study ID: Pro00033955). We have tested ξp in two conditions: (a) relaxed condition

defined above to calculate ξp−relax, and (b) rigid grasp condition (when the participant is asked

to keep the pressure between 75%− 85% of the maximum pressure during identification) to

calculate ξp−rigid . It is observed that increasing the grasp pressure increases the EOP of the

hand to more than 400% of that in the relaxed condition (from 5.56 N.s/m for ξp−relax to

25.06 N.s/m for ξp−rigid). In summary, ξp−relax is the lower-bound for the possible EOP

delivered by the patient during rehabilitation and can define the minimum energy that can be

observed by the user during task execution. That is why it is considered in (3.33) to ensure

stability for all possible grasp conditions. •

3.6.2 Stabilizing core

The second component of the controller is responsible to compensate for the calculated the

nonpassive energy which cannot be absorbed by the EOP of the patient’s limb.

In the literature, compensating for energy is done in TDPC approach [19], [20], [21], [38].

We will use the similar concept to meet the stability condition (3.22). This enables customizing
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the therapeutic energy based on the biomechanical capabilities of the patient’s limb (specifi-

cally EOP of the limb). Consequently, for a patient with high EOP value of his/her limb that

can absorb more therapeutic energy, the proposed controller allows more assistive energy to be

delivered compared to a patient with low EOP value.

Such as all TDPC approaches (e.g., [38]) compensating for energy is done through injecting

time-varying damping α(t) into the system, considering the derivative of the energy. The

aforementioned derivative is d
dt PD(t) in this work and is defined by PL(t) as

PL(t) =
d
dt

PD(t). (3.34)

Considering the time stamp n for the current sample of signals, the proposed M-TDPC is

formulated as

fth−mod(n) = ˆfth(n)+α(n) · vp(n) (3.35)

where α(n) =


−LOPobs(n)

∆T
(

vp(n)T ·vp(n)
) if LOPobs(n)≤ 0

0 if LOPobs(n)≥ 0,
(3.36)

and LOPobs(n) = LOPobs(n−1)+ [PL(n)+

α(n−1)vp(n−1)T · vp(n−1)]∆T.
(3.37)

In (3.35), (3.36) and (3.37), ∆T is the sampling period, α is the designed time-varying damping

implemented on the patient’s side, fth−mod is the modified force to be reflect to the patient’s

hand, LOPobs is the output of the energy observer (3.37). The details regarding the stabilizing

behavior of the controller is given in Appendix I (Section 3.10).

Up to this point, we have the stabilizer which is developed based on the new definition

of system passivity which considers the effect of the biomechanical features of the operator’s

hand and allow for delivering customized nonpassive energy. In the next step a new way of

further enhancing the performance of the stabilizer is proposed.

3.6.3 Performance Enhancement

One of the challenges of TDPC-based techniques is potential lagged diagnosis of nonpassiv-

ity, which may ultimately result in sudden change and large control forces. In fact, when an
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interconnection remains passive for a relatively long period of time, the passive energy will

be accumulated in the energy reservoir of the observer. Consequently, if at some point the

behavior of the interconnection changes to a nonpassive one, it may take some time for the en-

ergy observer to recognize the nonpassivity. When the nonpassivity is observed, the controller

will try to compensate as quickly as possible, which can result in the mentioned behavior of

the control signal. This behavior could be oscillations or sudden increase of the force input.

This has been studied in the literature. For the case of rehabilitation, this situation should be

analyzed and addressed exclusively as the therapist may frequently switch from resistive to

assistive therapy, and vice versa.

In the literature, to deal with the aforementioned issue, the Power-domain TDPC (PTDPC)

has been developed [39, 40]. The PTDPC observes the power instead of energy. Once the

technique observes a negative power packet, which may challenge the passivity, it provides

damping to cancel out the packet. Although this technique distributes the damping on a larger

period of time, makes the control signal smoother compared to energy-domain TDPC, and

resolves the issue of energy accumulation in the observer’s reservoir, it may degrade the per-

formance [40] since it does not allow any negative power packet to flow and does not consider

any part of the history of the system’s energy.

Remark 3.9. It should be noted that the proposed M-TDPC approach given in (3.35),

(3.36), (3.37) works in the energy domain. It is possible to develop the power-domain ver-

sion of the M-TDPC approach (as explained in the remaining of this section). However, if

we develop the power-domain version of the proposed M-TDPC approach, when the thera-

pist switches from passive behavior to nonpassive behavior, the power-domain version is more

conservative than the energy-domain one (since it quickly starts dampening the energy of the

system). However, when the behavior switches from nonpassive to passive, the energy-domain

version is more conservative than the power-domain one (since it continues to dampening the

energy for a period of time while the interconnection has already became passive). Conse-

quently, both designs may have some advantages and disadvantages in the context of reha-

bilitation since the therapist may provide a mixed variation of resistive and assistive energies

during therapy. •

To address the raised concern, the corresponding design of the M-TDPC technique given in
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(3.35)-(3.37) is enhanced using a new definition of energy function, entitled Windowed Energy

(WE). The goal of the proposed enhancement is to consider a sliding weighted time window to

calculate the energy, and provide damping if the energy of the considered window is nonpas-

sive. The enhanced M-TDPC approach is given in (3.38)-(3.40), wherein the main difference

from the original design is applying the concept of WE by adding Γw in the observer’s formu-

lation (3.40).

fth−mod(n) = ˆfth(n)+α(n) · vp(n) (3.38)

where α(n) =


−LOPobs(n)

∆T
(

vp(n)T ·vp(n)
) if LOPobs(n)≤ 0

0 if LOPobs(n)≥ 0,
(3.39)

LOPobs(n) = Γw ·LOPobs(n−1)+ [PL(n)+Γw

·α(n−1)vp(n−1)T · vp(n−1)]∆T , 0≤ Γw ≤ 1.
(3.40)

Considering (3.40), if Γw is equal to unity, the technique will convert to the energy-domain

M-TDPC technique given in (3.35), (3.36), (3.37). If Γw is equal to zero, the technique will

convert to the power-domain version of the M-TDPC approach (which just accounts for power

packets and not the history of the system energy). Considering an Γw value between zero

and unity acts as a forgetting factor for the dynamics of the observer and provides very small

weights for the early power packets and higher weights for the recent packets. Tuning the Γw

value can change the effective width of the window (memory of the observer). In other words,

for 0 < Γw < 1, the M-TDPC approach acts quicker than the energy-domain version of it (to

avoid energy accumulation issue) and slower than power-domain version. Consequently, by

using 0 < Γw < 1 (a) the behavior of the therapist in the very early periods of therapy will

not change the decision on modifying therapeutic forces for later stages of procedure, (b) the

controller does not eliminate all negative power packets and still considers a windowed history

of the delivered therapeutic energy.

A schematic of the interaction including the stabilizer, PD calculator, and EOP estimator is

shown in Fig. 3.7.
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Figure 3.7: The resulting interconnection.

3.7 Simulation Results

In this section results of some numeric simulations are given to evaluate the performance of

the stability analysis technique and the proposed controller. For this purpose two sets of simu-

lations are presented, as follows.

3.7.1 Simulation I: Stability Analysis

In the first simulation, the derived stability condition (3.27) is evaluated. For this purpose PAT

is simulated under communication delays. The SOP of the therapy is considered to be lower

than the EOP of the operator for the first phase of the simulation (entitled mild assistance) and

then it is considered to be higher than the EOP for the second phase (entitled strong assis-

tance). No controller is applied to evaluate the proposed stability condition. It is expected that

when the stability condition (3.27) is satisfied (the first phase) the entire system remains stable

(though the therapy terminal is nonpassive due to the communication delay and the assistive

behavior of the simulated therapist). Also, we expect that when the stability condition is not

satisfied (the second phase) the entire system becomes unstable. The simulation parameters

are given in Table 3.1, where the EOP of the patient’s hand and the SOP of the therapies, in

both phases, have been calculated using the identification technique defined in the previous
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Table 3.1: The Simulation Parameters

section. During both phases, the therapies start from t = 30. If the assistance is delivered the

amplitude of velocity trajectories should become larger. For the first phase, the results of the

velocity tracking and force tracking can be seen in Figs. 3.8a and 3.8b, respectively. As can be

seen in Figs. 3.8a and 3.8b, during mild assistance phase, since the stability condition (3.27)

is satisfied, the entire system behaves in a stable manner. The velocity tracking and the force

tracking results follow (3.11) and (3.12). In addition, the amplitude of the velocity trajectories

are amplified due to the delivered assistive energy. The next step is to simulate the strong as-

sistance phase when there is no controller. The corresponding velocity tracking result for the

second phase is given in Fig. 3.8c As can be seen in Fig. 3.8c, during strong assistance, since

the stability condition (3.27) is not satisfied and no controller is applied, the interconnection

becomes unstable and the trajectories grow in an unbounded manner. This shows the necessity

of having a stabilizer.

3.7.2 Simulation II: M-TDPC stabilizer

In this part, the performance of the propose M-TDPC is analyzed. For this purpose, in addi-

tion to the proposed controller, the original One-port TDPC is simulated (and named TDPC

throughout the simulation). The One-port TDPC approach composed of an observer and a

controller on the master side to compensate for nonpassivity of Σ1. Both of the simulated con-

trollers can be applied even when the communication delay is zero. In fact, this simulation
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(a)

(b)

(c)

Figure 3.8: (a) Velocity tracking for the case of assistive therapy, when the stability condition
is satisfied, (b) Force tracking for the case of assistive therapy, when the stability condition is
satisfied, (c) Velocity tracking for the case of assistive therapy, when the stability condition is
not satisfied.

focuses on the effects of considering the EOP of the patient’s hand in the design of the TDPC-

based stabilizers. The simulation conditions are the same for both controllers. For this goal,

the total simulation time is considered to be 180s. In addition, for M-TDPC approach, Γw and

ξr are considered to be 0.7 and 1.05, respectively. During the first 60 seconds no therapy is

applied, then the resistive therapy is started considering Dth =−16, till t = 120s. Afterwards,

the therapy is switched to strong assistance (Dth = 16). Other simulation parameters are similar

to that of Simulation I. The corresponding results (velocity tracking, force tracking and energy

modulation) for the cases of One-port TDPC and M-TDPC are given in Figs. 3.9 and 3.10,

respectively. As can be seen in Fig. 3.9a, using the TDPC approach, during the resistive phase

(60 < t < 120), the amplitude of the velocity trajectories have been reduced in comparison to
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(a)

(b)

(c)

Figure 3.9: The simulation results for applying TDPC approach for resistive therapy (60 < t <
120) and assistive therapy (120 < t < 180), (a) Velocity tracking, (b) Force Modulation, and
(c) Energy Modulation.

that of the no-therapy phase (0 < t < 60). This means that the resistive behavior is delivered,

which is the goal of the therapy. Also, the TDPC technique is not considerably changing the

reflected forces during resistive therapy (as in Fig. 3.9b). In Fig. 3.9c, left part, the generated

resistive energy at the therapist’s side is compared to the applied energy to the patient’s hand,

during 60 < t < 120. The slight difference between the energies is due to the communication

delay. In other words, the TDPC approach has delivered most of the resistive energy.

However, in contrast to the resistive phase of the simulation, during the assistive phase

(120 < t < 180), the therapy is not delivered using the One-port TDPC. This can be seen in
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(a)

(b)

(c)

Figure 3.10: The simulation results for applying M-TDPC approach for resistive therapy (60 <
t < 120) and assistive therapy (120 < t < 180), (a) Velocity tracking, (b) Force Modulation,
and (c) Energy Modulation.

Fig. 3.9a, where the velocity trajectories have not become larger, in Fig. 3.9b, where the

applied force is almost zero, and in Fig. 3.9c (the right figure), where the applied energy is

flattened. This problem is due to the fact that the One-port TDPC approach assumed that the

assistive energy is not desirable and should be dampened out.

Note that the overshoot at t = 120s is due to the energy accumulation in the observer reser-

voir that has been discussed in the previous section. This overshoot is excluded from the result

analysis, in this simulation, but is exclusively studied in Simulation III.

Considering Fig. 3.10, during the resistive phase of the simulation 60 < t < 120 the be-
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havior of the propose M-TDPC approach is similar to that of the TDPC technique in Fig. 3.9.

This means that the M-TDPC approach is also able to deliver resistance over communication

delays, in a similar manner to one-port TDPC approach. However, using the proposed M-

TDPC approach it is possible to deliver assistive energy, and simultaneously guaranteeing the

interconnection stability. This fact can be seen during 120 < t < 180 in Fig. 3.10a, where the

amplitude of the velocity trajectory is considerably amplified, in Fig. 3.10b where the ampli-

tude of the assistive force is not zero, and in Fig. 3.10c where the applied assistive energy to

the patient’s hand is not flattened while the system is behaving in a stable manner. Considering

Figs. 3.10b and 3.10c the force/energy modulation performed by the M-TDPC technique can

be observed. In fact, the proposed controller has modified the applied energy to the patient’s

hand (in comparison with the generated energy), based the capabilities of the patient’s limb in

absorbing/dissipating the nonpassive therapeutic energy. As given in Table 3.1, the identified

EOP of the simulated user is 8.05; considering ξr = 1.05 the proposed controller is able to

guarantee the stability of the system while allowing the nonpassive energy to flow.

In Fig. 3.11, the distribution of the absolute value of the velocities during the no-therapy

phase, the assistive therapy phase and the resistive therapy phase have been shown for the

cases of M-TDPC approach (Case #1) and the simulated One-port TDPC approach (Case #2).

Based on Fig. 3.11, using the M-TDPC approach, the resulting velocities during assistance is

considerably higher than that of the no-therapy phase. However, this is not the case for the

other approach.

In addition, the Force Reflection Ratio (FRR) is defined in Table 3.2. FRR is the ratio

between the mean value of the modified forces over the mean value of the generated therapeutic

forces. For resistive therapy, both M-TDPC and TDPC approaches were able to deliver most

of the generated forces. The slight deviation from ideal 100% reflection is due to the behaviors

of the controllers in dealing with the existing delays. Using the M-TDPC approach, for the

case of assistive therapy, the FRR is 43.88% which interestingly is close to (ξp− ξr)/δ̂th. It

tells that the higher the EOP of the patient’s limb, the more assistive forces can be reflected to

the patient’s hand through the M-TDPC approach. However, for the case of TDPC technique

(during assistive phase) the FRR is small, which tells that the technique is not capable of

delivering assistance and it cancels out the assistive forces.
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Figure 3.11: Velocity tracking for the case of assistive therapy, when the stability condition is
not satisfied

Table 3.2: Force Reflection Ratio

3.7.3 Simulation III: The Effect of Γw

In this simulation, the effect of Γw is analyzed. For this purpose the simulation condition is

considered similar to Simulation II. The performance of the proposed M-TDPC approach is

evaluated considering Γw = 1 and Γw = 0.7. The corresponding results are given in Fig. 3.12.

As can be seen in Fig. 3.12a, when Γw = 1 the velocity trajectory has a overshoot of 296%. This

is due to the fact that with Γw = 1 the width of the considered window of the energy reservoir

in the observer is infinity. Consequently, the accumulated energy during the entire resistive

phase (60 < t < 120) results in late detection of nonpassive therapy. As a result, the velocity

trajectories suddenly increase when the task switches from a resistive one to an assistive one.

This issue is resolved using the concept of WE by considering Γw = 0.7, as can be seen in Fig.

3.12b.
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(a)

(b)

Figure 3.12: The velocity tracking using M-TDPC approach, (a) Γw = 1, (b) Γw = 0.7.

3.8 Experimental Evaluation

In this section, experimental results are provided to support the proposed M-TDPC approach

for an implementation of the HTR system. The setup consists of the following:

(A) Master robot at the patient’s side: This is a 2-DOF planar upper-limb rehabilitation

device from Quanser Inc. (Markham, ON, Canada) that moves in the horizontal (X-Y) plane

allowing for arm flexion-extension. The robot is shown in Fig. 3.1 and Fig. 3.6. The handle of

the robot was sensorized (Fig. 3.6) using two pressure sensors.

(B) Slave robot: This is a 6-DOF Quanser HD2 haptic device locked in 4 degrees of freedom

using software to provide a similar workspace to that of the master robot.

(C) Virtual Environment (VE): This is shown in Figs. 3.2 and 3.1. The VE was developed

in C++ and communicates with the robots through the UDP protocol. A head-mounted display

(shown in Fig. 3.1) is used at the patient’s side to represent the VE and provide visual cues.

3.8.1 Experimental Scenario and Results

In this experiment, the first operator, who played the role of the patient, tried to track the green

target in the VE. The second operator, who played the role of the therapist, applied assistive

forces during the first phase, and then resistive forces during the second phase, while the M-
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Figure 3.13: Motion trajectories of the patient during resistive and assistive therapy when the
controller is ON compared to the behavior of the system when the controller is OFF

TDPC controller was ON. The controller was turned off in the third phase. The communication

delay was τ1 = τ2 = 80+ 10 sin(π

4 t) ms. The EOP of the operator’s hand was identified as

ξp−relax = 5.56. In addition, we have ξr = 0.56 and Γw = 0.7. The goal was to evaluate the

behavior of the M-TDPC approach in addressing resistive and assistive environments.

In the VE, the target switched every 1 second between two locations along the vertical axis

(X direction). The first operator was asked to keep the effort as consistent as possible during

both phases. The result of the tracking should be vertical trajectories. The switching time

was considered small to challenge the operator, playing the role of the patient. The position

tracking result is shown in Fig. 3.13. As can be seen, the amplitudes of the generated motion

for the case of assistive therapy were increased in comparison to that of the resistive phase.

For the resistive phase, the first operator was not able to reach the targets within the 1-second

time window since the second operator was resisting him. The system became unstable once

the controller was turned off. This resulted in uncoordinated motions in both the X and Y

directions. The velocity tracking result is shown in Figs. 3.14a and 3.14b. As can be seen in

Fig. 3.14a, the amplitude of the velocity trajectory during assistive phase was considerably

higher than that of the resistive phase and the system was able to properly deliver both types

of actions. It quickly became unstable once the controller was turned off. Fig. 3.14b shows
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(a)

(b)

Figure 3.14: (a) Velocity trajectory, (b) Velocity distribution for 20 seconds of assistive and
resistive therapies.

Figure 3.15: The modified therapeutic forces (solid blue line), versus the delivered forces (solid
red line)

the distribution of the absolute values of the velocity trajectories for 20 seconds of assistive

therapy versus resistive therapy. The mean value for the assistive phase was 0.2095 m/s and

for the resistive phase was 0.043 m/s. Using statistical analysis (two-sample t-test) a p-value

of 0.00014 was obtained which means that the difference between the two mean values was

statistically significant.

To analyze the behavior of the controller, the modified and received therapeutic forces were

monitored, as well. Note that force saturation of 30N was also used. The result can be seen in

Fig. 3.15. As can be seen, during the assistive therapy, the controller was capable of detecting

the nonpassive nature of the therapy; as a result, it modified the therapeutic forces (based on

the identified ξp−relax) before reflecting them to the hand of the operator. Although the nature
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of the therapy was assistive (in the first phase), the controller allowed for assistive forces to be

delivered in a modified manner (which was compatible with the biomechanical capabilities of

the user’s limb), while preserving stability. Note that if the operator had a higher ξp−relax or

if the therapist had applied milder assistive forces, the required force modification would be

less. Here, the second operator tried to apply high assistive forces to highlight the behavior

of the controller. During the resistive therapy, since the nature of the therapy was passive, the

controller did not considerably modify the forces (as expected). The slight modification during

resistance was due to the existence of the communication delay. During the third phase, when

the controller was turned off, the system became unstable. This can be seen as high-frequency

uncoordinated high-amplitude oscillations. In summary, the experimental results support the

effectiveness of the developed theory and functionality of the proposed stabilizer.

3.9 Conclusion

In this chapter, the stability of haptics-enabled robotic/ telerobotic rehabilitation systems was

mathematically analyzed in the context of strong passivity theory to ensure safe patient-robot

interaction. The proposed controller named M-TDPC which is a new member of the family of

state-of-the-art TDPC controllers. The focus was to take advantage of the quantifiable EOP of

the user’s hand to guarantee interconnection stability. The proposed M-TDPC stabilizer allows

the therapist to deliver nonpassive assistance over a delayed communication channel, based on

the biomechanical capabilities of the patient’s hand. The results in this chapter can be extended

for any general haptics-enabled robotic/telerobotic systems to also deal with delay-induced

instability. The proposed M-TDPC controller increases the transparency of haptics-enabled

systems since it does not require the modification of reflected forces if the EOP of the user’s

limb can compensate for the non-passivity in the system. In addition, based on the strong

passivity theorem, the proposed stability analysis technique shows that under some specific

conditions, the system can still remain stable without modifying the transparency, even if the

communication system is exposed to variable time-delays. It should be noted that there is no

assumption about the linearity and time-invariance of the therapist and the patient models. A

simulation study and an experimental evaluation were conducted to validate the theory.
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3.10 Appendix I: Stability Proof

To show how the proposed controller guarantees stability of the system, considering (3.33) and

(3.34), we have:

PL(t) = (ξp−relax−ξr)vP(t)T vp(t)+ fP(t)T vp(t) (3.41)

and
n
∑

k=0
PL(k) =

n
∑

k=0
(ξp−relax−ξr)vP(k)T vp(k)+

n
∑

k=0
fP(k)T vp(k). (3.42)

Let us define W (n) = 1
∆T LOPobs(n). Considering (3.37), we have:

W (n) =
n

∑
k=0

PL(k)+
n−1

∑
k=0

α(k)vP(k)T vp(k). (3.43)

Now consider the passivity condition (3.22); in the presence of the controller (variable damp-

ing), the condition can be rewritten as

Ψ≥ 0 where Ψ =
n
∑

k=0
fP(k)T vp(k)+

n
∑

k=0
freact(k)T vp(k)+

n
∑

k=0
α(k)vP(k)T vp(k). (3.44)

For Ψ we have:
Ψ =

n
∑

k=0
fP(k)T vp(k)+

n
∑

k=0
freact(k)T vp(k)

+
(n−1

∑
k=0

α(k)vP(k)T vp(k)
)
+α(n)vP(n)T vp(n).

(3.45)

Considering the definition of EOP, we have Ψ > Ψ̂ where

Ψ̂ =
n
∑

k=0
fP(k)T vp(k)+

n
∑

k=0
(ξp−relax−ξr)vp(k)T vp(k)

+
(n−1

∑
k=0

α(k)vP(k)T vp(k)
)
+α(n)vP(n)T vp(n).

(3.46)

Combining (3.42),(3.43) and (3.46), we get:

Ψ > Ψ̂ where Ψ̂ =W (n)+α(n)vP(n)T vp(n). (3.47)

Considering (3.47) and the definition of W (n), we have:

Ψ > Ψ̂ where Ψ̂ =
1

∆T
LOPobs(n)+α(n)vP(n)T vp(n). (3.48)
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Combining the design of the stabilizer given in (3.36), and the relation (3.48), the stability

condition (3.44) is validated.
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Chapter 4

A Grasp-based Passivity Signature for

Haptics-enabled Human-Robot

Interaction: Application to Design of a

New Safety Mechanism for Robotic

Rehabilitation

The material presented in this chapter has been accepted for publication in the International

Journal of Robotics Research, 2016.

4.1 Introduction

4.1.1 Motivation

Telerobotic and haptic systems have attracted a great deal of interest in the context of medi-

cal robotics during the last two decades. Accordingly, in the literature, two major categories

“A Grasp-based Passivity Signature for H aptics-enabled Human-Robot Interaction: Application to Design of
a New Safety Mechanism for Robotic Rehabilitation,” International Journal of Robotics Research, 2016; accepted.
The final version of this paper will be published by SAGE Publications Ltd., Copyright c©[S. Farokh Atashzar,
M. Shahbazi, M. Tavakoli, R.V. Patel].
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for haptics-enabled and telerobotic medical systems have been developed, namely: Robotics-

assisted Minimally Invasive Surgical (RAMIS) systems [1], [2], [3], [4], and Haptics-enabled

Robotic Rehabilitation systems (HRR) [5], [6], [7], [8], [9].

One of the major research questions about the use of haptic technology in medicine is

“how to optimize the haptic system fidelity (transparency) while guaranteeing safety and sta-

bility of physical human-robot interaction”. An ideally transparent haptic system is capable

of providing the user (at the master side) with the kinesthetic feel of force equal to that mea-

sured/calculated at the actual/virtual environment side. The case of an actual environment is

for telerobotic systems and the case of a virtual environment is for virtual-reality based haptic

rendering systems. However, there is a trade-off between stability and ideal transparency in

haptic systems.

For RAMIS systems, although the contribution of haptic feedback during surgery is not

negligible, this feedback is turned off in most of the currently-available commercial systems

[10], [11]. One of the main reasons for the above-mentioned exclusion is to relax the safety/stability

concern by avoiding the closed-loop system which would exist if haptic feedback is included.

There are also other reasons for excluding this feedback in RAMIS systems, such as cost and

concerns about bio-compatibility and size of sensors [11], [12]. The lack of haptic feedback

in commercial systems has nevertheless been successful since without haptic feedback, it is

still possible to perform the main goal of RAMIS systems which is accurately translating the

“motions” of a surgeon’s hand inside a patient’s body.

In contrast to surgical applications, haptic feedback and kinesthetic interaction are essential

key features of robotic rehabilitation systems and cannot be excluded [5], [6], [7], [8], [9].

This forms the main motivation of this chapter which is guaranteeing stability and safety of

human-robot interaction during haptic upper-limb motor rehabilitation while preserving system

transparency. The results of this study can be used for any haptic/telerobotic system.

In fact, the safety of human-robot interaction in haptics-enabled rehabilitation systems

could be a major concern [13], [14], [15], [16]. Most post-stroke rehabilitation robots are

designed to generate powerful force fields in order to deliver sufficient energy for the required

motor therapy while working in contact with post-stroke patients. Consequently, instability in

the robots can cause serious injuries including bone, joint, and soft tissue damage [13], [17].
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As a result, patient-robot interaction safety should be explicitly studied and guaranteed. This is

an active line of research since conservative solutions can degrade the performance of robotics-

assisted therapeutic systems [13], [14]. In most HRR systems, predefined conservative force

caps have been utilized as a safety mechanism [8], [18]. This can jeopardize system trans-

parency especially when there may be no stability concern (as explained later in this chapter).

Based on the above, the authors believe that the kinesthetic biomechanical capabilities of

the human upper limb should be studied not only for motor assessment purposes but also to de-

velop optimal stabilizers which can guarantee patient-robot interaction safety while minimizing

transparency distortion and maximizing the allowable intensity of the therapeutic impedance.

4.1.2 Background

HRR systems have been developed to accelerate Neural Plasticity (NP) in the brain through

facilitating therapeutic physical interaction of a patient with actual/virtual objects [7], [8], [9].

NP involving brain remodeling in synaptic and non-synaptic manners helps patients to regain

some of their lost motor functions [19], [20]. The effectiveness of HRR systems in accelerating

NP have been investigated in several studies [7], [8], [9]. Conventional HRR systems are

composed of (a) a powerful haptics-enabled robot, (b) a virtual-reality interface, and (c) a

Programmable Virtual Therapist (PVT) software which is responsible for tuning the therapeutic

forces and the intensity of kinesthetic interaction [7], [9].

Through the use of PVT software incorporated in HRR systems, assistive and coordinative

therapies are usually prescribed in early stages of rehabilitation to accelerate NP. Also, resistive

therapy is mostly prescribed in later stages to equalized and strengthen muscular tone [7], [9].

In addition to HRR systems, taking advantage of recent developments in the field of com-

munication and cloud-based computerized systems, there is a tendency towards developing re-

mote cloud-based medical applications and rehabilitation systems [21], [22], [23]. An example

is the recently-developed Haptics-enabled Telerobotic Rehabilitation (HTR) system, proposed

by the authors in [24], [25], [26], [27], which can deliver supervised haptic therapy to remote

areas, replace PVT software of HRR systems by keeping a human therapist in the loop, and

augment capabilities of human therapists using robotic technology.

It should be noted that the other major safety challenge which is highlighted for cloud-
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based HRR and HTR systems is the destabilizing effect of variable communication time delays

and non-passive interaction.

Stability concerns in conventional telerobotic systems have been studied in the literature

[28], [29], [30]. In this regard, several techniques have been developed to guarantee stability

of delayed haptic systems [31], [32], [33], [34], [28]. However, most of these techniques (a)

assume that the terminals are passive and the only source of instability is the time delay; (b) try

to guarantee stability for a wide range of users regardless of the corresponding biomechanical

capabilities; and (c) are specifically developed for communication-induced instabilities.

4.1.3 Contributions of This Chapter

Although, conventional stabilizers have shown good performance in guaranteeing stability of

conventional delayed haptic systems, further developments are essential when dealing with

nonpassive rehabilitation systems. The reason is that having a disabled patient as the user not

only requires further consideration, but also no assumption can be made regarding the capabil-

ity of the user in dealing with unstable situations. In addition, transparency manipulation needs

to be minimized since force-feedback is the key factor for HRR and HTR systems. However,

the quality of force feedback would be affected by using conservative force limits and/or by

implementing a stabilizers that trade-off transparency in order to guarantee stability for a wide

range of users (having different biomechanics).

Recently, the authors have shown that it is possible to enhance system transparency and

guarantee stability through incorporating some quantitative information of the user’s hand

biomechanics into the design of the stabilizers [24], [25], [26]. However, in the aforementioned

work, a constant lower-bound is considered for the capability of the user’s hand in absorbing

interactive force and energy.

In this chapter, we have relaxed the above-mentioned assumption by proposing a novel

Grasp-based Passivity Signature (GPS) map which takes into account the variable energy ab-

sorbability of the user’s hand during the operation. The presented work has two major contri-

butions:

• Developing the GPS map which correlates the grasp condition and geometry of haptic

interaction with the capability of the user’s upper limb in absorbing physical interaction
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Figure 4.1: Experimental setup: (a) Quanser upper-limb rehabilitation robot for arm manipula-
tion, (b) virtual environment provided by a head-mounted display, (c) sensorized handle for the
arm robot, (d) Quanser HD2 robot for wrist manipulation, (e) sensorized handle for the wrist
robot.

energy.

• Proposing a new safety mechanism which incorporates the proposed GPS map to per-

form minimum manipulation of transparency while guaranteeing stability, in the context

of Strong Passivity Theorem (SPT) [35], [36].

For this purpose, in the first part of this work, a user study was conducted with 11 human

subjects to study nonlinear biomechanics of both their left and right hands. The study was

conducted separately for the users’ arms and wrists. Consequently, two haptic systems were

utilized: (a) an upper-limb rehabilitation robot (from Quanser Inc., Markham, ON, Canada) for

studying arm biomechanics; and (b) an HD2 haptic device (from Quanser Inc.) for the wrist.

The participants were asked to tune their grasp pressure to levels shown by a monitor, while

the robot perturbed their limb. Force and motion data were captured and analyzed and the

quantitative Excess of Passivity (EOP) was calculated for different directions of motion. Then,

the correlation between the calculated EOP (in different geometries of motion) and the amount

of grasp pressure was identified and statistically evaluated. The result of this study provides a

user-specific GPS map which represents the biomechanical capability of the human upper limb

in absorbing interaction energy under variable grasp conditions and in different directions of

motion.

In the second part of this work, the identified GPS map was utilized in the design of a
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new controller, called GPS-map Stabilizer. The proposed technique utilizes the identified user-

specific GPS map in a nonlinear Force Reflection Gate (FRG) function, defined to guarantee

the interaction safety in the context of SPT. The proposed FRG function can be explained as a

nonlinear gain that converges to zero when the user provides minimal to no energy absorption

and converges to unity when the user provides enough energy absorption. In the latter case,

even if the communication is delayed and the therapy is non-passive (e.g., assistive therapy),

the transparency will not be affected by the stabilizer.

It should be noted that the controller can be used not only for HRR/HTR systems but also

for conventional haptic and haptic teleoperation systems. Experimental validations are reported

to support the proposed technique. The setup is shown Fig. 4.1.

The rest of this chapter is organized as follows. In Section 4.2, the required preliminaries

are presented. In Section 4.3, the GPS map is introduced. In Section 4.4, the design of the pro-

posed FRG function is given. In Section 4.5, experimental evaluations are presented. Finally,

concluding remarks are given in Section 4.6.

4.2 Preliminaries and Mathematical Modeling

The preliminaries given in this section are mostly taken from the authors’ previous work [24].

In order to analyze the passivity of the user’s hand and develop the stabilizing controller, a

transparent two-channel bilateral architecture was previously proposed by the authors [37] and

used for both HRR and HTR systems [24], [25], [26], [27]. The architecture is an extended

version of Lawrence’s four-channel model [38]. Using this architecture, it is shown that only

two communication channels are needed to allow the patient to feel the delayed therapeutic

forces and the human/virtual therapist to feel the patient’s delayed hand motion. The details

of the utilized telerobotic architecture are in [24]. Using the above-mentioned two-channel

telerobotic system, transparency is achieved as follows:

fp(t) =− f̂th(t), (4.1)

vth(t) = v̂p(t). (4.2)
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In (4.1), (4.2), fp(t) is the force applied by the patient to the master robot, f̂th(s) is the delayed

therapeutic force received at the patient’s side, sent through the first communication chan-

nel (slave to master), v̂p(t) is the patient’s delayed hand velocity, received at the therapist’s

side, sent through the second communication channel (master to slave). In addition, vth is the

therapist-side velocity. Note that for HRR systems vth is the velocity of the virtual object in

the virtual reality environment while for HTR systems vth is the velocity of the human thera-

pist. For HRR systems, f̂th(s) is the delayed force generated by the PVT software to deliver

assistive/resistive/coordinative therapeutic forces. For HTR systems, f̂th(s) is the delayed force

applied by the human therapist on the slave robot.

4.2.1 Patient’s Force Decomposition

The patient’s force can be decomposed into an active component f ∗p(t) (which generates move-

ment), and an impeding reactive component freact(t) (which behaves similar to resistive impedance

in linear models), as shown below:

fp(t) = f ∗p(t)− freact(t), where freact = zp(vp, t) (4.3)

In (4.3), zp(vp, t) is the non-autonomous nonlinear impedance function which models the me-

chanical resistance of the patient’s limb. This function relaxes the conventional linearity as-

sumption for the operator’s hand dynamics (such as in [39] for a healthy human, and in [40]

for post-stroke patients). f ∗p(t) is the active component of the force applied by the patient’s

hand while performing the tasks. f ∗p(t) is composed of (a) residual voluntary (functional) ac-

tive forces, denoted by f ∗p−v(t), and (b) abnormal and involuntary active forces such as abnor-

mal patterns of activation and involuntary reflexes, denoted by f ∗p−i(t). Consequently, f ∗p−v(t)

and f ∗p−i(t) result in (a) voluntary, and (b) uncoordinated and involuntary patterns of motion,

respectively ( [41–44]). The force decomposition can be modeled using the notation of an

admittance function Ωp(·) as

vp = Ωp( f ∗p(t)− fp(t), t) (4.4)
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4.2.2 Characteristics of the Components of the Interaction

The components of the system have the following characteristics [24].

1. The therapist is considered to be a non-passive nonlinear non-autonomous dynamical

terminal for the interconnection. This enables the therapist (virtual/human) to inject

energy into the system during assistive and coordinative therapies. The model remains

valid during time-varying nonlinear complex therapies.

2. The second norm of the active component of the patient’s hand f ∗p is considered to be

bounded. This means that the patient can generate positive or negative (voluntary and

involuntary) time-varying forces that result in movement; however, the patient does not

generate unbounded (in terms of the second norm) forces. This is a realistic assumption.

3. The reaction component of the patient’s hand zp(vp, t) is initially considered as a pas-

sive nonlinear non-autonomous biomechanical terminal which absorbs therapeutic en-

ergies. This model includes (but is not limited to) the commonly-used passive linear

mass-spring-damper models introduced in the literature for the dynamical reaction of

a healthy human upper-limb [39], [45], [46] and post-stroke patients [40, 47, 48]. In

Section 4.1, it is shown that the assumption of passivity on zp can be relaxed in the

proposed framework. This helps to ensure the generality of the technique.

4. The communication network can be subjected to time-varying delays which is the case

for cloud-based HRR and HTR systems and is the conventional source of non-passivity

in haptic systems.

The above mentioned considerations are valid for most of the conventional applications of

haptic and telerobotic systems including HRR and HTR architectures.

Remark 4.1. It should be noted that the three common symptoms after stroke are motor

weakness, increased joint and muscle resistance to movement (i.e., hypertonia), and increased

involuntary reflex activities ( [47, 49, 50]). The weakness in generating motor commands, will

result in reduced ability to move the limbs for performing tasks (e.g., position and/or velocity

tracking). Considering (4.3), this corresponds to a reduced capability in generating f ∗p−v(t).
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Hypertonia results in increasing the viscosity and stiffness of the muscles. Clinicians usu-

ally apply movements to the joints to feel the resistance and objectively evaluate hypertonia.

As mentioned above, this has been modeled in the literature using linear viscoelastic dynam-

ics, e.g., [40, 47, 48]. An increase in viscoelastic parameters due to hypertonia increases the

magnitude in terms of nonlinear norms of zp in (4.3). In addition, the involuntary and abnor-

mal post-stroke muscle activities (such as involuntary reflexive activities and abnormal muscle

synergy) result in involuntary forces f ∗p−i(t) in (4.3) and subsequently abnormal involuntary

patterns of movement ( [41–44]). •
Remark 4.2. It should be noted that in this chapter, we initially assume the passivity char-

acteristic for the resistive component of the hand dynamics (i.e. zp). This assumption does not

restrict other hand activities such as voluntary and involuntary behavior of the user’s hand. In

this chapter, the only requirement for the active component f ∗p is that the patient should not

generate unbounded (in terms of the second norm) active forces, which is realistic. The as-

sumption of passivity on zp is in agreement with existing linear and passive viscoelastic mod-

els which have been used in the literature for modeling limb impedance in post-stroke patients

( [40, 47, 48]), where increased stiffness and viscosities have been correlated to post-stroke

hypertonic symptoms. However, a specifically-designed clinical study is yet to be conducted

to provide more details on the passivity characteristics of the impeding component zp for the

upper-limbs (the focus of this chapter) of post-stroke patients. Consequently, in order to pre-

serve the generality of the proposed technique and since further investigation may report some

non-passive behavior for neurologically-damaged patients (such as the one suggested in [51]

for the lower-limb), in Section 4.1 we will show that the assumption of passivity can be relaxed

for the proposed framework. •

4.2.3 Closed-loop system

Utilizing the architecture introduced in the above and detailed in [24], the resulting intercon-

nection for both HTR and HRR is a two-channel closed-loop haptic system which is shown in

Fig. 4.2. The resulting system is an interconnection between (a) the admittance model of the

patient’s reaction dynamics Σ3; (b) the impedance model of the therapist’s behavior Σ0; and

(c) the communication network. Combination of Σ0 and the communication network is called
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Figure 4.2: The overall schematic of the resulting interconnection. The subsystem Σ1 is called
the “therapy terminal” which consists of the communication and any behavior of the therapist.
Σ2 is the entire interaction which gets f ∗p as the input and provides vp as the output. Σ3 is the
admittance model of the patient’s limb mechanical reaction.

“therapy terminal”, denoted by Σ1. Consequently, the resulting system can be summarized as

the interconnection of Σ1 and Σ3. This enables us to analyze the interaction stability from the

perspective of input-output energy exchange between Σ1 and Σ3. Note that Σ1 includes both

sources of non-passivity which can destabilize the system (i.e., the delayed communication

network and the non-passive therapeutic behaviors). The proposed controller estimates the ex-

tent of energy absorption by Σ3 (using GPS map) and compares it to the energy generated by

Σ1 to tune force reflection parameters and stabilize the system.

4.2.4 Passivity Definition and EOP-based Stability Condition

When a (virtual/human) therapist provides resistive therapy, they essentially dissipate the en-

ergy of the patient’s movements. In this case, if the communication is not subject to delays,

the situation results in a passive interconnection. However, when the therapist provides as-

sistive/coordinative forces or if the communication network is delayed (which is the case for

cloud-based HRR/HTR), the interconnection will be non-passive and can jeopardize the stabil-

ity of patient-robot interaction [52], [24], [53]. In practice, therapists provide mixed therapies

in various time episodes. Also the communication can be delayed. As a result, analyzing the

stability in the context of the passivity theorem can allow us to diagnose potential instabilities
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and provide stabilizing actions through the controller. In this regard, to minimize the trans-

parency distortion and manipulation (commonly used to guarantee stability), we propose to

identify the capability of the user’s hand reaction dynamics in absorbing energies. Since we do

not assume linearity for the limb’s dynamics, the passivity is studied in the context of nonlinear

control theory and the following definitions are given.

Definition I. For a system with input vector uin(t), output vector yout(t), and initial energy

β at t = 0, if there exists a constant β such that for all t ≥ 0 we have

∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β , (4.5)

the system is passive [35], [54], [55], [56]. •
Definition II. For the system mentioned above, if there is a constant β such that for all

t ≥ 0 we have ∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β +δ ·
∫ t

0
uin(τ)

T ·uin(τ)dτ, (4.6)

for δ ≥ 0, the system is Input Strictly Passive (ISP) with an excess of passivity (EOP) equal to

δ . Also, if we have δ < 0, the system is Input Non-Passive (INP) with the Shortage of Passivity

(SOP) of δ [35], [54], [55], [56]. •
Definition III. For the system mentioned above, if there is a constant β such that for all

t ≥ 0 we have ∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β +ξ ·
∫ t

0
yout(τ)

T · yout(τ)dτ, (4.7)

for ξ ≥ 0, the system is Output Strictly Passive (OSP) and the EOP is ξ . If ξ < 0, the system

is Output Non-Passive (ONP) and the SOP is ξ [35], [54], [55], [56]. •
Remark 4.3. It has been shown that all passive systems are asymptotically stable. In

addition, an OSP systems is also L2 stable with a finite L2 gain less than or equal to 1/ξ , where

ξ is the EOP of the OSP model [56]. •
Remark 4.4. In [24], the authors have shown that when there is a nonpassive therapy ter-

minal (Σ1) in a haptic rehabilitation system (due to a non-passive therapist and/or a non-passive

communication network), the closed-loop system Σ2 can still remain stable if the energy ab-

sorbed by the impeding component of the patient’s limb (i.e.
∫ t

0 freact(τ)
T · vp(τ)dτ) can com-

pensate for the energy injected by the therapy terminal Σ1, (i.e.
∫ t

0 fp(τ)
T · vp(τ) dτ). This



4.2. PRELIMINARIES AND MATHEMATICAL MODELING 171

condition will be used later in this chapter to analyze the stabilizing behavior of the proposed

controller. •

Remark 4.4 can be summarized in the following condition.

The entire interconnection Σ2 remains passive if∫ t

0
fp(τ)

T · vp(τ)dτ +
∫ t

0
freact(τ)

T · vp(τ)dτ ≥ 0.
(4.8)

This is equivalent to

ξp + δ̂th ≥ 0, (4.9)

where, ξp is the EOP of the patient’s hand biomechanics and δ̂th is the SOP of Σ1. Details can

be found in [24].

Remark 4.5. The EOP of a human upper limb is the quantitative capability of the corre-

sponding biomechanics in absorbing kinesthetic energy. The more rigid the impeding compo-

nent of a human upper limb is, the higher the EOP that might be expected. As a result, if a

patient has a rigid hand with hypertonia, his/her upper limb might be expected to demonstrate

a higher EOP. In the literature higher viscoelasticity has been reported for post-stroke patients

with hypertonia. High viscoelasticity can mathematically result in high EOP. Clinical analysis

is still needed to evaluate this point, as other post-stroke symptoms may affect the result. It

should be noted that as discussed in Section 4.1, the assumption on passivity (which results in

positive EOP) can be relaxed in the context of the proposed framework. •

If the mentioned passivity condition (4.8) is not satisfied, some sort of energy manipulation

technique should be implemented to compensate for parts of the energy which cannot be ab-

sorbed by the EOP of the user’s hand. There is no need to compensate for all non-passive ther-

apeutic energies. Consequently, knowledge of the EOP of a user’s hand and the corresponding

variation and geometry can result in a new stability paradigm which takes into account vari-

able biomechanical capabilities of the user’s upper limb in absorbing interaction energies to

stabilize the system while performing minimal transparency manipulation.

In this chapter, the extent of grasp pressure and the geometry of haptic interaction are cor-

related with the change in EOP, through the definition of GPS map. This allows us to account

for variable grasp-based and geometry-based changes in the capability of the user’s upper-limb
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Figure 4.3: The experimental setup and the resulting motions: (left) Quanser upper-limb reha-
bilitation robot, (right) Quanser HD2 robot.

in absorbing interactive energies, during haptic task execution. The quantified GPS map is

then utilized in the design of a new controller (called GPS-map Stabilizer) which modifies the

delivered therapeutic energy considering the aforementioned changes in EOP.

4.3 GPS map Identification and User Study

In this section, the proposed GPS map is introduced and statistically analyzed. For this purpose,

the experimental setup shown in Fig. 4.3 is utilized. For the case of arm interaction, the

Quanser upper-limb rehabilitation robot is used to provide 2D planar arm motions composed

of elbow flexion-extension, shoulder protraction-retraction and internal-external rotation. In

addition, for the case of wrist interaction, the Quanser HD2 robot is utilized to apply 2D angular

wrist movements composed of wrist abduction-adduction and pronation-supination.

4.3.1 Demographic Data

In order to develop and analyze the proposed GPS map, 11 healthy human subjects (with

no known history of neuromuscular disorders) were recruited for both the arm and the wrist

experiments. Some of the subjects participated in both experiments and some did not. As

explained later in this chapter, to make each GPS map, two experiments need to be conducted

(considering two grasping conditions). In total, the participants participated in 80 experiments

which resulted in identifying 40 GPS maps. Table 4.1 shows the participation chart. Note that

each item in Table 4.1 contains two experiments. The study was conducted at the University
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Table 4.1: Participation Chart for the 40 Calculated GPS maps

of Alberta, Canada, under an ethics approval from the corresponding Research Ethics Board.

The details of the experiments were explained to the participants prior to the experiment and

they were given time to become familiar with the robotic system. For the arm experiment, the

participants (6 males, 5 females) were aged between 25 and 30 (mean value: 27.63, standard

deviation: 1.36). For the wrist experiment, the participants (8 males, 3 females) were aged

between 26 and 40 (mean value: 28.63, standard deviation: 3.93).

4.3.2 GPS map Identification Protocol

To find the user-specific GPS maps, sinusoidal linear and angular motions were applied to

participants’ arms and wrists, while force and velocity data were logged. The identifying

motion profile was composed of 10 sinusoids with frequencies range from 0 to 2 Hz. It

should be noted that 2 Hz is usually considered in the literature as the upper-limit of the fre-

quency range of motion during normal daily activities [57, 58]. One of the factors which

was studied in this chapter is the geometry of GPS maps. To account for the geometry,
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the identifying motion profile was designed in a way that specifically engages different de-

grees of interaction separately. Consequently, 8 directions of stimulation were considered:

θ = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, where θ is the angle of stimulation. The

stimulating signal stayed in each of the mentioned 8 phases for 10 seconds and then switched

to the next phase. Consequently, the total identification time for one trial was 80 seconds.

For each hand of a participant (right and left) and each limb (wrist and arm), the above-

mentioned protocol was conducted two times considering the two different grasp requirements

described below. The two aforementioned sets of experiments are denoted as (a) Relaxed Grasp

(RG) and Stiff Grasp (SG) tests. The RG test corresponds to the participant keeping the grasp

pressure less than 5% of his/her maximum grasp pressure while the robot is stimulating the

limb by applying the motion perturbations. The SG test corresponds to the participant keeping

the grasp pressure close to 80% of their maximum grasp during perturbations.

The grasp pressure for each participant was measured using the sensorized robotic handles.

The measurement system composed of two FSR-406 (Interlink Electronics) pressure sensors

for each robot. Using a head-mounted display, the two levels of grasp pressure (for SG and

RG tests) were shown to the participants. Participants were asked to keep the grasp pressure

close to the levels shown. Since the experiment was designed such that the participants were

not asked to track any trajectory during the identification procedure, they did not apply ex-

ogenous kinesthetic forces which means that f ∗p −→ 0. Consequently, during the identification

procedure we have
∫ t

0 freact(τ)
T · vP(τ) dτ =

∫ t
0 fp(τ)

T · vP(τ) dτ , where both fp(t) and vp(t)

are accessible.

The aforementioned two sets of experiments (SG and RG) were conducted for both the

wrist and the arm, and for the left and right hands. As a result, each participant was invited

to participate in 8 trials. Out of these 8 trials, four were for the right hand and four for the

left hand. Also, out of the mentioned four experiments, two sets (SG and RG) were for the

wrist and the other two for the arm. Most of the participants agreed to participate in all 8 trails.

In total, 80 experiments were conducted as summarized in Table 4.1. The results are given

in the next subsection. The goal was to identify the GPS map (a) for both the wrist and the

arm since it was likely that the GPS map of the wrist and the arm would behave differently in

response to the change in the grasp condition; and (b) for both left and right limbs to have a
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statistically-rich data set.

Remark 4.6. The study developed in this section addresses the following questions: (a)

Is there a statistically significant change in the EOP of the human upper-limb (wrist and arm)

under different grasp conditions (realized by the RG and SG tests)? (b) Is the EOP of the human

upper-limb (wrist and arm) geometry-specific? As shown later in this chapter, the answers to

both questions are affirmative and that is why the identified result is denoted as GPS map for

EOP of the human upper-limb. •
Using the collected force and velocity data from each of the 8 identification trials and using

the definition of EOP given earlier, the EOP for the participant’s limb in the ith direction of

stimulation (which corresponds to the ith item of θ ), is calculated as

ξp−i =

∫ Tei

T si

freact(τ)
T · vP(τ)dτ∫ Tei

T si

vT
p (τ) · vP(τ)dτ

. (4.10)

In (4.10), ξp−i is the estimated EOP of the participant’s limb calculated for the ith direction of

stimulation, T si is the starting time for stimulating the ith direction, and Tei is the stop time.

The results are given in the following subsection.

4.3.3 GPS map Identification Results

The results of the proposed GPS map identification protocol are given below. Eight phases

of the identification procedure are shown in Fig. 4.4 for Participant #2, considering the RG

test conducted on the right arm. As can be seen in Fig. 4.4 (a) and (b), force and velocity

profiles are collected during 8 phases. Based on the collected data and (4.10), the EOP of

the participant’s arm is calculated as given in Fig. 4.4(c). As can be seen in Fig. 4.4(c),

changing the direction of the stimulation considerably changes the EOP of the participant’s

hand. In this case, the maximum EOP is 3 times larger than the minimum EOP. Afterwards,

the result is transformed to the radarplot of EOP shown in Fig. 4.4(d). The same procedure

is also conducted for the SG test to finally make the complete radarplot (which is the GPS

map). Consequently, each map includes the geometry of EOP for both the SG and RG tests

and represents their graphical summary (which defines the EOP value considering different
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Figure 4.4: The experimental data for Participant #2, considering RG test on the right arm:
(a) force profile, (b) stimulating velocity profile, (c) EOP for 8 phases of the experiment, (d)
resulting radarplot.

directions of interaction and levels of grasp pressure). With the 80 experiments that were

conducted, 40 GPS maps were made. Figs. 4.5 and 4.6 shows 15 GPS maps out of the total 40.

Considering the plotted GPS maps in Figs. 4.5 and 4.6, increasing the grasp pressure results

in enlarging the area of EOP in the map. As a result, when a user applies higher grasp pressure,

higher energy can be absorbed by their limb. In addition, the EOPs were different in various

directions of interaction. The pattern of grasp-based increase and the shape of the EOP area

are specific for each participant and each limb. That is why the factor is termed “signature”.

This information is utilized in the next section to design the GPS-map Stabilizer.

Remark 4.7. The GPS map of a user’s hand can also be potentially used as a graphical rep-

resentation which has encapsulated information about the user’s biomechanical capabilities,

and can be studied from the point of view of symmetry, shape and grasp-based size varia-

tions. This could be a tool for monitoring progress in strengthening and equalizing muscular

functionality, which is critical to assess progress during rehabilitation procedures. •
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.5: The Calculated GPS maps for 15 items. Note that the blue line corresponds to
the SG test and the red line corresponds to the RG test. For the wrist GPS maps, the 1st
direction is Pronation-Supination and the 2nd direction is Abduction-Adduction. (a) Participant
#18: Right Wrist Experiment, (b) Participant #18: Left Wrist Experiment, (c) Participant #16:
Right Wrist Experiment, (d) Participant #16: Left Wrist Experiment, (e) Participant #2: Right
Wrist Experiment, (f) Participant #2: Left Wrist Experiment, (g) Participant #0: Right Wrist
Experiment, (h) Participant #0: Left Wrist Experiment,

Remark 4.8. The order of directions for stimulating the user’s biomechanics can be inter-

preted by comparing Figs. 4.4(c) and 4.4(d). In fact in the conducted experiment, during the

first phase (0 < t ≤ 10) the stimulation angle (θ ) was 0; for the second phase (10 < t ≤ 20),

we had θ = π/4; for the third phase (20 < t ≤ 30), we had θ = π/2; for the fourth phase
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.6: The Calculated GPS maps for 15 items. Note that the blue line corresponds to
the SG test and the red line corresponds to the RG test. For the wrist GPS maps, the 1st
direction is Pronation-Supination and the 2nd direction is Abduction-Adduction. (a) Participant
#17: Right Arm Experiment, (b) Participant #16: Right Arm Experiment, (c) Participant #7:
Right Arm Experiment, (d) Participant #5: Right Arm Experiment, (e) Participant #2: Right
Arm Experiment, (f) Participant #0: Right Arm Experiment, (g) Participant #0: Left Arm
Experiment,

(30 < t ≤ 40), we had θ = 3π/4; for the fifth phase (40 < t ≤ 50), we had θ = π; for the sixth

phase (50 < t ≤ 60), we had θ = 5π/4; for the seventh phase (60 < t ≤ 70), we had θ = 3π/2

and for eighth phase (70 < t ≤ 80), we had θ = 7π/4. Any different order (such as a ran-
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dom one) could be considered for generating GPS maps. The order does not change the entire

framework that is proposed in this chapter. It should be noted that based on our observations

we have not seen correlations between the order, in which the biomechanics of the users were

stimulated, and the GPS maps. However, further analysis is needed to scientifically evaluate

this point. This forms part of our future study. •
Remark 4.9. Considering Fig. 4.4(c), during each phase the identified EOP converges to

the corresponding value in less than 5 seconds. This tells us that we may be able to reduce

the identification phase to half of what has been tested. In addition, a good suggestion can be

to give the user resting episodes between every two consecutive phases and evaluate different

directions of stimulation with a break in between. This can help to avoid potential fatigue

specifically when we ask the user to hold a high grip value. •

4.3.4 GPS map: Statistical Analysis

This part of the chapter focuses on statistical evaluation of the 40 identified GPS maps to

analyze them in a more accurate manner. The goal is to illustrate that the correlation between

the EOP and (a) grasping condition and (b) geometry of interaction are statistically significant.

For this purpose, the following two-step analysis is conducted.

Step #1: The Effect of the Grasping Condition on GPS maps: First, the areas of both

radarplots in the GPS maps are calculated. The area for the RG test is denoted by ARG and the

area for the SG test is denoted by ASG. The average increase in EOP was calculated for each

GPS map as

β =

√
ASG

ARG
−1. (4.11)

Note that β = 0 is equivalent to having zero average increase. In total, forty β values were

calculated and the corresponding distributions were developed and analyzed. Note that out of

the 40 values, 22 items correspond to the wrist experiments and 18 items correspond to the arm

experiments. The results are shown in Fig. 4.7. As can be seen in Fig. 4.7, increasing the grasp

pressure has increased the EOP of all the GPS maps for both the arm and the Wrist. For the

case of the arm, the mean value for the increases was 0.82 (that is equivalent to 82% increase

in EOP). For this case, the standard deviation was 0.29 (i.e. 29%). For the case of the wrist,
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the mean value for the increases was 3.7 (that is equivalent to 370% increase in EOP). For this

case, the standard deviation is 2.26.

Remark 4.10. In order to statistically analyze the significance of the results obtained,

we have conducted standard one-sample t-test evaluations on the distributions shown in Fig.

4.7. A similar approach has also been used for analyzing other results of the chapter. The

statistical t-test evaluation returns a test decision for the null hypothesis that the study data

comes from a normal distribution with mean value of zero and unknown variance. The output

of the conducted t-test is a p-value which is a probability. Small values for p (usually < 0.05)

correspond to statistically significant evidence to reject the null hypothesis ( [59, 60]). In this

chapter, in order to show that the observed positive increases in the area of the calculated GPS

maps (resulting from increases in grasp pressure) is statistically significant, we should reject

the null hypothesis that the observed changes in the area of the maps comes from a distribution

with zero mean increase. A similar approach has also been used for analyzing the effect of

geometry on GPS map, in this chapter.•

Considering the definitions given in Remark 4.10, the results of the statistical analyses, that

is conducted on the distributions shown in Fig. 4.7 (against β = 0), are given in Table 4.2.

The results (in Table 4.2) indicate that the positive average increase in EOP of the participants’

arms and wrist (due to increase in grasp pressure) is statistically significant.

Remark 4.11. Based on the results shown in Table 4.2, it can be concluded that the increase

in grasp pressure considerably increases the EOP of the user’s arm and wrist. This was the

first hypothesis of the chapter which is validated by the above results. The grasp-dependent

increase in EOP is statistically significant (p-value<0.001) and the average increase is higher

for the case of the wrist (i.e., 370%) in comparison to the arm (i.e., 82%). More information

about the results of this statistical analysis (including the t-statistic and degrees of freedom can

be found in Table 4.2). To highlight the importance of the results, it should be noted that an

α% increase in EOP can be transformed to an α% increase in the allowable amplitude of the

force to be reflected to the user’s hand which directly results in improvement in the system

transparency.•

Step #2: The Effect of Geometry on GPS maps: In the second step, the geometry of GPS

maps was separately analyzed for the SG and RG tests and for the cases of the wrist and arm,
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(a) (b)

Figure 4.7: Distributions for grasp-based increase in EOP: (a) Arm, (b) Wrist. In the distribu-
tions shown, a sample β value equal to 1 is equivalent to 100% increase in EOP due to increase
in grasp pressure.

Table 4.2: Summary of the Statistical Evaluation for the Distributions Given in Fig. 4.7. β = 0
is the value that the t-test is being compared against.

using the following metric:

γ =
MaxEOP

MinEOP
−1. (4.12)

In (4.12), MaxEOP is the maximum value of the eight EOP values achieved by perturbing the

corresponding limb in eight different directions of interaction (i.e., θ = 0, π/4, π/2, 3π/4, π,

5π/4, 3π/2, 7π/4). Also, MinEOP is the corresponding minimum value. Consequently, in this

step, we evaluate the deviation of the GPS map geometries from a circle with a radius equal

to MinEOP. In other words, we have evaluated the anisotropy of the proposed GPS map using

γ . The above-mentioned circle is denoted by “EOP circle” in this chapter. In order to evaluate

this anisotropy, the distributions of the γ values are analyzed. As a result, four statistical

distributions have been calculated namely: (a) SG-Arm, (b) RG-Arm, (c) SG-Wrist and (d)

RG-Wrist. Note that the SG-Wrist and RG-Wrist distributions include 22 items and the other
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(a) (b)

Figure 4.8: Distribution of geometry-based change in EOP: (a) Wrist, (b) Arm. In the distribu-
tions shown, a sample γ value equal to 0 is equivalent to having no geometry-based differences
between the calculated EOP values in different directions. The higher the γ value, the more
deviation from the EOP circle.

[t]

two distributions include 18 items. It should be mentioned that γ = 0 is equivalent to having no

geometry-based differences between the calculated EOP values. Also, the higher the γ value,

the more deviation from the EOP circle. Consequently, γ = 1 means that in one direction

the EOP is two times larger than MinEOP that results in having two times more capability in

absorbing interaction energies. The distributions are shown in Fig. 4.8. The outcomes of the

statistical test conducted on the results given in Fig. 4.8 (against γ = 0) are given in Table 4.3.

Remark 4.12. From the results shown in Fig. 4.8 and Table 4.3, it can be concluded that

the geometry of stimulation plays an important role in the capabilities of the human hand in

absorbing interaction energies. This was our second hypothesis which has been validated using

the results given above. In some cases, the EOP can be even more than three times in some

directions compared to the minimum EOP. •

Considering Remarks 4.11 and 4.12, we have shown that the EOP of the user’s hand can

be significantly changed by (a) increasing the grasp pressure, and (b) changing the direction
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Table 4.3: Summary of the Statistical Evaluation for the Distributions of γ given in Fig. 4.8.
γ = 0 is the value that the t-test is being compared against.

of interaction. Consequently, during haptics-enabled task execution, taking advantage of mea-

surable direction of interactive forces and grasp pressure plus the pre-identified GPS map, it

is possible to interpolate the expected EOP of the user’s hand. This information corresponds

to the capability of absorbing interaction energy and can be used to significantly enhance the

system transparency while guaranteeing stability. This is accomplished in the next section uti-

lizing the proposed controller, called the GPS map-Stabilizer. If the user provides enough EOP,

the controller will not undermine the system transparency for preserving stability.

4.3.5 Case Study: Pattern of Growth in GPS map

In this part of the chapter, a case study is presented which focuses on the growth pattern of

the introduced GPS maps. The question which is investigated here is “how to interpolate the

EOP value using the proposed GPS maps based on real-time measurement of grasp pressure?”

There are several ways for interpolating the EOP values, in practice. The most straightforward

simple technique is to enrich the GPS map by considering more values for the grasp pressure

(called “fractions” in this chapter) other than the two values used here (i.e. 5% and 80% of

the maximum pressure). An example is a 5-point fractioning technique which is equivalent to

conducting the identification procedure for 5%, 20%, 40%, 60%, and 80% of the maximum

grasp pressure. The higher the number of fractions, the more accurate is the interpolation of

EOP value. Consequently, this technique suggests that the identification procedure could be
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repeated for more values of grasp pressure to find a more accurate GPS map. Although, this

technique is straightforward, in this section we investigate the possibility of developing a quick

interpolation. For this purpose, we have conducted a new set of experiments for 8 participants

(P0, P1, P2, P4, P5, P18, P19, P20), and for both left and right wrists.

The new set of experiments examines the EOP of the participants’ wrists considering the

5-point fractioning technique for their grasp pressure. As a result, we identified the EOP of

the participants’ wrists for 5%, 20%, 40%, 60%, and 80% of their maximum grasp pressures.

For each participant, we individually normalized the calculated EOP using the maximum EOP

observed during the 5 stages of the mentioned fractioning. The result of this case study consists

of 32 graphs of normalized EOP versus pressure percentage. Each graph contains 5 values of

EOP which corresponds to 5%, 20%, 40%, 60%, and 80% of a participant’s maximum grasp

pressures. The 32 results were obtained by conducting the identification procedure for both

right and left wrists of the 8 participants and for both major directions of motion (Supination-

Pronation and Abduction-Adduction). Twelve sample graphs are shown in Fig. 4.9. An in-

teresting phenomenon was observed for all the aforementioned 32 results including the ones

which are shown in Fig. 4.9. The observation is discussed in the following remark.

Remark 4.13. All 32 results support the fact that the growth pattern of EOP can be mod-

elled using a “Two-Segment Piecewise Linear (TSPL)” model. The aforementioned model

includes a sharp growth for the first 20% increase in the grasp pressure, and a second linear

growth, with a smaller slope, for the next 60% increase in the grasp pressure. The TSPL model

is shown by black dashed lines in the graphs of Fig. 4.9. This pattern can be used to generate

the TSPL model by only employing a 3-point fractioning technique using grasp percentages of

5%, 20% and 80%.

Although the cause of the two-segment piecewise behavior is not the focus of this chapter,

the authors believe that one possible explanation could be the existence of a dual-stage behavior

for the EOP growth pattern. The behavior suggests that increasing the grasp pressure

(A) results in an increase in the antagonistic muscle tone which gradually increases the EOP;

(B) results in a sharp increase due to a sudden forming of a stiff linkage between the high-

impedance parts of the hand (located in upper part) and the wrist (which interacts with

the robotic handle). This is called locking mechanism in this chapter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.9: The Calculated EOP percentage versus the grasp pressure percentage. The grasp
pressure is normalized using the maximum pressure, and the EOP is normalized by the max-
imum EOP observed. Each graph is made using 5 values. The dashed red line is the conser-
vative interpolation which avoids over estimation of EOP. These figures show 12 results out of
the total 32. (a) Participant #0: Left Wrist Pronation-Supination, (b) Participant #0: Left Wrist
Abduction-Adduction, (c) Participant #20: Right Wrist Pronation-Supination, (d) Participant
#20: Right Wrist Abduction-Adduction, (e) Participant #5: Right Wrist Pronation-Supination,
(f) Participant #5: Right Wrist Abduction-Adduction, (g) Participant #4: Left Wrist Pronation-
Supination, (h) Participant #4: Left Wrist Abduction-Adduction, (i) Participant #1: Left Wrist
Pronation-Supination, (j) Participant #1: Left Wrist Abduction-Adduction, (k) Participant #2:
Left Wrist Pronation-Supination, (l) Participant #2: Left Wrist Abduction-Adduction.
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Consequently, the dual-stage behavior suggests that the EOP increase which corresponds to the

first 20% grasp pressure is affected by both of the above-mentioned points while an increase in

EOP beyond 20% is affected mainly by case A (since the linkage is formed by the first 20% of

the grasp pressure). More investigations might be needed to better explain the reason. •

Here we study a fast interpolation technique using only a 2-point fractioning technique as a

simple conservative alternative approach to the TSPL technique. The suggested simplified fast

scheme is called the Quick Interpolation Technique (QIT) in this chapter, which considers only

the minimum (5%) and maximum (80%) grasp percentages, without using the EOP value for

the 20% grasp percentage.

As mentioned, the TSPL model can be used for accurate interpolating the EOP. However,

the QIT utilizes a monotonic linear growth for interpolating the EOP value, in a simple but

conservative manner. The QIT model is shown by the red dashed lines in Fig. 4.9. In fact, (a) it

represents a linear monotonic behavior to interpolate EOP; (b) it is simpler to implement (com-

pared to the TSPL model) since it only requires two EOP values; (c) it avoids over estimation

of the EOP; and (d) it provides a positive confidence margin for the EOP estimation. For some

of the results (such as in Fig. 4.9g and 4.9k), the QIT model is very close to the TSPL model

and for some others, it provides a higher confidence margin (such as in Fig. 4.9d).

It should be highlighted that “based on our observations for all 32 results of this case

study, the QIT model avoids over estimation of the EOP and can be used for estimating

the EOP while providing a confidence margin.” To statistically evaluate the significance and

the correctness of the above point, a new statistical analysis was conducted as discussed below.

First, for each user, a polygon shape is constructed using the 5 calculated values of the

EOP. The polygons are formed in a plane which has the EOP percentage as the vertical axis

and the grasp pressure percentage on the horizontal axis. As a result, on the vertical axis, 0%

corresponds to 0 value for EOP and 100% corresponds to maximum observed EOP value for

that user. In addition, on the horizontal axis, 0% means 0 grasp pressure and 100% means

maximum observed grasp pressure for the user. After making the polygon shapes, we define

and calculate a new factor called the “Signed Area (SA)”. The magnitude of this factor is the

area of the polygon shape normalized by the area of a reference polygon which has 0%, 100%

, 100% , 100% , 100% values on the vertical axis for grasp percentages of 5% 20%, 40%, 60%



4.3. GPS MAP IDENTIFICATION AND USER STUDY 187

Figure 4.10: Distribution of the normalized areas calculated for evaluating the QIT model in
terms of avoiding over-estimation of EOP by providing positive average SA value.

and 80%, respectively. The area of this reference polygon is 3000. The sign of the SA factor is

based on the locations of the 5 EOP values with respect to the QIT model. If the EOP values

are higher than their QIT-based estimations, the sign is positive. So, the positive sign means

that all of the 5 EOP values are higher than those from the QIT model and no over-estimation

has occurred. This has been carried out for all 32 results.

In the next step, the statistical distributions of the calculated SAs are created and analyzed

using the standard t-test technique. The distribution of SAs is shown in Fig 4.10. The results

of the statistical test conducted on the distribution given in Fig. 4.10 (against SA = 0) are given

in Table 4.4. As can be seen in Table 4.4, having a minimum value equal to 0.065 (which has

a positive sign) means that no over-estimation has occurred (since no negative SA has been

observed). The statistical analysis given in Table 4.4 shows that the calculated positive average

value for SA is statistically significant. This validates the effectiveness of the QIT model

as a fast technique, calculated by using only two grasp conditions, and can conservatively

interpolate the EOP while providing a positive confidence margin (i.e., the amplitude of SA).

Remark 4.14. As can be seen in Fig. 4.9 the accuracy of the TSPL technique (which

includes the EOP value at grasp percentage of 20%) is considerably higher than the QIT model.

The reason is the the QIT model does not use any information about the sharp increase in the

growth pattern of EOP that occurs during the first 20% increase in grasp pressure. The goal

of the study, reported in this part, was only to show that the value of EOP is higher than the

one which can be estimated by a monotonic linear growth (QIT model). In other words, the
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Table 4.4: Summary of the Statistical Evaluation for the Distribution of SA given in Fig. 4.10.
SA = 0 is the value that the t-test is being compared against

QIT model can provide a conservative estimate of the EOP and avoid over estimation of this

value. This has been statistically validated by analyzing the calculated SA values that are

indicators of the distance between the QIT model and the TSPL model. It should be added

that a statistical curve fitting might be conducted over a population of users to find an average

pattern of increase. Although, this can be an interesting investigation, it was not the goal of the

reported result. The reason is that an average pattern can lead to considerable over estimation

of the EOP value when we only use the relaxed and the stiff grasp conditions. Excessive over

estimation of the EOP value is not desirable from the stability point of view for human-robot

interaction (as will be clarified in the next section). In summary, in order to estimate the EOP

value for an individual for use in the design of the controller, we can either (a) use the three-

point/five-point-fractioning technique and generate the TSPL model (which includes the 20%

grasp pressure), or (b) use the conservative value suggested by the QIT model that only needs

two grasp conditions and does not result in excessive over estimation of the EOP, as supported

by the results shown in Table 4.4. •

4.4 Proposed Control Design: GPS-map Stabilizer

Based on the results shown in the previous section, using real-time measurement of the grasp

pressure in addition to the geometry of the received forces at the user’s side, it is possible to

estimate the EOP of the user’s hand through the proposed user-specific GPS map. In this sec-

tion, the proposed stabilizing scheme is presented which uses the estimated EOP to guarantee

stability and enhance transparency. The controller is implemented at the patient’s side and is

called the GPS-map Stabilizer. The main action of the controller is to use the estimated EOP of

the user’s hand in a Force Reflection Gate (FRG) function which changes the loop gain of the

system. The FRG function is a time-varying nonlinear force feedback gain which modifies the
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Figure 4.11: Schematic of the closed-loop interconnection applying the proposed GPS-
Stabilizer.

reflected forces to ensure that the stability condition remains satisfied so the system remains

stable and the interaction remains safe. Consequently, if a user represents a low EOP when the

delivered therapy is nonpassive (such as assistive therapy), the controller makes the force re-

flection gate tight to ensure that the amount of delivered nonpassive energy can be absorbed by

the user’s limb biomechanics to guarantee interaction safety. However, when the user provides

higher EOP (which corresponds to the higher capability in absorbing nonpassive energy), the

controller opens the gate and allows the forces to be reflected and felt more by the user.

After applying the proposed controller, the original close-loop interconnection shown in

Fig. 4.2, is transformed to the one given in Fig. 4.11. As can be seen in Fig. 4.11, the

controller uses prior knowledge about the GPS map in addition to the real-time measurement

of the grasp pressure and the geometry of interaction to calculate the FRG function and tune

the loop gain. The proposed controller does not involve a classical additive damping loop;

instead, it modifies the amplitude of the reflected forces to guarantee stability while preserving
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the direction of kinesthetic interaction. This feature is important from a practical consideration

and is helpful for enhancing transparency.

Given the estimated EOP of the user’s hand ξp(t), the functionality of the stabilizer is

explained below. Considering the stability condition of the original system (4.8), applying the

controller, the new stability condition is as follows:

The entire interconnection remains passive if:∫ t

0
freact(τ)

T · vp(τ)+ fp−mod(τ)
T · vp(τ)dτ ≥ 0.

(4.13)

In (4.13), fp−mod is the output of the controller which is the modified force to be reflected. The

above stability condition can also be rewritten in a short version as

The entire interconnection remains passive if:

Ep(t)≥−Eth−mod(t).
(4.14)

In (4.14), Ep is the energy that can be absorbed by the biomechanics of the patient’s hand

and is equal to
∫ t

0 freact(τ)
T · vp(τ) dτ , while Eth−mod is the therapeutic energy received at

the patient’s side after modification by the nonlinear FRG function. Consequently, we have

Eth−mod(t) =
∫ t

0 fp−mod(τ)
T · vp(τ) dτ . Note that the delivered energy before modification is

Eth(t) =
∫ t

0 fp(τ)
T · vp(τ)dτ .

It should be noted that during task execution, Eth(t) is measurable; however it is not

possible to measure Ep(t) since freact is not accessible when the user performs a task. To

design the FRG function, first, assume that Ep(t) is also accessible in real-time. This as-

sumption is relaxed later in this section. Based on the stability conditions (4.13) and (4.14),

one possible initial design for the FRG function which may guarantee system stability is

fp−mod(t) = α ·FRG( fp,vp, freact) where

FRG( fp,vp, freact) :=

 fp(t) if fp(t)T · vp(t)≥ 0,

Ψ(t) otherwise.
(4.15)
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In (4.15), we have

Ψ(t) =


fp(t) if | freact(t)T · vp(t)| ≥ | fp(t)T · vp(t)|,

|| freact ||2 ·
fp(t)
|| fp(t)||2

otherwise.
(4.16)

In (4.15), α is a positive confidence design factor (0 ≥ α ≥ 1). α = 1 defines the maximum

gain of the system which can still satisfy the stability condition of the system. || · || represents

the 2-norm of a vector.

Through the use of the proposed controller, when the FRG function observes (a) a dissi-

pative power packet fp(t)T · vp(t) ≥ 0, or (b) a nonpassive packet which can be absorbed by

the user’s hand | freact(t)T ·vp(t)| ≥ | fp(t)T ·vp(t)|, it does not change the loop gain and allows

the power packet to flow. In addition, when the controller observes a non-dissipative power

packet, fp(t)T · vp(t) < 0, which cannot be absorbed by the user’s hand | freact(t)T · vp(t)| <
| fp(t)T · vp(t)|, the proposed FRG function lowers the loop gain to guarantee system stability.

As mentioned before, the controller given by (4.15) assumes that the energy which can be

absorbed by the patient’s hand (i.e., Ep(t)) and the impeding component of the user’s hand

dynamics freact are accessible measurements. However, in practice, when the user utilizes the

robot to perform a task, freact(t) is neither measurable nor accessible. Consequently, it is not

possible to directly calculate the energy that can be absorbed by the patient’s hand Ep(t) and

the corresponding power packets. This issue is addressed by the proposed GPS map which

provides an estimate of the energy that can be absorbed by the user’s hand. Consequently,

instead of using Ep(t) and freact in (4.16) to calculate Ψ(t), the estimated EOP value provided

by the GPS map is utilized and the design of the controller is modified as explained below.

First, regarding the passivity condition of the user’s hand and considering (4.7), it can be

shown that when the EOP is changing, we have

∫ t

0
freact(τ)

T vp(τ)dτ ≥
∫ t

0
ξp(τ)vP(τ)

T vp(τ)dτ

≥ ξp−min

∫ t

0
vP(τ)

T vp(τ)dτ.
(4.17)

In (4.17), ξp(t) is the varying EOP of the user’s hand which can be estimated using the corre-

sponding GPS map. Also, ξp−min is the minimum value of ξp(t). Consequently, considering
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(4.17) and (4.14), the following new stability condition can be obtained:

The entire interconnection remains passive if:

Êp(t)≥−Eth−mod(t)

where Êp(t) =
∫ t

0
ξp(τ)vP(τ)

T vp(τ)dτ.

(4.18)

The expanded version of the above stability condition is

The entire interconnection remains passive if:∫ t

0
ξp(τ)vP(τ)

T vp(τ)+ fp−mod(τ)
T · vp(τ)dτ ≥ 0

(4.19)

Using the Cauchy-Bunyakovsky-Schwarz inequality and based on (4.19), the GPS-map Stabi-

lizer that guarantees system stability can be designed as fp−mod(t) = α ·FRG( fp,vp,ξp · vp)

where

FRG( fp,vp,ξp · vp) :=

 fp(t) if fp(t)T · vp(t)≥ 0,

Ψ(t) otherwise.
(4.20)

In (4.20), we have

Ψ(t) =


fp(t) if |ξp(t)vP(t)T vp(t)| ≥ | fp(t)T · vp(t)|,

||ξp(t)vP(t)||2 ·
fp(t)
|| fp(t)||2

otherwise.
(4.21)

In fact, (4.20) and (4.21) define the proposed GPS-map Stabilizer. The technique utilizes the

user-specific GPS map to calculate ξp(t) and finally tune the loop gain through the proposed

nonlinear FRG(·) function, in order to guarantee that the stability condition (4.19) is satisfied.

Using the proposed GPS-map Stabilizer, the force reflection gate will be tuned in a real-

time and the user-specific manner based on the corresponding biomechanical capabilities of

the user’s hand in absorbing interactive energy. As a result, if a user represents a high EOP

(considering the direction of interaction and the grasp pressure), the controller may completely

open the force reflection gate and allow the non-passive energy to flow since it can be absorbed

by the user’s hand biomechanics and will not result in unsafe instability. Consequently, even

if the interconnection includes a non-passive communication network and/or non-passive en-

vironment, the controller only compensates for a part of non-passive energy which cannot be
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absorbed by the user’s hand at each time instant. The proposed GPS-map Stabilizer takes into

account the intensity of grasp pressure and the geometry of interaction together with the user-

specific GPS map to find the amount of energy to be compensated for. If the calculated EOP of

the user’s hand is high-enough, the controller can guarantee a perfectly transparent and stable

system regardless of existence of nonpassivity sources.

The proposed GPS-map Stabilizer can be used for any haptic system, including HRR and

HTR, to guarantee stability while enhancing transparency. It relaxes the conventional passivity

assumption on the behavior of the environment (such as the one made in [28, 61]). The major

differences between the proposed GPS-map Stabilizer and conventional state-of-the-art time-

domain passivity controllers, designed for haptic systems [62], are that the proposed technique

(a) takes into account the variable EOP of the user’s biomechanics (considering the amount of

grasp pressure and the geometry of interaction) in order to take advantage of the existing EOP

resources during interaction; and (b) preserves the direction of force feedback in the Cartesian

domain which is important from a practical point of view.

4.4.1 Case Study: Non-passivity of Hand and The GPS-map Stabilizer

In this part, we discuss how the proposed framework can be extended to relax the passivity

assumption on the impeding part of the patient’s hand. Relaxing the non-passivity assump-

tion for the proposed framework requires some extensions in the design of both the GPS-map

visualization technique and the proposed stabilizer. The discussion is divided in two parts:

Part A: Exponential GPS mp (E-GPS map)

Considering the definition given in (4.7), the extent of passivity can be either non-negative

(ξ ≥ 0) which is denoted as EOP, or negative which is denoted as SOP in Section 2.4. As a

result, by conducting the identification calculation given in (4.10), if the outcome (i.e., ξp−i)

is non-negative, then we call it EOP. However, if the patient shows a non-passive behavior in

some directions of interaction, we will have negative ξp−i values which is called SOP. The

current design of the proposed radar plot of the GPS-map (explained in Section 3.3 and shown

in Fig. 4.4(d) for Participant #2) is based on a non-negative radius value (which shows ξp−i)

and a phase value (which shows the direction of interaction). As a result, negative values for
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the radius (which correspond to SOP) are not supported by the design of the radar plot shown

in Section 3.3.

There are different ways to address this. One is to add a third axis to the visualization of

the GPS map which can visualize the negative values. The other technique, explained here is to

use a nonlinear one-to-one mapping function which maps the (−∞,+∞) window of the extent

of passivity to (0,+∞) window of the transformed one. Here we suggest an exponential map-

ping. The result is denoted as Exponential GPS map (E-GPS map) which uses the following

calculation for Eξp−i as the radius of its 2D radar plot:

Eξp−i = eξp−i. (4.22)

In (4.22), ξp−i is the extent of passivity. This value is EOP when it has the positive sign and

is SOP when it has the negative sign. ξp−i is calculated using (4.10) for the ith direction of

stimulation. In addition, Eξp−i is the radius of the radar plot for the E-GPS map. As a result,

Eξp−i can represent both passive and non-passive limb activities. If a patient shows non-passive

limb dynamics in some directions, the E-GPS value in those directions will be inside the unit

circle; and if he/she shows passive limb dynamics, the corresponding value in the E-GPS map

will be outside of the unit circle. As a result, the unit circle represents the border of passivity

in the E-GPS map, proposed to visualize both passive and non-passive behavior of a user.

Part B: E-GPS-map Stabilizer

In the next step, we need to relax the passivity assumption for the proposed controller. For this

purpose, using the same mathematical approach, as used for (4.20) and (4.21), the design of

the FRG function is extended as given in (4.23) and (4.24).

FRG( fp,vp,ξp · vp) :=

 fp(t) if fp(t)T · vp(t)+ξp(t)vP(t)T vp(t)≥ 0,

Ψ(t) otherwise.

(4.23)
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In (4.23), we have Ψ(t) = µ(t) · fp(t)
|| fp(t)||2

, where:

µ(t) =


||ξp(t)vP(t)||2 if ξp(t)vP(t)T vp(t)≥ 0,

||ξp(t)vP(t)||2 if fp(t)T · vp(t)≥ 0,

0 otherwise.

(4.24)

Considering (4.23) and (4.24), if the patient has a passive limb impedance (ξp ≥ 0) the de-

signed FRG function behaves as the one designed in (4.20) and (4.21). However, the new

design covers the case of non-passivity in the patient’s hand (ξp < 0), as well. The extended

stabilizer is denoted as E-GPS-map Stabilizer which utilizes the E-GPS map to observe the

extent of passivity at the patient’s side. For this purpose, it uses the natural logarithm operator

to calculate ξp from the E-GPS map of the patient’s hand.

This stabilizer observes the passivity characteristics of the patient’s hand biomechanics

besides those for the reflected therapeutic forces. If the observed non-passivities in the sys-

tem (which can either be from the therapy terminal or the patient terminal) can be absorbed

by the existing passivity resources in the interconnection, the stabilizer does not change the

transparency. If the above-mentioned condition is not observed by the controller, the stabilizer

tunes the force reflection gate as needed to guarantee the stability of the system according to

the stability condition given in (4.19).

4.5 Experimental Evaluation of GPS-map Stabilizer

In this section, the proposed GPS-map Stabilizer is implemented and the corresponding per-

formance is experimentally evaluated. For this purpose, the table-top upper-limb robotic re-

habilitation device from Quanser Inc. was utilized. The robotic handle was sensorized using

two Interlink pressure sensors which registered the grasp pressure of the user. The experimen-

tal setup is shown in Fig. 4.1. The sensors were connected to a PCIe-6320 data acquisition

card from National Instruments to read the pressure values. The Real-time Quarc library (from

Quanser Inc.) in Matlab/Simulink was used to run the system. The sampling period for run-

ning the setup was 1ms and for data logging was 10ms. To account for possible time-varying
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Figure 4.12: Round-trip Communication Delay

communication delays (which exist in the case of cloud-based rehabilitation), a variable round

trip delay of τ(t) = 100+20sin(2πt) ms was considered as shown in Fig. 4.12.

In order to evaluate the performance of the stabilizer, the experiment was performed for

both a resistive environment (which is a passive viscous force field) and a power-assistive

environment (which is a non-passive negatively viscous force field). During the first phase,

the power-assistive force field was generated in Matlab/Simulink with an assistive gain of

20N.s/m. During the second phase of the experiment, a resistive viscous force field was gener-

ated having a viscous gain of −20N.s/m. It should be noted that while a resistive environment

is a passive component of the system, because of the existence of the communication delays, it

can realize a non-passive interconnection such as the assistive environment. As a result, both of

the above-mentioned environments can challenge interaction stability, as shown in the results.

4.5.1 Power Assistive Force Field

In the first phase, the stabilizer was evaluated for power assistive environment, in four steps.

For the first three steps the controller was turned on. During the first step (t ≤ 28 s), some

sudden sharp disturbances were applied to the robot when the user was not holding the robotic

handle (zero grasp pressure). In this situation, the stabilizer was considerably challenged since

no dissipation was applied by the user’s hand. The velocity and force trajectories can be seen

in Figs. 4.13a, 4.13b, and 4.13c, when t ≤ 28 s. As shown in these figure, the controller

was able to stabilize the system and the robot behaved in a safe manner and the trajectories

quickly converged to zero after the disturbances were applied. In fact, using the identified GPS

map of the user’s hand and the measured grasp pressure, the calculated EOP was zero while the

nonpassive assistive therapy was being applied. Consequently, the controller was automatically

activated to damp out the energy and stabilize the system.



4.5. EXPERIMENTAL EVALUATION OF GPS-MAP STABILIZER 197

(a)

(b)

(c)

(d)

(e)

Figure 4.13: The controller is turned on: (a) the received force at the user’s side versus the
modified force in the X-direction, (b) the force trajectories in the Y-direction, (c) the velocity
trajectories, (d) the power trajectories, (e) the grasp pressure.
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In the second step (28s≤ t ≤ 50s), the user provided a soft grasp while moving the robot in

2 degrees of freedom. In this step, since the user provided some grasp pressure, the calculated

EOP was not zero and the controller allowed part of the non-passive energy to be delivered

to the user’s hand since it could be partially absorbed by it. The force and motion trajectories

are shown in Figs. 4.13a, 4.13b, and 4.13c, for 28s ≤ t ≤ 50s. As can be seen in Figs. 4.13a

and 4.13b, the controller has modified the delivered force to guarantee stability. In addition,

the power modification is shown in Fig. 4.13d. As shown in the figure, during this step,

since the amplitude of the received power packets (solid blue line) was higher that the power

that could be absorbed by the user’s hand (solid green line), the controller has modified the

energy (solid red line) through force modification. As a result, the user could feel the assistive

nonpassive forces in the same direction as that of the delivered forces, while the amplitude was

modified based on the knowledge of the energy absorption capability of the user’s hand. The

corresponding grasp pressure is shown in Fig. 4.13e, when 28 s≤ t ≤ 50 s.

In the third step of this experiment, the user provided higher grasp pressure (shown in Fig.

4.13e, when t > 50s) while moving the robot in 2 DOF. In this situation, the amplitude of

the power absorption capability of the user’s hand was higher than the delivered non-passive

assistive power (this can be seen in Fig. 4.13d when t > 50s). Consequently, the controller

allowed all the non-passive power to be reflected back to the user’s hand without sacrificing

the stability of the system, as shown in Fig. 4.13d for t > 50s. As a result, the user was able to

feel all the assistive forces (shown in Figs. 4.13a and 4.13b when t > 50s) since the controller

did not change the reflected nonpassive forces/power and the transparency of the system is

completely preserved despite the existence of communication delays and nonpassive assistive

environment.

Note that the system behaved in a stable manner during all three steps when the controller

was turned on. In the fourth step of the first phase, the controller was turned off and the user

tried to gently move the robotic handle. The force and velocity trajectories are shown in Fig.

4.14. As shown in Fig. 4.14, once the user touched the robot, the system became unstable and

went out-of-control. The trajectories grew in an exponential manner and the robot slammed

into the boundary of the workspace.
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Figure 4.14: The controller is turned off: (left) the force trajectories, (right) the velocity trajec-
tories.

4.5.2 Resistive Viscous Force Field

In the second phase of the experiment, the stabilizing behavior of the controller is shown for the

delayed resistive viscous environment. Similar four steps (conducted for phase 1) have been

tested for phase 2. In the first three steps (t < 75s), the controller was turned on and different

disturbances, motion trajectories and grasp pressures were applied to the robotic handle. The

corresponding motion (velocity and position) trajectories are shown in Fig. 4.15, when t < 75s.

As can be seen in Fig. 4.15, during the first three steps, the system behaved in a completely

stable manner. In addition, the grasp pressure and the power modification are shown in Figs.

4.16a and 4.16b, respectively.

In the forth step, the controller was turned off and the user provided gentle movement

that resulted in instability in the form of out-of-control high-frequency diverging oscillations.

The corresponding motion profiles are shown in Fig. 4.15, when t > 75s. Due to the intense

instability, the mechanical transmission cable of the robot broke.

The results shown in this section, validate the performance of the proposed technique and

illustrate that the GPS-map Stabilizer can guarantee stability and interconnection safety based

on the real-time estimate of the capability of the user’s hand biomechanics in absorbing in-

teraction energies in different directions of interaction. If the user provides enough energy

absorption, the controller does not change the reflected forces and allows the non-passive en-

ergy to be completely delivered. This results in a perfectly stable and transparent system in the

presence of communication delays and a non-passive environment.



200 CHAPTER 4. GRASP-BASED PASSIVITY SIGNATURE FOR HAPTIC INTERACTION

(a) (b)

Figure 4.15: Motion trajectories for the case of a viscous environment: (a) 2D position over
time, (b) 2D velocity over time.

4.6 Conclusion

In this chapter, Grasp-based Passivity Signature (GPS) of the human upper-limb was studied

in the context of the strong passivity theorem. The proposed GPS map provides a graphical

tool to assess and analyze the capability of a user’s hand in absorbing interaction energies.

For this purpose, a user study was conducted consisting of 11 participants to analyze their

arm’s and wrist’s (both right and left) excess of passivity (EOP), with respect to changes in

grasp pressure and geometry of interaction. It was shown that there is a statistically-significant

correlation between the change in EOP and (a) the provided grasp pressure, (b) the geometry

of interaction. Further statistical investigations may shed more light on different characteristics

of the proposed GPS map. Some interesting research questions are the following: “Does the

GPS map have a typical shape?”, “Is there any similarity between the shape for right and left

hands?”, “Does human handedness affect the shape of the map?”, and “How do gender, age

and disabilities affect the shape of the map?”. In this chapter, GPS map was proposed for

the first time and used in the design of a new controller called the GPS-map Stabilizer. The

controller was shown to be capable of guaranteeing human-robot interaction safety through

the use of the proposed GPS map. The stabilizer was motivated by application in haptics-

enabled rehabilitation technologies where special attention needs to be paid to ensure patient-

robot interaction safety. The proposed theory can also be used for conventional haptic and

haptic teleoperation systems. The goal of the proposed stabilizer was to minimize transparency
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(a) (b)

Figure 4.16: The controller is turned on (second phase): (a) the grasp pressure, (b) the power
trajectories.

distortion using knowledge of the capabilities of the human upper limb in absorbing energy and

changes in this capability due to a variable grasp pressure. The stabilizer behaves like a force

reflection gate which is completely open if a user provides enough EOP, but otherwise closed

just enough to ensure stability. Statistical evaluation and experimental results were reported in

support of the proposed technique and the developed theory.
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Chapter 5

A Supervised Therapist-in-the-Loop

Technique for Training of Haptics-enabled

Robotic Rehabilitation Systems

The material presented in this chapter has been submitted to the IEEE/ASME Transactions on

Mechatronics, 2016.

5.1 Preliminaries

According to clinical statistics and gerontological studies, one of the leading causes of move-

ment disabilities in the rapidly increasing population of aged people is stroke [1, 2]. It has been

shown that early, repetitive and goal-oriented motor rehabilitation can help post-stroke patients

to regain some of their lost vital motor functions which increases their quality of life and level

of independence. It is believed that the mentioned improvement is due to a phenomenon called

Neural Plasticity (NP) that enhances damaged neural pathways and empowers less-damaged

redundant pathways [3].

Considering the increasing population of post-stroke patients, there is a need for increasing

accessibility to rehabilitation therapies through the use of neuromechatronic technologies [4].

Programmable Virtual-Reality (VR)-based Haptics-enabled Robotic Rehabilitation (HRR) sys-

tems have shown great potential in accelerating NP and enhancing the quality of motor perfor-
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Figure 5.1: The Quanser upper-limb rehabilitation robot and the implemented VR environment
used in this chapter. The VR environment is displayed to the user via a head-mounted display.
The target is shown by the green square. The patient movement is shown as the motion of the
orange circle. The location of the target changes based on (a) the proximity of the patient to the
defined target, and (b) the elapsed time for each motion. The possible locations of the targets
are shown by the small purple squares.

mance for post-stroke patients [5, 6]. There are several factors which contribute to the men-

tioned effectiveness, as given below.

a) Robots are programmable and powerful and can be used for a wide range of patients with

different biomechanics to deliver repetitive longitudinal motor therapy.

b) Robots can register motion and force profiles during rehabilitation therapies, which al-

lows for accurate objective assessment of motor control.

c) VR-based environments provide patients with goal-oriented motor tasks that enable them

to use their decision-making abilities for accomplishing a rehabilitative task. This is a

key factor for accelerating NP in comparison with passive limb motions [7, 8].

Two forms of motor therapy have been commonly delivered through the use of HRR sys-

tems, namely: Assistive Therapy (AT), and Resistive Therapy (RT). AT is prescribed when

patients cannot execute the required motor task due to impaired muscle control caused by the

stroke. During AT, the robot guides patients while assisting them towards the correct path of
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motion. In fact, AT amplifies the patients’ motor power to keep them engaged with the goal

of better triggering NP. RT is delivered when patients can manage to perform simple motor

tasks. As a result, the robot provides a virtual viscous environment to dissipate parts of the

energy generated by the patients to make the task more challenging for them. The goal of RT

is enhancing motor control and equalizing the muscle power [7, 9].

There are three major components with HRR systems, namely (a) a powerful haptics-

enabled rehabilitation robot which delivers the programmed therapeutic force field; (b) a VR

environment that provides the patients with the required visual cues needed to perform the

tasks in a goal-oriented manner; (c) a Programmable Virtual Therapist (PVT) algorithm that is

responsible for calculating the required forces to be delivered by the robot during task execu-

tion [7, 9, 10]. The HRR system discussed in this chapter is shown in Fig. 5.1, which includes

an upper-limb table-top planar rehabilitation robot from the industrial partner of this study,

Quanser Inc. (Markham, Canada).

In [11] and [12], comprehensive literature reviews have been presented on multi-modal

stimulation of motor learning including haptics-enabled rehabilitation therapy. As discussed

in [11] and references therein, one of the open problems regarding the use of haptics-enabled

robotic rehabilitation technologies is the design of the amount of the assistive/resistive thera-

peutic force fields (called “therapy intensity” in this chapter) to be delivered to the patient’s

impaired limb. This intensity is correlated to the choice of control parameters (such as the

stiffness of the virtual guidance) considered for delivering haptic therapy. Although the control

parameters are conventionally set as fixed values, it is believed that these parameters need to

be adaptively tuned by taking into account (a) specific kinematics and biomechanics of each

patient during a task, (b) the motor control capability of the patient in performing the task, and

(c) characteristics of neuromechanical deficits caused by the stroke [12]. In addition, if more

haptic guidance is delivered than needed, it can result in excessive reliance of the user on the

guiding feedback. This can cause passive participation of the user during therapy instead of the

interactive participation required to stimulate NP [11, 12]. Accordingly, automated adaptive

(such as assist-as-needed and fading feedback) techniques have been proposed in the literature

to provide some level of adaptation considering the motor performance of the user [11–13].

Although through the use of the above-mentioned adaptive techniques, the performance of
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HRR systems can be improved, it is not possible to find an automated algorithm that matches

the knowledge and experience of a skilled expert therapist. In addition, although in general the

literature supports the effectiveness of robotic rehabilitation systems, there are reports showing

that in some cases robotic therapy can be even less effective than conventional human rehabili-

tation [14, 15]. It is believed that the aforementioned observation is due to the lack of flexibility

in tuning the control parameters (which may result in improper choice of parameters) com-

pared to conventional therapy where the human therapist is capable of appropriately modifying

the “strategy” and “amount of haptic guidance” [11, 12] during therapy. This modification of

therapy by therapists is known to be a key factor for delivering effective rehabilitation [16].

The above-mentioned challenge regarding the practical use of robotic rehabilitation systems

for a wide range of patients with different neuromechanical characteristics provides the main

motivation for this work.

The rest of this chapter is organized as follows. In Section 5.2, the motivation, overview and

main contributions are highlighted. In Section 5.3, the method for implementing the framework

is described. In Section 5.4, experimental results are presented. Conclusions are given in

Section 5.5.

5.2 Introduction and Problem Statement

Recently, machine learning techniques have been suggested for training assistive robots in

smart home environments [17]. In this chapter, we propose a new framework that fuses the

concepts of machine learning and rehabilitation robotics to address the issue mentioned in

Section I. The proposed framework has two major phases, namely (A) Supervised Therapy

Demonstration (STD) phase, when the therapist is in the loop of interaction with the patient for

delivering haptic rehabilitation, and (B) Regeneration through Modeling (RTM) for reproduc-

ing therapeutic behavior similar to that demonstrated in the first phase for the patient when the

therapist is not in the loop.

During the first phase (i.e., STD), the therapist controls the intensity and strategy of ther-

apeutic force production. In the next phase (i.e., RTM), the distribution of the therapeutic in-

tensity/strategy are modeled (for the purpose of therapy regeneration) using a Neural Network
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(NN) algorithm. The learned kinesthetic behavior of the therapist will then be regenerated for

the patient while the therapist can use his/her time to work with another patient. These steps can

be repeated as many time as needed and the therapist can change the strategy repetitively. This

architecture is an alternative to tuning the intensity and strategy of the required therapy and

brings the conventionally-absent kinesthetic supervision of a human therapist during robotic

therapy. The specific design of the proposed platforms, which is compatible with cloud-based

communication, allow for transferring the expertise of therapists over distances. This responds

to the current interest in tele-rehabilitation and cyber-medicine [18–20]. Another outcome of

the framework is a new visualization technique that can provide a heat map of the intensity of

the delivered therapy by the therapist for each session. The map can be used by clinicians for

monitoring progress of a patient’s motor performance over several sessions of therapy.

To implement the proposed framework, two platforms have been suggested in this chapter

as described below:

A) Haptics-enabled Teleoperated Supervised Training (HTST): This platform is a teler-

obotic system, whose feasibility was shown recently by the authors [21, 22]. This system is

composed of two haptic devices, one at the therapist’s side and the other at the patient’s side.

The control algorithm used in this chapter provides a virtual viscoelastic coupling between the

motions of the therapist and those of the patient. It should be noted that in this chapter, the

term “viscoelasticity” refers to a system with both “viscosity” and “elasticity” components.

HTST architecture allows the therapist to directly tune both the intensity and the strategy of

therapy. In fact, the therapist can assist the patient by leading his/her motion towards the target

in the shared VR environment, or can resist the patient’s movements thus, changing the therapy

strategy. With the proposed viscoelastic coupling, the patient is allowed to make mistakes in

tracking the target while performing motor tasks. This is an important factor for motor learn-

ing [11], as opposed to rigidly controlling the patient’s motions. The intensity of the therapy

can be tuned by the therapist based on the distance between his/her position and that of the pa-

tient in the shared VR. This architecture enables haptic awareness for the therapist and allows

him/her to feel the forces delivered to the patient’s hand. The detailed design of the architecture

is given in the next section and a corresponding schematic of the implemented HTST platform

is shown in Fig. 5.2. •
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Figure 5.2: A schematic of the implemented HTST platform used in this chapter. The VR
environment is shared between the therapist and the patient where the orange and yellow circles
correspond to the patient’s and therapist’s movements respectively. The therapist’s side robot
is a 5-DOF HD2 haptic device from Quanser Inc. whose rotations and Z direction motion
are locked to provide kinematics similar to the patient-side robot. The patient-side robot is a
2-DOF upper-limb rehabilitation robot from Quanser Inc.

B) EMG-based Indirect Supervised Training (EIST): This is a new platform, proposed

in this chapter, which is less expensive compared to the HTST platform but does not enable

direct haptic awareness for the therapist during the STD phase. This platform still allows keep-

ing the therapist in the loop of robotic rehabilitation and makes it possible for him/her to tune

the strategy and the intensity of therapy. For this purpose, the platform proposes to utilize an

intuitive therapy modification machine using which the therapist can quickly, easily (preferably

in a hands-free manner), and in real-time tune the strategy and/or intensity of therapy. Among

several possibilities, we propose to utilize wireless measurement and analysis of the therapist’s

gesture based on EMG measurements of the therapist’s muscle activities using multi-electrode

EMG armbands. The benefits of this choice are: (a) real-time implementation, (b) hands-free

performance, (c) no restriction of the motion and workspace of the therapist, (d) intuitive in-

tensity modification, and (e) quick calibration (as explained later in this chapter).

For this purpose, two wearable wireless EMG armbands are considered to be used by the

therapist. The muscle activities of the therapist are analyzed and mapped to the required level

of assistance (using the right arm) and resistance (using the left arm). The therapist can tune the
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Figure 5.3: A schematic of the implemented EIST platform used in this chapter. The VR envi-
ronment is shared between the therapist and the patient. The therapist-side system composed
of two EMG armbands from Thalamic Labs Inc. which measure the muscle activity of the ther-
apist’s hand. The platform maps the EMG activity to generate a therapeutic action in the VR
environment by changing the therapist’s position.

strategy and the intensity by making different types of postures (e.g., tight fist versus relaxed

fist) for different arms (right or left). Fist posture is called therapy posture in this chapter. Us-

ing the EIST platform, the strength of the therapy posture provided by the therapist is mapped

to the position difference that is kept between the patient and the therapist in the shared VR

environment when the viscoelastic coupling exists between the two motions. As a result, one

arm of the therapist (the right arm) can provide leading forces towards the target in the shared

VR environment to deliver assistance, and the other arm (the left arm) can provide lagging

forces to deliver resistance. This design provides an intuitive way of therapy modification per-

formed by the therapist. Slowly fading dynamics for the delivered therapy are also considered

to ensure that the therapist prefers to keep a specific intensity of therapy during a motor task.

Detailed design of the architecture is given in the next section and a corresponding schematic

of the implemented EIST platform is shown in Fig. 5.3. •

It should be emphasized that both HTST and EIST platforms fuse the advantages of using

conventional HRR systems and having the skills of a human therapist in the loop of therapy.

The common goal is to provide patients with an “augmented” therapeutic environment that

incorporates the therapist’s expertise instead of conventional “virtual” therapy. Both platforms

use the shared VR environment which is more closely shown in Fig. 5.4.
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Figure 5.4: The shared VR environment: the orange and yellow circles correspond to the pa-
tient’s and therapist’s movements respectively. The red line is the virtual viscoelastic coupling
between the motions of the therapist and the patient.

5.3 Method

In this section, the design of the proposed framework is described. The framework consists

of two separate phases STD, and RTM. STD is conducted using the two different platforms,

namely HTST and EIST, while the second phase is the same for both platforms.

5.3.1 Phase A: Supervised Therapy Demonstration

During the first phase of the proposed framework, the therapist provides rehabilitation to the

patient and tunes the intensity and the strategy of therapy based on her/his knowledge of the

needs of the patient. For this purpose, two alternative platforms are proposed, as explained

below.

Platform #1: Haptics-enabled Teleoperated Supervised Training: The first platform

is a haptics-enabled telerobotic system that enables the therapist to directly interact with the

patient and feel the kinesthetics of rehabilitation during task performance. In other words,

this platform can provide the therapist with haptic awareness of interaction. A Two-channel

Haptics-enabled Architecture (THA) is considered to design the system. THA is an exten-

sion of Lawrence’s four-channel telerobotic architecture [23]. The patient is placed at the

conventionally-called “master” console of the telerobotic system, where she/he can provide

the required motion to perform a task in the shared VR environment. The therapist is placed at
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the “slave” console where she/he can feel the motions generated by the patient and can provide

therapeutic forces to be reflected back to and felt by the patient.

To investigate the performance, first, the haptic interaction models at the therapist’s side

and the patient’s side are defined. After applying a local feedback linearization algorithm [24]

to compensate for nonlinearities, the patient-robot haptic interaction model is obtained

δm(t)∗ vp(t) = ucm(t)+ fp(t). (5.1)

In (5.1), δm(t) is the impulse response of the linearized model of the master robot, ∗ is the con-

volution operator, t denotes time, ucm(t) is the control input for the master robot to deliver the

appropriate therapy. The design of ucm(t) is explained later. In addition, vp(t) is the patient’s

hand velocity, and fp(t) is the force applied by the patient to the handle of the master robot.

The force felt by the patient is in the opposite direction to fp(t) which means that

f r
p(t) =− fp(t). (5.2)

For fp(t), we have the following decomposition:

fp(t) = f ∗p(t)−ζp(vp, t). (5.3)

In (5.3), f ∗p(t) is the voluntary component of the force applied by the patient to perform the task

and ζp(vp, t) is the nonlinear reactive component of the force which results from the biome-

chanical response of the patient’s hand to the movement applied by the robot.

Similar to the above, the therapist-robot haptic interaction model can be described by

δs(t)∗ vth(t) = ucs(t)+ fth(t),

fth(t) = f ∗th(t)+ zth(vth(t), t).
(5.4)

In (5.4), δs(t) is the impulse response of the linearized model of the slave robot and ucs(t) is the

control input for the slave robot. The design of ucs(t) is explained later. In addition, vth(t) is

the therapist’s hand velocity, and fth(t) is the force applied by the therapist to the slave robot to

administer the therapy. In addition, zth(vth(t), t) denotes the nonlinear reaction dynamics of the
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therapist’s hand and f ∗th is the exogenous force applied by the therapist to generate the haptic

therapeutic response based on the patient’s need.

After developing the local haptic interaction models, the control signals ucm(t) and ucs(t)

should be designed to develop the viscoelastic coupling between the therapist’s and the pa-

tient’s movements. The suggested designs and the corresponding functions are explain below.

ucm(t) = c1(t)∗ vp(t)+ f̂th(t)

where c1(t) = δm(t);
(5.5)

ucs(t) =−γ(t)∗ (v̂p(t)− vth(t))+ c2(t)∗ v̂p(t)

where c2(t) = δs(t).
(5.6)

In (5.5) and (5.6), f̂th(s) is the therapeutic force which is received at the patient’s side. In

addition, v̂p(t) is the patient’s hand velocity which is received at the therapist’s side. In this

chapter, particular attention is paid to the design of γ(t). In fact, γ(t) makes the mentioned

viscoelastic coupling between the therapist’s and the patient’s movements.

Note that γ(t) =L −1[Γ(s)
]
, where L (·) denotes the Laplace transform, “s” is the Laplace

operator and Γ(s) is

Γ(s) = ∆s(s)−
Kv +θv s

s
where ∆s(s) = L [δs(t)]. (5.7)

In (5.7), Kv is the stiffness constant and θv is the viscosity constant of the aforementioned

virtual viscoelastic constraint provided by the proposed haptics-enabled telerobotic system be-

tween the motions of the patient and those of the therapist. To clarify how this design generates

the required viscoelastic constraint, we combine (5.1) to (5.7) to obtain:

Fr
p(s) = F̂th(s);

Fth(s) = (Kv +θv s) · (Pth(s)− P̂p(s)
)
.

(5.8)

The first equation in (5.8) states that the force felt by the patient is equal to the force generated

by the therapist. In addition, the second equation indicates that the therapeutic force is the

output of the considered viscoelastic dynamics (whose stiffness and viscous parameters are Kv,
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Figure 5.5: Placement of the the MYO EMG armband used in this project and a sample of the
recording during fist-and-relax task

θv). The aforementioned dynamics are stimulated by the position error (as the input signal)

generated by the therapist between his/her and the patient’s movements. As a result, the thera-

pist can assist or resist the patient’s movement by providing various position-error profiles. The

system gives both users the feel of haptic interaction through a virtual viscoelastic coupling.

Allowing the therapist to feel the coupling forces enables haptic awareness for him/her.

The therapist can change the intensity of the therapy by modifying the magnitude of the

position error. In addition, he/she can change the strategy (assistive or resistive) by changing

the sign of the error. Consequently, if the therapist does not touch the slave robot, the er-

ror will remain zero and the patient will not received any therapeutic forces. This error-based

therapist-in-the-loop approach is motivated by the commonly accepted need for providing free-

dom during interaction to accommodate motor learning [11]. This concept will be also used in

the second platform.

Platform #2: EMG-based Indirect Supervised Training: The second platform is a new

architecture which can also keep the therapist in the loop of robotic rehabilitation. It is pro-

posed to log the therapist’s intention in changing the intensity and strategy of therapy through

the therapist’s hand posture. In this chapter, the fist posture is considered as the posture of

interest though the system has the capability of considering a different posture for therapy. The

platform is shown in Fig. 5.3 and a closer look at the armband together with an example of one

out of eight available EMG readings during a fist-and-relax test are shown in Fig. 5.5.

As mentioned earlier, in order to implement the EIST platform two EMG armbands (from

Thalamic Labs Inc., ON, Canada) are utilized. The use of the wearable wireless armbands
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provides movement freedom for the therapist and this is one advantage of the EIST system over

HTST. In addition to the above, currently each armband costs about US $ 200. This means that

at the therapist-side the EIST setup costs about US $ 400 whereas the cost of having a second

robot at the therapist’s side (for HTST) can be several orders of magnitude higher. As a result,

the design of the EIST system is cost-effective which is an advantage of this platform over

HTST. However, EIST system is not capable of providing the therapist with direct kinesthetic

awareness. This means that, the therapist cannot directly feel the kinesthetic forces applied to

the patient’s hand which would be needed to better tune the therapy.

In order to implement the EIST platform, a three-step protocol is designed. The goal of

the first step is to collect enough data which is then used in the second step to learn (for

detection) the posture of interest to be used in the third step. The third step maps the detected

posture of interest to the intended therapy which will be then provided to the patient using the

rehabilitation robot. The steps are described below.

Step #1) The therapist wears the two EMG armbands lower than his/her elbow joints. There

is no need for accurate placement of the armbands. In addition, there is also no need for nor-

malization of the EMG readings using activities of the muscles during maximum contraction.

Instead, every time that the therapist wears the armbands, a two-minute calibration procedure

should be conducted as explained below. The goal is to match the current positioning of the

electrodes to find the posture of interest based on the EMG readings. The therapist will be

asked to perform the following postures: (a) waving out, (b) waving in, (c) expanding fingers,

(d) making fist, and (e) four thumb-to-finger touching postures. The postures are shown in Fig.

5.6. The first four postures are similar to the basic ones suggested by the software provided for

the armbands. In the protocol suggested here, each one of the aforementioned postures needs

to be kept for at least 5 seconds while having at least 2 seconds rest in between. The posture

of interest should be kept no less than 15 seconds. A binary foot pedal is considered for the

setup. The pedal needs to be pushed by the therapist only during the posture of interest. As

mentioned earlier, here we chose the making fist posture to register the therapist’s intention

for tuning the therapy. The output of the pedal is a binary value that is used to distinguish the

posture of interest from other postures in the logged data. The output of the pedal is “1” during

the posture of interest and is “0” during other postures. The above-mentioned procedure forms
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Figure 5.6: Calibrating Postures

step #1 of the protocol and the time needed to run this step is about 1 minute for each arm (i.e.,

2 minutes in total). •

Step #2) The functionality of the second step of the protocol is to find a mapping between

the 8-dimensional space of the EMG measurements (provided by each armband) and the 1-

dimensional space of the detected posture of interest (given by the foot pedal). The mapping is

named EMG Analyzer. Based on the observations made in this step, in order to find an appro-

priate mapping, it is required to take into account the history of the EMG measurements and

consider dynamical characteristics. For this purpose, in addition to the 8 original raw EMG

measurements, two digital low-pass filters have been applied in the pre-processing step. The

Z-transform of the aforementioned filters are 0.01
(z−0.99) and 0.002

(z−0.998) , when the sampling fre-

quency for the filters is 1KHz. The first filter is considered to provide short-term memory for

the posture identification procedure and the second filter is considered to provide longer-term

memory. As a result, 24 signals (8 raw signals plus 16 filtered signals) are considered to find

the aforementioned mapping. In order to identify the mapping, a feed-forward neural network

is utilized. The architecture considered for the network is composed of three hidden layers

where the first and the third layers have 5 perceptrons and the second layer has 15 perceptrons.

A linear transfer function is considered for the first and third layers while a log-sigmoid func-

tion is considered for the second layer. The training algorithm for the network is Levenberg-

Marquardt back-propagation. A schematic of the utilized NN and the corresponding inputs

and output is shown in Fig. 5.7. In order to represent the functionality of the above-mentioned



222 CHAPTER 5. SUPERVISED TRAINING FOR ROBOTIC REHABILITATION SYSTEMS

Figure 5.7: The neural network used and the corresponding inputs and output.

identification procedure, the result for one arm is discussed below when after eleven iterations,

the NN converges to the mean-square error of 0.0001. After training the NN, its performance is

evaluated for various postures including a new one (i.e., arm pronation-supination). The results

are shown in Fig. 5.8 where the raw EMG measurement is given in Fig. 5.8a and the output of

the trained NN is given in Fig. 5.8b. As can be seen in the figures, the trained NN is capable

of appropriately detecting the fist posture and distinguishing it from other postures. •
Step #3) The third step is denoted as EIST-based Therapy Production. The main purpose

of this step is to map the detected posture of interest to an intended therapeutic behavior for

applying various forces and tuning the therapy’s strategy and intensity. In other words, this step

maps the identified posture of interest to a kinesthetic stimulus, which will then be delivered

to the patient’s hand by the robotic rehabilitation device. For this purpose, first the following

dynamics are defined:

Eth(n) = Sat
[−Em, Em]

{
η · εth(n)

}
, where

εth(n) = α · εth(n−1)+

β ·
(

EMGNR(n)−EMGNL(n)
)
.

(5.9)
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(a)

(b)

Figure 5.8: Evaluation of the trained NN: (a) the eight raw EMG measurements, (b) the NN
output for detecting the fist posture. The time episodes of different postures can be seen in (b).

The dynamics given by (5.9) define the position error Eth(t) to be delivered through the vis-

coelastic constraint as a part of the proposed VR environment (please refer to (5.8) for defini-

tion of position error and the resulting force). In (5.9), Sat{·} is the saturation function whose

limits are [−Em, Em], and n represents the time samples. In addition, η is a scaling factor for

normalization to cover the range of position error to be used in the VR environment. Also,

EMGNR(n) is the output of the neural network trained for the right arm, and EMGNL(n) is the

output of the neural network trained for the left arm. Accordingly,
(

EMGNR(n)−EMGNL(n)
)

is termed differential muscle activity factor provided by the therapist. Let us initially assume

α = β = 1. The functionality of α and β is explained latter in this section. Based on the above

definitions, the therapeutic force generated by the EIST platform is

Fth(s) = (Kv +θv s) ·Ξth(s),

where Ξth(s) = L [Eth(t)].
(5.10)

In other words, using (5.9), in order to generate the supervised therapeutic forces, the therapist

can tune the position of the object (corresponding to his/her motion) in the VR environment

(like the yellow circle in Fig. 5.4) through providing various postures for his/her right and

left arms. In this way, the therapist can tune the intensity and strategy of therapy based on
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his/her intention. As a result, the patient will feel the kinesthetic forces generated by the

virtual viscoelastic constraint, which is stimulated through the existence of E(t). Accordingly,

positive values for E(t) result in generation of assistive therapeutic forces and negative values

for E(t) result in resistive forces. Here, the position corresponding to the therapist’s actions

(used in the VR environment) is calculated as

pth(t) = pp(t)+Eth(t) ·Q(t)

where Q(t) =
(

pp(t)−pT (t)
||pp(t)−pT (t)||2

)
.

(5.11)

In (5.11), pp(t) is the position of the patient, Eth(t) is the position error generated by the

therapist to provide therapeutic forces through the viscoelastic constraint, pT (t) is the position

of the target, and Q(t) is the normalized unit vector that connects the concurrent position of the

patient to the one for the target.

Note that in (5.9), Em is a positive value considered to provide the maximum and minimum

limits for delivery of the position error by the therapist. This value can be tuned based on

the size of the robot’s workspace. The right and left arms of the therapist are considered to

identify his/her intention for delivering assistance and resistance, respectively. As a result,

considering the dynamics given by (5.9), when the output of the NN trained for detecting

the therapist’s right fist increases, the E(t) will gradually increase. When the output of the

NN trained for detecting the therapist’s left fist increases, the E(t) will gradually decrease.

Continuous reduction in E(t) value can make it negative. As a result, using the proposed

architecture, the therapist is able to tune the intensity and strategy of therapy by providing

various postures in left and right arms. •

Remark 5.1. Regarding the functionality of α: this parameter works like a forgetting

factor and should be chosen as 0≥ α ≥ 1. As a result, if α = 0, no memory is considered for

the generated therapeutic behavior. This means that once the therapist provides the posture of

interest, the resulting position error in the VR environment will change correspondingly and

when the therapist stops the posture, the position error in the VR environment will become

zero. As a result, the therapist needs to keep the posture to deliver the intended therapeutic

forces. However, for α = 1 the therapist can provide the intended therapy through a “pumping-

like” motion. Once the therapist provides the posture of interest, a position error will be set for



5.3. METHOD 225

the patient even if the therapist relaxes his/her hand. The therapist can still decrease/increase

the position error using his/her arm postures. As a result, the therapist can “pump-in” and

“pump-out” the position error. An α value close (but not equal) to unity results in a similar

behavior for the system; however, it introduces a leakage of error in the VR environment. As a

result, if the therapist stops providing the posture, the position error will gradually converge to

zero. The leakage rate correlates with the choice of α (the lower the α value, the faster will be

the leakage). This can help the therapist in tuning the required assistance/resistance. •

Remark 5.2. Regarding the functionality of β , it should be noted that this parameter works

like a responsiveness factor that increases the sensitivity to the differential muscle activity

provided by the therapist. The higher this parameter, the faster the position error will grow

in response to
(

EMGNR(n)−EMGNL(n)
)

. In other words, by increasing this parameter, the

therapist can quickly change the strategy and intensity of the intended therapy while providing

less differential muscle activity. •

In order to evaluate the behavior of the design proposed in (5.10), the following experiment

was conducted. The user was required to follow a desired trajectory of an object in the intro-

duced VR environment. The trajectory was a periodic triangle wave signal with a frequency of

0.2Hz and an amplitude of 6 cm. The user was required to perform the task by tuning the dif-

ferential muscle activity. The goal of this experiment was (a) to show that using the proposed

EIST platform it is possible to accurately provide varying position error in the VR environment

to be used for tuning the intensity and strategy of the intended therapy, and (b) to find default

values for α and β which result in an appropriate control of the therapy. The results are shown

in Fig. 5.9, where the solid red line shows the required trajectory in the VR environment and

the solid blue line shows the position generated by the user in the VR environment. The chosen

default values for α and β are 0.999 and 0.1, respectively which were used in this experiment

and provided straightforward control over the task. As can be seen in Fig. 5.9, the user was

capable of accurately tracking the corresponding position of the moving object in the VR en-

vironment. It should be noted that in practical situations, the therapist usually does not change

the strategy (which corresponds to changing the sign of the position error here) and intensity

(which corresponds to the amplitude of the trajectory) as frequently. Here, we confirmed the

capability of this new platform in mapping the intention of the user to track the required be-
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Figure 5.9: EMG-based motion tracking in the VR environment.

havior in the VR environment through providing differential muscle activities. This can then

been utilized to produce therapeutic forces (as explained before).

5.3.2 Phase B: Regeneration Through Modeling

During the second phase of the proposed framework, first the behavior of the therapist, which

is registered during the first phase (using either the EIST or HTST platform) in connection

with adjusting the strategy and the intensity of the therapy is modeled. Then, the modeled

therapeutic behavior is regenerated for the patient when the therapist is not engaged. The

therapist can assign a duration for therapy regeneration through the RTM phase so that she/he

can work with another patient. Consequently, the proposed framework learns the behavior

of the therapist based on the first phase, then regenerate the learned behavior for the patient

during a specific amount of time. In this way, the therapist does not need to spend all of his/her

time with one patient and can share it between several patients. This addresses an essential

need of under-resourced healthcare systems. In addition, this allows the therapist to intuitively

supervise the intensity and strategy of the therapy delivered by the HRR robotic systems. The

following two steps are to be followed during the second phase of the framework.

STEP 1) The first step is to model the therapeutic behavior delivered by the therapist whose

corresponding data is logged during the first phase. For this purpose, first, the distribution

of the therapeutic position error delivered over the workspace by the therapist is calculated.

The distribution represents the therapist’s intention in tuning the strategy and intensity of the

therapy. Then, the calculated distribution is fed to the therapy modeling module. The module

is responsible for fitting an NN representation of the therapy, which can be saved and used in
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Figure 5.10: Schematic of the Proposed Framework

the second step where the therapeutic behavior is regenerated. The neural network used in this

part is composed of three hidden layers where the first and the third layers have 5 perceptrons

and the second layer has 15 perceptrons. A linear transfer function is considered for the first

and the third layers while a log-sigmoid function is considered for the second layer. In addition

to the above, the training algorithm considered for the network is Levenberg-Marquardt back-

propagation. It should be noted that the output of the NN over the workspace of the therapy

can be graphically plotted as a heat map. The plot is denoted as Therapeutic Intensity Map

(TIM). This can be utilized as a graphical representation of the therapy in follow-up sessions,

which can intuitively inform the therapist about the therapeutic behavior delivered in the last

session. Comparing several TIMs of consecutive sessions can be a useful tool for therapists to

monitor the progress of motor performance. In Section IV, examples of the TIM are shown. •

STEP 2) The second step is when the modeled therapeutic behavior is regenerated and

generalized in the workspace of therapy for the patient. The therapist can leave the patient to

repetitively perform various rehabilitation tasks while the therapist works with another patient.

During this step, the trained NN will be utilized to map the current position of the patient in the

workspace of therapy to the modeled therapeutic intensity and strategy delivered by the thera-

pist during the first phase. For example, if during the first phase, the therapist provided higher

intensity of assistive therapy in parts of the workspace (that can be due to high muscle tone of

the patient in that area because of the stroke), the patient will feel more assistive forces (during

the second phase) when her/his motion trajectories pass through that area. Consequently, the
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Figure 5.11: The workspace of the robot which corresponds to the provided VR environment.

input to the trained NN is the current position of the patient in the workspace of the therapy and

the output is the corresponding position error with respect to the target needed to regenerate

the required therapeutic intensity and the resulting forces (using (5.10)). •
The proposed framework is summarized in Fig. 5.10.

5.4 Results

In this section, experimental results are given in support of the proposed framework. For this

purpose, both HTST and EIST platforms are implemented and tested. The following steps are

implemented to conduct the validation.

5.4.1 Virtual Reality Environment and the Task

The VR environment is shown in Fig. 5.4. Also, the corresponding workspace of the HRR

device is shown in Fig. 5.11. In Fig. 5.11, the possible positions of the target are shown by

the blue stars and the home position is shown by the red star. The target randomly switched its

location in a sequence with a homing motion after each switch. One example of the sequence

of switching was [Location #1-Home-Location #4-Location #7-Home-...]. The allowed max-

imum time for each home-to-target or target-to-home movement in the provided VR environ-

ment was considered to be 3 seconds. The target switched its position if (a) the elapsed time for

each motion exceeded the 3-second window, or (b) the target was reached by the robot within



5.4. RESULTS 229

the required time window. The definition of reaching was to have a targeting error (Euclidean

distance) less than 0.5 cm.

5.4.2 Simulating Post-stroke and Healthy Users

To provide a consistent evaluation, motor behaviors of a healthy user and a post-stroke patient

were simulated for the robot. The simulated patient was then assisted using

(a) Therapist-In-the-Loop HTST scheme (TIL-HTST),

(b) Therapist-In-the-Loop EIST scheme (TIL-EIST),

(c) NN trained by the HTST scheme (NN-HTST),

(d) NN trained by the EIST scheme (NN-EIST).

This allowed us to analyze different features of the platforms under similar conditions. For this,

the patient-side robot was programmed to conduct the tracking tasks in the VR environment

using two different control capabilities (one corresponding to the simulated healthy user and

the other corresponding to the simulated disabled user).

In order to simulate the behavior of a healthy user, a finely tuned classical trajectory con-

troller [25] was utilized which enabled the robot to track the target in the VR environment

within the aforementioned 3-second window. In order to simulate the behavior of a post-stroke

patient who (a) has imbalanced high muscle tone in his/her arm due to the stroke and (b) cannot

provide enough controlling force to track the target, the following steps were conducted:

1) First the control gains of the above-mentioned trajectory controller considered for track-

ing the target in the 3-second window was reduced by 70%. This was done since post-

stroke patients usually represent weak control forces to track an object.

2) In addition, to simulate the high muscle tone caused by a stroke, a nonlinear viscous

force field was generated in the workspace, as can be seen in Fig. 5.12. The post-

stroke high tone in muscles usually restricts movement in one direction or parts of the

workspace. For example, a clinician may realize high forces are needed to stretch a

patient’s arm beyond the resting point while retracting the arm is easier. This concept is

used to simulate the imbalanced tone through the the viscous force field.
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Figure 5.12: Generated nonlinear viscous force field.

After implementing the simulation of a post-stroke patient, the tracking task in the VR envi-

ronment was conducted. The results can be seen in Fig. 5.13 and can be compared with the

tracking results of the simulated healthy user. As shown in Fig. 5.13a and 5.13c, the simu-

lated healthy user was capable of tracking the target in various parts of the workspace during 5

minutes of experiment. The task was completed properly. The workspace was covered and the

simulated healthy user was capable of reaching all the considered targets within the 3-second

window for each motion in the VR environment.

In contrast, for the case of the modeled post-stroke patient, the trajectories were not prop-

erly tracked. This can be seen in Fig. 5.13b and 5.13d. In the right side of the workspace

(X ≥ 0), the length of the trajectories were considerably reduced and none of the 5 targets in

that region were reached. This was due to the existence of a high viscous force field in that

region (X ≥ 0) which corresponds to the modeled high muscle tone. In addition, in the left half

side of the workspace (X < 0), although the trajectories are larger than the right side, still the

robot was not able to reach two of the targets within the 3-second window; in addition, there

was high lateral deviation, which was due to the poor control capability of the simulated pa-

tient. As a result, the simulated patient was not capable of accurately performing the assigned

task. This was due to the reduced control power (mentioned earlier in this section).

After confirming that, as expected, the simulated patient has poor tracking performance in

comparison with the defined reference (which is the simulated healthy user here), the next step

was to use these models to evaluate the performance of the defined 4 schemes (TIL-HTST,
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(a) (b)

(c) (d)

Figure 5.13: The resulting trajectory for the task performance: (a) the modeled healthy user
(overlaid 2D path), (b) the modeled post-stroke patient (overlaid 2D path), (c) the modeled
healthy user (trajectory over time), (d) the modeled post-stroke patient (trajectory over time).

TIL-EIST, NN-HTST, NN-EIST) under similar conditions.

5.4.3 Evaluation of the HTST Platform

As mentioned earlier in the chapter, using the proposed HTST platform, we can deliver direct

kinesthetic supervision of a human therapist in-the-loop to provide therapeutic trajectories for

a post-stroke patient. In this part, the performance of the TIL-HTST platform is shown. For

this purpose, a human operator used the HD2 haptic device (therapist-side robot in the imple-

mented HTST platform) to provide therapeutic forces in order to recover the target tracking

performance of the modeled post-stroke patient. Fig 5.14a and 5.14b show the recovered path

in 2D and the motion trajectory over time respectively. The experiment was conducted for 5

minutes.
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(a)

(b)

Figure 5.14: The capability of the HTST platform in recovering the motion of the modeled
post-stroke patient: (a) overlaid 2D path, (b) motion trajectory over time. The graphs on the
left are taken from Figs. 5.13b and 5.13d.

As can be seen in Fig 5.14, using the implemented HTST platform, the operator was capable

of delivering assistive and coordinative forces that resulted in rectifying the motion trajectories

of the simulated patient. Consequently, using the TIL-HTST platform, the operator playing

the role of the therapist provided variable coordinative assistance to overcome the reduced

control power of the modeled patient and the increased tone in the right side of the workspace.

The information in this stage is logged and is utilized in the next section to train the neural

network, which can learn and model the assistive behavior of the operator playing the role of

the therapist.

5.4.4 Neural Network Training and Therapy Regeneration based on the

HTST Platform

As mentioned earlier, in this chapter, the information regarding the intensity and strategy of

the therapy logged during rehabilitation using the HTST platform was used to train a neural
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(a)

(b)

Figure 5.15: The capability of the NN-HTST scheme in recovering the motion of the modeled
post-stroke patient: (a) overlaid 2D path, (b) motion trajectory over time. The graphs on the
left are taken from Figs. 5.13b and 5.13d.

network. In this part, the performance of the trained neural network is shown. For this purpose,

during this step, the trained neural network provided therapeutic forces and was responsible for

delivering therapy to the simulated post-stroke patient in order to recover the degraded motion

control performance. The result of trajectory tracking can be found in Fig. 5.15. As can be

seen in Fig. 5.15, the trained neural network was capable of properly delivering the required

therapy to rectify the trajectories affected by the modeled stroke. As a result, the size of the

trajectories on the right side of the workspace is recovered, all the targets are reached and the

deviations are reduced. In other words, the trained neural network was capable of regenerating

and generalizing the kinesthetic behavior of the therapist to help the patient’s motion tracking

capability with no information about the characteristics of the simulated patient and by only

utilizing information collected during the TIL-HTST trial.

The therapeutic position error created by the neural network and the corresponding thera-

peutic force profile can be seen in Figs. 5.16 and 5.17 respectively.

As can be seen in Figs. 5.16 and 5.17, in the right side of the workspace (X ≥ 0) where
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Figure 5.16: The position error generated by the neural network trained to deliver therapy
based on the logged behavior of the therapist during TIL-HTST trial.

Figure 5.17: The therapeutic forces generated by the neural network trained to deliver therapy
based on the logged behavior of the therapist during TIL-HTST trial.

the simulated patient showed high muscle tone, the provided therapeutic position error and the

corresponding forces were considerably higher.

As mentioned earlier, the trained neural network can be evaluated at different points of

the workspace and the result can be plotted as a heat map that shows the intensity of the

trained therapy. The resulting map encapsulates information regarding the level of infirmity

and reduced capability of the patient based on the behavior of the therapist during the TIL-

HTST trial. The clinician can use the resulting heat map as a new image modality to evaluate

the disability of the patient and analyze improvement by comparing the proposed heat map of

consecutive sessions. The resulting heat map of the conducted experiment is shown in Fig.

5.18.



5.4. RESULTS 235

Figure 5.18: The resulting heat map of the therapy using NN-HTST scheme.

Interestingly, the resulting map of the therapy matches the simulated level of disability. As

mentioned before, the simulated patient has high muscle tone on the right side of the workspace

which results in reduced tracking capability in that region. This can also be interpreted from

Fig. 5.18 which shows that the intensity of the trained therapy delivered on the right side is

higher than the one delivered on the left side of the workspace.

5.4.5 Evaluation of the EIST Platform

In this subsection, the performance of the TIL-EIST platform is shown. For this purpose, a

human operator playing the role of a therapist used the implemented EIST platform to provide

therapeutic forces in order to recover the target tracking performance of the modeled post-

stroke patient. Figs. 5.19a and 5.19b show the recovered path in 2D and the motion trajectory

over time, respectively. The experiment was conducted for 5 minutes. As can be seen in Fig

5.19, using the implemented EIST platform, the operator playing the role of the therapist was

capable of generating assistive and coordinative forces at the patient-side robot, which resulted

in recovering the motion trajectories of the simulated patient. Consequently, using the TIL-

EIST platform the operator playing the role of the therapist provided variable coordinating

forces to overcome the reduced control power of the modeled patient and the increased tone in

the right side of the workspace. The information in this stage was logged and is used in the

next section to train the second neural network, which can learn the therapeutic behavior of the

operator playing the role of the therapist.
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(a)

(b)

Figure 5.19: The capability of the HTST platform in recovering the motion of the modeled
post-stroke patient: (a) overlaid 2D path, (b) motion trajectory over time. The graphs on the
left are taken from Figs. 5.13b and 5.13d.

5.4.6 Neural Network Training and Therapy Regeneration Based on the

EIST Platform

The information regarding the intensity and strategy of the therapy logged during rehabilitation

using the EIST platform was utilized to train the second neural network. In this part, the per-

formance of the trained neural network is shown. For this purpose, the trained neural network

provided therapeutic forces based on the trained behavior and was responsible for delivering

therapy for the simulated post-stroke patient in order to recover the degraded motion control

performance. The result of trajectory tracking can be found in Fig. 5.20. As can be seen in the

figure, the trained neural network was capable of properly delivering the required therapy to

recover the trajectories affected by the modeled stroke. As a result, the size of the trajectories

on the right side of the workspace was rectified, all the targets were reached and the devia-

tions were reduced. In other words, the trained neural network was capable of reproducing the

behavior of the therapist to recover the tracking performance without any information about
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(a)

(b)

Figure 5.20: The capability of the NN-HTST scheme in recovering the motion of the modeled
post-stroke patient: (a) overlaid 2D path, (b) motion trajectory over time. The graphs on the
left are taken from Figs. 5.13b and 5.13d.

the characteristics of the simulated patient and by only utilizing information collected during

the TIL-EIST trial. The generated therapeutic position error in the VR environment and the

corresponding therapeutic force profile can be seen in Figs. 5.21 and 5.22 respectively.

As can be seen in Figs. 5.21 and 5.22, in the right side of the workspace (X ≥ 0) where the

simulated patient showed high muscle tone and less control capability, the provided therapeutic

position error and the corresponding forces were considerably higher. Same as in the case of

HTST-based heat map of the therapy, the designed neural network using the EIST platform was

utilized to find the therapeutic heat map. The generated map is shown in Fig. 5.23.

The resulting map encapsulates information regarding the level of infirmity and reduced

capability based on the behavior of the therapist during the TIL-EIST trial. Similar to the case

of the HTST-based therapy map, the map shown in Fig. 5.23 also matches the simulated level

of disability. The map shows that the intensity of the trained therapy delivered on the right side

was higher than that the one delivered on the left side of the workspace.
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Figure 5.21: The position error generated by the neural network trained to deliver therapy
based on the logged behavior of the therapist during the TIL-EIST trial.

Figure 5.22: The therapeutic forces generated by the neural network trained to deliver therapy
based on the logged behavior of the therapist during the TIL-EIST trial.

Based on the results shown in this section, both EIST and HTST platforms were capable of

delivering TIL rehabilitative cues, which can help a post-stroke patient perform the tasks. The

information logged during therapy delivery by the proposed platforms can be utilized to train

neural networks to regenerate the same therapeutic behavior while the therapist is outside of

the therapy loop. The proposed training technique can encapsulate the rehabilitative preference

of a skilled human therapist for delivering kinesthetic therapy and can fill the gap between

conventional robotic rehabilitation systems and standard therapist-in-the-loop hand-over-hand

therapy.
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Figure 5.23: The resulting heat map of the therapy using the NN-EIST scheme

5.5 Conclusion

In this chapter, a new framework was proposed to tune the intensity and strategy of haptic

rehabilitation systems based on the registered therapeutic behavior of a human therapist. The

proposed framework has two phases, namely: Supervised Therapy Demonstration (STD) and

Regeneration through Modeling (RTM). The HTST and EIST platforms were considered as

alternatives which can register a human therapist’s intention for modifying the intensity and

strategy of the therapy over time during the STD phase. Although in contrast to the EIST

platform, the HTST platform can provided haptic awareness for the therapist during the STD

phase of the framework, the EIST platform is more cost-effective. Both platforms are capable

of enabling the therapist’s kinesthetic supervision for robotic therapy to address the existing

challenge regarding the lack of flexibility in tuning the delivered therapy by robotic rehabili-

tation systems. During the RTM phase, the registered therapeutic behavior of the therapist is

considered to be modeled using a neural network that can then regenerate the behavior for the

patient. As a result, a therapist can demonstrate a brief session of kinesthetic rehabilitation for

the patient (through the use of one of the two introduced platforms). Then, she/he can set a

length of time for the patient to independently practice based on the modeled behavior of the

therapist. This saves the therapist’s time, which is an important benefit to an under-resourced

healthcare system.
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Chapter 6

Characterization of Upper-limb

Pathological Tremors: Application to

Design of an Augmented Haptic

Rehabilitation System

The material presented in this chapter has been published in the IEEE Journal of Selected

Topics in Signal Processing, Vol. 10, No. 5, pp. 888 - 903, 2016.

6.1 Introduction and Preliminaries

Based on official statistics, the population of adults over the age of 65 is rapidly increasing

worldwide. This trend is anticipated to continue due to the increase in life expectancy, and

reduced fertility rate. It is anticipated that the number of senior adults will be more than

twice by 2050 compared to the corresponding number in 2013 [1]. As a result of this ageing

society, it is expected that there will be a significant increase in the incidence rate of age-

c©[2016] IEEE. Reprinted, with permission, from [Seyed Farokh Atashzar, M. Shahbazi, O. Samotus, M.
Tavakoli, M. Jog, and R. V. Patel, “Characterization of Upper-limb Pathological Tremors: Application to Design
of an Augmented Haptic Rehabilitation System,” IEEE Journal of Selected Topics in Signal Processing: Special
Issue on Person-Centered Signal Processing for Assistive, Rehabilitative and Wearable Health Technologies, Vol.
10, No. 5, pp. 888 - 903, DOI: 10.1109/JSTSP.2016.2530632, 2016.]
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related sensorimotor disorders and diseases such as Parkinson’s Disease (PD) and Essential

Tremor (ET). PD and ET are known to affect coordination, targeting and speed of motion while

causing involuntary hand tremor [2–4]. Processing of hand motion and real-time extraction

of the involuntary components while introducing minimum lag is an active line of research.

This has attracted a great deal of interest for designing assistive, wearable and rehabilitative

technologies by utilizing kinesthetic inputs and electrical stimulations (see, e.g., [5–9]).

Adaptive filters developed based on a Fourier Linear Combiner (FLC) algorithm have

demonstrated appropriate performance in extracting hand tremors while introducing minimum

latency compared to classical filtering [10–15]. The original version of recursive FLC-based

filters, i.e., Weighted-frequency Fourier Linear Combiner (WFLC), was developed based on

the assumption of having a single dominant frequency [10] for the targeted signals. The filter

was used to design hand-held surgical tools in order to cancel physiological tremor of sur-

geons’ hands, in real-time (a practical need for delicate microsurgery) [11]. The assumption of

a single dominant frequency was relaxed by proposing the BMFLC technique which can track

multiple harmonics of a signal. The original motivation was to extract physiological hand

tremor in healthy subjects [12–14]. The BMFLC filter has been utilized to extract physiologi-

cal hand tremor [16] for surgical applications [17, 18] and its performance has been compared

with that of the WFLC filter in quantification of hand tremors of microsurgeons and consider-

able improvement has been reported [13]. Due to appropriate performance of BMFLC filters

in extracting physiological tremors, a recent study has investigated the possibility of using the

technique for pathological hand tremors (such as those in PD) [15]. For this purpose, in [15],

a new modification of the BMFLC filter was proposed to find the dominant frequency of the

signal. Although the performance of the technique in [15] was slightly inferior to that of the

conventional BMFLC filter, it was able to automatically find the dominant frequency of inter-

est.

It should be noted that there are distinct differences between pathological and physiologi-

cal tremors in terms of (a) amplitude, (b) frequency content, and (c) variability. In contrast to

physiological tremors, pathological involuntary movements caused by PD and ET have closer

range of frequencies to voluntary actions. However, for physiological hand tremor, the fre-

quency range of involuntary movements is considerably higher than that for voluntary compo-
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nents of the motion. This makes it possible to deal with the voluntary components of motion

through the use of a bias term in the model for the case of physiological tremor [12, 13]. The

close frequency range of pathological hand tremors to the voluntary components can challenge

the estimation problem using various filtering techniques, specially in real-time applications.

In addition to the frequency range, the nature, amplitude and existence of the tremor is con-

siderably variable for the case of pathological tremors and they change considerably during

task performance. Characteristics of pathological tremors in PD and ET patients depend on

position, velocity, posture, task, and loading conditions. As an example, in Fig. 6.1, the hand

tremor of a patient (participant #23 in our study, a 84 years old male with ET) is demonstrated

for the cases of no-load posturing (Fig. 6.1a) and with-load posturing (Fig. 6.1b). In this test,

the patient is asked to keep the posture steady while holding a cup under two loading condi-

tions (i.e. empty cup and 1-pound loaded cup ). Each loading condition is performed for 10

seconds. We overlaid 10 snapshots of each condition during the corresponding period of the

test to produce Figs. 6.1a and 6.1b. In addition, the results of measuring the hand accelerations

in 3 DOF are given in Fig. 6.1c. As can be seen, there is almost no tremor during no-load

posturing for this participant while high-amplitude tremors start right after adding the 1-pound

weight to the cup. This is just one example of how variable the pathological tremors can be

under different conditions.

The BMFLC filters were designed originally for physiological tremors. Consequently, us-

ing them for pathological hand tremors should be statistically studied. For example, since there

are considerable variations in the nature of hand tremors for each patient in different postur-

ing, motion and load conditions, the filter needs to have low sensitivity to parameter tuning. In

other words, when we tune the main parameter of the BMFLC filter (which is a corrective gain,

defined later in this chapter), we need to be confident that the filter will keep good performance

during the task, even if the type and nature of a hand tremor changes. It will not be practical

if the filter is sensitive to the tuning of the corrective gain. The reason is that in this case, for

each part of the task (which may require a different load or posturing condition) the filter may

need a different corrective gain to deliver appropriate performance. This is not practical.

Consequently, although the use of the BMFLC filter is promising for extracting patholog-

ical tremors, the performance of this filter needs to be statistically analyzed for a group of
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(a) (b)

(c)

Figure 6.1: Participant #23 Holding the cup while maintaining a posture: (a) overlaid 10 snap-
shots during 10 seconds for the case of an empty cup, (b) overlaid 10 snapshots during 10
seconds for the case of a loaded cup, (c) hand accelerations in X-direction (solid blue line),
Y-direction (solid red line), and Z-direction (solid black line) for the case of the empty cup ex-
periment (left) and the loaded cup experiment (right). In (b), the blurred image of the patient’s
hand is due to high amplitude tremor.

pathological patients and the possibility of enhancing performance should be evaluated to be

compatible with the characteristics of pathological tremors.

6.1.1 Focus of This chapter

Motivated by the above issues, in this chapter we propose a new two-step modification to make

the filter more accurate in extracting tremors and less sensitive to parameter tuning and intra-

patient variabilities. The two-step modifications are (a) modulating the filter’s memory, and

(b) enriching the harmonic model for extracting the hand tremor. The filter proposed in this

chapter is called “E-BMFLC”.
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In the next step, we conducted an evaluation based on collected data from 14 PD and 13

ET patients to analyze the efficacy of the proposed filter in comparison with the conventional

BMFLC technique. Using statistical analysis, we showed that E-BMFLC not only significantly

enhances the accuracy of the proposed filter, but it also substantially reduces the sensitivity to

the design of the filter’s parameters and intra-patient variabilities. To the best knowledge of the

authors, this is the first work showing how to improve the performance of BMFLC filters in a

statistically-significant manner for patients living with pathological hand tremors.

In the second part of this study, we investigate the possibility of using the proposed E-

BMFLC filter to develop a new Haptics-enabled Robotic Rehabilitation (HRR) architecture

which is capable of delivering energetically-active assist-as-needed therapy for PD and ET pa-

tients while adaptively controlling their hand tremor and avoiding unsafe Tremor Amplification

(TA). TA is a restrictive factor when using non-passive robotic systems (that elevate the energy

of the human-robot interaction) for patients having hand tremors. Active HRR systems am-

plify the energy provided by the patient and reflect it back to him/her to enhance coordination

and movement speed. However, when the patient has involuntary hand tremor, elevating the

total energy of the patient’s hand is equal to elevating the energy of the hand tremor. This can

result in an unsafe unwanted condition (i.e. TA). TA can simply degrade the performance and

usability of HRR systems for patients living with hand tremor. In the literature, the use of HRR

systems in patients living with hand tremors are mostly limited to assessment and analysis of

the disease and not multi-modal interactive rehabilitation and intelligent exercises [19–21].

In order to address the aforementioned challenge, we propose Augmented Haptic Rehabili-

tation (AHR) architecture. AHR is motivated by new evidence showing that interactive Virtual

Reality (VR)-based rehabilitation can considerably accelerate Neuro-Plasticity (NP) and en-

hance sensorimotor health and targeting accuracy for patients living with pathological tremors,

such as PD [22–25] and ET [26–28]. The initial concept of the architecture was briefly ex-

plained in the conference version of this work [29]. The AHR system presented in this chapter

is an adaptive dual-action augmented haptic platform designed based on monitoring the energy

of the voluntary and involuntary components of motion. The proposed architecture provides an

adaptive viscous environment (resistive therapy) in parts of the frequency spectrum of the pa-

tient’s motion to resist (not counteract) the hand tremor up to a point that it reaches a minimum
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Figure 6.2: Block-diagram of the designed AHR system.

energy level. This action of the AHR system is like an adaptive energy cap which gradually

forces the energy of the patient’s hand tremor to converge to a small under-control value. This

action avoids TA and makes the HRR system compatible for use for tremor patients. At the

same time, the AHR system provides assistive action for the voluntary component of the mo-

tion. The energy of the voluntary component and tracking error is also monitored. The assistive

force field enables the patient to have an acceptable tracking performance based on the mon-

itored energy of the voluntary movement. The intensity of the assistive therapy is adaptively

and gradually tuned in a new energy-based assist-as-needed manner to provide the patient with

minimum needed assistance while keeping the patient in the loop of interaction. Consequently,

the proposed dual-action behavior of the AHR system allows for delivering assistance to the

voluntary component of the motion while restricting the involuntary component of motion in

order to avoid potential TA. This is achieved taking advantage of the accurate decomposition

of the voluntary and the involuntary components of the patient’s motion using the proposed

E-BMFLC filter. This motion processing is the heart of the proposed AHR architecture which

makes it possible to use interactive multi-modal environment of assistive HRR systems for re-

habilitating slowness, coordination deficits and motion range problems (typical symptoms in

PD and ET patients), in a safe manner. Fig. 6.2 shows the proposed AHR architecture. The

architecture is implemented in this chapter and experimental evaluations are reported.
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Remark 6.1. The contributions of this chapter are summarized below:

a) Showing two issues with the conventional design of BMFLC filters which can reduce the

quality of the results for pathological tremor estimation, namely: infinite memory and old

tremor projection.

b) Proposing two new solutions to significantly enhance the accuracy of the filter, reduce the

sensitivity to parameter tuning and variation in the frequency content of the signal, and deal

with the two issues mentioned above.

c) Statistically analyzing the performance of the proposed E-BMFLC filter for 27 pathological

tremor patients in order to validate the functionality of the proposed technique.

d) Proposing a new AHR technique which enables delivery of a new assist-as-needed rehabil-

itation therapy for PD and ET patients while controlling the energy of involuntary movements

and avoiding unsafe amplification of hand tremors due to the active nature of robotic therapy.

e) Experimental evaluation of the functionality of the proposed AHR system.•

The rest of this chapter is organized as follows: The conventional BMFLC filter is intro-

duced in Section 6.2. The new E-BMFLC filter is proposed in Section 6.3. In Section 6.4,

the developed AHR architecture is defined. The statistical results of the patient-based study on

the performance of the filter are given in Section 6.5. The AHR architecture is evaluated and

experimental results are reported in Section 6.6. Concluding remarks are given in Section 6.7.

6.2 Conventional Adaptive BMFLC Filtering

In this section a quick overview of the conventional BMFLC filter is given, based on [12–14]. It

is known that hand movement of patients living with pathological tremor is a modulated signal

which has low-frequency voluntary actions and high-frequency involuntary components [6].

Accordingly, the hand motion can be modelled as:

Mp(t) = Mp−v(t)+Mp−i(t) (6.1)

In (6.1), Mp(t) is a signal which corresponds to the motion of the patient’s hand that can

be the hand position Pp(t), velocity Vp(t), or acceleration Ap(t). Accordingly, Mp−v(t) is the
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voluntary component of the hand motion and Mp−i(t) is the involuntary component. The main

goal of the BMFLC filtering is to find an estimate for Mp−i(t) in a real-time manner while

minimizing error and lag. The output can then be used in actuated devices such as the one used

for hand-held anti-tremor surgical tools [12–14].

A BMFLC filter considers a truncated Fourier model for the frequency window [ωa,ωb] of

the hand tremor as:

Y (t) =
i=β (ωb−ωa)

∑
i=0

λi sin(ωat +
i
β

t)+ϑi cos(ωat +
i
β

t). (6.2)

In (6.2), Y (t) is the signal to be modeled, ωa and ωb define the frequency window of interest

(which correspond to the tremor frequency). β is the number of harmonics considered for one

unit of frequency. Also, λ and ϑ are coefficients of the truncated Fourier combiner model.

The linear regressors formulation of the truncated model (6.2) considering the band-limited

frequency window for the hand tremor [ωa,ωb] can be written as:

Y (t) = θ
T

φ(t), (6.3)

where we have:
φ(t) =

[
sin(ωat + 0

β
t), ... ,sin(ωat + β (ωb−ωa)

β
t),

cos(ωat + 0
β

t), ... ,cos(ωat + β (ωb−ωa)
β

t)
]T

,
(6.4)

and θ =
[
λ0, ... ,λβ (ωb−ωa),ϑ0, ... ,ϑβ (ωb−ωa)

]T
. (6.5)

The regressors model, defined in (6.3)-(6.5) is then utilized in a recursive Least Mean Squares

(LMS) algorithm to estimate the tremor in real-time and track its amplitude and the frequency

content. It should be highlighted that the LMS algorithm has been conventionally and re-

cently used in the design of BMFLC filters [12–15]. LMS has been also replaced with Kalman

filtering in some studies [16, 30]. Although the use of Kalman filtering may enhance the per-

formance, it significantly increases the computational cost of the filter [31]. In [31] it has been

reported that for N operations needed through the use of the LMS technique in BMFLC fil-

ters, 3N2 operations are needed for Kalman filtering. For example, if we need 160 operations

to extract a tremor through the use of LMS in the BMFLC filtering technique, 76800 opera-
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tions would be needed if we use Kalman filtering [31]. In [30], it has been reported that if the

Kalman filter is utilized in the design of the BMFLC technique, having frequency resolution

of the model less than 0.5Hz can prevent real-time implementation of the filter (when 512Hz

sampling rate is assumed as the definition of real-time implementation). Note that for the case

of haptic interaction, the sampling frequency is suggested to be at least between 1KHz and

1.5KHz. In addition to the above, as can be seen in [16, 30], using the Kalman filter for BM-

FLC filtering, the linear state-space model of the system will not be time-invariant. This does

not match with requirements of the classical Kalman filters with guaranteed stability and it has

been shown that it can result in an unexpected diverging behavior [32–34], especially since

the measurement and the model are uncertain (which is the case for pathological hand tremor).

Finally, it should be added that in order to use the Kalman filtering technique in practice, the

covariance matrices for the model and observation uncertainties should be properly tuned based

on knowledge of existing measurement noises and model uncertainties [32, 33]. The possible

diverging behavior of the Kalman filter is closely related to the tuning of the covariance ma-

trices [33]. This makes it even more challenging to use the Kalman+BMFLC technique. As

a result, in this chapter we propose two new modifications (for the LMS+BMFLC) which can

significantly enhance the accuracy of the conventional BMFLC filter (as shown later in this

chapter) without adding further complications for extracting pathological tremors. The LMS

algorithm is shown below:

Ŷ (t) = θ̂
T (n)φ(t) (6.6)

where
θ̂ T (n) = θ̂ T (n−1)+2ηφ(n)E(t)

and E(t) = S(t)− Ŷ (t).
(6.7)

In (6.7), η is the LMS corrective gain, E(t) is the estimation error, S(t) is the input signal,

Ŷ (t) is the estimated signal, θ̂ is the estimation of the coefficient vector of the Fourier combiner

model. Since the model is truncated, the estimated signal will be an estimation of the high

frequency components of the hand motion Mp−i(t) [12–14].
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6.3 Proposed Enhanced-BMFLC Technique

In this section, we indicate two facts that can degrade the performance of the BMFLC filter,

then we propose solutions which form the new design called E-BMFLC.

6.3.1 Challenges with the Conventional Design of BMFLC

There are two problems associated with the conventional formulation of the BMFLC filter in

(6.4)-(6.7):

1) Inaccurate Error Calculation: In (6.7), the error is represented as E(t) = S(t)− Ŷ (t),

where Ŷ (t) is the estimated tremor. However, the input signal S(t) is equal to the modulated

hand motion Mp(t), the only measurable characteristic of the hand’s motion. It is known that

the actual measure of hand tremor Mp−i(t) is not accessible and estimating it is the main ob-

jective of the filter. Consequently, we cannot obtain the actual error between the hand tremor

and the estimated tremor. In the conventional design of BMFLC filter, it is assumed that since

the model is truncated, the output of this estimation will converge to the content of the tremor

frequency window. Although this assumption is not incorrect, it is not accurate either. In the

utilized LMS technique (6.7), the estimation parameters θ̂ concurrently change in the recur-

sive design of the filter to minimize the estimation error E(t). Consequently, although the

considered model is truncated, the changing parameters can bring other frequencies out of the

window of interest (i.e. [ωa,ωb]) to make the error between the modulated hand motion Mp(t)

and the filter’s output Ŷ (t) zero. This reduces the accuracy of the filter since the output of the

filter should converge to Mp−i(t) not Mp(t). As an example, even if at some point, the out-

put of the filter ideally matches with the actual hand tremor Mp−i(t), the LMS technique still

observes the existing error E(t) since the error is calculated considering the value of Mp not

Mp−i. Consequently, the filter tries to move the estimation away from that point (which was

ideal) and make the error between Mp and Ŷ (t) as small as possible. Based on this, we note the

following:

Remark 6.2. We hypothesize that the aforementioned inaccuracy in error estimation will

cause considerable sensitivity to the tuning of the corrective gain η . The reason is that for the

conventional design of the BMFLC filter, shown in (6.4)-(6.7), increasing the corrective gain

makes the dynamics of the LMS algorithm faster (more responsive). This results in higher
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effort of the filter in pushing the estimated signal closer to Mp and away from Mp−i by quickly

changing the estimation parameters θ̂ . On the other hand, it is known that having small values

for the corrective gain η in LMS algorithm decreases the convergence rate and estimation

accuracy. Consequently, for the design of the BMFLC filter, either increasing or decreasing

the gain can result in higher error. This makes it difficult to find an appropriate gain for the

BMFLC filter in estimating pathological tremors. This hypothesis (sensitivity to the change in

η) is shown in Section V. •

Remark 6.3. Note that the features of the pathological tremors are considerably vari-

able compared to physiological hand tremor. Consequently, even if we choose a value for the

corrective gain η which works in one situation for the hand tremor of a patient, it does not nec-

essarily work for the same patient, in the same session under slightly different condition which

can change the characteristics of the hand tremor. The reason is that the new tremor signal may

need a different value of η . In other words, considerable variability in the characteristics of

pathological tremor necessitate having low sensitivity to the choice of η factor. For the case

of physiological tremor, since the variability is not as much as the one for pathological tremor,

the inaccuracy might be less. Analyzing the performance of the BMFLC filter for the case of

physiological tremor is out of the scope of this work. The mentioned sensitivity issue is shown

in Section V for the case of pathological tremor. •

Remark 6.4. In addition to the above, since the frequency range of pathological tremor is

closer to the voluntary components (in comparison with physiological tremor), higher η values

can more easily push the output away from Mp−i(t), in the design of the conventional BMFLC

filter. •

Remark 6.5. Since the calculated error for the conventional BMFLC filter E(t) is the dif-

ference between the whole modulated hand motion Mp(t) and the estimated tremor Ŷ (t), it is

not an appropriate measure of accuracy for the model considered in the LMS technique. Con-

sequently, it is not possible to evaluate the performance of the filter and the chosen parameters

by monitoring the error E(t). The error might be quite high while the output still matches with

the hand tremor.•

Considering the above remarks, there is a need to enrich the model in a way that (a) repre-

sents less sensitivity to η , and (b) provides a proper measure of modelling accuracy.
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2) Infinite Memory: The other problem of conventional BMFLC filtering is the considered

infinite memory of the filter for estimating the coefficients of the truncated Fourier combiner

model. Considering (6.7), the dynamics of the recursive formulation used to estimate the hand

tremor keeps the impact of old information similar the one of new information. In other words,

the estimated values in the current time sample get affected by all old values in a recursive

manner. Considering that the regressors model used in the design of BMFLC filter is based on

the Fourier linear combiner, having infinite memory means that we have assumed a periodic

nature for the tremor. This is the main assumption of conventional BMFLC filters. However,

due to the considerable variability in pathological tremor, although assuming a quasi-periodic

nature could be correct, the assumption of completely periodic model is not valid. Keeping the

impact of old information similar to the new one and trying to find a Fourier combiner model

for the whole signal, means that the behavior of the signal is assumed to be periodic and the

whole input signal (from the t = 0 to the current time sample) can be modelled by one Fourier

combiner. Consequently, if the input signal has a specific pattern at the beginning of time,

this pattern will be repeated in future estimation of the tremor. This phenomenon is called

“Old Tremor Projection (OTP)” in this chapter and can considerably reduce the accuracy of

the estimation, over time. The existence of OTP is discussed in Section V.

6.3.2 Enhanced-BMFLC Filter

In this part, we propose E-BMFLC filter to deal with the aforementioned issues in two phases

of enhancement.

Phase #1 ) Harmonic Model Enrichment:

To deal with incorrect error calculation, we propose to first use an enriched model and then

extract the tremor out of the enriched model. This allows us to isolate modelling and tremor

extraction steps. The following steps are taken:

Step I: in the first step, instead of using a truncated model considering the frequency win-

dow of the tremor [ωa,ωb], the whole frequency spectrum of the “modulated signal” Mp(t) is

modelled using the frequency window of [ωmin,ωmax]. ωmin is the minimum frequency which is

considered in the spectrum of Mp(t), and ωmax is the maximum frequency of it. In this chapter,
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ωmin is considered to be 0 Hz and ωmax is considered to be 20 Hz for the acceleration data of

patients’ hands. Considering L number of harmonics for the Fourier combiner model of Mp(t),

when L = β (ωb−ωa)+1, we have:

Mp(t) = θ
T
MpφMp(t), (6.8)

where φMp(t) =[
sin(ωmint + 0

β
t), ... ,sin(ωmint + β (ωmax−ωmin)

β
t),

cos(ωmint + 0
β

t), ... ,cos(ωmint + β (ωmax−ωmin)
β

t)
]T

,

(6.9)

θMp =[
λ0, ... ,λβ (ωmax−ωmin),ϑ0, ... ,ϑβ (ωmax−ωmin)

]T
.

(6.10)

The complete model of the input signal (6.8) is then used in recursive LMS algorithm for the

filter, as follows:

M̂p(t) = θ̂
T
Mp(n)φMp(t) (6.11)

where θ̂ T
Mp(n) = θ̂ T

Mp(n−1)+2ηφMp(n)EMp(t)

and EMp(t) = Mp(t)− M̂p(t).
(6.12)

In (6.11),(6.12), M̂p(t) is the estimation of Mp(t). Also, EMp is the difference between the

estimated value M̂p(t) and Mp(t). In addition, θ̂ T
Mp(n) is the coefficient vector for the esti-

mated model for Mp. Consequently, the estimation error EMp is a real measure of accuracy for

the LMS algorithm (in contrast with the conventional BMFLC). Accordingly, we can moni-

tor/utilize EMp to evaluate the efficacy of the filter. In addition, gradually increasing the cor-

rective gain η results in a more accurate estimation up to a point that the measure of accuracy

EMp shows an acceptable matching between the considered Fourier model for Mp and the real

value of Mp. In summary, using the enriched model, the behavior of the filter is more pre-

dictable in comparison with the conventional BMFLC and the tuning procedure of η is more

straightforward.

Step II): After finding an accurate model for the modulated signal Mp, now we can consider

different band-limited windows of frequency to extract various frequency ranges (considering

the need of the application). In fact, using the proposed technique, the signal modelling and
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frequency truncation are decoupled, while in the conventional formulation of BMFLC filter

these two steps were fused. In this chapter, we considered two frequency ranges: [ωa−v,ωb−v]

for the voluntary component of the motion and [ωa−i,ωb−i] for the involuntary component of

the motion. We have:

ωmax ≥ ωb−i ≥ ωa−i ≥ ωb−v ≥ ωa−v ≥ ωmin ≥ 0 (6.13)

Accordingly, the estimation of the voluntary component of the motion (i.e. M̂p−v), and the

involuntary component of the motion (i.e. M̂p−i) can be obtained as given below:

M̂p−v(t) = θ̂ T
Mp−v(n)φMp−v(t)

M̂p−i(t) = θ̂ T
Mp−i(n)φMp−i(t)

(6.14)

θ̂ T
Mp−v(n) =

[
θ̂Mp(n){i = γ0}, ..., θ̂Mp(n){i = γ1},

θ̂Mp(n){i = γ2}, ..., θ̂Mp(n){i = γ3}
]
,

(6.15)

θ̂ T
Mp−i(n) =

[
θ̂Mp(n){i = γ4}, ..., θ̂Mp(n){i = γ5},

θ̂Mp(n){i = γ6}, ..., θ̂Mp(n){i = γ7}
]
,

(6.16)

φ T
Mp−v(n) =

[
φMp(n){i = γ0}, ...,φMp(n){i = γ1},

φMp(n){i = γ2}, ...,φMp(n){i = γ3}
]
,

(6.17)

φ T
Mp−i(n) =

[
φMp(n){i = γ4}, ...,φMp(n){i = γ5},

φMp(n){i = γ6}, ...,φMp(n){i = γ7}
]
.

(6.18)
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In (6.15)-(6.18), θ̂Mp(n){i = k} and φMp(n){i = k} are the kth element of θ̂Mp, and φMp vectors

at nth time stamp, respectively. Also, we have:

γ0 = β (ωa−v−ωmin)+1,γ1 = β (ωb−v−ωmin)+1,

γ2 = L+ γ0, γ3 = L+ γ1,γ4 = β (ωa−i−ωmin)+1,

γ5 = β (ωb−i−ωmin)+1,γ6 = L+ γ4, γ7 = L+ γ5.

(6.19)

Consequently, the Fourier-based signal modelling and tremor extracting are decoupled. This

allows us to first accurately model the modulated signal Mp, and then extract Mp−i and Mp−v.

Consequently, more precise extraction of tremor and less sensitivity to the choice of η are

expected. This is statistically demonstrated in Section V.

Phase #2 ) Memory Manipulation

Here we propose to use windowed memory instead of the conventional infinite memory for

the filter. This allows us to adapt better to change in characteristics of the tremor. The sliding

memory window results in greater impact from recent values than from old values. For this

purpose the recursive formulation of the filter (6.12) is modified as

θ̂ T
Mp(n) = ρθ̂ T

Mp(n−1)+2ηφMp(n)EMp(t)

where EMp(t) = Mp(t)− M̂p(t),

ρ = δ
√

α, and δ = 1
∆T Tp.

(6.20)

In (6.20), ρ defines the pole of the discrete dynamics of the memory windowing for the filter in

the Z-domain. The lower the ρ value, the faster the forgetting dynamics will be. This parameter

can directly be chosen based on the desired speed that we would like to forget older data (which

correlates with the variable nature of the signal to be filtered). Based on our observation which

will be reported later in this chapter, for extracting pathological tremor of PD and ET patients,

ρ = 0.999 can be used as the default value which can significantly enhance the performance of

the filter. Using (6.20), we can tune the ρ value when (a) the sampling frequency is different

from the one chosen in this chapter; and (b) we would like to filter a signal with a different

variable nature compared with pathological hand tremor of PD and ET patients. In (6.20),

∆T is the sampling time (in seconds), Tp is the width of the considered memory window (in
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Figure 6.3: Sliding memory window. t−2 refers to 2 seconds before the current time stamp.

seconds), and α is the considered minimum gain within the time window which corresponds to

the latest value in the window. The suggested default value for ρ is calculated as follows. The

width of the memory window is considered to be Tp = 2s. This means that we want to consider

a window of 2s for keeping the impact of past values. Here, “impact” corresponds to having

scaling gain more than α whose default value is set at 5%. For the data used in the evaluation

given this chapter, the sampling frequency was 1.5 KHz which means that ∆T = (1/1500)s.

The resulting sliding memory window for the designed filter is shown in Fig. 6.3.

This technique gradually forgets the old information affecting tremor estimation and uses

recent data from a limited past time-window. Consequently, the assumption of periodic be-

havior is relaxed and it is just limited to the considered time-window. As a result, the signal

can behave in a “quasi-periodic” manner without violating the assumptions of the designed fil-

ter. The combination of the proposed Harmonic Model Enrichment and Memory Manipulation

forms the proposed design for E-BMFLC.

6.4 Proposed AHR Architecture

In this section, the E-BMFLC filter is used in the design of a new therapeutic architecture

for pathological tremor patients. The architecture is called Augmented Haptic Rehabilitation

(AHR) and performs the following two actions:

• Action 1) damping out the extracted hand tremor to avoid amplification of the tremor

energy and enhance patient-robot interaction safety;

• Action 2) assisting the voluntary component of motion to help the patient in finishing

therapeutic tasks.
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The modulated force designed by AHR architecture is

FM(t) = FR−i(t)+FA−v(t), (6.21)

where FM is the modulated force field applied by the rehabilitation robot to the patient’s hand;

FR−i(t) is the resistive component designed to “damp out” the tremor energy based on the

definition of dissipative haptic systems [35]; and FA−v(t) is the assistive component designed

to help the patient in finishing the task. The designs of FR−i(t) and FA−v(t) are given in the rest

of this section.

6.4.1 Modulated Force Field

To damp out the tremor energy, FR−i(t) is calculated as

FR−i(t) = B(t)V̂p−i. (6.22)

In (6.22), V̂p−i is the estimated velocity of the tremor calculated using the proposed E-BMFLC

filter. B(t) is the adaptive damping coefficient. This design realizes a viscous environment in

the frequency range of the tremor. Consequently, FR−i acts like a damper for the hand tremor

and dissipates the corresponding energy. The adaptation rule to calculate B(t) for each patient

is based on a performance measure corresponding to the severity of the tremor (explained later

in this section). In addition, to assist the patient’s motion in the frequency range of voluntary

movement (extracted by E-BMFLC) FA−v(t) is applied to help the patient in following a desired

therapeutic trajectory, as

FA−v(t) =C(t)Ep−v,

where, Ep−v = Xdes− X̂p−v

(6.23)

In (6.23), Êp−v is the trajectory tracking error, C(t) is the adaptive coordinative gain, Xdes is the

desired position trajectory which should be tracked by the patient, and X̂p−v is the estimated

position of the voluntary component (calculated by E-BMFLC). The adaptation rule to calcu-

late C(t) for each patient is based on a performance measure that corresponds to the accuracy

of trajectory tracking which is explained later in this section.
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6.4.2 Performance Measures

In order to calculate B(t) and C(t) for each patient, two performance measures PMi and PMv

are defined for the proposed resistive and assistive components of the modulated force field,

respectively. PMi provides a quantitative measure of the severity of hand tremor during a

rehabilitation task, and PMv provides a quantitative measure of accuracy for tracking the reha-

bilitation trajectory using the voluntary component of the hand motion.

The design of PMi is as follows:

PMi(t) =
ξtremor(t)
ξmax−1

. (6.24)

In (6.24), ξtremor is the real-time measure of the energy of the involuntary hand velocity. To

eliminate time-dependence of PMi(t), windowed energy is considered for ξtremor:

ξtremor(t) =
∫ t

t−Tw

V̂p−i(τ)
2 dτ. (6.25)

In (6.25), Tw is the width of the time window which is considered to be 10 s in this chapter. In

addition, ξmax−1 is a rough estimate of the maximum value for ξtremor, designed to normalize

the proposed performance measure. ξmax−1 can be achieved through a preoperative test when

the patient is asked to hold/move the robotic handle while the force field is turned off. The

ultimate goal is to increase the damping coefficient B(t) until ξtremor converges to a small

value. The design of PMv is as follows:

PMv(t) =
ξE−track(t)

ξmax−2
. (6.26)

In (6.26), ξE−track is the energy of the tracking error of the voluntary component while con-

sidering an acceptable tracking error (i.e. Emin). To eliminate time-dependence of PMv(t),

windowed energy is considered for ξE−track:

ξE−track(t) =
∫ t

t−Tw

(Ep−v(τ)−Emin)
2 dτ. (6.27)

In (6.27), Emin is an acceptable threshold for the tracking error which is considered to be 10



6.4. PROPOSED AHR ARCHITECTURE 261

percent of the maximum amplitude of the desired trajectory. Also, Ep−v is the tracking error of

the voluntary component of the patient’s hand motion. In addition, in (6.26), ξmax−2 is the nor-

malizing maximum value for the tracking error which is calculated prior to the operation. The

value is achieved assuming that the patient is completely incapable of tracking the target (worst

case scenario). The ultimate goal is to gradually increase C(t) using the second adaptation rule

(explained later) until ξE−track converges to a small value.

6.4.3 Adaptation Rules

Two adaptation rules are proposed to tune B(t) and C(t) based on the needs of the patient:

The First Adaptation Rule: The goal of the first rule is to gradually increase the dissipa-

tion gain B(t) for the tremor and keep PMi under control to make it as small as possible that

results in avoiding TA. The adaptation rule is:

B(t) = µi(t)Bmax, (6.28)

where µi(n) = giµi(n−1)+PMi∆i. (6.29)

In (6.28), Bmax is the maximum damping factor considered for dissipating the hand tremor. This

value can be tuned based on the capabilities of the utilized robot. In this chapter, the default

value for Bmax is 250N.s/m. In addition, µi is the adaptive scaling gain which is calculated

using (6.29) based on the severity of the tremor. In (6.29), gi is the forgetting factor and ∆i is

the growth rate constant for B(t). To better understand the functionality of the proposed rule,

first assume gi = 1. In this case, if the patient shows a severe tremor (which means PMi −→ 1)

the adaptive scaling gain µi gradually increases with the rate of ∆i. Increasing µi results in

having higher B(t) which results in having less tremor and better performance measure PMi.

This reduces the growth rate of B(t). At the same time, considering the forgetting factor gi

slightly less than unity results in slowly forgetting early information and allowing the patient

to experience a lower dissipation, if he/she represents a less severe tremor after some point.

Finally, µi will converge to an equilibrium value which is specifically achieved for this patient

to minimize his/her tremor. To better understand the functionality of gi, suppose that the hand

tremor suddenly stops at some point. This does not of course happen in practice. We are
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assuming it to clarify the behavior of gi. In this case, if gi = 1, the dissipative gain B(t) will

stay at the previous value, while there is no tremor. However, by having gi slightly less than

unity the dissipative gain B(t) will gradually reduce. Note that if at any point, the severity

of the tremor changes, this will be observed by PMi and it results in changing µi and setting

a new equilibrium point for it. Consequently, taking advantage of having both gi and ∆i, an

appropriate value for B(t) can be achieved which minimizes PMi while providing minimum

needed resistance. This technique is called Energy-based Resist-as-Needed (ERN) approach.

The default value for gi is 0.99995. This value can make µi less than half in 15 s when PMi = 0,

considering sampling time of 1 KHz. Also, the default value for ∆i is 0.0005 which can result

in reaching the maximum B(t) in 2 s when gi = 1 and PMi = 1.

The Second Adaptation Rule: The goal of the second rule is to gradually increase the

assistive coordination gain C(t) for the voluntary component and keep PMv as small as possible.

This will result in having an acceptable tracking performance in an assist-as-needed manner.

The ultimate purpose is to provide the patient with minimum assistance just needed to perform

the task and not to provide him/her with too much assistance. If too much assistance was

provided, the patient would rely on the robot and would not get involved in the interactive

procedure. The rule is achieved using similar concept mentioned above as

C(t) = µv(t)Cmax, (6.30)

where µv(n) = gvµv(n−1)+PMv∆v. (6.31)

In (6.30), Cmax is the maximum coordination factor considered for delivering assistance to the

voluntary component. This value can be tuned based on the capabilities of the utilized robot.

The default value for Bmax is 800 N/m. In addition, µv(t) is the adaptive scaling gain which

is calculated using (6.31) based on the severity of the coordination deficit. In (6.31), gv is the

forgetting factor and ∆v is the growth rate constant for C(t). The functionality of the adaptation

rule given in (6.31) is similar to that of (6.29). The goal is to find the minimum assistance

needed for the patient. Having gv slightly less than unity allows us to always challenge the

patient and try to keep him/her involved in the loop. In fact, this choice of gv allows for

evaluating the patient’s capability in tracking the trajectory and automatically tuning C(t) to
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provide corresponding assistance. If we consider gv = 1 and the patient’s trajectory tracking is

inaccurate at the beginning of the task, µv will converge to a high equilibrium value and will

stay there. In this situation, if trajectory tracking becomes more accurate, since we had gv = 1,

the assistive gain C(t) will not be reduced and the robot will keep on providing assistance.

However, by considering gv slightly less than unity the coordination gain will gradually drop

when the patient starts to behave in a more accurate manner. This results in an assist-as-needed

approach which we call Energy-based Assist-as-Needed (EAN) technique. The default values

for gv and ∆v are 0.9998 and 0.0002, respectively. The designed AHR system is shown in Fig.

6.2.

6.5 Filter Evaluation and Patient-based Evaluation

In this section, the patient-based evaluation of E-BMFLC filter is presented. The goal is to

evaluate the accuracy, and the corresponding sensitivity to the tuning of η and intra-patient

variability, in comparison with BMFLC filter.

6.5.1 Demographic data

This study includes data collected from 27 patients (14 PD, and 13 ET). The patients were aged

from 36 to 86 (mean: 67.85, S.D.=11.46). The population involved 17 males and 10 females.

Patients were recruited from the Movement Disorders Centre at University Hospital, London

Health Sciences Centre (London, Ontario, Canada). The study protocol was approved by the

Research Ethics Board at Western University. Written consent forms and details of the protocol

were provided to the patients prior to their participation.

6.5.2 Experimental Setup and Task

The experimental setup (shown in Fig. 6.4) consists of a full upper-limb kinematic measure-

ment system from Biometrics Ltd. Motion sensor data was collected at 1500Hz and transmitted

to the PC interface MyoResearch from Noraxon. In this chapter, we used measurement data of

a 3 DOF Cartesian accelerometer on hand. Each patient has been asked to perform a random

target tracking task in free space for 20 seconds by repetitively moving the hand from nose to
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Figure 6.4: Multi-sensor experimental setup for tremor data collection.

a pen showing the target. The target positions are set such that the patient needs to fully stretch

out his/her arm. After one 20-second episode of target tracking the patient is asked to perform

other tasks in series (each for 20 seconds) i.e. holding an empty cup, holding a loaded cup,

resting hands on lap, resting hands on a support table. These tasks are chosen to change their

tremor conditions and trigger different characteristics. This allows us to evaluate their tremor

in different situations. The procedure is repeated three times (three trials) for each patient.

Consequently, for all 27 patients we have 3DOF acceleration for 3 separated episodes. As a

result, each patient provides 9 sample signals of 20-second target tracking. Considering all 27

patients, we have 234 sample data, in total.

6.5.3 Evaluation Protocol

An evaluation protocol is needed to be repeated for all sample data. The question to be ad-

dressed is: “what are the ideal references (for voluntary and involuntary motions) which should

be considered to calculate the accuracy and sensitivity?”. For this goal, the following protocol

has been conducted. For each sample signal:

Step 1) Fast Fourier Transform (FFT) is calculated.

Step 2) A 7th-order linear polynomial is fitted to the absolute value of the calculated FFT.

Step 3) The analytical derivative of the 7-order polynomial is calculated. This is used

to find the two suprema of the polynomial which correspond to the peaks in the central

frequencies of the voluntary and the involuntary components. Also, the cut-off frequency

that can separate the components is calculated.
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Step 4) The internal product of the FFT of the signal and a separating vector Vsep with

the same size is calculated. Vsep has values equal to one for frequency less than the cut-

off frequency and zero for frequencies higher than that. The result is the ideal FFT of the

voluntary component of motion.

Step 5) The same procedure is repeated while replacing the separating vector by 1−Vsep.

The result is the FFT of the involuntary component of the hand motion.

Step 6) The achieved ideal FFT vectors of the voluntary and involuntary motions are

named Hv( f ) and Hi( f ), respectively. f is frequency in Hz.

Step 7) The inverse FFTs of both the voluntary and involuntary components are calcu-

lated. These are used as the ideal references for evaluating the output of the filters. The

achieved ideal references in the time-domain are named Rv(t) for the voluntary compo-

nent and Ri(t) for the involuntary component. Note that the mentioned procedure is a

post-processing technique representing how to realize an offline ideal filter.

This procedure is displayed in Fig. 6.5, for motion in the X-direction of participant #21.

6.5.4 Method and Evaluation Metrics

In this part, the method used to evaluate and compare the performance of the filters is dis-

cussed. After calculating the cut-off frequencies and finding the references to perform evalu-

ation in frequency-domain and in time-domain, both the BMFLC and E-BMFLC filters have

been implemented in real-time for three corrective gains η , as explained as follows. Based on

our observations, η = 0.004 is a rational value to be considered for the filters. This observation

is made by checking 10 random signals out of the 234 items of data. To evaluate the sensitivity

of the filters to the change in η , and to evaluate/compare the performance of the filters, we run

both BMFLC and E-BMFLC techniques for two more η values, which are 0.004 ± 50%. It

should be noted that changing the η value considerably more than 50% of the nominal value

(i.e. 0.004) resulted in diverging behavior for the conventional BMFLC filter in some of the

mentioned 10 randomly chosen signals. Although the diverging behavior could be a good val-

idation of the high sensitivity of the conventional filter, it would not allow us to quantitatively
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(a)

(b) (c)

Figure 6.5: The results of the proposed post-processing protocol to calculate Rv(t), Ri(t),
Hv( f ), Hi( f ) for participant #21 in the X-direction. (a) The visualization of the proposed
protocol; (b) the modulated hand acceleration versus the extracted voluntary component Rv(t);
(c) the extracted involuntary component of motion Ri(t).

compare the sensitivity of the two filters. As a result, 50% deviation is considered to ana-

lyze and compare the sensitivity of the two filters (BMFLC and E-BMFLC) to the change in

η value. As a result of the above mentioned method, each signal (out of the 234 signals) is

filtered for 3 times by the BMFLC filter and for other 3 times by the E-BMFLC filter.

The Normalized RMSE (NRMSE) values of the extracted tremors (applying both the BM-

FLC and E-BMFLC filters) are calculated in the time-domain, using the ideal reference Ri(t).
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Also, the NRMSE values of the extracted tremors (applying both the BMFLC and E-BMFLC

filters) are calculated in the frequency-domain using Hi(t).

Consequently, applying the BMFLC filter on each hand signal, we calculate three NRMSE

values in the time domain which corresponds to the three η values; also, we have three NRMSE

values in the frequency domain. In addition, applying the E-BMFLC filter on each signal

we will calculate three NRMSE values in the time-domain and three NRMSE values in the

frequency-domain. Using the achieved NRMSE values, six metrics are designed which will be

used in the next part (“Part E”) to statistically compare the performance of the filters.

Metrics #1 and #2) In order to calculate the extent of improvement potentially achieved

using the proposed E-BMFLC filter, the first metric is calculated for all 234 signals in the

time-domain, as follows:

IMPError(t) =
NRMSEconv−t−NRMSEenhanced−t

NRMSEconv−t
, (6.32)

In (6.32), NRMSEconv−t corresponds to the conventional BMFLC filter. It is the minimum

NRMSE value (best performance) in the time-domain, considering the three NRMSE values

calculated by applying the three η values. Consequently, for each signal (out of the 234 signals)

we have one NRMSEconv−t value. In addition, NRMSEenhanced−t corresponds to the proposed

E-BMFLC filter. It is the minimum NRMSE value achieved in the time-domain out of the three

NRMSE values calculated by applying the three η values. As a result, IMPError(t) represents

the improvement achieved for tracking error in the time-domain, by applying the E-BMFLC

filter and in comparison with the BMFLC filter. Consequently, we have 234 IMPError(t) values

and the statistical distribution of it will be analyzed in Part E of this subsection. IMPError(t) = 0

indicates no improvement, and IMPError(t) = 1 indicates 100% improvement.

The same procedure is repeated to calculate the second metric which is the potential im-

provement achieved by applying the E-BMFLC filter, in the frequency-domain. The definition

of the second metric is:

IMPError( f ) =
NRMSEconv− f −NRMSEenhanced− f

NRMSEconv− f
. (6.33)

In (6.33), IMPError( f ) is the improvement achieved for estimating error in the frequency-
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domain.

Metrics #3 and #4) In addition to the above, to quantitatively evaluate the consistency of

the filter in estimating hand tremor and statistically compare the filters from the point of view

of the sensitivity to the choice of η , the third and forth metrics are designed. The third metric

is:

IMPηVAR(t) =
Vconv−t−Venhanced−t

Vconv−t
. (6.34)

In (6.34), Vconv−t is the variance of the three NRMSE values for each signal which correspond

to the considered three values of η for the conventional BMFLC filter, in the time domain.

Also, Venhanced−t is the variance of the three NRMSE values which correspond to the consid-

ered three values of η for the proposed E-BMFLC filter, in the time domain. Consequently,

IMPηVAR(t) is a quantitative metric which can tell us how much improvement is achieved apply-

ing E-BMFLC filter (in comparison with conventional BMFLC filter), from the point of view

of sensitivity to the change in η value. Having IMPηVAR(t) close to unity means that under the

same condition, the E-BMFLC filter demonstrates little performance change (less sensitivity)

in comparison to the BMFLC filter. On the other hand, having IMPηVAR(t) close to zero means

that the E-BMFLC filter behaves similar to the conventional BMFLC filter from the point of

view of sensitivity to the change in η . The third metric will be calculated for all 234 signals

and the statistical distribution of it will be evaluated in Part E.

The sensitivity of the filters can be also compared in the frequency-domain using the fourth

metric, IMPηVAR( f ), as:

IMPηVAR( f ) =
Vconv− f −Venhanced− f

Vconv− f
. (6.35)

In (6.35), Vconv− f is the variance of the three NRMSE values for each signal which correspond

to the considered three values of η for the conventional BMFLC filter, in the frequency-domain.

Also, Venhanced− f is the variance of the three NRMSE values which correspond to the consid-

ered values of η for E-BMFLC filter, in the frequency-domain.

Metrics #5 and #6) We are also interested in comparing the sensitivity of the filters to

changes in motion characteristics of patients and account for intra-patient variabilities. For this

goal and to evaluate the consistency of the filters in extracting hand tremors of different patients

with various characteristics, the fifth and sixth metrics are designed. These metrics show how
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much improvement is achieved in reducing the variation in performance under different motion

conditions associated with different patients. These metrics are achieved for all 27 patients.

The fifth metric is:

IMPΩVAR(t) =
Wconv−t−Wenhanced−t

Wconv−t
. (6.36)

In (6.36), Wconv−t is the variance of the nine NRMSE values which correspond to the nine

best performances achieved by applying the BMFLC filter for estimating nine motion data for

each patient in the time domain. The explanation of how to calculate Wconv−t is as follows:

For each patient we have 9 measured signals (3DOF measurements for 3 trials). Each signal

is filtered using three different values of η . The best performance for filtering each signal is

the minimum NRMSE value out of the three NRMSE values achieved by applying the defined

three η values. Accordingly, for each signal we have one best performance. Considering nine

signals for each patient, we have nine best performances for each patient. The variance of these

nine best performances is Wconv−t for the BMFLC filter in the time-domain. Consequently, for

each patient we have one Wconv−t value in the time-domain.

Also, Wenhanced−t is the variance of the nine minimum NRMSE values which correspond

to the best performances achieved applying the E-BMFLC filter for estimating the nine mo-

tion data for each patient in the time-domain. Consequently, for each patient we have one

Wenhanced−t value in the time-domain. Accordingly, IMPΩVAR(t) can be calculated for each pa-

tient as given in (6.36), which is the improvement achieved in reducing the variation in the

performance by applying the E-BMFLC filter. Finding IMPΩVAR(t) for all 27 patients, we can

statistically analyze the corresponding distribution. This is done in Part E.

Similarly, the consistency of the filters can be compared in the frequency-domain using the

sixth metric, IMPΩVAR(t):

IMPΩVAR( f ) =
Wconv− f −Wenhanced− f

Wconv− f
. (6.37)

In (6.37), Wconv− f and Wenhanced− f are the variance of the nine minimum NRMSE values in the

frequency-domain for the BMFLC filter and the E-BMFLC filter, respectively.
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6.5.5 Implementation Results and Statistical Analysis

In this part, first, various aspects of the proposed E-BMFLC filter are separately analyzed.

Then, the results of the statistical comparative study on the efficacy of the filter for extracting

tremors of 27 patients are given.

I) Analyzing Old Tremor Projections: As mentioned before, one of the challenges with

conventional BMFLC filter is the infinite memory of it, besides the assumption of fully-periodic

input signal. This can result in repetitive OTPs which can degrade the efficacy. To show the

existence of OTPs in the conventional BMFLC filter, and to isolate it from other potential

sources of error, the following steps are taken. First, motion data for one patient have been

randomly chosen. In this case, we chose the hand motion of Participant #4 (a 55 years old

male with PD) in the X-direction, during the first trial. While applying no change to the first

3 seconds of the signal, we cut the remaining part of the signal (from t = 3 s to t = 20 s) and

make it zero. This is just to highlight and extract the effect of OTPs. The result of applying

conventional BMFLC filter is shown in Fig. 6.6a. As can be seen, although the original signal is

flattened after t = 3s, repetitive projections exist in the estimated value. These are the predicted

OTPs. As mentioned, the OTPs are the result of assuming the fully periodic model in BMFLC

besides having infinite memory. Applying the proposed memory windowing technique for

the same filter (ρ = 0.999) results in Fig. 6.6b. As can be seen in Fig. 6.6b, the OTPs

are completely eliminated. This result validates existence of OTPs and effectiveness of the

proposed memory windowing technique. In Fig. 6.6c, the estimated coefficients of the utilized

Fourier combiner are plotted, over time. As it is shown in Fig. 6.6c, for the conventional

BMFLC filter, the coefficient values still vary after t = 3 s. The reason is that the filter assumes

that the complete hand signal from t = 0 to the current time stamp should be modelled by

a periodic nature. Better view of the coefficients are given in Fig. 6.7a. After applying the

proposed memory windowing, the coefficients gradually converge to small values (after t = 3 s)

eliminating the OTPs. This is shown in Fig. 6.6d and Fig. 6.7b.

II) Analyzing Sensitivity to the Design of η : As mentioned earlier, we hypothesize that the

design of the proposed E-BMFLC filter is more robust to the change in η value in comparison

with BMFLC filter. This is statistically evaluated at the end of this section. Here, an example

for one signal is given to discuss the behavior of E-BMFLC and the conventional BMFLC
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(a) (b)

(c) (d)

Figure 6.6: (a) The existence of OTPs in the output of BMFLC filter; (b) elimination of OTPs
by applying the proposed memory windowing; (c) the estimated coefficients of the Fourier
model for the case of BMFLC filtering; (d) the estimated coefficients after applying memory
windowing.

for three different η values (i.e. 0.002, 0.004, 0.006). The data of Participant #4 is analyzed

here. For this purpose, we have considered hand motion in the X ,Y , and Z directions, for the

defined three trials. So, in total we have the following 9 data samples: Sample #1: X-direction,

Trial #1; Sample #2: X-direction, Trial #2; Sample #3: X-direction, Trial #3; Sample #4: Y -

direction, Trial #1; Sample #5: Y -direction, Trial #2; Sample #6: Y -direction, Trial #3; Sample

#7: Z-direction, Trial #1; Sample #8: Z-direction, Trial #2; Sample #9: Z-direction, Trial #3.

The above 9 signals have been used to evaluate both the BMFLC and E-BMFLC filters,

while considering the defined three η values for each filter and each signal. The corresponding

NRMSE values in the time-domain and in the frequency-domain are calculated. The results

are shown in Fig. 6.8. In this figure, red lines correspond to BMFLC filter. Each line is the

result of one η value. Also, the blue lines correspond to the proposed E-BMFLC filter.

Considering the results in Fig. 6.8, the E-BMFLC filter not only provides a more accu-
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(a) (b)

Figure 6.7: (a) The 3D view of the estimated Fourier coefficients (a) for BMFLC filtering, (b)
after applying memory windowing.

rate tremor estimation (lower average NRSME value), it has represented (a) less performance

change (less sensitivity) applying different η values, and (b) less variation in performance ap-

plying different inputs (considering different signals). In fact, the difference between the results

of using different η values is not even easily distinguishable in the figure for the E-BMFLC

filter. However, the performance of the conventional BMFLC filter changes dramatically by

changing the η values and by using the same filter for a different data point.

Consequently, it can be concluded that for the considered participant, the E-BMFLC filter

has shown a more robust, more accurate and less sensitive performance.

The outputs of the filters are plotted over time for the Z-direction during the first trial, in Fig.

6.9. As expected, the figure shows more accurate estimation achieved by using the E-BMFLC

filter in tracking the hand tremor of this participant when comparing with the conventional

BMFLC filter, under the same condition. To ensure that the achieved conclusion is statistically

significant and consistent, we need to evaluate the filters for a group of patients and run a

standard statistical test, as given in the following part.

III) Patient-based Evaluation and Statitsical Analysis: In this part, the effectiveness of

the proposed E-BMFLC filter is statistically evaluated in comparison with the performance

of the conventional BMFLC technique. For this purpose, the statistical distributions of the

aforementioned six metrics are evaluated. The average values and standard deviations for the

six metrics are calculated. The standard statistical T-test is utilized to analyze the significance

of the calculated improvements. The results are summarized in Table 6.1. In addition, the

corresponding box plots of the distributions are plotted in Fig. 6.10 for metrics #1 to #6. As
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(a) (b)

Figure 6.8: The NRMSE values for the proposed E-BMFLC filter (blue lines) and the conven-
tional BMFLC technique (red lines). Each line corresponds to applying one η value out of the
considered three values. (a) Results in the time-domain; (b) results in the frequency-domain.

can be seen in Table 6.1, the average improvement achieved for NRMSE in the time-domain

(IMPError(t)) is 59.73% and the standard deviation is 9.59%. Also, the average improvement

for NRMSE value in the frequency-domain (IMPError( f )) is 68.22% with standard deviation

of 6.03%. The significance of the results are validated using the T-test which results in a

p-value < 0.001. This shows that the achieved improvements are statistically significant. The

same analysis is performed for other defined metrics and the results are shown in Table 6.1.

Considering the results summarized in Table 6.1, the proposed E-BMFLC filter, has sta-

tistically significant improvement in accuracy of the filter for estimating hand tremor. This is

interpreted based on the statistical analysis of IMPError(t) and IMPError( f ). Also, the sensitivity

to the change in η , is significantly reduced. This is interpreted based on the statistical analysis

of IMPηVAR(t) and IMPηVAR( f ). In addition, the proposed filter shows considerable improve-

ment in reducing the sensitivity to the change in tremor characteristics of different patients.

This is interpreted based on the statistical analysis of IMPΩVAR(t) and IMPΩVAR( f ). All the

results are statistically significant in both the time-domain and the frequency-domain. Con-

sequently, the proposed filter consistently shows significant improvement in extracting hand

tremors of patients living with PD and ET. This validates the hypotheses of this chapter.
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(a) (b)

Figure 6.9: Tremor extraction for Participant #4 in the Z-direction, during the first trial. The
red line is the actual hand tremor, and the blue line is the output of the filter. (a) The result
of applying the proposed E-BMFLC filter; (b) the result of applying the conventional BMFLC
filter.

Figure 6.10: Statistical distribution of the six improvement metrics.

6.6 Experimental Evaluation of the Augmented Haptic Re-

habilitation Architecture

In this section, the proposed AHR system is implemented and experimentally evaluated. Upper-

limb rehabilitation robot from Quanser Inc. is used, shown in Fig. 6.2. The user wears a

head-mounted display visor which provides visual cues and the location of the moving target

to track. The experiment is designed to evaluate different features of the AHR system including

the proposed adaptive assistance and resistive algorithms. It should be noted that in pathologi-

cal tremor patients, the involuntary movement is due to involuntary activation of hand muscles

which results in an involuntary force field. Consequently, in this experiment, while a healthy
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Table 6.1: Summary of the Statistical Analysis

user handles the robot, the tremor of participant #21 is chosen randomly to design a tremor-

like force field for the user to mimic the interaction between a tremor patient and the system.

It should be highlighted that the generated force field in this experiment might be different

from the one felt by the user during data collection. As mentioned, in this section we aimed

to analyze the performance of the proposed AHR system. As a result it was needed to make

a tremor-like force field to analyze the reactions of the system. For this purpose, the data col-

lected for Participant #21 has been used as a model to make the force field which represents a

realistic frequency content of a human with pathological hand tremor.

6.6.1 Experiment Design

The experiment is designed in three phases. In the first phase (0s≤ t < 27s), the user holds the

robot while the robot perturbs the user’s hand by applying the designed tremor-like force field.

During this phase, the robotic therapy is turned off and no assistive/resistive force is delivered

to the user. It is expected that the user’s hand continues shaking in a tremor-like manner.

During the second phase (27s ≤ t < 60s), the designed resistive force field is turned on. It

is expected that the intensity of the dissipative force gradually increases due to the proposed

adaptation rule (6.28) and (6.29). This should result in a reduction in the amplitude of the

hand tremor. During the third phase (t ≥ 60s), the assistive force field is also turned on. It

is expected that during this phase, the intensity of the assistive force field gradually increases
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(due to the proposed corresponding adaptation rule (6.30) and (6.31)). This should result in

an increase in the amplitude of the low-frequency of the hand motion and a reduction in the

tracking error.

It should be highlighted that during the third phase, for t ≤ 100s, the user just holds the

robotic handle and does not try to track the target trajectory in order to mimic the behavior of

a severely impaired patient. Consequently, the robot should take the full authority, increase

the coordinative gain and push the user’s hand towards the correct path of motion. After t =

100s, the user starts to act like a less-impaired patient by putting effort in tracking the target.

Consequently, if the designed adaptation rule works, it is expected that the intensity of the

assistance force field should reduce and the system should give some authority to the user.

This means that the equilibrium point for the coordinative gain should drop after t = 100s.

6.6.2 Results

The results of the experiment are shown in Figs. 6.11 and 6.12. In Fig. 6.11a, the hand velocity

is shown for the proposed three phases of the experiment. As can be seen in the figure, during

the first phase, the hand of the user shakes due to the applied tremor-like force field, while

the therapeutic forces are turned off. When the resistive therapy is started (as Phase 2), the

amplitude of the hand tremor considerably reduces as expected. The amplitude of the tremor

during the second phase is 8.6 times smaller than that during the first phase. This is due to

the gradual increase in the dissipative gain which can be seen in Fig. 6.12b. In addition to

the above, by the start of the third phase in Fig. 6.11a, the amplitude of the low-frequency

motion increases which is due to the increase in the coordinative gain. The coordinative gain

is shown in Fig. 6.12a. This results in gradual reduction in the tracking error (as can be

seen in 6.11b). The target movement is shown by the solid red line in Fig. 6.11b, where the

voluntary component of the hand motion is shown by the solid blue line. The total modulated

force provided by the proposed controller during the second and the third phases is shown in

Fig. 6.11c. During the second phase, the aforementioned modulated force has high-frequency

components to resist the hand tremor. During the third phase and before t = 100s the modulated

force has significant low-frequency components (to guide the user’s hand towards the correct

path) together with the high-frequency components to resist the hand tremor. Considering Fig.
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(a) (b)

(c)

Figure 6.11: Experimental results for the three phases. (a) hand velocity, (b) target tracking,
(c) the designed modulated force field.

6.12a, after t = 100s, when the user starts to act like a less-impaired patient by putting effort

in tracking the target, the coordinative gain is significantly reduced (by 64%). This means that

the controller detects that the user is more capable of moving the robot (after t = 100s) so the

adaptive algorithm provides 64% of the authority to the user. Consequently, as can be seen

in Fig. 6.11c, after t = 100s, the low-frequency component of the modulated control force is

reduced (which is due to the reduction in the coordinative gain), while still the high-frequency

components exists to dissipate the tremor energy. These results match with the expectations

and validate the functionality of the architecture.

6.7 Conclusion

In this chapter, a new design of the BMFLC filter was proposed which we have called E-

BMFLC technique. The new filter uses an enriched Fourier combiner model together with a

windowed memory. The goals were to reduce the error in extracting pathological hand tremor

as well as the sensitivity of the filter to the choice of the corrective gain used in the filter and
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(a) (b)

Figure 6.12: The designed parameters for the therapy: (a) coordinative gain, (b) dissipative
resistive gain.

intra-patient variabilities. To evaluate the performance of the filter, recorded hand motions of

27 patients (PD and ET) were used in the comparative study. The proposed E-BMFLC filter

showed a statistically-significant improvement (p-value < 0.001) in estimation accuracy, in

comparison with the conventional design of the BMFLC filter. The tremor tracking accuracy

and the sensitivity to the choice of corrective gain and intra-patient variabilities were signifi-

cantly improved using the proposed filter. In the second part of this chapter, the designed filter

was utilized in developing a new haptics-enabled rehabilitation strategy, called AHR (Aug-

mented Haptic Rehabilitation). The AHR is capable of delivering therapeutic forces (in an

assist-as-needed manner) while keeping the hand tremor under control and avoiding unsafe

amplification of tremor energy. This architecture makes it possible for patients living with

pathological hand tremor to take advantage of robotic rehabilitation. The design of the pro-

posed AHR architecture is motivated by recent evidence showing the impact of multi-modal

rehabilitation for enhancing motor control in patients living with pathological hand tremor.

The proposed AHR architecture was implemented using an upper-limb rehabilitation robot

from Quanser Inc. (Markham, Ontario, Canada), and its performance was evaluated experi-

mentally. It was shown that using the proposed AHR architecture, assistance can be delivered

to the voluntary component of the hand motion (in an adaptive manner) while the system can

control involuntary hand tremors. Future work in this study is to longitudinally analyze the

improvement that can be achieved by the use of the proposed AHR system on a group of PD

and ET patients.
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Chapter 7

Application to other Neurological

Movement Disorders: A Telerobotic

Platform for People with Cerebral Palsy

The material presented in this chapter has been accepted for publication in the Journal of

Medical Robotics Research, 2016.

7.1 Introduction and Preliminaries

Cerebral palsy (CP) is an umbrella terminology for a range of non-progressive neurological

sensorimotor deficits that initiate in young children. The onset of CP is known to be brain

damage prior, during and/or after birth. It affects a wide range of motor performances and

results in various movement symptoms. Spastic CP, Ataxic CP, and Athetoid CP are some ma-

jor categories of this condition [1–3]. Note that, in this chapter, the terminology “individual

with CP” is used for an individual who is living with cerebral palsy. Spastic CP is a common

condition for individuals with CP, which refers to hypertonic muscles that increase muscular

tone and result in a reduced range of motion and stiff, jerky or uncoordinated movements [4].

Individuals who have Ataxic CP and Athetoid CP have reduced or fluctuating muscle tone (hy-

“Telerobotics-assisted Platform for Enhancing Interaction with Physical Environments for People Living
with Cerebral Palsy,” S. Farokh Atashzar, N. Jafari, M. Shahbazi, H. Janze, M. Tavakoli, R. V. Patel, K. Adams,
Journal of Medical Robotics Research, accepted, Copyright c©2016 World Scientific Publishing Co. Pte Ltd.
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potonic muscles). Ataxic CP affects the balance and fine tuning of movements and can involve

an intention tremor when attempting movements. Athetoid CP exhibits writhing involuntary

movements. Individuals can have two or more types of CP, which is called mixed CP [1, 5, 6].

In summary, different types of CP involve various motor control impairments including (a) a

limited range of motion, (b) coordination problems, and (c) non-smooth motion execution

(such as hand tremor and other involuntary motor behaviors). This condition consider-

ably disturbs the capabilities of individuals with CP in interacting and engaging with their

surrounding physical environments [7].

Based on developmental theories, interactional motor experiences, such as exploration and

manipulation, are key factors in cognitive and perceptual development of children [8–10]. Chil-

dren with CP have considerable difficulties in performing object manipulation [11] and may

therefore miss the chance for meaningful interaction with environments in early stages of their

development [12, 13]. Consequently, due to the young onset of CP, the limited physical in-

teraction capabilities can result in further secondary conditions such as cognitive development

delay, learning deficits, and social skill issues. As an example, movement disorders caused by

CP degrade engagement of young individuals with CP in free play environments, where chil-

dren physically interact with objects, make decisions, perform different self-regulated goal-

oriented tasks, think about cause-and-effect relationships and understand consequences. In

the literature, it has been shown that these actions are crucial for cognitive, sensorimotor, and

psychological development of children (see [12, 14, 15] and the references therein).

Technologies that are capable of allowing disabled people to perform (even indirectly) in

a real play environment have attracted interest in recent years. In this regards, play-oriented

robots (such as Lego robots) have been studied in the literature. These robots can be controlled

using various access methods (e.g., push-down switches or eye gaze) by a child who has dis-

abilities. Corresponding works can be found in a new literature review [12], in [16, 17] and

prior research of K. Adams (author #7) [14, 15, 18–20]. Children with severe physical limita-

tions control the aforementioned robots by high-level supervisory commands. With high-level

commands, when a user makes a simple movement (e.g., pushes a switch), the robot performs

an autonomous subtask (and usually keeps doing that) while waiting for a new command. Some

examples of high-level supervisory commands are reach the target, drop the object, and come
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Figure 7.1: An example of current systems used for individuals with CP.

back to home position. An example of a switch controlled robot system is shown in Fig. 7.1.

Although the users are able to perform some tasks using the above-mentioned systems, there is

still a considerable lack of “controlled, direct, instant and coordinated” interaction between the

user and the play environments [21]. In other words, although these systems can indirectly re-

alize task performance in play environments, they are incapable of realizing motion-controlled

hand-eye coordinated physical interaction with real objects and they do not correlate the user

movement (e.g., pushing a switch) with interaction in the environment (the robot performs a

multi-step task).

Remark 7.1. Using the multi-action guidance delivered by the proposed system, the mo-

tions of the task-side robot can be controlled by the disabled user and would be correlated to

the motion of the user’s hand. For example, if the user tries to move the user-side interface

(e.g., a motorized haptic device) to the left, the task-side robot correspondingly and instantly

will go to the left. If children could exert controlled coordinated physical interaction to manip-

ulate objects in the environment, it is anticipated that it could lead to positive effects on their

cognitive, social and sensorimotor development in the long term. •

Remark 7.2. In this chapter, we propose a new haptics-enabled telerobotic platform that

can help individuals with CP in interacting with real physical environments mostly by aug-
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menting their motion capabilities and also by making it possible for them to feel the interaction

forces. When interacting with play objects, individuals need to be able to reach them, use

smooth and fluid movements, and perform hand-eye coordination with the appropriate force

and/or speed [22]. The goal of the proposed system is to allow individuals with CP to perform

instant under-control tasks through a telerobotic medium that can compensate for the limited

range of motion, the non-smooth tremor (and/or involuntary actions), and coordination

problems that individuals with-CP may exhibit. This system makes it possible for individ-

uals with CP to utilize their own movement strategies and motion capabilities and instantly

interact with various physical environments. The main responsibility of the proposed teler-

obotic system is to extend the capabilities of individuals with CP and allow them to experience

interaction with environments. •

Remark 7.3. The main focus of this chapter is to propose a new mechatronic design which

can facilitate interaction with physical environments for individuals with CP, as a new assistive

paradigm. The design is motivated by evidence showing that physical interaction is a crucial

factor for developing sensorimotor and cognitive skills, and that individuals living with a lack

of interaction may develop corresponding secondary delays [8–10, 12, 13]. Analyzing the long-

term effectiveness of the proposed system to cognitive and sensory development will require

longitudinal long-term studies, which are part of our ongoing work, but outside of the scope of

this chapter. •

It should be noted that, telerobotic systems have been utilized in a wide variety of applica-

tions such as surgical, under-water and space operations [23]. A common goal for telerobotic

systems is to extend the capabilities of human users beyond their limitations. In addition, it

is possible to quantify movement capabilities (such as for skill assessment during robotics-

assisted surgery) [23]. Using the same concept, in this chapter, the new telerobotic system is

proposed to help disabled users extend their capabilities beyond limits imposed by their move-

ment disorders to allow them to experience interaction with environments while the system

logs all motion and force profiles.



288 CHAPTER 7. A TELEROBOTIC PLATFORM FOR PEOPLE WITH CP

7.1.1 Overview of the Proposed System:

The telerobotic architecture proposed in this chapter consists of (I) a user-side robot, (II) a

task-side robot, (III) a Virtual Assistive (VA) computer algorithm, and (IV) a physical play

environment. The system architecture has two major signal pathways namely: forward path

and backward path. In the forward path, (a) the individual with CP generates motions by

moving the user-side robot, (b) the VA algorithm modifies the generated motion (to enhance

the task performance), and (c) the task-side robot mimics the motions modified by the VA

algorithm to perform the task on the play environment. In the backward path, the VA algorithm

generates a resistive compensatory force field (explained later), which is applied by the user-

side robot to the individual’s hand to kinaesthetically restrict his/her involuntary movements.

Consequently, the proposed system is a medium which makes it possible for individuals with

CP to interact with a play environment (placed at the location of the task-side robot), while

the system compensates for their limited range of motion and non-smooth movements. In

addition, it provides a compensatory force field for the user to kinaesthetically restrict the

involuntary movements. The mentioned functionality allows an individual with CP to engage

in interactions with environments that they can not engage in without the use of this system. A

schematic of the proposed telerobotic system is shown in Fig. 7.2. The proposed architecture

has a triple-action design as follows:

Action #1: Motion Range Correction: Scale the user’s limited convenient range of

motion at the user-side robot to that needed for performing the task at the task-side robot;

Action #2: Voluntary Movement Tracking: Filter out the motion signal transferred to

the task-side robot in order to only use the voluntary component of the provided motion

for task performance;

Action #3: Involunary Movement Dissipation: Apply a dissipative force field to the

user’s hand by the user-side robot to damp-out and resist the high-frequency involuntary

component of the hand motion while keeping the dissipative resistance small for the

voluntary component (that is typically a low-frequency signal [24, 25]).

The play environment can support many tasks like sorting objects, path following, obstacle

avoidance or push-pull tasks. In order to verify the functionality of the system, the proposed
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Figure 7.2: The experimental setup and a schematic of the proposed triple-action telerobotic
architecture. The user side robot is a table-top rehabilitation robot from Quanser Inc. (Canada)
and the task-sided robot is a Phantom Premium 1.5 A from Geomagic (US).

architecture was implemented using a table-top upper-limb rehabilitation robot (from Quanser

Inc., Canada) as the user-side device, and a Phantom Premium 1.5A robot (from Geomagic,

US) as the task-side device. Each action of the implemented system was evaluated with one

non-disabled subject. The implemented system was demonstrated to therapists and their feed-

back was utilized to optimize the design and make the protocol of this study. Using the designed

protocol, the system was tested with one individual with CP. Force and motion trajectories were

collected to analyze the performance of the system.

The rest of this chapter is as follows. In Section 7.2, the design of the telerobotic system

and the proposed virtual assistive algorithm are explained in detail. In addition, the triple-

action performance of the proposed architecture is evaluated for the non-disabled individual.

In Section 7.3, the evaluation method is introduced to analyze the effectiveness of the system

for the individual with CP. The results and discussion are given in Section 7.3. The chapter is

concluded in Section 7.4.
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7.2 The Proposed Telerobotic Architecture and Virtual As-

sistive Algorithm

The design of the proposed telerobotic system shown in Fig. 7.2 is described in more detail, in

this section, and experimental results are reported to evaluate different functions of the system.

7.2.1 Components and the Design of Actions

The components of the designed system are as follows.

(a) User-side Robot: The user-side robot is a 2 degrees of freedom upper-limb rehabili-

tation robot (from Quanser Inc., Markham, Ontario, Canada). The specification of the robot

(including the shape and size of the workspace, resolution, weight, etc) can be found in [26, 27].

The robot can apply forces up to 50 N in Cartesian domain. The function of the user-side robot

is to register the individual’s hand motion and provide him/her with a compensatory force field

generated using the Virtual Assistive algorithm, detailed later in this section.

(b) Task-side Robot: The task-side robot is a Phantom Premium 1.5A robot (from Ge-

omagic, US). The specifications can be found in [28]. The task-side robot is considered to

follow the “modulated” motion trajectories of the individual with CP in order to perform the

intended task. In this chapter, one of the considered functional tasks is a pick-and-place sorting

activity explained latter in this section. A small electromagnetic lifter is attached at the tip of

the task-side robot to perform the task. The motion trajectory to be followed by the task-side

robot is based on the individual’s hand motion and is modulated by the VA algorithm.

(c) Virtual Assistive Algorithm: The VA is an algorithm that controls the behavior of

both the user-side and the task-side robots. The algorithm first analyzes the individual’s hand

motion and extracts the involuntary and voluntary components. For this purpose, a low-pass

Band-limited Multiple Fourier Linear Combiner (BMFLC) filter (see [29–32]) is implemented

to extract the involuntary component of the hand motion, which has a high-frequency nature in

comparison with voluntary component of the motion [24, 25]. The BMFLC filter is an adap-

tive technique which is utilized to extract involuntary movements while introducing minimal
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filtering latency into the interaction. The design of the filter can be found in [29–32].

Remark 7.4. The BMFLC filter used is a member of a family of adaptive filters which are

designed based on Fourier Linear Combiner (FLC) modeling. This family considers summa-

tion of discrete harmonics over a large window of frequencies (for example from 0 Hz to 20

Hz) for modeling a signal that has high-frequency and low-frequency components. The filter

adaptively and in real-time tunes the coefficients of the FLC model, using a recursive technique

which is usually the Least-Mean-Square (LMS) technique, to find the best frequency-based de-

composition of the targeted signal. FLC-based filters have demonstrated good performance in

extracting involuntary movements introducing minimum delay in comparison with classical

filtering techniques [29–31, 33, 34]. The original format of FLC-based filters, assumes a single

dominant frequency [35] for the signal to be filtered. This was utilized to extract and cancel

out physiological hand tremor of surgeons in the development of motorized surgical tools with

the goal of increasing accuracy in surgical tasks [34]. The above-mentioned assumption (sin-

gle dominant frequency) was then relaxed by the newer version of the filter i.e., the BMFLC

technique. BMFLC is designed to track multiple harmonics of a signal [29–31] and showed

higher accuracy compared to conventional FLC-based filters [30]. In the literature, BMFLC

filtering has also been used for extracting physicological hand tremor of surgeons [36–38] and

recently has shown good performance in extracting pathological involuntary motions [33]. •

Using the BMFLC filter, the extracted involuntary and voluntary motions are

ξi(t) = BMFLC
(

Mp(t)
)
, (7.1)

ξv(t) = Mp(t)−ξi(t), (7.2)

respectively. In (7.1) and (7.2), Mp(t) is the total hand motion which has both of the volun-

tary and involuntary components. In addition, ξv(t) is the estimated low-frequency voluntary

component of the hand motion and ξi(t) is the estimated involuntary component. When Mp(t)

is considered to be the hand “velocity”, then ξv(t) and ξi(t) are voluntary and involuntary

component of the hand’s velocity, respectively. The same interpretation is valid for position

trajectories. After estimating ξv(t) and ξi(t), the VA provides the three actions, explained in

the following.
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Action #1: Motion Range Correction: The algorithm provides range correction to the

transferred motion. For this purpose, prior to the task execution, the system operator asks the

individual with CP to explore the limits of his/her comfortable range of motion using the user-

side robot. The maximum range of motion needed to perform the task is known based on the

specific dimensions of the task environment. Accordingly, the needed scaling can be calculated

for the individual with CP, on a user-specific basis, to map his/her comfortable motion range to

the one needed for task performance. For this purpose, scaling factors Cx and Cy are calculated

as follows (for 2D tasks):

Cx =
Max(Xp)

Max(XT )
, (7.3)

Cy =
Max(Yp)

Max(YT )
. (7.4)

In (7.3), Cx is the mapping coefficient for the X direction that relates the maximum reachable

distance of the individual’s hand (Max(Xp)) in his/her comfortable range of motion to the max-

imum amplitude of motion needed in the X direction to perform the designed task (Max(XT )).

Note that Xp stands for the individual’s hand position in the X direction and XT stand for the

task-side robot movement in the X direction. Accordingly, Cy is designed similarly for the mo-

tion in the Y direction. Consequently, the range-corrected motion trajectory for the task-side

robot is

Ms(t) =

 Cx 0

0 Cy

 ·ξv(t)T . (7.5)

In (7.5), ξv(t) refers to the voluntary component of the individual’s position trajectory in 2

degrees of freedom (X and Y directions). The task-side robot follows the corrected (scaled-

up ) trajectory of the individual’s hand. Consequently, the individual with CP will be able to

perform large-scale tasks using her/his comfortable workspace range. In Section 3 a system-

atic approach is proposed to tune default values for Cx and Cy. In addition, explanations are

provided to show how to choose the cut-off frequency of the BMFLC filter to separate the vol-

untary and involuntary movements. Note that, the clinician will be always able to tune these

parameters. This is a widely utilized approach in the literature [39, 40]. •

Action #2: Voluntary Movement Tracking: In order to provide better coordination for the

individual with CP, instead of transferring the total movement of the hand (i.e. Mp(t)), only
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the voluntary component ξv(t) is considered to be sent to the task-side robot. The goal is to

make the robot follow the voluntary component of the hand motion to perform the task. Conse-

quently, when an individual who has CP moves the user-side robot with a movement containing

both low-frequency movements (i.e., a movement generally towards the target) and high fre-

quency movements (i.e., a jerky or shaky movement), only the low frequency movements will

be transferred to the task-side robot.•

Action #3: Involuntary Movement Dissipation: The goal of the third action is to provide

the individual with CP with resistive dissipative forces in the high frequency range to damp-out

the energy of his/her involuntary hand motion. This provides the user with better coordination

of the task and smoother, controlled motions. In addition, using this action, a better hand-eye

coordination will be provided for the individual with CP. The reason is that using this action,

the involuntary component of the hand motion dampens out, which matches the visual feedback

from the task-side robot controlled to track the voluntary component of hand motion (based on

Action #2). In order to implement Action #3, the involuntary component of the hand motion,

which is extracted by the BMFLC filter, is utilized in the design of the resistive dissipative

force field. It should be highlighted that the force field is implemented in the high-frequency

domain and provides the user the feeling of moving in a viscous environment only for the

involuntary component of the user’s motion. Consequently, the force field provides minimal to

no resistance in response to the voluntary components of the user’s movements. The design of

the proposed force field is as follows:

Fi(t) =

 Bx 0

0 By

 ·ξi(t)T . (7.6)

In (7.6), Fi(t) is the designed force field, Bx and By are dissipation coefficients that define the

intensity of the resistive force field. The higher the intensity, the higher the magnitude of the

generated resistive forces in response to the same input (i.e. involuntary component of hand

velocity). It should be noted that since the dissipation coefficients are applied to the involuntary

velocity of the individual’s hand at the user-side robot, the intensity of the dissipation converges

to zero for voluntary movements. •

Remark 7.5. Note that Bx and By define the intensity of the resistive force field. Feedback
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from the patient and clinicians is considered to tune these parameters. The reason is that the in-

tensity delivered using the proposed architecture dependents on (a) the musculoskeletal power

of the patient, (b) the level of intensity that the therapist/clinician would like to deliver to the

individual’s hand, and (c) the level of comfort that the individual feels during the trial. Consid-

ering feedback from a therapist/clinician is common for neuro-rehabilitation robotic systems,

where the therapist/clinician gradually tunes the difficulty level while the patient performs

tasks [39, 40]. As a result, we suggest to allow the clinician to tune Bx and By based on their

understanding of the needs of the individual with CP and considering the individual’s comfort

level during the interaction. The tuning procedure is explained in more detail in Section III.•

(d) Task Environment: The other component of the proposed telerobotic architecture is the

designed functional task environment. The geometry of the environment is decided considering

the motion-capabilities of the task-side robot. Also, specific attention is paid to make the task

environment “flexible”. Our clinical partners expressed that the environment needed to be

flexible in order to quickly change the tasks based on the needs and interests of the individual

with CP and the therapist. In this chapter, one of the main implemented tasks was to sort 10

magnetic happy face objects based on their colour when the initial pick-up position and the

target drop-off locations were separated by 33 cm in the X direction. There were two side-by-

side target bins one for the red happy faces and one for the blue ones. The individual needed

to use the proposed telerobotic system to sort the magnetic objects. This task is shown in Fig.

7.2 in the physical play environment. This is one example possible tasks and there are more

possibilities. Sorting can also help children learn about the attributes of objects (like colour

and shape), as they sort them into categories.

Remark 7.6. Although the functionality of different actions of the system can be evaluated

separately, the actions are designed to work simultaneously for individuals with CP. The reason

is that if we just utilize Action #1 (scaling up the motions), we amplify not only the individual’s

voluntary motions, but also the involuntary motions. In this case, the individual with CP would

have more difficulty controlling the task-side robot. That is why the proposed architecture is

designed to only assist the voluntary component while kinesthetically resisting and avoiding

tracking the involuntary components of motion. •
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7.2.2 Experimental Evaluation

In this part, data from the experimental evaluation with a non-disabled user of the three actions

of the proposed VA algorithm are presented. The experiments were performed in three phases

where each phase corresponds to one of the defined actions.

Phase 1: Experiment for Motion Range Correction (Action #1): This phase was de-

signed to evaluate the functionality of the proposed Action#1 of the developed VA. The exper-

iment started at t = 20 seconds. First, the operator moved her hand for 30 seconds while the

scaling factors for both X and Y directions were equal to unity. The generated motion trajec-

tory of the user is compared to the one followed by the task-side robot in X and Y directions in

Figs. 7.3a and 7.3b, respectively. Also, the 3D trajectory is shown in Fig. 7.3c. As expected,

the task-side robot tracked the trajectories generated by the user. For the second part, at t = 70

seconds, the corrective gains Cx and Cy were increased by 50 percent. The trajectories for the

t ≥ 70 seconds can also be seen in Fig. 7.3. As expected in this condition, the task-side robot

followed the scaled-up trajectory even though the user performed smaller motions.

Phase 2: Experiment for Voluntary Movement Tracking (Action #2): In this phase,

to only evaluate the performance of Action #2, the dissipative force field was disabled. The

force field is exclusively studied in the third phase of this experiment. First, the non-disabled

operator provided motions only in a high-frequency manner in the X-direction.

Since the high-frequency behavior was provided by a human operator (not programmed

software), it is not possible to report the frequency. However, providing motions this way

enabled testing the performance of the proposed action. It was expected that the task-side

robot would not move much due to the proposed Voluntary Movement Tracking action of the

system (Action #2). Next, the operator provided motions in a low-frequency manner. It was

expected that the task-side robot would track the user-side robot, since applying Action #2, the

low-frequency movements should pass through the VA algorithm. Then, the operator provided

a hand motion which had both high-frequency and low-frequency components. It was expected

that in this case, the robot would follow only the low-frequency component.

The results are show in Fig. 7.4, which confirms the functionality of Action #2 of the

proposed VA algorithm. Considering Fig. 7.4a, when the motion had mostly high-frequency

components, the task-side robot did not move much. However, when the operator moved the
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(a) (b)

(c)

Figure 7.3: Motion trajectories for evaluating Action#1 (i.e. Motion Range Correction): (a)
X-direction, (b) Y-direction, (c) 3D view,

robot in a low-frequency manner, the task-side robot followed the generated trajectory in Fig.

7.4b. When the motion had both high and low frequencies, the task-side robot mainly followed

the low-frequency component, as shown in Fig. 7.4c. Since perfect filtering is not theoretically

possible, some small high-frequency components can still be observed in Figs. 7.4a and 7.4c.

Phase 3: Experiment for Involuntary Movement Dissipation (Action #3): In this phase

of the experiment, the dissipative force field (designed for suppressing involuntary motion

through delivering a viscous force field in high-frequencies, applied by the user-side robot)

was enabled and the same procedure as the one given in Phase 2 was repeated. Consequently,

during the first part of the experiment, the non-disabled operator moved the robot in a high-

frequency manner. Afterwards, during the second part of the experiment, she moved the robot

in a low-frequency manner, and finally during the third part of the experiment, she moved the

robot in a mixed-frequency manner (which included both high-frequency and low-frequency

components). It was expected that the user would feel high amplitude compensatory resistive
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(a) (b)

(c)

Figure 7.4: Motion trajectories in the X-direction: The user provided (a) high-frequency move-
ments (first part), (b) low-frequency movements (second part), (c) movements that had both
high-frequency and low-frequency components (third part).

forces in the first part (when only high-frequency motions are applied) and the third part (when

mixed-frequency motions are applied) of this procedure, thus dampening the energy of the high

frequency component. It was also expected that the user would not feel much resistance during

the second part of this experiment. The generated force (for all the three parts) is shown in

Fig. 7.5a. As can be seen in the figure, the designed VA algorithm has applied high amplitude

forces in the first (t < 45s) and third (t > 80s) parts when there was high-frequency involuntary

components in the motion. The dissipating energy provided by the proposed VA algorithm is

given in Fig. 7.5b. The energy is calculated as follows:

Edis(t) =
t∫

0

Fi(τ) ·ξi(τ)
T dτ. (7.7)

Using (7.7), a high negative slope means a high rate of energy dissipation and a positive slope

means energy generation over time. Considering Fig. 7.5b, during the first and the third parts of
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(a) (b)

Figure 7.5: (a) The generated force to damp-out the energy of the involuntary movements, (b)
the corresponding energy curve.

the experiment, the system considerably dissipates the interaction energy (the average slope for

the first part was −105 N.m
s and for the third part was −336 N.m

s ) while during the second part

of the experiment the energy dissipation was close to zero (the average slope was −4.3 N.m
s ).

As can be seen in Fig. 7.5, the designed VA algorithm has met our expectations and has

dissipated the energy of the high-frequency component of the motion (in the first and the third

parts of this phase) and not the low-frequency one (the second part). This can be seen by

the negative slope of the energy curve during the first and the third parts, while the slope is

almost zero during the second part. This experiment confirms the functionality of the proposed

Action#3 of the VA algorithm. The above-mentioned experiments and results confirm the

functionality of the proposed system and shows that the implemented VA algorithm and the

proposed telerobotic architecture are performing as expected during the experiments involving

a non-disabled user.

7.3 Protocol, Results and Discussion

In order to evaluate the effectiveness of the proposed architecture in assisting individuals with

CP, the following protocol was conducted with one individual with CP. The ultimate goal of the

protocol was to analyze the performance of the individual when the three actions were enabled

(modulated interaction) in comparison to the situation when the actions were disabled (normal

interaction). The individual is an adult with mixed CP which affects her upper and lower limbs.

She is classified as Level IV in the Gross Motor Function Classification System Expanded and
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Figure 7.6: The convenient workspace versus the needed workspace.

Revised (GMFCS-E&R) [41], meaning she can perform self mobility with limitations (she

uses a powered wheelchair). On the Manual Ability Classification System (MACS) [42], she is

classified at Level III, meaning she can handle objects with difficulty, and needs help to prepare

and/or modify activities.

Step 1: Preparation-Part#1 (Familiarization): During the first step, the individual was

given time to get familiar with how moving the user-side robot resulted in movements of the

task-side robot, and how the user-side robot exerted forces. The goal was to minimize the

potential effects of adaptation on the results.

Step 2: Preparation-Part#2: Workspace Identification for Motion Range Correction

(needed for Action #1): During the second part of the preparation, the individual was asked to

explore the boundaries of her convenient workspace. This was done to find the needed scaling

factors so that the individual could reach the targets in the task. The convenient motion range,

and the needed workspace to perform the task are shown in Fig. 7.6. Based on (7.3) and (7.4),

the results show that the participant needed 1.65 scaling up for the X direction and 1.3 scaling

up for the Y direction. In other words, considering the designed workspace, cerebral palsy has

reduced the participant’s motion range in the X direction by almost 40 percent and in the Y

direction by almost 33 percent.

Step 3: Preparation-Part#3: Filtering Frequency Identification (needed for Actions

#2 and #3): In order to find the cut-off frequency for the BMFLC filter, which is utilized to

implement Actions #2 (Voluntary Movement Tracking) and Action #3 (Involuntary Movement
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Figure 7.7: Analysis characteristics of the motion in the frequency domain

Dissipation), the hand velocity of the individual was analyzed. For this purpose, two objects

were placed on the boundaries of the designed workspace and the individual moved the user-

side robot so that the task-side robot moved between the objects repetitively for 30 seconds.

The frequency power spectrum is shown in Fig. 7.7 for the X-direction motion. Based on the

results, the cut-off frequency (i.e. the frequency that can separate voluntary and involuntary

motions) was calculated as 0.7Hz which is shown by the black line in Fig. 7.7. In this chap-

ter, the cut-off frequency was manually selected as the value between the main high and low

frequency peaks.

Step 4: Preparation-Part#4: Dissipation Gain Identification for Involuntary Move-

ment Energy Dissipation (needed for Action #3): In this part of the experiment, the dis-

sipation gain in (7.6) was increased by 20 N.s/m steps from 0 to 100 N.s/m, while the user

performed random movements at the user-side robot. The goal was to determine the best

dissipation gain chosen based on observations of the user’s performance and the individual’s

feedback. The individual moved the user-side robot at each dissipation gain, and rated the per-

ceived exertion from: “easy, slightly difficult, fairly difficult, difficult, and very difficult”. A

dissipative gain of 40 N.s/m for both the X and Y directions was selected for the study, as it was

the value preferred by the individual that could provide enough control over the task for her.

Feedback from a therapist could also help to tune this factor. After finding the parameters, to

evaluate the effectiveness of the system in smoothing the movement trajectories and enhancing

coordination accuracy, a two-phase task was designed, as explained in steps 5 and 6.
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Figure 7.8: Absolute error, using the modulated interaction (when the proposed three actions
of the system are enabled), and for the normal interaction (when the actions are disabled).

Step 5: Task- Phase #1 (Navigation Game): For this task, the user navigates the task-side

robot between three locations. Two targets were located at the boundaries of the workspace

(i.e., the ferromagnetic object pick-up location at the right and between the drop-off bins at

the left in Figure 1). The two targets were separated by 33cm in the X direction. The third

target was a home position between the two targets. The individual moved the task-side robot

(through the telerobotic medium and by providing motion at the user-side robot) from the left

target to the home position, and then from the home position to the right target, and vice versa.

She was asked to try to stay on each target for 4 seconds. She was given verbal cues about

the timing of movement. This experiment was designed to analyze accuracy and smoothness.

The individual repeated this motion eight times, first with all the three proposed Actions of the

system disabled and then eight times with all of the Actions enabled. The targeting accuracy

and motion smoothness are shown in Figs. 7.8 and 7.9. As can be seen in Fig. 7.8, the

targeting accuracy, which is measured as the distance from the centre of the target averaged

over the 4 seconds, is considerably enhanced when the three actions were enabled (modulated

interaction), in comparison to when the actions are disabled (normal interaction).

In addition, the Fast Fourier Transform frequency content analysis of the movement veloc-

ity on the user-side robot, given in Fig. 7.9, shows that when the proposed three actions of the

system are enabled, the power spectrum of the movement velocity contains lower frequency

components whereas considerable more high-frequency components can be observed when the

proposed three actions of the system are disabled. This result confirms the motion smoothing
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Figure 7.9: Navigation Game: Analysis characteristics of the movement in the frequency do-
main for both modulated interaction (when the proposed three actions of the system are en-
abled) and for the normal interaction (when the proposed three actions are disabled).

feature of the system for task performance. It should be highlighted that the low-frequency

components of the movement velocity for the case of modulated interaction is close to the nor-

mal interaction. This means that the system does not considerably affect the low-frequency

movements while the high-frequency involuntary component of the movement is dissipated.

In summary, the movements are smoother and the coordination is more accurate, which serves

the very purpose of the proposed architecture.

Step 6: Task- Phase #2 (Pick and Place Game): In order to better evaluate the functional-

ity of the system, the second phase of the task was developed. In this phase, the individual was

asked to sort the ferromagnetic happy face objects based on their colours (red or blue). For this

purpose, as mentioned before, on the right side of the designed workspace, an initial position is

considered for the magnetic happy faces. On the left side of the workspace, two colour-coded

target locations for the objects were placed side-by-side. The designed workspace can be seen

in Fig. 7.2. The initial position and the targets are separated by 33cm in the X direction. In

total, the user sorted 10 objects. The individual was asked to placed the objects in the corre-

sponding target position one after the other. A research assistant put the magnetic happy faces

on the initial pick-up location (one by one).

The experiment was conducted successfully and the individual was able to sort the objects

while the system smoothed her motions and increased her movement range, which ultimately

resulted in a more accurate coordination and control over the task execution, despite the fact
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Figure 7.10: Pick and Place Game: Analysis of characteristics of the movement in the fre-
quency domain for both modulated interaction (when the proposed three actions of the system
are enabled) and for the normal interaction (when the proposed three actions are disabled).

that the targets were placed out of her convenient workspace.

The resulting movement trajectories were analyzed in the frequency-domain (as shown in

Fig 7.10) similar to the previous step of the study (Navigation game). In addition, velocity

profiles of the modulated interaction and the normal interaction are compared in Fig. 7.11.

Also, movement in the X and Y directions together with the 2D movement trajectory are shown

in Fig. 7.12 (for the case of modulated interaction) and in Fig. 7.13 (for normal interaction).

As it can be seen in Fig. 7.10, the involuntary components of the motion are considerably

dissipated by the use of the proposed modulated interaction in comparison with the normal in-

teraction. Also the use of the proposed modulated interaction has resulted in smoother position

and velocity trajectories, which can be seen in Fig. 7.11 for the movement velocity profile and

can be also observed by comparing Figs. 7.12 and 7.13 for the movement position profile.

In addition, for the modulated interaction, the motion execution (moving from the home

position to the target) conducted by the individual is more coherent. This can be seen by

comparing the 2D motion in Figs. 7.12c and 7.13c, and also by comparing the 2D histograms of

the motion trajectories shown in Fig. 7.14. It should be noted that as shown in Fig. 7.2, the two

target bins are placed side-by-side on the target line shown in Figs. 7.12c and 7.13c. Regarding

the coherency of motion, for the modulated interaction, it can be seen that the trajectories

are more directed towards the targets, and the individual covers a wide range of workspace

(full range of needed workspace on the target line which was 17 cm at the task-side robot) to
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(a) (b)

Figure 7.11: Movement velocity in the X-direction: (a) for the case of modulated interaction,
and (b) for the case of normal interaction.

laterally separate and distribute the objects; in addition, the deviation from the target line in

the X-direction (“overshoot”) is minimal, which indicates that the individual was capable of

stopping accurately at the target locations to perform the task. However, for the case of normal

interaction, several non-smooth deviations can be observed. Based on the histograms shown in

Fig. 7.14, for the modulated interaction, the individual had the control to hover over top of the

targets (which resulted in brighter spots on the target line) rather than overshoot them.

In addition, for the case of normal interaction, the individual was only able to use a small

portion of the target line (42% of the defined needed full range of motion on the target line) to

distribute the objects along the line. Also, due to the inability of the individual to stop accu-

rately over the target locations non-smooth movements on the target line and overshoots can

be observed in the motion trajectory. The histogram of the normal interaction is taller in the X

direction (because of the overshoots) and is thinner in the Y direction (due to the limited capa-

bility in covering the needed workspace especially on the target line). The improved motion

coherency corresponds with better coordination and better motion capabilities.

In summary, using the proposed system, the individual was capable of using her convenient

workspace to reach and perform the tasks, the motions were smoother in both position and

velocity domains and the individual showed better coordination accuracy and motion execution

while performing tasks. This was realized using the proposed architecture, which assisted the

individual to manage the involuntary actions and enhance her movement capabilities.
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(a) (b)

(c)

Figure 7.12: Motion trajectories for the modulated interaction: (a) X-direction, (b) Y-direction,
(c) 2D movement.

The results illustrate the potential of the proposed system and show that using the teler-

obotic architecture, it is possible to augment the motion capabilities of an individual with CP

and assist them to provide smoother and more controlled movements for performing tasks.

This presents a new assistive compensatory paradigm for people living with cerebral palsy.

7.4 Conclusion

In this chapter, a new telerobotic architecture is proposed that enhances physical interaction

with real objects for individuals living with CP. The design of the proposed architecture is

specific for the neurological motor deficit causing coordination issues and involuntary motions.

The system is composed of four main components, namely: the user-side robot, the task-side

robot, the virtual assistive algorithm, and the task environment. The proposed system has a

triple-action design. It extracts the voluntary movements of the user to be transferred from the

user-side robot to the task-side robot, then it corrects the motion range to fit the transferred
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(a) (b)

(c)

Figure 7.13: Motion trajectories for the normal interaction (when the proposed actions are
disabled): (a) X-direction, (b) Y-direction, (c) 2D movement.

Figure 7.14: The histogram of movement for (left) modulated and (right) normal interactions.
The histograms show the amount of time spent on different locations of workspace; the brighter
a pixel is, the higher amplitude of the histogram, and the longer length of time spent at that
spot
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motion within the needed workspace of the task, and finally it provides the user with a resistive

force field implemented in high-frequency motion domain to only dissipate involuntary energy

of the hand motion. The proposed telerobotic architecture is motivated by evidence showing

that interaction with physical environments is crucial for individuals with CP to help prevent

various secondary symptoms and further sensorimotor deficits. The proposed architecture is

implemented using a Quanser upper-limb rehabilitation robot and a Phantom Premium robot.

The implemented system was initially evaluated for a non-disabled participant where various

functions of the designed architecture were evaluated. Afterwards, the system was studied for

an individual who lives with CP to evaluate potential benefits that can be achieved from the

point of view of interaction enhancement. The results support the capability of the system

in enhancing physical interaction for the individual with CP through the designed triple-action

architecture. This work suggests that the designed system could be used as a new compensatory

assistive platform for people living with CP. Future tests and analyses will help to further

investigate the effectiveness of the system, evaluate the long-term effects, and define a range

for the system coefficients.
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Chapter 8

Application to other Neurological

Movement Disorders: Haptic Feedback

Manipulation for Focal Hand Dystonia

The material presented in this chapter has been published in the IEEE Transactions on Haptics:

Special Issue on Haptics in Neuroscience, 2016.

8.1 Introduction and Preliminaries

Writer’s cramp disease is an important task specific focal hand dystonia that generates mild

to severe involuntary contraction of upper limb muscles during some fine motor control tasks

such as writing [1]. It can result in pain, dystonic hand tremor, disorder in controlling hand

kinematics, problem in force and motion control during fine motor tasks [2–4], abnormal ma-

nipulation of tools (such as pen) needed to perform tasks, abnormal frequency and legibility

of writing [3, 5], muscle fatigue [4] and ultimately, disability in performing a wide range of

fine motor tasks, specifically writing [6, 7]. In the literature, some therapies have been sug-

gested for this condition including motor rehabilitation [8], Transcranial Magnetic Stimulation

c©[2016] IEEE. Reprinted, with permission, from [S. Farokh Atashzar, M. Shahbazi, C. Ward, O. Samotus,
M. Delrobaei, F. Rahimi, J. Lee, M. Jackman, M. Jog, R. V. Patel, “Haptic Feedback Manipulation During Bo-
tulinum Toxin Injection Therapy for Focal Hand Dystonia Patients: A Possible New Assistive Strategy,” IEEE
Transactions on Haptics: Special Issue on Haptics in Neuroscience, Vol. 9, No. 4, pp. 523-535, 2016.]
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(TMS) [9], and Botulinum toxin injection therapy [10–14]. However, the nature of this condi-

tion, the affecting parameters, and the main pathophysiology is still not completely understood.

Appropriate control of motor outputs requires an optimal processing of perceptual inputs

(such as vision, haptics and proprioception), in addition to a capability of accurately tuning

motor outputs based on perceived information about the task, the environment, biomechanics

of musculoskeletal system and sensory information. This procedure is called Sensorimotor

Integration (SMI) in the literature [15–17].

In contrast to the traditional understanding of FHD which mostly focuses on motor compo-

nents, the current widely-accepted pathogenesis of FHD is SMI deficits in the brain [15]. This

has been suggested using functional Magnetic Resonance Imagine (fMRI) which has shown

that SMI abnormalities in basal ganglia, cortex and cerebellum can be the potential cause of

this condition [15, 18–21]. Cueing-based training (i.e., making the patient aware of the on-

set of dystonia in order to train them how to tune their motor output) has also been studied

for writer’s cramp (through auditory cueing [22]) and for primary dystonia in children (using

visual and friction-based cueing [23]). In addition, short-time error-enhancing through a per-

turbation technique (when a patient receives some disturbance forces during task execution)

has shown potential after-effect benefits (regarding the optimality of path control) for children

with primary dystonia [24]. A recent literature survey [15] provides existing evidence support-

ing the correlation between SMI disorders and FHD. Better understanding of the underlying

reasons and the affecting parameters can result in developing new treatment, rehabilitation and

assistive techniques to help this category of patients lead a better quality of life.

Various components of the SMI pathways are separately studied for FHD. The reported

examples of perceptual deficits caused by FHD are tactile, spatial, and temporal discrimination

disorders [25]. Examples of motor output deficits caused by FHD are hand kinematics and

grip force control problems [2, 3, 26], in addition to, motor preparation, motor execution [27]

and motor imagination [19] deficits. Besides the observed disorders in different components of

SMI, there are also reports suggesting that FHD is a result of sensory processing dysfunction

[28, 29]. It has also been shown that prolonged rehabilitation of FHD patients can result in

somatosensory cortical plasticity which corresponds to enhanced motor performance in this

category of patients [8]. This observation also makes the correlation between SMI and FHD
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even stronger. This study focuses on the contribution of haptic sensory input on the pattern and

severity of FHD and suggest a new possible relation between SMI deficits and FHD.

8.1.1 Closed-loop Interaction with Physical Environments

It should be noted that even the simplest interaction with a physical object involves a complex

multi-modal closed control loop. The loop starts from a decision making step for performing a

task, and contains the following steps: (a) generating an appropriate motor command, (b) trans-

ferring the command to the musculoskeletal system, (c) applying the required force/motion pro-

files on the physical environments, (d) perceiving (through the sensory system) the mechanical

responses of the physical environment to the generated actions applied by the musculoskeletal

system on the object, (e) transferring back the perceived responses, (f) fusing the transferred

sensory information and the concurrent motor states to instantly design the required tuning of

the motor commands. As mentioned, both the sensory system and the SMI pathways in the

brain of patients living with FHD are believed to be abnormal [15, 18–21].

Based on the above-mentioned comments and the current literature, a simple schematic of

the closed-loop interaction for FHD patients is shown in Fig. 8.1 to visualize the basic concept

of the closed-loop interaction and illustrate various affecting components and the correspond-

ing information flow. This diagram will then be used to clarify the contribution of this chapter.

8.1.2 Basic Concept, Underlying Theories and Motivation

In order to explain the motivation for this work, some basic concepts are utilized from nonlinear

control theory and haptics concerning the performance of multivariable closed-loop control

systems [30, 31]. Based on the aforementioned theories, abnormalities (such as sensory system

disorder, and/or irregular delays in processing and transferring signals) in a closed-loop control

system can result in an undesirable motor output. It should be noted that when dealing with

a physical object, one component of the closed-loop system is the mechanical response of the
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Figure 8.1: Representative information flow schematic of components for interaction with a
writing surface during a writing task which includes several steps. First, the patient makes the
decision of writing; this decision is transformed to motor commands executed by the muscles
and applied on the writing surface. Higher rigidity of the writing surface results in larger reac-
tion forces from the surface in response to small position changes. The reaction force is sensed
by the patient’s sensory system and is fused with other modalities in the brain during writing
(such as vision and proprioception). The result is processed in the brain to control muscle ac-
tivities to accomplish the task. The red lines show the flow of sensory input (feedback path),
the dark lines show the flow of action information (feedforward path). The yellow components
denote information processing and fusion process in the brain.

task environment.

Remark 8.1. In the case of a writing task, the environment is the writing surface. Conse-

quently, the mechanical response of the environment is the reaction force which corresponds

to the rigidity of the surface. As a result, higher rigidity of the writing surface generates larger

reaction forces during the similar writing task. If the rigidity of the writing surface is reduced,

the patient will feel less reaction forces while writing. •
Remark 8.2. Based on the mathematical evaluation of closed-loop haptics-enabled sys-

tems, it should be noted that a mechanically-stiff environment results in high loop gain and

increases sensitivity to small abnormalities and movements. In the field of haptic interaction

and control engineering, loop gain corresponds to the intensity of a responsive output to stim-

ulations, where high-loop gain is known to be a factor that increases “sensitivity” to abnormal

phenomena. The concepts of sensitivity and loop gain are mathematically investigated in con-

trol engineering particularly based on robust control and Small-Gain theories, where several

sensitivity functions of a closed-loop system are characterized and analyzed for dealing with
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uncertainties, noises, disturbances, delays, etc. [32–35]. This concept can be applied to any

interactive loops and has been applied for haptics and force-enabled systems (e.g., [36–39]). •
For the writing tasks, a rigid writing surface results in a high-amplitude mechanical force

response which is then preserved and analyzed by the control system to generate a correc-

tive motion/force profile. However, existence of deficits in the control procedure can result

in abnormal generation of the corrective forces which can then result in further motor output

problems and task performance degradation. A solution suggested is to reduce the loop gain

which reduces the sensitivity to deficits in the control system. This is supported by the gen-

eral concept of managing ill-behaved closed-loop control systems (in the context of nonlinear

control theory) and indirectly has provided the motivation for this work.

In this chapter we evaluate the effect of writing surface rigidity on FHD patterns and inves-

tigate the potential benefits that can be achieved by reducing the loop gain (through a reduction

in the surface rigidity).

8.1.3 Contribution and Hypothesis

Based upon the notes and the literature discussed above, in this chapter, the contribution of

haptic inputs on altering Dystonia Severity (DS) is investigated for FHD patients, while the

FHD participants were undergoing treatment with BoNT-A therapy. For this purpose, initially,

severity and characteristics of dystonia is investigated for 11 participants at baseline (pre BoNT-

A therapy in the first session of the trial). In addition, DS is tracked for 7 participants during 5

sessions of assessment and BoNT-A therapy. The therapy was delivered in Sessions #1 and #3.

The goal was to study the effect of kinesthetic manipulation as a potential assistive technique

besides BoNT-A therapy. The trial includes writing, hovering, and spiral/sinusoidal drawing

tasks. In each session, the test is repeated two times when (a) a participant uses a normal pen

for performing the tasks, and (b) when the participant uses a robotics-assisted system which

provides a compliant virtual writing surface in order to manipulate the kinesthetic sensory

input. The experimental setup is shown in Fig. 8.2.

In this chapter, we investigate the hypothesis that “reducing writing surface rigidity can

intrinsically reduce average DS for FHD patients”.

To better clarify the contribution of this chapter the closed interaction loop which was
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Figure 8.2: The experimental setup used in this study to manipulate haptic sensation for FHD
patients. The setup consists of one Phantom Premium haptic device from Geomagic, an NDI
motion grabber and a ATI Gamma force sensor. The participant (second row) was diagnosed
with FHD.

originally shown in Fig. 8.1 is modified as shown in Fig. 8.3. The loop is changed in two

ways. The results of this study validated that reducing the writing surface rigidity, changes

the cramp pattern and considerably decreases the overall dystonia severity. In addition, the

results support that reduction in dystonia severity, achieved by using the robotic system, was

statistically significant (p-value < 0.001). Also, when the therapy was delivered, it was still

possible to reduce dystonia severity through the use of the proposed robotic system. In addition,

in this chapter it is shown that using the proposed haptic manipulation strategy, patients show

better control over their grip pressure while writing. This was statistically validated (p-value

< 0.001) based on the grip pressure information logged during writing and is in agreement with

the literature which correlates the severity of dystonia to the extent of grip pressure [22, 40–42].

The above results are then utilized in the design of an actuated pen as a writing-assistance tool.

We have called the motorized pen a Dystonia Writing Assistance Pen (D-WAP). It can provide

the compliant haptic interaction with the writing surface without using a table-top grounded

robot.

Remark 8.3. The results of this chapter support the point that dystonic cramping in FHD is
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Figure 8.3: The modified version of Fig. 8.1 showing how the information flow of the closed
interaction loop is modified in this chapter in order to conduct the study. The orange blocks
show the proposed modification of the interaction loop, the red lines show the flow of sensory
input (feedback path), the black lines show the flow of action information (feedforward path).
The yellow components denote information processing and fusion process in the brain.

closely related to haptic sensory input, and is not just the result of posture and position control

deficits. Note that when a patient uses the proposed robotic system, the posture and the position

trajectories are similar to the situation where the patient is not using the system. In other words,

the results of this chapter highlight the point that FHD is not only a motor output problem but

that it relates to the sensory input processing. This validates contribution of SMI dysfunction

in FHD patients. •

The rest of this chapter is as follows. In Section 8.2 the implemented method is described.

In Section 8.3, the statistical results regarding the performance of the proposed haptic manip-

ulation technique in reducing (a) dystonia severity and (b) excessive grip pressure are given.

Conclusions are given in Section 8.4. The conceptual design of the proposed D-WAP system

is presented in Appendix I (Section 8.5).
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8.2 Method

8.2.1 Demographic data

This study included 11 patients in total (7 males and 4 females), with task specific focal hand

dystonia during writing, aged from 52-70 (mean: 58.91, S.D.=6.75). The mean value of the

number of years since disease diagnosis was 9.27. Eight patients were right-handed, two were

left-handed and one was ambidextrous. Patients were excluded if they had a history of BoNT-A

therapy during one year before the trial. All participants completed the dystonia rating scales.

Patients were recruited from the Movement Disorder Centre at the London Health Sciences

Centre, University Hospital (London, Ontario, Canada). The study protocol was approved by

the local Health Sciences Research Ethics Board (HSREB# 18643). The approved letter of

information was provided to the patients and consent was signed prior to their participation. It

should be noted that patient #10 was ambidextrous and was diagnosed with FHD in both his

hands. In fact, he had been initially left handed and due to the onset of FHD, he started writing

with his right hand. However, he was then diagnosed with FHD in his right hand as well. This

patient participated in this study separately for both his right-side and left-side FHD. In total

44 sessions of the patient-based trial were completed across all participants. Seven patients

completed 5 sessions of assessment where they received BoNT-A therapy at the end of the first

session and the third session. Also two other patients participated in this study for 3 sessions.

For the type of Botulinum toxin, we used BOTOX R©(onabotulinumtoxin A), 6 U/kg for adult

humans [43].

Remark 8.4. The participation chart is shown in Table 8.1. It should be noted that the study

included two cycles of BoNT-A therapy (Sessions 1,2,3 for the first cycle and Sessions 3,4,5 for

the second cycle). The injections were administered at the end of the first visit of each cycle (i.e.

the first and the third sessions). The second visit of each cycle was planned for when the effect

of medication was at the maximum level (6-weeks post-injection, as studies have shown that

the peak clinical effect of BoNT-A occurs approximately 6 weeks post-treatment). Each cycle

was a 16-week interval to include a 1-month wash-out period (to observe the lasting effects

of BoNT-A) as typical BoNT-A therapy follow 12-week intervals. Consequently, the planned

intervals between the sessions were as follows: 6 weeks between, session #1 and session #2,
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10 weeks between session #2 and session #3, 6 weeks between session #3 and session #4, and

10 weeks between session #4 and session #5. As mentioned, BoNT-A treatment was planned

to be delivered at the end of the first session and the third session. Consequently, the effect of

injection was large for sessions #2 and #4 (the post-injection sessions). In addition, the effect

of injection was reduced for session #3 and was small for session #5, and none for the first

session (because the participating patients did not have any history of BoNT-A therapy during

one year before the trial). •

The design of the 5-session assessment protocol was planned to better observe potential

fluctuations resulting from BoNT-A therapy, optimize the pattern of injection and analyze the

effect of haptic modulation while the patient was on therapy in comparison with the situation

when the patient was off therapy. In Tables 8.2 and 8.3, details of the demographic data in

addition to the pattern of injection are given. The abbreviations used in Table III are explained

in Table IV. Please note that in Table II, the Dystonia and Movement Disability Scale (DMDS)

is part of the Burke-Fahn-Marsden dystonia rating scale, which is used in the literature to clas-

sify generalized dystonia symptoms [44, 45]. The handwriting item of the above-mentioned

rating scale was utilized to calculate DMDS, as all other items did not rate the severity of FHD

symptoms. The score is calculated based on the severity of the condition observed before the

start of the trial in the first session.

Remark 8.5. As shown in Table I, out of 11 patients, seven participants finished all the

5 sessions. The other four did not finish all the sessions of the study (some of them were

due to personal reasons). It should be noted that Botulinum toxin injection therapy can affect

many daily activities (such as brushing teeth, handling the steering wheel in a car, holding a

cup, moving objects at home) while the disease itself is mostly task-specific. The effect of the

injection could alleviate task-specific dystonia but could have an adverse effect on other tasks

which may be troubling for some patients. This was a reason for some of the participants who

preferred not to receive the first or the second BoNT-A therapy. As a result, they were excluded

from the rest of the study and did not finish all 5 sessions. The aforementioned adverse effect of

BoNT-A therapy is an important motivation for developing task targeted assistive technologies,

which do not affect other tasks.•
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Table 8.1: Participation Chart

8.2.2 Study Design

The protocol designed for this study includes two main tasks namely: Normal Writing (NW),

and Robotics-Assisted Writing (RAW). For the NW task, the participants were asked to use

a normal pen for performing a set of writing/drawing subtasks explained later. For the RAW

task, the participants were provided with the robotic system (which supports the pen) to per-

form the subtasks. The RAW system is composed of a Phantom Premium haptic device (from

GeoMagic, US) connected to the writing pen. The robot was programmed in a way that pro-

duces a compliant writing surface 2 cm above the actual page. Rigidity of 350N/m is generated

by the robot for the writing surface throughout the robot’s workspace. The system is shown in

Fig. 8.2. The subtasks in both RAW and NW tasks are: a) hovering the pen over a black dot; b)

writing the following sentence “Today is a bright and sunny day.”; c) drawing over two sets of

printed sinusoidal waveforms with different amplitudes and frequencies, from left to right and

right to left; d) drawing within two spiral shapes (one small, one large), from inside to outside

and outside to inside; e) connecting two dots located between two parallel lines when the lines

are close together (fine motion control) and when they are farther apart (coarse motion control).

Remark 8.6. The aforementioned subtasks were designed to simulate different components

of motion control to observe the dystonic symptoms as much as possible. In Fig. 8.4, a snapshot

of the drawing subtasks is shown. It should be noted that, the design of the subtasks were
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Table 8.2: Demographic Data

motivated by the literature (such as that used in [46] which is designed for tremor assessment)

and were modified for writer’s cramp while adding other subtasks such as the hovering task

(to examine the effect of constant posture alone), and sinusoidal drawing (with high and low

frequencies, high and low amplitudes and from left to right and right to left). Note that the

pattern of cramping and the responsible muscles are different for different patients. This can

be interpreted from various patterns of injection shown in Table III. Accordingly, the study is

designed to simulate different components of motion control for patients with different pattern

of cramping. For example, small spiral and high frequency sinusoids are for stimulating fine

motor control that requires more fingertip motion, while the big spiral and the large sinusoidal

motions are considered for stimulating upper muscles. In addition, drawing from right to left

and left to right was done to simulate the effect of writing habits (which is from left to right in

English). A writing task is also considered that is common for studying writer’s cramp. •
During each subtask, the patients were asked to indicate when they felt the onset of dys-

tonia. In addition, at the end of each task, the participants were asked to rank the severity of

dystonia from 0 to 4 (values with decimals were allowed), where 0 is little or no sensation of

cramp/tension/pain/tremor/discomfort and 4 is very severe cramp/tension/pain/tremor/discomfort.

The dystonia severity and starting time were recorded.

Remark 8.7. As mentioned in the Introduction, Writer’s Cramp creates mild to severe in-
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Table 8.3: BoNT-A Therapy Pattern

voluntary contraction of upper limb muscles during task-specific motor control. It has a wide

variety of symptoms, which are different for different patients. Some patients feel excessive

pain or discomfort due to cramping and some have tremulousness, or involuntary tension or

fatigue-like feelings. Consequently, the pattern of cramping is different for each patient. For

this reason, it was essential to ask patients to indicate the onset of dystonia through their sen-

sation of cramp/tension/pain/tremor/discomfort.•

8.3 Results

In this section, the results of the study are presented, statistically evaluated and discussed.

8.3.1 Dystonia Severity and Effect of Haptic Manipulation

In this part, the effect of the proposed haptic manipulation on reducing severity of FHD is eval-

uated. For this purpose, first the average value of the reported dystonia severity is calculated
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Table 8.4: Abbreviations

for each task in each session, as

DSk
i =

n
∑
j=1

Severity o f Dystonia in Subtask “ j′′

Number o f Subtasks
. (8.1)

In (8.1), k ∈ [1,2,3,4,5] is the session number, i is the task index where DSk
1 corresponds to the

DS value for the NW task (in the kth session) and DSk
2 corresponds to the DS value for the RAW

task (in the kth session). In addition, j is the index of subtasks. As a result, after one full session

of assessment, two DS values were calculated, one for the NW task and one for the RAW task.

To extract the effectiveness of the proposed haptic manipulation system, the DS value of the

RAW task is normalized using the corresponding value for the NW task. In this way, the effect

of BoNT-A injection is excluded (which is studied separately later in this chapter) and only

the effects of haptic manipulation can be observed. This has been done to evaluate the main

hypothesis of this chapter. By simple algebraic manipulation, the normalization can be then

transformed to a quantitative measure of percentage improvement in reducing dystonia severity

achieved by the proposed haptic manipulation strategy in the kth session of the trial:

IMPk
RAW = 100× (1− DSk

2

DSk
1
). (8.2)
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Figure 8.4: The drawing subtasks.

In (8.2), IMPk
RAW represents the percentage of improvement achieved through the RAW task.

The higher this value the greater reduction there is in DS. Note that DSk
1 and DSk

2 correspond

to similar sessions of assessment (i.e. the kth).

In the next step, the distribution of the IMPk
RAW values have been calculated and analyzed.

Consequently, the results of considering only the first session of assessment are shown in

Fig.8.5a and the results of considering all 44 sessions of assessment are shown in Fig.8.5b.

Based on the results shown in Fig. 8.5b using the proposed manipulation of haptic feedback

it was possible to reduce the dystonia severity of participants by an average value of 52.8% and

standard deviation of 35.3%. Using the standard t-test statistical analysis, it is observed that

the positive average improvement is statistically significant (p-value < 0.001). This is the most

important result of this chapter which validates the main hypothesis of the study. It should be

highlighted that in 13 cases, using the proposed haptic manipulation, it was possible to achieve

IMPk
RAW value greater than 90% and in 8 cases it was 100%. This means that the proposed

technique was able to dramatically eliminate the symptoms of FHD in those cases.

In addition to the above, considering the results shown in Fig. 8.5a, if we only consider

the first session of the trial for all participants, the average value of the reduction in dystonia
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(a) (b)

Figure 8.5: Distribution of the improvement achieved by the proposed haptic manipulation
technique: (a) the results for the first sessions when patients were not on medication, (b) the
result for all included sessions. The p-values have been calculated using one-sample t-tests
and show that the positive average improvements in (a) and (b) are statistically significant
(“Average”, “SD” and “N” are the mean value, the standard deviation and the sample size of
the distribution, respectively).

severity was 57.9%, the standard deviation was 27.8%, and the p-value was smaller than 0.001.

This result also validates the effectiveness of haptic manipulation in reducing the severity of

dystonia. The reason for separately analyzing the result of the first assessment session is that

some of the patients who respond well to the BoNT-A therapy showed very little dystonia dur-

ing the later sessions of the trial. This may result in not being able to accurately observe the

effectiveness of the haptic manipulation. However, even without considering this point, the

distribution shown in Fig. 8.5b shows the significant improvement achieved by the proposed

haptic manipulation.

Remark 8.8. Please note that as mentioned earlier, Participant #10 participated in this

study separately for both his right and left FHD and showed different pattern of cramping

for his right and left hands. The statistical numbers shown in Figs. 8.5a and 8.5b are given

including results from both his right and left hands. Excluding the right hand of this patient

(that went through only one session and provided only one data point) from the study does

not significantly affect the analysis. For Fig. 8.5a the exclusion results in having an average

improvement of 54.15% (instead of 57.9%), standard deviation of 25.8% and p-value< 0.001.
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(a) (b)

(c)

Figure 8.6: IMPk
RAW value achieved using the proposed haptic manipulation strategy throughout

the 5 trial sessions for: (a) Participant #1, (b) Participant #3 and (c) Participant #4.

For Fig. 8.5b, the exclusion results in having an average improvement of 51.7% (instead of

52.8%), standard deviation of 34.98% and a p-value< 0.001. As can be seen the average

improvement is still more than 50% and the results are still significant.•

In addition to the above, the IMPk
RAW value for three participants are given in Fig. 8.6. Note

that each point in the graphs shown in 8.6, represents the improvement achieved in the normal-

ized dystonia level through the use of the proposed haptic manipulation strategy. As mentioned

earlier, the values are normalized using the dystonia level at each session. As can be seen in the

figures, in some cases (such as for Participants #3 and #4) the dystonia is considerably reduced.

In the next part of the analysis, to observe the effectiveness of the proposed technique be-
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sides the standard BoNT-A therapy, the normalization technique mentioned earlier is modified

as follows:

Total k
IMP−i = 100× (1− DSk

i

DS1
1
) (8.3)

The main difference between (8.3) and (8.2) is that in (8.3) the DS1
1 value is considered for

normalizing the dystonia severity for all sessions, instead of the corresponding value in each

session (i.e. DSk
1). In other words, using the second normalizing strategy (shown in (8.3)), the

level of dystonia in all sessions of trial is normalized by the initial level of dystonia before the

start of BoNT-A therapy measured in the first session of the trial. This results in not excluding

the effect of BoNT-A therapy and studying the state of dystonia during this trial compared to

the beginning of the trial. It should also be noted that using (8.3), two values for improvement

are calculated for each session namely, (a) Total k
IMP−1 which is the improvement achieved for

reduction in the dystonia severity level by only delivering the BoNT-A therapy through the

study; and (b) Total k
IMP−2 which is the improvement achieved by the use of both BoNT-A

therapy and the proposed haptic manipulation strategy together. The Total k
IMP−i values for the

three participants are given in Fig. 8.7 and the corresponding distributions are shown in Fig.

8.8.

Regarding the effectiveness of BoNT-A therapy, the following observations can be made.

As can be seen in Fig. 8.7 the severity of dystonia reduced for the three participants during

the BoNT-A therapy trial. However, it should be mentioned that this was not the case for all

the patients in all the sessions as (a) the pattern of injection might not be optimal from the

first injection; and (b) a patient may show a variable pattern of dystonia during the trial. This

can be seen in Fig. 8.8 (right) when the negative values correlate with the mentioned point. As

shown in Fig. 8.8 (right), the average value of improvement achieved by only delivering BoNT-

A therapy was 39.2%, the standard deviation was 35.2% and the p-value (calculate using the

standard t-test statistical analysis) was less than 0.001. This result tells that the BoNT-A therapy

was able to reduce the dystonia level (as expected) and the positive average improvement is

statistically significant. However, as mentioned the improvement was not always positive and

it was not linear either. For example, considering Fig. 8.7c the participant does not show

considerable improvement as a result of the delivery of BoNT-A therapy (alone) in the first

injection session. However, the improvement achieved by BoNT-A therapy was considerably
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(a) (b)

(c)

Figure 8.7: Total improvement in reducing the dystonia level. The red line corresponds to
Total k

IMP−1 which shows the improvement achieved by delivering BoNT-A therapy and the
blue line corresponds to Total k

IMP−2 which shows the improvement achieved by delivering
both BoNT-A therapy and the proposed haptic manipulation: (a) Participant #1, (b) Participant
#3 and (c) Participant #4.

enhanced after the second injection delivered in the third session of the trial.

Regarding the effectiveness of the proposed haptic manipulation strategy besides BoNT-A

therapy, the following observations can be made. Considering Fig. 8.8(left), including the

haptic manipulation strategy in the procedure, there was considerable increase in the average

improvement in reducing the dystonia level. In fact the average value is increased to 64.3%,

while keeping almost the same standard deviation (i.e. 35.7%). Also, the corresponding p-

value is still less than 0.001. In addition, using the paired-samples t-test the two distributions

shown in Fig. 8.8 have been compared and a p-value < 0.001 has been achieved. The above
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Figure 8.8: Distribution of Total k
IMP−i values for k = 2 (left), and for k = 1 (right). The p-

values in the figure have been calculated using the one-sample t-test and show that the positive
average improvements shown in both distributions are statistically significant. In addition, the
paired-samples t-test was conducted (for comparing the two distributions) and demonstrated
statistical significance (p-value < 0.001). This indicates that not only is the net improvement
achieved by the use of the proposed haptic manipulation besides BoNT-A therapy statistically
significant, but it is statistically also higher than just administrating BoNT-A therapy.

observations indicates that not only is the net improvement achieved by the use of the proposed

haptic manipulation besides BoNT-A therapy statistically significant, but it is statistically also

higher than just administrating BoNT-A therapy.

This result suggests that the proposed haptic manipulation technique can significantly en-

hance the effectiveness of BoNT-A therapy and reduce the level of dystonic symptoms. In some

cases, the further improvement achieved by the proposed haptic manipulation strategy was sub-

stantial. For example, as can be seen in Fig. 8.7b, 60% improvement was achieved by using

the proposed strategy for Participant #3 in the first session. Also, almost 100% improvement

was achieved by the proposed haptic manipulation strategy for Participant #4 while during the

second and the third sessions only 20% improvement was achieved using only BoNT-A ther-

apy. This result suggests that by applying the proposed haptic-manipulation strategy, not only

is it possible to reduce the dystonia severity but it is also possible to enhance the effectiveness

of BoNT-A therapy.

8.3.2 Grip Pressure and the Effect of Haptic Manipulation

In this part, the effect of the proposed haptic manipulation on reducing the excessive grip

pressure is evaluated. In recent studies it has been shown that patients with FHD exert excessive
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Table 8.5: Statistical Results for the Reduction in Grip Pressure achieved Using the Proposed
Haptic Manipulation Strategy

abnormal Grip Pressure (GP) during writing [22, 40–42]. The measure of grip force has been

suggested in the literature as a strong descriptor of FHD which is independent of the kinematics

of writing. In this regard, abnormality in grip force (excessive grip force) is reported as a

more frequent descriptor of dystonia in FHD patients in comparison to the abnormality in the

kinematics of writing [3].

Grip force can be used not only to generate assessment techniques in order to evaluate the

severity of the condition but also to develop assistive treatment approaches (such as the one

given in [22] and the one suggested in the next section of this chapter). In [22], auditory cueing

was used to inform patients when they were applying too much grip pressure. The definition of

normal grip pressure was considered by studying normal grip pressure of healthy people [22].

It was shown that teaching patients to reduce grip pressure can reduce the severity of dystonia

and the resulting pain. Motivated by the above-mentioned literature, the pen used in the work

reported in this chapter is sensorized using two FlexiForce pressure sensors to register the

grip pressure applied by the patient’s thumb and index finger on the body of the pen during

writing. The amounts of grip pressure measured by the two sensors were summed and the

resulting value was recorded when the patients wrote the standard sentence during the RAW

task to compare with the recorded value during the NW tasks. The GP of 11 patients were

analyzed for the first session (before the start of BoNT-A therapy). To compare the GP value

of the NW and RAW tasks, the RMS, average and maximum values of the reduction in grip

pressure achieved using the proposed haptic manipulation strategy were calculated. The results

are summarized in Table V and the statistical distributions are shown in Fig 8.9.
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Figure 8.9: Distributions of the Reduction in Grip Pressure achieved using the Proposed Haptic
Manipulation Strategy. The p-values of the distributions are given in Table V and have been
calculated using the one-sample t-test.

As shown in Table V and Fig. 8.9, when the haptic sensation of the participants are ma-

nipulated during RAW task the grip pressure is significantly reduced (by an average of 56.2 %

and standard deviation of 19.5%). Further statistical results are given in Table V. The observed

positive improvement in reducing grip pressure was statistically evaluated using the standard t-

test approach. The p-values obtained confirm the significance of the result which validates the

effectiveness of the proposed approach in enhancing the performance of patients living with

FHD. Using the proposed haptic manipulation strategy, patients do not need to run the pro-

cedure of thinking and intentionally reacting to the provided additional sensory inputs (such

as auditory feedback) and trying to modify their motor output (which is grip pressure here)

while experiencing uncomfortable involuntary painful dystonia. In this study, the patients were

not asked to change their grip pressure during these experiments. Consequently, the results

obtained show an involuntary and intrinsic improvement in the control of grip pressure (an

aspect of motor control). The proposed approach requires much less information processing

by the users (compared to providing additional inputs) while enabling significant enhancement

of their motor control and reduction in the severity of their dystonia. This result confirms the

effectiveness of the proposed haptic manipulation strategy and can be used to develop new

assistive technologies for FHD patients, as explained latter.
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8.3.3 Summary of the Results and Discussion

The patients received Botulinum-toxin injection therapy at the end of the first and the third

sessions. In addition, patients were excluded if they had a history of Botulinum-toxin injection

therapy during one year prior to the trial. Therefore, during the first session, they were not

under the effect of the medication.

The evaluation provided in this study can be categorized in three different analyses:

For the first statistical evaluation, we compared the patients’ performance pre- and post-

use of the robot (both in the first session prior to any injection). In this way, we calculated

patient-specific improvement, then we analyzed the distribution of the improvement over the

population of participants. The result of this first evaluation can be seen in Fig. 8.5(a) for

the effect of haptic manipulation on the severity of dystonia, and in Fig. 8.9 for the effect

on grip pressure (an indicator of FHD validated in the literature). This evaluation indicates

that the effect of the proposed haptic manipulation on FHD is statistically significant (average

improvement more than 50% and p-value< 0.001 using the one-sample t-test). This is an

important result and alone validates the main hypothesis of this chapter. •
The remaining statistical investigation was to extract more information about the effect of

haptic manipulation when the patients underwent BoNT-A therapy.

For the second statistical evaluation, the dystonia severity during robotics-assisted writ-

ing was normalized by the corresponding baseline value of the same session (when the same

participant did not use the robot in that session). This has been done to calculate the average

improvement achieved by the proposed haptic manipulation strategy when the patient was in

different biomechanical states (due to the administration of the therapy). The goal was to reject

the null hypothesis that when the patient received the injection, the proposed haptic manipula-

tion would not remain effective. For this purpose, we considered distribution of improvement

over multiple sessions. The corresponding statistical distribution of the improvement can be

seen in Fig. 8.5(b). As can be seen, the average improvement is more than 50% and this result

is statistically significant (p-value< 0.001 using the one-sample t-test). As a result, the null-

hypothesis is rejected. •
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For the third statistical evaluation, in order to evaluate the “net improvement” (achieved

by using robot besides injection and to compare that with the effect of “injection alone”) we

proposed the second mathematical normalization technique, shown in equation (3). The goal

was to see if the proposed haptic manipulation could be considered as a complementary tech-

nique for augmenting the improvement achieved by the injection. For this purpose, the level

of dystonia in all sessions of the trial was normalized by the initial level of dystonia before

the start of the BoNT-A therapy. The baseline is measured in the first session. This is done

to take into account the effect of BoNT-A therapy besides the proposed haptic manipulation.

The result is shown in Fig. 8.8. Using the one-sample t-test technique (for the separate dis-

tributions) and paired-samples t-test (for comparing the two distributions shown in Fig. 8.8),

statistical significance was demonstrated (p-value < 0.001). This tells us that the net improve-

ment achieved by the use of the proposed haptic manipulation besides Botulinum toxin therapy

is (a) statistically significant (this is based on the one-sample t-test), and (b) higher than just

administering the therapy (this is based on the paired-samples t-test).•

In addition to the aforementioned three evaluations, individual examples are also given in

Fig. 8.7 to show examples of the pattern of improvement during the sessions. For example,

considering Fig. 8.7(c), when that patient (Participant #4) just received haptic manipulation, it

reduced cramping by about 30%. When the patient was under the effect of the first treatment (in

the second session), the effect of BoNT-A therapy alone was only 20%. However, when in the

same session the patient received haptic manipulation, the reduction in cramping was more than

90% (almost no cramping). This shows that haptic manipulation augments the effectiveness of

BoNT-A therapy.

Remark 8.9. In this chapter, the distribution of improvement was analyzed over the popu-

lation of participants. The improvement for each patient was calculated based on his/her own

cramp pattern during normal writing. One patient may find one task more difficult than another

patient. In addition, one patient may benefit from haptic manipulation more during one subtask

while another may benefit more during another subtask. This is due to the differences in the pat-

tern of motor impairment in FHD. In other words, FHD is very heterogeneous. Some patients

have difficulty in very fine writing/drawing, and some patients have difficulty in coarse motion.

It was observed that some patients found the small sinusoidal motion even more difficult than
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writing. This could be due to its continuous nature and/or the need for accurate tracking of a

path. The effect of separate subtasks across patients is very different and is not directly related

to the focus of this chapter. To address this heterogeneity while analyzing the hypothesis of

this chapter, the same protocol was considered for robotic and non-robotic writing tasks. In

addition, by averaging the descriptors of dystonia across different writing/drawing subtasks

for each patient, and by comparing the average values pre- and post-use of the robot, the im-

provement that the one specific patient has shown was determined. Then the distribution of the

improvements was analyzed across the population of the participants. By calculating the mean,

standard deviation, and p-value of the resulting distributions, the effect of the proposed haptic

manipulation strategy was validated as explained in the three statistical evaluations given in

this subsection. Particularly, using the conducted one-sample t-test technique, we showed the

statistical significance of the achieved positive mean value of the improvements (against a dis-

tribution with average zero improvement). More statistical evaluations have been conducted as

explained in this subsection. It should also be noted that the data used in the evaluations passed

the normality test, before conducting the t-test analysis. To the best knowledge of the authors,

this work is one of the earliest studies showing that (a) there is a potential correlation between

the kinesthetic sensory input and the symptoms of FHD; (b) modulating the kinesthetic input

can help patients in managing the symptoms of dystonia. •

8.4 Conclusions

In this chapter, the effect of haptic manipulation on the severity of dystonia in FHD patients

has been investigated. For this purpose, 11 participants who live with FHD were included

in the study. Seven participants underwent BoNT-A therapy. In order to manipulate haptic

sensation, the writing pen was connected to a haptic device which provided the mechanism for

reducing the rigidity of interaction. Based on the data obtained, it was shown that reducing

the surface rigidity can significantly reduce the severity of dystonia. In some patients, it was

possible to completely eliminate the dystonic symptoms. This result highlights the contribution

of haptic sensation in FHD, in contrast to the assumption that FHD is just a motor output

dysfunction. In addition, it was observed that using the proposed haptic manipulation, it is
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Figure 8.10: Design of the D-WAP.

possible to enhance the effectiveness of BoNT-A therapy. It was also shown that using the

proposed haptic manipulation strategy, patients had a better control over their grip force while

writing. This was statistically validated based on the grip force data (a strong descriptor of

FHD, validated in the literature) logged during writing. To the best knowledge of the authors,

this work is one of the earliest studies showing that (a) there is a correlation between the

kinesthetic sensory input and the symptoms of FHD; (b) modulating the kinesthetic input can

help patients in managing the symptoms of FHD.

8.5 Appendix I: Possibility of Designing a Dystonia Writing

Assistance Pen (D-WAP)

This appendix suggests the concept of an assistive technology (D-WAP) designed for FHD

patients and motivated by the outcomes of this chapter. The D-WAP system has not been

clinically tested yet and this appendix is provided to outline the concept of how the results of

this chapter may be translated to designing a portable assistive haptic pen for FHD patients.

This chapter supports the hypothesis that reducing the mechanical rigidity of interaction

can significantly reduce the severity of dystonia in FHD patients. Motivated by this, a motor-

ized pen was designed and is denoted as D-WAP. The design is shown in Fig. 8.10. The pen is

implemented as shown in Fig. 8.11. The actuator is a Faulhaber Linear DC-Servo motor (ID#
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LM1247) which is capable of applying forces up to 10.7 N and a speed of 3.2 m/s. The writing

rod connected to the pen tip can travel up to 3.5 cm. The motor is connected to a processor

via a motion controller. One choice is the Faulhaber MCLM3002, which provides an internal

(on-board) control loop update rate of 10 KHz running. When using the processor to exter-

nally tune the impedance characteristics of the pen during writing, the update rate is limited to

approximately 125 Hz due to the RS232 command interpreter of MCLM3002. However, by

choosing the new Faulhaber EtherCAT MC5004 motion controller we can achieve an external

update rate (processor in the loop) of 1 KHz.

In the proposed design of the D-WAP system, specific attention has been paid to (a) make

the pen movement quick and responsive; and (b) provide good weight balance when a user

holds the pen.

8.5.1 Functionality

The D-WAP system is one-directional haptic system which can in real-time manipulate (re-

duce) the mechanical rigidity felt by the user during writing/drawing. The design of the rigidity

reduction function of the pen is based on an admittance control technique [47]. The controller

estimates the interaction forces and in response moves the writing rod according to the pro-

grammed rigidity. Since the motor is directly driven and there is no gear or indirect power

transmission, it is possible to use the electric current in the motor to estimate the interaction

forces. Using the D-WAP system, it is possible to program a specific rigidity level that can be

tuned by the user or a clinician.

8.5.2 Possibility of Adaptive Stiffness Variation

As mentioned earlier, recent studies have shown that an excessive amount of grip pressure cor-

relates with the severity of dystonia [22, 40–42]. Motivated by this fact and based on the results

of this chapter, the design of the proposed D-WAP system can be improved by adding two pres-

sure sensors on the parts of the pen that are gripped. The primary use of the proposed design

is to log the amount of grip pressure during normal daily writing in order to assess the condi-

tion over a long period of time. This can help the clinicians to tune the therapeutic strategies
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Figure 8.11: The implemented D-WAP.

(such as the dosage of BoNT-A therapy). However, the main goal of the suggested design is

that the interaction rigidity delivered by D-WAP can be adaptively tuned according to the grip

pressure. As a result, the more stiffly the patient grips the pen, the less interaction rigidity will

be delivered. It is expected that this closed-loop system can adaptively help patients to manage

dystonic cramping conditions. The reason is that higher grip pressure is an indication of more

severe cramp [22, 40, 41] which can be addressed by further reduction in interaction rigidity.

As a result, the amount of the delivered rigidity will be cramp-specific. It is known that cramp

severity can vary for different writing tasks. Usually the finer the required motor task, the more

cramp is likely to occur. Using the proposed system, when the patient experiences more dysto-

nia, more reduction in rigidity will be delivered by the adaptive D-WAP system. Based on the

results obtained so far, oOat investigating potential benefits of the proposed D-WAP system.
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fahren, vol. 182, no. 12, p. A4.

[28] M. Hallett, “Is dystonia a sensory disorder?” Annals of Neurology, vol. 38, no. 2, pp.

139–140, 1995.

[29] T. D. Sanger, A. Pascual-Leone, D. Tarsy, and G. Schlaug, “Nonlinear sensory cortex

response to simultaneous tactile stimuli in writer’s cramp,” Movement Disorders, vol. 17,

no. 1, pp. 105–111, 2002.

[30] M. Grunwald, Human Haptic Perception: Basics and Applications. Springer Science &

Business Media, 2008.

[31] S. Skogestad and I. Postlethwaite, Multivariable feedback Control: Analysis and Design.

Wiley New York, 2007, vol. 2.

[32] M. Morari and E. Zafiriou, Robust Process Control. Prentice hall Englewood Cliffs, NJ,

1989, vol. 488.

[33] H.-K. Sung and S. Hara, “Properties of sensitivity and complementary sensitivity func-

tions in single-input single-output digital control systems,” International Journal of Con-

trol, vol. 48, no. 6, pp. 2429–2439, 1988.

[34] K. Okano, S. Hara, and H. Ishii, “Characterization of a complementary sensitivity prop-

erty in feedback control: An information theoretic approach,” Automatica, vol. 45, no. 2,

pp. 504–509, 2009.

[35] I. Polushin, H. J. Marquez, A. Tayebi, and P. X. Liu, “A multichannel IOS small gain the-

orem for systems with multiple time-varying communication delays,” IEEE Transactions

on Automatic Control, vol. 54, no. 2, pp. 404–409, 2009.



344 BIBLIOGRAPHY

[36] M. Tavakoli, A. Aziminejad, R. V. Patel, and M. Moallem, “High-fidelity bilateral tele-

operation systems and the effect of multimodal haptics,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 6, pp. 1512–1528, 2007.

[37] H. Kazerooni and M.-G. Her, “The dynamics and control of a haptic interface device,”

IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 453–464, 1994.

[38] P. G. Griffiths, R. B. Gillespie, and J. S. Freudenberg, “A fundamental tradeoff between

performance and sensitivity within haptic rendering,” IEEE Transactions on Robotics,

vol. 24, no. 3, pp. 537–548, 2008.

[39] I. G. Polushin, A. Tayebi, and H. J. Marquez, “Control schemes for stable teleoperation

with communication delay based on IOS small gain theorem,” Automatica, vol. 42, no. 6,

pp. 905–915, 2006.

[40] B. Baur, T. Schenk, W. Fürholzer, J. Scheuerecker, C. Marquardt, G. Kerkhoff, and

J. Hermsdörfer, “Modified pen grip in the treatment of writer’s cramp,” Human Move-

ment Science, vol. 25, no. 4, pp. 464–473, 2006.

[41] B. Baur, W. Fürholzer, I. Jasper, C. Marquardt, and J. Hermsdörfer, “Effects of modified

pen grip and handwriting training on writer’s cramp,” Archives of Physical Medicine and

Rehabilitation, vol. 90, no. 5, pp. 867–875, 2009.

[42] A. Schneider, W. Fürholzer, C. Marquardt, and J. Hermsdörfer, “Task specific grip force

control in writer’s cramp,” Clinical Neurophysiology, vol. 125, no. 4, pp. 786–797, 2014.

[43] http://www.allergan.ca/.

[44] R. E. Burke, S. Fahn, C. D. Marsden, S. B. Bressman, C. Moskowitz, and J. Friedman,

“Validity and reliability of a rating scale for the primary torsion dystonias,” Neurology,

vol. 35, no. 1, pp. 73–77, 1985.

[45] P. Krystkowiak, S. T. Du Montcel, L. Vercueil, J.-L. Houeto, C. Lagrange, P. Cornu,

S. Blond, A.-L. Benabid, P. Pollak, and M. Vidailhet, “Reliability of the burke-fahn-

marsden scale in a multicenter trial for dystonia,” Movement Disorders, vol. 22, no. 5, pp.

685–689, 2007.



BIBLIOGRAPHY 345

[46] C. W. Hess and S. L. Pullman, “Tremor: clinical phenomenology and assessment tech-

niques,” Tremor and Other Hyperkinetic Movements, vol. 2, 2012.

[47] K. Wen, D. Necsulescu, and J. Sasiadek, “Haptic force control based on

impedance/admittance control aided by visual feedback,” Multimedia Tools and Appli-

cations, vol. 37, no. 1, pp. 39–52, 2008.



Chapter 9

Conclusions and Future Work

This chapter provides concluding remarks concerning the research presented in this thesis. In

addition, it gives suggestions for possible future lines of research based on the theoretical and

technological developments reported in the thesis.

9.1 Conclusions

• In Chapter 2, the design, implementation and safety of a novel haptics-enabled bilateral

teleoperated rehabilitation system were presented. The system was designed with the goal of

fusing the capabilities of rehabilitation robots and skills of a human therapist. To guarantee

patient-robot interaction safety, the stability of the system was studied in the context of the

small-gain theory. The proposed framework can stabilize the system while relaxing classical

assumptions on the passivity, time-dependence and linearity of the terminals and the network,

regardless of the type of therapy.

• In Chapter 3, a new stabilizing framework was proposed in the context of strong passivity

theory with the main goal of enhancing the performance and transparency of the proposed

non-passive telerobotic rehabilitation system. The result of Chapter 3 can be used for both

conventional robotic rehabilitation systems and the proposed tele-rehabilitation system. The

stabilizer (M-TDPC), utilizes a lower bound for the biomechanical capability of the patient’s

arm in absorbing interactive energy, to tune the allowable mechanical energy which can be

reflected to the patient’s arm. This enables delivering both non-passive and passive therapies

346
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over a delayed communication channel while enhancing the performance.

• In Chapter 4, the stability framework developed in Chapter 3 was extended through consid-

eration of “variability” in the biomechanical capability of the human upper-limb in absorbing

interactive energies. The goal was to maximize (in the context of strong passivity theory)

the transparency and performance of the system. For this purpose, the Grasp-based Passiv-

ity Signature (GPS) map was proposed and studied. The GPS map considers variability in

the geometry of the interaction and the grasp condition to interpolate the Excess of Passivity

(EOP) of the patient’s hand in every time stamp. A user study was conducted consisting of 11

healthy participants to statistically evaluate the characteristics of the map for the upper-limb.

The GPS-map was then used to design a new controller capable of significantly reducing the

transparency distortion based on knowledge regarding the capabilities of the human upper-limb

in absorbing energy and the “changes” in those capabilities.

• In Chapter 5, the goal was to (a) use the proposed tele-rehabilitation technology to train and

model (using neural networks) the kinesthetic behavior of the therapist (delivered through two

proposed systems); and (b) use the learned model to replicate the prescribed therapy for several

iterations. In this way one can increase the use of a therapist’s time and share it between more

patients. In addition, the architecture can be used as a replacement for the current software-

based therapy tuning algorithms whose performance and effectiveness have been challenged

with regard to their capability in designing an appropriate kinesthetic regime compatible with

the needs of a patient in different parts of the workspace.

• In Chapter 6, the goal was to increase the population of patients who can take advantage of

the proposed telerobotic and robotic rehabilitation technologies. Specifically, the considered

population consists of patients with involuntary movements who cannot use conventional sys-

tems due to the possibility of tremor amplification (which can jeopardize safety) in the active

(with respect to energy) robotic and telerobotic rehabilitation environments. A new architec-

ture was proposed and denoted by AHR. The architecture is capable of delivering therapeutic

forces (in an assist-as-needed manner) for the voluntary components of motion while keeping

hand tremor under control and avoiding unsafe amplification of tremor energy. To implement

the AHR system, a new adaptive filter was proposed to characterize in real-time the involuntary

component of the motion. The effectiveness, accuracy, and robustness of the proposed filter
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were statistically validated (in comparison to the classical tremor estimation technique) using

clinical data from 14 Parkinson’s Disease (PD) and 13 Essential Tremor (ET) patients.

• In Chapters 7 and 8, two specific applications to other neurological movement disorders

were reported to show how proper manipulation of haptic information can not only be used

to enhance the transparency and safety of robotic/telerobotic rehabilitation systems, but also

has the potential to be used for assisting patients with force and motion control impairment.

In Chapter 7, a new telerobotics-assisted platform was designed and implemented, using the

results of Chapter 6, for enhancing interaction with physical environments for people living

with Cerebral Palsy (CP). The main objective was to locally control the energy of the invol-

untary movements and utilize the scaled up voluntary component to perform tasks through the

telerobotic medium in a play environment. This was motivated by evidence showing that lack

of interaction with real environments can result in further secondary sensorimotor and cogni-

tive issues in people who grow up with CP. The second application (reported in Chapter 8),

utilized the concept developed in Chapter 2 regarding the effects of reducing the loop gain of

an interconnected system for enhancing the stability and reducing the sensitivity to the small

abnormalities. In Chapter 8, this concept was applied for analyzing the sensorimotor integra-

tion loop in Focal Hand Dystonia (FHD) patients. Through a patient-based study, it was shown

that reducing the writing surface rigidity (which reduces the loop gain) significantly decreases

the severity of dystonia and results in better control of grip pressure. It was also shown that the

proposed haptic manipulation strategy can augment the effectiveness of BoNT-A therapy. The

outcome of this study was then used in the design of an actuated pen as a writing-assistance

tool for FHD patients.

9.2 Future and Ongoing Work

An ultimate future aim of this project is to take a step toward equipping modern homes with

kinesthetic rehabilitation technologies which can deliver safe supervised and semi-supervised

physical rehabilitation exercises for patients in need. This is motivated by the increasing pop-

ulation of senior adults and excessive pressure on the under-resourced healthcare system. This

aim comes under the umbrella of tele-medicine which is a top line of research and involves
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topics such as tele-rehabilitation, cyber-rehabilitation and smart homes.

Some of the ongoing and future lines of research associated with the results of this thesis

are outlined below.

1) In this thesis, a frequency window (i.e., less than 3 Hz) near to the range reported in

the literature for Activities of Daily Livings (ADLs) as well as that used in rehabilita-

tion exercises is considered to characterize the biomechanical capabilities of the user’s

hand in absorbing interaction energy. However, for general-purpose haptic and haptics-

enabled telerobotic systems and for other applications such as in telerobotic surgery, the

frequency window can be wider and different. In this regard, a future line of research is

to develop a frequency-based 3D GPS map. The third dimension of the map will rep-

resent the frequency context of the interaction. The concept will be similar to the Bode

plot in the context of linear control systems. For this purpose, the EOP of the user’s

limb should be evaluated in segmented windows of interaction frequencies and the cor-

responding correlation between the shape of the map and the change of the interaction

frequency should be statistically analyzed.

2) During robotic rehabilitation exercises, the position and posture of the patient are usu-

ally fixed (sometimes using belts) mostly to avoid compensatory movements which can

reduce the involvement of the affected limb(s). An example of the compensatory strate-

gies is the trunk-forward movement instead of arm extension. However, for other ap-

plications, the user may change the posture during task execution. This can change the

kinematics of the limb interacting with the robot and may change the shape of the user’s

GPS map. Evaluation of this issue is a future line of research. If a statistically signif-

icant correlation is observed, the kinematics of the limb can be considered as another

factor which can affect the EOP. In this case, during task execution, the kinematics of the

patient’s arm can be tracked (for example using optical trackers or sensorized wearable

suits), to better estimate the EOP.

3) It can be shown that by measuring the interaction forces during task execution, it is not

possible to identify the mentioned inherent characteristic of the user’s limb in absorbing

interaction energy. The reason is that the measured forces would be affected by both
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the inherent biomechanical characteristics and the voluntary forces applied by the user.

However, to relax the need for the offline identification phase, it may be possible to ex-

tract the inherent characteristics of the user’s limb by analyzing the EMG activities of the

muscles. Two different types of muscle activation have been identified in the literature

during task execution, namely (a) “selective changes in the patterns of activations in in-

dividual muscles to generate task-oriented force generation [1]” and (b) “co-contraction

of the muscle groups, with no endpoint force changes [1]”. These two types of EMG

activation can be separately detected. We hypothesize that the EOP of a human’s limb

is correlated with the co-contraction of their muscles. Evaluation of this hypothesis is

a future line of this research. A relevant research question to be addressed is whether

the EMG activities can be used to directly and in real-time estimate the EOP value of

a user’s limb? The second question is whether the EMG information correlate with the

absolute value of the EOP or the changes in this value?

4) To relax the need for the identification phase an alternative solution is to first make an

atlas of the GPS maps for a statistically well distributed group of people. In this step

a database will be generated which includes GPS map of the group together with some

basic biomechanical measures such as their age, gender, weight, height, length and diam-

eter of the limbs. In the next step, using supervised intelligent classifiers and statistical

pattern recognition techniques, the closest match can be found for a new user of the

system. This offline atlas-based technique may replace the implemented identification

phase used in this thesis. Statistical analysis is needed to evaluate the accuracy and con-

servatism of this approach.

5) Although the focus of this thesis was on the upper-limb robotic rehabilitation, the results

given in Chapters 2, 3 and 5 can be directly used for lower-limb robotic rehabilitation

and exoskeleton systems. However, since the framework given in Chapter 4 utilized the

change in the grasp pressure, it cannot be applied for the case of lower-extremity. In this

regard, an ongoing line of research, partially mentioned above, is to monitor the EMG

activities of the muscles to detect in real-time active “co-contractions” which affects the

viscoelasticity of a limb. This can be done for lower-extremity as a replacement for

monitoring the grasp pressure suggested in this thesis for interpolation of the EOP. The
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map generated using EMG will be called EMG-based Passivity Signature (EPS). Similar

statistical analysis will be conducted for the proposed EPS map. Similar to the results

presented in Chapter 4, the EPS map can then be used to develop a specific stabilizer for

lower-extremity applications.

6) The proposed GPS map was tested for 11 healthy subjects considering their right and left

wrists and arms. Evaluating this technique for post-stroke patients can help us to under-

stand the change in the GPS map during motor development throughout a rehabilitation

regime. We have hypothesized that the proposed GPS map can be used not only as a

tool to guarantee patient-robot interaction safety, but also as a technique to visualize and

assess the changes in patient’s biomechanics. Relevant clinical evaluations can clarify

the capabilities of this technique as an assessment tool.

7) The results of this thesis allow for realizing safety-guaranteed in-home kinesthetic teler-

obotic rehabilitation under direct and indirect supervision of a therapist. Testing the sys-

tem under a longitudinal study forms a future line of research for this work. To the best

of our knowledge this will be one of the earliest remote kinesthetic tele-rehabilitation

tests. We are aiming to perform patient-based evaluation of the system.

8) The adaptive filter used in the proposed AHR architecture was evaluated using data col-

lected during tests involving PD and ET patients. However, the complete implementation

of the AHR architecture still needs to be clinically analyzed. This forms a future line of

research for this work.

Robotic rehabilitation has revolutionized the field of motor therapy. The lack of (a) flexibil-

ity in tuning the parameters of the system, (b) techniques that guarantee safety while maximiz-

ing performance, and (c) direct kinesthetic interaction between the therapist and the patient,

are some of the existing challenges which were studied in this thesis. Addressing these issues

can help to extend the benefit of this technology. This has the potential to reduce the cost of

therapy and the burden on the under-resourced healthcare system.
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