
Hybrid Meta-heuristic Algorithms for
Static and Dynamic Job Scheduling in

Grid Computing

By

Muhanad Tahrir Younis

A thesis submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

in the

School of Computer Science and Informatics
De Montfort University

Leicester, UK

September 2018

I would like to dedicate this work to my lovely daughter Roza, without you this thesis
would not have been completed. You have been a constant source of inspiration during the

most difficult and challenging time. I love you to the next galaxy and back . . .

Declaration

The content of this submission was undertaken in the School of Computer Science and
Informatics, De Montfort University, and supervised by Professor Shengxiang Yang and
Dr. Benjamin Passow during the period of registration. I hereby declare that except where
specific reference is made to the work of others, the contents of this dissertation are original
and have not been submitted in whole or in part for consideration for any other degree
or qualification in this, or any other university. This dissertation is my own work and
contains nothing which is the outcome of work done in collaboration with others, except as
specified in the text and Acknowledgements. This dissertation contains fewer than 58,900
words including appendix, bibliography, figures, tables and equations. Part of the research
work presented in this submission has been published in the papers listed in Chapter 1.

By

Muhanad Tahrir Younis
September 2018

Acknowledgements

I would like to express my special appreciation and thanks to my first supervisor Professor
Shengxiang Yang, you have been a tremendous mentor for me. I would like to thank you
for encouraging my research and for allowing me to grow as a research scientist. Your
advice on both research as well as on my career have been priceless. I would also like
to thank my second supervisor, Dr Benjamin Passow, for the continuous support of my
Ph.D study and related research, for his patience, motivation, and immense knowledge.
His guidance helped me in all the time of research and writing of this thesis.

A special thanks to my family. Words cannot express how grateful I am to my parents,
your prayers for me were what sustained me thus far, and to my brothers and sister for
supporting me spiritually throughout writing this thesis and my life in general. I would also
like to express my appreciations to my beloved uncle Ra’ad who was always my support
in the moments when there was no one.

I am also very grateful to all my friends, especially Nahle and her adorable daughters
Fatima and Sara, Phuong, Luong, Liane, Ray and his wife, John and his wife, Dalton and
his family, Derek and many others from Globe Cafe, for their support and encouragement
during my PhD journey.

Special thanks go to my colleagues and my fellow office-mates for the stimulating
discussions and for all the fun we have had in the last four years: Dr Shouyong Jiang,
Dr Jayne Eaton, Conor Fahy, Matthew Fox, Olukemi Olowofoyeku, Zedong Zheng, and
Qingyang Zhang. Without them, the research would not have been such a pleasant and
enjoyable experience in my life. Also I thank my colleagues in the Department of Computer
Science at Al-Mustansiriya University in Baghdad. In particular, I am grateful to Professor
Saad Alsaad for his endless support.

Finally, it would not have been possible to carry out this research work without the kind
sponsorship of the Iraqi government, represented by the Ministry of Higher Education and
Scientific Research, the Iraqi Cultural Attaché in London, and Al-Mustansiriya University
in Baghdad, and so I am grateful to extend my sincere thanks and appreciations to them.

Abstract

The term ’grid computing’ is used to describe an infrastructure that connects geographi-
cally distributed computers and heterogeneous platforms owned by multiple organizations
allowing their computational power, storage capabilities and other resources to be selected
and shared. Allocating jobs to computational grid resources in an efficient manner is one
of the main challenges facing any grid computing system; this allocation is called job
scheduling in grid computing. This thesis studies the application of hybrid meta-heuristics
to the job scheduling problem in grid computing, which is recognized as being one of
the most important and challenging issues in grid computing environments. Similar to
job scheduling in traditional computing systems, this allocation is known to be an NP-
hard problem. Meta-heuristic approaches such as the Genetic Algorithm (GA), Variable
Neighbourhood Search (VNS) and Ant Colony Optimisation (ACO) have all proven their
effectiveness in solving different scheduling problems. However, hybridising two or more
meta-heuristics shows better performance than applying a stand-alone approach. The new
high level meta-heuristic will inherit the best features of the hybridised algorithms, increas-
ing the chances of skipping away from local minima, and hence enhancing the overall
performance. In this thesis, the application of VNS for the job scheduling problem in grid
computing is introduced. Four new neighbourhood structures, together with a modified
local search, are proposed. The proposed VNS is hybridised using two meta-heuristic
methods, namely GA and ACO, in loosely and strongly coupled fashions, yielding four
new sequential hybrid meta-heuristic algorithms for the problem of static and dynamic
single-objective independent batch job scheduling in grid computing. For the static version
of the problem, several experiments were carried out to analyse the performance of the
proposed schedulers in terms of minimising the makespan using well known benchmarks.
The experiments show that the proposed schedulers achieved impressive results compared
to other traditional, heuristic and meta-heuristic approaches selected from the bibliog-
raphy. To model the dynamic version of the problem, a simple simulator, which uses
the rescheduling technique, is designed and new problem instances are generated, by
using a well-known methodology, to evaluate the performance of the proposed hybrid
schedulers. The experimental results show that the use of rescheduling provides significant
improvements in terms of the makespan compared to other non-rescheduling approaches.

Table of contents

List of figures . ix
List of tables . xi
1 Introduction . 1

1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Thesis structure . 5
1.5 List of related publications by the author 6

2 Hybrid Meta-Heuristic Algorithms . 7
2.1 Combinatorial optimisation problems 7
2.2 Heuristic, meta-heuristic and hybrid meta-heuristic algorithms 8
2.3 Variable Neighbourhood Search (VNS) 11
2.4 Ant Colony Optimization (ACO) . 13

2.4.1 The Simple Ant Colony Optimization 15
2.5 Genetic algorithm (GA) . 17

2.5.1 Encoding . 19
2.5.2 Initialization . 20
2.5.3 Fitness function . 20
2.5.4 Selection . 21
2.5.5 Alteration . 23
2.5.6 Replacement . 30

2.6 Summary . 31
3 Job Scheduling in Grid Computing . 33

3.1 Grid computing . 33
3.2 Grid computing architecture . 34
3.3 Scheduling in grid computing . 36
3.4 Job scheduling in grid computing: Problem formulation 38
3.5 ETC matrix generating . 39
3.6 Methods for job scheduling in grid computing 42

3.6.1 Heuristic methods for job scheduling in grid computing 42

Table of contents vii

3.6.2 Meta-heuristic methods for job scheduling in grid computing . . . 44
3.7 Summary . 64

4 Hybrid Meta-Heuristics for Static Job Scheduling in Grid Computing. . . . 66
4.1 The solution representation . 67
4.2 The application of VNS to the job scheduling problem 67

4.2.1 Neighbourhood structures for job scheduling in grid computing . 68
4.2.2 The improvement step . 70

4.3 The application of hybrid ACO to the job scheduling problem 73
4.3.1 Hybridizing ACO with VNS for the job scheduling problem . . . 75

4.4 The application of hybrid GA to the job scheduling problem 75
4.4.1 The initial generation . 75
4.4.2 The fitness evaluation . 76
4.4.3 The selection operator . 76
4.4.4 The crossover operator . 77
4.4.5 The mutation operator . 78
4.4.6 The replacement operator . 78
4.4.7 Hybridizing GA with VNS for the job scheduling problem 79

4.5 Summary . 79
5 Experimental results. 81

5.1 Development tools . 81
5.2 Parameter tuning . 82

5.2.1 Parameter tuning for VNS . 82
5.2.2 Parameter tuning for ACO+VNS and ACO(VNS) 83
5.2.3 Parameter tuning for GA+VNS and GA(VNS) 83

5.3 Results for instances from Liu et al. [93] 88
5.4 Results for instances from Braun et al. [19] 92
5.5 Results for instances from Nesmachnow et al. [118] 98
5.6 Results summary for Braun et al. [19] and Nesmachnow et al. [118] datasets107
5.7 Summary . 110

6 Hybrid Meta-Heuristics for Dynamic Job Scheduling in Grid Computing . . 112
6.1 Dynamic job scheduling simulation model 112
6.2 Rescheduling simulator for dynamic job scheduling in grid computing . . 114
6.3 Rescheduling-based methods . 115
6.4 Experimental analysis . 116

6.4.1 Parameter tuning . 116
6.4.2 Experimental results . 122

6.5 Further discussion . 123
6.6 Summary . 127

Table of contents viii

7 Conclusions and Future Work. 128
7.1 Conclusions . 128
7.2 Future work . 130

Bibliography . 133

List of figures

2.1 Ant example. 14
2.2 A flowchart for a genetic algorithm. 18
2.3 Example of Roulette wheel selection. 22
2.4 Example of Stochastic Universal Sampling. 23
2.5 Example of One-Point Crossover. 24
2.6 Example of Two-Point Crossover. 25
2.7 Example of Half Uniform Crossover. 26
2.8 Example of Order Crossover. 27
2.9 Example of Partially Matched Crossover. 28
2.10 Example of Cycle Crossover. 29
2.11 An example of the insert mutation. 30
2.12 An example of the swap mutation. 31

3.1 A high-level view of a typical Grid computing system (adopted from [13]). 35
3.2 The main layers and components of a typical Grid computing system

(adopted from [23]). 36

4.1 An example of job-based representation for the job scheduling problem
in grid computing. 67

4.2 An example of resource-based representation for the job scheduling
problem in grid computing. 68

5.1 Parameter tuning for different crossover operators of GA(VNS) using
u-c-hihi.0 instance from the 512x16 dataset. 85

5.2 Parameter tuning for different mutation operators of GA+VNS using
u-c-hihi.0 instance from the 512x16 dataset. 86

5.3 Analysis of GA+VNS operators probabilities using u-s-hihi.0 instance
from the 512x16 dataset. 87

5.4 Analysis of GA(VNS) operators probabilities using u-s-hihi.0 instance
from the 512x16 dataset. 88

List of figures x

5.5 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) improvement per-
centages with respect to the min-min heuristic for Liu et al. dataset. . . . 92

5.6 The graphical average improvement percentages of GA+VNS, ACO+VNS,
ACO(VNS) and GA(VNS) methods with respect to the min-min heuristic
based on the consistency: Braun et al. and Nesmachnow et al. datasets. . 109

5.7 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) average improvement
percentages over the min-min heuristic and the corresponding gap to LB:
Braun et al. and Nesmachnow et al. datasets. 111

6.1 An example of rescheduling in dynamic job scheduling. 114
6.2 Parameter tuning for different crossover operators of rGA(VNS) using

d-u-c-lolo instance. 119
6.3 Parameter tuning for different mutation operators of rGA+VNS using

d-u-c-lolo instance. 120
6.4 Analysis of rGA+VNS operators probabilities using d-u-s-lohi instance. . 121
6.5 Analysis of rGA(VNS) operators probabilities using d-u-s-lohi instance. . 122

List of tables

2.1 Hypothetical Population . 22

3.1 Job and resource heterogeneity parameters. 41
3.2 Summary of ACO-based approaches for job scheduling problem in grid

computing. 60
3.3 Summary of GA-based approaches for job scheduling problem in grid

computing. 62
3.4 Summary of other meta-heuristics approaches for job scheduling prob-

lem in grid computing. 64

5.1 Neighbourhood structures order testing for GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS). The best average makespan results are reported in bold. . 84

5.2 Parameter tuning for ACO+VNS and ACO(VNS) algorithms: α and β .
The best average makespan results are reported in bold. 85

5.3 Parameter values used for comparing the performance of different crossover
operators. 86

5.4 Parameter values used for comparing the performance of different muta-
tion operators. 87

5.5 Makespan results for dataset instances from Liu et al. [93]. 90
5.6 Average improvement percentages of GA+VNS over selected methods

from the literature for dataset instances from Liu et al. [93]. 91
5.7 Average improvement percentages of ACO+VNS over selected methods

from the literature for dataset instances from Liu et al. [93]. 91
5.8 Average improvement percentages of ACO(VNS) over selected methods

from the literature for dataset instances from Liu et al. [93]. 91
5.9 Average improvement percentages of GA(VNS) over selected methods

from the literature for dataset instances from Liu et al. [93]. 91
5.10 Average improvement percentages and statistical analysis of GA(VNS)

over other proposed methods for dataset instances from Liu et al. [93]. . . 92
5.11 Stopping times for the proposed methods for 512x16 dataset instances

from Braun et al. 93

List of tables xii

5.12 Makespan results for 512x16 dataset instances from Braun et al. 94
5.13 Average improvement percentages of GA+VNS over some methods from

the literature for the 512x16 dataset. 95
5.14 Average improvement percentages of ACO+VNS over some methods

from the literature for the 512x16 dataset. 96
5.15 Average improvement percentages of ACO(VNS) over some methods

from the literature for the 512x16 dataset. 96
5.16 Average improvement percentages of GA(VNS) over some methods

from the literature for the 512x16 dataset. 97
5.17 Average improvement percentages and statistical analysis of GA(VNS)

over other methods for Braun 512x16 dataset. 97
5.18 The gap values of the average makespan for the proposed methods and

selected algorithms from the literature and the corresponding lower
bounds for 512x16 dataset. 98

5.19 Makespan results for 1024x32 dataset instances. 100
5.20 Makespan results for 2048x64 dataset instances. 101
5.21 Average improvement percentages of GA+VNS, ACO+VNS, ACO(VNS)

and GA(VNS) over some methods from the literature for the 1024x32
dataset. 102

5.22 Average improvement percentages of GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS) over some methods from the literature for the 2048x64
dataset. 103

5.23 Average improvement percentages and statistical analysis of GA(VNS)
over other methods for the 1024x32 dataset. 104

5.24 Average improvement percentages and statistical analysis of GA(VNS)
over other methods for the 2048x64 dataset. 105

5.25 The gaps for the average makespan of the GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS) methods and the selected algorithms from the literature
and their corresponding lower bounds for the 1024x32 dataset. 106

5.26 The gaps for the average makespan of the GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS) methods and the selected algorithms from the literature
and their corresponding lower bounds for the 2048x64 dataset. 107

5.27 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) average improve-
ment percentages with respect to the min-min heuristic based on the
consistency: Braun et al. and Nesmachnow et al. datasets. 108

5.28 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) average gap percent-
ages with respect to the lower bound based on the consistency: Braun et
al. and Nesmachnow et al. datasets. 110

List of tables xiii

6.1 Neighbourhood structures order testing for rGA+VNS, rACO+VNS,
rACO(VNS) and rGA(VNS). The best average makespan results are
reported in bold. 118

6.2 Parameter tuning for rACO+VNS and rACO(VNS) algorithms: α and β .
The best average makespan results are reported in bold. 119

6.3 Parameter values used for comparing the performance of different crossover
operators. 120

6.4 Parameter values used for comparing the performance of different muta-
tion operators. 121

6.5 Stopping times for the proposed methods for 512x16 dynamic dataset
instances. 122

6.6 Makespan results for the 512x16 dynamic dataset instances. 124
6.7 Best and average improvement percentages, and statistical analysis of

rescheduling methods over their corresponding non-rescheduling meth-
ods for the 512x16 dynamic dataset instances. 125

6.8 Best and average improvement percentages of the rGA(VNS) algorithm
over other methods for the 512x16 dynamic dataset instances. 126

Chapter 1

Introduction

Grid Computing is an infrastructure that connects multiple heterogeneous and autonomous
resources such as databases, computers and servers, from different domains – which can
be geographically distributed worldwide – to perform various complex tasks. Depending
upon their availability, performance and users’ requirements, this infrastructure allows
the dynamic sharing of various resources and thus creates a virtual supercomputer. Grid
computing was mainly developed to fulfil the significantly increasing requirements for high
computing power being demanded by various organizations and the scientific computing
community. From this perspective, it has been used as a utility for diverse applications that
require intensive computing power from commercial and non-commercial clients [58].

The early definitions of grid computing systems were introduced in [56] [59], and
since then many developments have taken place in terms of both grid infrastructure and
middleware, resulting in a better understanding of grid issues. One of the main challenges
in a computational grid is how to efficiently map jobs, also called tasks or applications, to
grid resources and hence utilize geographically distributed computers which are connected
through heterogeneous environments in an efficient, reliable and secure manner. This
mapping is called job scheduling in grid computing. Similar to job scheduling in traditional
computing systems, this mapping is known to be an NP-hard problem [161]. However, it
is more complicated in grid computing due to its complex, dynamic nature, high degree
of job and resource heterogeneity, problem size, and other factors such as existing local
schedulers and policies [25].

There are several ways to classify scheduling problems in grid computing. One way
includes the number of objectives to be optimized, in which the problem can be categorized
into single or multi-objective. Another way is according to the processing mode, by
which they can be classified into immediate or batch. The immediate scheduling refers
to the type of mapping in which jobs are scheduled once they arrive to the system, while
jobs are collected in a group or a batch, then this group is scheduled in the batch mode.
Therefore, better schedules are expected as this mode takes the advantages of knowing the

1.1 Motivation 2

characteristics of all submitted jobs and the available resources, which helps in making
decisions about the job-resource mapping process [88].

Moreover, the interrelations between jobs can be used to classify scheduling problems
into independent or dependent. In the former category, jobs are not related to each other,
that is, inter-job dependencies are not available. In the latter type, jobs cannot be divided as
they should be processed using a predefined sequence, which means inter-job dependencies
must be considered [55]. The independent job scheduling suits most of the characteristics
of distributed heterogeneous environments such as grid computing systems. This is mainly
due to the nature of their users, as different independent users submit their jobs and
applications to be processed by these environments. Additionally, the importance of the
independent job scheduling arises in various realistic applications. Examples include those
applications which use the SPMD (Single Program, Multiple Data) technique, such as
data mining and image processing applications. Furthermore, this type of scheduling is
useful for applications that can be divided into independent parts such as Monte-Carlo
simulations and parameter sweep applications [25] [85] [117].

Scheduling problems in grid computing may also be categorised according the type of
environment, by which they can be static or dynamic. In the first category, the necessary
information about jobs and resources are available in advance. These information will not
be changed during the mapping process. In addition, no jobs are expected to arrive at the
system after the allocation is performed [118]. This type of scheduling is useful in many
different applications and domains such as predictive analyses, distributed computing
systems requirements analyses and to study the behaviour of a dynamic scheduler in terms
of resources selection [19] [135]. On the other hand, in the second category which includes
the dynamic scheduling, jobs and resources can be added and removed to the system
at runtime. This provides an efficient way to cope with any unpredicted events such as
resource failure. A scheduler of this type uses actual information instead of estimations to
assign jobs to resources [163].

In this thesis, the static batch independent job scheduling problem version in grid
computing is considered. Different hybrid meta-heuristic methods are proposed to tackle
this problem in terms of minimising a single objective, the makespan. Furthermore, to
tackle the dynamic version of the problem, the rescheduling strategy will be added to these
methods.

1.1 Motivation

The problem of job scheduling in grid computing has been addressed using different
approaches such as simple queuing algorithms, deterministic heuristic algorithms and
meta-heuristic algorithms. However, to effectively deal with its complexity, meta-heuristic

1.2 Objectives 3

algorithms are preferred [85]. Meta-heuristic algorithms are well-known approaches
which have been applied effectively to a wide range of NP-hard problems. In fact, these
algorithms are considered the best candidate in practice to cope with the complexity of
job scheduling in a computational grid, and accordingly several algorithms have been
suggested [124].

Meta-heuristic approaches such as the Genetic Algorithm (GA), Tabu Search (TS), Par-
ticle Swarm Optimisation (PSO), Variable Neighbourhood Search (VNS) and Ant Colony
Optimisation (ACO) have all proven their effectiveness in solving different scheduling
problems. However, hybridising two or more meta-heuristics shows better performance
than applying a stand-alone approach [10]. The new high level meta-heuristic will inherit
the best features of the hybridised algorithms, increasing the chances of skipping away
from local minima, and hence enhancing the overall performance [170].

Four main issues that must be examined in order to design a new hybrid algorithm,
namely the number of algorithms to hybridize, the type of algorithms to hybridize, the
execution mode (sequential or parallel) and the hybridization type [169]. Meta-heuristic
methods can be hybridized in two ways, either as loosely coupled or strongly coupled
[167]. The former refers to the case in which the hybridized algorithms preserve their
identity by running as a chain of executions in which the output of the first algorithm will
be used by the second, and so on; the final solution will be the output of the last algorithm.
The latter refers to the type of hybridization in which the inner procedures of the hybridized
algorithms are interchanged in such a way as one of the methods acts as the main algorithm
which, during its execution, calls other methods to act as supporting algorithms [170].

The literature shows that the use of hybrid meta-heuristics, such as ACO [135], GA
[25] and VNS [138], for the job scheduling problem in grid computing provided impressive
results; however, almost all the proposed meta-heuristic hybrid algorithms in the literature
were loosely coupled. Moreover, the VNS algorithm is considered a framework for building
heuristic algorithms which has been used efficiently and effectively in various optimisation
problems [72]. However, for the job scheduling problem in grid computing, VNS was used
as a stand-alone algorithm in all the available works [138]. These observations pave the
way to the examination of the hybridisation of ACO and GA with VNS in a loosely and
strongly coupled fashion and compare the performance of such couplings with existing
methods.

1.2 Objectives

In this thesis, the application of VNS for the job scheduling problem in grid computing
is introduced. Four new neighbourhood structures, together with a modified local search,
are proposed. The proposed VNS is hybridised using two meta-heuristic methods in

1.3 Contributions 4

loosely and strongly coupled fashions, yielding four new sequential hybrid meta-heuristic
algorithms for the problem of static single-objective independent batch job scheduling
in grid computing. The first algorithm, called ACO+VNS, combines ACO and VNS, in
which the former works first and whose output is further refined by the latter algorithm,
while the second algorithm, called GA+VNS, integrates GA and VNS in the same manner.
The third algorithm, called ACO(VNS), combines ACO and VNS in which the former
acts as the primary algorithm which calls during its execution the latter as a supporting
algorithm, while the forth algorithm, called GA(VNS), integrates GA and VNS in the
same manner. Using the Expected Time to complete (ETC) simulation model, several
experiments have been carried out to evaluate the performance of the proposed methods
in terms of minimising the makespan. Three different well known datasets were used
for this purpose rather than generating a special dataset so that we could easily make a
fair comparison to other state-of-the-art methods. Moreover, these four hybrid schedulers
have been applied to the dynamic mode of the problem. A well-known technique called
rescheduling was used to introduce dynamism to the problem. The performance of the
proposed hybrid dynamic meta-heuristic algorithms was evaluated by using a benchmark
which has been especially created for the dynamic job scheduling problem.

1.3 Contributions

The main contributions of this work are:

1. To analyse the use of various meta-heuristic approaches for solving the job schedul-
ing problem in grid computing.

2. To develop a new VNS meta-heuristic for the job scheduling problem in grid com-
puting, which uses some effective and carefully designed neighbourhood structures
and a powerful local search to explore different regions on the state space of the
problem.

3. To design and implement several novel hybrid meta-heuristic schedulers, in loosely
and strongly coupled fashions, that uses the newly proposed VNS to produce high
quality schedules in a reasonable time.

4. To provide the literature with new state-of-the-art sequential hybrid algorithms for
job scheduling in grid computing that could serve as a reference in the field.

5. To generate new problem instances, by using a well-known methodology, which
model dynamic job scheduling in grid computing.

6. To introduce a dynamic scenario which uses the rescheduling technique to simulate
the dynamic job scheduling problem.

1.4 Thesis structure 5

7. To use the introduced dynamic scenario to evaluate the performance of the proposed
hybrid schedulers.

1.4 Thesis structure

The reminder of the manuscript is organized as follows. Chapter 2 describes the ideas and
generic concepts that form the basis for the hybrid meta-heuristic algorithms proposed in
this thesis. The chapter begins by defining combinatorial optimisation problems. Then, an
overview of heuristic, meta-heuristic and hybrid meta-heuristic algorithms is presented.
The chapter continues by introducing detailed descriptions of some meta-heuristic al-
gorithms, more precisely VNS, ACO and GA, which have been used to solve the job
scheduling problem in grid computing in this research.

Chapter 3 introduces an overview of grid computing and its basic components. Addi-
tionally, the chapter presents the job scheduling problem description and the simulation
model that mimics the assignment of jobs to resources. Furthermore, the main methods de-
scribed in the literature to generate problem instances are also explained. Finally, it presents
a comprehensive review of the static and dynamic heuristic and meta-heuristic approaches
that were used to tackle the job scheduling problem in heterogeneous environments such
as grid computing.

Chapter 4 introduces the use of VNS for job scheduling in grid computing. Four
new neighbourhood structures, together with a modified local search, are proposed. The
proposed VNS is hybridized with two meta-heuristic methods in a loosely and strongly
coupled fashions, yielding new hybrid meta-heuristic algorithms by which to consider the
job scheduling problem in grid computing.

Chapter 5 discusses the experimental results of applying the four proposed hybrid
meta-heuristic algorithms for the static independent job scheduling in grid computing. The
development language and the other measures used to report the achieved results are also
described in this chapter. Moreover, it describes the essential experiments carried out to
select the best parameters for each proposed method to best optimize its performance.

Chapter 6 introduces the application of hybrid meta-heuristic algorithms for solving the
dynamic job scheduling problem in grid computing in terms of minimising the makespan.
A version of the dynamic job scheduling problem in grid computing in which blocks
of independent jobs arrive to the grid system at different arrival time, was considered.
To solve this problem, the rescheduling strategy, which involves several calls of the job
scheduler at various intervals of time, is employed. The dynamic simulation model and
how to apply rescheduling are also explained in this chapter. Moreover, the chapter studies
the performance of the proposed meta-heuristic algorithms by using a benchmark which
has been especially created for the dynamic job scheduling problem.

1.5 List of related publications by the author 6

Finally, our conclusions along with the possible future works are drawn in the seventh
and final chapter.

1.5 List of related publications by the author

Part of the research work presented in this thesis has been published in the following
papers:

1. Muhanad Tahrir Younis, Shengxiang Yang, and Benjamin Passow. Meta-heuristically
seeded genetic algorithm for independent job scheduling in grid computing. In
European Conference on the Applications of Evolutionary Computation, pages
177–189. Springer, 2017.

2. Muhanad Tahrir Younis and Shengxiang Yang. A genetic algorithm for independent
job scheduling in grid computing. MENDEL Soft Computing Journal, 23(01):65–72,
2017.

3. Muhanad Tahrir Younis and Shengxiang Yang. Hybrid meta-heuristic algorithms for
independent job scheduling in grid computing. Applied Soft Computing, 2018.

4. Muhanad Tahrir Younis, Shengxiang Yang, and Benjamin N Passow. A loosely
coupled hybrid meta-heuristic algorithm for the static independent task scheduling
problem in grid computing. In IEEE World Congress on Computational Intelligence,
pages 1746–1753. IEEE Press, 2018.

Chapter 2

Hybrid Meta-Heuristic Algorithms

The aim of this chapter is to describe the ideas and generic concepts that form the basis
for the hybrid meta-heuristic algorithms proposed in this thesis. The chapter begins by
defining combinatorial optimisation problems. Then, an overview of heuristic, meta-
heuristic and hybrid meta-heuristic algorithms is presented. The chapter continues by
introducing detailed descriptions of some meta-heuristic algorithms, more precisely VNS,
ACO and GA, which will be used to solve the job scheduling problem in grid computing
in this thesis. Finally, a summary of the topics covered in this chapter is provided.

2.1 Combinatorial optimisation problems

The branch of mathematics and computational science that investigates the various algo-
rithms, techniques and methods that are proposed to find the best, optimal or near-optimal
solutions to a given optimisation problem is called optimisation.

Each optimisation problem has one or more objective functions which should be
minimised or maximized. These functions consist of one or more dependent variables to
which integer or real values can be assigned, subject to a set of constraints.

Combinatorial optimisation problems are optimisation problems which are used to
determine numerical values for certain discrete variables, namely those which can only
take on a finite number of values with respect to a given objective function, to achieve an
optimal solution [40]. The job scheduling problem in grid computing in this thesis is a
combinatorial optimisation problem.

A combinatorial optimisation problem can be formulated as a model with triple entries
(S, f ,Ω), where [37] [38]:

• S is a search space which consists of a finite set of candidate solutions.

• f : S→ R+
0 is the objective function to be minimised or maximised, which, for every

solution s ∈ S, assigns a non-negative value f (s) ∈ R+
0 .

2.2 Heuristic, meta-heuristic and hybrid meta-heuristic algorithms 8

• Ω is a set of constraints. A solution s that satisfies all the constraints in Ω is said
to be a feasible solution and the set of all feasible solutions SΩ, SΩ ⊂ S, are those
solutions in S which satisfy all the constraints in the set Ω.

• Assuming that f is a minimisation function, a solution s∗, s∗ ∈ SΩ, is said to be a
global optimal solution if it satisfies the following constraint:

f (s∗)≤ f (s) ∀s ∈ SΩ.

Let S∗
Ω

be the set of all global optimal solutions, such that S∗
Ω
⊆ SΩ.

• The goal is to find at least one global optimal feasible solution, s∗ (s∗ ∈ S∗
Ω

), that
gives the best objective value in terms of the objective function.

In this thesis, the work focusses on minimization problems where the best solution is the
one with the lowest value with respect to the objective function.

2.2 Heuristic, meta-heuristic and hybrid meta-heuristic
algorithms

There are two main approaches by which to solve optimisation problems, namely exact
algorithms and heuristic algorithms. The former approaches are those computational
algorithms which have been developed in such a way that they provide a guarantee
of obtaining the optimal solution within a reasonable timeframe. However, for some
optimisation problems, such as NP-hard problems, the time to provide such a solution
increases exponentially as the size of the problem instances increases.

Alternatively, heuristic algorithms are optimisation methods which provide approxi-
mate, near-optimal solutions to complex high-dimension optimisation problems within
a reasonable timeframe. Heuristics were first introduced in the 1970, and since then
they have been applied successfully to solve numerous complex optimisation problems.
Their success is primarily the result of their interesting characteristics such as simplicity,
speed, their reduced requirements for additional information about the optimisation prob-
lem under investigation, and robustness in terms of performance. Although they do not
guarantee an optimal solution to the problem at hand, heuristic algorithms tend to return
good quality solutions in a reasonable time. Heuristic algorithms are extremely reliant on
experts’ experience and knowledge, that is, they are highly specific and problem-dependent
algorithms.

On the other hand, a meta-heuristic algorithm is a high-level problem-independent
algorithmic framework which provides a set of guidelines or strategies to develop heuristics
that are applicable to various optimisation problems. Since it guides heuristics over the
problem state space, a meta-heuristic algorithm will have the ability to explore its best

2.2 Heuristic, meta-heuristic and hybrid meta-heuristic algorithms 9

parts, allowing high-quality solutions to be obtained. In fact, meta-heuristics can be
defined as heuristics about heuristics, that is, a meta-heuristic is also a heuristic, but a
more powerful one, as it provides a mechanism to escape from local minima. Similar to
heuristic algorithms, meta-heuristic algorithms are characterized by the fact that when
they are used to solve an optimisation problem, they do not require any special knowledge
about it. Examples of meta-heuristics include: Tabu Search (TS), Variable Neighbourhood
Search (VNS), Simulated Annealing (SA), Evolutionary Computation (EC), Differential
Evolution (DE), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO)
and Artificial Bee Colony Optimization (ABC), to name just a few.

Meta-heuristic approaches have all proven their effectiveness in terms of solving differ-
ent complex optimisation problems. However, hybridizing two or more meta-heuristics
shows better performance than applying a stand-alone approach [10]. The new high-level
meta-heuristic will inherit the best features of the hybridized algorithms, increasing the
chances of skipping away from a local minimum, and hence enhancing overall performance
[170].

There are three important issues that must be examined in advance in order to design a
new hybrid meta-heuristic algorithm [170], namely:

1. The number of algorithms to hybridize

Typically, there are no constrains on the number of algorithms that should be hy-
bridized. However, the literature shows that most of the proposed methods have used
only two or three algorithms.

2. The type of algorithms to hybridize

This aspect includes the selection of the methods to be hybridized from the available
approaches in the domain, i.e., deterministic heuristic, meta-heuristic, local search,
bio-inspired algorithms, etc.

3. The hybridization level

This represents the most important aspect in the design of a new hybrid algorithm,
and which refers to the degree of coupling between the selected methods, and the
execution flow.

(a) Degree of coupling

This denotes the sequence in which the selected methods are executed. Two
types of coupling can be defined, loosely coupled and strongly coupled, which
can be described as follows:

• Loosely coupled: This is also called a high level of hybridization. In this
type of hybridization, the hybridized algorithms preserve their identity

2.2 Heuristic, meta-heuristic and hybrid meta-heuristic algorithms 10

through being run as a chain of executions in which the output of the first
algorithm is used by the second, and so on; the final solution will be the
output of the last algorithm. The execution of this chain can be repeated
many times until stopping criteria are met. This kind of coupling can be
denoted as Algorithm1 + Algorithm2, where Algorithm1 is first executed
and its output is further improved by Algorithm2. Algorithm 2.1 shows a
typical scheme for a loosely coupled hybrid meta-heuristic algorithm.

Algorithm 2.1: Schema of a loosely coupled hybrid meta-heuristic algorithm.
1 Function meta-heuristic algorithm-1(Initial-Solution)
2 begin
3 Processing;
4 return Solution-1;
5 end
6

7 Function meta-heuristic algorithm-2(Solution-1)
8 begin
9 Processing;

10 return Solution-2;
11 end
12 .
13 .
14 .
15 Function meta-heuristic algorithm-n(Solution-n-1)
16 begin
17 Processing;
18 return Final-Solution;
19 end

• Strongly coupled: This is also called a low level of hybridization. In
this type of hybridization, the inner procedures of the hybridized algo-
rithms are interchanged. In general, one of the methods acts as the main
algorithm which, during its execution, calls other methods to act as sup-
porting algorithms. For example, the genetic algorithm can be run and
then a local search operator might be applied after performing the normal
genetic operators. The local search then will help to improve the newly
generated individuals. This kind of coupling can be denoted as Algo-
rithm1(Algorithm2), where Algorithm1 represents the main algorithm and
Algorithm2 represents the supporting algorithm. Algorithm 2.2 illustrates
a typical scheme for a strongly coupled hybrid meta-heuristic algorithm.

2.3 Variable Neighbourhood Search (VNS) 11

Algorithm 2.2: Schema of a strongly coupled hybrid meta-heuristic algorithm.
1 Function main meta-heuristic algorithm()
2 begin
3 Generate(Initial-Solution);
4 Solution-1← Processing(Initial-Solution);
5 Call meta-heuristic algorithm-1(Solution-1);
6 return Solution-2;
7 Solution-3← Processing(Solution-2);
8 Call meta-heuristic algorithm-2(Solution-3);
9 return Solution-4;

10 .
11 .
12 .
13 Solution-n-1← Processing(Solution-n-2);
14 Call meta-heuristic algorithm-n(Solution-n-1);
15 return Final-Solution;
16 end

(b) Execution flow

The execution flow refers to the type of computing environment, namely
whether this environment is sequential or parallel. In the sequential mode,
hybridized algorithms are run sequentially (or in serial), while the parallel
mode offers the opportunity to simultaneously run multiple algorithms (i.e., in
parallel) using a network-based computing environment.

In order to provide a robust background to the work accomplished in this thesis, in the
following sections we will provide detailed descriptions of the concepts behind three meta-
heuristic algorithms (VNS, ACO and GA) that will be used to solve the job scheduling
problem in grid computing.

2.3 Variable Neighbourhood Search (VNS)

VNS is a simple and effective meta-heuristic algorithm proposed by Mladenović and
Hansen in 1997 [114]. It represents a flexible framework through which heuristics for
solving a set of optimisation problems can be built. VNS uses multiple neighbourhood
structures to explore the various neighbourhoods of the current incumbent solution, and
then selects the one which results in an improvement. The underlying principle to VNS
is based on making systematic changes to these structures both in the descent phase, in
which the algorithm tries to find a local minimum, and the perturbation phase, in which
VNS tries to escape from local minima.

2.3 Variable Neighbourhood Search (VNS) 12

Generally speaking, VNS consists of three steps, the shake step, the improvement
step and the neighbourhood change step, as illustrated in Algorithm 2.3. These steps are
repeated until some stopping conditions are met.

The goal of the shaking step is to resolve local minimum traps by applying a set of
operators in a particular order. Each operator modifies a given solution S using predefined
neighbourhood structures. The neighbourhood structure provides a means with which to
explore new parts of the solution space. This exploration is achieved through defining the
type of modifications which could be applied to a given solution to produce new solutions.
The solution space can be explored in different ways using different neighbourhoods; thus,
using well-defined neighbourhood structures will certainly lead to better exploration of the
solution space.

The improvement step involves the application of a local search operator in an attempt
to improve the solution produced by the shaking step. Two common search strategies are
used within the improvement step, the first improvement and the best improvement. The
former strategy stops the local search procedure as soon as an improvement to the current
solution is encountered, while the latter checks all possible solutions obtained by local
search and selects the best among them. Beside these strategies, it is also possible to use
meta-heuristic algorithms for the local search.

The neighbourhood change step, which is the final step in the basic VNS procedure,
is used to make a decision about the neighbourhood to be explored next and whether to
accept the current solution as a new incumbent solution or not. Various neighbourhood
change procedures are available in the literature, such as the sequential, cyclic and pipe
neighbourhood change procedures [72].

Algorithm 2.3: The basic VNS procedure
1 Let: S0←initial solution;
2 Let: Nk←the set of neighbourhood structures, k ∈ [1, kmax];
3 repeat
4 k← 1;
5 repeat
6 S1← shake(S0);
7 S2← local_search(S1);
8 if (fitness(S2) < fitness(S0)) then
9 S0← S2;

10 k← 1;
11 else
12 k← k+1;
13 end
14 until (k==kmax);
15 until (termination condition);

2.4 Ant Colony Optimization (ACO) 13

2.4 Ant Colony Optimization (ACO)

The appearance of ants on Earth goes back some 100 million years. Currently, the estimated
ant population is about 1016 individuals [76]. Ants are social insects which live in colonies,
the size of which varies from just 30 to millions of ants. The complex behaviour of ants
in these colonies has long encouraged entomologists to further investigate this collective
behaviour, which has resulted in an improved understanding of their working mechanisms.
Foraging for food, building nests and division of labour are just some of the examples of
the complex collective behaviours which have been intensively explored. The emergence
of such is due to the collective behaviour of very simple social insects which act as
stimulus–response agents. Each agent can interact with its environment, i.e., receive
communications, and as a response can carry out basic, unsophisticated actions with a
large random component [45].

The collective behaviour of ant colonies was first investigated in 1927 by Eugene Marais
who published his findings in his book "The Soul of the Ant" [104]. After performing
several experiments, the author provided a full description of how ant colonies work. These
findings were used by Maurice Maeterlinck, who wrote "The Life of the White Ant" [97],
to provide a further description of ants’ complex behaviour.

From these primary studies, the means by which ants communicate was hypothesized
by Pierre-Paul Grasse [69] when he explored ants’ behaviour as they construct their
colonies. In his findings, he noticed that ants interact indirectly, for which he used the term
‘stigmergy’ to describe this phenomenon. Furthermore, he concluded that the complex
collective behaviour of ant colonies is a result of this type of indirect interaction, or
communication, which occurs between the ants themselves and between ants and the
environment. On the other hand, another type of stigmergy, which is called pheromonal
stigmergy, was examined by Deneubourg et al. [34]. Consequently, these works paved
the path to develop and implement the first algorithmic model to simulate the foraging
behaviour of ants [35].

Ant Colony Optimization (ACO) is a meta-heuristic search algorithm that mimics the
behaviour of ants when searching for a path between their nest and a source of food [38].
Despite the fact that ants are blind, they can search complex environments that are quite
remote from their nest in an attempt to find food sources and to successfully carry that
food back to their nest. This is achieved through laying a substance called pheromone
on the ground while they move back and forth from their nest to a source of food. This
substance can be sensed by other ants and allows indirect communication among them.
This process, stigmergy, allows the ants to modify their environment to further allow the
interaction between them and the colony and to remember the return path to their nest.

Ants which find the shortest path to the source of food will, then, return back to their
colony earlier than ants following longer paths, which means that the shortest path has

2.4 Ant Colony Optimization (ACO) 14

Fig. 2.1 Ant example.

been marched over more than other paths and thus that its pheromone density will be
higher. Ants will choose the path with the highest pheromone concentration, i.e., the
path with the highest pheromone levels will attract more ants building up even more
pheromone. However, if this path remains after the consumption of the food it led to,
this would seriously obstruct the ants’ ability to find further food. To cope with this
situation, pheromone trails evaporate over time, which is a mechanism by which to forget
old decisions [41].

Consider the example given in Fig. 2.1, which illustrates how ant-based meta-heuristic
algorithms allow for path optimisation using the principle of indirect communication
between autonomous agents. In Fig. 2.1(a), two ants at their nest at time t0 are trying to
reach the food source which exists on the opposite side of an obstacle. While navigating, a
small amount of pheromone is deposited by each ant along the path as a signpost by which
to return to their nest.

Each of these ants will choose a different path with equal probability, e.g., the upper
path will be selected by the first ant and the lower path will be taken by the second ant.
Let us assume that the upper path is twice the distance to the food source than the lower.
Therefore, the second ant, which selected the lower path, will reach the food source at time
t1, while the first ant which took the upper path will reach only the half distance to the
food source in the same time, as shown in Fig. 2.1(b).

2.4 Ant Colony Optimization (ACO) 15

The lower ant will reach the food source quicker than the upper ant. It then fetches
some food and carries it back to the nest. On its way back, it will follow the same route, the
shortest route, since no other signs are available to it. At time t2, some food will be carried
to the nest by the lower ant which reached its source successfully. During its journey back
to the nest, the lower ant also lays down more pheromone which means the shortest path
will contain higher concentrations of pheromone. On the other hand, the upper ant will
finally arrive at its destination during the same time, as shown in Fig. 2.1(c).

Consequently, during the time interval [t1, t2], the upper ant would have deposited
pheromone on the upper path once while the lower ant has laid down pheromone on the
lower path twice. This means that the pheromone levels on the lower path, the shortest
path, are twice that of the upper path, which reinforces the shortest path. At the following
time, based on the available pheromone levels, the upper ant will be more likely to follow
the lower path.

2.4.1 The Simple Ant Colony Optimization

ACO-based meta-heuristic algorithms use a colony, or a population, of simple artificial ants
(agents) which iteratively build candidate solutions to an optimisation problem. Ants build
these solutions using two types of information, namely pheromone trails and heuristic
information. The first step in any ACO-based algorithm is to determine what information
the pheromone trail encodes. The pheromone trail, τ , allows the ants to communicate
indirectly to each other and share useful information about optimal solutions. In addition
to the information encoded in the pheromone trial, the ants use heuristic information, η , to
build their solutions; this information is problem dependent.

Ideally, ACO-based meta-heuristic algorithms can be used to solve any optimisation
problem by selecting an efficient way to represent the problem which clearly defines
each component of the solution. The ants will use this representation to iteratively build
candidate solutions through which pheromones are updated.

Algorithm 2.4: Simple ACO meta-heuristic algorithm.
1 Parameters setting and pheromone trails initialization;
2 while (stopping condition is not true) do
3 Build-Solutions();
4 Perform-Local-Search(); /* optional */
5 Update-Pheromone-Trails();
6 end

Generally speaking, to solve an optimisation problem using an ACO-based meta-
heuristic algorithm, the steps illustrated in Algorithm 2.4 are applied. ACO starts by setting
values to a number of parameters and initializing the pheromone trial to some – usually

2.4 Ant Colony Optimization (ACO) 16

small – value. It then enters a loop that consists of three procedures, and which will be
repeated until a stopping condition, such as a maximum number of iterations, is met. The
three procedures are: Build-Solutions(), Perform-Local-Search() and Update-Pheromone-
Trails().

In the first procedure, Build-Solutions(), feasible solutions to the problem are con-
structed by the ants. Each ant starts with an empty solution. Components are iteratively
added to update the solution until a complete feasible solution is constructed. The addition
of a component to the solution is decided according to a probabilistic rule that each ant
applies when they use the available heuristic and pheromone information. This point is
called a choice point and can by defined by Equation 2.1 as follows:

pxy =
[τxy]

α ∗ [ηxy]
β

∑[τxy]α ∗ [ηxy]β
(2.1)

where x and y are components of the solution, and α and β are parameters used to define
the relative weights of the pheromone and the heuristic, respectively.

The second procedure, Perform-Local-Search(), is optional, and which might be used
to further improve the solutions generated from calling the first procedure by performing a
local search algorithm. The solutions achieved by ants may not be optimal, so one way in
which to improve these solutions is to hybridize ACO with local search techniques, i.e.,
to apply local search techniques on the solution obtained by an ant in order to improve it
further. The literature shows that for several static NP-hard combinatorial optimisation
problems, the best reported results are achieved when hybrid ACO algorithms are used
[21] [36] [61] [103] [143] [144] [145] [146].

Finally, in the Update-Pheromone-Trails() procedure, feedback to the constructed
solutions is given by updating the pheromone levels of the components used to generate
the solutions. These feedbacks allow the indirect communication among ants regarding the
current status of the solution components. Normally, those components which have been
used by many ants or have been included in the best solutions achieved at a given point,
will get more pheromone than others. As a result, the chances that the ants will use them
during subsequent iterations are higher than other components. The pheromone trial can
be updated using a simple rule, as defined by Equation 2.2:

τxy = ρ ∗ τxy +∆τxy (2.2)

where x, y are the solution components that belong to the best solution, ρ (0 < ρ ≤ 1)
is the decay parameter which is used to allow the ants to forget poor information, i.e.,
to avoid sticking in a local minimum, and ∆τxy is the amount of pheromone deposited
between the solution components.

2.5 Genetic algorithm (GA) 17

2.5 Genetic algorithm (GA)

A GA is a meta-heuristic search algorithm which was developed at the University of
Michigan by John Holland in 1975, and which is based on biological evolution, i.e., it
uses operations that exist in nature [130] [136]. It combines a randomized information
exchange structure with the mechanism of natural selection (Darwinian survival of the
fittest concept) [39]. GAs can rapidly find near optimal solutions by searching large and
complex state spaces in an efficient manner [130].

A GA undergoes an evolutionary process to solve a problem, i.e., the solutions are
evolved. It works on a group of solutions (individuals or chromosomes), called the
population, rather than on one solution only. It first generates an initial population randomly.
Each solution in the population is evaluated using a fitness function which assigns a score
that indicates the solution’s quality. The GA then evolves toward an optimal solution
after a number of generations through applying the genetic operators, namely selection,
crossover and mutation.

To solve a problem P using a GA, the following steps, which are illustrated in Fig. 2.2,
are applied [116]:

1. Select a proper representation to encode P, determine k, which is the number of
individuals (the size of a population), the crossover probability (pc) and the mutation
probability (pm).

2. Define a proper fitness function, which depends on P’s domain. This function is
used to evaluate each solution (individual) in the population by assigning a score
to each one that represents the quality of that solution in the problem domain. The
algorithm later uses these scores to select individuals for mating.

3. Generate an initial population, usually randomly, of individuals of size k:
S0,S1, ...,Sk−1.

4. Evaluate the fitness of each individual:
f intness(S0), f itness(S1), ..., f itness(Sk−1).

5. Use the current population to probabilistically select two parent individuals for
mating according to their fitness. Individuals with high fitness scores will have a
higher chance to be selected for mating than others.

6. Apply the genetic operators (crossover and mutation) to produce two new offspring.

7. Add the two new offspring to the new population.

8. If the size of the new population < k, go to Step 5.

2.5 Genetic algorithm (GA) 18

Fig. 2.2 A flowchart for a genetic algorithm.

9. Replace the parent population with the new offspring population.

10. If the stopping condition has not been met, go to Step 4 and repeat the process.

As the above steps state, a GA is an iterative process. Each iteration represents a
generation and the entire set of generations represents a run. One (or more) highly fit
individual(s) is expected to be found at the end of a run.

The main issues that need to be considered in GAs are:

- How to encode the solutions?

- How to create an initial population?

- How to evaluate each solution in the population?

2.5 Genetic algorithm (GA) 19

- Which solutions should be selected to perform mating?

- How to alter the selected solutions to generate new, hopefully better, offspring.

- Which solutions should be selected to survive for the next generation?

The answers to the above questions represent the main ingredients of a GA. Each of
these ingredients will be examined in turn in the following subsections.

2.5.1 Encoding

How to encode or represent solutions is the first issue that needs to be considered when
a GA is selected for application to a problem. Encoding relies heavily on the problem.
The literature on GAs includes several encoding schemes. One of the most common and
simple encoding methods is that of binary encoding, in which individuals are represented
as a sequence of bits (zero or one). Although simple, binary encoding is often not a natural
choice for a wide range of problems and corrections might be required after performing
certain genetic operations.

Another example of an encoding method is permutation encoding, which is usually
used in ordering problems. In this encoding, an individual is represented as a string of
numbers, each of which indicates a unique position in a sequence. Unlike the binary
encoding, repetition is not allowed. One example in which permutation encoding might
be used is the Travelling Salesman Problem (TSP). In a TSP, N cities and the distances
between them are given. The travelling salesman has to start from one city then visit all
the remaining cities, and finally return to the starting city without visiting any city more
than once (except the starting city). The goal is to find a sequence of cities that satisfies
the above conditions and best minimises the total distance travelled (the summation of the
distances between the visited cities). One way to encode the solutions to this problem is
permutation encoding, in which it is assumed that each individual describes the order of
cities in which the salesman will visit them. For example, let N = 5, the individual S = 3
2 5 1 4 means that the salesman started from city 3 then visited city 2 and so on until he
arrived at city 4.

Permutation encoding is useful for ordering problems such as in the task ordering
problem, in which each number should be unique (repetition is not allowed). However,
proper types of crossover and mutation operators should be used to guarantee that the new
offspring have no repetitions (for instance in TSPs, the same city should not appear twice).

2.5 Genetic algorithm (GA) 20

2.5.2 Initialization

After selecting the encoding scheme that properly represents the problem, the next step is
to determine the size of the population (the number of individuals). This size is not fixed,
and thus differs from one problem to another; hence, it should be tuned.

After selecting the size of the population, an initialize population can be generated that
contains diverse individuals. Generally speaking, initialization is considered to be one of
the main considerations in GAs. Various studies have discussed the effects of generating a
bad initial population (suffers from lack of diversity), and they came to the conclusions
that this prevents GAs from converging towards the global optimum and increases the time
required to find good solutions [82]. The diversity in the population is crucial as individuals
must learn from each other and, more importantly, to avoid premature convergence to
sub-optimal solutions, which is a problem GAs can suffer from when there is a lack of
diversity in the population [95]. There are various methods by which to maintain diversity
in the initial population which include:

1. Uniformly random

A uniform distribution is used to generate individuals randomly from the search
space of the problem.

2. Grid initialization

In this method, certain parts in the search space are selected to seed the initial
population. The selection of these parts is generally problem dependent.

3. Non-clustering rule

Another way to ensure diversity is to place a restriction on the newly generated
solutions. A rule is defined to make sure that when a new individual is generated it
must differ from all previously added individuals in the population by a predefined
number of genes.

4. Heuristic

Deterministic ad-hoc heuristics, such as hill climbing and best-first search, and
other search techniques can be used to generate the initial population in GA. This is
motivated by the fact that a GA will obtain a solution which is at least as good as the
seeded solution.

2.5.3 Fitness function

Each individual in the population is evaluated using a fitness function which assigns a score
to indicate the solution’s quality. Later on, these scores are used to select which individuals

2.5 Genetic algorithm (GA) 21

can be reproduced to provide, hopefully, better offspring. Consequently, to design a good
fitness function that can easily differentiate between good and bad individuals, careful
consideration is required.

2.5.4 Selection

The selection operator refers to the process that determines which individuals are to
be continued and allowed to reproduce and which ones deserve to be eliminated. This
selection depends heavily on the fitness function, several selection techniques are available
in the literature. However, choosing the right selection operator, namely one which avoids
picking weak solutions and allows for the survival of good solutions to the problem
under discussion, is problem dependent. Some examples of common selection techniques
include:

1. Random selection

In this type of selection, which is considered the simplest selection operator, individu-
als are selected randomly regardless of their fitness, which gives all individuals (best
and worst) an even chance of being selected. Compared to other selection operators,
random selection has the lowest selective pressure towards fitter individuals.

2. Proportional selection

This is one of the most popular selection operators which was proposed by Holland
[75]. Unlike the random selection operator, proportional selection is biased towards
fitter individuals, i.e., it chooses individuals according to their fitness. Each individ-
ual has a probability of being selected which is proportional to its fitness. Therefore,
the best individuals in terms of fitness score are the more likely to be selected for
reproduction. Consequently, better individuals are expected to evolve over time as a
high selection pressure towards fitter individuals in the population in such a selection
operator is applied.

Proportional selection can be implemented in two ways, namely roulette wheel
selection and stochastic universal selection.

The former implementation normalizes individuals’ fitness scores by dividing each
score by the maximum fitness score. Table 2.1 shows an example of a hypothetical
population of six individuals along with their fitness score and their corresponding
normalized score. The probability distribution can then be represented as a circular
wheel (roulette wheel) that contains k pies, where k is the number of individuals
in the population. Each individual occupies a slice of the roulette wheel that is
proportional to its normalized fitness score. Selection can be made by rotating the
roulette wheel and using the individual whose portion in the roulette wheel comes

2.5 Genetic algorithm (GA) 22

Table 2.1 Hypothetical Population

Individual Fitness score Normalized fitness
A 14 0.27
B 9 0.17
C 5 0.10
D 6 0.12
E 11 0.21
F 7 0.13

sum = 52

Fig. 2.3 Example of Roulette wheel selection.

at a previously determined fixed point is selected. Fig. 2.3 shows how the roulette
wheel selection can be applied to the hypothetical population of Table 2.1, where the
fixed point is located at the top of the figure.

The latter implementation follows the same steps as the roulette wheel selection,
with the exception that it contains multiple fixed points instead of just one, as shown
in Fig. 2.4. Therefore, more than one individual can be selected in just one rotation
of the wheel, increasing the probability of choosing the more highly fit individuals
at least once.

2.5 Genetic algorithm (GA) 23

Fig. 2.4 Example of Stochastic Universal Sampling.

3. Tournament selection

In a tournament selection, several tournaments are run among a few individuals who
have been randomly selected from the population. The winner of each tournament
(the one with the best fitness) is selected for subsequent stages.

2.5.5 Alteration

This involves applying a number of genetic operators that are used to modify the individuals
in the population. Two common genetic operators can be used to alter individuals, which
are as follows:

2.5.5.1 The crossover operator

The crossover operator is equivalent to reproduction and biological crossover. New
solutions (offspring) are generated by selecting individuals from the parental generation
and exchanging their genes. Crossover enables the search process to explore new regions
of the solution space and provide the next generation with good quality individuals.

Several types of crossover operators have been reported in the evolutionary computing
literature, which mainly depend on the solution representation. Therefore, in our case,
three crossover operators, which are the one-point (1P), two-point (2P) and Half Uniform

2.5 Genetic algorithm (GA) 24

Crossover (HUX), will be considered for the direct representation, while another three
operators will be examined for the permutation-based representation, which include Order
Crossover (OC), Partially Matched Crossover (PMC) and Cycle Crossover (CX).

1. One-Point Crossover (1P)

1P represents the pioneer crossover operator, which was proposed in reference [75].
Given two parent solutions, the one-point crossover operator starts by generating a
random position between 1 and the individual’s size-1. This position serves as an
exchange point which divides each parent into two parts. Two new offspring are
obtained by exchanging the two first segments of the parents. Fig. 2.5 shows an
example of 1P crossover.

Fig. 2.5 Example of One-Point Crossover.

2. Two-Point Crossover (2P)

2P is the generalized form of the 1P crossover operator, as proposed in reference [33].
Given two parent solutions, unlike the one-point crossover, this operator starts by
generating two random cutting points between 1 and the individual’s size-1. These
positions serve as exchange points which divide each parent into three parts. Two
new offspring are obtained by exchanging the parental segments between the two
cutting points. Fig. 2.6 shows an example of 2P crossover.

2.5 Genetic algorithm (GA) 25

Fig. 2.6 Example of Two-Point Crossover.

3. Half Uniform Crossover(HUX)

HUX, as first proposed in reference [150], requires that half of the non-matching
genes are swapped; to achieve this, the Hamming distance – that is, the number of
differing genes – is determined and subsequently halved, The calculation gives the
number of bits that are unmatched genes between the two parents, and hence the
number of genes that need to be swapped. The steps describing the HUX crossover
operator are given in Algorithm 2.5. Fig. 2.7 shows an example of HUX crossover.

4. Order Crossover (OX)

The Order Crossover is simple permutation crossover operator originally proposed by
reference [32]. Fig. 2.8 shows an example of OX crossover. Basically, OX receives
two parents, P1 and P2, and produces two offspring, Ch1 and Ch2, as follows:

(a) Two crossover points, POS1 and POS2, are randomly selected and the block of
genes between them from P1 is copied to Ch1.

(b) Delete all genes in P2 that are already in the copied block. The remaining genes
are those that the offspring needs.

(c) To create Ch1, copy the remaining genes according to the order they appear
and from left to right.

2.5 Genetic algorithm (GA) 26

Algorithm 2.5: The HUX crossover algorithm
input : two parents P1 and P2 and their size n (number of genes);
output : two offspring Ch1 and Ch2;

1 Ch1← P1;
2 Ch2← P2;
3 no_o f _di f f _genes← 0;
4 for (i = 1 to n) do
5 if (Ch1[i] ̸=Ch2[i]) then
6 no_o f _di f f _genes← no_o f _di f f _genes+1;
7 end
8 end
9 exchange_counter← 0;

10 while (exchange_counter < (no_o f _di f f _genes/2)) do
11 for (i = 1 to n) do
12 if ((Ch1[i] ̸=Ch2[i]) and (Ch1[i] ̸= P2[i])) then
13 generate a random number R;
14 if (R≤ 0.5) then
15 Ch1[i]← P2[i];
16 Ch2[i]← P1[i] ;
17 exchange_counter← exchange_counter+1;
18 if (exchange_counter < (no_o f _di f f _genes/2)) then
19 Break;
20 end
21 end
22 end
23 end
24 end

Fig. 2.7 Example of Half Uniform Crossover.

2.5 Genetic algorithm (GA) 27

Fig. 2.8 Example of Order Crossover.

(d) Create Ch2 by flipping P1 and P2 and repeating steps 1, 2 and 3.

5. Partially Matched Crossover (PMX)

PMX, also known as Mapped Crossover, is the mostly commonly used crossover
operator for problems that use a permutation-based representation, as proposed
in reference [66]. Fig. 2.9 shows an example of PMX crossover. Basically, PMX
receives two parents, P1 and P2, and produces two offspring, Ch1 and Ch2, as follows:

(a) Two crossover points, POS1 and POS2, are randomly selected and the block of
genes between them from P1 is copied to Ch1.

(b) Check the same positions in P2 to find the values, Vi, that have not been copied
to Ch1.

(c) For every v ∈Vi:

i. Find the corresponding value, v0, in P1 at the same position of v.

ii. Check v0 in P2; if it is part of the copied block then go to Step i and repeat
using v0; otherwise, insert v into Ch1 in this position.

(d) Copy any remaining values from P2 to Ch1.

(e) Create Ch2 by flipping P1 and P2 and repeating steps a, b, c and d.

2.5 Genetic algorithm (GA) 28

Fig. 2.9 Example of Partially Matched Crossover.

6. Cycle Crossover (CX)

CX is another crossover operator which is used for permutation-based representation,
as proposed by reference [120]. Fig. 2.10 shows an example of CX crossover.
Basically, CX receives two parents, P1 and P2, and produces two offspring, Ch1 and
Ch2, as follows:

(a) Identify a number of cycles between the two parents. A cycle is a subset of
genes that is constructed by starting from one of the parent genes and then
going to the corresponding gene in the other parent, and so on until we reach
the same gene that we started with.

2.5 Genetic algorithm (GA) 29

(b) To generate Ch1 and Ch2, the first cycle is copied from P1 to Ch1 and its
corresponding cycle is copied from P2 to Ch1, whilst the second cycle is copied
from P2 to Ch1 and its corresponding cycle is copied from P1 to Ch2, and so on.

Fig. 2.10 Example of Cycle Crossover.

2.5.5.2 The mutation operator

The mutation operator is one of the most important elements of a GA, and which is related
to the exploration of the search space. Through mutation, individuals are randomly altered
to maintain and introduce diversity into subsequent generations [121]. The literature on
GAs describes several mutation operators such as:

1. Random mutation

The earliest mutation operator was proposed by reference [33]. In this type of
mutation, a random position in an individual is selected and its value is flipped. This
technique works perfectly for those problems where the binary representation can be
used to encode them as it is easy to flip from 0 to 1 and vice versa.

2.5 Genetic algorithm (GA) 30

Fig. 2.11 An example of the insert mutation.

2. Insert mutation

In this operator, two positions, POS1 and POS2, such that 1 < POS1 < POS2 < n,
where n is the length of encoding, are randomly selected from an individual, after
which POS2 is inserted directly before POS1 and all positions from POS1 to POS2
are right shifted. Fig. 2.11 shows an example of the insert mutation.

3. Swap mutation

Similar to the insert mutation operator, two positions, 1 < POS1 < POS2 < n, where
n is the length of encoding, are randomly selected from an individual. However,
instead of inserting POS1 before POS2, the swap operator merely exchanges their
values. Fig. 2.12 shows an example of the swap mutation.

2.5.6 Replacement

Another operator that is also related directly to the Darwinian concept of survival of the
fittest is the replacement operator; this is quite similar to the selection operator, but occurs
at the end of each generation. It involves deciding which individuals are selected to survive
into the next generation. The candidate individuals can be chosen from the offspring and/or
parents. Similar to the selection operator, the main goal of the replacement operator is

2.6 Summary 31

Fig. 2.12 An example of the swap mutation.

to guarantee that fitter individuals will propagate to subsequent generations. Two main
replacement operators are available which include:

1. Generational replacement

In this type of replacement, all individual parents are replaced with their offspring,
which means that there is no overlap between the current generation and the next.

2. Steady-State Strategy

In this type, parents and offspring compete for survival, and then the best of them
are selected to go on to the next generation. Therefore, there is overlap between the
current and next generations.

2.6 Summary

This chapter has introduced the necessary theoretical background to optimisation problems
and has discussed the various methods available in the literature to solve them. Among
these methods, the meta-heuristic algorithms are considered the most suitable candidates
as they are able to search large-size state spaces and provide high-quality solutions to a
large and diverse range of complex optimisation problems. The chapter described what
is meant by an optimisation problem, combinatorial optimisation problems, heuristics,

2.6 Summary 32

meta-heuristics and hybrid meta-heuristics. The chapter also described the main concepts
behind a number of selected meta-heuristic algorithms which will be applied to solve the
problem of job scheduling in grid computing. These algorithms include VNS, ACO and
GA. VNS is a simple and effective meta-heuristic algorithm which represents a flexible
framework for building the heuristics to solve a set of optimisation problems. VNS is
based on the systematic change of these structures both in the descent phase, in which the
algorithm tries to find a local minimum, and the perturbation phase, in which VNS tries to
escape from the local minimum. ACO is a bio-inspired meta-heuristic search algorithm
that mimics the behaviour of ants in searching for a path between their nest and a source
of food. A GA, by contrast, is another bio-inspired meta-heuristic search algorithm that
simulates the natural selection process of biological evolution.

Chapter 3

Job Scheduling in Grid Computing

This chapter introduces an overview of grid computing and its basic components. Addition-
ally, the chapter presents the job scheduling problem description and the simulation model
that mimics the assignment of jobs to resources. Furthermore, the main methods described
in the literature to generate problem instances are also explained. Finally, it presents a
comprehensive review of the static and dynamic heuristic and meta-heuristic approaches
that were used to tackle the job scheduling problem in heterogeneous environments such
as grid computing.

3.1 Grid computing

The advance in computer software, hardware and networking has led to a significant
increase in commodity cluster computing in the last two decades. This type of computing
has been used to provide powerful computing resources at a low-price cost to solve complex
problems from various application domains which require an intensive use of resources.
Specifically, the scientific society utilizes from these powerful computing resources which
allow researchers and scientists to extend and run more experiments and simulations and
to test more parameters. Results to these experiments, simulations and parameters tuning
processes can be instantly shared among different geographically distributed partners due
to the substantial increase in the communication bandwidth. This motivates universities
and other education enterprises to start launching special programs, known as e-Science
[74], to establish such cooperation to solve many complex large-size scientific problems.
As a result of the intensive use of these cooperation by multiple researchers and scientists,
massive distributed data were generated within e-Science programs. Thus, the main
challenge that has faced e-Science programs was how to maintain data management, in this
environment. This challenge, therefore, motivates the design of a distributed computational
infrastructure which couples various resources such as storage spaces, databases, servers,

3.2 Grid computing architecture 34

fast networks, clusters and supercomputers for solving a wide range of complex problems,
emerging into the so-called Grid computing [15] [23] [56] [127].

Grid Computing has been defined as a type of parallel and distributed infrastructure
which allows the geographically distributed autonomous and heterogeneous resources to
be shared, selected and aggregated dynamically depending on their availability, capability,
performance, cost, and user’s quality-of-service requirements. This infrastructure offers
to its users the same processing capabilities provided by supercomputers by creating a
virtual supercomputer from connecting various networked and loosely coupled computers
together allowing their resources to be shared among users. Computers, processing
elements, software applications, printers, network interfaces, storage space and data are
examples of resources. Middleware, computer software which provide basic services for
resource management, security, monitoring, and so forth, are used to connect all these
resources to a network. Due to the fact that resources are owned by various administrative
organizations, local policies are defined to specify what is shared, who is allowed to access
what and when, and under what conditions. The grid architecture is based on the creation
of Virtual Organizations (VOs), a set of rules defined by individuals and institutions to
control resource sharing [57] [92]. By sharing some or all of its resources, a physical
organization can be part of one or more VOs [59]. Grid Computing has been increasingly
used by commercial and non-commercial clients as a utility for solving scientific, complex
mathematical, and academic problems, as well as for diverse applications [58].

Grid computing has witnessed several developments since the introduction of its
early definitions in [56, 59]. The developments are aimed at a better understanding of
the grid issues through the enhancement of the grid infrastructure and middleware. To
provide services to its users, the grid computing system performs several activities as
illustrated in Fig. 3.1. Grid resources are signed in within one or more Grid Information
Services (GIS). The Grid Resource Broker (GRB) receives users’ requirements to run
their applications. GRB then queries GIS and carries out several operations which include
assigning appropriate resources to users’ applications and monitoring their execution until
they finish.

3.2 Grid computing architecture

The architecture of a typical grid system can be seen as a stack of four layers, which are
depicted in Fin. 3.2. More precisely, these layers are: fabric, core middleware, user-level
middleware, and applications layers. Each layer provides a specific service, as follows
[23] [132]:

3.2 Grid computing architecture 35

Fig. 3.1 A high-level view of a typical Grid computing system (adopted from [13]).

1. Fabric layer

Also called the Physical layer, it contains distributed and autonomous resources such
as computers, servers, networks, clusters, storage systems, data sources and other
physical components. These resources are also heterogeneous as they have been
coupled from different computing environments, each of which may use a different
operating system (such as Windows and Linux).

2. Core middleware layer

Also called the Connectivity layer, it aims at providing a unified environment,
through the use of multiple interfaces, for the heterogeneous resources of the fabric
layer. Resource monitoring, resource allocation, access to information and security
are some examples of the services offered in this layer.

3. User-level middleware layer

Also called the Resource layer, it offers services that provides a higher level of ab-
straction over the core middleware layer by utilizing its multiple interfaces. Examples
include brokering (resource selection, management and aggregation), Debugging,
programming languages and compilers.

4. Applications layer

This layer provides interfaces which allow different users to submit their applications
to the grid system and to collect results.

3.3 Scheduling in grid computing 36

Fig. 3.2 The main layers and components of a typical Grid computing system (adopted
from [23]).

3.3 Scheduling in grid computing

Allocating jobs, also called tasks or applications, to computational grid resources in an
efficient manner is one of the main challenges facing any computational grid system; this
allocation is called job scheduling in grid computing. An efficient scheduler is one which
can make practical and effective use of the available distributed resources. These resources
are connected through heterogeneous environments in an efficient, reliable and secure
manner. Similar to job scheduling in traditional computing systems, this allocation is
known to be an NP complete problem [161]; however, it is made more complicated in
grid computing due to its dynamic nature, high degree of task and machine heterogeneity,
problem size, and other factors such as existing local schedulers and policies [25]. To
evaluate the job scheduling performance, an objective function should be defined such
as maximizing resources utilization, minimising the makespan, and maximizing load
balancing [124]. The scheduler’s efficiency strongly depends on the algorithm applied to
do the scheduling. Different algorithms could be used to do the scheduling which vary
from simple heuristic methods to meta-heuristic methods. However, to enhance the overall
performance of the grid, the meta-heuristic approaches are more likely preferred [117].

Scheduling problems in grid computing can be classified from different perspectives.
According to the number of objectives to be optimized, the problem can be categorized into

3.3 Scheduling in grid computing 37

single or multi-objective. The former includes one objective function such as maximizing
resources utilization, minimising the makespan, or maximizing load balancing, whilst
the latter consists of optimizing two or more objectives which are normally contradicted.
The processing mode can also be used to classify scheduling problems into immediate
or batch. The immediate scheduling, also called on-line scheduling, refers to the type of
mapping in which jobs are scheduled once they arrive to the system. In the batch mode,
jobs are collected in a group or a batch, then this group is scheduled. Therefore, better
schedules are expected as this mode takes the advantages of knowing the characteristics of
all submitted jobs and the available resources, which helps in making decisions about the
job-resource mapping process [88].

Furthermore, scheduling might be categorised in terms of the interrelations between
jobs into independent or dependent. In the first category, jobs are not related to each
other, that is, inter-job dependencies are not available. In the second type, jobs cannot be
divided as they should be processed using a predefined sequence, which means inter-job
dependencies must be considered [55]. The independent job scheduling suits most of the
characteristics of distributed heterogeneous environments such as grid computing systems.
This is mainly due to the nature of their users, as different independent users submit their
jobs and applications to be processed by these environments. Furthermore, the importance
of the independent job scheduling arises in various realistic applications. Examples include
those applications which use the SPMD (Single Program, Multiple Data) technique, such
as data mining and image processing applications. Moreover, this type of scheduling is
useful for applications that can be divided into independent parts such as Monte-Carlo
simulations and parameter sweep applications [25] [85] [117].

Another possible classification is according to the type of environment, namely static
or dynamic. In the static scheduling, the necessary information about jobs and resources
are available in advance. These information do not change during the mapping process.
In addition, no jobs are expected to arrive at the system after the allocation is performed
[118]. Obviously, an accurate estimation of the processing time that each job requires to
be executed by each resource should be available. This estimation can be provided by
carrying out job profiling and statistical analysis of both submitted jobs and resource usage
[162]. One major issue in the static scheduling is that resource failure and other unexpected
events are not considered. However, additional mechanisms such as rescheduling can be
added to deal in practice with these situations.

Static scheduling is useful in many different applications and domains. Predictive
analyses, for instance, is one of the most common applications in which this type of
scheduling is used to find an efficient mapping for some workloads sometime in the future,
such as meeting a deadline, and to check in advance if the available time and resources
are sufficient to finish such a mapping. Furthermore, static scheduling may also be used
in the analyses of the requirements of distributed computing systems in which static

3.4 Job scheduling in grid computing: Problem formulation 38

scheduling can be employed, for example, to justify the advantages of adding another
piece of hardware to these systems in terms of productivity. Moreover, after performing
a dynamic job scheduling, static scheduling can be utilized to check the quality of the
achieved schedules by evaluating the performance of the dynamic scheduler. In this
perspective, static solutions can be used to study the behaviour of a dynamic scheduler in
terms of resources selection [19] [135].

On the other hand, in dynamic scheduling, jobs and resources can be added and removed
to the system at runtime. This provides an efficient way to cope with any unpredicted
events such as resource failure. A scheduler of this type uses actual information instead
of estimations to assign jobs to resources [163]. However, in case of any change in the
environment, such as the addition or deletion of a job or a resource, the previous global
optimal will change and the scheduler should update the current information accordingly
to act to this change, which makes the optimisation problem more complicated and
challenging as a track of the new global optimal is required [106] [160].

In this thesis, the static batch independent job scheduling problem version in grid
computing is considered as we will see in the next section. Different hybrid meta-heuristic
algorithms are proposed in Chapter 4 to tackle this problem in terms of minimising a single
objective, the makespan. Furthermore, these algorithms have been modified by adding the
rescheduling strategy to tackle the dynamic version of the problem. The dynamic version
of the problem together with the modified hybrid algorithms are described in Chapter 6.

3.4 Job scheduling in grid computing: Problem formula-
tion

To study the job scheduling problem under different types of heterogeneous environments,
a model that simulates the processing time of jobs on resources is required. Since the early
2000s, a common model called the Expected Time to Compute (ETC) has been used for
this purpose [117]. The ETC model, which was introduced in [8], provides a framework for
testing the performances of different scheduling algorithms under various circumstances.

This model assumes that an accurate estimation or prediction of the size of each job,
the computing power of each resource, and an estimation of the load of the resources are
known in advance. Furthermore, an accurate estimation of the expected execution time for
each job on each resource is computable or is otherwise assumed to be known beforehand.
These assumptions are realistic since it is easy to collect information about the computation
power of resources and the jobs requirements from specifications provided by the user,
by predications or from historic data [169]; see [84] [141] [101] for more details about
the methods used for calculating this estimation based on analytical benchmarking and
job profiling. This estimation is represented in a two-dimensional array called the ETC,

3.5 ETC matrix generating 39

where row k of the ETC array consists of the estimated execution times for job k on each
resource. Similarly, column p of the ETC array contains the estimated execution times of
resource p for each job. Therefore, ETC[i][j] indicates the expected execution time that job
i needs to finish on resource j. It also assumed the ETC [i, j] entry may include the time
required to move job i and any data related to it from their known source to resource j [19].

A description of the static batch independent job scheduling problem in grid computing
under the ETC model can be formulated as follows:

1. A set of n independent jobs J={ j0, j1, j2, ..., jn−1} to be assigned to grid resources.
Any job can be handled by any resource. However, these jobs are non-preemptive,
i.e., each job should be executed entirely by one resource only.

2. A set of m heterogeneous machines R={r0,r1,r2, ...,rm−1} to be used for processing
the submitted n independent jobs.

3. The ETC matrix is of size n x m, where ETC[j][r] denotes the estimated required
time for processing job j by resource r.

4. The goal of job scheduling in grid computing is to find a mapping of submitted
jobs to available resources that minimises the makespan, which itself represents the
finishing time of the latest task and can be computed by Equation 3.1.

makespan = mins∈Smax j∈J(Finish j) (3.1)

where S is the set of all possible solutions and Finish j represents the time by which job j is
finished [85].

3.5 ETC matrix generating

The ETC matrix can be simply generated by dividing the size of a job by the computing
power of a resource. One example of this type is the dataset of Liu et al. [93], publicly
available from http://dx.doi.org/10.13140/RG.2.2.10787.04649, which consists of four
instances of different sizes. The authors used the notation (the number of resources, the
number of jobs) to describe each instance. The resource job pairs vary from small-scale
instance (3, 13) to large-scale instances, such as (5, 100), (8, 60) and (10, 50).

However, to capture the various characteristics of grid computing environments, two
methods, which are range-based and coefficient of variation (described in [8]), have been
proposed to generate ETC matrices.

Each method defines three different types of metric, namely consistency, job hetero-
geneity, and resource heterogeneity. An ETC matrix is said to be consistent if a resource

http://dx.doi.org/10.13140/RG.2.2.10787.04649

3.5 ETC matrix generating 40

Ra can process a job Jx faster than a resource Rb, then the same is true for any job Jk. If
this structure is not maintained, i.e., Ra is not always faster Rb, then the ETC matrix is
considered inconsistent. A mix of these two scenarios is the semi-consistent ETC matrix,
which can be defined as an inconsistent ETC matrix with a consistent sub-matrix. Job
heterogeneity indicates the degree to which the job processing times vary with two values,
high or low. Similarly, resource heterogeneity models the degree to which the resource pro-
cessing times vary for a given job and also has two values, high or low. Therefore, twelve
distinct ETC matrices are needed so that we can consider all these various characteristics.

Both methods follow the same design structure to generate ETC instances. Although
the coefficient of variation method allows for greater control over job and resource het-
erogeneity through the use of empirical probability distributions, it uses a more complex
procedure than the range-based method [117]. Two ranges are used by the range-based
procedure to generate ETC problem instances, namely [1, R job] and [1, Rresource] for job
and resource heterogeneity, respectively. For every job x, the method first generates a
random number, Job, by sampling a uniform distribution from the first range. Similarly, the
method generates another random number, Res, from the second range for every resource
y. Then, the rows of ETC matrix are constructed by multiplying Job by Res [8]. The
main steps to generate ETC problem instances using the range-based method are listed in
algorithm 3.1.

Algorithm 3.1: The range-based procedure for generating ETC instances.
1 let n and m be the number of jobs and resources respectively;
2 for (x = 0 to n-1) do
3 Job← a uniformly distributed random number in the range [1, R job];
4 for (y=0 to m-1) do
5 Res← a uniformly distributed random number in the range [1, Rresource];
6 ETC[x, y]← Job * Res;
7 end
8 end

For realistic heterogeneous computing systems such as computational grids, the authors
in [8] suggested typical values for R job and Rresource which are reported in the first row
of Table 3.1. However, their work did not create a specific benchmark. The authors in
[19] used the range-based method of [8] to generate the 12 classic ETC problem instances,
which are publicly available from https://www.fing.edu.uy.

These instances, which are known as the Braun et al. dataset, have become a de facto
standard benchmark to evaluate the performance of various scheduling approaches in
heterogeneous environments and grid systems. However, they did not use the suggested
values for R job and Rresource in [8]. Instead, the authors used the values listed in the second

https://www.fing.edu.uy

3.5 ETC matrix generating 41

Table 3.1 Job and resource heterogeneity parameters.

job heterogeneity resource heterogeneity
ETC model low high low high
Ali et al. R job=10 R job=100000 Rresource=10 Rresource=1000
Braun et al. R job=100 R job=3000 Rresource=10 Rresource=1000

row of Table 3.1. Each instance has 512 jobs and 16 resources. The following abbreviation
has been used to identify the type of ETC matrix, D-T-JHRH.0, where:

- D denotes the probability distribution type.

- T denotes the consistency type, with the following acronyms: c for consistent, i for
inconsistent, and s for semi-consistent.

- JH denotes the heterogeneity of the jobs, with two possibilities either hi for high or
lo for low.

- RH denotes the heterogeneity of the resources, with two possibilities either hi for
high or lo for low.

The authors in [117] have reviewed the existing benchmarks in the literature. They
came to the conclusion that none of the available datasets can actually simulate the current
characteristics of grid computing systems in terms of the dataset size. Therefore, they
proposed a new benchmark, known as the Nesmachnow et al. dataset, which is publicly
available from https://www.fing.edu.uy, to cover larger cases. Each case consists of 24
instances which have been generated using the range-based method described in Ali et al.
[8]. However, the first 12 instances are generated using the job and resource heterogeneity
parameters described in Ali et al. [8], which are listed in the second row of Table 3.1;
the other 12 instances are generated using the parameters proposed by Braun et al. [19],
which appear in the first row of Table 3.1. The notation M-d-t-jhrh was used to describe
each instance where M indicates the parameters used to generate the instance. The first 12
problem instances were generated using the proposed values of Ali et al. [8] and therefore
the letter A is used to denote them, while the parameters employed by Braun et al. [19]
were used to generate the second twelve instances and hence the symbol B is used to
represent them. The d-t-jhrh notation follows the above description.

In this work, all the three datasets, namely Liu et al., Braun et al. and Nesmachnow et
al., will be considered to test the performance of the proposed methods.

https://www.fing.edu.uy

3.6 Methods for job scheduling in grid computing 42

3.6 Methods for job scheduling in grid computing

The problem of job scheduling in grid computing is known to be an NP-Hard combinatorial
problem, and hence, the exact methods are not applicable [65]. Alternatively, deterministic
heuristic algorithms and meta-heuristic algorithms were used to address this problem.
However, to effectively deal with its complexity, meta-heuristic algorithms are preferred
[85].

Although they might not provide the best solutions, heuristic algorithms are preferred
due to the fact that they can be easily implemented and provide solutions in a short period
of time. Moreover, and for the same reasons stated above, the literature shows that most
of them were used to generate solutions which are used to seed the initial population in
various meta-heuristic algorithms, which reduces the time that these algorithms require to
find satisfactory solutions as they start from a good point on the state space of the problem
[118].

On the other hand, meta-heuristic algorithms are well-known approaches which have
been applied effectively to a wide range of NP-hard problems. In fact, these algorithms are
considered the best candidate in practice to cope with the complexity of job scheduling in
a computational grid, and accordingly several algorithms have been suggested [124].

In the following subsections, a review of the heuristic and meta-heuristic algorithms
described in the literature, will be presented.

3.6.1 Heuristic methods for job scheduling in grid computing

Several deterministic heuristic algorithms are described in the bibliography. In reference
[19], Braun et al. described eleven heuristics when they tackled the job scheduling problem
in heterogeneous environments. A more detailed study is the work of Kowk et al. in
reference [91] which provided a comprehensive description of twenty seven heuristics
for the static job scheduling problem. Recently, newer heuristics for the heterogeneous
environments such as grid computing were proposed by Rafsanjani et al. and Gogos et al.
in references [131] and [65], respectively.

This subsection explains some of the popular ad hoc heuristic methods for mapping
independent static jobs to available resources in grid computing with respect to minimising
the makespan.

• Opportunistic Load Balancing (OLB) algorithm

A simple heuristic that maps each job in an arbitrary order to the next available
resource without taking into account the required ETC to process each job on that
resource. OLB keeps all resources as busy as possible, and hence, maximizes the
resource utilization of the the whole system. However, it finds low-quality schedules

3.6 Methods for job scheduling in grid computing 43

in terms of makspan mainly because it ignores the processing time each resource
requires to execute each job [19] [100] [133].

• Minimum Execution Time (MET) algorithm

The main strategy of MET is to assign each job in an arbitrary order to the resource
with the minimum ETC for that job (the resource that executes that job faster than
others), irrespective of that resource’s availability [64] [102]. As a result of applying
the above strategy, a high load imbalance across resources is expected which makes
MET inapplicable in grid computing systems with consistent problem instances [19].

• Minimum Completion Time (MCT) algorithm

MCT combines the advantages of OLB and MET [19]. The main idea of it is to
assign each job in an arbitrary order to the resource with the minimum Completion
Time (CT) for that job. The CT of job J on resource R is simply ETC[J, R] plus
the current load of R, i.e., MCT uses ETC and resource loads to select the next
assignment [135] [19].

• Min-min algorithm

The min-min heuristic begins by calculating the minimum CT for all jobs and
resources. It then determines the job j with the minimum CT and assigns it to the
resource that obtains it. After allocating the job j, the CT matrix is updated. The
same steps are repeated until all jobs are assigned [77] [19].The pseudo-code for the
min-min heuristic is illustrated in Algorithm 3.2.

Algorithm 3.2: The min-min algorithm
1 For every job in the job set, calculate the completion time (CT);
2 jobs_removed← 0;
3 while (jobs_removed<total number of jobs) do
4 Find the job i in the job set with the earliest completion time and the resource j

which obtains it;
5 Assign i to j;
6 Delete i from the job set;
7 jobs_removed← jobs_removed +1;
8 Update the ready time and the completion time (CT) of resource j;
9 end

• Max-min algorithm

The max-min algorithm follows the same steps of the min-min heuristic. It begins
by calculating the minimum CT for all jobs and resources. It then determines the
job j with the maximum CT and assigns it to the resource that obtains it. After

3.6 Methods for job scheduling in grid computing 44

allocating job j, the CT matrix is updated. The same steps are repeated until all jobs
are assigned [19].

• Duplex algorithm

Duplex combines the Min-min and Max-min algorithms. It runs both of algorithms,
then the best solution of them is selected [19]. Therefore, Duplex can be used to
cope with the problems of the two previously described heuristics by utilizing the
cases in which either Min-Min or Max-Min works better [73].

• Longest Job to Fastest Resource – Shortest Job to Fastest Resource (LJFR-
SJFR) algorithm

Similar to the min-min heuristic, LJFR-SJFR begins by calculating the minimum
CT for all jobs and resources. Let t j be the total number of jobs and let tr be the total
number of resources. LJFR-SJFR consists of two steps. The first step involves the
assigning of the tr longest jobs to the tr available resources. The second step includes
the mapping of the shortest job to the fastest resource, and the longest job to the
fastest resource alternatively. The current load of each resource is updated after each
assignment. The second step is repeated until all t j - tr are allocated [1] [79].

• Sufferage algorithm

The main idea of this heuristic is to use the fact that a job suffers if it is not assigned
to the resource that can process it faster than all the available resources [65]. This
heuristic uses the difference between the first and second best jobs in terms of MCT
to compute the suffrage value. It then allocates jobs with high suffrage values to the
resources that can process them at the earliest time [11].

3.6.2 Meta-heuristic methods for job scheduling in grid computing

The problem of job scheduling in distributed and heterogeneous computing environments,
such as grid computing, has been addressed using different approaches such as simple
queuing and heuristic algorithms. However, to effectively deal with the associated complex-
ity, meta-heuristic algorithms are preferred [85]. Meta-heuristic algorithms are well-known
approaches which have been used effectively to solve a wide range of NP complete prob-
lems. In fact, these algorithms are considered the best candidate, in practice, to cope with
the complexity of job scheduling in grid computing, therefore, several algorithms have
been suggested [124].

3.6 Methods for job scheduling in grid computing 45

3.6.2.1 ACO for job scheduling in grid computing

ACO is one of the meta-heuristic search methods which simulates the behaviour of ants in
foraging for food [38], that has been used to address the job scheduing problem in grid
computing.

A loosely coupled hybrid ACO algorithm was suggested by Ritchie et al. [135] which
combines ACO with TS to improve the performance of a number of similar approaches
proposed in [19]. To encode information in the pheromone trail, the MCT heuristic
was used. Furthermore, pheromone trails were updated using the Max-Min Ant System
(MMAS) rule proposed in [146]. The authors used the classical Braun et al. [19] dataset
to evaluate their proposed scheduler. Their experimental results demonstrated that the
hybridization of TS with ACO improved the makespan of the solutions. However, the
hybrid method needed over 3.5 hours to achieve these results.

Fidanova and Durchova [54] proposed a Monte Carlo ACO-based algorithm for solving
the static independent batch job scheduling problem in grid computing systems in terms of
minimising the makespan. A new heuristic function called free(r) was introduced, which
indicates the time by which the resource r will be free. This heuristic provides information
about which resources are released earlier. Obviously, a resource will be more desirable if
it is free earlier. In this algorithm, the objective function used by authors was the maximum
value of the free function which has been recorded during solution construction. Three
simple grid scenarios were used to evaluate the proposed ACO-based scheduler, each of
which consists of 20 jobs and 5 resources. One ant only was used by the authors and the
ACO performance was compared with the on-line heuristic in which the former method
outperformed the later in all three cases.

An ACO-based scheduler for dynamic job scheduling in grid computing was proposed
by Lorpunmanee et al. [94]. Minimization of the total job waiting time was the main
goal of the proposed scheduler which consists of four steps. The proposed scheduler used
local update and global update rules to update the pheromone value on each resource. In
addition, the scheduler used the Completion Time (CT), which is the time a machine needs
to finish executing a job measured as clock time. The authors defined a grid environment
in which jobs arrive to the system at different times, the availability of resources is
regularly changing, one job could be processed by each processor per unit time and jobs
are independent of each other. In the study, the performance of ACO based scheduler
was compared with First Come First Serve (FCFS), Earliest Due Date (EDD) and Earliest
Release Date techniques (ERD). A discrete-event grid simulator, called GridSim toolkit
[22], was used to develop the proposed method in which problem instances of up to 3000
jobs and 20 resources were generated to evaluate the performance of their proposed meta-
heuristic. The experimental results showed that ACO achieved the best results compared
to the other approaches explored in the study.

3.6 Methods for job scheduling in grid computing 46

Kousalya and Balasubramanie [89] studied the hybridization of ACO meta-heuristic
with five new local search methods in a loosely coupled fashion for solving the static
independent batch job scheduling problem in grid computing in terms of minimising the
makespan. That is, the output of ACO is further improved by one of the five local search
methods, resulting in five new loosely coupled hybrid meta-heuristics. The move and swap
concepts were used to design these five local search methods. The authors used the standard
benchmark problem instances of Braun et al. [19] to carry a number of experiments to
evaluate the performance of the suggested methods. The experimental results illustrated
that hybridizing ACO with local search methods provides better schedules than the stand-
alone ACO. Moreover, the reported results encouraged the authors to suggest studying the
behaviour of these hybrid methods in the dynamic mode.

A more effective ACO-based grid scheduling algorithm was introduced by Mathiyala-
gan et al. [105]. The developed scheduler has modified the original ACO algorithm
presented in [38] by changing the basic pheromone updating rule. The GridSim toolkit
[22], was used to develop the proposed method in which problem instances of up to 100
independent jobs were generated to evaluate the performance of the proposed modified
ACO. The experimental results showed that this modification increased efficiently the
algorithm performance in terms of makespan compared to the original ACO.

MadadyarAdeh and Bagherzadeh [96] approached the static independent batch job
scheduling problem in grid computing as a single-objective optimisation problem that
minimises the makespan. To tackle this problem, an ACO-based scheduler that uses the
heuristic function of Fidanova and Durchova [54] was developed. However, the authors
proposed a modified probability rule, in which the standard deviation of the jobs is included.
This rule is required to select the next job-resource mapping. To evaluate the performance
of the proposed algorithm, four small cases, each of which has 32 jobs and 4 resources,
were considered. The reported results showed that this modification allowed the proposed
algorithm to improve its performance in terms of makespan compared to the original ACO.

Ku-Mahamud et al. [90] proposed a modified ACO-based meta-heuristic for solving
the static independent batch job scheduling problem in grid computing systems in terms of
minimising the makespan and utilization. The new ACO-based scheduler used a modified
procedure to update pheromone levels that is applied in two cases. The first case includes
local update when any improvements occur (on the iteration level), while the second
case involves applying pheromone updating globally using the best solution found so far.
Simple grid examples of up to 100 jobs and 7 resources were used to evaluate the proposed
modified ACO-based scheduler. A population of 7 ants only was used by the authors and
the ACO performance was compared with the non-modified ACO in which the former
method outperformed the later in most of the cases.

Christina and Miriam [28] suggested a multi-objective ACO-based meta-heuristic
algorithm, called MCACO, for solving the static independent batch job scheduling problem

3.6 Methods for job scheduling in grid computing 47

in grid computing in terms of minimising two objectives, namely the makespan and
flowtime. For each job and resource, the authors used an indicator, called PV , to represent
them, which combines several features, such as the job size, resource speed, current
resource load, the expected completion time of a job on a resource and the available
bandwidth between a job and a resource. Therefore, a two-dimensional array, PV [j,r], is
first constructed, then the highest PV [x,y] value is identified. Scheduling is then performed
by allocating the job x to the resource y. The allocation step is followed by a pheromone
update to save information about the current status of the resources for the next iterations.
The GridSim toolkit [22], was used to develop the proposed method in which small problem
instances of up to 30 independent jobs and 40 resources were generated to evaluate the
performance of the proposed modified ACO. The experimental results showed that the
MCACO algorithm outperformed the original ACO in terms of makespan and flowtime in
all of the cases.

A loosely coupled hybrid algorithm, which combines ACO and GA, i.e. ACO+GA, was
suggested by Alobaedy and Ku-Mahamud [10] as a promising algorithm to minimise the
makespan and flowtime in computational grids. ACO starts first and the output of it will be
used by GA which further improves it. The ETC model was used to evaluate the proposed
method by generating a special 512x16 dataset using the range-based method proposed
in [8]. The proposed hybrid method outperformed the other stand-alone meta-heuristics
explored in the work. However, their dataset and implementation are not available to make
a fair comparison.

In a recent survey, Oshin and Chhabra [123] reviewed the use of ACO for job scheduling
in grid computing. Different parameters were used in the survey to present an analytical
study of variants of ACO-based schedulers for static and dynamic independent batch job
scheduling in grid computing systems. Based on the reviewed papers described in the
literature, the authors drawn several conclusions. One conclusion includes the use of ACO
for job scheduling in grid computing in which they stated that ACO meta-heuristic is one
of the best candidates to address this problem. However, the performance of the existing
ACO-based schedulers faced one problem, as the authors observed, which is the time
ACO-based algorithms take to start constructing good schedules as the pheromone trail is
accumulated after performing a few iterations to identify the best job-resource mappings.
One way to resolve this problem, as the authors suggested, is to hybridize ACO with other
meta-heuristics.

3.6.2.2 GA for job scheduling in grid computing

ACO is not the only approach; the literature includes many other meta-heuristic algorithms
such as the GA. A GA is a meta-heuristic search method that mimics the evolution of living

3.6 Methods for job scheduling in grid computing 48

beings. It has been successfully used for solving many NP-hard optimisation problems
closely related to the job scheduling in heterogeneous environments and grid computing.

The primary work presented by Tirat-Gefen and Parker [154] suggested a tool, called
MEGA, to design heterogeneous multiprocessor systems and minimise the processing time
of a given set of dependent jobs that are represented using a Directed Acyclic Graph (DAG).
A component, called MILP (Mixed Integer Linear Programming), in the mathematical
model of a tool set, called SOS (Synthesis of Multiprocessors Systems), was used to
develop MEGA. In the proposed tool, a GA was used together with a fast linear-time
algorithm to check that the achieved job schedule satisfies the timing constraints. However,
in heterogeneous environments such as grid computing systems, makespan is the most
common performance-related metric used since it represents the productivity (throughput)
in such systems [65].

Shroff et al. [140] proposed a strongly coupled hybrid meta-heuristic, called GSA
(Genetic Simulated Annealing) algorithm, which combines two meta-heuristic methods,
namely GA and SA, to solve the problem of dependent job scheduling in heterogeneous
environments in terms of minimising makespan. In the proposed method, the usual
genetic operators (selection, crossover and mutation) are applied. However, GSA used the
temperature cooling concept of SA to perform reproduction. The main reason behind this,
as the authors claimed, is to maintain diversity in the population. The performance of GSA
was evaluated using randomly generated datasets which consists of 10-100 jobs and 5-35
resources. Although the datasets that were used are small, the reported results show that
GSA is able to find good quality solutions in a reasonable time.

Wang et al. [156] considered the problem of dependent job scheduling in hetero-
geneous environments to which a new GA approach was proposed that minimises the
makespan. Two important aspects can be marked in their work. The first aspect includes
the use of estimated completion time to verify the performance of the proposed approach.
Secondly, an ad hoc heuristic, called baseline, was used to seed the initial population of
the proposed GA. These two aspects were adopted by many subsequent works resulting in
various successful meta-heuristic schedulers which were used to tackle diverse scheduling
problems. Along with this seeded solution, a non-clustering rule (described in Section
2.5.2), which prevents the generation of identical individuals, and hence, avoid trapping the
GA in a premature convergence, was used to generate the remaining solutions of the initial
population. Furthermore, several genetic operators were used to validate the proposed
GA-based scheduler. To evaluate the performance of the proposed approach, the proposed
method was compared against several heuristic algorithms using datasets that contain up
to 100 jobs and 20 resources. The experimental results showed that the proposed GA
achieved better solutions than the other heuristic algorithms used in the work.

Abraham et al. [1] suggested three nature-inspired meta-heuristic algorithms, which
are GA, SA and TS, for static independent job scheduling in grid computing in terms

3.6 Methods for job scheduling in grid computing 49

of minimising two objectives, namely the makespan and flowtime. Furthermore, the
authors used the above algorithms to suggest two hybrid algorithms. The first hybrid
algorithm, called GA-SA, combines GA and SA in a strongly coupled fashion in which
the LJFR–SJFR heuristic was used along with the random method to generate the initial
population, then instead of applying the normal genetic operators, GA-SA applies the
cooling and reheating concepts of SA to assign jobs to resources. This step is followed by a
feasibility check procedure in terms of resource availability and user specified requirements.
The second hybrid algorithm, called GA-TS, combines GA and TS in a strongly coupled
fashion in which TS was used as a mutation operator. Although this work was one of the
pioneering in terms of proposing hybrid meta-heuristic algorithms to job scheduling in
grid computing, the experimental results that were reported include the application of GA
only to a small dataset that consists of 13 jobs and 3 resources, i.e., the authors did not test
the performance of SA, TS, GA-SA and GA-TS.

Braun et al. [19] extended the works of Wang et al. [156] and Shroff et al. [140] when
they adopted their GA-based approaches, together with other nine heuristics described
in the literature, to solve the static independent job scheduling problem in heterogeneous
environments (in terms of minimising the makespan). The min-min heuristic [77] was
used to seed one individual of the initial generation that consists of 200 solutions, while the
remaining 199 individuals were generated randomly. To evaluate the performance of the
adopted approaches, the ETC model was used in which 100 instances were generated each
of which has 12 cases. The first instance, which is known as the Braun et al. dataset, has
become a de facto standard benchmark to evaluate the performance of various scheduling
approaches in heterogeneous environments and grid systems. Their experiments show that
the adopted GA achieves better results than the other 10 algorithms explored in the work.

On the other hand, Theys et al. [152] extended the works of Wang et al. [156] and
Braun et al. [19] when they applied the eleven approaches described in [19] to tackle
three different types of scheduling problems in heterogeneous environments. The first
type included the static scheduling of dependent jobs. The second version considered
the dynamic scheduling of dependent jobs in which the rescheduling technique was used
to introduce dynamism. The third case examined the static scheduling of independent
jobs. For all scheduling cases, their experiments show that the adopted GA achieves better
results than the other 10 algorithms explored in the work, suggesting that the GA can be
used successfully to tackle different types of scheduling problems.

A strongly coupled meta-heuristic which combines a GA with a heuristic method,
called list scheduling, was proposed by Grajcar [67] to solve a version of scheduling in
which a partially ordered set of jobs are to be mapped to a heterogeneous multiprocessor
system aiming at minimising the makespan as well as satisfying some resource usage
constraints and data dependencies. After applying the usual genetic operators, the proposed
method calls the list scheduling heuristic to evaluate the new offspring then it applies a

3.6 Methods for job scheduling in grid computing 50

steady-state reproduction to generate the new population. To verify the performance of
the hybrid GA, the author compared the performance of the proposed hybrid GA with
some exact methods described in the literature using several instances with up to 96 jobs.
The experiments show that the strongly coupled hybrid GA obtained the optimal solution
for problem instances in significant reduced execution times compared to the selected
exact methods. Subsequently, Grajcar [68] investigated the use of the strongly coupled GA
scheduler for dependent job scheduling in heterogeneous computing systems. The author
highlighted a major weakness in the proposed hybrid algorithm that comes from the lack
of information about jobs which are not scheduled yet. Three approaches were presented
to deal with this weakness. However, the proposed strongly coupled hybrid meta-heuristic
failed to find the optimal solutions in two cases, suggesting a further generalization of the
hybrid algorithm is required to be explored.

Zomaya and Teh [179] considered the dynamic variant of job scheduling problem in
parallel and distributed computing systems in which several objectives are optimized at the
same time. These objectives include minimising the makespan, maximizing the resource
utilization and maximizing the load-balancing. To tackle this problem, a centralized
GA-based scheduler was proposed. The proposed algorithm used a two-dimensional
direct representation to encode the problem. A technique, called sliding-window, was
used to generate the initial population. The centralized GA adopted the following genetic
operators: roulette wheel selection, cycle crossover and swap mutation. The suggested GA
was allowed to run for k generations, k=10. Different problem instances of up to 1000
jobs and 50 resources were used to run several experiments. Two methods were used to
study the performance of the proposed method, namely the First Fit heuristic and a random
assignment scheme. The experimental analysis showed that GA provided better schedules
than the other methods in terms of makespan and resource utilization. As the number
of jobs increases, an almost full resource utilization was achieved by the the proposed
GA-based scheduler. On the other hand, as the number of resources increases, better
makespan values and low average resource utilization were reported.

Page and Naughton [126] extended the work of Zomaya and Teh [179] by developing
a dynamic GA-based scheduler for heterogeneous computing environments that considers
variable system resources. The dynamic GA used an initial population of 20 individuals
which was generated using the list scheduling heuristic. The following genetic operators
were used: roulette wheel selection, cycle crossover and two types of mutation operators,
namely random swap and re-balancing. The suggested GA was allowed to run for 1000
generations. A randomly generated dataset that consists of 10000 jobs and 50 resources
was used to run several experiments. The performance of the proposed algorithm was
compared with five selected heuristics described in the literature and with the GA of
Zomaya and Teh [179]. The reported results showed that the proposed GA consistently
outperformed the other methods explored in the work.

3.6 Methods for job scheduling in grid computing 51

A hybrid algorithm for the dynamic scheduling of some directed graph-based work-
flows in grid computing systems was proposed by Prodan and Fahringer [129] as a part
of the ASKALON project. The proposed hybrid algorithm was based on combining a
GA with some classical static DAGs scheduling heuristic techniques that were iteratively
invoked during the runtime. These classical techniques were generated using well-defined
job migration and cycle elimination methods. An experiment management tool especially
designed to study the performance of parallel applications, called ZENTURIO [128], was
used to implement the proposed hybrid method. The authors successfully implemented a
real-world application to which they reported their experimental results which showed that
the hybrid GA was quite effective in obtaining good static and dynamic schedules within
large complex heterogeneous environments.

Sugavanam et al. [149] considered a constrained static job scheduling problem in
heterogeneous environments in which the robustness of a schedule is to be maximized,
i.e, jobs are statically allocated to resources and the makespan of their schedule should
not exceed a predefined limit. Seven methods were proposed, which include heuristic and
meta-heuristic algorithms. The heuristic methods were Max-Max, GIM (Greedy Iterative
Maximization), OIM (Overhead Iterative Maximization), while the meta-heuristics were
GENITOR, MA (Memetic Algorithm), ACO, and HEA (Hereboy Evolutionary Algorithm).
GENITOR [158] is a variation of the GA. The Max-Max heuristic was used to seed one
individual to the initial population that consists of 200 individuals; the remaining 199 were
generated randomly. To provide a specific selective pressure, a special function, called
the linear bias function, was used to select parents. The other genetic operators include:
one point crossover and random move mutation. A maximum number of generation of
250000 was used as a stopping condition. On the other hand, the proposed MA combined
GENITOR with a local search method (hill climbing) in a strongly coupled fashion. MA
follows the same steps of GENITOR with the exception that the hill climbing method
is applied at three places of the algorithm. These places are: after generating the initial
population, after performing crossover and after performing mutation. Nonetheless, HEA
is a single-individual fast evolutionary algorithm which combines the features of GA and
SA. Since it works with only one individual, HEA applies mutation only, i.e, it does not
perform any crossover and selection operations. The proposed ACO was adopted from
Ritchie et al. [135] described in the previous subsection. A dataset of 1024 jobs and 8
resources was used to evaluate the seven methods. The reported results showed that the
proposed OIM heuristic consistently outperformed the other methods explored in the work.
GIM, GENITOR and MA achieved results that are within 2 percent of OIM, however,
more times are required to obtain their results. Among all, HEA performed the worst.

Subsequently, Sugavanam et al. [148] extended their previous work by adding a second
variation of the scheduling problem that involves the selection (purchasing) of a fixed set
of resources, within a given budget constraint, to construct a heterogeneous computing

3.6 Methods for job scheduling in grid computing 52

system. The authors suggested a new heuristic, called CPI-SIM (Cost Performance Index
Sum Iterative Maximization), which was used along with the other methods described
in their previous work (with the exception of OIM and ACO) to tackle the problem. A
dataset of 1024 jobs and 33 resources was used to evaluate the six methods. The reported
results showed that the proposed GENITOR heuristic consistently outperformed the other
methods explored in the work. CPI-SIM and GIM achieved results that are within 2 percent
of GENITOR, using almost the same runtime. Among all, HEA and MA performed the
worst.

Carretero and Xhafa [24] explored the use of two GA variants for developing an
efficient multi-objective scheduler which assigns jobs in static and dynamic large scale
grid applications in terms of minimising the makespan and flowtime. The first variant was
a hierarchical GA in which the two objectives are optimized by their importance, while
the second type was a simultaneous GA in which the makespan and flowtime objectives
are optimized simultaneously. Two types of encoding schemes were used, namely the
direct and permutation-based encodings. Two ad hoc heuristics, which are the MCT [100]
and the LJFR−SJFR [1], were employed along with the random approach to seed the
initial generation in order to introduce diversity. The main reason behind selecting the
LJFR−SJFR heuristic was its capability to simultaneously minimise both makespan and
flowtime (the makespan is minimised through the LJFR, while the flowtime is minimised
by the SJFR). Several genetic operators for both encodings were carefully examined and
tuned aiming at identifying which of them best suits the problem. To simulate realistic
grid computing systems, a simple grid simulator was developed by the authors which is
able to generate large scale problem instances to be used in the evaluation of the proposed
GA-based schedulers. As a stooping condition, the authors used a fixed time of 90 s. The
reported results are twofold. The first part provided the results of applying the proposed
GAs to the static dataset of Braun et al. [19], to which the simultaneous GA outperformed
the results achieved by Braun et al. [19] in 11 out of 12 instances. The second part included
the results of applying the proposed methods to the dynamic version of the problem in
which the rescheduling technique was used to introduce dynamism. The experimental
results showed that the Steady-State simultaneous GA obtained the best results in terms
of makespan and flowtime, suggesting the GA as powerful meta-heuristic scheduler for
grid computing systems. Later, Carretero and Xhafa [25] improved their work by using
a weighted sum function that combines the makespan and flowtime objectives. After
performing a preliminary tuning process, more priority was given to the makespan over
the flowtime. The reported results include applying the proposed GAs to the static dataset
of Braun et al. [19] only, to which the Steady-State simultaneous GA outperformed the
results achieved by Braun et al. [19] and the author’s previous work in 11 out of 12
instances. These two works were extended later by Xhafa and Carretero [159] in which a
discrete event-based simulator, called HyperSim-G [27], designed to study the behaviour

3.6 Methods for job scheduling in grid computing 53

of different algorithms in grid computing systems, was used to test the performance of the
above methods in static and dynamic versions of the problem.

The use of a GA variant, called Struggle GA, for solving static independent job
scheduling in computational grids in terms of minimising the makespan was investigated
by Xhafa and Duran [166]. The Struggle GA, which was proposed by Grüninger and
Wallace [70], is a Steady-State GA that has a special adaptive replacement operator.
Unlike the Steady-State GA which replaces the worst solution, an old solution in the
Struggle GA is replaced by the most similar solution to it that has a better fitness score.
The goal of applying such a replacement strategy is to maintain certain diversity in
the population. However, it requires high computational power and time as it includes
additional comparisons to determine similarities between the individuals. Therefore, the
main contribution of Xhafa and Duran [166] is to introduce an efficient replacement
operator that is linear rather than exponential in terms of time complexity. To achieve this
goal, the authors suggested three hash-based replacement operators and they referred to
them as a key, b key and c key. The other genetic operators were exactly the same of those
used in [24] and [25]. The reported results include applying the proposed Struggle GAs to
the static dataset of Braun et al. to which the c key hash-based replacement Struggle GA
outperformed the results achieved by the other hash-based keys replacement operators in
10 out of 12 instances.

Xhafa et al. [165] exploited the use of two hybrid cellular MAs (cMAs), cMA is a type
of MA that uses a structured population, for solving the multi-objective static independent
job scheduling problem in grid systems in terms of minimising the makespan and flowtime.
The first hybrid method, called cMA + LMCTS, combines cMA and a local search method,
called LMCTS (Local Minimum Completion Time Swap), in a strongly coupled fashion,
while the second hybrid method, called cMA + LTH, integrates cMA and a local search
method, called LTH (Local Tabu Hop), in a strongly coupled fashion as well. The call
of the local search occurs after applying crossover and mutation operators. If there is an
improvement, the old solution is replaced by the new one. It is worth to mention that
the authors used a version of cMA that performs crossover and mutation separately. The
LJFR−SJFR heuristic was used along with the random method to generate the initial
population. Six different selection operators were examined and the tuning process showed
that N-tournament provided the best results. Furthermore, several crossover operators were
also studied, in which the one-point crossover performed better than the other operators.
Moreover, four different mutation operators were tested, namely move, swap, move-swap,
and re-balance, among which the re-balance mutation obtained the best results. The
classical static dataset of Braun et al. [19] was used to verify the performance of the
two proposed hybrid cMA-based schedulers. The results of the proposed methods were
compared with three GA-based schedulers, namely the GAs of Braun et al. [19], Carretero
and Xhafa [24] and Xhafa and Duran [166], respectively. The reported results showed that

3.6 Methods for job scheduling in grid computing 54

the strongly coupled hybrid cMA + LTH meta-heuristic outperformed the other methods
explored in the study in terms of minimising the makespan, while the other strongly coupled
hybrid cMA + LMCTS meta-heuristic obtained the best results in terms of flowtime. The
achieved results motivated the authors to suggest exploring the application of the proposed
methods for the dynamic version of the problem. Moreover, these results highlighted the
robustness of strongly coupled hybrid meta-heuristic methods for job scheduling problems
in grid computing systems. Later, Xhafa [160] and Xhafa et al. [168] extended this work
by suggesting more local search methods (16 methods) and exploring the resulted strongly
hybrid MA meta-heuristic algorithms for the dynamic version of the problem to which the
author used the HyperSim-G [27] grid simulator to test the performance of the proposed
methods. Among the 16 methods and for the static and dynamic versions of the problem,
MA + TS provided the best results in terms of minimising the makespan.

Two hybrid meta-heuristics were proposed by Xhafa et al. in [167] and [169] to address
the task scheduling problem in computational grids. The former method combines a GA
and TS in a strongly coupled fashion in which the GA is the main algorithm which calls
TS during its execution to further enhance the quality of the solutions in the population.
On the other hand, the latter method combines the same methods in a loosely coupled
fashion, that is, the GA is executed first and its final solution is further improved by TS.
The performance of both proposals was evaluated using the HyperSim-G grid simulator
[27]. However, the first work addressed the static version of the problem, while the second
tackled the static and dynamic versions. Later, Xhafa et al. [170] compared between the
performance of them. The experimental results showed that the strongly coupled algorithm
outperformed the other methods explored in the study for the small and medium sizes
while the loosely coupled obtained the best makespan results for the large size problem
instances. In general, the hybrid meta-heuristics achieved better makespan results than the
stand-alone methods investigated in the study.

Falzon and Li [52] considered the problem of dependent job scheduling in grid comput-
ing environments to which an enhanced GA was proposed that minimises the makespan.
Two important aspects can be marked in their work. The first aspect includes the employ-
ment of a heuristic method as a mutation operator, in which the authors used a heuristic
method called TMWD (Task Matching with Data) described in [53]. Secondly, the authors
evaluated the effects of seeding the initial population of the proposed GA with solutions
from heuristics, in which they used the enhanced heuristic methods proposed in [53].
These two aspects were adopted by many subsequent works resulting in various successful
meta-heuristic schedulers which were used to tackle diverse scheduling problems. The
DAG data structure was used to model job workflows. To represent a solution, the authors
used the encoding method proposed by Wang et al. [156]. Several selection techniques
were examined, including the Elitism, Rank-based and Stochastic Universal Sampling.
Additionally, various crossover operators were tested. To evaluate the performance of

3.6 Methods for job scheduling in grid computing 55

the proposed methods, a dataset that consists of 100 schedules with up to 500 jobs, was
generated using a simulation tool, called DAG Simulator, described in [51] [53].

A hybrid multi-objective meta-heuristic was proposed by Kardani-Moghaddam et
al. [83] that combines a GA and VNS in a strongly coupled fashion to solve the static
independent job scheduling in market-based grids in terms of minimising the cost and
makespan. The GA worked as a main algorithm which during its execution calls VNS to
further improve the quality of the individuals. After performing the usual genetic operators,
the VNS meta-heuristic is applied on some individuals which are selected according to a
specific probability. The reason behind not applying the VNS procedure to all individuals,
as the authors explained, was due to the high computational cost, recalling that a population
of 60 individuals was used. Two variants of min-min and Sufferage ad hoc heuristics,
called MinCTT and SuffCTT described in [63], were used to generate the initial population
along with the random method. The direct representation was used to encode the problem
and the wighted sum function was used to combine the two objectives. For selection,
crossover and mutation, the authors used Roulette Wheel, two-points and random move
operators, respectively. For VNS, only one nighbourhood structure was used that is based
on the concept of random moving in which the job with the highest execution cost is
first identified then the resource to which it is assigned is replaced with another randomly
selected resource. Moreover, the proposed VNS used a local search procedure that sorts
the resources according to their local makespans, then the resources of some selected jobs
with higher execution costs are replaced with resources that have low local makespans. To
evaluate the performance of the proposed hybrid method, a random dataset was generated
that has 500 jobs and 10 resources. The results obtained by GA−VNS were compared
with the output of some heuristics described in [63]. The reported results showed that
the strongly coupled hybrid GA−VNS achieved the best results compared to the other
methods explored in the study.

Kolodziej et al. [87] approached the independent batch job scheduling problem in grid
computing as a multi-objective optimisation problem that minimises the makespan and
energy consumption. To reduce the power energy consumed by the resources, a mechanism
called DVS (Dynamic Voltage Scaling) was used. To tackle this problem, two GA-based
schedulers that use elitist and struggle replacement techniques were developed. To evaluate
the performance of the proposed algorithms, four cases with different sizes in static and
dynamic modes were considered. The reported results showed that a fair reduction in the
energy usage and makespan was achieved by the suggested method.

Kolodziej et al. [86] developed a scheduling model which integrates the classical
scheduling performance metrics, namely the makespan and flowtime, with job security
requirements. Eight GA-based schedulers were proposed to tackle this multi-objective
scheduling problem in static and dynamic modes. Two grid computing cases were con-
sidered, namely secure and risky, in which the HyperSim-G [27] grid simulator were

3.6 Methods for job scheduling in grid computing 56

used to implement them and to generate small- to large-scale problem instances. Two
heuristics, namely MCT and LJFR–SJFR, were used along with the random method to
generate the initial population. For selection, crossover, mutation and replacement, the
proposed methods used Linear Ranking, CX and PMX, Rebalancing and Steady-State,
respectively. The proposed meta-heuristics are experimentally evaluated in static and dy-
namic grid scenarios by using a Grid simulator. A fast reduction in makespan and flowtime
values, especially in the dynamic mode, were reported that confirms the usefulness of the
suggested meta-heuristics in dynamic job scheduling. Later, Kolodziej et al. [88] extended
their previous works by combing the classical scheduling performance metrics, namely
the makespan and flowtime, with energy and risk requirements. Furthermore, the authors
developed multi-population GA-based schedulers. Moreover, a two-model grid toolkit,
called Sim-G-Batch, was developed that simulates the infrastructure of a grid computing
in which different job scheduling scenarios can be performed.

A hybrid meta-heuristics, called HGAPSO, was proposed by Zahedani and Dastghaiby-
fard [177] to address the static independent batch job scheduling problem in computational
grids in terms of minimising the makespan and flowtime. The proposed method combines
the GA of Carretero et al. [25] and the Discrete PSO (DPSO) of Izakian et al. [80] in a
strongly coupled fashion, in which the GA first performs the normal selection, crossover,
and mutation operators, then DPSO is applied to further improve the quality of the solutions
in the population. The classical static dataset of Braun et al. [19] was used to test the
performance of HGAPSO and the experimental results showed that it outperformed the
results achieved by the stand-alone methods investigated in the study, namely min-min,
min-max and DPSO approaches, for most of the instances.

Oshin and Bhatt [122] proposed a loosely coupled hybrid algorithm that combines
PSO, Cuckoo Search (CS) and GA for solving the static independent batch job scheduling
in grid computing in terms of minimising the makespan and flowtime. A random initial
population is first generated, then PSO starts mapping the received jobs to the available
resources and constructs schedules. CS improves these schedules using the Levy flight
concept and pass the improved schedules to the GA which further enhances it. To study
the performance of the proposed hybrid method, the authors generated a simple dataset
with up to 500 jobs and 50 resources. The results achieved by the proposed approach were
compared with the results obtained by PSO, FCFS, SJFS and LJFS/FF methods, in which
the proposed method outperformed them in all of the cases tested.

3.6.2.3 Other meta-heuristics for job scheduling in grid computing

Besides ACO and GA, the literature includes other meta-heuristic methods such as VNS,
TS, CHC, PSO, DE and SA. VNS is based on the systematic change of the neighbourhood
during the search process. The traditional VNS starts with an initial solution, then explores

3.6 Methods for job scheduling in grid computing 57

its neighbourhoods and moves to a new one if an improvement is found. The exploration
step is followed by a local search in order to move from solutions in the neighbourhood to
a local optimum.

Davidovic et al. [31] developed two meta-heuristic algorithms, namely VNS and TS,
for solving the static dependent multiprocessor scheduling problem in terms of minimising
the makespan. The problem was represented using a DAG data structure. The proposed
approaches used two ad hoc heuristics, which are CP and LS, along with the random
method to generate the initial solution. Additionally, a simple swap neighbourhood
structure was used, that randomly moves a job from one resource to another. A local search
that applies all feasible neighbourhood structures and moves to a new neighbour if an
improvement occurs was selected. A random dataset that contains up to 300 jobs and 8
processors was generated to run several experiments. The performance of the developed
algorithms was compared with the CP and LS heuristics, the Multi-start Local Search
(MLS) and a modified version of Problem Space Genetic Algorithm (PSGA) described
in [5]. The experimental results showed that VNS outperforms them in all of the cases
investigated.

A Multi-objective Variable Neighbourhood Search (MVNS) algorithm was proposed
by Selvi and Manimegalai [137] to solve the static independent job scheduling problem
in grid computing in terms of minimising both makespan and flowtime. The authors
introduced five different neighbourhood structures and the random Problem Aware Lo-
cal Search Heuristic (PALS) was used. The performance of the proposed method was
compared with some of the methods discussed in the literature and the results showed
that MVNS outperformed all of them in all of the cases tested. The work introduced by
Selvi and Manimegalai [138] studied the use of a Two-Phase Variable Neighbourhood
Search (TPVNS) for job scheduling on heterogeneous computing and grid systems. Six
different neighbourhood structures were introduced and random PALS was also used. The
performance of the proposed method was evaluated against a number of methods discussed
in the literature and the results showed that TPVNS outperformed them in most of the
cases investigated.

Xhafa et al. [171] proposed a new TS meta-heuristic for solving the problem of
independent batch job scheduling in static and dynamic grid computing systems in terms
of minimising the makespan and flowtime. The authors used the direct representation to
encode the problem and a weighted sum function to combine the two objectives. The initial
solution was generated using the min-min [77] ad hoc heuristic. Two types of movements
were used, namely swap and transfer, and the different neighbours were explored according
the load of resources in which jobs are moved from one high- to low-loaded resources to
maintain a load balancing. The classical static dataset of Braun et al. was used to test the
performance of the proposed TS and the experimental results showed that TS outperformed
the results achieved by ACO+TS of Ritchie et al. [135] and cMA of Xhafa et al. for most

3.6 Methods for job scheduling in grid computing 58

of the instances. Additionally, the authors evaluated the proposed TS using larger static
problem instances in which the HyperSim-G grid simulator [27] was used to generate them
and the experimental results showed that the proposed TS obtained the best results in terms
of makespan and flowtime. Furthermore, the authors applied the proposed method to the
dynamic version of the problem in which the rescheduling technique was used to introduce
dynamism. Again, the proposed TS clearly outperformed the other algorithms explored in
the study.

Nesmachnow et al. [117] considered a static independent batch job scheduling problem
in heterogeneous environments in which the makespan of a schedule is to be minimised.
The authors used an evolutionary algorithm, called parallel Cross generational elitist
selection Heterogeneous recombination, and Cataclysmic mutation (pCHC) [46], to solve
the scheduling problem in which a general-purpose tool for combinatorial optimisation
problems, called MALLBA, was used to develop it. pCHC is a meta-heuristic method that
could be considered as a variant of GA. It maintains diversity in the population through the
use of an elitist selection operator. Additionally, a special reproducing operator is employed
that applies a non-cluster role which guarantees producing new diverse individuals. pCHC
uses the HUX operator to perform the crossover operation. Unlike a GA, mutation is not
performed in pCHC. If a premature convergence is detected, a re-initialization procedure
is performed in which the best solution achieved so far is used as a template for generating
a new population. The proposed pCHC used the permutation-based representation to
encode the problem. Two ad hoc heuristics, namely min-min and Sufferage, were used
along with the random method to generate the initial population of pCHC. The authors
used a cluster with four high speed servers to run their experiments. The classical static
dataset of Braun et al. was used to test the performance of pCHC and the experimental
results showed that it outperformed the results achieved by the other meta-heuristics [19]
[135] [160] [165] [171] described in the literature in most of the instances. Moreover, the
authors reviewed the existing benchmarks in the literature. They came to the conclusion
that none of the available datasets can actually simulate the current characteristics of grid
computing systems in terms of the dataset size. Therefore, they proposed a new benchmark,
known as the Nesmachnow et al. dataset, to cover larger cases. Each case consists of 24
instances which were generated using the range-based method described in Ali et al. [8].
The proposed pCHC was also applied to the new benchmark and its results were compared
with some heuristics from the bibliography in which it outperformed all of them. Later,
Nesmachnow et al. [118] extended their work by proposing a new strongly coupled hybrid
meta-heuristic, called micro pCHC, that combines pCHC with a local search procedure,
called Problem Aware Local Search (PALS) that will be described in Chapter 4. Using
PALS allowed the new hybrid method to achieve better results than those obtained by the
stand-alone pCHC.

3.6 Methods for job scheduling in grid computing 59

Several other meta-heuristic methods are also available in the literature. A fuzzy PSO
meta-heuristic algorithm for task scheduling on computational grid was suggested by Liu
et al. [93]. Their work focused on the minimisation of the makespan time. The authors
used small- to large-scale resource-job pair problems to test the associated performance.
Their method was compared with a GA and a SA approaches. The results showed that
the fuzzy PSO scheduler has the ability to find faster and feasible solutions over the GA
and SA. A differential evolution (DE) algorithm was developed by Selvi et al. [139] to
generate schedules which efficiently utilise available resources and complete the jobs in
the minimum time. The results have been compared with findings in [93] and it has been
found that PSO outperforms DE in three instances. However, the authors in [139] claimed
that the solutions found by DE show better resource utilisation.

3.6.2.4 Summary of meta-heuristics for job scheduling in grid computing

The problem of job scheduling in grid computing has been addressed using different
approaches such as simple queuing algorithms, deterministic heuristic algorithms and
meta-heuristic algorithms. However, to effectively deal with its complexity, meta-heuristic
algorithms are preferred [85]. Meta-heuristic algorithms are well-known approaches
which have been applied effectively to a wide range of NP-hard problems. In fact, these
algorithms are considered the best candidate in practice to cope with the complexity of
job scheduling in a computational grid, and accordingly several algorithms have been
suggested [124].

One of these meta-heuristics is ACO, which has been shown to work well for various
combinatorial static and dynamic problems such as railway junction scheduling [42] [43],
data streams clustering [49] [50], TSP [111] [112] and vehicle routing problem [107] [108],
which are closely related to the job scheduling problem in the heterogeneous environments
such as grid computing. Based on the reviewed papers described in the literature, which are
summarized in Table 3.2, several observations can be highlighted. One observation includes
the use of ACO for job scheduling in grid computing in which the ACO meta-heuristic
can be considered one of the best candidates to address this problem. The available works
focused on developing new pheromone updating rules and/or on how to select the next
job-resource pair rules. However, it can be seen that the performance of the existing
ACO-based schedulers faced one problem which is the time ACO-based algorithms take
before starting constructing good schedules as the pheromone trail is accumulated after
performing a few iterations to identify the best job-resource mappings. This problem has
been addressed in several ways.

Ritchie et al. [135] suggested an initial update of pheromone trials to avoid these
iterations and speed up the convergence rate. To perform this update, they used the solution
generated by the min-min heuristic in which the pheromone levels of the resources used

3.6 Methods for job scheduling in grid computing 60

Table 3.2 Summary of ACO-based approaches for job scheduling problem in grid comput-
ing.

Author (s) Algorithm (s) Initialization Hybridization type Scheduling type

Ritchie et al. (2004) ACO + TS min-min loosely coupled static independent

Fidanova and Durchova (2006) ACO random stand-alone static independent

Lorpunmanee et al. (2007) ACO random stand-alone dynamic independent

Kousalya and Balasubramanie (2009) ACO + 5 heuristics random loosely coupled static independent

Mathiyalagan et al. (2010) ACO random stand-alone static independent

MadadyarAdeh and Bagherzadeh (2011) ACO random stand-alone static independent

Ku-Mahamud et al. (2012) ACO random stand-alone static independent

Christina and Miriam (2012) ACO random stand-alone static independent

Alobaedy and Ku-Mahamud (2014) ACO + GA random loosely coupled static independent

by the achieved schedule are increased. However, their proposed ACO approach took
3.5 hours to achieve the reported results. On the other hand, another solution to the slow
convergence problem of ACO-based algorithms is to decrease the number of ants in the
colony. Mavrovouniotis et al. in references [109] [110] suggested the reduction of the total
of number of ants to 2 to allow the algorithm to perform more iterations and to reduce
the time complexity. Fidanova and Durchova [54] used one ant, while Ku-Mahamud
et al. [90] used a population of 7 ants. Additionally, the slow convergence problem of
ACO-based algorithms can be solved, as suggested in a recent review on the use of ACO
for job scheduling problem in grid computing conducted by Oshin and Chhabra [123],
by hybridizing ACO with other meta-heuristics. The literature showed that for several
NP-hard combinatorial optimisation problems, the best reported results were achieved
when hybrid ACO algorithms were used [21] [36] [61] [103] [143] [144] [145] [146].

However, from the analysed works, it appears that only few studies have considered the
hybridizing of ACO with other local search and meta-heuristic methods. More precisely,
all the available hybrid ACO considered the loosely coupled fashion only and none of the
available approaches, to the best of our knowledge, addressed the job scheduling problem
in grid computing in a strongly coupled fashion. Additionally, despite the many ACO-
based algorithms available in the literature which have tackled the static job scheduling
problem in grid computing, only one research effort [94] examined ACO for the dynamic
mode. Hence, there remains room to contribute to these lines of research.

3.6 Methods for job scheduling in grid computing 61

On the other hand, the literature includes another meta-heuristic algorithm, which is
the GA, that has been progressively used for solving the various scheduling problems in
grid computing and other similar environments since the early 1990s. The analysis of
the available proposals, which are summarized in Table 3.3, allows identifying several
observations.

The first observation includes the large use of GAs and their variants to tackle many
types of job scheduling problems in grid computing systems and distributed heterogeneous
environments, which makes GAs a promising technique to solve scheduling problems. The
early proposals, from 1996 to 2000, focused on formulating the job scheduling problem.
The main aim of applying the proposed GA-based schedulers was to study the behaviour
of evolutionary techniques in such complex problems. In general, most of proposals in
this period considered the static dependent version of the problem and small-scale datasets
were used mainly due to the limited multi-processor architecture at that time. Although
the used datasets were small, the reported results achieved by the stand-alone GA-based
algorithms showed that the proposed approaches required more processing time to obtain
good quality schedules. Therefore, researchers have often hybridized GAs with other local
search and heuristic methods as an attempt to resolve this problem.

In early 2000s, based on the work conducted by Ali et al. [8], who proposed two
methods for generating problem instances and benchmarks for heterogeneous environments
such as grid computing, Braun et al. [19] presented a clearer formulation of the static
independent job scheduling problem which aims to minimise the makespan. The adoption
of independent job scheduling problems led to accurately simulate more realistic cases of
distributed autonomous heterogeneous environments such as grid environments. Braun
et al. generated what is known now as the de facto static benchmark for studying and
evaluating different heuristic and meta-heuristic job scheduling proposals in distributed
heterogeneous environments. Moreover, they applied GAs to solve the problem and
compared their performance to many other heuristics, in which GAs showed their efficiency
in tackling such a complex problem.

In the period 2001-2005, an important observation can be noted, which is the addressing
of dynamic scheduling problems. Although, this type of scheduling is more complex than
the static version, GAs proved their efficiency in this field compared to other methods.
Additionally, the use of various ad hoc heuristics to seed the initial population of GAs was
very clear. Furthermore, this period also witnessed the use of several strongly coupled
hybrid GA-based schedulers which showed consistently their efficiency over other stand-
alone algorithms.

Another important period is from 2006 to 2014, in which Xhafa et al. proposed
and evaluated various GA variants to tackle the job scheduling problem from different
perspectives. Their research efforts provided the necessary baselines and references to
the literature and greatly influenced the researchers, including the author, to undergo

3.6 Methods for job scheduling in grid computing 62

Table 3.3 Summary of GA-based approaches for job scheduling problem in grid computing.

Author (s) Algorithm (s) Initialization Hybridization type Scheduling type

Tirat-Gefen and Parker (1996) GA + LP random stand-alone static dependent

Shroff et al. (1996) GSA random strongly coupled static dependent

Wang et al. (1997) GA baseline stand-alone static dependent

Abraham et al. (2000)
GA + SA,

GA + TS

LJFR–SJFR strongly coupled static independent

Braun et al. (2001) GA min-min stand-alone static independent

Theys et al. (2001) GA min-min stand-alone
static independent,

static and dynamic dependent

Grajcar (1999; 2001) GA + LS random strongly coupled static dependent

Zomaya and The (2001) GA sliding-window stand-alone dynamic independent

Page and Naughton (2005) GA random stand-alone dynamic independent

Prodan and Fahringer (2005) GA
job migration,

cycle elimination

stand-alone static and dynamic dependent

Sugavanam (2005; 2007)

Max-Max, GIM,

OIM,GENITOR,

MA, ACO, HEA

Max-Max
stand-alone

strongly coupled

static dependent

Carretero and Xhafa (2006; 2007) GA MCT, LJFR–SJFR stand-alone static independent

Xhafa and Duran (2008) Struggle GA MCT, LJFR–SJFR stand-alone static independent

Xhafa et al. (2008) cMA LJFR-SJFR loosely coupled static independent

Xhafa and Carretero (2009) GA MCT, LJFR–SJFR stand-alone static and dynamic independent

Xhafa et al. (2009) GA + TS MCT, LJFR-SJFR strongly coupled static and dynamic independent

Xhafa et al. (2011) GA + TS MCT, LJFR-SJFR loosely coupled static and dynamic independent

Xhafa et al. (2007; 2011) MA + TS MCT, LJFR-SJFR loosely coupled static and dynamic independent

Falzon and Li (2012) GA several heuristics strongly coupled static dependent

Kardani-Moghaddam et al. (2012) GA + VNS MinCTT, SuffCTT strongly coupled static independent

Kolodziej et al. (2011) Struggle GA MCT, LJFR-SJFR stand-alone static and dynamic independent

Kolodziej et al. (2012) GA MCT, LJFR-SJFR stand-alone static and dynamic independent

Kolodziej et al. (2014) GA MCT, LJFR-SJFR stand-alone static and dynamic independent

Zahedani and Dastghaibyfard (2014) GA + PSO random strongly coupled static and dynamic independent

Oshin and Bhatt (2017) PSO + CS + GA random loosely coupled static independent

3.6 Methods for job scheduling in grid computing 63

future investigations about diverse job scheduling problems. These research efforts include
analysing many GA variants, such as Steady-State and Struggle GAs, MAs and cMAs, and
hybrid GAs, in static and dynamic modes. Several datasets were used to evaluate their
various proposals. In addition to the Braun et al. dataset to which they obtained one of
the best-achieved results, Xhafa et al. generated several random problem instances for
static and dynamic modes using the HyberSim-G grid simulator [27]. However, these
instances are not available since they were generated randomly. In most of the works
presented, Xhafa et al. optimized the makespan and flowtime using a weighted sum
function. However, more objectives that are related to energy and security were added to
them. Furthermore, as they were optimizing the makespan and flowtime simultaneously,
the use of MCT and LJFR−SJFR heuristics appeared in most of their research which is due
to the fact that these ad hoc heuristics provide the best start up solutions in terms of these
two objectives. Another key issue that was investigated by Xhafa et al. is the hybridisation
of GAs with other approaches in which several local search and meta-heuristics were
proposed that were mainly depended on the concepts of random move and swap. The
results achieved by the hybrid methods, for the static and dynamic modes, outperformed
the other stand-alone approaches as showed in the corresponding works such as [167] and
[170].

Besides ACO and GA, the literature includes other meta-heuristic methods that were
frequently used to tackle the various job scheduling problems. A summary of the most
relevant meta-heuristic techniques is presented in Table 3.4. Liu et al. [93] examined the
use of PSO to solve the static independent job scheduling problem in which it achieved
results that are better than GA and SA. However, similar to ACO-based schedulers, it
suffered from the need for more time to build these results. The TS meta-heuristic was also
applied to the job scheduling problem. Xhafa et al. [171] proposed a TS that reported one
of the best known results for the Braun et al. dataset. The proposed TS used different types
of movements that are based on the move and swap operations. Table 3.4 also includes
another meta-heuristic, which is pCHC, that was applied to the job scheduling problem.
Although they provided one of the best results for the Braun et al. dataset, Nesmachnow et
al. [117] [118] used a very high speed network to obtain these results.

Additionally, the literature includes another meta-heuristics, which is VNS, that is
based on the systematic change of the neighbourhood during the search process. Its ability
to explore different neighbours allows VNS to search complex large state spaces. As can be
seen in Table 3.4, three works tackled the static dependent and independent job scheduling
using VNS meta-heuristic, i.e., it has not been previously used, to the best of the author’s
knowledge, for the dynamic mode. Davidovic et al. used a simple one neighbourhood
structure that is based on a random swap operation. On the other hand, recently, Selvi et al.
[137] [138] used more structures which were developed based on the random swap and
move concepts.

3.7 Summary 64

Table 3.4 Summary of other meta-heuristics approaches for job scheduling problem in grid
computing.

Author (s) Algorithm (s) Initialization Hybridization type Scheduling type

Davidovic et al. (2001) VNS, TS CP, LS stand-alone static dependent

Liu et al. (2010) PSO, GA, SA LJFR-SJFR stand-alone static independent

Selvi et al. (2011) DE random stand-alone static independent

Xhafa et al. (2012) TS min-min stand-alone static and dynamic independent

Nesmachnow et al. (2012) pCHC min-min, Sufferage stand-alone static independent

Nesmachnow et al. (2012) pCHC + PALS min-min, Sufferage loosely coupled static independent

Selvi and Manimegalai (2015) VNS min-min stand-alone static independent

Selvi and Manimegalai (2015) GVNS+BVNS min-min loosely coupled static independent

Despite the many hybrid meta-heuristic algorithms available in the literature which
have tackled the job scheduling problem in grid computing, only one research effort [170]
compared between the use of loosely and strongly coupled hybrid meta-heuristics in which
a random dataset was used. Moreover, although VNS, whether it has been hybridized
with other algorithms or employed as a stand-alone algorithm, has proved its effectiveness
in dealing with numerous complex hard optimisation problems [72], only one research
effort [83] has previously studied the hybridization of the VNS algorithm with other meta-
heuristics with regard to the static independent job scheduling problem on computational
grids. Hence, there remains room to contribute to these lines of research.

3.7 Summary

This chapter introduced the main concepts behind grid computing and its main components.
One of the main challenges in a computational grid is how to efficiently map jobs, also
called tasks or applications, to grid resources and hence utilize geographically distributed
computers which are connected through heterogeneous environments in an efficient, reli-
able and secure manner. This mapping is called job scheduling in grid computing. The
mathematical formulation of the job scheduling problem in grid computing was described
in this chapter. Moreover, the main methods by which benchmarks can be generated
were also presented. Similar to job scheduling in traditional computing systems, this
mapping is known to be an NP-hard problem [161]. However, it is more complicated
in grid computing due to its complex, dynamic nature, high degree of job and resource
heterogeneity, problem size, and other factors such as existing local schedulers and policies

3.7 Summary 65

[25]. Therefore, exact methods are not applicable since they required exponential time to
achieve such mappings. Alternatively, heuristics and meta-heuristics provide near-optimal
solutions in a reasonable time. The literature involves several heuristic and meta-heuristics
that were applied to address the problem. This chapter presented a comprehensive review
of the static and dynamic heuristic and meta-heuristic approaches that were used to tackle
the job scheduling problem in heterogeneous environments such as grid computing.

Chapter 4

Hybrid Meta-Heuristics for Static Job
Scheduling in Grid Computing

Several stand-alone meta-heuristics, such as Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), Variable Neighborhood Search
(VNS) and Tabu Search (TS), have been applied successfully for various types of scheduling
problems. However, the results achieved by these methods could be further improved by
combining two or more meta-heuristics [10]. The resulting new high-level algorithm would
then inherit the best features of the combined meta-heuristics. Consequently, the chances
of escaping from a local minimum will be increased, and hence the overall performance
will be enhanced [170].

In general, there are two means, or fashions by which to effectively combine meta-
heuristics, namely loosely coupled and strongly coupled [167]. The first fashion consists
of executing the combined meta-heuristics in a serial manner such that the solution to the
first method then being used by the second and so on; the final solution will be the output
of the last algorithm. The second fashion refers to the type of hybridization in which the
inner procedures of the hybridized algorithms are interchanged in such a way that one of
the methods acts as the main algorithm, which during its execution calls other methods to
act as supporting algorithms [169].

In this chapter, the use of VNS for job scheduling in grid computing is introduced.
Four new neighborhood structures, together with a modified local search, are proposed.
The proposed VNS is hybridized with two meta-heuristic methods in a loosely and strongly
coupled fashions, yielding new hybrid meta-heuristic algorithms by which to consider the
job scheduling problem in grid computing.

4.1 The solution representation 67

4.1 The solution representation

A key issue in meta-heuristic algorithms is the representation of solutions. Two types
of encodings have been reported in the literature for the job scheduling problem in grid
computing: the job-based representation, also called the direct representation, and the
resource-based representation, also known as the permutation-based representation [25].
For all the proposed meta-heuristic algorithms, we will consider both representations.

Each solution is represented as a list in the job-based representation, as shown in
Fig. 4.1. The list size is equal to the total number of jobs. The solution[a] represents the
resource into which the job a is assigned. Hence, we should expect integers in the range [0,
total number of resources-1] for this list.

Fig. 4.1 An example of job-based representation for the job scheduling problem in grid
computing.

In the resource-based scheme, each solution is also represented as a list, as shown in
Fig. 4.2. However, the list size is equal to the total number of resources. The solution[a]
represents the resource where a list of jobs will be assigned. Hence, we should expect
integers in these lists in the range [0, total number of jobs-1]. Unlike the job-based repre-
sentation where elements hold the resources which can be repeated, in this representation
each element represents a list of jobs which have been assigned to it and are unique.

4.2 The application of VNS to the job scheduling prob-
lem

VNS is a simple and effective meta-heuristic algorithm that is often applied to many
optimisation problems; Mladenovic and Hansen [114] proposed VNS in 1997 as a flexible
framework which can be used to define heuristics that are applicable to various problems.
VNS uses multiple neighborhood structures to explore a number of neighborhoods for the
current incumbent solution. It then picks the neighbor that introduces an improvement.
The systematic change of neighborhood structures is the core concept of the VNS meta-
heuristic. This change takes place in the descent phase where the meta-heuristic seeks to

4.2 The application of VNS to the job scheduling problem 68

Fig. 4.2 An example of resource-based representation for the job scheduling problem in
grid computing.

find a local optimum; it also occurs in the perturbation phase where the VNS attempts to
escape from the local optimum.

Generally, the proposed VNS procedure for the job scheduling in grid computing
(illustrated in Algorithm 4.1) involves three steps, which are repeated until the termination
conditions are satisfied. These steps are:

1. The shake step.

2. The improvement step.

3. The neighbourhood change step.

4.2.1 Neighbourhood structures for job scheduling in grid comput-
ing

The first step, known as the shake step, includes the application of a set of operators in a
particular order. The neighbourhood structure provides a way to explore new parts in the
solution space. This exploration is achieved through defining the type of modifications
which could be applied to a given solution to produce new ones. The solution space can

4.2 The application of VNS to the job scheduling problem 69

Algorithm 4.1: The proposed VNS procedure for the job scheduling problem in
grid computing.
1 Let: S0←min-min();
2 Let: Nk←the set of neighbourhood structures, k ∈ [1, kmax];
3 repeat
4 k← 1;
5 repeat
6 S1← shake(S0);
7 S2← PALS(S1);
8 if (fitness(S2) < fitness(S0)) then
9 S0← S2;

10 k← 1;
11 else
12 k← k+1;
13 end
14 until (k==kmax);
15 until (termination condition);

be explored in different ways using different neighbourhoods; thus, using well-defined
neighbourhood structures will certainly lead to better exploration.

In the job scheduling problem, any solution S will have at least one resource with a
local makespan time equal to the overall makespan of the solution, where this resource is
called the ’problem resource’. New solutions can be obtained from S by swapping a job
currently assigned to the problem resource with a job assigned to other resource, or by
moving a job currently assigned to the problem resource to a different resource. Therefore,
we can define many new neighbourhood structures based on the concepts of swap and
move. In this study, four new structures have been proposed, which are the Penalty-based
Swap (PS), the Penalty-based Move (PM), the Random Max to Min Move (RMMM) and
the Longest Max to Min Move (LMMTM).

The first structure, PS, alters the solution by finding the set of exchanges of some of the
jobs assigned to the problem resource with some of the jobs assigned to other resources
which best improve the solution in terms of minimising the makespan. The general PS
procedure is illustrated in Algorithm 4.2. On the other hand, PM modifies the solution
by finding the set of moves which reallocates some of the jobs assigned to the problem
resource to other resources that best reduce the makespan time, as shown in Algorithm 4.3,
while RMMM, the third neighbourhood structure, moves a random job from the list of the
jobs assigned to the problem resource to the resource with the minimum local makespan
time, as demonstrated in Algorithm 4.4. Finally, LMMM defines new neighbours by
moving the job in the list of jobs assigned to the problem resource which has the maximum

4.2 The application of VNS to the job scheduling problem 70

Algorithm 4.2: The Penalty-based Swap (PS) procedure

1 Ś← S;
2 Min_penalty← makespan(S);
3 penalty← 0;
4 Find the problem resource (pr) which has the maximum local makespan time;
5 Pr_Job_List← job list of pr;
6 Pr_size← Pr_Job_List size;
7 for (i=0 to Pr_size−1) do
8 for (j=0 to total number of jobs-1) do
9 if (Ś[j] ̸= pr) then

10 Ś← swap_resources(Ś, Pr_Job_List[i], j);
11 end
12 penalty← makespan(Ś);
13 if (penalty < Min_penalty) then
14 S← Ś;
15 Min_penalty← penalty;
16 else
17 Ś← S;
18 end
19 end
20 end

expected completion time to the resource which has the minimum processing time for it.
Algorithm 4.5 describes the general steps of LMMM.

4.2.2 The improvement step

This step involves applying a local search procedure to improve the solution generated form
the shaking step. For the job scheduling problem in grid computing, a modified version
of the Problem Aware Local Search (PALS) is used. PALS was originally proposed to
solve the problem of DNA fragment assembly problem [6] [7], and a variant thereof called
Randomized PALS has been used for job scheduling in heterogeneous environments [117]
[138]. Recently, it has been used as an efficient technique for some permutation-based
optimisation problems [113].

The general steps of the modified random PALS are described in Algorithm 4.6. The
algorithm selects a resource Pr, which is the resource with the largest local makespan, and
a random resource Rres such that Pr ̸= Rres from a given solution S.

The outer loop iterates on some of the jobs of Pr. The number of these jobs is selected
according to the generation of a random number, Pr_start, which belongs to the range
[1, Pr_list_size−1] where Pr_list_size is the number of jobs assigned to Pr and another
random number, Pr_end, from the range [Pr_start, Pr_list_size].

4.2 The application of VNS to the job scheduling problem 71

Algorithm 4.3: The Penalty-based Move (PM) procedure

1 Ś← S;
2 Min_penalty← makespan(S);
3 penalty← 0;
4 Find the problem resource (pr) which has the maximum local makespan time;
5 Pr_Job_List← job list of pr;
6 Pr_size← Pr_Job_List size;
7 for (i=0 to Pr_size−1) do
8 for (j=0 to total number of jobs-1) do
9 if (Ś[j] ̸= pr) then

10 Ś← move_ job(Ś, Pr_Job_List[i],resource assigned to j);
11 end
12 penalty← makespan(Ś);
13 if (penalty < Min_penalty) then
14 S← Ś;
15 Min_penalty← penalty;
16 else
17 Ś← S;
18 end
19 end
20 end

Algorithm 4.4: The Random Max to Min Move (RMMM) procedure
1 Find the problem resource (pr) which has the maximum local makespan time;
2 Pr_Job_List← job list of pr;
3 Pr_size← Pr_Job_List size;
4 Find the resource (mr) which has the minimum local makespan time;
5 i← Random number in the range [0..Pr_size];
6 S← move_ job(S, Pr_Job_List[i], mr);

Algorithm 4.5: The Longest Max to Min Move (LMMM) procedure
1 Find the problem resource (pr) which has the maximum local makespan time;
2 Pr_Job_List← job list of pr;
3 Pr_size← Pr_Job_List size;
4 Find the job (lj) in Pr_Job_List which has the longest processing time;
5 Find the resource (br) which is the fastest resource that can process lj;
6 S← move_ job(S, lj, br);

4.2 The application of VNS to the job scheduling problem 72

Algorithm 4.6: The Modified Random Problem Aware Local Search Procedure
1 for (iter=1 to max_iter) do
2 sol_makespan← makespane(S);
3 Ś← S;
4 Min_makespan← ∞;
5 Find the problem resource (Pr) which has the maximum local makespan time;
6 Pr_Job_List← job list of the resource with maximum local makespan;
7 Pr_size← Pr_Job_List size;
8 Randomly select a resource Rres such that Rres ̸= Pr;
9 Rres_Job_List← job list of the resource with minimum local makespan;

10 Rres_size← Rres_Job_List size;
11 Pr_start← random(1,Pr_size−1);
12 Pr_end← random(Pr_start,Pr_size);
13 Rres_start← random(1,Rres_size−1);
14 Rres_end← random(Rres_start,Rres_size);
15 for (i=Pr_start to Pr_end) do
16 for (j=Rres_start to Rres_end) do
17 S1← swap_resources(Ś, Pr_Job_List[i], Rres_Job_List[j]);
18 S2← move_ job(Ś, Pr_Job_List[i], Rres);
19 if (makespan(S1) < makespan(S2)) then
20 S̋← S1;
21 else
22 S̋← S2;
23 end
24 current_makespan← makespan(S̋);
25 if (current_makespan < Min_makespan) then
26 Ś← S̋;
27 Min_makespan← current_makespan;
28 end
29 end
30 end
31 if (Min_makespan < sol_makespan) then
32 S← Ś;
33 end
34 end

Similarly, the inner loop works on the jobs of Rres using Rres_start and Rres_end
which are generated in the same manner as Pr_start and Pr_end, respectively. This
process, which was suggested in [138], guarantees the selection of different jobs with
different sizes in each iteration, while the randomised PALS used in [117] has used a
different method in which the start job of each loop is generated randomly and the number
of jobs in the outer loop is fixed to 32, whereas the number of jobs in the inner is set to the
number of jobs divided by 20.

4.3 The application of hybrid ACO to the job scheduling problem 73

The double loop calculates the makespan values when swapping and moving jobs in
S1 and S2, respectively. Then it selects the solution with the minimum makespan and
compares this with the best solution so far; if there is an improvement, then it will become
the new best; otherwise, it will continue. Therefore, this loop stores the best improvement
to the solution with respect to the makespan time obtained by applying Pr_end X Rres_end
swaps or transfers.

This solution is then compared with S to decide whether to accept or reject it. If it is
better than S, then the algorithm will accept it as the new S; otherwise, it will reject it and
continue. The process is repeated max_iter times which means that the best improvement is
applied, whereas the random PALS used in [117] and [138] is applied until an improvement
to the original solution is discovered or until max_iter iterations, i.e., the first improvement
strategy was used.

4.3 The application of hybrid ACO to the job scheduling
problem

ACO is a meta-heuristic search algorithm which simulates the behaviour of ants in the
process of foraging for food and how they can find a path between their nest and a source
of food in this process [38]. ACO has been successfully applied for many NP complete
problems which are closely related to the problem of job scheduling in computational grids
[41]. This section introduces two hybrid ACO-based schedulers for the job scheduling
problem in grid computing.

Selecting a structure to represent the solution of the problem under examination is
the first step in any ACO-based algorithm. A colony of k ants is used in which each ant
represents the whole solution to the scheduling problem.

The ACO algorithm uses two types of information to find a solution to an optimisation
problem, namely the pheromone trial and the heuristic information. The ants use the
pheromone trail to communicate between them. This communication involves sharing
useful information about optimal solutions. A pheromone matrix, τ , of size n x m is
required, where τ[j][r] represents the favourability of allocating job j to resource r. The
second piece of information the ants use to construct their solutions is the heuristic function
η jr. The following heuristic is used, which was proposed in [54]:

η jr =
1

f ree[r]
(4.1)

where the function free[r] represents the time by which the resource r becomes free. η jr

will be a large value if free[r] is small. Thus, a resource will be more desirable if it is free
earlier.

4.3 The application of hybrid ACO to the job scheduling problem 74

A fitness function is required to measure the quality of the solutions, which is the
makespan in our case. The general throughput of the grid system can be indicated by the
makespan value of the schedule; a small makespan means that the scheduler is producing a
high-quality mapping that best utilizes the available resources.

After each iteration, the pheromone deposit is updated as defined in Equation 4.2,
which follows the updating rule described in [146]. This update allows the indirect
communication among ants to share information about the current states of the resources.

τ jr =

ρ ∗ τ jr +∆τ jr if job j is assigned to resource r in local_best_ant

ρ ∗ τ jr otherwise
(4.2)

where ρ , (0 < ρ ≤ 1), represents the decay parameter the ants use to forget poor solutions
and ∆τ jr denotes the amount of pheromone deposit on the path and is defined by Equation
4.3 as:

∆τ jr =
makespan(local_best_ant)

makespan(global_best_ant)
(4.3)

Rules 4.2 and 4.3 allow the best ant only to deposit pheromone after each iteration.
The best ant could be defined as the local_best_ant (the best ant in the current iteration)
or the global_best_ant (the best ant so far).

To construct its solution, each ant uses the heuristic function as well as the information
encoded in the pheromone trial. Moreover, every ant maintains two lists, namely mapped
and unmapped lists. The former is initially empty, while the latter contains all the submitted
jobs. The ACO-based scheduler chooses the first job-resource pair randomly. The next
job-resource pair is picked out probabilistically by mapping job j to resource r using the
transition rule defined in Equation 4.4 as follows:

p jr =
[τ jr]

α ∗ [η jr]
β ∗ 1

ETC[j,r]

∑[τ jr]α ∗ [η jr]β ∗ 1
ETC[j,r]

(4.4)

where τ jr and η jr are the existing pheromone trail and the heuristic information, respec-
tively, and α and β are two parameters used to define the relative weights of the pheromone
and the heuristic, respectively. The pheromone trail τ jr provides each ant with information
about the favourability of assigning job j to resource r. On the other hand, the heuristic
function η jr will find the best available resource r, in terms of being free earlier, to process
job j from the unmapped jobs list. Furthermore, the inverse of ETC[j,r] is used as an
additional heuristic function; the inverse was used since lower values are more preferable.

The same steps are repeated until the unmapped list becomes empty, i.e., a solution is
constructed. The same procedure is followed by every ant in the colony. When all k ants

4.4 The application of hybrid GA to the job scheduling problem 75

construct their solutions, the best local ant in the colony is determined. The pheromone
update rule, defined in Equation 4.2, is then applied.

It is worth mentioning that the pheromone trail update rule is also applied at the
beginning before starting the main ACO procedure, where the solution found by the
deterministic heuristic min-min algorithm [77], described in Chapter 3, is used to update
the pheromone trail in order to speed up the process of finding good solutions.

4.3.1 Hybridizing ACO with VNS for the job scheduling problem

The ACO scheduler can be hybridized with VNS either in a loosely or strongly coupled
fashion, yielding two new hybrid meta-heuristic algorithms by which to consider the job
scheduling problem in grid computing. The loosely coupled hybrid algorithm, called
ACO+VNS, combines ACO and VNS, in which the former works first and whose output is
further refined by the latter algorithm as described in Algorithm 4.7. On the other hand,
the strongly coupled hybrid algorithm, called ACO(VNS), also combines ACO and VNS,
in which the former acts as the main algorithm, which during its execution calls the latter
algorithm to act as a supporting algorithm. When all k ants construct their solutions, the
best local ant in the colony is determined and the VNS algorithm is performed on it before
updating the pheromone trail. The VNS improves the solution found by the local best ant
and hence there is a good possibility that the local best ant will be the next global best ant.
The main ACO(VNS) steps are illustrated in Algorithm 4.8.

4.4 The application of hybrid GA to the job scheduling
problem

This section introduces the use of hybrid GAs for the job scheduling problem in grid
computing. The following subsections explain the main parts of each hybrid GA.

4.4.1 The initial generation

The random method is a common way to construct the initial generation of the genetic
algorithm. However, several studies have showed that seeding the initial population of
a genetic algorithm with solutions from other heuristic methods will introduce greater
diversity and hence produce better solutions [175]. In this study, the initial population is
generated as follows: one individual will be seeded with the solution found by the ad hoc
min-min heuristic algorithm [77], which is described in Section 5. The remaining solutions
are generated randomly.

4.4 The application of hybrid GA to the job scheduling problem 76

Algorithm 4.7: The ACO+VNS scheduler procedure.
1 let num and res be the total number of jobs and resources respectively;
2 Set the pheromone trial τnm to a small value;
3 Initialise f ree[0..res−1] to 0;
4 Initialise the pheromone evaporation ρ;
5 Initialise global_best_ant to the solution found by min_min algorithm;
6 ms← the makespan of global_best_ant;
7 ∆τnm← 1

ms ;
8 Use Equation 4.2 to update the pheromone trail;
9 while (the stopping condition is not true) do

10 for (every ant) do
11 Randomly select the job-resource pair (a, b);
12 Add (a, b) to the mapped list;
13 for (all unmapped jobs) do
14 f ree[b]← f ree[b]+ETC[a,b];
15 Use Equation 4.1 to compute the heuristic function;
16 Use Equation 4.4 to compute the probability matrix;
17 Find the highest ρwv value;
18 Determine the next job-resource pair (a=w, b=v);
19 Append (a, b) to the mapped list;
20 end
21 end
22 Compute the makespan of every ant;
23 Find local_best_ant, which is the one with the minimum makespan;
24 if ((makespan(local_best_ant) < makespan(global_best_ant)) then
25 global_best_ant← local_best_ant;
26 end
27 Use Equation 4.3 to compute ∆τnm;
28 Use Equation 4.2 to update the pheromone trail;
29 end
30 Apply VNS algorithm, i.e., global_best_ant ← VNS(global_best_ant);

4.4.2 The fitness evaluation

As mentioned earlier, this work will focus on minimising the makespan. Therefore, the
fitness of solutions is evaluated using Equation 3.1. See Chapter 3, Section 3.4 (Job
scheduling in grid computing problem formulation) for details.

4.4.3 The selection operator

Several selection techniques are available in the literature. In this study, the N-Tournament
method suggested in [25] is used with N=4. In the tournament selection, several tour-
naments are run among a few individuals which have been selected randomly from the

4.4 The application of hybrid GA to the job scheduling problem 77

Algorithm 4.8: The ACO(VNS) scheduler procedure.
1 let num and res be the total number of jobs and resources respectively;
2 Set the pheromone trial τnm to a small value;
3 Initialise f ree[0..res−1] to 0;
4 Initialise the pheromone evaporation ρ;
5 Initialise global_best_ant to the solution found by min_min algorithm;
6 ms← the makespan of global_best_ant;
7 ∆τnm← 1

ms ;
8 Use Equation 4.2 to update the pheromone trail;
9 while (the stopping condition is not true) do

10 for (every ant) do
11 Randomly select the job-resource pair (a, b);
12 Add (a, b) to the mapped list;
13 for (all unmapped jobs) do
14 f ree[b]← f ree[b]+ETC[a,b];
15 Use Equation 4.1 to compute the heuristic function;
16 Use Equation 4.4 to compute the probability matrix;
17 Find the highest ρwv value;
18 Determine the next job-resource pair (a=w, b=v);
19 Append (a, b) to the mapped list;
20 end
21 end
22 Compute the makespan of every ant;
23 Find local_best_ant, which is the one with the minimum makespan;
24 Apply VNS algorithm, i.e., local_best_ant ← VNS(local_best_ant);
25 if ((makespan(local_best_ant) < makespan(global_best_ant)) then
26 global_best_ant← local_best_ant;
27 end
28 Use Equation 4.3 to compute ∆τnm;
29 Use Equation 4.2 to update the pheromone trail;
30 end

population. The winner of each tournament (the one with the best fitness) is selected for
the next stage.

4.4.4 The crossover operator

The evolutionary computing literature contains several types of crossover operators, which
mainly depend on the solution encoding method. The six crossover operators, which
were described in Section 2.5.5.1, will be considered. More precisely, three crossover
operators, which are the one-point crossover (1P), two-point crossover (2P) and half
uniform crossover (HUX), will be used for the direct representation, while the Order

4.4 The application of hybrid GA to the job scheduling problem 78

Crossover (OX), Partially Matched Crossover (PMX) and Cycle Crossover (CX) operators
will be examined for the resource-based representation.

4.4.5 The mutation operator

In this work, several mutation operators have been used, each of which is applied on each
individual with a probability of pm. These operators are:

1. Random move: A random job, Jx, from a random resource, Rz, is selected, then it is
assigned to a random resource, Rw, such that Rz ̸= Rw.

2. Random swap: Two random jobs, Jx and Jy, are selected and their corresponding
resources, Ry and Rz respectively, are exchanged.

3. Best move: This operators alters the solution by transferring the job assigned to the
problem resource which has the maximum expected completion time to the resource
which has the minimum processing time for it. Algorithm 4.9 demonstrates the
pseudo-code for the best transfer mutation.

4. Best swap: This operator alters the solution by finding the best resource swap
between one of jobs assigned to the problem resource and all other jobs which best
minimise the makespan. The pseudo-code for the best swap mutation is illustrated
in Algorithm 4.10.

Algorithm 4.9: The best move mutation
1 Find the problem resource (pr) which has the maximum local makespan time;
2 Find the list of jobs assigned to pr (pr_list);
3 Find the job j in pr_list which has the maximum expected completion time;
4 Assign j to resource r which has the minimum processing time for j;

4.4.6 The replacement operator

In this thesis, the Steady State Strategy is used, that is, parents and offspring compete for
survival, and then the best of them are selected. Although this causes a premature stagna-
tion of the population, the use of the Steady State Strategy produces a fast convergence
(minimization) of the objective function [163] [25]. This characteristic serves our goals
since we are interested in minimising the makespan in a relatively short time.

4.5 Summary 79

Algorithm 4.10: The best swap mutation
1 Find the problem resource (pr) which has the maximum local makespan time;
2 Find the list of jobs assigned to pr (pr_list);
3 for All p j ∈ pr_list do
4 for All o j ∈ all jobs and o j ̸= p j do
5 new_solution← swap the resource assigned to p j with the resource

assigned to o j;
6 calculate the fitness of new_solution;
7 add new_solution to the list of all solutions;
8 end
9 end

10 Find the swap move in the list of all solutions which best minimise the overall
makespan;

4.4.7 Hybridizing GA with VNS for the job scheduling problem

The GA algorithm can be hybridized with VNS either in a loosely or a strongly coupled
fashion, yielding two new hybrid meta-heuristic algorithms by which to consider the job
scheduling problem in grid computing. The loosely coupled hybrid algorithm, called
GA+VNS, combines GA and VNS, in which the former works first and whose output is
further refined by the latter algorithm as described in Algorithm 4.11. On the other hand,
the strongly coupled hybrid algorithm, called GA(VNS), also combines GA and VNS, in
which the former acts as the main algorithm, which during its execution calls the latter
algorithm to act as a supporting algorithm. For this purpose, the proposed VNS procedure,
described in Algorithm 4.1, can be employed as a mutation operator. The main GA(VNS)
steps are illustrated in Algorithm 4.12.

4.5 Summary

In this chapter, the application of three meta-heuristic methods, VNS, ACO and GA, for
the independent job scheduling problem in grid computing has been introduced. ACO and
GA have been hybridized with a novel VNS in both loosely and strongly coupled fashions.
The new high-level algorithms inherit the best characteristics of the combined methods.
Four new neighbourhood structures and a modified PALS have been proposed for the novel
VNS, which use the concepts of move and transfer of some jobs to or from the problem
resource, which is the resource that has a local makespan equal to the total makespan of the
solution. Through the use of these structures and the modified local search, VNS improves
the performance of the ACO and GA algorithms by introducing diversity to the colony and
the population, respectively, and by exploring new parts of the state space of the problem.

4.5 Summary 80

Algorithm 4.11: The hybrid GA-VNS algorithm
1 t← 0;
2 Generate the initial generation Gen(t) of k individuals, where Gen(t)[0]=

min_min() and the remaining individuals,Gen(t)[1] to Gen(t)[k-1], are generated
randomly;

3 Evaluate the fitness of each individual in the initial generation, i.e., compute
Fitness(Gen(t));

4 while (the end criterion is not true) do
5 t← t +1;
6 Select Parent(t) from Gen(t-1);
7 With probability pc, recombine individuals in Parent(t) to produce Offspr1(t);
8 With probability pm, mutate individuals in Offspr1(t) to produce Offspr2(t);
9 Evaluate the fitness of each individual, i.e., compute Fitness(Offspr2(t));

10 Replace Gen(t) from Offspr2(t) and/or Gen(t-1);
11 end
12 Find best_S which is the best solution in Gen(t);
13 Apply VNS algorithm, i.e., best_S gets VNS(best_S) return best_S;

Algorithm 4.12: The hybrid GA(VNS) algorithm
1 t← 0;
2 Generate the initial generation Gen(t) of k individuals, where Gen(t)[0]=

min_min() and the remaining individuals,Gen(t)[1] to Gen(t)[k-1], are generated
randomly;

3 Evaluate the fitness of each individual in the initial generation, i.e., compute
Fitness(Gen(t));

4 while (the end criterion is not true) do
5 t← t +1;
6 Select Parent(t) from Gen(t-1);
7 With probability pc, recombine individuals in Parent(t) to produce Offspr1(t);
8 With probability pm, mutate individuals in Offspr1(t) to produce Offspr2(t)

using VNS algorithm;
9 Evaluate the fitness of each individual, i.e., compute Fitness(Offspr2(t));

10 Replace Gen(t) from Offspr2(t) and/or Gen(t-1);
11 end
12 Find best_S which is the best solution in Gen(t);
13 return best_S;

Chapter 5

Experimental results

This chapter discusses the experimental results of applying the four proposed hybrid meta-
heuristic algorithms, described in Chapter 4, for the static independent job scheduling
in grid computing. Several experiments were carried out to analyze the performance
of the proposed schedulers in terms of minimising the makespan. Three well known
benchmarks with different sizes and characteristics were used in the analysis. Moreover,
the performance of the proposed methods were compared against some of the best proposals
described in the literature.

The development language and the other measures used to report the achieved results
are described in the first section. The second section describes the essential experiments
carried out to select the best parameters for each proposed method to best optimize its
performance. The following sections report and discuss the experimental results achieved
form applying the loosely and strongly coupled versions of the proposed methods for
each of the three benchmarks. The reported results include the achieved makespan results
(best, average and standard deviation), performance comparisons and the improvement of
each proposed method over selected algorithms described in the literature, the statistical
analysis of the performance of the proposed methods, and the average gaps of each problem
instance to its lower bound. Furthermore, results summary is also provided, in which the
performance of the proposed methods over the min-min method in terms of consistency is
discussed.

5.1 Development tools

The Java language was used to implement the proposed methods in this research. An
Intel i5-4570 CPU @ 3.20 GHz PC with 8 GB RAM has been used to carry out all the
experiments reported in this thesis.

In addition to the best, average, and standard deviations, the two samples with unequal
variants t-test, which was used to test the hypothesis that two samples have equal means,

5.2 Parameter tuning 82

was performed to statistically analyse the performance of the proposed methods with
a confidence interval of 95%. Moreover, two measures will also be used to compare
the results obtained by applying the proposed hybrid methods and some of the methods
described in the literature. The first measure is the improvement percentage of one
algorithm over another, which can be computed using Equation 5.1.

Improvement(%) =
Approach1−Approach2

Approach1
∗100% (5.1)

where Approach1 and Approach2 are the makespan values of the two different approaches.
The second measure is the relative gap value of any approach with respect to the corre-
sponding lower bound, which can be computed using Equation 5.2.

Gap =
R−LB

LB
(5.2)

where R represents the makespan time (best or average) achieved by the proposed approach
for the corresponding problem instance and the LB is the lower bound of the problem.

5.2 Parameter tuning

In order to perform parameter tuning, a fix set of parameters was selected from the literature
for each of the proposed algorithms. The parameter tuning experiments were carried out
using a number of instances with diverse characteristics. For the proposed VNS, the
examined parameter was the order of neighbourhood structures only. Population size, α ,
β , pheromone evaporation rate (ρ) were among the tested parameters for the proposed
hybrid ACO+VNS and ACO(VNS). On the other hand, the following parameters were
examined for the proposed hybrid GA+VNS and GA(VNS): population size, crossover
type, mutation type, crossover probability and mutation probability. To select the best
parameter values, each algorithm was executed 30 times for each ETC instance and for
each parameter, and their average was reported.

5.2.1 Parameter tuning for VNS

One of the main advantages of VNS is that it does not need many parameters. The stopping
condition is the maximum number of iterations, which was set to 5. As mentioned earlier,
the order of neighbourhood structures will be the main parameter that will be examined,
as the forward VNS version is used in this study which means that VNS starts with k=1
and then increases k by one if no improvement is found; otherwise, set k=1. Since we
have four different structures, we then have 24 possible combinations. Table 5.1 illustrates
the effects of changing the order of neighbourhood structures based on different instances

5.2 Parameter tuning 83

with different characteristics. The tables show that case 24 was the best order recorded in
almost all the tested cases.

5.2.2 Parameter tuning for ACO+VNS and ACO(VNS)

Three parameters have been examined for the hybrid ACO+VNS and ACO(VNS) which
are the population size, the values of α and β and the value of ρ . The population size is
set to 2 due to the attempt to reduce the computational time needed to construct solutions
by ants and increase the number of generations. Various studies have suggested optimal
values for α and β which vary between 1 and 10, while the suggested values for ρ were
between 0.5 and 0.7 [135] [147] [60]. Therefore, three values have been used for α and
β , which are 1, 5 and 10. The results indicate that α=10 and β=1 represented the best
combination, as shown in Table 5.2; similarly, two values were used for ρ , which are 0.5
and 0.7. The best makespan values were achieved when using ρ = 0.7.

5.2.3 Parameter tuning for GA+VNS and GA(VNS)

Four parameters were tested for the hybrid GA+VNS and GA(VNS) algorithms which
included the population size, crossover type, mutation type, crossover probability and
mutation probability.

The candidate values for the population size were 10, 20 and 30 individuals. The best
results were indicated when using a population size of 20 solutions. The experiments
showed a very slow improvement rate and that a greater computational time was required to
find a good mapping of jobs to resources when increasing the number of individuals from
20 to 30, suggesting that using a large population size is not beneficial for the GA+VNS
and GA(VNS).

As mentioned earlier, six different crossover operators were used, which were one-point
crossover (1P), two-point crossover (2P), half uniform crossover (HUX), Order Crossover
(OX), Partially Matched Crossover (PMX) and Cycle Crossover (CX) with the best results
being achieved when using the two-point crossover operator, as illustrated in Fig. 5.1,
while Table 5.3 reports the values of other parameters used to compare the performance of
different crossover operators.

5.2 Parameter tuning 84

Ta
bl

e
5.

1
N

ei
gh

bo
ur

ho
od

st
ru

ct
ur

es
or

de
rt

es
tin

g
fo

rG
A

+V
N

S,
A

C
O

+V
N

S,
A

C
O

(V
N

S)
an

d
G

A
(V

N
S)

.T
he

be
st

av
er

ag
e

m
ak

es
pa

n
re

su
lts

ar
e

re
po

rt
ed

in
bo

ld
.

C
as

e
N

ie
gh

bo
ur

ho
od

or
de

r
u_

c_
hi

hi
.0

u_
i_

lo
hi

.0
u_

s_
lo

lo
.0

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

1
L

M
M

T
M

-R
M

M
T

M
-P

T
M

-P
SM

75
44

27
7.

98
75

40
25

4.
93

75
23

30
3.

74
74

18
20

2.
08

10
52

46
.3

1
10

42
72

.7
1

10
34

61
.0

3
10

22
36

.8
1

34
86

.3
3

34
84

.0
5

34
81

.2
2

34
40

.7
3

2
L

M
M

T
M

-R
M

M
T

M
-P

SM
-P

T
M

74
90

01
0.

35
74

80
11

2.
53

74
61

53
8.

54
74

11
58

7.
14

10
50

79
.0

0
10

41
17

.7
9

10
30

78
.3

8
10

21
96

.9
6

34
79

.2
7

34
63

.1
2

34
57

.7
9

34
39

.4
9

3
L

M
M

T
M

-P
T

M
-R

M
M

T
M

-P
SM

76
47

60
7.

30
76

37
63

2.
35

76
11

59
9.

66
74

29
10

2.
55

10
64

00
.1

9
10

52
06

.2
9

10
39

97
.7

7
10

22
23

.4
3

34
85

.3
3

34
80

.1
6

34
78

.6
9

34
39

.8
9

4
L

M
M

T
M

-P
T

M
-P

SM
-R

M
M

T
M

75
50

27
2.

66
75

50
00

7.
80

75
24

07
0.

13
74

18
27

2.
19

10
61

26
.3

3
10

50
66

.9
7

10
34

82
.8

3
10

22
01

.5
4

34
87

.6
2

34
84

.8
0

34
82

.7
9

34
40

.8
3

5
L

M
M

T
M

-P
SM

-R
M

M
T

M
-P

T
M

76
43

18
0.

88
76

19
40

4.
31

76
00

08
7.

64
74

27
92

3.
88

10
62

99
.6

6
10

50
97

.0
0

10
39

67
.2

7
10

22
49

.5
7

34
85

.4
6

34
81

.9
7

34
78

.9
9

34
40

.2
6

6
L

M
M

T
M

-P
SM

-P
T

M
-R

M
M

T
M

74
80

17
4.

58
74

70
03

3.
63

74
59

93
1.

99
74

10
69

6.
30

10
50

88
.5

7
10

41
34

.1
9

10
31

98
.7

1
10

21
81

.1
2

34
79

.1
5

34
63

.0
1

34
57

.5
0

34
39

.4
8

7
R

M
M

T
M

-L
M

M
T

M
-P

T
M

-P
SM

75
70

32
2.

45
75

66
01

8.
57

75
51

52
0.

11
74

19
23

6.
34

10
74

84
.9

9
10

62
86

.5
2

10
50

17
.8

9
10

22
17

.0
7

34
84

.1
0

34
74

.1
9

34
69

.6
7

34
39

.6
2

8
R

M
M

T
M

-L
M

M
T

M
-P

SM
-P

T
M

75
00

02
2.

85
74

80
12

2.
01

74
62

07
1.

33
74

15
67

8.
69

10
50

79
.7

9
10

41
27

.6
1

10
31

16
.2

4
10

21
91

.2
4

34
79

.4
3

34
63

.1
3

34
58

.6
6

34
39

.5
4

9
R

M
M

T
M

-P
T

M
-L

M
M

T
M

-P
SM

76
36

05
2.

58
76

12
09

1.
72

75
99

24
3.

67
74

26
82

8.
91

10
75

36
.6

7
10

63
27

.8
1

10
50

76
.6

1
10

22
89

.4
3

34
85

.1
7

34
76

.2
0

34
74

.1
5

34
39

.7
8

10
R

M
M

T
M

-P
T

M
-P

SM
-L

M
M

T
M

76
30

60
8.

16
76

02
61

9.
78

75
94

64
2.

93
74

26
38

6.
82

10
63

49
.6

4
10

51
51

.0
5

10
39

94
.6

3
10

21
99

.6
7

34
86

.1
7

34
82

.7
7

34
79

.8
6

34
40

.4
8

11
R

M
M

T
M

-P
SM

-L
M

M
T

M
-P

T
M

75
77

78
8.

24
75

70
27

2.
39

75
53

11
6.

25
74

19
88

1.
73

10
74

50
.4

4
10

62
46

.1
9

10
50

17
.0

3
10

22
13

.4
9

34
85

.0
8

34
75

.0
1

34
71

.8
1

34
39

.7
1

12
R

M
M

T
M

-P
SM

-P
T

M
-L

M
M

T
M

74
81

01
8.

82
74

80
04

6.
46

74
60

07
2.

38
74

11
28

2.
59

10
51

02
.5

8
10

41
53

.7
7

10
32

03
.1

3
10

21
80

.0
2

34
78

.7
7

34
62

.3
6

34
56

.8
7

34
39

.3
9

13
PT

M
-L

M
M

T
M

-R
M

M
T

M
-P

SM
76

27
28

8.
68

76
01

86
8.

98
75

91
13

5.
20

74
26

36
0.

38
10

64
42

.5
5

10
52

09
.2

7
10

40
00

.9
4

10
22

28
.8

6
34

85
.7

8
34

82
.5

4
34

79
.7

6
34

40
.4

7

14
PT

M
-L

M
M

T
M

-P
SM

-R
M

M
T

M
76

14
40

1.
57

75
83

33
8.

88
75

61
00

4.
72

74
21

78
9.

80
10

72
96

.9
0

10
62

25
.6

0
10

49
96

.2
8

10
22

20
.9

4
34

85
.1

6
34

75
.0

4
34

72
.5

6
34

39
.7

6

15
PT

M
-R

M
M

T
M

-L
M

M
T

M
-P

SM
76

24
82

1.
07

76
00

99
5.

31
75

89
68

4.
18

74
26

28
1.

88
10

70
85

.2
7

10
60

16
.8

7
10

40
02

.3
6

10
21

97
.0

4
34

85
.6

3
34

82
.4

0
34

79
.0

1
34

40
.3

3

16
PT

M
-R

M
M

T
M

-P
SM

-L
M

M
T

M
75

83
44

3.
79

75
70

74
8.

48
75

56
09

5.
14

74
20

17
4.

26
10

63
32

.9
5

10
51

11
.2

1
10

39
83

.9
3

10
22

32
.2

0
34

86
.2

9
34

83
.0

9
34

80
.0

5
34

40
.6

4

17
PT

M
-P

SM
-L

M
M

T
M

-R
M

M
T

M
75

40
90

2.
41

75
30

59
4.

14
75

15
88

1.
57

74
16

90
1.

61
10

52
23

.7
1

10
42

67
.5

8
10

34
35

.8
0

10
21

85
.2

9
34

95
.1

4
34

85
.8

3
34

83
.8

9
34

40
.9

3

18
PT

M
-P

SM
-R

M
M

T
M

-L
M

M
T

M
75

39
62

9.
61

75
30

33
8.

94
75

13
82

2.
99

74
16

60
2.

01
10

61
14

.4
2

10
50

60
.6

6
10

34
79

.5
3

10
21

83
.9

3
34

88
.1

4
34

85
.2

3
34

83
.8

1
34

40
.9

2

19
PS

M
-L

M
M

T
M

-R
M

M
T

M
-P

T
M

76
06

31
6.

28
75

77
01

9.
81

75
59

97
8.

72
74

21
02

0.
83

10
76

80
.0

8
10

63
81

.1
3

10
50

89
.9

6
10

21
84

.4
0

34
85

.0
2

34
74

.9
0

34
70

.1
1

34
39

.6
7

20
PS

M
-L

M
M

T
M

-P
T

M
-R

M
M

T
M

75
85

64
8.

37
75

74
49

2.
04

75
58

18
0.

40
74

20
25

8.
33

10
71

76
.5

4
10

61
02

.1
0

10
49

80
.1

2
10

21
93

.7
7

34
83

.0
7

34
71

.0
7

34
69

.3
3

34
39

.5
7

21
PS

M
-R

M
M

T
M

-L
M

M
T

M
-P

T
M

75
43

32
8.

46
75

40
00

9.
58

75
19

70
9.

81
74

17
78

0.
11

10
51

54
.4

6
10

42
20

.8
2

10
34

31
.8

5
10

22
21

.5
0

34
87

.6
0

34
84

.1
5

34
82

.5
0

34
40

.7
7

22
PS

M
-R

M
M

T
M

-P
T

M
-L

M
M

T
M

75
41

05
7.

58
75

30
63

0.
80

75
16

25
7.

85
74

17
71

8.
21

10
51

51
.9

7
10

42
14

.0
4

10
34

05
.5

3
10

21
90

.6
2

34
87

.3
7

34
84

.1
2

34
81

.7
7

34
40

.7
4

23
PS

M
-P

T
M

-L
M

M
T

M
-R

M
M

T
M

74
70

06
5.

25
74

60
00

3.
97

74
58

97
0.

91
74

10
64

0.
19

10
50

25
.3

8
10

40
62

.2
8

10
29

89
.4

2
10

21
78

.3
3

34
77

.7
9

34
62

.2
8

34
55

.8
4

34
39

.2
9

24
PS

M
-P

T
M

-R
M

M
T

M
-L

M
M

T
M

74
70

04
1.

77
74

60
00

9.
65

74
57

70
0.

08
74

10
27

1.
22

10
50

17
.8

8
10

40
27

.9
8

10
29

86
.6

4
10

21
79

.8
7

34
76

.1
3

34
62

.2
1

34
55

.2
0

34
39

.1
3

5.2 Parameter tuning 85

Table 5.2 Parameter tuning for ACO+VNS and ACO(VNS) algorithms: α and β . The best
average makespan results are reported in bold.

Case α β
ACO+VNS ACO(VNS)

u_c_hihi.0 u_i_lohi.0 u_s_lolo.0 u_c_hihi.0 u_i_lohi.0 u_s_lolo.0

1 1 1 7774955.69 107085.27 3745.30 7740919.96 105896.57 3728.38

2 1 5 7802955.98 107176.54 3755.12 7751098.51 106078.23 3733.52

3 1 10 7900218.46 107715.58 3765.21 7892111.31 106829.59 3737.49

4 5 1 7570272.39 104305.04 3598.17 7565030.42 103716.63 3576.45
5 5 5 7661298.85 106016.87 3634.45 7653345.35 105214.28 3625.24

6 5 10 7758704.71 106906.18 3663.78 7703753.35 105476.08 3629.75

7 10 1 7527022.18 104153.77 3594.69 7519709.81 103570.61 3576.83

8 10 5 7591211.43 104214.04 3601.58 7588542.95 103586.01 3583.05

9 10 10 7619404.31 105017.88 3608.22 7612251.74 104996.28 3601.12

0 250 500 750 1,000 1,250 1,500 1,750 2,000
7.4

7.6

7.8

8

8.2

8.4

·106

Number of generations

M
ak

es
pa

n

1P 2P HUX
CX PMX OX

Fig. 5.1 Parameter tuning for different crossover operators of GA(VNS) using u-c-hihi.0
instance from the 512x16 dataset.

5.2 Parameter tuning 86

Table 5.3 Parameter values used for comparing the performance of different crossover
operators.

Seeding method min-min algorithm
Number of generations 2000
Probability of crossover 0.7
Population size 20
Selection operator N-Tournament, N = 4
Mutation operator VNS
Probability of mutation 0.8
Replacement operator Steady-State

In similar fashion, four different mutation operators were used, which were Random
move, Random swap, Best move and Best swap with the best results being achieved when
using the Best swap operator, as illustrated in Fig. 5.2, while Table 5.4 reports the values
of other parameters used to compare the performance of different mutation operators.

0 250 500 750 1,000 1,250 1,500 1,750 2,000
7.4

7.6

7.8

8

8.2

8.4

·106

Number of generations

M
ak

es
pa

n

Best swap Best move Random swap
Random move

Fig. 5.2 Parameter tuning for different mutation operators of GA+VNS using u-c-hihi.0
instance from the 512x16 dataset.

5.2 Parameter tuning 87

Table 5.4 Parameter values used for comparing the performance of different mutation
operators.

Seeding method min-min algorithm
Number of generations 2000
Probability of crossover 0.7
Population size 20
Selection operator N-Tournament, N = 4
Crossover operator 2P
Probability of mutation 0.8
Replacement operator Steady-State

Finally, the probability of crossover and mutation were examined. A considerable
number of studies in the literature suggested high crossover and mutation probabilities
[25] [170] [169] [163]; therefore, the candidate values used were 0.7, 0.8 and 0.9. The best
result was recorded when using pc = 0.7 and pm = 0.8, as shown in Fig. 5.3 and Fig. 5.4.

Fig. 5.3 Analysis of GA+VNS operators probabilities using u-s-hihi.0 instance from the
512x16 dataset.

5.3 Results for instances from Liu et al. [93] 88

Fig. 5.4 Analysis of GA(VNS) operators probabilities using u-s-hihi.0 instance from the
512x16 dataset.

5.3 Results for instances from Liu et al. [93]

To enable a fair comparison, the proposed strongly coupled methods used the same number
of iterations as used in [93], which is (50 x the number of jobs x the number of resources)
iterations, as a stopping condition. On the other hand, the proposed loosely coupled
methods used as a stopping condition (40 x the number of jobs x the number of resources)
iterations for the first algorithm, i.e. GA or ACO, followed by (10 x the number of jobs x
the number of resources) iterations for the VNS algorithm.

To obtain the best, average, standard deviation, and the processing time, each algorithm
was executed 10 times for each instance which is also the same number used by the
authors. The four proposed hybrid methods, GA+VNS, ACO+VNS, ACO(VNS) and
GA(VNS), were compared against selected algorithms from the literature. In particular,
the following algorithms were selected for comparison: min-min algorithm [77], Genetic
Algorithm (GA) [93], Simulated Annealing (SA) [93], Particle Swarm Optimisation (PSO)
[93], Differential Evolution algorithm (DE) [139] and Two-Phase Variable Neighbourhood
Search (TPVNS) [138]. All the competing algorithms were implemented sequentially.
Moreover, all the above are stand-alone meta-heuristic algorithms with the exception

5.3 Results for instances from Liu et al. [93] 89

of TPVNS, which is a loosely coupled hybrid meta-heuristic, and min-min, which is a
deterministic heuristic method.

Table 5.5 provides the performance comparison between the four proposed hybrid
methods and other methods from the literature in terms of makespan. In Table 5.5, the first
column represents the algorithm applied, the second column represents the criteria used
in comparison, namely Res (Result for deterministic min-min algorithm), Avg (average),
time (in seconds), Best (best makespan found) and σ (standard deviation). There is no
information provided about the best makespan achieved by the algorithms proposed in
[93] and [139], the standard deviation of the algorithm suggested in [139], or the time the
algorithm proposed in [138] needed to finish. The third, fourth, fifth, and sixth columns
represent the four different instances. The best results are indicated in bold.

The results in Table 5.5 show clearly that the proposed strongly coupled GA(VNS)
outperforms the other approaches, including ACO(VNS), in three instances, namely (3,
13), (8, 60) and (10, 50), while PSO [26] outperforms the other methods in the (5, 100)
instance. It also shows the standard deviations of the makespans of the solutions achieved
by GA(VNS) are very small, which means that the algorithm can achieve a high-quality
makespan in any single execution. Furthermore, it shows the time needed to finish the
search process, which clearly indicates that the proposed GA(VNS) is the fastest of the
meta-heuristic methods. On the other hand, the table shows the performance of the
strongly couple ACO(VNS), which showed the second-best performance after GA(VNS).
However, the time needed to find these results was longer than that for GA(VNS). In
general, the relative performance order of the implemented methods from best to worst
was:

(
1
)
GA(VNS),

(
2
)
ACO(VNS),

(
3
)
ACO+VNS, and

(
4
)
GA+VNS.

Tables 5.6, 5.7, 5.8 and 5.9 show the improvement percentages of GA+VNS, ACO+VNS,
ACO(VNS) and GA(VNS), respectively, over the state-of-the-art methods described in the
literature. Table 5.10 presents the improvement percentages of GA(VNS) over GA+VNS,
ACO+VNS and ACO(VNS), which clearly indicates that GA(VNS) performs better than
the rest. Furthermore, the two sample t-test with unequal variants was performed to statisti-
cally analyse the performance of the four proposed hybrid methods. Table 5.10 reports the
corresponding p-value for each problem instance, all of which were less than 0.05; hence,
we can reject the null hypothesis and consider the improvements in the makespan to be
statistically significant. Fig. 5.5 shows the overall improvements of GA+VNS, ACO+VNS,
ACO(VNS) and GA(VNS) over the deterministic heuristic min-min algorithm for the
problem instances of Liu et al.

5.3 Results for instances from Liu et al. [93] 90

Table 5.5 Makespan results for dataset instances from Liu et al. [93].

Algorithm (3, 13) (5, 100) (8, 60) (10, 50)

min-min[77]
Res 56.0000 87.6693 47.8764 42.7346
time 0.0001 0.0010 0.0010 0.0020

GA[93]
Avg 47.1167 85.7431 42.9270 38.0428
σ 0.7700 0.6217 0.4150 0.6613
time 302.9210 2415.9000 2263.0000 2628.1000

SA[93]
Avg 46.6000 90.7338 55.4594 41.7889
σ 0.4856 6.3833 2.0605 8.0773
time 332.5000 6567.8000 6094.9000 6926.4000

PSO[93]
Avg 46.2667 84.0544 41.9489 37.6668
σ 0.2854 0.5030 0.6944 0.6068
time 106.2030 1485.6000 1521.0000 1585.7000

DE[139]
Avg 46.0500 86.3600 42.4800 38.3900
time 22.4400 1550.3227 430.0000 285.2600

TPVNS[138]
Best 46.0000 85.4345 41.7227 35.1586
Avg 46.2500 85.4357 41.7412 35.2478
σ 0.1100 0.1000 0.1200 0.1300

GA+VNS

Best 46.0000 85.5295 41.6551 35.1525
Avg 46.0000 85.5401 41.7027 35.2268
std dev 0.0000 0.0152 0.0459 0.0643
time 4.3614 194.2657 76.1913 70.2563

ACO+VNS

Best 46.0000 85.5284 41.5905 35.1495
Avg 46.0000 85.5352 41.6311 35.1996
σ 0.0000 0.0072 0.0412 0.0564
time 7.1557 742.8736 387.9572 379.6415

ACO(VNS)

Best 46.0000 85.5281 41.5853 35.1447
Avg 46.0000 85.5283 41.5918 35.1618
σ 0.0000 0.0002 0.0077 0.0215
time 7.2638 751.2500 392.7000 381.2500

GA(VNS)

Best 46.0000 85.5279 41.5795 35.1365
Avg 46.0000 85.5281 41.5803 35.1382
σ 0.0000 0.0002 0.0011 0.0022
time 4.3340 140.6454 76.0624 70.3302

5.3 Results for instances from Liu et al. [93] 91

Table 5.6 Average improvement percentages of GA+VNS over selected methods from the
literature for dataset instances from Liu et al. [93].

Instance Min-min GA SA PSO DE TPVNS
(3, 13) 17.8571 2.3701 1.2876 0.5764 0.1086 0.5405
(5, 100) 2.4287 0.2368 5.7241 -1.7675 0.9494 -0.1222
(8, 60) 12.8951 2.8521 24.8050 0.5869 1.8298 0.0922
(10, 50) 17.5684 7.4022 15.7030 6.4779 8.2396 0.0596
Avg 12.6873 3.2153 11.8799 1.4684 2.7819 0.1425

Table 5.7 Average improvement percentages of ACO+VNS over selected methods from
the literature for dataset instances from Liu et al. [93].

Instance Min-min GA SA PSO DE TPVNS GA+VNS
(3, 13) 17.8571 2.3701 1.2876 0.5764 0.1086 0.5405 0.0000
(5, 100) 2.4343 0.2425 5.7295 -1.7617 0.9551 -0.1165 0.0057
(8, 60) 13.0446 3.0188 24.9341 0.7576 1.9984 0.2638 0.1717
(10, 50) 17.6321 7.4737 15.7681 6.5501 8.3105 0.1367 0.0772
Avg 12.7420 3.2763 11.9298 1.5306 2.8431 0.2061 0.0637

Table 5.8 Average improvement percentages of ACO(VNS) over selected methods from
the literature for dataset instances from Liu et al. [93].

Instance Min-min GA SA PSO DE TPVNS GA+VNS ACO+VNS

(3, 13) 17.8571 2.3701 1.2876 0.5764 0.1086 0.5405 0.0000 0.0000

(5, 100) 2.4421 0.2505 5.7371 -1.7535 0.9631 -0.1084 0.0138 0.0081

(8, 60) 13.1268 3.1105 25.0050 0.8514 2.0910 0.3580 0.2660 0.0945

(10, 50) 17.7204 7.5729 15.8584 6.6503 8.4089 0.2439 0.1844 0.1073

Avg 12.7866 3.3260 11.9720 1.5812 2.8929 0.2585 0.1161 0.0525

Table 5.9 Average improvement percentages of GA(VNS) over selected methods from the
literature for dataset instances from Liu et al. [93].

Instance Min-min GA SA PSO DE TPVNS GA+VNS ACO+VNS ACO(VNS)

(3, 13) 17.8571 2.3701 1.2876 0.5764 0.1086 0.5405 0.0000 0.0000 0.0000

(5, 100) 2.4424 0.2508 5.7374 -1.7532 0.9633 -0.1081 0.0141 0.0083 0.0003

(8, 60) 13.1507 3.1371 25.0257 0.8786 2.1179 0.3854 0.2935 0.1220 0.0275

(10, 50) 17.7759 7.6352 15.9151 6.7132 8.4706 0.3111 0.2517 0.1746 0.0674

Avg 12.8065 3.3483 11.9914 1.6038 2.9151 0.2822 0.1398 0.0762 0.0238

5.4 Results for instances from Braun et al. [19] 92

Fig. 5.5 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) improvement percentages with
respect to the min-min heuristic for Liu et al. dataset.

Table 5.10 Average improvement percentages and statistical analysis of GA(VNS) over
other proposed methods for dataset instances from Liu et al. [93].

Instance
GA+VNS ACO+VNS ACO(VNS)

improvement p-value improvement p-value improvement p-value

(3, 13) 0.0000 not valid 0.0000 not valid 0.0000 not valid

(5, 100) 0.0141 <10−5 0.0083 <10−5 0.0003 0.012170

(8, 60) 0.2935 <10−5 0.1220 <10−5 0.0275 <10−5

(10, 50) 0.2517 <10−5 0.1746 <10−5 0.0674 <10−4

Avg 0.1398 0.0762 0.0238

5.4 Results for instances from Braun et al. [19]

The second dataset involves the classical 12 problem instances of Braun et al. Each
instance has 512 jobs and 16 resources. The four proposed hybrid methods, GA+VNS,
ACO+VNS, ACO(VNS) and GA(VNS), were compared against selected algorithms from
the literature, namely min-min algorithm [77], Genetic Algorithm (GA) [19], Cellular
Memetic Algorithms (cMA) [165], Memetic Algorithm and Tabu Search (MA+TS) [160],

5.4 Results for instances from Braun et al. [19] 93

Ant Colony Optimization and Tabu Search (ACO+TS) [135], Tabu Search (TS) [171],
parallel Cross generational Heterogeneous recombination Cataclysmic mutation (pCHC)
[117], and Two-Phase Variable Neighbourhood Search (TPVNS) [138]. All the compet-
ing algorithms were implemented sequentially with the exception of pCHC which was
implemented using the parallel mode. Moreover, all these are loosely coupled hybrid
meta-heuristics apart from min-min, which is a deterministic heuristic method. Each algo-
rithm uses different stopping times and different number of executions. For each problem
instance, the deterministic min-min algorithm requires less than one second to finish the
mapping, while GA, ACO-VNS, TS needed 65 s, 3.5 h, and 100 s, respectively, and the
average results were reported after 100, 1, and 10 runs, respectively. cMA, MA+TS, pCHC
and TPVNS required 90 s to find the solution and the average results were achieved after
10, 10, 50 and 50 runs, respectively. In this thesis, the GA-based methods were allowed
to run for 90 seconds while the ACO-based methods needed 9 minutes as shown in Table
5.11. To obtain the best, average and standard deviation values, GA+VNS, ACO+VNS,
ACO(VNS) and GA(VNS) were executed 50 times for each problem instance.

Table 5.11 Stopping times for the proposed methods for 512x16 dataset instances from
Braun et al.

Algorithm stopping time total time
GA(VNS) 90 seconds 90 seconds

GA+VNS
80 seconds for GA

90 seconds
10 seconds for VNS

ACO(VNS) 9 minutes 9 minutes

ACO+VNS
8 minutes and 50 seconds for ACO

9 minutes
10 seconds for VNS

Table 5.12 provides the results of applying GA+VNS, ACO+VNS, ACO(VNS) and
GA(VNS) compared to the selected methods. The best results are indicated in bold,
which show clearly that the proposed strongly coupled GA(VNS) outperforms all other
approaches in all instances. The GA(VNS) algorithm is expected to find high-quality
schedules in any single execution since it has very small standard deviation values in the
range [0.01, 0.07]. The table also shows the results for the proposed strongly coupled
ACO(VNS) which showed the second-best performance after GA(VNS) with relatively
small standard deviation values between 0.03 and 1.0. Although it needed six times longer
than GA(VNS), it is typically 140 times faster than ACO+TS [135], outperforming it in 10
out of 12 instances. In general, the relative performance order of the implemented methods
from best to worst was:

(
1
)
GA(VNS),

(
2
)
ACO(VNS),

(
3
)
ACO+VNS, and

(
4
)
GA+VNS.

Tables 5.13, 5.14, 5.15 and 5.16 show the improvement percentages of GA+VNS,
ACO+VNS, ACO(VNS) and GA(VNS) respectively over the selected methods from the

5.4 Results for instances from Braun et al. [19] 94

Ta
bl

e
5.

12
M

ak
es

pa
n

re
su

lts
fo

r5
12

x1
6

da
ta

se
ti

ns
ta

nc
es

fr
om

B
ra

un
et

al
.

In
st

an
ce

m
in

-m
in

[7
7]

G
A

[1
9]

cM
A

[1
65

]
M

A
+T

S[
16

0]
A

C
O

+T
S[

13
5]

T
S[

17
1]

pC
H

C
[1

17
]

T
PV

N
S[

13
8]

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

L
B

re
s

av
g

av
g

av
g

be
st

av
g

be
st

av
g

be
st

av
g

be
st

av
g

σ
be

st
av

g
σ

be
st

av
g

σ
be

st
av

g
σ

u_
c_

hi
hi

.0
84

60
67

5.
00

80
50

84
4.

50
77

00
92

9.
80

75
30

02
0.

20
74

97
20

0.
90

74
48

64
0.

50
74

61
81

9.
10

74
81

19
4.

50
74

39
47

1.
80

74
94

25
7.

80
74

40
00

3.
55

74
67

08
9.

73
0.

26
%

74
31

11
1.

34
74

53
09

9.
03

0.
21

%
74

29
32

2.
59

74
52

83
6.

64
0.

20
%

73
91

22
6.

27
74

03
80

8.
91

0.
07

%
73

46
52

4.
20

u_
c_

hi
lo

.0
16

40
22

.4
4

15
62

49
.2

0
15

53
34

.8
0

15
39

17
.2

0
15

42
34

.6
0

15
32

63
.3

0
15

37
91

.9
0

15
39

24
.0

0
15

32
70

.1
0

15
44

00
.3

0
15

40
23

.3
7

15
44

86
.2

3
0.

23
%

15
32

49
.9

8
15

37
13

.0
1

0.
23

%
15

31
83

.7
8

15
35

97
.8

7
0.

11
%

15
31

06
.6

7
15

31
23

.6
7

0.
01

%
15

27
00

.4
0

u_
c_

lo
hi

.0
27

58
37

.3
4

25
87

56
.8

0
25

13
60

.2
0

24
52

88
.9

0
24

40
97

.3
0

24
16

72
.7

0
24

15
24

.0
0

24
34

46
.3

0
24

08
03

.3
0

24
40

43
.2

0
24

10
08

.4
9

24
38

31
.1

0
0.

25
%

24
05

00
.8

6
24

29
91

.7
7

0.
22

%
23

92
59

.9
8

24
03

42
.0

4
0.

20
%

23
92

58
.2

0
23

92
89

.1
0

0.
01

%
23

81
38

.1
0

u_
c_

lo
lo

.0
55

46
.2

6
52

72
.3

0
52

18
.2

0
51

73
.7

0
51

78
.4

0
51

55
.0

0
51

77
.5

0
51

81
.6

0
51

54
.8

0
51

90
.3

0
51

70
.0

4
51

90
.0

2
0.

22
%

51
53

.0
0

51
73

.0
1

0.
22

%
51

48
.1

5
51

63
.6

0
0.

11
%

51
48

.0
2

51
48

.5
9

0.
01

%
51

32
.8

0

u_
i_

hi
hi

.0
35

13
91

9.
25

31
04

76
2.

50
31

86
66

4.
70

30
58

47
4.

90
29

47
75

4.
10

29
57

85
4.

10
29

52
49

3.
20

29
56

90
5.

70
29

44
07

4.
60

29
55

76
4.

70
29

50
24

8.
73

29
59

77
3.

53
0.

18
%

29
42

98
7.

16
29

55
28

3.
00

0.
23

%
29

38
41

6.
02

29
39

90
7.

97
0.

03
%

29
38

38
0.

62
29

39
30

1.
25

0.
02

%
29

09
32

6.
60

u_
i_

hi
lo

.0
80

75
5.

68
75

81
6.

10
75

85
6.

60
75

10
8.

50
73

77
6.

20
73

69
2.

90
73

63
9.

80
73

84
7.

10
73

37
8.

00
73

92
7.

00
73

60
0.

17
73

83
7.

88
0.

17
%

73
37

4.
91

73
62

5.
74

0.
18

%
73

37
7.

99
73

51
2.

45
0.

05
%

73
36

2.
98

73
39

1.
97

0.
02

%
73

05
7.

90

u_
i_

lo
hi

.0
12

05
17

.7
1

10
75

00
.7

0
11

06
20

.8
0

10
58

08
.6

0
10

24
45

.8
0

10
38

65
.7

0
10

21
36

.1
0

10
26

77
.3

0
10

20
57

.5
0

10
25

99
.7

0
10

21
11

.7
1

10
25

93
.4

8
0.

21
%

10
20

55
.2

3
10

25
54

.4
2

0.
22

%
10

20
52

.9
8

10
24

52
.2

0
0.

18
%

10
20

51
.7

4
10

21
67

.0
7

0.
05

%
10

10
63

.4
0

u_
i_

lo
lo

.0
27

79
.0

9
26

14
.4

0
26

24
.2

0
25

96
.6

0
25

53
.5

0
25

52
.1

0
25

49
.8

0
25

57
.2

0
25

47
.9

0
25

60
.1

0
25

46
.9

8
25

56
.8

9
0.

18
%

25
43

.6
0

25
52

.0
2

0.
16

%
25

41
.5

2
25

48
.7

8
0.

13
%

25
41

.1
7

25
42

.9
8

0.
03

%
25

29
.0

0

u_
s_

hi
hi

.0
51

60
34

3.
00

45
66

20
6.

00
44

24
54

0.
90

43
21

01
5.

40
41

62
54

7.
90

41
68

79
5.

90
41

98
77

9.
50

42
39

14
6.

30
41

45
94

1.
70

41
97

99
6.

50
41

46
22

4.
92

41
95

10
5.

32
0.

26
%

41
44

99
9.

88
41

67
86

2.
59

0.
30

%
41

06
39

1.
16

41
40

09
1.

67
0.

35
%

41
02

90
8.

20
41

04
61

3.
59

0.
02

%
40

63
56

3.
70

u_
s_

hi
lo

.0
10

45
40

.7
3

98
51

9.
40

98
28

3.
70

97
17

7.
30

96
76

2.
00

96
18

0.
90

96
62

3.
30

96
75

0.
30

95
87

2.
30

96
33

0.
40

96
40

2.
20

96
60

8.
24

0.
20

%
96

11
8.

69
96

17
8.

73
0.

06
%

96
11

7.
37

96
16

7.
89

0.
03

%
95

78
8.

97
95

82
3.

04
0.

02
%

95
41

9.
00

u_
s_

lo
hi

.0
14

02
84

.4
8

13
06

16
.5

0
13

00
14

.5
0

12
76

33
.0

0
12

39
22

.0
0

12
34

07
.4

0
12

32
51

.5
0

12
39

89
.4

0
12

29
86

.0
0

12
39

54
.3

0
12

40
06

.4
2

12
58

69
.0

1
0.

88
%

12
35

95
.1

6
12

57
29

.8
2

1.
01

%
12

35
76

.4
6

12
56

50
.3

1
1.

00
%

12
20

84
.1

0
12

21
43

.2
0

0.
02

%
12

04
52

.3
0

u_
s_

lo
lo

.0
38

67
.4

9
35

83
.4

0
35

22
.1

0
34

84
.1

0
34

55
.2

0
34

50
.5

0
34

50
.1

0
34

72
.2

0
34

40
.5

0
34

61
.9

0
34

60
.7

8
34

70
.3

0
0.

20
%

34
40

.0
2

34
50

.2
0

0.
22

%
34

39
.3

5
34

49
.4

6
0.

13
%

34
36

.6
3

34
37

.9
7

0.
01

%
34

14
.8

0

5.4 Results for instances from Braun et al. [19] 95

bibliography. GA(VNS) shows a better improvement percentage over all the methods
compared with a minimum average improvement of 0.86, while the minimum average
improvement percentage of ACO(VNS), which was the second best method, was 0.30.
These results indicate that the two proposed strongly coupled algorithms, ACO(VNS)
and GA(VNS), represent the new state-of-the-art sequential hybrid algorithms for the job
scheduling problem in grid computing. Moreover, as shown in Table 5.14, ACO+VNS also
outperformed almost all other methods with the exception of TS, in which it outperformed
ACO+VNS in the average improvement percentage. However, ACO+VNS outperformed
TS in 7 out of 12 instances. On the other hand, GA+VNS outperformed half of the selected
methods as shown in Table 5.13.

Table 5.13 Average improvement percentages of GA+VNS over some methods from the
literature for the 512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS
u_c_hihi.0 11.74 7.25 3.04 0.84 0.40 -0.25 0.19 0.36
u_c_hilo.0 5.81 1.13 0.55 -0.37 -0.16 -0.80 -0.37 -0.06
u_c_lohi.0 11.60 5.77 3.00 0.59 0.11 -0.89 -0.16 0.09
u_c_lolo.0 6.42 1.56 0.54 -0.32 -0.22 -0.68 -0.16 0.01
u_i_hihi.0 15.77 4.67 7.12 3.23 -0.41 -0.06 -0.10 -0.14
u_i_hilo.0 8.57 2.61 2.66 1.69 -0.08 -0.20 0.01 0.12
u_i_lohi.0 14.87 4.56 7.26 3.04 -0.14 1.22 0.08 0.01
u_i_lolo.0 8.00 2.20 2.56 1.53 -0.13 -0.19 0.01 0.13
u_s_hihi.0 18.70 8.13 5.19 2.91 -0.78 -0.63 1.04 0.07
u_s_hilo.0 7.59 1.94 1.70 0.59 0.16 -0.44 0.15 -0.29
u_s_lohi.0 10.28 3.63 3.19 1.38 -1.57 -1.99 -1.52 -1.54
u_s_lolo.0 10.27 3.16 1.47 0.40 -0.44 -0.57 0.05 -0.24
Avg 10.80 3.88 3.19 1.29 -0.27 -0.46 -0.06 -0.12

The two sample t-test with unequal variants was performed to statistically analyse the
performance of the four proposed hybrid methods. Table 5.17 reports the improvement
percentages for GA(VNS) over GA+VNS, ACO+VNS, and ACO(VNS), which clearly
indicate that GA(VNS) performs better than the rest. Moreover, Table 5.17 reports the
corresponding p-value for each instance which was less than 0.05, and hence we can
consider the improvement of GA(VNS) over the rest in terms of makespan to be statistically
significant.

5.4 Results for instances from Braun et al. [19] 96

Table 5.14 Average improvement percentages of ACO+VNS over some methods from the
literature for the 512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS
u_c_hihi.0 11.91 7.42 3.22 1.02 0.59 -0.06 0.38 0.55
u_c_hilo.0 6.29 1.62 1.04 0.13 0.34 -0.29 0.14 0.45
u_c_lohi.0 11.91 6.09 3.33 0.94 0.45 -0.55 0.19 0.43
u_c_lolo.0 6.73 1.88 0.87 0.01 0.10 -0.35 0.17 0.33
u_i_hihi.0 15.90 4.81 7.26 3.37 -0.26 0.09 0.05 0.02
u_i_hilo.0 8.83 2.89 2.94 1.97 0.20 0.09 0.30 0.41
u_i_lohi.0 14.91 4.60 7.29 3.08 -0.11 1.26 0.12 0.04
u_i_lolo.0 8.17 2.39 2.75 1.72 0.06 0.00 0.20 0.32
u_s_hihi.0 19.23 8.72 5.80 3.54 -0.13 0.02 1.68 0.72
u_s_hilo.0 8.00 2.38 2.14 1.03 0.60 0.00 0.59 0.16
u_s_lohi.0 10.38 3.74 3.30 1.49 -1.46 -1.88 -1.40 -1.43
u_s_lolo.0 10.79 3.72 2.04 0.97 0.14 0.01 0.63 0.34
Avg 11.09 4.19 3.50 1.61 0.05 -0.14 0.25 0.19

Table 5.15 Average improvement percentages of ACO(VNS) over some methods from the
literature for the 512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS
u_c_hihi.0 11.91 7.43 3.22 1.03 0.59 -0.06 0.38 0.55
u_c_hilo.0 6.36 1.70 1.12 0.21 0.41 -0.22 0.21 0.52
u_c_lohi.0 12.87 7.12 4.38 2.02 1.54 0.55 1.28 1.52
u_c_lolo.0 6.90 2.06 1.05 0.20 0.29 -0.17 0.35 0.51
u_i_hihi.0 16.34 5.31 7.74 3.88 0.27 0.61 0.57 0.54
u_i_hilo.0 8.97 3.04 3.09 2.12 0.36 0.24 0.45 0.56
u_i_lohi.0 14.99 4.70 7.38 3.17 -0.01 1.36 0.22 0.14
u_i_lolo.0 8.29 2.51 2.87 1.84 0.18 0.13 0.33 0.44
u_s_hihi.0 19.77 9.33 6.43 4.19 0.54 0.69 2.34 1.38
u_s_hilo.0 8.01 2.39 2.15 1.04 0.61 0.01 0.60 0.17
u_s_lohi.0 10.43 3.80 3.36 1.55 -1.39 -1.82 -1.34 -1.37
u_s_lolo.0 10.81 3.74 2.06 0.99 0.17 0.03 0.65 0.36
Avg 11.30 4.43 3.74 1.85 0.30 0.11 0.50 0.44

5.4 Results for instances from Braun et al. [19] 97

Table 5.16 Average improvement percentages of GA(VNS) over some methods from the
literature for the 512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS
u_c_hihi.0 12.49 8.04 3.86 1.68 1.25 0.60 1.03 1.21
u_c_hilo.0 6.64 2.00 1.42 0.52 0.72 0.09 0.52 0.83
u_c_lohi.0 13.25 7.52 4.80 2.45 1.97 0.99 1.71 1.95
u_c_lolo.0 7.17 2.35 1.33 0.49 0.58 0.12 0.64 0.80
u_i_hihi.0 16.35 5.33 7.76 3.90 0.29 0.63 0.60 0.56
u_i_hilo.0 9.12 3.20 3.25 2.29 0.52 0.41 0.62 0.72
u_i_lohi.0 15.23 4.96 7.64 3.44 0.27 1.64 0.50 0.42
u_i_lolo.0 8.50 2.73 3.09 2.06 0.41 0.36 0.56 0.67
u_s_hihi.0 20.46 10.11 7.23 5.01 1.39 1.54 3.17 2.22
u_s_hilo.0 8.34 2.74 2.50 1.39 0.97 0.37 0.96 0.53
u_s_lohi.0 12.93 6.49 6.05 4.30 1.44 1.02 1.49 1.46
u_s_lolo.0 11.11 4.06 2.39 1.32 0.50 0.36 0.99 0.69
Avg 11.80 4.96 4.28 2.40 0.86 0.68 1.06 1.01

Table 5.17 Average improvement percentages and statistical analysis of GA(VNS) over
other methods for Braun 512x16 dataset.

Instance
GA+VNS ACO+VNS ACO(VNS)

improvement p-value improvement p-value improvement p-value
u_c_hihi.0 0.85 <10−5 0.66 <10−5 0.66 <10−5

u_c_hilo.0 0.88 <10−5 0.38 <10−5 0.31 <10−5

u_c_lohi.0 1.86 <10−5 1.52 <10−5 0.44 <10−5

u_c_lolo.0 0.80 <10−5 0.47 <10−5 0.29 <10−5

u_i_hihi.0 0.69 <10−5 0.54 <10−5 0.02 0.00056
u_i_hilo.0 0.60 <10−5 0.32 <10−5 0.16 <10−5

u_i_lohi.0 0.42 <10−5 0.38 <10−5 0.28 <10−5

u_i_lolo.0 0.54 <10−5 0.35 <10−5 0.23 <10−5

u_s_hihi.0 2.16 <10−5 1.52 <10−5 0.86 <10−5

u_s_hilo.0 0.81 <10−5 0.37 <10−5 0.36 <10−5

u_s_lohi.0 2.96 <10−5 2.85 <10−5 2.79 <10−5

u_s_lolo.0 0.93 <10−5 0.35 <10−5 0.33 <10−5

Avg 1.13 0.81 0.56

In Table 5.12, the last column represents the Lower Bound (LB) values of each
problem instance, as reported in [28]. Table 5.18 summarizes the gaps between the average
makespan results for the proposed methods and selected algorithms from the literature

5.5 Results for instances from Nesmachnow et al. [118] 98

and their corresponding lower bounds. GA(VNS) and ACO(VNS) achieved the smallest
average gap values to the lower bound with 0.71 and 1.28, respectively, which indicates
that the quality of the solutions they found are very high compared to the others. The
average percentage gap of GA(VNS) for 512x16 problem instances was 0.71%, with 8 out
of 12 instances being below 1%, while ACO(VNS) achieved an average gap percentage
of 1.28% with 6 out of 12 being less than 1%. On the other hand, the average percentage
gap of ACO VNS was 1.54%, with 5 out of 12 instances being below 1%, while GA+VNS
achieved an average gap percentage of 1.86% with 12 out of 12 being greater than 1%.

Table 5.18 The gap values of the average makespan for the proposed methods and selected
algorithms from the literature and the corresponding lower bounds for 512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS GA+VNS ACO+VNS ACO(VNS) GA(VNS)

u_c_hihi.0 15.17 9.59 4.82 2.50 2.05 1.39 1.83 2.01 1.64 1.45 1.45 0.78

u_c_hilo.0 7.41 2.32 1.73 0.80 1.00 0.37 0.80 1.11 1.17 0.66 0.59 0.28

u_c_lohi.0 15.83 8.66 5.55 3.00 2.50 1.48 2.23 2.48 2.39 2.04 0.93 0.48

u_c_lolo.0 8.06 2.72 1.66 0.80 0.89 0.43 0.95 1.12 1.11 0.78 0.60 0.31

u_i_hihi.0 20.78 6.72 9.53 5.13 1.32 1.67 1.64 1.60 1.73 1.58 1.05 1.03

u_i_hilo.0 10.54 3.78 3.83 2.81 0.98 0.87 1.08 1.19 1.07 0.78 0.62 0.46

u_i_lohi.0 19.25 6.37 9.46 4.70 1.37 2.77 1.60 1.52 1.51 1.48 1.37 1.09

u_i_lolo.0 9.89 3.38 3.76 2.67 0.97 0.91 1.12 1.23 1.10 0.91 0.78 0.55

u_s_hihi.0 26.99 12.37 8.88 6.34 2.44 2.59 4.32 3.31 3.24 2.57 1.88 1.01

u_s_hilo.0 9.56 3.25 3.00 1.84 1.41 0.80 1.40 0.96 1.25 0.80 0.78 0.42

u_s_lohi.0 16.46 8.44 7.94 5.96 2.88 2.45 2.94 2.91 4.50 4.38 4.32 1.40

u_s_lolo.0 13.26 4.94 3.14 2.03 1.18 1.05 1.68 1.38 1.63 1.04 1.01 0.68

Avg 14.43 6.04 5.28 3.21 1.58 1.40 1.80 1.73 1.86 1.54 1.28 0.71

5.5 Results for instances from Nesmachnow et al. [118]

The third dataset consists of two sizes: 1024x32 and 2048x64, each of which contains 24
problem instances. Unlike the dataset of Braun et al. [19] , which is considered the de
facto standard benchmark for studying the job scheduling problem in grid computing, the
literature does not include much work which addresses this dataset. The performance of
GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) was compared against the following
algorithms from the bibliography: min-min algorithm [77], parallel Cross generational Het-
erogeneous recombination Cataclysmic mutation(pCHC) [117], and Two-Phase Variable
Neighbourhood Search (TPVNS) [138]. All the competing algorithms were implemented
sequentially apart from pCHC, which was implemented using the parallel mode. Moreover,
all of these are loosely coupled hybrid meta-heuristics apart from min-min, which is a
deterministic heuristic method. For both sizes, the GA-based methods were allowed to
run for 90 seconds, which was the same time used for pCHC and TPVNS, while the
ACO-based methods ran for 9 minutes, i.e., the same stopping times parameters, that are
illustrated in Table 5.11, were used. To obtain the best, average and standard deviation
values, both schedulers were executed 50 times for each problem instance.

5.5 Results for instances from Nesmachnow et al. [118] 99

Tables 5.19 and 5.20 provide the results of applying GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS) for the 1024x32 and 2048x64 dataset instances, respectively, compared
to the selected methods. The best results are indicated in bold, which show clearly that
GA(VNS) outperforms all other approaches in all instances. The GA(VNS) algorithm
is expected to find high quality schedules in any single execution since it has very small
standard deviation values, which vary between 0.02 and 0.33 for the 1024x32 dataset, and
between 0.01 and 0.26 for the 2048x64 dataset. In general, for both sizes, the relative
performance order of the implemented methods from best to worst was:

(
1
)
GA(VNS),(

2
)
ACO(VNS),

(
3
)
ACO+VNS, and

(
4
)
GA+VNS.

Tables 5.21 and 5.22 show the percentages of makespan reduction for GA+VNS,
ACO+VNS, ACO(VNS) and GA(VNS) for the 1024x32 and 2048x64 dataset instances,
respectively, over the selected methods from the bibliography. For both sizes, GA(VNS)
shows a better improvement percentage over all the compared methods. ACO(VNS)
achieved the second-best improvement percentages for the 1024x32 dataset; however, it
was only the third-best results for the 2048x64 dataset as TPVNS achieved a slightly better
average improvement percentage. ACO+VNS and GA+VNS achieved the third and fourth
-best improvement percentages for the 1024x32 dataset, respectively; however, they were
only the fourth and fifth -best results for the 2048x64 dataset as TPVNS achieved a slightly
better average improvement percentage.

Tables 5.23 and 5.24 present the improvement percentages for GA(VNS) over GA+VNS,
ACO+VNS and ACO(VNS) for the 1024x32 and 2048x64 dataset instances, respectively,
which clearly indicate that GA(VNS) performs better than the rest. Moreover, the table
reports the corresponding p-value when applying the two sample t-test with unequal vari-
ants for each instance to statistically analyse the performance of the four proposed hybrid
methods. The p-values were less than 0.05, and hence, we can consider the improvement
of GA(VNS) over the other methods in terms of makespan to be statistically significant.

5.5 Results for instances from Nesmachnow et al. [118] 100

Ta
bl

e
5.

19
M

ak
es

pa
n

re
su

lts
fo

r1
02

4x
32

da
ta

se
ti

ns
ta

nc
es

.

In
st

an
ce

m
in

-m
in

[7
7]

pC
H

C
[1

17
]

T
PV

N
S[

13
8]

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

L
B

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg
σ

B
es

t
A

vg
σ

B
es

t
A

vg
σ

B
es

t
A

vg
σ

A
.u

_c
_h

ih
i

22
50

80
62

.4
0

20
32

79
24

.0
0

20
51

03
00

.9
0

20
19

49
02

.0
0

20
28

41
91

.0
0

20
00

08
39

.8
1

20
12

09
70

.8
8

0.
36

%
19

90
04

06
.8

2
19

91
46

04
.1

9
0.

04
%

19
80

09
79

.1
0

19
81

88
50

.8
1

0.
04

%
19

60
20

98
.3

1
19

63
65

95
.2

2
0.

07
%

19
44

92
30

.0
0

A
.u

_c
_h

ilo
22

55
96

6.
00

20
48

58
2.

70
20

58
35

2.
20

20
46

64
8.

00
20

50
94

2.
20

20
32

61
0.

46
20

57
65

8.
85

0.
99

%
20

20
67

5.
10

20
49

01
0.

43
1.

12
%

20
04

75
5.

76
20

33
68

9.
80

1.
01

%
19

57
52

6.
50

19
59

20
6.

37
0.

02
%

19
51

34
5.

00

A
.u

_c
_l

oh
i

21
55

.0
0

19
56

.7
0

20
00

.0
0

19
62

.0
0

19
70

.2
0

19
61

.5
1

19
69

.2
4

0.
30

%
19

55
.8

5
19

64
.3

0
0.

33
%

19
00

.0
8

19
05

.6
4

0.
15

%
18

76
.5

3
18

80
.0

2
0.

06
%

18
66

.4
0

A
.u

_c
_l

ol
o

22
5.

90
20

7.
50

21
7.

80
20

6.
70

21
3.

40
20

7.
04

21
0.

73
0.

10
%

20
4.

08
20

8.
18

0.
12

%
20

0.
00

20
0.

25
0.

06
%

19
9.

72
20

0.
02

0.
08

%
19

8.
90

A
.u

_i
_h

ih
i

63
67

76
7.

60
51

69
96

0.
50

52
44

04
6.

90
51

67
78

1.
00

52
21

70
2.

00
51

70
41

6.
45

51
98

15
2.

08
0.

22
%

51
50

63
0.

96
51

56
94

0.
77

0.
03

%
51

00
02

6.
33

51
04

78
2.

53
0.

04
%

50
52

81
4.

63
50

85
83

8.
69

0.
20

%
50

12
20

7.
00

A
.u

_i
_h

ilo
64

14
38

.4
0

49
02

80
.3

0
49

26
99

.4
0

48
95

25
.2

0
49

38
00

.1
0

49
00

62
.7

3
49

23
57

.8
5

0.
21

%
48

70
35

.9
9

49
10

32
.3

2
0.

19
%

48
50

03
.8

0
48

53
16

.3
2

0.
03

%
47

86
81

.9
4

48
05

97
.4

7
0.

18
%

47
44

04
.6

0

A
.u

_i
_l

oh
i

66
4.

70
51

8.
20

52
3.

60
52

2.
40

53
0.

10
52

5.
04

52
9.

12
0.

22
%

52
1.

95
52

7.
05

0.
27

%
52

0.
02

52
0.

96
0.

09
%

50
7.

63
50

9.
85

0.
19

%
50

3.
40

A
.u

_i
_l

ol
o

63
.7

0
50

.6
0

51
.7

0
50

.8
0

51
.9

0
50

.9
0

51
.9

5
0.

30
%

50
.7

1
51

.6
1

0.
25

%
50

.0
0

50
.2

7
0.

26
%

49
.4

3
49

.6
1

0.
19

%
49

.0
0

A
.u

_s
_h

ih
i

14
12

58
81

.6
0

12
24

35
60

.0
0

12
43

98
43

.1
0

12
15

57
50

.0
0

12
30

61
22

.0
0

12
19

10
93

.6
3

12
28

82
40

.8
1

0.
18

%
12

14
16

15
.9

9
12

24
54

58
.1

3
0.

08
%

12
00

00
06

.4
8

12
01

16
69

.0
3

0.
06

%
11

69
04

02
.2

8
11

73
04

90
.6

5
0.

11
%

11
55

36
32

.0
0

A
.u

_s
_h

ilo
13

19
05

0.
60

11
87

50
6.

40
12

14
30

3.
00

11
75

33
8.

00
11

85
44

3.
20

11
74

15
0.

66
11

84
81

4.
83

0.
17

%
11

73
10

2.
71

11
82

01
1.

91
0.

14
%

11
70

12
1.

89
11

75
30

1.
84

0.
34

%
11

37
08

9.
07

11
43

81
9.

59
0.

17
%

11
26

55
6.

00

A
.u

_s
_l

oh
i

13
80

.5
0

11
86

.8
0

11
99

.2
0

11
84

.8
0

11
94

.6
0

11
85

.1
4

11
93

.3
3

0.
21

%
11

81
.5

8
11

87
.1

1
0.

14
%

11
70

.0
2

11
73

.0
5

0.
13

%
11

31
.0

6
11

35
.8

6
0.

20
%

11
22

.2
0

A
.u

_s
_l

ol
o

14
0.

60
12

2.
40

12
6.

50
12

2.
00

12
3.

10
12

3.
01

12
5.

45
0.

42
%

12
1.

22
12

3.
06

0.
32

%
12

0.
03

12
2.

14
0.

98
%

11
7.

49
11

7.
72

0.
17

%
11

6.
70

B
.u

_c
_h

ih
i

67
08

22
8.

50
61

69
82

3.
00

62
00

11
8.

00
61

89
68

1.
00

62
00

40
1.

50
61

88
01

5.
44

62
50

00
5.

32
1.

16
%

61
60

84
9.

71
61

95
85

1.
28

0.
65

%
60

81
10

3.
22

61
04

93
8.

95
0.

28
%

60
03

08
7.

48
60

08
67

6.
39

0.
05

%
59

80
87

2.
00

B
.u

_c
_h

ilo
66

68
4.

50
61

11
4.

70
61

39
0.

10
60

80
7.

50
61

59
9.

20
61

00
1.

55
61

52
3.

19
0.

19
%

60
76

5.
99

61
46

6.
78

0.
26

%
60

00
6.

62
60

34
1.

92
0.

42
%

59
28

7.
94

59
37

8.
59

0.
06

%
58

94
2.

50

B
.u

_c
_l

oh
i

23
20

11
.8

0
21

51
49

.2
0

21
81

24
.8

0
21

43
87

.1
0

21
64

81
.5

0
21

49
00

.1
7

21
63

19
.1

8
0.

21
%

21
40

59
.1

1
21

50
24

.1
8

0.
14

%
21

00
01

.2
8

21
00

60
.3

0
0.

02
%

20
91

83
.0

2
20

97
01

.1
5

0.
07

%
20

78
92

.8
0

B
.u

_c
_l

ol
o

23
86

.3
0

21
64

.3
0

22
08

.4
0

21
42

.1
0

21
58

.3
0

21
46

.9
8

21
57

.9
5

0.
13

%
21

31
.6

6
21

52
.4

1
0.

24
%

21
00

.0
4

21
03

.1
3

0.
08

%
20

84
.1

0
20

87
.6

9
0.

07
%

20
78

.0
0

B
.u

_i
_h

ih
i

21
64

57
6.

70
16

30
28

8.
60

16
70

11
2.

70
16

26
08

6.
00

16
28

72
9.

60
16

27
28

6.
48

16
30

17
9.

33
0.

32
%

16
25

06
1.

53
16

27
97

5.
62

0.
32

%
16

20
13

5.
38

16
25

04
2.

35
0.

14
%

15
86

92
8.

39
16

01
15

1.
49

0.
31

%
15

67
17

9.
00

B
.u

_i
_h

ilo
17

08
3.

10
15

12
1.

50
15

46
4.

10
15

00
3.

10
15

71
5.

80
15

12
0.

30
15

45
2.

32
0.

34
%

15
00

3.
02

15
30

3.
88

0.
09

%
15

00
1.

07
15

05
9.

49
0.

16
%

14
70

2.
66

14
84

8.
90

0.
33

%
14

58
2.

30

B
.u

_i
_l

oh
i

56
60

1.
20

49
56

9.
90

50
12

8.
20

49
26

4.
10

49
98

1.
20

49
85

0.
73

50
26

3.
48

0.
24

%
49

12
9.

13
49

90
3.

48
0.

26
%

48
91

2.
32

49
43

1.
40

0.
81

%
48

10
1.

79
48

25
9.

18
0.

18
%

47
60

6.
90

B
.u

_i
_l

ol
o

58
5.

00
49

6.
10

50
7.

40
49

2.
70

50
1.

40
49

4.
23

50
2.

05
0.

26
%

49
2.

02
50

0.
09

0.
17

%
49

0.
18

49
1.

68
0.

13
%

48
2.

27
48

5.
53

0.
27

%
47

7.
40

B
.u

_s
_h

ih
i

39
67

26
5.

90
33

93
01

0.
20

34
30

21
8.

10
33

44
87

5.
00

33
92

15
7.

30
33

42
05

1.
23

33
89

65
8.

57
0.

34
%

33
34

00
0.

81
33

70
83

1.
23

0.
13

%
33

00
41

8.
86

33
28

58
0.

56
0.

54
%

32
17

74
7.

08
32

48
00

5.
73

0.
33

%
31

78
48

2.
00

B
.u

_s
_h

ilo
40

69
1.

60
35

98
8.

40
36

51
5.

60
35

35
2.

20
36

91
1.

20
35

34
4.

07
36

50
7.

23
0.

36
%

35
20

0.
70

35
91

6.
75

0.
10

%
35

00
0.

62
35

04
0.

84
0.

06
%

34
28

5.
87

34
70

5.
80

0.
32

%
33

94
8.

70

B
.u

_s
_l

oh
i

13
56

24
.6

0
11

51
79

.2
0

11
80

70
.3

0
11

46
53

.3
0

11
70

17
.1

0
11

47
26

.4
2

11
75

21
.0

8
0.

30
%

11
45

91
.4

7
11

68
91

.0
2

0.
24

%
11

40
46

.4
8

11
63

87
.5

9
1.

73
%

10
92

88
.5

2
10

93
86

.2
8

0.
03

%
10

83
30

.1
0

B
.u

_s
_l

ol
o

13
33

.2
0

11
91

.7
0

12
30

.3
0

11
73

.5
0

11
96

.4
0

11
74

.0
2

11
90

.7
6

0.
29

%
11

72
.1

6
11

83
.0

8
0.

09
%

11
70

.1
9

11
72

.3
3

0.
10

%
11

43
.2

5
11

53
.2

3
0.

27
%

11
28

.1
0

5.5 Results for instances from Nesmachnow et al. [118] 101

Ta
bl

e
5.

20
M

ak
es

pa
n

re
su

lts
fo

r2
04

8x
64

da
ta

se
ti

ns
ta

nc
es

.

In
st

an
ce

m
in

-m
in

[7
7]

pC
H

C
[1

17
]

T
PV

N
S[

13
8]

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

L
B

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg
σ

B
es

t
A

vg
σ

B
es

t
A

vg
σ

B
es

t
A

vg
σ

A
.u

_c
_h

ih
i

19
55

22
21

.8
0

18
11

04
79

.1
0

18
21

82
85

.6
0

17
79

58
63

.0
0

17
80

14
92

.2
0

17
93

02
24

.3
4

17
93

38
72

.5
2

0.
14

%
17

92
01

27
.7

5
17

92
56

63
.5

1
0.

21
%

17
89

56
12

.1
4

17
90

04
36

.4
1

0.
01

%
17

24
11

45
.3

9
17

25
34

26
.9

0
0.

05
%

17
14

19
77

.4
0

A
.u

_c
_h

ilo
18

73
13

4.
20

17
48

50
9.

20
17

60
14

1.
20

17
27

24
8.

00
17

36
97

1.
30

17
36

03
4.

71
17

40
01

0.
36

0.
26

%
17

35
01

7.
36

17
39

01
6.

48
0.

20
%

17
33

30
0.

10
17

33
70

3.
35

0.
01

%
16

73
53

8.
85

16
76

78
4.

20
0.

23
%

16
64

59
2.

80

A
.u

_c
_l

oh
i

19
24

.7
0

17
98

.4
0

18
04

.9
0

17
61

.0
0

17
70

.6
0

17
66

.0
1

17
70

.0
2

0.
19

%
17

62
.5

3
17

65
.0

6
0.

08
%

17
61

.0
9

17
61

.8
2

0.
02

%
17

08
.2

4
17

11
.0

9
0.

17
%

16
95

.3
0

A
.u

_c
_l

ol
o

19
1.

60
17

7.
60

17
8.

10
17

4.
30

17
5.

50
17

8.
01

17
9.

08
0.

25
%

17
7.

12
17

8.
01

0.
16

%
17

6.
48

17
6.

79
0.

09
%

16
9.

32
16

9.
59

0.
24

%
16

8.
30

A
.u

_i
_h

ih
i

32
48

93
5.

40
25

06
25

8.
50

25
46

45
9.

70
24

78
01

1.
00

25
00

93
7.

20
24

92
44

5.
85

25
56

19
6.

14
0.

92
%

24
78

07
9.

39
25

50
20

3.
45

1.
04

%
24

70
22

7.
48

25
47

72
5.

05
2.

36
%

24
34

88
0.

15
24

51
07

9.
04

0.
26

%
23

66
68

2.
10

A
.u

_i
_h

ilo
36

58
28

.6
0

27
27

41
.3

0
27

38
76

.3
0

27
43

78
.4

0
27

60
00

.1
0

27
59

80
.2

0
27

67
63

.3
0

0.
20

%
27

31
87

.2
0

27
40

56
.5

1
0.

12
%

27
10

60
.2

8
27

33
42

.2
1

0.
60

%
26

90
22

.0
7

26
98

87
.0

9
0.

19
%

26
09

04
.5

0

A
.u

_i
_l

oh
i

32
0.

90
26

6.
30

26
7.

50
26

5.
90

26
6.

20
26

7.
06

26
8.

45
1.

62
%

26
6.

04
26

7.
23

1.
39

%
26

5.
10

27
0.

54
1.

56
%

26
2.

02
26

3.
50

0.
19

%
25

5.
20

A
.u

_i
_l

ol
o

32
.3

0
26

.4
0

26
.5

0
26

.7
0

26
.9

0
26

.8
0

27
.0

3
0.

25
%

26
.5

1
26

.8
6

0.
33

%
26

.0
1

26
.7

6
1.

93
%

25
.7

0
26

.0
0

0.
24

%
25

.1
0

A
.u

_s
_h

ih
i

11
24

56
79

.6
0

97
56

49
9.

70
98

21
93

4.
50

95
24

60
3.

00
96

01
36

4.
00

95
16

94
4.

72
95

84
06

6.
24

0.
15

%
94

86
94

4.
72

95
34

92
0.

93
0.

11
%

93
10

63
6.

32
95

06
57

0.
57

1.
75

%
92

91
52

2.
52

93
17

60
4.

64
0.

15
%

90
50

26
0.

80

A
.u

_s
_h

ilo
10

42
94

8.
50

92
40

94
.9

0
93

79
98

.8
0

89
46

95
.3

0
90

93
81

.6
0

90
13

35
.2

0
90

91
03

.9
5

0.
22

%
89

38
97

.8
9

90
84

84
.0

1
0.

22
%

88
08

35
.1

6
91

04
36

.5
3

0.
66

%
87

40
08

.8
2

87
98

69
.2

5
0.

20
%

85
13

99
.9

0

A
.u

_s
_l

oh
i

10
56

.0
0

94
7.

10
95

2.
30

93
1.

60
93

6.
10

95
0.

01
95

1.
05

0.
13

%
94

8.
01

94
9.

09
0.

12
%

94
7.

85
94

8.
69

0.
05

%
90

6.
95

90
9.

99
0.

17
%

88
8.

90

A
.u

_s
_l

ol
o

11
5.

30
99

.6
0

10
0.

40
97

.0
0

98
.9

0
99

.5
0

10
0.

40
0.

17
%

97
.0

5
99

.0
0

0.
25

%
96

.0
9

97
.8

2
0.

55
%

95
.5

5
96

.2
1

0.
21

%
92

.3
0

B
.u

_c
_h

ih
i

55
64

66
4.

30
52

90
12

8.
20

53
00

31
6.

10
52

09
57

3.
00

52
19

96
1.

30
52

20
22

1.
02

52
30

21
5.

58
0.

18
%

51
90

03
3.

71
52

00
35

9.
73

0.
19

%
51

83
52

6.
58

51
85

28
8.

69
0.

02
%

50
06

27
0.

99
50

13
21

2.
53

0.
11

%
49

75
77

8.
80

B
.u

_c
_h

ilo
59

35
2.

80
55

31
6.

20
55

34
3.

10
53

96
0.

30
54

00
1.

50
53

87
7.

78
54

80
1.

88
0.

22
%

53
43

4.
14

54
70

0.
63

0.
31

%
53

12
6.

29
54

41
4.

88
0.

13
%

52
50

6.
24

52
57

9.
58

0.
17

%
52

24
0.

60

B
.u

_c
_l

oh
i

19
08

42
.4

0
17

70
63

.4
0

17
76

12
.4

0
17

54
29

.4
0

17
69

81
.2

0
17

58
24

.4
1

17
64

00
.0

3
0.

08
%

17
55

02
.3

6
17

60
04

.5
0

0.
07

%
17

54
07

.8
8

17
57

93
.5

8
0.

13
%

17
33

51
.6

6
17

33
99

.6
5

0.
01

%
16

73
81

.1
0

B
.u

_c
_l

ol
o

19
27

.7
0

18
14

.7
0

18
18

.3
0

17
86

.3
0

17
91

.0
0

17
89

.0
4

17
95

.0
9

0.
44

%
17

86
.1

0
17

90
.0

3
0.

28
%

17
85

.0
0

17
85

.9
2

0.
02

%
17

80
.8

7
17

81
.4

3
0.

02
%

17
15

.0
0

B
.u

_i
_h

ih
i

92
92

95
.8

0
77

01
10

.6
0

77
49

93
.0

0
76

59
66

.9
0

76
91

21
.1

0
76

90
23

.9
3

77
19

90
.8

7
0.

23
%

76
58

11
.1

6
77

10
52

.4
8

0.
40

%
76

57
27

.5
3

77
07

71
.6

0
0.

32
%

76
24

68
.5

5
76

48
72

.1
4

0.
18

%
73

51
01

.5
0

B
.u

_i
_h

ilo
10

31
8.

40
79

06
.5

0
79

32
.9

0
78

96
.9

0
79

10
.1

0
79

03
.7

4
79

90
.6

0
1.

18
%

78
99

.8
1

79
50

.4
4

0.
69

%
78

96
.4

7
79

20
.6

0
0.

17
%

78
82

.4
2

79
07

.5
6

0.
18

%
75

36
.3

0

B
.u

_i
_l

oh
i

34
07

1.
00

26
94

1.
20

27
20

7.
30

27
11

8.
90

27
90

0.
40

27
21

0.
64

27
89

5.
77

0.
23

%
27

11
1.

15
27

70
2.

23
0.

20
%

27
02

3.
34

27
63

7.
86

0.
34

%
26

21
2.

04
26

53
9.

76
0.

20
%

25
68

1.
20

B
.u

_i
_l

ol
o

35
5.

70
26

2.
40

26
4.

70
26

4.
90

26
5.

80
26

4.
65

26
6.

46
0.

60
%

26
3.

37
26

5.
98

0.
87

%
26

1.
13

26
5.

42
1.

19
%

25
5.

43
25

6.
77

0.
19

%
25

0.
50

B
.u

_s
_h

ih
i

32
93

15
7.

10
29

10
50

7.
60

29
23

85
7.

10
28

65
25

0.
00

28
76

31
0.

00
28

91
18

4.
58

29
10

02
7.

70
0.

43
%

28
69

95
8.

73
28

90
17

9.
77

0.
46

%
28

67
10

5.
20

28
85

34
1.

34
0.

05
%

27
45

55
7.

74
27

53
09

9.
90

0.
19

%
27

10
02

4.
00

B
.u

_s
_h

ilo
33

44
5.

40
29

44
2.

20
29

51
8.

60
28

52
0.

40
28

73
1.

20
28

79
7.

18
29

25
7.

77
0.

26
%

28
51

3.
85

29
13

6.
36

0.
35

%
28

44
1.

56
29

05
3.

08
0.

99
%

27
91

2.
39

28
00

1.
94

0.
20

%
27

26
8.

00

B
.u

_s
_l

oh
i

11
12

37
.4

0
98

60
7.

00
98

75
8.

30
94

77
7.

90
95

10
1.

40
95

04
0.

06
95

42
8.

05
0.

22
%

94
63

4.
51

95
30

0.
75

0.
21

%
94

46
5.

30
95

24
3.

41
0.

65
%

93
46

1.
51

93
68

3.
73

0.
20

%
90

72
7.

30

B
.u

_s
_l

ol
o

11
63

.8
0

10
14

.3
0

10
19

.7
0

99
5.

80
10

03
.2

0
10

12
.1

2
10

20
.0

1
0.

22
%

99
4.

26
10

15
.2

4
0.

60
%

99
0.

35
10

13
.0

1
0.

12
%

95
6.

97
95

9.
58

0.
18

%
93

9.
00

5.5 Results for instances from Nesmachnow et al. [118] 102

Ta
bl

e
5.

21
A

ve
ra

ge
im

pr
ov

em
en

tp
er

ce
nt

ag
es

of
G

A
+V

N
S,

A
C

O
+V

N
S,

A
C

O
(V

N
S)

an
d

G
A

(V
N

S)
ov

er
so

m
e

m
et

ho
ds

fr
om

th
e

lit
er

at
ur

e
fo

r
th

e
10

24
x3

2
da

ta
se

t.

In
st

an
ce

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

m
in

-m
in

pC
H

C
T

PV
N

S
m

in
-m

in
pC

H
C

T
PV

N
S

m
in

-m
in

pC
H

C
T

PV
N

S
m

in
–m

in
pC

H
C

T
PV

N
S

A
.u

_c
_h

ih
i

10
.6

1
1.

90
0.

80
11

.5
2

2.
90

1.
82

11
.9

5
3.

37
2.

29
12

.7
6

4.
26

3.
19

A
.u

_c
_h

ilo
8.

79
0.

03
-0

.3
3

9.
17

0.
45

0.
09

9.
85

1.
20

0.
84

13
.1

5
4.

82
4.

47

A
.u

_c
_l

oh
i

8.
62

1.
54

0.
05

8.
85

1.
79

0.
30

11
.5

7
4.

72
3.

28
12

.7
6

6.
00

4.
58

A
.u

_c
_l

ol
o

6.
72

3.
25

1.
25

7.
84

4.
42

2.
45

11
.3

6
8.

06
6.

16
11

.4
6

8.
16

6.
27

A
.u

_i
_h

ih
i

18
.3

7
0.

88
0.

45
19

.0
1

1.
66

1.
24

19
.8

3
2.

66
2.

24
20

.1
3

3.
02

2.
60

A
.u

_i
_h

ilo
23

.2
4

0.
07

0.
29

23
.4

5
0.

34
0.

56
24

.3
4

1.
50

1.
72

25
.0

8
2.

46
2.

67

A
.u

_i
_l

oh
i

20
.4

0
-1

.0
5

0.
18

20
.7

1
-0

.6
6

0.
58

21
.6

3
0.

50
1.

72
23

.3
0

2.
63

3.
82

A
.u

_i
_l

ol
o

18
.4

5
-0

.4
8

-0
.1

0
18

.9
8

0.
17

0.
56

21
.0

8
2.

76
3.

14
22

.1
2

4.
04

4.
41

A
.u

_s
_h

ih
i

13
.0

1
1.

22
0.

15
13

.3
1

1.
56

0.
49

14
.9

7
3.

44
2.

39
16

.9
6

5.
70

4.
68

A
.u

_s
_h

ilo
10

.1
8

2.
43

0.
05

10
.3

9
2.

66
0.

29
10

.9
0

3.
21

0.
86

13
.2

8
5.

80
3.

51

A
.u

_s
_l

oh
i

13
.5

6
0.

49
0.

11
14

.0
1

1.
01

0.
63

15
.0

3
2.

18
1.

80
17

.7
2

5.
28

4.
92

A
.u

_s
_l

ol
o

10
.7

8
0.

83
-1

.9
1

12
.4

8
2.

72
0.

03
13

.1
3

3.
44

0.
78

16
.2

7
6.

94
4.

37

B
.u

_c
_h

ih
i

6.
83

-0
.8

0
-0

.8
0

7.
64

0.
07

0.
07

8.
99

1.
54

1.
54

10
.4

3
3.

09
3.

09

B
.u

_c
_h

ilo
7.

74
-0

.2
2

0.
12

7.
82

-0
.1

2
0.

21
9.

51
1.

71
2.

04
10

.9
6

3.
28

3.
60

B
.u

_c
_l

oh
i

6.
76

0.
83

0.
07

7.
32

1.
42

0.
67

9.
46

3.
70

2.
97

9.
62

3.
86

3.
13

B
.u

_c
_l

ol
o

9.
57

2.
28

0.
02

9.
80

2.
54

0.
27

11
.8

7
4.

77
2.

56
12

.5
1

5.
47

3.
27

B
.u

_i
_h

ih
i

24
.6

9
2.

39
-0

.0
9

24
.7

9
2.

52
0.

05
24

.9
3

2.
70

0.
23

26
.0

3
4.

13
1.

69

B
.u

_i
_h

ilo
9.

55
0.

08
1.

68
10

.4
2

1.
04

2.
62

11
.8

5
2.

62
4.

18
13

.0
8

3.
98

5.
52

B
.u

_i
_l

oh
i

11
.2

0
-0

.2
7

-0
.5

6
11

.8
3

0.
45

0.
16

12
.6

7
1.

39
1.

10
14

.7
4

3.
73

3.
45

B
.u

_i
_l

ol
o

14
.1

8
1.

05
-0

.1
3

14
.5

1
1.

44
0.

26
15

.9
5

3.
10

1.
94

17
.0

0
4.

31
3.

17

B
.u

_s
_h

ih
i

14
.5

6
1.

18
0.

07
15

.0
3

1.
73

0.
63

16
.1

0
2.

96
1.

87
18

.1
3

5.
31

4.
25

B
.u

_s
_h

ilo
10

.2
8

0.
02

1.
09

11
.7

3
1.

64
2.

69
13

.8
9

4.
04

5.
07

14
.7

1
4.

96
5.

97

B
.u

_s
_l

oh
i

13
.3

5
0.

47
-0

.4
3

13
.8

1
1.

00
0.

11
14

.1
8

1.
43

0.
54

19
.3

5
7.

35
6.

52

B
.u

_s
_l

ol
o

10
.6

8
3.

21
0.

47
11

.2
6

3.
84

1.
11

12
.0

7
4.

71
2.

01
13

.5
0

6.
26

3.
61

A
vg

12
.5

9
0.

89
0.

11
13

.1
5

1.
52

0.
75

14
.4

6
2.

99
2.

22
16

.0
4

4.
78

4.
03

5.5 Results for instances from Nesmachnow et al. [118] 103

Ta
bl

e
5.

22
A

ve
ra

ge
im

pr
ov

em
en

tp
er

ce
nt

ag
es

of
G

A
+V

N
S,

A
C

O
+V

N
S,

A
C

O
(V

N
S)

an
d

G
A

(V
N

S)
ov

er
so

m
e

m
et

ho
ds

fr
om

th
e

lit
er

at
ur

e
fo

r
th

e
20

48
x6

4
da

ta
se

t.

In
st

an
ce

G
A

+V
N

S
A

C
O

+V
N

S
A

C
O

(V
N

S)
G

A
(V

N
S)

m
in

-m
in

pC
H

C
T

PV
N

S
m

in
-m

in
pC

H
C

T
PV

N
S

m
in

-m
in

pC
H

C
T

PV
N

S
m

in
–m

in
pC

H
C

T
PV

N
S

A
.u

_c
_h

ih
i

8.
28

1.
56

-0
.7

4
8.

32
1.

61
-0

.7
0

8.
45

1.
74

-0
.5

6
11

.7
6

5.
30

3.
08

A
.u

_c
_h

ilo
7.

11
1.

14
-0

.1
7

7.
16

1.
20

-0
.1

2
7.

44
1.

50
0.

19
10

.4
8

4.
74

3.
47

A
.u

_c
_l

oh
i

8.
04

1.
93

0.
03

8.
29

2.
21

0.
31

8.
46

2.
39

0.
50

11
.1

0
5.

20
3.

36

A
.u

_c
_l

ol
o

6.
53

-0
.5

5
-2

.0
4

7.
09

0.
05

-1
.4

3
7.

73
0.

74
-0

.7
3

11
.4

9
4.

78
3.

37

A
.u

_i
_h

ih
i

21
.3

2
-0

.3
8

-2
.2

1
21

.5
1

-0
.1

5
-1

.9
7

21
.5

8
-0

.0
5

-1
.8

7
24

.5
6

3.
75

1.
99

A
.u

_i
_h

ilo
24

.3
5

-1
.0

5
-0

.2
8

25
.0

9
-0

.0
7

0.
70

25
.2

8
0.

20
0.

96
26

.2
3

1.
46

2.
21

A
.u

_i
_l

oh
i

16
.3

4
-0

.3
6

-0
.8

5
16

.7
2

0.
10

-0
.3

9
15

.6
9

-1
.1

3
-1

.6
3

17
.8

9
1.

50
1.

01

A
.u

_i
_l

ol
o

16
.3

2
-2

.0
0

-0
.4

8
16

.8
4

-1
.3

6
0.

15
17

.1
5

-0
.9

8
0.

52
19

.5
0

1.
89

3.
35

A
.u

_s
_h

ih
i

14
.7

8
2.

42
0.

18
15

.2
1

2.
92

0.
69

15
.4

6
3.

21
0.

99
17

.1
5

5.
13

2.
96

A
.u

_s
_h

ilo
12

.8
3

3.
08

0.
03

12
.8

9
3.

15
0.

10
12

.7
1

2.
94

-0
.1

2
15

.6
4

6.
20

3.
25

A
.u

_s
_l

oh
i

9.
94

0.
13

-1
.6

0
10

.1
2

0.
34

-1
.3

9
10

.1
6

0.
38

-1
.3

5
13

.8
3

4.
44

2.
79

A
.u

_s
_l

ol
o

12
.9

2
0.

00
-1

.5
2

14
.1

4
1.

39
-0

.1
0

15
.1

6
2.

57
1.

10
16

.5
6

4.
17

2.
72

B
.u

_c
_h

ih
i

6.
01

1.
32

-0
.2

0
6.

55
1.

89
0.

38
6.

82
2.

17
0.

66
9.

91
5.

42
3.

96

B
.u

_c
_h

ilo
7.

67
0.

98
-1

.4
8

7.
84

1.
16

-1
.2

9
8.

32
1.

68
-0

.7
7

11
.4

1
4.

99
2.

63

B
.u

_c
_l

oh
i

7.
57

0.
68

0.
33

7.
77

0.
91

0.
55

7.
89

1.
02

0.
67

9.
14

2.
37

2.
02

B
.u

_c
_l

ol
o

6.
88

1.
28

-0
.2

3
7.

14
1.

55
0.

05
7.

36
1.

78
0.

28
7.

59
2.

03
0.

53

B
.u

_i
_h

ih
i

16
.9

3
0.

39
-0

.3
7

17
.0

3
0.

51
-0

.2
5

17
.0

6
0.

54
-0

.2
1

17
.6

9
1.

31
0.

55

B
.u

_i
_h

ilo
22

.5
6

-0
.7

3
-1

.0
2

22
.9

5
-0

.2
2

-0
.5

1
23

.2
4

0.
16

-0
.1

3
23

.3
6

0.
32

0.
03

B
.u

_i
_l

oh
i

18
.1

2
-2

.5
3

0.
02

18
.6

9
-1

.8
2

0.
71

18
.8

8
-1

.5
8

0.
94

22
.1

0
2.

45
4.

88

B
.u

_i
_l

ol
o

25
.0

9
-0

.6
6

-0
.2

5
25

.2
2

-0
.4

8
-0

.0
7

25
.3

8
-0

.2
7

0.
14

27
.8

1
3.

00
3.

40

B
.u

_s
_h

ih
i

11
.6

3
0.

47
-1

.1
7

12
.2

4
1.

15
-0

.4
8

12
.3

8
1.

32
-0

.3
1

16
.4

0
5.

84
4.

28

B
.u

_s
_h

ilo
12

.5
2

0.
88

-1
.8

3
12

.8
8

1.
29

-1
.4

1
13

.1
3

1.
58

-1
.1

2
16

.2
8

5.
14

2.
54

B
.u

_s
_l

oh
i

14
.2

1
3.

37
-0

.3
4

14
.3

3
3.

50
-0

.2
1

14
.3

8
3.

56
-0

.1
5

15
.7

8
5.

14
1.

49

B
.u

_s
_l

ol
o

12
.3

6
-0

.0
3

-1
.6

8
12

.7
7

0.
44

-1
.2

0
12

.9
6

0.
66

-0
.9

8
17

.5
5

5.
90

4.
35

A
vg

13
.3

5
0.

47
-0

.7
4

13
.7

0
0.

89
-0

.3
3

13
.8

8
1.

09
-0

.1
2

16
.3

0
3.

85
2.

68

5.5 Results for instances from Nesmachnow et al. [118] 104

Table 5.23 Average improvement percentages and statistical analysis of GA(VNS) over
other methods for the 1024x32 dataset.

Instance
GA+VNS ACO+VNS ACO(VNS)

improvement p-value improvement p-value improvement p-value
A.u_c_hihi 2.41 <10−5 1.40 <10−5 0.92 <10−5

A.u_c_hilo 4.78 <10−5 4.38 <10−5 3.66 <10−5

A.u_c_lohi 4.53 <10−5 4.29 <10−5 1.34 <10−5

A.u_c_lolo 5.08 <10−5 3.92 <10−5 0.11 <10−5

A.u_i_hihi 2.16 <10−5 1.38 <10−5 0.37 <10−5

A.u_i_hilo 2.39 <10−5 2.13 <10−5 0.97 <10−5

A.u_i_lohi 3.64 <10−5 3.26 <10−5 2.13 <10−5

A.u_i_lolo 4.50 <10−5 3.87 <10−5 1.31 <10−5

A.u_s_hihi 4.54 <10−5 4.21 <10−5 2.34 <10−5

A.u_s_hilo 3.46 <10−5 3.23 <10−5 2.68 <10−5

A.u_s_lohi 4.82 <10−5 4.32 <10−5 3.17 <10−5

A.u_s_lolo 6.16 <10−5 4.34 <10−5 3.62 <10−5

B.u_c_hihi 3.86 <10−5 3.02 <10−5 1.58 <10−5

B.u_c_hilo 3.49 <10−5 3.40 <10−5 1.60 <10−5

B.u_c_lohi 3.06 <10−5 2.48 <10−5 0.17 <10−5

B.u_c_lolo 3.26 <10−5 3.01 <10−5 0.73 <10−5

B.u_i_hihi 1.78 <10−5 1.65 <10−5 1.47 <10−5

B.u_i_hilo 3.91 <10−5 2.97 <10−5 1.40 <10−5

B.u_i_lohi 3.99 <10−5 3.29 <10−5 2.37 <10−5

B.u_i_lolo 3.29 <10−5 2.91 <10−5 1.25 <10−5

B.u_s_hihi 4.18 <10−5 3.64 <10−5 2.42 <10−5

B.u_s_hilo 4.93 <10−5 3.37 <10−5 0.96 <10−5

B.u_s_lohi 6.92 <10−5 6.42 <10−5 6.02 <10−5

B.u_s_lolo 3.15 <10−5 2.52 <10−5 1.63 <10−5

Avg 3.93 3.31 1.84

5.5 Results for instances from Nesmachnow et al. [118] 105

Table 5.24 Average improvement percentages and statistical analysis of GA(VNS) over
other methods for the 2048x64 dataset.

Instance
GA+VNS ACO+VNS ACO(VNS)

improvement p-value improvement p-value improvement p-value
A.u_c_hihi 3.79 <10−5 3.75 <10−5 3.61 <10−5

A.u_c_hilo 3.63 <10−5 3.58 <10−5 3.28 <10−5

A.u_c_lohi 3.33 <10−5 3.06 <10−5 2.88 <10−5

A.u_c_lolo 5.30 <10−5 4.73 <10−5 4.07 <10−5

A.u_i_hihi 4.11 <10−5 3.89 <10−5 3.79 <10−5

A.u_i_hilo 2.48 <10−5 1.52 <10−5 1.26 <10−5

A.u_i_lohi 1.84 <10−5 1.40 <10−5 2.60 <10−5

A.u_i_lolo 3.81 <10−5 3.20 <10−5 2.84 <10−5

A.u_s_hihi 2.78 <10−5 2.28 <10−5 1.99 <10−5

A.u_s_hilo 3.22 <10−5 3.15 <10−5 3.36 <10−5

A.u_s_lohi 4.32 <10−5 4.12 <10−5 4.08 <10−5

A.u_s_lolo 4.17 <10−5 2.82 <10−5 1.64 <10−5

B.u_c_hihi 4.15 <10−5 3.60 <10−5 3.32 <10−5

B.u_c_hilo 4.06 <10−5 3.88 <10−5 3.37 <10−5

B.u_c_lohi 1.70 <10−5 1.48 <10−5 1.36 <10−5

B.u_c_lolo 0.76 <10−5 0.48 <10−5 0.25 <10−5

B.u_i_hihi 0.92 <10−5 0.80 <10−5 0.77 <10−5

B.u_i_hilo 1.04 <10−5 0.54 <10−5 0.16 0.00009
B.u_i_lohi 4.86 <10−5 4.20 <10−5 3.97 <10−5

B.u_i_lolo 3.64 <10−5 3.46 <10−5 3.26 <10−5

B.u_s_hihi 5.39 <10−5 4.74 <10−5 4.58 <10−5

B.u_s_hilo 4.29 <10−5 3.89 <10−5 3.62 <10−5

B.u_s_lohi 1.83 <10−5 1.70 <10−5 1.64 <10−5

B.u_s_lolo 5.92 <10−5 5.48 <10−5 5.27 <10−5

Avg 3.39 2.99 2.79

In Tables 5.19 and 5.20, the last column represents the Lower Bound (LB) values of
each problem instance as reported in [117]. Tables 5.25 and 5.26 summarize the gap values
between the average makespan results for GA+VNS, ACO+VNS, ACO(VNS), GA(VNS)
and selected algorithms from the literature and its corresponding lower bounds for the
1024x32 and 2048x64 dataset instances. For 1024x32 instances, GA(VNS) achieved
the smallest average gaps to the lower bound at 1.26, while min-min, pCHC, TPVNS,

5.5 Results for instances from Nesmachnow et al. [118] 106

GA+VNS, ACO+VNS and ACO(VNS) achieved 21.00, 6.38, 5.53 , 5.42, 4.74 and 3.18,
respectively. For 2048x64 instances, GA(VNS) also achieved the smallest average gap
with the lower bound at 2.64, while min-min, pCHC, TPVNS, GA+VNS, ACO+VNS and
ACO(VNS) achieved 23.21, 6.77, 5.46, 6.25, 5.81 and 5.59, respectively. This indicates
that the quality of the solutions found by GA(VNS) is very high compared to the others.

Table 5.25 The gaps for the average makespan of the GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS) methods and the selected algorithms from the literature and their corre-
sponding lower bounds for the 1024x32 dataset.

Instance min–min pCHC TPVNS GA+VNS ACO+VNS ACO(VNS) GA(VNS)

A.u_c_hihi 15.73 5.46 4.29 3.45 2.39 1.90 0.96

A.u_c_hilo 15.61 5.48 5.10 5.45 5.01 4.22 0.40

A.u_c_lohi 15.46 7.16 5.56 5.51 5.25 2.10 0.73

A.u_c_lolo 13.57 9.50 7.29 5.95 4.67 0.68 0.56

A.u_i_hihi 27.05 4.63 4.18 3.71 2.89 1.85 1.47

A.u_i_hilo 35.21 3.86 4.09 3.78 3.50 2.30 1.31

A.u_i_lohi 32.04 4.01 5.30 5.11 4.70 3.49 1.28

A.u_i_lolo 30.00 5.51 5.92 6.02 5.33 2.60 1.25

A.u_s_hihi 22.26 7.67 6.51 6.36 5.99 3.96 1.53

A.u_s_hilo 17.09 7.79 5.23 5.17 4.92 4.33 1.53

A.u_s_lohi 23.02 6.86 6.45 6.34 5.78 4.53 1.22

A.u_s_lolo 20.48 8.40 5.48 7.50 5.45 4.67 0.87

B.u_c_hihi 12.16 3.67 3.67 4.50 3.59 2.07 0.46

B.u_c_hilo 13.13 4.15 4.51 4.38 4.28 2.37 0.74

B.u_c_lohi 11.60 4.92 4.13 4.05 3.43 1.04 0.87

B.u_c_lolo 14.84 6.28 3.86 3.85 3.58 1.21 0.47

B.u_i_hihi 38.12 6.57 3.93 4.02 3.88 3.69 2.17

B.u_i_hilo 17.15 6.05 7.77 5.97 4.95 3.27 1.83

B.u_i_lohi 18.89 5.30 4.99 5.58 4.82 3.83 1.37

B.u_i_lolo 22.54 6.28 5.03 5.16 4.75 2.99 1.70

B.u_s_hihi 24.82 7.92 6.72 6.64 6.05 4.72 2.19

B.u_s_hilo 19.86 7.56 8.73 7.54 5.80 3.22 2.23

B.u_s_lohi 25.20 8.99 8.02 8.48 7.90 7.44 0.97

B.u_s_lolo 18.18 9.06 6.05 5.55 4.87 3.92 2.23

Avg 21.00 6.38 5.53 5.42 4.74 3.18 1.26

5.6 Results summary for Braun et al. [19] and Nesmachnow et al. [118] datasets 107

Table 5.26 The gaps for the average makespan of the GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS) methods and the selected algorithms from the literature and their corre-
sponding lower bounds for the 2048x64 dataset.

Instance min–min pCHC TPVNS GA+VNS ACO+VNS ACO(VNS) GA(VNS)

A.u_c_hihi 14.06 6.28 3.85 4.62 4.57 4.42 0.65

A.u_c_hilo 12.53 5.74 4.35 4.53 4.47 4.15 0.73

A.u_c_lohi 13.53 6.46 4.44 4.41 4.11 3.92 0.93

A.u_c_lolo 13.84 5.82 4.28 6.41 5.77 5.04 0.77

A.u_i_hihi 37.28 7.60 5.67 8.01 7.75 7.65 3.57

A.u_i_hilo 40.22 4.97 5.79 6.08 5.04 4.77 3.44

A.u_i_lohi 25.74 4.82 4.31 5.19 4.71 6.01 3.25

A.u_i_lolo 28.69 5.58 7.17 7.69 7.01 6.61 3.59

A.u_s_hihi 24.26 8.53 6.09 5.90 5.36 5.04 2.95

A.u_s_hilo 22.50 10.17 6.81 6.78 6.70 6.93 3.34

A.u_s_lohi 18.80 7.13 5.31 6.99 6.77 6.73 2.37

A.u_s_lolo 24.92 8.78 7.15 8.78 7.26 5.98 4.24

B.u_c_hihi 11.84 6.52 4.91 5.11 4.51 4.21 0.75

B.u_c_hilo 13.61 5.94 3.37 4.90 4.71 4.16 0.65

B.u_c_lohi 14.02 6.11 5.74 5.39 5.15 5.03 3.60

B.u_c_lolo 12.40 6.02 4.43 4.67 4.37 4.14 3.87

B.u_i_hihi 26.42 5.43 4.63 5.02 4.89 4.85 4.05

B.u_i_hilo 36.92 5.26 4.96 6.03 5.50 5.10 4.93

B.u_i_lohi 32.67 5.94 8.64 8.62 7.87 7.62 3.34

B.u_i_lolo 42.00 5.67 6.11 6.37 6.18 5.95 2.50

B.u_s_hihi 21.52 7.89 6.14 7.38 6.65 6.47 1.59

B.u_s_hilo 22.65 8.25 5.37 7.30 6.85 6.55 2.69

B.u_s_lohi 22.61 8.85 4.82 5.18 5.04 4.98 3.26

B.u_s_lolo 23.94 8.59 6.84 8.63 8.12 7.88 2.19

Avg 23.21 6.77 5.46 6.25 5.81 5.59 2.64

5.6 Results summary for Braun et al. [19] and Nesmach-
now et al. [118] datasets

Table 5.27 and Fig. 5.6 summarize the average improvements of GA+VNS, ACO+VNS,
ACO(VNS) and GA(VNS) over the deterministic heuristic min-min algorithm for the
problem instances of Braun et al. and Nesmachnow et al., where the improvement

5.6 Results summary for Braun et al. [19] and Nesmachnow et al. [118] datasets 108

Table 5.27 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) average improvement per-
centages with respect to the min-min heuristic based on the consistency: Braun et al. and
Nesmachnow et al. datasets.

Consistency
512x16

GA+VNS ACO+VNS ACO(VNS) GA(VNS)
consistent 8.90 9.21 9.51 9.89
inconsistent 11.80 11.95 12.15 12.30
semiconsistent 11.71 12.10 12.26 13.21

A-1024x32
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 8.68 8.68 12.53 12.53
inconsistent 20.11 20.11 22.65 22.65
semiconsistent 11.88 11.88 16.06 16.06

B-1024x32
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 7.73 8.15 9.96 10.88
inconsistent 14.90 15.39 16.35 17.71
semiconsistent 12.22 12.96 14.06 16.42

A-2048x64
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 7.49 7.72 8.02 11.21
inconsistent 19.58 20.04 19.93 22.04
semiconsistent 12.62 13.09 13.37 15.79

B-2048x64
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 7.03 7.33 7.59 9.51
inconsistent 20.68 20.97 21.14 22.74
semiconsistent 12.68 13.05 13.21 16.50

percentages are categorized based on consistency. The average improvement percentages
of ACO(VNS) with respect to the min-min heuristic were always above 7% and 12% for the
consistent and semi-consistent instances, respectively, while GA(VNS) was more accurate
showing average improvement percentages of no less than 9% and 13%, respectively.
For the inconsistent instances, both algorithms achieved average improvements above
12% for the 512x16 dataset. However, this percentage increased significantly to greater
than 21% for larger problem instances. On the other hand, the average improvement
percentages of GA+VNS with respect to the min-min heuristic were always above 7% and
11% for the consistent and semi-consistent instances, respectively, while ACO+VNS was
a slightly more accurate showing average improvement percentages of no less than 7%
and 11%, respectively. For the inconsistent instances, both algorithms achieved average
improvements above 11% for the 512x16 dataset. However, this percentage increased
significantly to greater than 20% for larger problem instances.

5.6 Results summary for Braun et al. [19] and Nesmachnow et al. [118] datasets 109

Fig. 5.6 The graphical average improvement percentages of GA+VNS, ACO+VNS,
ACO(VNS) and GA(VNS) methods with respect to the min-min heuristic based on the
consistency: Braun et al. and Nesmachnow et al. datasets.

Table 5.28 reports the average gap percentage of GA+VNS, ACO+VNS, ACO(VNS)
and GA(VNS) with regard to the lower bound for the datasets of Braun et al. and
Nesmachnow et al. based on the consistency. For consistent and inconsistent instances,
ACO(VNS), ACO+VNS and GA+VNS showed stable behaviour. However, for the semi-
consistent instances, it may be noted that they have a high average gap percentages for all
datasets. GA(VNS) showed stable behaviour regarding all types of consistency.

Fig. 5.7 demonstrates the average improvement percentages of GA+VNS, ACO+VNS,
ACO(VNS) and GA(VNS) over the ad hoc min-min method and the average percentages
of the corresponding gap to the lower bounds of the Braun et al. and Nesmachnow et
al. datasets. It may be noted that ACO(VNS) and GA(VNS) are capable of achieving
high-quality mappings which are very close to the lower bounds. However, as the dataset
size grows, the average gap percentage for ACO(VNS) increases compared to GA(VNS),
indicating greater stability. On the other hand, it may be seen that GA+VNS and ACO+VNS
are also capable of achieving good-quality mappings which are relatively close to the lower
bounds. However, as the dataset size grows, the average gap percentage for them increases
compared to GA(VNS).

5.7 Summary 110

Table 5.28 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) average gap percentages
with respect to the lower bound based on the consistency: Braun et al. and Nesmachnow
et al. datasets.

Consistency
512x16

GA+VNS ACO+VNS ACO(VNS) GA(VNS)
consistent 1.58 1.23 0.89 0.46
inconsistent 1.35 1.19 0.96 0.78
semiconsistent 2.65 2.20 2.00 0.88

A-1024x32
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 5.09 4.33 2.22 0.66
inconsistent 4.66 4.10 2.56 1.33
semiconsistent 6.34 5.54 4.37 1.29

B-1024x32
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 4.19 3.72 1.68 0.64
inconsistent 5.18 4.60 3.45 1.77
semiconsistent 7.05 6.16 4.82 1.91

A-2048x64
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 4.99 4.73 4.39 0.77
inconsistent 6.74 6.13 6.26 3.46
semiconsistent 7.11 6.52 6.17 3.23

B-2048x64
GA+VNS ACO+VNS ACO(VNS) GA(VNS)

consistent 5.02 4.69 4.38 2.22
inconsistent 6.51 6.11 5.88 3.71
semiconsistent 7.12 6.66 6.47 2.43

5.7 Summary

In this chapter, the application of various hybrid meta-heuristic algorithms for solving
the independent static job scheduling problem in grid computing in terms of minimising
the makespan was discussed. To evaluate the performance of the proposed methods, the
ETC model has been used. Three different well-known datasets have been used to perform
several experiments. The experimental results show that GA(VNS) achieved results that
were significantly better than GA+VNS, ACO+VNS, ACO(VNS) and other selected
approaches from the literature for all three benchmarks used in terms of minimising the
makespan; therefore, we can claim that it represents the new state-of-the-art sequential
hybrid algorithm for job scheduling in grid computing. With very low standard deviation
values, it should be expected that GA(VNS) can find high-quality schedules in any single
run. Moreover, GA(VNS) achieved results that show the smallest gap with the lower
bound in all the problem instances examined in this chapter. ACO(VNS) was almost the

5.7 Summary 111

Fig. 5.7 GA+VNS, ACO+VNS, ACO(VNS) and GA(VNS) average improvement per-
centages over the min-min heuristic and the corresponding gap to LB: Braun et al. and
Nesmachnow et al. datasets.

second-best algorithm in terms of makespan results; however, it needed a longer time to
construct high-quality solutions. For relatively small problem instances, the result for
ACO(VNS) were very close to the ones achieved by GA(VNS); however, as the dataset
size increases, the quality of the solutions found by ACO(VNS) decreases, which means
that longer times will be needed to improve the results.

Chapter 6

Hybrid Meta-Heuristics for Dynamic
Job Scheduling in Grid Computing

The previous chapter discussed the use of hybrid meta-heuristic algorithms for the static
independent job scheduling in grid computing. This chapter introduces the application
of hybrid meta-heuristic algorithms for solving the dynamic job scheduling problem in
grid computing in terms of minimising the makespan. We will consider the version of the
dynamic job scheduling problem in grid computing in which blocks of independent jobs
arrive to the grid system at different arrival time. To solve this problem, the rescheduling
strategy, which involves several calls of the job scheduler at various intervals of time, is
employed. The dynamic simulation model and how to apply rescheduling are explained
in the following sections. Moreover, the chapter studies the performance of the proposed
meta-heuristic algorithms by using a benchmark which has been especially created for
the dynamic job scheduling problem. Finally, some conclusions about the effect of using
rescheduling are drawn.

6.1 Dynamic job scheduling simulation model

The dynamic version of job scheduling in grid computing involves the arrival of several
groups of jobs with various sizes to the grid system at different times, which is a typical
situation in dynamic heterogeneous computing environments, where not all jobs are
available in advance, instead they arrive during the processing of previously submitted
jobs.

A description of the dynamic job scheduling problem using the rescheduling strategy
can be formulated as follows:

1. A set G of k groups, where G = {g0,g1, ...,gk−1}. Each group gl = { j0, j1, ..., jnl−1},
where l ∈ [0, k-1] and nl is the number of independent jobs in group gl , which

6.1 Dynamic job scheduling simulation model 113

varies from one group to another, is to be assigned to grid resources. Any job can be
handled by any resource. However, these jobs are non-pre-emptive, i.e., each job
should be executed entirely by one resource only. Unlike the static version of the
problem in which all groups arrive at the same time, each group arrives to the system
in a different arrival time.

2. A set of m heterogeneous resources H = {r0,r1, ..., rm−1} to be used for processing
the independent jobs.

3. A processing time function ETC : gl × H→ R+, where l ∈ [0,k-1] and ETC[j][r]
denotes the estimated required time for processing job j by resource r.

4. The goal of dynamic job scheduling in grid computing is to find a mapping of the
submitted jobs onto the available resources (a function f: gl → H, l ∈ [0,k-1]) that
minimizes the makespan, which represents the finishing time of the latest job and
can be computed as follows:

makespan = mins∈Smax j∈gl(Finish j), l ∈ [0,k−1] (6.1)

where S is the set of all possible solutions and Finish j represents the time by which
job j will be completed [85].

The dynamic simulation model assumes that the grid system receives each group of
jobs at different arrival times by generating a random time in the range [0.5 x Pmakespan,
Pmakespan], where Pmakespan is the makespan result of the previous group. When a
new group of jobs arrives to the grid system for processing, a rescheduling operation is
activated, which involves scheduling the jobs in the arrived group and those jobs already
submitted but have not began their processing. Fig. 6.1 shows graphically an example of
how to perform rescheduling in dynamic job scheduling. At tres, a rescheduling operation
is activated, which aims at assigning the new arrived jobs and all the unprocessed jobs,
i.e. [j19, j23, j22, j10, j12, j21, j18, j20], which have not been processed at that time, to the
available resources.

The arrival of jobs to the grid system at runtime makes the job scheduling problem
dynamic. One way to solve this dynamic problem is to schedule each group separately.
Alternatively, a reschedule of the unprocessed jobs at tres provides an opportunity to
reassign some jobs to different resources, and hence, minimize the overall makespan of the
solution.

6.2 Rescheduling simulator for dynamic job scheduling in grid computing 114

Fig. 6.1 An example of rescheduling in dynamic job scheduling.

6.2 Rescheduling simulator for dynamic job scheduling
in grid computing

To implement the rescheduling operation, a simple rescheduling simulator for dynamic job
scheduling in grid computing was designed as illustrated in Algorithm 6.1. This simulator
provides the necessary steps required for performing the scheduling and rescheduling in
heterogeneous dynamic environments such as grid computing. These steps include the
simulation of the arrival of the groups of jobs, the activation of the scheduling/rescheduling
algorithm, and linking the solutions resulted from applying the scheduling/rescheduling
algorithm.

The simulator performs k−1 rescheduling operations, where k is the total number of
groups. In each iteration, no_ jobs + no_unp_ jobs jobs are scheduled, where no_ jobs is
the number of jobs in the arrived group l and no_unp_ jobs is the number unprocessed
jobs when a rescheduling occurs. It is worth noting that in the first round no_unp_ jobs =
0 as the grid system has not received any job yet. The scheduling is done using any job
scheduling algorithm (line 7 in Algorithm 6.1), which could be heuristic, meta-heuristic
or hybrid, that has been modified to perform rescheduling. The makespan of the solution,
Pmakespan, is then calculated. The simulator uses it to generate the next rescheduling time,
tres, by randomly select a time from the range [0.5 x Pmakespan, Pmakespan]. Finally,

6.3 Rescheduling-based methods 115

Algorithm 6.1: Dynamic job scheduling scenario using rescheduling
1 Let k be the total number of groups;
2 no_unp_ jobs← 0;
3 for (l=0 to k-1) do
4 no_ jobs← the number of jobs for the arrived group l;
5 no_ jobs← no_ jobs + no_unp_ jobs;
6 G← ETC of the jobs in the arrived group l and unprocessed jobs;
7 schedule G;
8 Pmakespan← makespan of the schedule G;
9 no_unp_ jobs← 0;

10 tres← rand(0.5 × Pmakespan, Pmakespan);
11 for (each resource) do
12 for (each unprocessed job at time tres) do
13 no_unp_ jobs++;
14 end
15 end
16 end

the simulator counts the number of unprocessed jobs, the jobs after tres, which will be
rescheduled in the next iteration.

6.3 Rescheduling-based methods

To solve the dynamic version of job scheduling and to implement the rescheduling opera-
tion, some modifications were added to the hybrid meta-heuristic schedulers described in
Chapter 4. These modifications include:

1. A new class which reads the ETC values of the new arrived jobs and the unprocessed
jobs.

2. After every rescheduling activation, a modification to the previous solution occurs.
Therefore, a new class which saves the updated solution is required. This class
keeps updating the solution until processing all groups, and then generates the final
solution.

3. A new class that determines which jobs were processed, in processing, and un-
processed. These information are important for performing the next rescheduling
operation.

4. The solution representation, in which the resource-based representation is used for
all algorithms since the number of jobs is variable due to the dynamic nature of the
problem.

6.4 Experimental analysis 116

5. For any GA-based scheduler, the CX crossover operator is used, which was the best
permutation-based crossover operator, since the 2P operator is not applicable for the
resource-based representation.

The above modifications were also applied on the min-min algorithm which was
selected to study the performance of the proposed methods.

6.4 Experimental analysis

This section presents the experimental evaluation of applying the different hybrid meta-
heuristic algorithms for solving the dynamic version of job scheduling in grid computing
using the rescheduling strategy.

A new benchmark is created for this purpose, which consists of 12 problem instances to
simulates the different job and resource heterogeneity cases. The range-based method [8],
with the parameters described in Bruan et. al. [19], was used to generate this benchmark
mainly because it represents the classical model to study the performance of scheduling
algorithms in grid computing. Similar to Braun et al. dataset, the same notation was used
to describe each problem instance in the new benchmark; however, to distinguish the new
dynamic dataset instances from the classical Braun et al. dataset, each instance is preceded
by the letter d. Like Braun et al. dataset, each instance has 512 jobs and 16 resources.
However, the 512 jobs of each problem instance were divided into ten groups, which is the
number of groups k, of various sizes, namely {62,30,59,16,80,76,100,21,14,54}.

To study the effects of applying rescheduling, each algorithm has two versions, namely
without rescheduling and with rescheduling. Any algorithm applies rescheduling will
be preceded by r, for example rGA(VNS) means the algorithm GA(VNS) that uses a
rescheduling technique, while GA(VNS) means the same algorithm without rescheduling.
The algorithms without rescheduling schedule each group separately, while the algorithms
with rescheduling follow the scenario described in Algorithm 6.1.

6.4.1 Parameter tuning

As with static version of the problem, a fix set of parameters was selected from the
literature for each of the proposed algorithms to perform parameter tuning process. A
number of instances with diverse characteristics were used to carry out the parameter
tuning experiments. For the proposed VNS, the examined parameter was the order of
neighbourhood structures only. Population size, α , β , pheromone evaporation rate (ρ) were
among the tested parameters for the proposed hybrid rACO+VNS and rACO(VNS). On the
other hand, the following parameters were examined for the proposed hybrid rGA+VNS
and rGA(VNS): population size, crossover type, mutation type, crossover probability and

6.4 Experimental analysis 117

mutation probability. To select the best parameter values, each algorithm was executed 10
times for each problem instance and for each parameter, and their average was reported.

6.4.1.1 Parameter tuning for VNS

One of the main advantages of VNS is that it does not need many parameters. The stopping
condition is the maximum number of iterations, which was set to 5. As mentioned earlier,
the order of neighbourhood structures will be the main parameter that will be examined,
as the forward VNS version is used in this study which means that VNS starts with k=1
and then increases k by one if no improvement is found; otherwise, set k=1. Since we
have four different structures, we then have 24 possible combinations. Table 6.1 illustrates
the effects of changing the order of neighbourhood structures based on different instances
with different characteristics. The tables show that case 24 was the best order recorded in
almost all the tested cases.

6.4.1.2 Parameter tuning for rACO+VNS and rACO(VNS)

Three parameters have been examined for the hybrid rACO+VNS and rACO(VNS) which
are the population size, the values of α and β and the value of ρ . The population size is
set to 2 due to the attempt to reduce the computational time needed to construct solutions
by ants and increase the number of generations. Various studies have suggested optimal
values for α and β which vary between 1 and 10, while the suggested values for ρ were
between 0.5 and 0.7 [135] [147] [60]. Therefore, three values have been used for α and
β , which are 1, 5 and 10. The results indicate that α=10 and β=1 represented the best
combination, as shown in Table 6.2; similarly, two values were used for ρ , which are 0.5
and 0.7. The best makespan values were achieved when using ρ = 0.7.

6.4.1.3 Parameter tuning for rGA+VNS and rGA(VNS)

Four parameters were tested for the hybrid rGA+VNS and rGA(VNS) algorithms which
included population size, crossover type, mutation type, crossover probability and mutation
probability.

The candidate values for the population size were 10, 20 and 30 individuals. The best
results were indicated when using a population size of 20 solutions. The experiments
showed a very slow improvement rate and that a greater computational time was required to
find a good mapping of jobs to resources when increasing the number of individuals from
20 to 30, suggesting that using a large population size is not beneficial for the rGA+VNS
and rGA(VNS).

As the permutation-based representation is used, three different crossover operators
were applied, which were Order Crossover (OX), Partially Matched Crossover (PMX)

6.4 Experimental analysis 118

Ta
bl

e
6.

1
N

ei
gh

bo
ur

ho
od

st
ru

ct
ur

es
or

de
rt

es
tin

g
fo

rr
G

A
+V

N
S,

rA
C

O
+V

N
S,

rA
C

O
(V

N
S)

an
d

rG
A

(V
N

S)
.T

he
be

st
av

er
ag

e
m

ak
es

pa
n

re
su

lts
ar

e
re

po
rt

ed
in

bo
ld

.

C
as

e
N

ie
gh

bo
ur

ho
od

or
de

r
d_

u_
c_

lo
lo

d_
u_

i_
hi

hi
d_

u_
s_

lo
hi

rG
A

+V
N

S
rA

C
O

+V
N

S
rA

C
O

(V
N

S)
rG

A
(V

N
S)

rG
A

+V
N

S
rA

C
O

+V
N

S
rA

C
O

(V
N

S)
rG

A
(V

N
S)

rG
A

+V
N

S
rA

C
O

+V
N

S
rA

C
O

(V
N

S)
rG

A
(V

N
S)

1
L

M
M

T
M

-R
M

M
T

M
-P

T
M

-P
SM

85
89

.6
0

83
19

.8
0

79
22

.4
0

75
74

.5
0

25
43

52
43

.3
0

24
24

53
54

.2
0

23
74

63
48

.6
0

23
08

71
20

.7
0

95
84

90
.1

0
90

99
77

.3
0

89
62

31
.2

0
88

79
68

.5
0

2
L

M
M

T
M

-R
M

M
T

M
-P

SM
-P

T
M

85
06

.3
0

80
57

.4
0

77
55

.4
0

74
82

.9
0

25
11

10
89

.9
0

24
12

85
16

.2
0

23
47

20
08

.2
0

22
80

53
47

.1
0

95
69

23
.7

0
90

54
03

.7
0

89
30

81
.9

0
87

83
37

.8
0

3
L

M
M

T
M

-P
T

M
-R

M
M

T
M

-P
SM

85
66

.6
0

81
52

.4
0

78
60

.3
0

75
62

.3
0

28
68

12
55

.8
0

24
61

95
00

.7
0

23
95

56
27

.9
0

23
27

52
45

.0
0

96
00

19
.4

0
91

85
46

.9
0

90
03

58
.4

0
88

58
98

.8
0

4
L

M
M

T
M

-P
T

M
-P

SM
-R

M
M

T
M

86
71

.3
0

83
74

.5
0

79
50

.1
0

74
87

.7
0

25
47

18
46

.8
0

24
25

15
53

.5
0

23
78

38
92

.5
0

23
09

60
63

.9
0

95
92

28
.8

0
91

17
51

.8
0

89
76

59
.3

0
88

16
89

.5
0

5
L

M
M

T
M

-P
SM

-R
M

M
T

M
-P

T
M

85
72

.1
0

82
01

.5
0

78
60

.5
0

77
13

.7
0

28
58

91
10

.8
0

24
60

71
15

.3
0

23
93

94
37

.9
0

23
26

92
25

.3
0

95
92

69
.0

0
91

19
22

.7
0

89
78

25
.7

0
88

82
80

.7
0

6
L

M
M

T
M

-P
SM

-P
T

M
-R

M
M

T
M

85
02

.7
0

80
55

.2
0

77
37

.7
0

74
81

.8
0

25
09

92
50

.2
0

24
05

34
21

.9
0

23
47

59
89

.9
0

22
79

02
72

.3
0

95
73

35
.6

0
90

57
36

.4
0

89
35

03
.6

0
87

71
38

.5
0

7
R

M
M

T
M

-L
M

M
T

M
-P

T
M

-P
SM

85
19

.1
0

80
73

.3
0

78
11

.3
0

75
22

.0
0

25
52

85
49

.5
0

24
26

55
66

.9
0

23
84

06
32

.2
0

23
12

90
21

.7
0

96
10

76
.8

0
92

61
54

.9
0

90
17

15
.2

0
88

45
03

.7
0

8
R

M
M

T
M

-L
M

M
T

M
-P

SM
-P

T
M

85
12

.7
0

80
58

.7
0

77
71

.2
0

74
68

.0
0

25
12

98
38

.5
0

24
13

12
89

.1
0

23
48

34
35

.5
0

22
91

68
79

.3
0

95
71

74
.3

0
90

56
57

.4
0

89
34

20
.1

0
87

78
15

.4
0

9
R

M
M

T
M

-P
T

M
-L

M
M

T
M

-P
SM

85
64

.9
0

81
39

.6
0

78
52

.7
0

77
02

.7
0

28
34

08
15

.6
0

24
57

85
72

.0
0

23
93

06
32

.3
0

23
26

53
35

.0
0

96
13

64
.3

0
92

72
12

.4
0

90
18

01
.7

0
88

97
62

.8
0

10
R

M
M

T
M

-P
T

M
-P

SM
-L

M
M

T
M

85
75

.6
0

82
67

.4
0

79
03

.8
0

76
56

.7
0

27
39

81
90

.0
0

24
57

82
32

.3
0

23
91

28
46

.0
0

23
24

55
35

.2
0

95
97

47
.2

0
91

79
26

.4
0

89
96

41
.9

0
88

01
55

.6
0

11
R

M
M

T
M

-P
SM

-L
M

M
T

M
-P

T
M

85
51

.9
0

81
13

.5
0

78
24

.2
0

74
94

.5
0

25
55

87
89

.0
0

24
30

10
03

.8
0

23
84

95
36

.8
0

23
16

08
45

.6
0

96
10

02
.5

0
92

48
03

.0
0

90
16

94
.4

0
88

40
92

.5
0

12
R

M
M

T
M

-P
SM

-P
T

M
-L

M
M

T
M

84
88

.3
0

80
23

.3
0

77
27

.3
0

74
60

.4
0

25
09

15
12

.5
0

24
10

38
98

.3
0

23
49

89
44

.3
0

22
80

45
19

.2
0

95
74

93
.5

0
90

62
46

.6
0

89
42

12
.0

0
87

69
92

.9
0

13
PT

M
-L

M
M

T
M

-R
M

M
T

M
-P

SM
85

74
.2

0
82

65
.3

0
78

91
.8

0
74

91
.2

0
26

91
32

72
.7

0
24

49
73

81
.2

0
23

90
23

60
.8

0
23

20
88

74
.9

0
96

01
48

.1
0

92
04

59
.4

0
90

15
74

.3
0

88
75

49
.4

0

14
PT

M
-L

M
M

T
M

-P
SM

-R
M

M
T

M
85

62
.1

0
81

20
.0

0
78

25
.7

0
76

32
.2

0
25

85
79

36
.1

0
24

42
08

54
.1

0
23

87
37

40
.1

0
23

19
22

46
.5

0
96

05
97

.3
0

92
42

34
.2

0
90

16
57

.9
0

88
53

32
.3

0

15
PT

M
-R

M
M

T
M

-L
M

M
T

M
-P

SM
85

72
.4

0
82

37
.7

0
78

73
.7

0
75

70
.3

0
26

01
30

95
.5

0
24

49
61

50
.6

0
23

90
00

73
.1

0
23

20
22

36
.4

0
96

01
69

.0
0

92
16

47
.4

0
90

15
86

.8
0

87
98

69
.8

0

16
PT

M
-R

M
M

T
M

-P
SM

-L
M

M
T

M
85

83
.5

0
82

99
.6

0
79

07
.9

0
75

59
.1

0
25

63
74

01
.5

0
24

33
00

41
.8

0
23

85
76

37
.7

0
23

16
84

62
.0

0
95

92
94

.0
0

91
63

99
.6

0
89

94
95

.2
0

88
78

15
.4

0

17
PT

M
-P

SM
-L

M
M

T
M

-R
M

M
T

M
86

79
.6

0
83

94
.4

0
79

80
.3

0
76

40
.6

0
25

23
25

29
.0

0
24

13
59

18
.0

0
23

62
63

72
.0

0
22

99
59

23
.4

0
95

83
32

.2
0

90
77

43
.7

0
89

53
86

.0
0

87
75

88
.3

0

18
PT

M
-P

SM
-R

M
M

T
M

-L
M

M
T

M
86

72
.7

0
83

85
.4

0
79

77
.3

0
75

85
.5

0
25

15
28

87
.3

0
24

13
45

52
.0

0
23

50
44

34
.1

0
22

97
97

26
.1

0
95

91
94

.1
0

91
17

09
.5

0
89

69
73

.1
0

87
73

81
.0

0

19
PS

M
-L

M
M

T
M

-R
M

M
T

M
-P

T
M

85
22

.6
0

81
11

.9
0

78
17

.8
0

77
05

.5
0

25
80

61
07

.3
0

24
40

95
58

.9
0

23
87

20
56

.6
0

23
18

88
64

.7
0

96
18

47
.1

0
92

80
63

.4
0

90
18

35
.0

0
87

74
53

.6
0

20
PS

M
-L

M
M

T
M

-P
T

M
-R

M
M

T
M

85
15

.2
0

80
60

.7
0

78
00

.4
0

75
39

.6
0

25
64

95
09

.3
0

24
37

88
38

.7
0

23
86

52
06

.9
0

23
18

28
13

.2
0

96
04

34
.2

0
92

30
51

.2
0

90
16

36
.7

0
87

79
51

.1
0

21
PS

M
-R

M
M

T
M

-L
M

M
T

M
-P

T
M

86
42

.6
0

83
64

.7
0

79
36

.7
0

74
97

.7
0

25
40

24
37

.5
0

24
15

79
37

.9
0

23
71

38
08

.8
0

23
05

77
70

.2
0

95
81

47
.2

0
90

72
06

.6
0

89
53

16
.2

0
88

55
72

.8
0

22
PS

M
-R

M
M

T
M

-P
T

M
-L

M
M

T
M

85
91

.8
0

83
40

.6
0

79
26

.5
0

76
12

.2
0

25
38

49
10

.1
0

24
14

59
00

.8
0

23
63

70
23

.3
0

23
03

86
83

.3
0

95
79

96
.8

0
90

62
57

.5
0

89
50

63
.3

0
87

77
31

.3
0

23
PS

M
-P

T
M

-L
M

M
T

M
-R

M
M

T
M

83
50

.8
0

79
15

.8
0

76
31

.2
0

74
47

.2
0

25
08

16
61

.9
0

24
04

81
43

.2
0

23
45

04
19

.7
0

22
77

25
68

.0
0

95
65

89
.9

0
90

50
78

.8
0

89
28

29
.7

0
87

69
73

.4
0

24
PS

M
-P

T
M

-R
M

M
T

M
-L

M
M

T
M

83
64

.2
0

78
98

.5
0

76
26

.6
0

74
40

.4
0

25
07

54
85

.2
0

24
04

20
23

.7
0

23
42

42
52

.5
0

22
75

24
90

.8
0

95
35

53
.2

0
90

50
79

.5
0

89
27

37
.8

0
87

68
24

.8
0

6.4 Experimental analysis 119

Table 6.2 Parameter tuning for rACO+VNS and rACO(VNS) algorithms: α and β . The
best average makespan results are reported in bold.

Case α β
rACO+VNS rACO(VNS)

d_u_c_lolo d_u_i_hihi d_u_s_lohi d_u_c_lolo d_u_i_hihi d_u_s_lohi

1 1 1 7939.10 24222945.30 917053.80 7721.50 23731811.30 901715.20

2 1 5 7949.70 24254306.70 925752.20 7723.70 23776911.90 893420.10

3 1 10 7965.40 24270335.10 926714.40 7735.60 23815160.10 901801.70

4 5 1 7890.20 24135051.70 907201.50 7665.50 23482233.40 900358.40

5 5 5 7920.50 24146898.70 910134.10 7712.60 23514521.40 897825.70

6 5 10 7927.70 24146973.60 912630.70 7715.90 23544120.50 893503.60

7 10 1 7875.60 24136720.30 905423.30 7642.30 23471346.80 896231.20
8 10 5 7906.20 24137527.10 905877.60 7710.50 23495090.20 893081.90

9 10 10 7909.10 24140477.20 909566.20 7711.60 23507823.70 897659.30

and Cycle Crossover (CX) with the best results being achieved when using CX crossover
operator, as illustrated in Fig. 6.2, while Table 6.3 reports the values of other parameters
used to compare the performance of different crossover operators.

0 250 500 750 1,000 1,250 1,500 1,750 2,000

8,400

8,600

8,800

9,000

9,200

9,400

9,600

9,800

Number of generations

M
ak

es
pa

n

CX PMX OX

Fig. 6.2 Parameter tuning for different crossover operators of rGA(VNS) using d-u-c-lolo
instance.

6.4 Experimental analysis 120

Table 6.3 Parameter values used for comparing the performance of different crossover
operators.

Seeding method min-min algorithm
Number of generations 2000
Probability of crossover 0.7
Population size 20
Selection operator N-Tournament, N = 4
Mutation operator VNS
Probability of mutation 0.8
Replacement operator Steady-State

In similar fashion, four different mutation operators were used, which were Random
move, Random swap, Best move and Best swap with the best results being achieved when
using the Best swap operator, as illustrated in Fig. 6.3, while Table 6.4 reports the values
of other parameters used to compare the performance of different mutation operators.

0 250 500 750 1,000 1,250 1,500 1,750 2,000

8,400

8,600

8,800

9,000

9,200

9,400

9,600

9,800

Number of generations

M
ak

es
pa

n

Best swap Best move Random swap
Random move

Fig. 6.3 Parameter tuning for different mutation operators of rGA+VNS using d-u-c-lolo
instance.

6.4 Experimental analysis 121

Table 6.4 Parameter values used for comparing the performance of different mutation
operators.

Seeding method min-min algorithm
Number of generations 2000
Probability of crossover 0.7
Population size 20
Selection operator N-Tournament, N = 4
Crossover operator CX
Probability of mutation 0.8
Replacement operator Steady-State

Finally, the probability of crossover and mutation were examined. A considerable
number of studies in the literature suggested high crossover and mutation probabilities
[25] [170] [169] [163]; therefore, the candidate values used were 0.7, 0.8 and 0.9. The best
result was recorded when using pc = 0.7 and pm = 0.8, as shown in Fig. 6.4 and Fig. 6.5.

Fig. 6.4 Analysis of rGA+VNS operators probabilities using d-u-s-lohi instance.

6.4 Experimental analysis 122

Fig. 6.5 Analysis of rGA(VNS) operators probabilities using d-u-s-lohi instance.

6.4.2 Experimental results

To study the effects of applying rescheduling, each algorithm has two versions, namely
without rescheduling and with rescheduling. The algorithms without rescheduling schedule
each group separately, while the algorithms with rescheduling follow the scenario described
in Algorithm 6.1. For both versions, all algorithms were allowed to run using the stopping
times listed in Table 6.5, which are the same to the ones used for the static dataset of
Braun et al. To obtain the best, average and standard deviation values, each algorithm was
executed 10 times for each problem instance. Java language was used to implement the
proposed methods. An Intel i5-4570 CPU @ 3.20 GHz pc with 8 GB RAM has been used
to carry out all the experiments reported in this chapter.

Table 6.5 Stopping times for the proposed methods for 512x16 dynamic dataset instances.

Algorithm stopping time total time
rGA(VNS) 90 seconds 90 seconds

rGA+VNS
80 seconds for GA

90 seconds
10 seconds for VNS

rACO(VNS) 9 minutes 9 minutes

rACO+VNS
8 minutes and 50 seconds for ACO

9 minutes
10 seconds for VNS

6.5 Further discussion 123

Table 6.6 provides the results of applying the various proposed hybrid methods com-
pared to each other and the min-min algorithm [77]. The best results are indicated in bold,
which show clearly that rGA(VNS) outperforms all other approaches in all instances. The
rGA(VNS) algorithm is expected to find high-quality schedules in any single execution
since it has very small standard deviation values in the range [0.11, 0.16]. The table
also shows that rACO(VNS) which showed the second-best performance after rGA(VNS)
with relatively small standard deviation values between 0.15 and 0.24. Both rGA(VNS)
and rACO(VNS) are strongly coupled hybrid meta-heuristic rescheduling methods. In
general, the relative performance order of the implemented methods from best to worst
was:

(
1
)
rGA(VNS),

(
2
)
rACO(VNS),

(
3
)
GA(VNS),

(
4
)
rACO+VNS,

(
5
)
ACO(VNS),(

6
)
ACO+VNS,

(
7
)
rGA+VNS,

(
8
)
GA+VNS,

(
9
)
rmin-min, and

(
10
)
min-min.

Table 6.7 shows the improvement percentages of each rescheduling algorithm over
their corresponding traditional methods (without rescheduling). It is clear that the use of
rescheduling improves the makespan results for all algorithms with a minimum average
improvement of 2.13% and 2.17% (for the best and average cases respectively) and a
maximum average of 4.93% and 5.01% (for the best and average cases respectively).
The two sample t-test with unequal variants was performed to statistically analyse the
performance of the proposed hybrid methods. Table 6.7 reports the corresponding p-value
for each problem instance and each rescheduling algorithm which were less than 0.05,
and hence we can consider the improvement of the rescheduling-based algorithms over
non-rescheduling-based algorithms in terms of makespan to be statistically significant.

Table 6.8 shows the improvement percentages of rGA(VNS) over the other methods.
rGA(VNS) shows a better improvement percentage over all the methods compared with a
minimum average improvement of 2.06% (for the best and average cases) and a maximum
average improvement of 34.98% and 20.59% (for the best and average cases respectively).
These results indicate that GA(VNS) represents not only the new state-of-the-art sequential
hybrid algorithms for the static job scheduling problem in grid computing, its corresponding
dynamic method, rGA(VNS), is significantly better than all other methods in the dynamic
version of the problem as well.

6.5 Further discussion

This chapter discussed the application of hybrid meta-heuristic rescheduling algorithms for
the dynamic version of the job scheduling problem in grid computing. The achieved results
show that the use of rescheduling strategy by the various schedulers provides statistically
significant improvements in terms of makespan compared to their corresponding traditional
(without rescheduling) methods. The reported results also show that the two strongly cou-
pled hybrid meta-heuristic rescheduling methods, rGA(VNS) and rACO(VNS), performed

6.5 Further discussion 124

Ta
bl

e
6.

6
M

ak
es

pa
n

re
su

lts
fo

rt
he

51
2x

16
dy

na
m

ic
da

ta
se

ti
ns

ta
nc

es
.

In
st

an
ce

A
lg

or
ith

m
d_

u_
c_

hi
hi

d_
u_

c_
hi

lo
d_

u_
c_

lo
hi

d_
u_

c_
lo

lo
d_

u_
i_

hi
hi

d_
u_

i_
hi

lo
d_

u_
i_

lo
hi

d_
u_

i_
lo

lo
d_

u_
s_

hi
hi

d_
u_

s_
hi

lo
d_

u_
s_

lo
hi

d_
u_

s_
lo

lo

m
in

-m
in

R
es

21
16

59
08

.3
0

28
90

94
.0

0
57

01
80

.2
0

98
59

.3
0

30
86

31
94

.4
0

33
06

91
.9

0
12

10
59

3.
50

12
36

7.
20

65
81

78
94

.8
0

55
37

40
.6

0
24

07
58

2.
50

14
56

6.
30

rm
in

-m
in

R
es

20
80

96
72

.3
0

28
52

07
.1

0
56

96
59

.9
0

92
01

.4
0

30
67

36
18

.3
0

32
31

30
.5

0
11

18
59

7.
70

12
34

2.
60

58
44

76
97

.6
0

49
78

37
.6

0
22

34
11

9.
00

14
33

6.
10

G
A

+V
N

S
be

st
17

10
30

42
.0

0
26

88
72

.3
0

49
53

74
.9

0
85

02
.7

0
25

40
24

37
.5

0
26

81
92

.0
0

85
22

55
.6

0
94

22
.5

0
30

88
61

19
.8

0
30

74
17

.5
0

95
05

97
.3

0
10

47
6.

40

av
g

17
15

98
99

.3
1

27
05

34
.9

1
49

83
42

.6
28

85
41

.2
25

53
60

91
.5

8
26

93
32

.2
2

85
69

10
.6

8
94

70
.9

8
31

12
01

40
.0

6
30

92
28

.7
6

95
53

75
.1

3
10

53
7.

36

σ
0.

28
%

0.
28

%
0.

28
%

0.
29

%
0.

26
%

0.
24

%
0.

25
%

0.
29

%
0.

27
%

0.
29

%
0.

28
%

0.
27

%

rG
A

+V
N

S
be

st
16

55
64

69
.1

0
25

77
47

.3
0

48
10

56
.4

0
82

67
.4

0
24

88
51

73
.4

0
26

62
29

.6
0

83
07

49
.0

0
93

24
.4

0
30

10
06

94
.0

0
30

29
54

.6
0

94
64

82
.0

0
10

28
1.

20

av
g

16
60

39
52

.8
6

25
90

91
.8

8
48

30
00

.2
44

83
35

.1
2

25
06

83
33

.8
26

73
65

.9
8

83
53

64
.1

8
93

66
.1

5
30

27
16

78
.5

1
30

38
99

.0
1

95
11

63
.7

7
10

32
4.

95

σ
0.

26
%

0.
25

%
0.

27
%

0.
28

%
0.

26
%

0.
24

%
0.

24
%

0.
21

%
0.

26
%

0.
27

%
0.

26
%

0.
21

%

A
C

O
+V

N
S

be
st

16
40

14
92

.9
0

25
19

21
.8

0
47

14
10

.7
0

80
60

.7
0

24
49

61
50

.6
0

26
31

13
.5

0
82

23
17

.2
0

91
81

.6
0

29
61

81
56

.6
0

29
88

09
.8

0
92

42
34

.2
0

10
19

8.
10

av
g

16
44

17
82

.8
6

25
31

27
.1

9
47

33
40

.8
8

81
15

.5
9

24
61

88
79

.1
5

26
41

48
.7

7
82

62
00

.6
6

92
30

.1
7

29
77

00
39

.7
9

29
98

61
.6

1
92

85
16

.6
1

10
23

3.
78

σ
0.

18
%

0.
27

%
0.

28
%

0.
29

%
0.

27
%

0.
27

%
0.

28
%

0.
29

%
0.

26
%

0.
26

%
0.

26
%

0.
20

%

rA
C

O
+V

N
S

be
st

15
80

69
38

.8
0

23
15

06
.8

0
46

48
43

.8
0

78
25

.7
0

23
93

94
37

.9
0

25
89

19
.2

0
80

22
76

.5
0

90
80

.3
0

28
91

62
45

.8
0

29
02

13
.5

0
90

25
16

.3
0

99
68

.5
0

av
g

15
86

02
26

.3
3

23
29

71
.5

6
46

61
02

.7
02

78
67

.5
3

24
03

32
82

.8
2

25
99

96
.8

7
80

55
21

.3
7

91
03

.2
5

29
05

66
93

.8
1

29
21

19
.0

9
90

46
22

.6
5

99
98

.0
1

σ
0.

18
%

0.
26

%
0.

20
%

0.
28

%
0.

22
%

0.
19

%
0.

23
%

0.
18

%
0.

19
%

0.
26

%
0.

19
%

0.
18

%

A
C

O
(V

N
S)

be
st

16
03

79
06

.8
0

23
68

59
.4

0
46

74
17

.9
7

79
36

.7
0

24
14

59
00

.8
0

26
07

39
.8

0
81

33
74

.8
0

91
22

.3
0

29
23

68
27

.5
0

29
46

63
.4

0
90

99
77

.3
0

10
05

2.
00

av
g

16
11

62
83

.6
1

23
84

63
.1

3
46

86
40

.6
27

79
82

.5
3

24
27

06
61

.0
6

26
21

04
.7

8
81

63
49

.1
8

91
43

.9
8

29
41

26
80

.3
7

29
64

00
.6

2
91

31
39

.2
2

10
08

6.
79

σ
0.

19
%

0.
19

%
0.

16
%

0.
21

%
0.

24
%

0.
23

%
0.

25
%

0.
18

%
0.

25
%

0.
24

%
0.

25
%

0.
22

%

rA
C

O
(V

N
S)

be
st

15
41

75
75

.0
0

22
47

97
.4

0
45

77
15

.2
0

75
70

.3
0

23
27

52
45

.0
0

25
59

27
.9

0
78

88
44

.7
0

89
55

.9
0

28
25

22
20

.3
0

28
65

30
.4

0
88

99
11

.9
0

97
89

.3
0

av
g

15
50

13
99

.3
9

22
56

76
.5

7
45

86
51

.8
52

76
03

.3
9

23
40

88
12

.4
5

25
67

75
.5

79
27

67
.4

8
89

75
.8

6
28

39
13

96
.3

7
28

71
85

.3
9

89
26

86
.2

5
98

23
.3

σ
0.

18
%

0.
19

%
0.

15
%

0.
21

%
0.

24
%

0.
21

%
0.

18
%

0.
19

%
0.

22
%

0.
17

%
0.

18
%

0.
17

%

G
A

(V
N

S)
be

st
15

62
34

67
.8

0
22

68
82

.6
0

46
04

06
.4

0
77

16
.6

0
23

71
38

08
.8

0
25

77
09

.8
0

79
66

85
.4

0
90

14
.6

0
28

69
68

65
.6

0
28

80
77

.2
0

89
62

31
.2

0
98

58
.3

0

av
g

15
67

35
99

.7
8

22
77

14
.9

7
46

18
04

.5
91

77
37

.3
1

23
81

00
96

.5
7

25
84

09
.5

2
79

87
61

.8
4

90
40

.3
28

79
15

92
.7

1
28

89
77

.2
9

89
92

24
.3

3
98

85
.8

4

σ
0.

16
%

0.
16

%
0.

16
%

0.
18

%
0.

17
%

0.
14

%
0.

16
%

0.
18

%
0.

18
%

0.
18

%
0.

18
%

0.
18

%

rG
A

(V
N

S)
be

st
15

06
56

87
.5

0
22

08
28

.9
0

44
56

49
.7

0
74

21
.1

0
22

60
89

40
.2

0
24

88
84

.0
0

77
29

37
.5

0
88

25
.9

0
27

71
39

94
.5

0
28

22
58

.0
0

87
09

26
.5

0
96

47
.9

0
av

g
15

14
67

46
.7

22
11

51
.5

4
44

74
17

.5
31

74
37

.3
7

22
72

35
34

.9
7

25
04

62
.8

8
77

59
11

.7
5

88
46

.8
5

27
81

01
89

.3
5

28
30

13
.7

2
87

66
41

.7
3

96
71

.6
4

σ
0.

14
%

0.
11

%
0.

15
%

0.
16

%
0.

16
%

0.
14

%
0.

16
%

0.
14

%
0.

15
%

0.
16

%
0.

16
%

0.
15

%

6.5 Further discussion 125

Ta
bl

e
6.

7
B

es
ta

nd
av

er
ag

e
im

pr
ov

em
en

tp
er

ce
nt

ag
es

,a
nd

st
at

is
tic

al
an

al
ys

is
of

re
sc

he
du

lin
g

m
et

ho
ds

ov
er

th
ei

rc
or

re
sp

on
di

ng
no

n-
re

sc
he

du
lin

g
m

et
ho

ds
fo

rt
he

51
2x

16
dy

na
m

ic
da

ta
se

ti
ns

ta
nc

es
.

In
st

an
ce

A
lg

or
ith

m
d_

u_
c_

hi
hi

d_
u_

c_
hi

lo
d_

u_
c_

lo
hi

d_
u_

c_
lo

lo
d_

u_
i_

hi
hi

d_
u_

i_
hi

lo
d_

u_
i_

lo
hi

d_
u_

i_
lo

lo
d_

u_
s_

hi
hi

d_
u_

s_
hi

lo
d_

u_
s_

lo
hi

d_
u_

s_
lo

lo
A

vg

rm
in

-m
in

R
es

1.
68

1.
34

0.
09

6.
67

0.
61

2.
29

7.
60

0.
20

11
.2

0
10

.1
0

7.
20

1.
58

4.
21

rG
A

+V
N

S
be

st
3.

20
4.

14
2.

89
2.

77
2.

04
0.

73
2.

52
1.

04
2.

54
1.

45
0.

43
1.

86
2.

13

av
g

3.
24

4.
23

3.
08

2.
41

1.
83

0.
73

2.
51

1.
11

2.
73

1.
72

0.
44

2.
02

2.
17

p-
va

lu
e

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

0.
00

86
6

<1
0−

5

rA
C

O
+V

N
S

be
st

3.
62

8.
10

1.
39

2.
92

2.
27

1.
59

2.
44

1.
10

2.
37

2.
88

2.
35

2.
25

2.
77

av
g

3.
54

7.
96

1.
53

3.
06

2.
38

1.
57

2.
50

1.
38

2.
40

2.
58

2.
57

2.
30

2.
81

p-
va

lu
e

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

rA
C

O
(V

N
S)

be
st

3.
87

5.
09

2.
08

4.
62

3.
61

1.
85

3.
02

1.
82

3.
37

2.
76

2.
21

2.
61

3.
07

av
g

3.
82

5.
36

2.
13

4.
75

3.
55

2.
03

2.
89

1.
84

3.
47

3.
11

2.
24

2.
61

3.
15

p-
va

lu
e

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

rG
A

(V
N

S)
be

st
3.

57
2.

67
3.

21
3.

83
4.

66
3.

42
2.

98
2.

09
3.

43
2.

02
2.

82
2.

13
3.

07

av
g

3.
36

2.
88

3.
12

3.
88

4.
56

3.
08

2.
86

2.
14

3.
41

2.
06

2.
51

2.
17

3.
00

p-
va

lu
e

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

<1
0−

5
<1

0−
5

6.5 Further discussion 126

Ta
bl

e
6.

8
B

es
ta

nd
av

er
ag

e
im

pr
ov

em
en

tp
er

ce
nt

ag
es

of
th

e
rG

A
(V

N
S)

al
go

rit
hm

ov
er

ot
he

rm
et

ho
ds

fo
rt

he
51

2x
16

dy
na

m
ic

da
ta

se
ti

ns
ta

nc
es

.

In
st

an
ce

A
lg

or
ith

m
d_

u_
c_

hi
hi

d_
u_

c_
hi

lo
d_

u_
c_

lo
hi

d_
u_

c_
lo

lo
d_

u_
i_

hi
hi

d_
u_

i_
hi

lo
d_

u_
i_

lo
hi

d_
u_

i_
lo

lo
d_

u_
s_

hi
hi

d_
u_

s_
hi

lo
d_

u_
s_

lo
hi

d_
u_

s_
lo

lo
A

vg

m
in

-m
in

R
es

28
.8

2
23

.6
1

21
.8

4
24

.7
3

26
.7

4
24

.7
4

36
.1

5
28

.6
3

57
.8

9
49

.0
3

63
.8

3
33

.7
7

34
.9

8

rm
in

-m
in

R
es

27
.6

0
22

.5
7

21
.7

7
19

.3
5

26
.2

9
22

.9
8

30
.9

0
28

.4
9

52
.5

8
43

.3
0

61
.0

2
32

.7
0

32
.4

6

G
A

+V
N

S
be

st
11

.9
1

17
.8

7
10

.0
4

12
.7

2
11

.0
0

7.
20

9.
31

6.
33

10
.2

7
8.

18
8.

38
7.

91
10

.0
9

av
g

11
.7

3
18

.2
5

10
.2

2
12

.9
2

11
.0

1
7.

01
9.

45
6.

59
10

.6
4

8.
48

8.
24

8.
22

10
.2

5

rG
A

+V
N

S
be

st
9.

00
14

.3
2

7.
36

10
.2

4
9.

15
6.

52
6.

96
5.

35
7.

93
6.

83
7.

98
6.

16
8.

15

av
g

8.
78

14
.6

4
7.

37
10

.7
7

9.
35

6.
32

7.
12

5.
54

8.
13

6.
87

7.
83

6.
33

8.
35

A
C

O
+V

N
S

be
st

8.
14

12
.3

4
5.

46
7.

93
7.

70
5.

41
6.

00
3.

87
6.

43
5.

54
5.

77
5.

40
6.

67

av
g

7.
88

12
.6

3
5.

48
8.

36
7.

70
5.

18
6.

09
4.

15
6.

58
5.

62
5.

59
5.

49
6.

73

rA
C

O
+V

N
S

be
st

4.
69

4.
61

4.
13

5.
17

5.
56

3.
88

3.
66

2.
80

4.
16

2.
74

3.
50

3.
22

4.
01

av
g

4.
50

5.
07

4.
01

5.
47

5.
45

3.
67

3.
68

2.
82

4.
29

3.
12

3.
09

3.
26

4.
04

A
C

O
(V

N
S)

be
st

6.
06

6.
77

4.
66

6.
50

6.
37

4.
55

4.
97

3.
25

5.
21

4.
21

4.
29

4.
02

5.
07

av
g

6.
02

7.
26

4.
53

6.
83

6.
37

4.
44

4.
95

3.
25

5.
45

4.
52

4.
00

4.
12

5.
14

rA
C

O
(V

N
S)

be
st

2.
28

1.
77

2.
64

1.
97

2.
86

2.
75

2.
02

1.
45

1.
91

1.
49

2.
13

1.
44

2.
06

av
g

2.
29

2.
01

2.
45

2.
18

2.
93

2.
46

2.
13

1.
44

2.
05

1.
45

1.
80

1.
54

2.
06

G
A

(V
N

S)
be

st
3.

57
2.

67
3.

21
3.

83
4.

66
3.

42
2.

98
2.

09
3.

43
2.

02
2.

82
2.

13
3.

07

av
g

3.
36

2.
88

3.
12

3.
88

4.
56

3.
08

2.
86

2.
14

3.
41

2.
06

2.
51

2.
17

3.
00

6.6 Summary 127

better than their corresponding loosely coupled schedulers. It is worth noting that the
version of the dynamic job scheduling problem discussed in this chapter considered the
change in the number of jobs at runtime only, while the number of resources is the same.
For further work, it will be interesting to examine the change in the number of jobs and
resources and the work presented in this chapter can serve as reference in this direction.

6.6 Summary

In this chapter, the application of various hybrid meta-heuristic rescheduling algorithms
for solving the dynamic job scheduling problem in grid computing in terms of minimising
the makespan was discussed. The dynamic version of the job scheduling problem in
grid computing that has been considered here involves the scenario in which blocks of
independent jobs arrive to the grid system at different arrival times. The rescheduling
strategy, which involves several calls of the job scheduler at various intervals of time, is
employed to solve this dynamic problem. The dynamic job scheduling problem formu-
lation, the dynamic simulation model and how to apply rescheduling were introduced.
Moreover, a special benchmark has been created for the dynamic job scheduling problem
to validate the performance of the proposed hybrid meta-heuristic rescheduling algorithms.
The experimental results showed that the algorithm which apply rescheduling provides
better makespan results than its corresponding non-rescheduling algorithm. Furthermore,
the two strongly coupled meta-heuristic rescheduling algorithms, namely rGA(VNS) and
rACO(VNS), provided promising and significant improvements in terms of minimising
the makespan, which are outperforming their corresponding loosely coupled reschedul-
ing and traditional methods. These improvements suggest that the two strongly coupled
meta-heuristics with aid of rescheduling operations have the ability to efficiently tackle the
dynamic job scheduling problem in grid computing.

Chapter 7

Conclusions and Future Work

This chapter summarizes the results of this work and draws some conclusions. Additionally,
the main contributions of the research work presented in this thesis are also listed. Finally,
areas for further research are identified.

7.1 Conclusions

The mapping of jobs to resources or job scheduling in distributed and heterogeneous
environments such as grid computing systems is considered one of the most significant and
difficult tasks. The overall performance of such systems can be improved significantly by
using an effective job scheduler. The job scheduling in grid computing shares the property
of being an NP-hard problem with conventional distributed systems. However, in the
former systems, it is particularly complex as it is dynamic, multi-objective and has a high
degree of heterogeneity in terms of jobs and resources. Therefore, and to cope in practice
with its difficulty and complexity, the use of meta-heuristics is necessary. ACO and GA are
robust search methods which have been used to successfully solve this problem. However,
the results achieved by these methods could be further improved by combining them with
other meta-heuristic approaches.

In this thesis, two meta-heuristic methods, ACO and GA, have been hybridized with
a novel VNS in loosely and strongly coupled fashions to tackle the static and dynamic
independent batch job scheduling problems in grid computing. The new high-level algo-
rithms inherit the best characteristics of the combined methods. Four new neighbourhood
structures and a modified PALS have been proposed for the novel VNS, which use the
concepts of move and transfer of some jobs to or from the problem resource, which is the
resource that has a local makespan equal to the total makespan of the solution. Through
the use of these structures and the modified local search, VNS improves the performance
of the ACO and GA algorithms by introducing diversity to the colony and the population,
respectively, and by exploring new parts of the state space of the problem.

7.1 Conclusions 129

To evaluate the performance of the proposed hybrid methods to the static version of
the problem, the ETC model has been used. Three different well-known datasets have
been used to perform several experiments. The experimental results show that the strongly
coupled hybrid meta-heuristic, GA(VNS), achieved results that were significantly better
than other selected approaches from the literature for all three benchmarks used in terms
of minimising the makespan; therefore, we can claim that it represents the new state-
of-the-art sequential hybrid algorithm for job scheduling in grid computing. With very
low standard deviation values, it should be expected that GA(VNS) can find high-quality
schedules in any single run. Moreover, GA(VNS) achieved results that show the smallest
gap with the lower bound in all the problem instances examined in this study. On the
other hand, the other strongly coupled hybrid meta-heuristic, ACO(VNS), was almost
the second-best algorithm in terms of makespan results; however, it needed a longer time
to construct high-quality solutions. For relatively small problem instances, the result for
ACO(VNS) were very close to the ones achieved by GA(VNS); however, as the dataset
size increases, the quality of the solutions found by ACO(VNS) decreases, which means
that longer times will be needed to improve the results. The thesis also examined the
loosely coupled hybridisation of ACO and GA with VNS. The first loosely coupled hybrid
meta-heuristic, ACO+VNS, was almost the third-best algorithm in terms of makespan
results; however, similar to ACO(VNS), it needed a longer time to construct high-quality
solutions. The second loosely coupled hybrid meta-heuristic, GA+VNS, was almost the
fourth-best algorithm in terms of makespan results. The main feature of loosely coupled
hybrid methods is that the identity of the combined algorithms is preserved. This means
that no overlapping between the combined algorithms is available, which leads to the
situation that if one algorithm sticks in a local minimum, the following algorithm will try
to escape from it and improve the solution. However, this improvement is limited mainly
due to the fact that the following algorithm may also be trapped in local minima. This
situation is not exist in the strongly coupled algorithms as if the main algorithm sticks in a
local minimum, it will escape from it when it calls the supporting algorithm which passes
the control back to main algorithm again and so on.

Moreover, the application of various hybrid meta-heuristic rescheduling algorithms for
solving the dynamic job scheduling problem in grid computing in terms of minimising the
makespan was also discussed in this thesis. The dynamic version of the job scheduling
problem in grid computing that has been considered in this research work involves the
scenario in which blocks of independent jobs arrive to the grid system at different arrival
times. The rescheduling strategy, which involves several calls of the job scheduler at various
intervals of time, is employed to solve this dynamic problem. The dynamic job scheduling
problem formulation, the dynamic simulation model and how to apply rescheduling
were introduced. Moreover, a special benchmark has been created for the dynamic job
scheduling problem to validate the performance of the proposed hybrid meta-heuristic

7.2 Future work 130

rescheduling algorithms. The experimental results showed that the algorithm which apply
rescheduling provides better makespan results than its corresponding none rescheduling
algorithm. Furthermore, the two strongly coupled meta-heuristic rescheduling algorithms,
namely rGA(VNS) and rACO(VNS), provided promising and significant improvements in
terms of minimising the makespan, which are outperforming their corresponding loosely
coupled rescheduling and traditional methods. These improvements suggest that the two
strongly coupled meta-heuristics with aid of rescheduling operations have the ability to
efficiently tackle the dynamic job scheduling in grid computing.

From the research that has been conducted, it is possible to summarise the following
main contributions:

1. An analyse of the use of various traditional, heuristic, meta-heuristic and hybrid
meta-heuristics approaches for solving the job scheduling problem in grid computing,
was presented.

2. A new VNS meta-heuristic for the job scheduling problem in grid computing, which
uses some effective and carefully designed neighbourhood structures and a powerful
local search to explore different regions on the state space of the problem, was
developed.

3. Several novel hybrid meta-heuristic schedulers, in loosely and strongly coupled
fashions, that uses the newly proposed VNS to produce high quality schedules in a
reasonable time, were designed and implemented.

4. New state-of-the-art sequential hybrid algorithms for job scheduling in grid comput-
ing that could serve as a reference in the field, were provided.

5. New problem instances, that follow a well-known methodology, to model dynamic
job scheduling in grid computing, were generated.

6. A dynamic scenario which uses the rescheduling technique to simulate the dynamic
job scheduling problem, was introduced.

7. The introduced dynamic scenario was used to evaluate the performance of the
proposed hybrid schedulers.

7.2 Future work

Although the proposed methods seem promising approaches to scheduling in grid com-
puting systems, the work presented in this line of research can be extended in various
directions.

7.2 Future work 131

In the current GA-based schedulers, the focus was on improving the mutation operator
in which the use of VNS showed a great impact. We are in the process of developing
an adaptive crossover operator for the proposed GA-based methods. It is expected that
the new crossover operator will significantly improve the performance of the proposed
GA-based schedulers, especially the loosely coupled one.

Furthermore, research into solving the job scheduling problem in grid computing
using other meta-heuristic approaches, such as PSO, both as a stand-alone and as a hybrid
algorithm is already underway. The investigation of other meta-heuristics will allow us to
more generalise the hybridisation concepts and impacts, and to a great extent, to construct
a general framework to design and develop hybrid algorithms to solve other optimisation
problems.

The suggested methods in this work addressed the minimisation of a single objective,
which is the makespan. Adding another objective, such as flowtime and cost, will convert
the problem into a multi-objective one. Therefore, future work needs to be carried out
to establish whether the proposed methods can tackle the multi-objective job scheduling
problem in grid computing or not. Moreover, the makespan, cost and flowtime objectives
are related to grid computing system performance and users’ QoS requirements, it will
be interesting to study the behaviour of the proposed hybrid meta-heuristic algorithms in
terms of energy- and security- based and/or performance- and QoS- based objectives.

On the other hand, the proposed hybrid methods in this thesis tackled the independent
job scheduling, which assumes no relations between the submitted jobs. Extend the hybrid
schedulers suggested in this work to include the dependent version of the job scheduling
problem is a promising line of research to develop the current. Furthermore, multi-objective
dependent job scheduling is also another direction which considers even more complex
version of the scheduling problem.

Moreover, the hybrid methods proposed in this study are sequential; it would be
interesting to examine their performances in the parallel mode. This more likely leads to
many changes and modifications in the algorithm side of the proposed hybrid algorithms
to cope with the parallel requirements.

Although the achieved results of applying the proposed hybrid schedulers to the dy-
namic version of the problem were promising, more research efforts are required. Recalling
that the version of the dynamic job scheduling problem discussed in this thesis considered
the change in the number of jobs at runtime only, while the number of resources is the same.
For further work, it will be interesting to examine the change in the number of jobs and re-
sources to which the work presented in this thesis can serve as reference in this direction. In
addition, other types of dynamic scheduling problems in grid computing can also be inves-
tigated such as dynamic dependent job scheduling, dynamic multi-objective independent
job scheduling and dynamic multi-objective dependent job scheduling problems.

7.2 Future work 132

More broadly, the prospect of being able to apply the proposed methods in this work
to other distributed and heterogeneous environments, such as cloud computing systems,
serves as a continuous incentive for future research.

Bibliography

[1] Ajith Abraham, Rajkumar Buyya, and Baikunth Nath. Nature’s heuristics for
scheduling jobs on computational grids. In The 8th IEEE international conference
on advanced computing and communications (ADCOM 2000), pages 45–52, 2000.

[2] Ajith Abraham, He Guo, and Hongbo Liu. Swarm intelligence: foundations,
perspectives and applications. In Swarm Intelligent Systems, pages 3–25. Springer,
2006.

[3] Ajith Abraham, Hongbo Liu, and Mingyan Zhao. Particle swarm scheduling for
work-flow applications in distributed computing environments. In Metaheuristics for
Scheduling in Industrial and Manufacturing Applications, pages 327–342. Springer,
2008.

[4] Lucio Agostinho, Guilherme Feliciano, Leonardo Olivi, Eleri Cardozo, and Eliane
Guimaraes. A bio-inspired approach to provisioning of virtual resources in federated
clouds. In Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE
Ninth International Conference on, pages 598–604. IEEE, 2011.

[5] Imtiaz Ahmad and Muhammad K Dhodhi. Multiprocessor scheduling in a genetic
paradigm. Parallel Computing, 22(3):395–406, 1996.

[6] Enrique Alba and Gabriel Luque. A new local search algorithm for the dna fragment
assembly problem. Evolutionary Computation in Combinatorial Optimization,
pages 1–12, 2007.

[7] Abdelkamel Ben Ali, Gabriel Luque, Enrique Alba, and Kamal E Melkemi. An
improved problem aware local search algorithm for the dna fragment assembly
problem. Soft Computing, 21(7):1709–1720, 2017.

[8] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, and Debra Hensgen.
Task execution time modeling for heterogeneous computing systems. In Heteroge-
neous Computing Workshop, 2000.(HCW 2000) Proceedings. 9th, pages 185–199.
IEEE, 2000.

[9] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, Debra Hensgen,
and Sahra Ali. Representing task and machine heterogeneities for heterogeneous
computing systems. Tamkang Journal of Science and Engineering, 3(3):195–207,
2000.

[10] Mustafa Muwafak Alobaedy and Ku Ruhana Ku-Mahamud. Scheduling jobs in
computational grid using hybrid acs and ga approach. In Computing, Communica-
tions and IT Applications Conference (ComComAp), 2014 IEEE, pages 223–228.
IEEE, 2014.

Bibliography 134

[11] Soheil Anousha, Shoeib Anousha, and Mahmood Ahmadi. A new heuristic algo-
rithm for improving total completion time in grid computing. In Multimedia and
Ubiquitous Engineering, pages 17–26. Springer, 2014.

[12] P Deepan Babu and T Amudha. A novel genetic algorithm for effective job schedul-
ing in grid environment. In Computational Intelligence, Cyber Security and Compu-
tational Models, pages 385–393. Springer, 2014.

[13] Mark Baker, Rajkumar Buyya, and Domenico Laforenza. Grids and grid technolo-
gies for wide-area distributed computing. Software: Practice and Experience, 32
(15):1437–1466, 2002.

[14] Amid Khatibi Bardsiri and Seyyed Mohsen Hashemi. A comparative study on seven
static mapping heuristics for grid scheduling problem. International Journal of
Software Engineering and Its Applications, 6(4):247–256, 2012.

[15] Fran Berman, Geoffrey Fox, Tony Hey, and Anthony JG Hey. Grid computing:
making the global infrastructure a reality, volume 2. John Wiley and sons, 2003.

[16] Christian Blum. Ant colony optimization: Introduction and recent trends. Physics
of Life reviews, 2(4):353–373, 2005.

[17] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hybrid
metaheuristics in combinatorial optimization: A survey. Applied Soft Computing,
11(6):4135–4151, 2011.

[18] Ilhem BoussaïD, Julien Lepagnot, and Patrick Siarry. A survey on optimization
metaheuristics. Information Sciences, 237:82–117, 2013.

[19] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthucumaru
Maheswaran, Albert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao,
Debra Hensgen, et al. A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems. Journal of
Parallel and Distributed computing, 61(6):810–837, 2001.

[20] Tracy D Braun, Howard Jay Siegel, and Anthony A Maciejewski. Static mapping
heuristics for tasks with dependencies, priorities, deadlines, and multiple versions
in heterogeneous environments. In Parallel and Distributed Processing Symposium.,
Proceedings International, IPDPS 2002, Abstracts and CD-ROM, pages 8–pp. IEEE,
2001.

[21] Bernd Bullnheimer, Richard F Hartl, and Christine Strauss. An improved ant
system algorithm for thevehicle routing problem. Annals of operations research, 89:
319–328, 1999.

[22] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid computing.
Concurrency and computation: practice and experience, 14(13-15):1175–1220,
2002.

[23] Rajkumar Buyya and Srikumar Venugopal. A gentle introduction to grid computing
and technologies. CSI Communications, 2:R3, 2005.

Bibliography 135

[24] Javier Carretero and Fatos Xhafa. Use of genetic algorithms for scheduling jobs in
large scale grid applications. Technological and Economic development of Economy,
12(1):11–17, 2006.

[25] Javier Carretero, Fatos Xhafa, and Ajith Abraham. Genetic algorithm based sched-
ulers for grid computing systems. International Journal of Innovative Computing,
Information and Control, 3(6):1–19, 2007.

[26] Anand K Chaturvedi and Rajendra Sahu. New heuristic for scheduling of indepen-
dent tasks in computational grid. International Journal of Grid and Distributed
Computing, 4(3):25–36, 2011.

[27] S Chick, PJ Sánchez, D Ferrin, and DJ Morrice. Fast simulation model for grid
scheduling using hypersim. In WSC, volume 1, page 1494. WSG/SIGSIM, 1998.

[28] P Cyril Daisy Christina and D Doreen Hephzibah Miriam. Adaptive task scheduling
based on multi criterion ant colony optimization in computational grids. In Recent
Trends In Information Technology (ICRTIT), 2012 International Conference on,
pages 185–190. IEEE, 2012.

[29] Chao-Hsien Chu, G Premkumar, and Hsinghua Chou. Digital data networks design
using genetic algorithms. European Journal of Operational Research, 127(1):
140–158, 2000.

[30] Irina Ciornei and Elias Kyriakides. Hybrid ant colony-genetic algorithm (gaapi)
for global continuous optimization. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(1):234–245, 2012.

[31] Tatjana Davidovic, Pierre Hansen, and Nenad Mladenovic. Variable neighborhood
search for multiprocessor scheduling problem with communication delays. In Proc.
MIC, volume 4, pages 737–741, 2001.

[32] Lawrence Davis. Applying adaptive algorithms to epistatic domains. In IJCAI,
volume 85, pages 162–164, 1985.

[33] Kenneth Alan De Jong. An Analysis of the Behaviour of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

[34] J-L Deneubourg, Serge Aron, Simon Goss, and Jacques M Pasteels. The self-
organizing exploratory pattern of the argentine ant. Journal of insect behavior, 3(2):
159–168, 1990.

[35] Marco Dorigo. Optimization, learning and natural algorithms. PhD thesis, Politec-
nico di Milano, 1992.

[36] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative learn-
ing approach to the traveling salesman problem. IEEE Transactions on evolutionary
computation, 1(1):53–66, 1997.

[37] Marco Dorigo and Thomas Stützle. The ant colony optimization metaheuristic:
Algorithms, applications, and advances. In Handbook of metaheuristics, pages
250–285. Springer, 2003.

[38] Marco Dorigo, Mauro Birattari, et al. Swarm intelligence. Scholarpedia, 2(9):1462,
2007.

Bibliography 136

[39] Werner Dubitzky and Francisco Azuaje. A genetic algorithm and growing cell
structure approach to learning case retrieval structures. In Soft computing in case
based reasoning, pages 115–146. Springer, 2001.

[40] Jayne Eaton. Ant Colony Optimisation for Dynamic and Dynamic Multi-objective
Railway Rescheduling Problems. PhD thesis, School of Computer Science and
Informatics, De Montfort University, 2017.

[41] Jayne Eaton and Shengxiang Yang. Dynamic railway junction rescheduling using
population based ant colony optimisation. In Computational Intelligence (UKCI),
2014 14th UK Workshop on, pages 1–8. IEEE, 2014.

[42] Jayne Eaton, Shengxiang Yang, and Michalis Mavrovouniotis. Ant colony opti-
mization with immigrants schemes for the dynamic railway junction rescheduling
problem with multiple delays. Soft Computing, 20(8):2951–2966, 2016.

[43] Jayne Eaton, Shengxiang Yang, and Mario Gongora. Ant colony optimization for
simulated dynamic multi-objective railway junction rescheduling. IEEE Transac-
tions on Intelligent Transportation Systems, 18(11):2980–2992, 2017.

[44] El-Sayed M El-Alfy and Wasan Shaker Awad. Computational intelligence
paradigms: An overview. In Improving Information Security Practices through
Computational Intelligence, pages 1–27. IGI Global, 2016.

[45] Andries P Engelbrecht. Computational Intelligence: An Introduction. John Wiley
& Sons, Inc., 2007.

[46] Larry J Eshelman. The chc adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. In Foundations of genetic
algorithms, volume 1, pages 265–283. Elsevier, 1991.

[47] Kobra Etminani and M Naghibzadeh. A min-min max-min selective algorihtm for
grid task scheduling. In Internet, 2007. ICI 2007. 3rd IEEE/IFIP International
Conference in Central Asia on, pages 1–7. IEEE, 2007.

[48] Kobra Etminani, Mahmaud Naghibzadeh, and Noorali Raeeji Yanehsari. A hybrid
min-min max-min algorithm with improved performance. Department of Computer
Engineering, University of Mashad, 2009.

[49] Conor Fahy, Shengxiang Yang, and Mario Gongora. Finding multi-density clusters
in non-stationary data streams using an ant colony with adaptive parameters. In
Evolutionary Computation (CEC), 2017 IEEE Congress on, pages 673–680. IEEE,
2017.

[50] Conor Fahy, Shengxiang Yang, and Mario Gongora. Ant colony stream clustering:
A fast density clustering algorithm for dynamic data streams. IEEE Transactions on
Cybernetics, 2018.

[51] Geoffrey Falzon and Maozhen Li. Evaluating heuristics for grid workflow schedul-
ing. In Natural Computation, 2009. ICNC’09. Fifth International Conference on,
volume 4, pages 227–231. IEEE, 2009.

[52] Geoffrey Falzon and Maozhen Li. Enhancing genetic algorithms for dependent job
scheduling in grid computing environments. The Journal of Supercomputing, 62(1):
290–314, 2012.

Bibliography 137

[53] Geoffrey Falzon and Maozhen Li. Enhancing list scheduling heuristics for dependent
job scheduling in grid computing environments. The Journal of Supercomputing,
59(1):104–130, 2012.

[54] Stefka Fidanova and Mariya Durchova. Ant algorithm for grid scheduling problem.
In International Conference on Large-Scale Scientific Computing, pages 405–412.
Springer, 2005.

[55] Edson Flórez, Carlos J Barrios, and Johnatan E Pecero. Methods for job schedul-
ing on computational grids: Review and comparison. In Latin American High
Performance Computing Conference, pages 19–33. Springer, 2015.

[56] Ian Foster and Carl Kesselman. The grid : blueprint for a new computing infras-
tructure. Morgan Kaufmann Publishers, 1999.

[57] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a new computing
infrastructure. Elsevier, 2003.

[58] Ian Foster and Carl Kesselman. The history of the grid. computing, 20(21):22, 2010.

[59] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International journal of high performance computing
applications, 15(3):200–222, 2001.

[60] Dorian Gaertner and Keith L Clark. On optimal parameters for ant colony optimiza-
tion algorithms. In IC-AI, pages 83–89, 2005.

[61] Luca Maria Gambardella and Marco Dorigo. Has-sop: Hybrid ant system for the
sequential ordering problem. Technical Report IDSIA 11-97, Istituto Dalle Molle
Di Studi Sull Intelligenza Artificiale, Lugano, Switzerland, 1997.

[62] Yang Gao, Hongqiang Rong, and Joshua Zhexue Huang. Adaptive grid job schedul-
ing with genetic algorithms. Future Generation Computer Systems, 21(1):151–161,
2005.

[63] Saurabh Kumar Garg, Rajkumar Buyya, and Howard Jay Siegel. Time and cost
trade-off management for scheduling parallel applications on utility grids. Future
Generation Computer Systems, 26(8):1344–1355, 2010.

[64] Farhad Soleimanian Gharehchopogh, Majid Ahadi, Isa Maleki, Ramin Habibpour,
and Amin Kamalinia. Analysis of scheduling algorithms in grid computing environ-
ment. ISSR Journals, 2013.

[65] Christos Gogos, Christos Valouxis, Panayiotis Alefragis, George Goulas, Nikolaos
Voros, and Efthymios Housos. Scheduling independent tasks on heterogeneous
processors using heuristics and column pricing. Future Generation Computer
Systems, 60:48–66, 2016.

[66] David E Goldberg, Robert Lingle, et al. Alleles, loci, and the traveling salesman
problem. In Proceedings of an international conference on genetic algorithms and
their applications, volume 154, pages 154–159. Lawrence Erlbaum, Hillsdale, NJ,
1985.

[67] Martin Grajcar. Genetic list scheduling algorithm for scheduling and allocation
on a loosely coupled heterogeneous multiprocessor system. In Design Automation
Conference, 1999. Proceedings. 36th, pages 280–285. IEEE, 1999.

Bibliography 138

[68] Martin Grajcar. Strength and weaknesses of genetic list scheduling for heteroge-
neous systems. In acsd, page 123. IEEE, 2001.

[69] Plerre-P Grass. La reconstruction du nid et les coordinations inter-individuelles
chez bellicositermes natalensis et cubitermes sp. la thorie de la stigmergie: Essai
d’interprtation du comportement des termites constructeurs. Insectes sociaux, 6(1):
4181, 1959.

[70] Thomas Grüninger and David Wallace. Multimodal optimization using genetic
algorithms. Master’s thesis, Stuttgart University, 1996.

[71] Volker Hamscher, Uwe Schwiegelshohn, Achim Streit, and Ramin Yahyapour. Eval-
uation of job-scheduling strategies for grid computing. In International Workshop
on Grid Computing, pages 191–202. Springer, 2000.

[72] Pierre Hansen, Nenad Mladenović, Raca Todosijević, and Saïd Hanafi. Variable
neighborhood search: basics and variants. EURO Journal on Computational Opti-
mization, 5(3):423–454, 2017.

[73] Yongsheng Hao and Guanfeng Liu. Evaluation of nine heuristic algorithms with
data-intensive jobs and computing-intensive jobs in a dynamic environment. IET
software, 9(1):7–16, 2015.

[74] Tony Hey and Anne E Trefethen. The uk e-science core programme and the grid. In
International Conference on Computational Science, pages 3–21. Springer, 2002.

[75] John Henry Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT press,
1992.

[76] Bert Hölldobler, Edward O Wilson, et al. Journey to the ants: a story of scientific
exploration. Harvard University Press, 1994.

[77] Oscar H Ibarra and Chul E Kim. Heuristic algorithms for scheduling independent
tasks on nonidentical processors. Journal of the ACM (JACM), 24(2):280–289,
1977.

[78] Hesam Izakian, Ajith Abraham, and Vaclav Snasel. Comparison of heuristics
for scheduling independent tasks on heterogeneous distributed environments. In
Computational Sciences and Optimization, 2009. CSO 2009. International Joint
Conference on, volume 1, pages 8–12. IEEE, 2009.

[79] Hesam Izakian, Ajith Abraham, and Vaclav Snasel. Performance comparison of
six efficient pure heuristics for scheduling meta-tasks on heterogeneous distributed
environments. Neural Network World, 19(6):695, 2009.

[80] Hesam Izakian, Behrouz Tork Ladani, Ajith Abraham, Vaclav Snasel, et al. A
discrete particle swarm optimization approach for grid job scheduling. International
Journal of Innovative Computing, Information and Control, 6(9):1–15, 2010.

[81] Laetitia Jourdan, Matthieu Basseur, and E-G Talbi. Hybridizing exact methods and
metaheuristics: A taxonomy. European Journal of Operational Research, 199(3):
620–629, 2009.

Bibliography 139

[82] Leila Kallel and Marc Schoenauer. Alternative random initialization in genetic
algorithms. In ICGA, pages 268–275, 1997.

[83] Sara Kardani-Moghaddam, Farzad Khodadadi, Reza Entezari-Maleki, and Ali
Movaghar. A hybrid genetic algorithm and variable neighborhood search for task
scheduling problem in grid environment. Procedia Engineering, 29:3808–3814,
2012.

[84] Ashfaq A. Khokhar, Viktor K. Prasanna, Muhammad E. Shaaban, and C-L Wang.
Heterogeneous computing: Challenges and opportunities. Computer, 26(6):18–27,
1993.

[85] Joanna Kołodziej and Fatos Xhafa. Enhancing the genetic-based scheduling in
computational grids by a structured hierarchical population. Future Generation
Computer Systems, 27(8):1035–1046, 2011.

[86] Joanna Kołodziej and Fatos Xhafa. Integration of task abortion and security require-
ments in ga-based meta-heuristics for independent batch grid scheduling. Computers
& Mathematics with Applications, 63(2):350–364, 2012.

[87] Joanna Kolodziej, Samee Ullah Khan, and Fatos Xhafa. Genetic algorithms for
energy-aware scheduling in computational grids. In 2011 International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, pages 17–24. IEEE, 2011.

[88] Joanna Kołodziej, Samee Ullah Khan, Lizhe Wang, Marek Kisiel-Dorohinicki,
Sajjad A Madani, Ewa Niewiadomska-Szynkiewicz, Albert Y Zomaya, and Cheng-
Zhong Xu. Security, energy, and performance-aware resource allocation mechanisms
for computational grids. Future Generation Computer Systems, 31:77–92, 2014.

[89] K Kousalya and P Balasubramanie. To improve ant algorithm’s grid scheduling
using local search. International Journal Of Computational Cognition http://www.
yangsky. com/ijcc/pdf/ijcc747. pdf, 7(4):47–57, 2009.

[90] Ku Ruhana Ku-Mahamud and Mustafa Muwafak Alobaedy. New heuristic function
in ant colony system for job scheduling in grid computing. In Proceeding of the
17th International Conference on Applied Mathematics. Montreux, pages 47–52,
2012.

[91] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):
406–471, 1999.

[92] Maozhen Li and Mark Baker. The grid: core technologies. John Wiley & Sons,
2005.

[93] Hongbo Liu, Ajith Abraham, and Aboul Ella Hassanien. Scheduling jobs on
computational grids using a fuzzy particle swarm optimization algorithm. Future
Generation Computer Systems, 26(8):1336–1343, 2010.

[94] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, and Chai
Chompoo-inwai. An ant colony optimization for dynamic job scheduling in grid
environment. International Journal of Computer and Information Science and
Engineering, 1(4):207–214, 2007.

Bibliography 140

[95] Heikki Maaranen, Kaisa Miettinen, and Antti Penttinen. On initial populations
of a genetic algorithm for continuous optimization problems. Journal of Global
Optimization, 37(3):405, 2007.

[96] Mojtaba MadadyarAdeh and Jamshid Bagherzadeh. An improved ant algorithm
for grid scheduling problem using biased initial ants. In Computer Research and
Development (ICCRD), 2011 3rd International Conference on, volume 2, pages
373–378. IEEE, 2011.

[97] Maurice Maeterlinck. Life of the white ant. Dodd, Mead & Co., New York, 1927.

[98] Frédéric Magoulès. Fundamentals of grid computing: theory, algorithms and
technologies. CRC Press, 2009.

[99] Frédéric Magoulès, Lei Yu, et al. Grid resource management: toward virtual and
services compliant grid computing. CRC Press, 2008.

[100] Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen,
and Richard F Freund. Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems. Journal of parallel and distributed computing,
59(2):107–131, 1999.

[101] Muthucumaru Maheswaran, Tracy D Braun, and Howard Jay Siegel. Heterogeneous
distributed computing. Wiley encyclopedia of electrical and electronics engineering,
1999.

[102] JY Maipan-uku, I Rabiu, and Amit Mishra. Immediate/batch mode scheduling
algorithms for grid computing: A review. International Journal of Research -
GRANTHAALAYAH, 2017.

[103] Vittorio Maniezzo and Alberto Colorni. The ant system applied to the quadratic
assignment problem. IEEE Transactions on Knowledge & Data Engineering, 11(5):
769–778, 1999.

[104] EN Marais. Die siel van die mier (the soul of the ant). JL van Schaik, Pretoria,
South Africa„ 1948 (first published in 1937).

[105] P Mathiyalagan, S Suriya, and SN Sivanandam. Modified ant colony algorithm for
grid scheduling. International Journal on computer science and Engineering, 2(02):
132–139, 2010.

[106] Michalis Mavrovouniotis and Shengxiang Yang. Ant colony optimization with
immigrants schemes in dynamic environments. In International Conference on
Parallel Problem Solving from Nature, pages 371–380. Springer, 2010.

[107] Michalis Mavrovouniotis and Shengxiang Yang. Ant colony optimization with
memory-based immigrants for the dynamic vehicle routing problem. In Evolutionary
Computation (CEC), 2012 IEEE Congress on, pages 1–8. IEEE, 2012.

[108] Michalis Mavrovouniotis and Shengxiang Yang. Ant algorithms with immigrants
schemes for the dynamic vehicle routing problem. Information Sciences, 294:
456–477, 2015.

[109] Michalis Mavrovouniotis and Shengxiang Yang. Empirical study on the effect of
population size on max-min ant system in dynamic environments. In Evolutionary
Computation (CEC), 2016 IEEE Congress on, pages 853–860. IEEE, 2016.

Bibliography 141

[110] Michalis Mavrovouniotis, Anastasia Ioannou, and Shengxiang Yang. Pre-scheduled
colony size variation in dynamic environments. In European Conference on the
Applications of Evolutionary Computation, pages 128–139. Springer, 2017.

[111] Michalis Mavrovouniotis, Felipe M Müller, and Shengxiang Yang. Ant colony
optimization with local search for dynamic traveling salesman problems. IEEE
transactions on cybernetics, 47(7):1743–1756, 2017.

[112] Michalis Mavrovouniotis, Mien Van, and Shengxiang Yang. Pheromone modifica-
tion strategy for the dynamic travelling salesman problem with weight changes. In
Computational Intelligence (SSCI), 2017 IEEE Symposium Series on, pages 1–8.
IEEE, 2017.

[113] Gabriela F Minetti, Gabriel Luque, and Enrique Alba. The problem aware local
search algorithm: an efficient technique for permutation-based problems. Soft
Computing, pages 1–14, 2017.

[114] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers
& operations research, 24(11):1097–1100, 1997.

[115] Ehsan Ullah Munir, Jianzhong Li, Shengfei Shi, Zhaonian Zou, and Qaisar Rasool.
A performance study of task scheduling heuristics in hc environment. In Modelling,
Computation and Optimization in Information Systems and Management Sciences,
pages 214–223. Springer, 2008.

[116] Michael Negnevitsky. Artificial intelligence: a guide to intelligent systems. Pearson
Education, 2005.

[117] Sergio Nesmachnow, Enrique Alba, and Héctor Cancela. Scheduling in heteroge-
neous computing and grid environments using a parallel chc evolutionary algorithm.
Computational Intelligence, 28(2):131–155, 2012.

[118] Sergio Nesmachnow, Héctor Cancela, and Enrique Alba. A parallel micro evolu-
tionary algorithm for heterogeneous computing and grid scheduling. Applied Soft
Computing, 12(2):626–639, 2012.

[119] Sigurdur Ólafsson. Metaheuristics. Handbooks in operations research and manage-
ment science, 13:633–654, 2006.

[120] IM Oliver, DJd Smith, and John RC Holland. Study of permutation crossover
operators on the traveling salesman problem. In Genetic algorithms and their appli-
cations: proceedings of the second International Conference on Genetic Algorithms:
July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA.
Hillsdale, NJ: L. Erlhaum Associates, 1987., 1987.

[121] E Osaba, R Carballedo, F Diaz, E Onieva, I de la Iglesia, and A Perallos. Crossover
versus mutation: a comparative analysis of the evolutionary strategy of genetic
algorithms applied to combinatorial optimization problems. The Scientific World
Journal, 2014, 2014.

[122] Oshin and Mahesh Chandra Bhatt. Hybrid pso for job scheduling to minimize
makespan in heterogeneous grids. In Communication and Electronics Systems
(ICCES), 2017 2nd International Conference on, pages 586–591. IEEE, 2017.

Bibliography 142

[123] Oshin and Amit Chhabra. Job scheduling using ant colony optimization in grid
environment. In Electrical, Electronics, and Optimization Techniques (ICEEOT),
International Conference on, pages 2845–2850. IEEE, 2016.

[124] Elina Pacini, Cristian Mateos, and Carlos García Garino. Distributed job scheduling
based on swarm intelligence: A survey. Computers & Electrical Engineering, 40
(1):252–269, 2014.

[125] Elina Pacini, Cristian Mateos, Carlos García Garino, Claudio Careglio, and Aníbal
Mirasso. A bio-inspired scheduler for minimizing makespan and flowtime of
computational mechanics applications on federated clouds. Journal of Intelligent &
Fuzzy Systems, 31(3):1731–1743, 2016.

[126] Andrew J Page and Thomas J Naughton. Framework for task scheduling in het-
erogeneous distributed computing using genetic algorithms. Artificial Intelligence
Review, 24(3-4):415–429, 2005.

[127] Manish Parashar and Craig A Lee. Special issue on grid computing. Proceedings of
the IEEE, 93(3):479–484, 2005.

[128] Radu Prodan and Thomas Fahringer. Zenturio: a grid middleware-based tool for
experiment management of parallel and distributed applications. Journal of Parallel
and Distributed Computing, 64(6):693–707, 2004.

[129] Radu Prodan and Thomas Fahringer. Dynamic scheduling of scientific workflow
applications on the grid: a case study. In Proceedings of the 2005 ACM symposium
on Applied computing, pages 687–694. ACM, 2005.

[130] Arun K Pujari. Data mining techniques. Universities press, 2001.

[131] Marjan Kuchaki Rafsanjani and Amid Khatibi Bardsiri. A new heuristic approach for
scheduling independent tasks on heterogeneous computing systems. International
Journal of Machine Learning and Computing, 2(4):371, 2012.

[132] V Rajaraman. Grid computing. Resonance, 21(5):401–415, 2016.

[133] Naglaa M Reda, A Tawfik, Mohamed A Marzok, and Soheir M Khamis. Sort-mid
tasks scheduling algorithm in grid computing. Journal of advanced research, 6(6):
987–993, 2015.

[134] Graham Ritchie. Static multi-processor scheduling with ant colony optimisation &
local search. Master’s thesis, Citeseer, 2003.

[135] Graham Ritchie and John Levine. A hybrid ant algorithm for scheduling independent
jobs in heterogeneous computing environments. In 23rd Workshop UK Planning
and Scheduling Special Interest Group (PlanSIG 2004). AAAI, 2004.

[136] Kumara Sastry, David Goldberg, and Graham Kendall. Genetic algorithms. In
Search methodologies, pages 97–125. Springer, 2005.

[137] S Selvi and D Manimegalai. Multiobjective variable neighborhood search algorithm
for scheduling independent jobs on computational grid. Egyptian Informatics
Journal, 16(2):199–212, 2015.

Bibliography 143

[138] S Selvi and D Manimegalai. Task scheduling using two-phase variable neighborhood
search algorithm on heterogeneous computing and grid environments. Arabian
Journal for Science & Engineering (Springer Science & Business Media BV), 40(3),
2015.

[139] S Selvi, D Manimegalai, and A Suruliandi. Efficient job scheduling on computa-
tional gridwith differential evolution algorithm. International Journal of Computer
Theory and Engineering, 3(2):277, 2011.

[140] Pankaj Shroff, Daniel W Watson, Nicholas S Flann, and Richard F Freund. Genetic
simulated annealing for scheduling data-dependent tasks in heterogeneous envi-
ronments. In 5th Heterogeneous Computing Workshop (HCW’96), pages 98–117,
1996.

[141] Howard Jay Siegel, Henry G Dietz, and John K Antonio. Software support for
heterogeneous computing. ACM Computing Surveys (CSUR), 28(1):237–239, 1996.

[142] C Sriskandarajah, AKS Jardine, and CK Chan. Maintenance scheduling of rolling
stock using a genetic algorithm. Journal of the Operational Research Society, 49
(11):1130–1145, 1998.

[143] T Stützle. Local search algorithms for combinatorial problems— analysis, im-
provements, and new applications. PhD thesis, Department of Computer Science,
Darmstadt University of Technology, Darmstadt, Germany, 1998.

[144] Thomas Stutzle and Holger Hoos. Max-min ant system and local search for the trav-
eling salesman problem. In Evolutionary Computation, 1997., IEEE International
Conference on, pages 309–314. IEEE, 1997.

[145] Thomas Stützle and Holger Hoos. The max-min ant system and local search for
combinatorial optimization problems. In Meta-heuristics, pages 313–329. Springer,
1999.

[146] Thomas Stützle and Holger H Hoos. Max–min ant system. Future generation
computer systems, 16(8):889–914, 2000.

[147] Thomas Stützle, Manuel López-Ibánez, Paola Pellegrini, Michael Maur,
Marco Montes De Oca, Mauro Birattari, and Marco Dorigo. Parameter adap-
tation in ant colony optimization. In Autonomous search, pages 191–215. Springer,
2011.

[148] Prasanna Sugavanam, Howard Jay Siegel, Anthony A Maciejewski, Mohana Oltikar,
Ashish Mehta, Ron Pichel, Aaron Horiuchi, Vladimir Shestak, Mohammad Al-
Otaibi, Yogish Krishnamurthy, et al. Robust static allocation of resources for
independent tasks under makespan and dollar cost constraints. Journal of Parallel
and Distributed Computing, 67(4):400–416, 2007.

[149] Prasanna V Sugavanam, Howard Jay Siegel, Anthony A Maciejewski, Syed Amjad
Ali, Mohammad Al-Otaibi, Mahir Aydin, Kumara Guru, Aaron Horiuchi, Yogish G
Krishnamurthy, Panho Lee, et al. Processor allocation for tasks that is robust
against errors in computation time estimates. In Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, pages 14–pp. IEEE, 2005.

Bibliography 144

[150] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the
third international conference on Genetic algorithms, pages 2–9. Morgan Kaufmann
Publishers, 1989.

[151] Arne Thesen. Design and evaluation of tabu search algorithms for multiprocessor
scheduling. Journal of Heuristics, 4(2):141–160, 1998.

[152] Mitchell D Theys, Tracy D Braun, HJ Siegal, Anthony A Maciejewski, and
YK Kwok. Mapping tasks onto distributed heterogeneous computing systems using
a genetic algorithm approach. Solutions to Parallel and Distributed Computing
Problems: Lessons from Biological Sciences, pages 135–178, 2001.

[153] D Thilagavathi and Antony Selvadoss Thanamani. A survey on dynamic job
scheduling in grid environment based on heuristic algorithms. arXiv preprint
arXiv:1402.5205, 2014.

[154] YG Tirat-Gefen and Alice C Parker. Mega: An approach to system-level design
of application specific heterogeneous multiprocessors. In Proc. Heterogeneous
Comput. Workshop, Int. Parallel Process. Symp, volume 105, 1996.

[155] SG Tzafestas, M-P Saltouros, and M Markaki. A tutorial overview of genetic
algorithms and their applications. In Soft Computing in Systems and Control
Technology, pages 223–300. World Scientific, 1999.

[156] Lee Wang, Howard Jay Siegel, Vwani P Roychowdhury, and Anthony A Maciejew-
ski. Task matching and scheduling in heterogeneous computing environments using
a genetic-algorithm-based approach. Journal of parallel and distributed computing,
47(1):8–22, 1997.

[157] Meihong Wang and Wenhua Zeng. A comparison of four popular heuristics for task
scheduling problem in computational grid. In Wireless Communications Networking
and Mobile Computing (WiCOM), 2010 6th International Conference on, pages 1–4.
IEEE, 2010.

[158] L Darrell Whitley et al. The genitor algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In ICGA, volume 89, pages 116–123.
Fairfax, VA, 1989.

[159] F Xhafa and J Carretero. Experimental study of ga-based schedulers in dynamic dis-
tributed computing environments. In Optimization Techniques for Solving Complex
Problems, pages 423–441. Wiley, 2009.

[160] Fatos Xhafa. A hybrid evolutionary heuristic for job scheduling on computational
grids. In Hybrid Evolutionary Algorithms, pages 269–311. Springer, 2007.

[161] Fatos Xhafa and Ajith Abraham. Computational models and heuristic methods for
grid scheduling problems. Future generation computer systems, 26(4):608–621,
2010.

[162] Fatos Xhafa and Ajith Abraham. Computational models and heuristic methods for
grid scheduling problems. Future generation computer systems, 26(4):608–621,
2010.

Bibliography 145

[163] Fatos Xhafa, Leonard Barolli, and Arjan Durresi. An experimental study on genetic
algorithms for resource allocation on grid systems. Journal of Interconnection
Networks, 8(04):427–443, 2007.

[164] Fatos Xhafa, Javier Carretero, Leonard Barolli, and Arjan Durresi. Requirements
for an event-based simulation package for grid systems. Journal of Interconnection
Networks, 8(02):163–178, 2007.

[165] Fatos Xhafa, Enrique Alba, Bernabé Dorronsoro, Bernat Duran, and Ajith Abraham.
Efficient batch job scheduling in grids using cellular memetic algorithms. In
Metaheuristics for Scheduling in Distributed Computing Environments, pages 273–
299. Springer, 2008.

[166] Fatos Xhafa, Bernat Duran, Ajith Abraham, and Keshav P Dahal. Tuning struggle
strategy in genetic algorithms for scheduling in computational grids. In Proceed-
ings of the 2008 7th Computer Information Systems and Industrial Management
Applications, pages 275–280. IEEE Computer Society, 2008.

[167] Fatos Xhafa, Juan Antonio Gonzalez, Keshav P Dahal, and Ajith Abraham. A ga (ts)
hybrid algorithm for scheduling in computational grids. HAIS, 9:285–292, 2009.

[168] Fatos Xhafa, Bernat Duran, Joanna Kolodziej, Leonard Barolli, and Makoto Tak-
izawa. On exploitation vs exploration of solution space for grid scheduling. In
2011 Third International Conference on Intelligent Networking and Collaborative
Systems, pages 164–171. IEEE, 2011.

[169] Fatos Xhafa, Joanna Kolodziej, Leonard Barolli, and Akli Fundo. A ga+ ts hybrid
algorithm for independent batch scheduling in computational grids. In Network-
Based Information Systems (NBiS), 2011 14th International Conference on, pages
229–235. IEEE, 2011.

[170] Fatos Xhafa, Joanna Kolodziej, Leonard Barolli, Vladi Kolici, Rozeta Miho, and
Makoto Takizawa. Evaluation of hybridization of ga and ts algorithms for indepen-
dent batch scheduling in computational grids. In P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), 2011 International Conference on, pages 148–155.
IEEE, 2011.

[171] Fatos Xhafa, Javier Carretero, Bernabé Dorronsoro, and Enrique Alba. A tabu search
algorithm for scheduling independent jobs in computational grids. Computing and
informatics, 28(2):237–250, 2012.

[172] Hong Li Yin and Yong Ming Wang. Genetic algorithm with parameters optimization
mechanism for hard scheduling problems. In Computer and Information Technology
(CIT), 2012 IEEE 12th International Conference on, pages 587–591. IEEE, 2012.

[173] Muhanad Tahrir Younis and Shengxiang Yang. A genetic algorithm for independent
job scheduling in grid computing. MENDEL Soft Computing Journal, 23(01):65–72,
2017.

[174] Muhanad Tahrir Younis and Shengxiang Yang. Hybrid meta-heuristic algorithms
for independent job scheduling in grid computing. Applied Soft Computing, 2018.

[175] Muhanad Tahrir Younis, Shengxiang Yang, and Benjamin Passow. Meta-
heuristically seeded genetic algorithm for independent job scheduling in grid com-
puting. In European Conference on the Applications of Evolutionary Computation,
pages 177–189. Springer, 2017.

Bibliography 146

[176] Muhanad Tahrir Younis, Shengxiang Yang, and Benjamin N Passow. A loosely
coupled hybrid meta-heuristic algorithm for the static independent task scheduling
problem in grid computing. In IEEE World Congress on Computational Intelligence,
pages 1746–1753. IEEE Press, 2018.

[177] Shirin Dehghani Zahedani and GholamHossin Dastghaibyfard. A hybrid batch
job scheduling algorithm for grid environment. In Computer and Knowledge
Engineering (ICCKE), 2014 4th International eConference on, pages 763–768.
IEEE, 2014.

[178] Yanmin Zhu and Lionel M Ni. A survey on grid scheduling systems. Department
of Computer Science, Hong Kong University of science and Technology, 32:1–47,
2003.

[179] Albert Y. Zomaya and Yee-Hwei Teh. Observations on using genetic algorithms for
dynamic load-balancing. IEEE transactions on parallel and distributed systems, 12
(9):899–911, 2001.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis structure
	1.5 List of related publications by the author

	2 Hybrid Meta-Heuristic Algorithms
	2.1 Combinatorial optimisation problems
	2.2 Heuristic, meta-heuristic and hybrid meta-heuristic algorithms
	2.3 Variable Neighbourhood Search (VNS)
	2.4 Ant Colony Optimization (ACO)
	2.4.1 The Simple Ant Colony Optimization

	2.5 Genetic algorithm (GA)
	2.5.1 Encoding
	2.5.2 Initialization
	2.5.3 Fitness function
	2.5.4 Selection
	2.5.5 Alteration
	2.5.6 Replacement

	2.6 Summary

	3 Job Scheduling in Grid Computing
	3.1 Grid computing
	3.2 Grid computing architecture
	3.3 Scheduling in grid computing
	3.4 Job scheduling in grid computing: Problem formulation
	3.5 ETC matrix generating
	3.6 Methods for job scheduling in grid computing
	3.6.1 Heuristic methods for job scheduling in grid computing
	3.6.2 Meta-heuristic methods for job scheduling in grid computing

	3.7 Summary

	4 Hybrid Meta-Heuristics for Static Job Scheduling in Grid Computing
	4.1 The solution representation
	4.2 The application of VNS to the job scheduling problem
	4.2.1 Neighbourhood structures for job scheduling in grid computing
	4.2.2 The improvement step

	4.3 The application of hybrid ACO to the job scheduling problem
	4.3.1 Hybridizing ACO with VNS for the job scheduling problem

	4.4 The application of hybrid GA to the job scheduling problem
	4.4.1 The initial generation
	4.4.2 The fitness evaluation
	4.4.3 The selection operator
	4.4.4 The crossover operator
	4.4.5 The mutation operator
	4.4.6 The replacement operator
	4.4.7 Hybridizing GA with VNS for the job scheduling problem

	4.5 Summary

	5 Experimental results
	5.1 Development tools
	5.2 Parameter tuning
	5.2.1 Parameter tuning for VNS
	5.2.2 Parameter tuning for ACO+VNS and ACO(VNS)
	5.2.3 Parameter tuning for GA+VNS and GA(VNS)

	5.3 Results for instances from Liu et al. liu2010scheduling
	5.4 Results for instances from Braun et al. Braun2001
	5.5 Results for instances from Nesmachnow et al. nesmachnow2012parallel
	5.6 Results summary for Braun et al. Braun2001 and Nesmachnow et al. nesmachnow2012parallel datasets
	5.7 Summary

	6 Hybrid Meta-Heuristics for Dynamic Job Scheduling in Grid Computing
	6.1 Dynamic job scheduling simulation model
	6.2 Rescheduling simulator for dynamic job scheduling in grid computing
	6.3 Rescheduling-based methods
	6.4 Experimental analysis
	6.4.1 Parameter tuning
	6.4.2 Experimental results

	6.5 Further discussion
	6.6 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future work

	Bibliography

