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Abstract—Train delays at stations are a common occurrence
in complex, busy railway networks. A delayed train will miss
its scheduled time slot on the platform and may have to be
reallocated to a new platform to allow it to continue its journey.
The problem is a dynamic one because while reallocating a
delayed train further unanticipated train delays may occur,
changing the nature of the problem over time. Our aim in this
study is to apply ant colony optimisation (ACO) to a dynamic
platform reallocation problem (DPRP) using a model created
from real-world train schedule data. To ensure that trains are
not unnecessarily reallocated to new platforms we introduce a
novel best-ant-replacement scheme that takes into account not
only the objective value but also the physical distance between
the original and the new platforms. Results showed that the ACO
algorithm outperformed a heuristic that places the delayed train
in the first available time-slot and that this improvement was
more apparent with high-frequency dynamic changes.

I. INTRODUCTION

The recovery of train schedules after a delay is an impor-
tant factor in providing a reliable, cost-effective and better
performing railway service. A train delayed when it arrives
at a station will miss its scheduled time slot on its platform
and may have to be reallocated to allow it to continue its
journey. While reallocating the delayed train, further trains will
be arriving at the station. If these are also delayed, they will
change the platform allocation problem to a new problem with
a different set of train arrival times. This makes the problem a
dynamic one that changes over time. The aim of this research
is to investigate the ability of ant colony optimisation (ACO),
specifically the max-min ant system (MMAS) [17], to solve
this dynamic platform reallocation problem (DPRP).

To investigate the DPRP, a model of a UK railway station,
in this case Leicester station, has been created using Network
Rail’s schedule data from the Integrated Train Planning System
(ITPS) [14]. The model details both the movement of trains
through the station and the movement of all trains at each
of the timing points on the trains’ routes. This allows the
long-term consequences of the reallocation decisions to be
determined.

MMAS has no inbuilt intelligence to persuade it against
unnecessarily reallocating trains to new platforms. Therefore,
we also investigate a novel best-so-far ant replacement scheme

that discourages this behaviour and minimises the unnecessary
movement of trains to new platforms.

To evaluate the effectiveness of our approach, we compare
the results with a heuristic that is used by railway controllers,
that of assigning the delayed train to the first free platform
(FFP), near to the original platform, that is available when it
arrives at the station.

II. RELATED WORK

Previous work on the allocation of trains to station platforms
using evolutionary computation (EC) techniques has been
mainly concerned with scheduling rather than rescheduling
trains. Ghoseiri and Morshedsolouk [8] used ant colony system
(ACS) to schedule trains through several stations, where
each station was connected by a single track. Conflicts were
resolved by lengthening a train’s dwell time and their aim was
to minimise the overall increase in the dwell time. They found
that ACS was comparable with an exact computation method
and gave considerable time savings. Unfortunately, the work
was limited by the fact that they used a very simplified railway
model. Clarke et al. [4] used a genetic algorithm (GA) to
reallocate trains to platforms at Glasgow Central station. They
found that their system could successfully allocate around
1000 trains in approximately 30 seconds, with minimal clashes
between scheduled trains.

Carey and Carville [1] applied a heuristic commonly used
by train planners to a platform reallocation problem at Leeds
station. Their heuristic sequentially resolved the conflicts for
one train at a time. Their system not only produced a conflict-
free timetable but could also measure the quality of the
timetable in terms of factors such as platform usage and
the number of platform adjustments. Carey and Crawford
[2] extended the work to consider allocating trains to sta-
tion platforms on a network of stations. They modelled 25
interconnected stations linked by multiple one-way lines in
each direction. They based the problem on draft timetables
and used the same heuristic as [1]. To extend the problem,
they considered not only the station conflicts but also the
conflicts on the lines leaving the station. They found that the
algorithm could schedule the trains effectively in a reasonable
time, however, the fact that they considered each station in
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succession meant that the knock on delays increased with each
successive station.

All of the above work is concerned with scheduling at train
stations rather than rescheduling to recover the timetable after
a disruption. Rescheduling trains is a popular research area, but
seldom focuses on the issue of reallocating delayed trains at
stations. For example, Khan et al. [12] used a GA to reschedule
trains on a simulated single track railway section and found
that they could produce a solution that reduced the train delay
from 35 minutes to 12 minutes. Ho and Yeung [10] encoded
a GA to tackle the problem of creating a feasible sequence of
train to pass through a junction to minimize conflict after a
train delay. They found that their algorithm could produce a
solution within less than 5% of the optimal. Fan et al. [7]
used both a GA and an ACO algorithm to resolve delays
at a junction with good results while Chen et al. [3] used
a modified differential evolution GA to tackle the problem
of rescheduling trains after a delay at the St Pancras Midland
Road Junction. The GA performed significantly better, in terms
of minimizing passenger delays, than a first come first served
(FCFS) heuristic.

The above research shows the potential of EC techniques
in railway rescheduling trains after perturbations. However,
in every case, the problem considered is a static one. In the
real world, a train delay does not always occur in isolation.
In many perturbed situations, there may be multiple delays
and each new delay may change the nature of the problem,
making it a dynamic one that changes over time. Work has
started in the area of dynamic train rescheduling problems.
Eaton and Yang [6] modelled a dynamic rescheduling problem
on a junction of the UK railway network. They found that a
population-based ACO (PACO) [9] algorithm outperformed a
FCFS heuristic when the changes were frequent and of high
magnitude. However, this work again concentrated on only a
small section of the railway system. The station model used
in this paper allows us to consider a much larger area of
the railway network and to investigate the ongoing impact of
reallocation decisions at a station.

III. THE DYNAMIC PLATFORM REALLOCATION PROBLEM
(DPRP)

A. Description of the Problem

The DPRP is the problem of reallocating multiple, succes-
sive, delayed trains to new time-slots at a railway station with
the aim of minimising the ongoing delay in the system. In this
work, we concentrate on reallocating trains at Leicester station.
Leicester is a busy, bottleneck station with both passenger and
freight trains coming from four different directions [11]. It
contains four, bidirectional, passenger platforms with trains
able to enter and leave any platform from any adjoining track
section.

We consider the effect of the train reallocation not only
on the trains at the station but also at all the timing points
on the remainder of each train’s journey within a specified
radius of the station. In this way, we are able to take into
account both the immediate and future outcome of the platform

reallocations. The radius we consider is 50 miles (80.47 km)
of the station which covers approximately 225 timing points.

Rescheduling trains at a station can be considered a two
stage problem: the first stage is to find a place on the platform
to place the delayed train, the second is to decide the order
of trains to leave the station. In this paper, we consider only
the first part of the problem, that of finding an efficient and
feasible platform to place the delayed trains. In this work,
trains leave the station in the departure order determined by
their updated departure time. The second part of the problem
will be tackled in our future work.

B. Mathematical Model for the DRRP

Each train (t) in T , the set of all trains, has a route that
consists of a list of timing points and the times it arrives and
departs each point. For each timing point r, in the set of all
timing points in the problem (TP ), there is a list of events (Er)
with each event corresponding to the arrival and departure of
a train at that timing point. A train may be associated with
more than one event at a timing point if it makes a return
journey.

A track section is a length of track between two timing
points. A timing point may be associated with more than
one track section. At non-station timing points there will be
two track sections, that are traversed in opposite directions.
However, at a station, there will be several track sections, each
corresponding to a platform. Br is the set of track sections for
timing point r.

The problem involves three decision variables; Pk, the plat-
form assigned to event k for train t at the station, xarrivek and
xdepartk the arrival and departing times of event k associated
with train t at the station and at each of the timing points on
its ongoing journey. Table I describes the relevant notations
used in the mathematical model.

1) Soft Constraints: To reduce disruption to passenger’s
journeys it is desirable to reallocate a delayed train to a plat-
form close to the original platform. Constraint (1) expresses
this, posP originalk and posPnewk are the physical positions of
the original and the new platforms respectively. It is a soft
constraint because although desirable it is not essential to
satisfy it for the safe operation of the railway.

min(posP originalk − posPnewk ) ∀k ∈ Es (1)

2) Hard Constraints: It is essential to satisfy hard con-
straints for the safe and efficient running of the railway.

xdepartk,b < xarrivek+1,b b ∈ Br, k ∈ Er : k 6= lk,b (2)

Constraint (2) ensures the end time of an event at timing point
r on track section b is less than the start time of the next event
on that track section. This determines that there is no overlap
between trains occupying the same track section and thus that
only one train can occupy a track section at one time.

xdepartk,b ≥ dinitialk,b b ∈ Br, k ∈ Er (3)

Constraint (3) ensures that the new departure time of event k
on track section b is not earlier than the original departure time



TABLE I
NOTATIONS AND DESCRIPTIONS FOR THE MATHEMATICAL MODEL

Notation Description

T is the set of all trains in the evaluation window
t is the index of a train in the evaluation window, t ∈ T

TP is the set of all timing points in the problem
r is the index of a timing point, r ∈ TP

Br is the set of all track sections, for one timing point r,
r ∈ TP

b is the index of a track section at a timing point, b ∈ Br

Er is the set of all events at timing point r
Es is the set of all events at the station under investigation
k is the index of an event in Er , k ∈ Er

k + 1 is the first proceeding event of event k in Er

P original
k is the original platform for event k, k ∈ Es

Pnew
k is the new platform for event k, k ∈ Es

P static
k is the forced platform for event k, k ∈ Es

ainitial
k,b is the initial scheduled arrival time of event k on track

section b

dinitial
k,b is the initial scheduled departure time of event k on track

section b

astatick,b is the forced arrival time of event k on track section b

xarrive
k,b is the reassigned arrival time of event k on track section

b

xdepart
k,b is the reassigned departure time of event k on track

section b

lk,t is the last event k for train t, within radius and evaluation
period, k ∈ Er , t ∈ T

lk,b is the last event k for track section b, k ∈ Er , b ∈ Br

Zt represents the delay train t experiences when departing
lk,t

N the number of station trains in the current evaluation
window

specified in the train schedule. This constraint is especially
important on the station platforms as trains that depart earlier
than their scheduled departure time will cause chaos for
passengers.

The start time (sp) of the problem is the time that the
station controller is notified of the delayed train. Any trains
that arrive before this time but depart after this time are
transition trains that straddle the problem boundary. As they
arrive before the start of the problem, they are not considered
for reallocation to a new platform and their arrival time at
the station is unchanged. However, their departure time at the
station is included in the evaluation and may be changed. In
addition their arrival and departure at the timing points on
their ongoing journey may also be changed if they conflict
with other trains wanting to use the same track section at the
same time. Constraints (4) and (5) ensure that the platform
and arrival time for transition trains remain unchanged at the
station.

Pnewk = P statick k ∈ Es : xarrivek,b < sp, xdepartk,b ≥ sp (4)

xarrivek,b = astatick,b k ∈ Es : xarrivek,b < sp, xdepartk,b ≥ sp (5)

Trains that arrive and depart at the station before the station
controller is notified of the delay remain unchanged in terms

of allocated platform and arrival and departure at the station.
However, if any timing points on their ongoing journey fall
within the evaluation period then the arrival and departure at
those timing points may be changed to remove conflict with
other trains.

C. The Objective

When a train is delayed, it will miss its scheduled time-slot
and its new arrival time may create conflict with other trains
competing for the same resources. Conflict between two trains,
train A and train B, can occur in two ways.
• Train A may arrive at a timing point before train B has

left
• Train B may arrive at a timing point before train A has

left
In this model, resolving the conflict involves delaying the
arrival and departure time of the train that arrives second. The
alternative would be to resolve the conflict by speeding up
the departure of the first train. However, this would result in
trains leaving the station before their scheduled departure time,
which would cause disruption and frustration to passengers
planning to use that service. The delay added to the second
train, to resolve the conflict, is propagated through all of the
timing points on the remainder of the train’s route. As delaying
a train may result in even more conflicts at subsequent timing
points, the check for conflict is repeated until all the conflict
has been removed from the system.

The objective is to minimise the delay of all the trains that
pass through the station within the current evaluation window.
The evaluation window determines how far into the future
the controller wishes to assess the impact of the platform
reallocation decisions. In these experiments it is set to one
hour. A train’s delay is calculated as in Eq. (6) and is the
delay at its last timing point within the radius and within the
evaluation window, whichever occurs soonest.

Zt = xdepartk,b − dinitialk,b k = lk,t (6)

The objective function is to minimise the delay of all station
trains within the current evaluation window (Eq. (7)). Trains
that terminate at Leicester station are not included in the
evaluation as they have no ongoing journey.

min

N∑
t=1

Zt (7)

D. Construction of the Leicester Station Model

The station model was created from Network Rail’s down-
loadable file of train schedules [14]. This feed is in JSON
format and is an extract of train schedules from Network
Rail’s ITPS. It is freely available but requires registration with
Network Rail. The use of this data ensures that we are only
using information that is also available to the railway controller
making the work suitable for contribution towards a computer-
based dispatching system. The data feed contains details about
all train schedules over a six-month time period. For each



train schedule, it provides an ordered list of the train’s route,
detailing the arrival and departure times at each timing point
on its journey. In the UK railway, tracks are divided into blocks
separated by signals. For the purpose of this work, we consider
two timing points to sandwich a block section of track. Only
one train can be in a block section at any one time [15, p71].
The assumption we have made in the creation of this model
is that a train is said to depart its current block section once it
has departed the timing point at the end of the block section.

The information needed to model the station’s daily opera-
tion was extracted from each train’s route. The direction the
train travels through the station was determined by reference
to the timing point the train passes as it leaves the station.
However, we are not only interested in the movement of
trains through the station but also the ongoing journey for
each of those trains. Each timing point on a train’s route may
be used by other trains that may or may not pass through
Leicester station. Therefore, the set of arrival and departure
events occurring at each timing point on each train’s route
was also extracted from the data.

E. Modelling Dynamism

In an ideal world, we would have delay data available to in-
vestigate our approach. However, at this present time, Network
Rail is unable to provide such data. Hence, we introduce delay
to our model by delaying trains at specified time intervals by
varying amounts. We model dynamism by adding successive
delays at set time intervals. The time intervals between delays
represents the frequency of change (f ) while the length of
delays represents the magnitude of change (m). As trains do
not arrive at regular intervals, it is impossible to instigate a
delay at an exact time, instead the train nearest to the start
of the next change period is the one chosen to be delayed. A
delayed train is not only delayed at the station but also at all
its scheduled timing points after the station.

F. The First Free Platform (FFP) Comparison Heuristic

Discussions with a Network Rail Station Master established
that a technique often used to reallocate delayed trains to
platforms is to find the FFP as close as possible to the delayed
train’s original platform. The purpose of this is to minimise
passenger and train crew disruption. We compare our ACO
algorithm to a heuristic based on this principle. The first
stage of the heuristic is to identify all possible gaps on the
platform for the delayed train. These are gaps where the start
time of the gap corresponds to the new arrival time of the
delayed train and where the duration of the gap is large enough
to accommodate the train’s occupation of the platform track
section. The constraints in Eqs. (8) and (9) need to be satisfied
for a gap to be deemed a feasible gap for delayed train.

Gstartg = xarrivek,b k ∈ Er, b ∈ Br (8)

Gdurationg >= xarrivek,b − xdepartk,b k ∈ Er, b ∈ Br (9)

where G is the set of all suitable gaps for the delayed train
and g is the index of a gap (g ∈ G), Gstartg and Gdurationg

are the start time and duration of gap Gg respectively. A gap
is also deemed suitable for a train if Gstartg is later than the
train’s delayed arrival time but Gdurationg is large enough to
cover the train’s track occupation plus the extra delay needed
to be added to the train to force it to arrive at Gstartg . In this
case the train is delayed further, to allow it to fit into the gap,
and the extra delay is propagated along all of the timing points
on the train’s route.

Once all suitable gaps are identified, FFP selects the gap on
the platform that is closest to the train’s original platform.

IV. ACO FOR DYNAMIC OPTIMIZATION PROBLEMS
(DOPS)

In ACO, ants communicate indirectly via pheromone trails.
The pheromone trails hold the shared knowledge for the colony
guiding them towards finding the optimal solution. If the ants
make bad decisions, or if previous decisions become irrelevant
to the environment, the redundant information is removed over
time by evaporation of the pheromone trails. There are several
variations of ACO algorithms [5]. In this work, we use the
MAX-MIN AS (MMAS) algorithm developed by Stützle and
Hoos [17] as it has a previous history of good performance.

A. Related Work Using ACO for Dynamic Rescheduling

The DPRP can be considered to be a dynamic job shop
scheduling problem (JSSP). For a JSSP, the aim is to assign
jobs to machines at particular time slots. For the DPRP, the
jobs correspond to trains and the machines correspond to
station platforms. Previous work in applying ACO to dynamic
JSSPs has shown promising results. Both Xiang and Lee [18]
and Renna [16] combined ant colony intelligence with a multi-
agent system (MAS) to solve a dynamic JSSP. Xiang and Lee
found that the MAS with ant colony intelligence outperformed
a MAS with a first in first out (FIFO) dispatching rule, while
Renna found that the ant intelligence approach gave a solution
that was comparable with a coordination approach when the
dynamic changes were of low or medium frequencies. Zhou
et al. [19] applied ACO to a dynamic JSSP and found that
it outperformed a heuristic based on the shortest processing
time (SPT) while Lu and Romanowski [13] found that their
version of ant colony system (ACS) outperformed well-known
dispatching rules such as FIFO and SPT.

B. Max-Min Ant System (MMAS)

In this problem each node consists of a train and a feasible
platform to allocate to that train (see Fig. 1). An ant’s tour
consists of a list of all trains within the problem with the
platform assigned to them by the ant.

In MMAS, an ant, say ant k, when at node i, chooses
the next node (train and platform combination) j in its
neighbourhood Nk

i , probabilistically as follows:

pkij =
[τij ]

α[ηij ]
β∑

l∈Nk
i

[τil]α[ηil]β
, if j ∈ Nk

i , (10)

where τij is the pheromone information and ηij is the heuristic
information, α and β are constants which determine the



Fig. 1. The directed edge graph the ants use to construct their tour. Each
circle represents a node.

relative influence of the pheromone and the heuristic values
respectively.

After each iteration, all pheromone trails are evaporated as
in Eq. (11).

τij ← (1− ρ)τij , ∀(i, j) ∈ L, (11)

where L is the set of all pheromones and 0 < ρ ≤ 1 is the
pheromone evaporation rate, which is a constant parameter of
the algorithm.

Then all pheromone trails are updated to correspond to the
tour T best of either the best-so-far ant or the best iteration ant
as in Eq. (12).

τij ← τij + ∆τ bestij , ∀(i, j) ∈ T best, (12)

The update value ∆τ bestij is 1
C , where C is the fitness of the

best ant.
Two measures are employed to prevent stagnation. Firstly,

the pheromone trails are bounded between a minimum τmin
and a maximum τmax value, where τmax = 1

C and τmin =
τmax

a and a is a constant parameter of the algorithm. Secondly
all trails are reset to τmax when the algorithm shows stagnation
behaviour or there has been no change in the best fitness for
a set number of iterations.

C. Proposed MMAS Algorithm for the DPRP

To apply ACO to an optimization problem, it has to first
be decomposed into a fully connected weighted graph G =
(V,E), where V is a set of vertices or nodes and E is a set
of edges or connections between the nodes. In this case, each
node represents a train on a platform. For example, node 1
represents train A on platform 1, node 2 represent train A
on platform 2, etc (see Fig. 1). Ants move from node to node
recording the nodes visited. Once they have selected a platform
for one train they move on to the next train. At the end of their
tour, they have constructed a solution that consists of a list of

trains and the platforms they have been allocated to. At the end
of the iteration, the best ant deposits pheromones on the edges
of the graph, reinforcing its choices for the next iteration of
ants. Ants are presented with trains in the order they arrive at
the station. This is to prevent them from creating an infeasible
solution in which a train is placed on a platform in front of a
train that arrives before it.

After a delay some trains will have been removed from
the problem as they will have arrived at the station and it
will be too late to change their platform. These trains are no
longer of interest to the ants. Therefore, they are removed
from the directed edge graph that the ants move around to
construct their tour, and are also removed from the pheromone
matrix. However, new trains will be approaching the station
and will be included in the new problem passed to the ants.
These new trains are added both to the directed edge graph
and to the pheromone matrix. Pheromone trails for all new
trains are initialised to τmax, however pheromone trails for
trains that remain in the problem are retained to ensure that
useful information from before the change is not lost.

Initial experimentation revealed that, as MMAS has no
inbuilt intelligence to persuade it against unnecessary reallo-
cation of trains to new platforms, the algorithm would often
change a train’s platform if the change had no impact on the
fitness of the solution. In the real world, this would result
in disgruntled passengers and unhappy railway employees. To
solve this problem, we introduced a platform displacement
heuristic (ηij in Eq. (10)) to guide the ants in making intel-
ligent platform reallocation choices. The heuristic takes into
account the fact that Leicester station has two sets of two
platforms separated by stairs. Platforms 1 and 2 are conjoined
as are platforms 3 and 4. Moving between either of these is a
simple case of crossing from one side of the platform to the
other. However, moving from platform 1 or 2 to platform 3 or
4 involves negotiating a set of stairs. The heuristic ensures that
the desirability of moving from stair-linked platforms is much
lower than that of moving from conjoined platforms and that
the desirability of both is much lower than leaving the train on
its original platform. The heuristic is given by 1/PD where
PD is a representation of the physical distance between the
current node’s platform and the decision node’s platform. PD
is 1 if the platforms are the same, 2 if they are conjoined, or
4 if they are separated by a set of stairs.

To reinforce the heuristic, we introduce a novel method to
decide whether to replace the best-so-far ant (antbs) with the
best iteration ant (antbi), after each iteration. This method
takes into account both the solution’s objective value and
the amount of platform displacement. Experiments detailed
in Section V-A show that this approach works well to reduce
unnecessary platform reallocation.

V. EXPERIMENTAL STUDY

An experimental study was carried out to investigate the
ability of our proposed MMAS algorithm to solve the DPRP.
The parameters used for MMAS were established by prelim-
inary experimentation. The best combination was found to be



TABLE II
DETAILS OF THE ALGORITHMS UNDER INVESTIGATION

Name Heuristic Employed Replacement Scheme

RS1-H Yes RS1
RS2-H Yes RS2
RS3-H Yes RS3
RS1 No RS1

100 ants with ρ = 0.5, a = 10 and pheromone reinitialisation
when there is no change in the best solution for 20 iterations.
The best-so-far ant and the best iteration ant were used to
update the pheromones in a ratio of 2:1 and both α and β
were set to 1. The algorithm was run for 50 iterations before
each dynamic change and 30 runs were executed for each
dynamic scenario.

The first set of experiments is concerned with how effective
the heuristic and the best-so-far ant replacement schemes are
in reducing unnecessary train reallocations. The second looks
at the effect of notification and planning interval on the per-
formance of the algorithm. While the final set of experiments
compares the performance of our MMAS algorithm to FFP’s
performance for each of the dynamic scenarios.

A. Comparison of Best-So-Far Ant Replacement Schemes

In this work, the best-so-far ant is the the best solution found
since the beginning of the current dynamic change. Three best-
so-far ant replacement schemes are investigated; RS1, RS2 and
RS3. The details of each are given below.
• RS1: antbs is always replaced by antbi if antbi’s ob-

jective value (total delay) is less than antbs’s objective
value

• RS2: antbs is only replaced with antbi if both the ob-
jective value (total delay) and the platform displacement
for antbi is less than that for antbs

• RS3: antbs is always replaced with antbi if the objective
value (total delay) for antbi is less than that for antbs. If
the objective values for both ants are equal the amount
of platform displacement is taken into account. If the
platform displacement for antbi is less than that for
antbs, antbs is replaced with antbi.

Table II summarises the combinations of the heuristic and
replacement schemes investigated. Figures 2 and 3 show
box plots of the average delay and platform displacement
respectively for delay scenario m = 20, f = 20, for each
replacement scheme. In each case, the delay and platform
displacement are averaged over all dynamic changes. The
horizontal line within the box represents the median, the top
and bottom whiskers represent the maximum and the minimum
values respectively, while the top and bottom of the box
represent the third quartile and first quartile respectively.

With regards to platform displacement, RS2-H has the
most positive effect on reducing platform displacement while
RS1, which does not guide the algorithm in anyway towards
reducing the number of platform changes, performs worse.
RS1-H, which uses the platform displacement heuristic but
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Fig. 2. Comparison of best-so-far ant replacement schemes for m = 20,
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Fig. 3. Comparison of best-so-far ant replacement schemes for m = 20,
f = 20

uses the original RS1 replacement scheme, also performs
poorly on platform displacement compared to the algorithms
that make use of either RS2 or RS3 replacment schemes.
From Fig. 3, it is apparent that although RS2-H gives the
best values in terms of platform displacement its effect may
be too strong and its overemphasis on reducing the number of
platform changes appears to restrict it in finding good results in
terms of delay. For this reason, algorithm RS3-H is chosen to
be implemented for the following experiments, as it provides
a balance between reducing unnecessary platform changes and
reducing delay.

B. Investigation into Notification and Planning Intervals

There are two interesting aspects of train delays from the
viewpoint of the railway controller. The first is that of how
much notification the controller has about the delay (the
notification period), the second is that of how far into the
future the controller wishes to look when considering where
to place a delayed train (the planning horizon). To decide on
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Fig. 4. Comparison of different notification and planning intervals for m =
30, f = 10

a notification period and planning horizon to use in our delay
scenario experiments, we investigated different combination
of notification periods and planning horizons. In this case, we
looked at notification periods of 10, 30 and 60 minutes and
planning horizons of 10, 30 and 60 minutes. Figure 4 shows
the outcome of these experiments, where each experiment
refers to a different notification and planning combination, for
example, n10p60 refers to a notification period of 10 min and
a planning horizon of 60 min.

Although a Kruskal-wallis test showed no significant dif-
ference between the medians of each notification/planning
combination, we can see from the box plot that longer planning
horizons of 30 min and 60 min give, on average, slightly less
delay than a short planning horizon of 10 min. This is to be
expected as the longer the planning horizon the more trains
can be included in the problem given to the ants and the more
options they have to rearrange those trains on the platforms to
reduce the objective value. In contrast, the notification interval
appears to have very little influence on the performance of
the algorithm. For example, the first three boxes for p=10
and n=10, 30 and 60 all have similar median values. The
longer the notification period, the more trains can be reshuffled
before the delayed train arrives. This result suggests that
rearranging trains that arrive before the delayed train has very
little influence on the outcome of the algorithm and that it
is trains that arrive later than the delayed train that are the
important ones in terms of finding a good problem solution.

For our subsequent investigations, we chose a planning
horizon of 60 mins to give the best possible outcome. As
already mentioned the notification period appears to have very
little influence on this problem and so a value of 30 min was
chosen.

C. Delay Scenarios

Nine different dynamic environments were investigated in-
volving all permutations of 3 different magnitudes of change
(10 mins, 20 mins, 30 mins) and 3 different change frequencies

(10 mins, 20 mins, 30 mins). All delays occurred over a period
of one hour and started at 7am.

Figure 5 shows the results in terms of delay for MMAS
compared with FFP for the scenarios with m = 30. The delay
scenarios with m = 20 and m = 10 showed a similar pattern
of results. The graphs indicate that MMAS is better at min-
imising delay than the FFP Heuristic. The difference is most
pronounced for the scenario with the high frequency changes
(f = 10) and the improvement in peformance becomes more
apparent as more and more trains are delayed. This is because
the MMAS algorithm has the freedom to rearrange all the
trains on the platform to make the earliest possible space for
the delayed trains whereas FFP must use the first space that
becomes available, which may be later in time.

It is interesting that, for the 7.25am change when f = 10,
FFP performs slightly better than MMAS. This may be be-
cause of the time-linked nature of this problem. In MMAS,
the best-so-far solution from before the change is used to
initialise the environment after a change. Thus, the solution
found before the change restricts the reallocation options
available after the change, which resulted in a slightly poorer
performance for MMAS.

The results were tested for statistical significance using
the non-parametric, two-tailed, one-sample Wilcoxon signed
rank test at a 0.05 significance level. The one-sample test
allows us to compare the results of 30 runs for the ACO
algorithm with the single result from the FFP algorithm. The
average delay over all the changes for FFP was compared
with the average best-so-far delay over all the changes for
MMAS. Table III gives the results of comparing MMAS
⇔ FFP, where the symbol ‘+’, ‘−’ or ‘∼’ indicates that
MMAS is significantly better than, significantly worse than, or
not significantly different from FFP, respectively. The results
reveal that in all scenarios MMAS performed significantly
better than FFP.

The experiments were run on a 2.9GHz Intel Xeon E5-2666
v3 (Haswell) processor. An analysis of the computation time
showed that, for small magnitude, low frequency changes, the
algorithm took an average of 39.3 seconds to run while for
high magnitude, high frequency changes, it took an average
of 67.8 seconds to run. The high magnitude, high frequency
scenarios have an increased execution time due to the fact that
more trains are affected by the disruption, which increases the
time needed to resolve all the conflicts. Nevertheless, for the
system to obtain a solution in less than 70 seconds indicates its
feasibility to be used in a real-world time-dependent situation.

VI. CONCLUSIONS AND FUTURE WORK

Reallocating trains to platforms after a delay is a complex
task, made more complicated by the fact that it can be a
dynamic problem that changes over time as more delayed
trains arrive at the station. In this work, we applied MMAS
to the DPRP using a model created from real-world train
schedule data for a busy UK railway station. The model allows
us to project the outcome of the reallocation decisions into the
future by accessing the impact on a train’s ongoing journey
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Fig. 5. Experimental results comparing the average Best-So-Far solution for MMAS with FFP for m = 30 and f = 10, 20, and 30.

TABLE III
ONE-SAMPLE WILCOXON SIGNED RANK TEST RESULTS AT A 0.05

SIGNIFICANCE LEVEL

m=30 m=20 m=10
Algorithms f=10 f=20 f=30 f=10 f=20 f=30 f=10 f=20 f=30

MMAS
⇔ FFP

s+ s+ s+ s+ s+ s+ s+ s+ s+

in terms of conflicts with other trains sharing the same block
sections. Results showed that the ACO algorithm outperformed
a heuristic that placed the delayed train in the first available
time-slot and that this improvement was more apparent with
high-frequency dynamic changes. In addition, the use of a
platform displacement heuristic combined with a novel best-
so-far ant replacement scheme worked to give the ants the
intelligence to minimise unnecessary platform changes.

This research is seen as a step towards a system that could
be implemented within a computer-based dispatching system
to support the railway controller in solving schedule conflicts
after a perturbation. It has stimulated a number of future
research ideas. For example, we aim to apply the solution to a
much more complex station, such as Birmingham New Street.
This station has 12 platforms, each split into three usable
subsections, which makes the spatial problem of reallocating
trains to platforms much more difficult. We also aim to
solve the second part of the platform reallocation problem
by introducing an additional ACO algorithm that explicitly
determines the sequence of trains to leave the station.
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