17 research outputs found

    Ant colony optimization with immigrants schemes for the dynamic railway junction rescheduling problem with multiple delays

    Get PDF
    Train rescheduling after a perturbation is a challenging task and is an important concern of the railway industry as delayed trains can lead to large fines, disgruntled customers and loss of revenue. Sometimes not just one delay but several unrelated delays can occur in a short space of time which makes the problem even more challenging. In addition, the problem is a dynamic one that changes over time for, as trains are waiting to be rescheduled at the junction, more timetabled trains will be arriving, which will change the nature of the problem. The aim of this research is to investigate the application of several different ant colony optimization (ACO) algorithms to the problem of a dynamic train delay scenario with multiple delays. The algorithms not only resequence the trains at the junction but also resequence the trains at the stations, which is considered to be a first step towards expanding the problem to consider a larger area of the railway network. The results show that, in this dynamic rescheduling problem, ACO algorithms with a memory cope with dynamic changes better than an ACO algorithm that uses only pheromone evaporation to remove redundant pheromone trails. In addition, it has been shown that if the ant solutions in memory become irreparably infeasible it is possible to replace them with elite immigrants, based on the best-so-far ant, and still obtain a good performance

    Ant Colony Optimisation for Dynamic and Dynamic Multi-objective Railway Rescheduling Problems

    Get PDF
    Recovering the timetable after a delay is essential to the smooth and efficient operation of the railways for both passengers and railway operators. Most current railway rescheduling research concentrates on static problems where all delays are known about in advance. However, due to the unpredictable nature of the railway system, it is possible that further unforeseen incidents could occur while the trains are running to the new rescheduled timetable. This will change the problem, making it a dynamic problem that changes over time. The aim of this work is to investigate the application of ant colony optimisation (ACO) to dynamic and dynamic multiobjective railway rescheduling problems. ACO is a promising approach for dynamic combinatorial optimisation problems as its inbuilt mechanisms allow it to adapt to the new environment while retaining potentially useful information from the previous environment. In addition, ACO is able to handle multi-objective problems by the addition of multiple colonies and/or multiple pheromone and heuristic matrices. The contributions of this work are the development of a junction simulator to model unique dynamic and multi-objective railway rescheduling problems and an investigation into the application of ACO algorithms to solve those problems. A further contribution is the development of a unique two-colony ACO framework to solve the separate problems of platform reallocation and train resequencing at a UK railway station in dynamic delay scenarios. Results showed that ACO can be e ectively applied to the rescheduling of trains in both dynamic and dynamic multi-objective rescheduling problems. In the dynamic junction rescheduling problem ACO outperformed First Come First Served (FCFS), while in the dynamic multi-objective rescheduling problem ACO outperformed FCFS and Non-dominated Sorting Genetic Algorithm II (NSGA-II), a stateof- the-art multi-objective algorithm. When considering platform reallocation and rescheduling in dynamic environments, ACO outperformed Variable Neighbourhood Search (VNS), Tabu Search (TS) and running with no rescheduling algorithm. These results suggest that ACO shows promise for the rescheduling of trains in both dynamic and dynamic multi-objective environments.Engineering and Physical Sciences Research Council (EPSRC

    Railway platform reallocation after dynamic perturbations using ant colony optimisation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Train delays at stations are a common occurrence in complex, busy railway networks. A delayed train will miss its scheduled time slot on the platform and may have to be reallocated to a new platform to allow it to continue its journey. The problem is a dynamic one because while reallocating a delayed train further unanticipated train delays may occur, changing the nature of the problem over time. Our aim in this study is to apply ant colony optimisation (ACO) to a dynamic platform reallocation problem (DPRP) using a model created from real-world train schedule data. To ensure that trains are not unnecessarily reallocated to new platforms we introduce a novel best-ant-replacement scheme that takes into account not only the objective value but also the physical distance between the original and the new platforms. Results showed that the ACO algorithm outperformed a heuristic that places the delayed train in the first available time-slot and that this improvement was more apparent with high-frequency dynamic changes

    Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling

    Get PDF
    open access articleMinimising the ongoing impact of train delays has benefits to both the users of the railway system and the railway stakeholders. However, the efficient rescheduling of trains after a perturbation is a complex real-world problem. The complexity is compounded by the fact that the problem may be both dynamic and multi-objective. The aim of this research is to investigate the ability of ant colony optimisation algorithms to solve a simulated dynamic multi-objective railway rescheduling problem and, in the process, to attempt to identify the features of the algorithms that enable them to cope with a multi-objective problem that is also dynamic. Results showed that, when the changes in the problem are large and frequent, retaining the archive of non-dominated solution between changes and updating the pheromones to reflect the new environment play an important role in enabling the algorithms to perform well on this dynamic multi-objective railway rescheduling problem

    An Overview of Ant Colony Optimization Algorithms for Dynamic Optimization Problems

    Get PDF
    Swarm intelligence is a relatively recent approach for solving optimization problems that usually adopts the social behavior of birds and animals. The most popular class of swarm intelligence is ant colony optimization (ACO), which simulates the behavior of ants in seeking and moving food. This chapter aim to briefly overview the important role of ant colony optimization methods in solving optimization problems in time-varying and dynamic environments. To this end, we describe concisely the dynamic optimization problems, challenges, methods, benchmarks, measures, and a brief review of methodologies designed using the ACO and its variants. Finally, a short bibliometric analysis is given for the ACO and its variants for solving dynamic optimization problems

    Hybrid Meta-heuristic Algorithms for Static and Dynamic Job Scheduling in Grid Computing

    Get PDF
    The term ’grid computing’ is used to describe an infrastructure that connects geographically distributed computers and heterogeneous platforms owned by multiple organizations allowing their computational power, storage capabilities and other resources to be selected and shared. Allocating jobs to computational grid resources in an efficient manner is one of the main challenges facing any grid computing system; this allocation is called job scheduling in grid computing. This thesis studies the application of hybrid meta-heuristics to the job scheduling problem in grid computing, which is recognized as being one of the most important and challenging issues in grid computing environments. Similar to job scheduling in traditional computing systems, this allocation is known to be an NPhard problem. Meta-heuristic approaches such as the Genetic Algorithm (GA), Variable Neighbourhood Search (VNS) and Ant Colony Optimisation (ACO) have all proven their effectiveness in solving different scheduling problems. However, hybridising two or more meta-heuristics shows better performance than applying a stand-alone approach. The new high level meta-heuristic will inherit the best features of the hybridised algorithms, increasing the chances of skipping away from local minima, and hence enhancing the overall performance. In this thesis, the application of VNS for the job scheduling problem in grid computing is introduced. Four new neighbourhood structures, together with a modified local search, are proposed. The proposed VNS is hybridised using two meta-heuristic methods, namely GA and ACO, in loosely and strongly coupled fashions, yielding four new sequential hybrid meta-heuristic algorithms for the problem of static and dynamic single-objective independent batch job scheduling in grid computing. For the static version of the problem, several experiments were carried out to analyse the performance of the proposed schedulers in terms of minimising the makespan using well known benchmarks. The experiments show that the proposed schedulers achieved impressive results compared to other traditional, heuristic and meta-heuristic approaches selected from the bibliography. To model the dynamic version of the problem, a simple simulator, which uses the rescheduling technique, is designed and new problem instances are generated, by using a well-known methodology, to evaluate the performance of the proposed hybrid schedulers. The experimental results show that the use of rescheduling provides significant improvements in terms of the makespan compared to other non-rescheduling approaches

    A self-adaptive discrete PSO algorithm with Heterogeneous parameter

    Get PDF
    This paper presents a discrete particle swarm optimization (DPSO) algorithm with heterogeneous (non-uniform) parameter values for solving the dynamic traveling salesman problem (DTSP). The DTSP can be modeled as a sequence of static sub-problems, each of which is an instance of the TSP. In the proposed DPSO algorithm, the information gathered while solving a sub-problem is retained in the form of a pheromone matrix and used by the algorithm while solving the next sub-problem. We present a method for automatically setting the values of the key DPSO parameters (except for the parameters directly related to the computation time and size of a problem).We show that the diversity of parameters values has a positive effect on the quality of the generated results. Furthermore, the population in the proposed algorithm has a higher level of entropy. We compare the performance of the proposed heterogeneous DPSO with two ant colony optimization (ACO) algorithms. The proposed algorithm outperforms the base DPSO and is competitive with the ACO
    corecore