
HEDCOS: High Efficiency Dynamic
Combinatorial Optimization System using

Ant Colony Optimization algorithm

A Thesis Submitted for the Degree of

Doctor of Philosophy

By

Jonas Skackauskas

Department of Electronic and Electrical Engineering

Brunel University London

September 2022

Declaration of authorship

I, Jonas Skackauskas, declare that the work completed in this thesis is my original

work conducted in accordance with the Code of Practice for Research Degrees. The

work presented in this thesis has not been used in any other submission for an

academic award.

Signature:__________________________ Date:__________________________

24/09/2022

i

Abstract

Dynamic combinatorial optimization is gaining popularity among industrial

practitioners due to the ever-increasing scale of their optimization problems and efforts

to solve them to remain competitive. Larger optimization problems are not only more

computationally intense to optimize but also have more uncertainty within problem

inputs. If some aspects of the problem are subject to dynamic change, it becomes a

Dynamic Optimization Problem (DOP).

In this thesis, a High Efficiency Dynamic Combinatorial Optimization System is built to

solve challenging DOPs with high-quality solutions. The system is created using Ant

Colony Optimization (ACO) baseline algorithm with three novel developments.

First, introduced an extension method for ACO algorithm called Dynamic Impact.

Dynamic Impact is designed to improve convergence and solution quality by solving

challenging optimization problems with a non-linear relationship between resource

consumption and fitness. This proposed method is tested against the real-world

Microchip Manufacturing Plant Production Floor Optimization (MMPPFO) problem and

the theoretical benchmark Multidimensional Knapsack Problem (MKP).

Second, a non-stochastic dataset generation method was introduced to solve the

dynamic optimization research replicability problem. This method uses a static

benchmark dataset as a starting point and source of entropy to generate a sequence

of dynamic states. Then using this method, 1405 Dynamic Multidimensional Knapsack

Problem (DMKP) benchmark datasets were generated and published using famous

static MKP benchmark instances as the initial state.

Third, introduced a nature-inspired discrete dynamic optimization strategy for ACO by

modelling real-world ants’ symbiotic relationship with aphids. ACO with Aphids

strategy is designed to solve discrete domain DOPs with event-triggered discrete

dynamism. The strategy improved inter-state convergence by allowing better solution

recovery after dynamic environment changes. Aphids mediate the information from

previous dynamic optimization states to maximize initial results performance and

minimize the impact on convergence speed. This strategy is tested for DMKP and

ii

against identical ACO implementations using Full-Restart and Pheromone-Sharing

strategies, with all other variables isolated.

Overall, Dynamic Impact and ACO with Aphids developments are compounding. Using

Dynamic Impact on single objective optimization of MMPPFO, the fitness value was

improved by 33.2% over the ACO algorithm without Dynamic Impact. MKP benchmark

instances of low complexity have been solved to a 100% success rate even when a

high degree of solution sparseness is observed, and large complexity instances have

shown the average gap improved by 4.26 times. ACO with Aphids has also

demonstrated superior performance over the Pheromone-Sharing strategy in every

test on average gap reduced by 29.2% for a total compounded dynamic optimization

performance improvement of 6.02 times. Also, ACO with Aphids has outperformed the

Full-Restart strategy for large datasets groups, and the overall average gap is reduced

by 52.5% for a total compounded dynamic optimization performance improvement of

8.99 times.

iii

Acknowledgements

Firstly, I would like to thank my principal supervisor Prof. Tatiana Kalganova for giving

me the opportunity to do the PhD degree and diligently guiding me to completion; and

my second supervisor Dr Ian Dear for helping me with writing.

Then, I would like to thank my partner for continuous support and patience throughout

the entire duration of my studies.

And finally, I would like to express my gratitude to my father, who provided moral

support, led by example, and encouraged me to persevere.

iv

Content

Declaration of authorship .. ii

Abstract ... i

Acknowledgements .. iii

Content ... iv

List of tables .. vii

List of figures .. ix

List of Abbreviations ... xiii

Chapter 1. Introduction ... 1

1.1. Motivation .. 2

1.2. Thesis contributions .. 3

1.3. List of publications ... 6

1.4. Thesis contents ... 7

1.5. Aims and objectives .. 8

1.6. Methodology.. 9

Chapter 2. Literature review .. 11

2.1. Dynamic Optimization ... 12

2.1.1. Dynamic Optimization Problems and real-world applications 15

2.1.2. Existing methods to solve DOPs .. 16

2.1.3. Benchmarks to evaluate DOPs ... 18

2.2. Ant Colony Optimization algorithm .. 20

2.2.1. Formal ACO definition .. 22

2.2.2. Strengths, weaknesses and typical applications 23

2.2.3. Sub-heuristics ... 24

2.2.4. Existing ACO methods to solve DOPs .. 27

v

2.2.5. Need for discrete event-triggered dynamic optimization system 30

2.2.6. Nature of Herder Ants ... 32

2.2.7. Use of aphids in other optimization algorithms 33

2.3. Chapter Summary ... 34

Chapter 3. Dynamic Impact: a sub-heuristic method for ACO search 36

3.1. Dynamic Impact methodology ... 36

3.1.1. Dynamic Impact for Ant Colony Optimization algorithm 36

3.1.2. Dynamic Impact example ... 38

3.2. Applied optimization problems .. 40

3.2.1. Multi-dimensional Knapsack Problem (MKP) .. 40

3.2.2. Microchip manufacturing plant production floor optimization (MMPPFO)

problem 42

3.3. ACO with Dynamic Impact algorithm performance investigation 47

3.3.1. ACO solving Microchip Manufacturing Plant Production Floor

Optimization ... 47

3.3.2. MMPPFO experiment results .. 50

3.3.3. ACO solving Multidimensional Knapsack Problem (MKP) 53

3.3.4. MKP experiment results.. 56

3.4. Chapter Summary ... 63

Chapter 4. Dynamic MKP Benchmark methodology ... 65

4.1. Dynamic MKP Datasets .. 65

4.1.1. Dynamic Multidimensional Knapsack Problem 65

4.1.2. Deterministic Dynamic MKP dataset creation methodology 67

4.1.3. Created dataset instances .. 72

4.2. Dataset Analysis ... 73

4.2.1. Statistical analysis metrics .. 74

4.2.2. Example GK01 dynamic dataset statistical analysis 74

4.3. Dynamic MKP dataset result analysis ... 79

vi

4.3.1. Example GK01 dynamic dataset result analysis 79

4.3.2. Dynamic datasets' optimal result scores ... 81

4.4. Comparative performance analysis ... 83

4.5. Further dynamic dataset analysis .. 85

4.5.1. Profit and weight distance effect ... 85

4.5.2. Optimal result effect .. 87

4.5.3. Dynamic dataset constraint coverage effect ... 88

4.5.4. Dynamic dataset optimal result coverage effect 90

4.6. Chapter Summary ... 92

Chapter 5. Herder Ants: Ant Colony Optimization with Aphids for Discrete Event-

Triggered Dynamic Optimization Problems .. 94

5.1. Ant Colony Optimization with Aphids .. 94

5.1.1. ACO with Aphids design ... 95

5.1.2. Optimization system ... 95

5.1.3. ACO with Aphids algorithm ... 96

5.2. Experimental setup ... 103

5.2.1. Experimental dataset .. 103

5.2.2. Baseline ACO algorithm and optimization system 103

5.2.3. Experimental measurements .. 104

5.3. Experimental results .. 106

5.3.1. ACO with Aphids hyper-parameter tuning results 106

5.3.2. ACO with Aphids comparison with other ACO dynamic optimization

strategies result ... 111

5.4. Chapter Summary ... 121

Chapter 6. Conclusions and future work ... 124

6.1. Conclusions... 124

6.2. Future work ... 125

References ... 128

vii

List of tables

Table 2-1: Problem types of real-world optimization solved in the sample literature. 16

Table 2-2: Advantages and limitations of popular optimization algorithms solving

discrete optimization problems in sample literature. ... 18

Table 2-3: Comparison of Heuristic Methodologies in Combinatorial Search

Algorithms: Descriptions and Limitations .. 26

Table 3-1: Simplistic example of Dynamic Impact. Three parallel scenarios are shown,

which have three equivalent routes each. Dynamic Impact is calculated for each route

in each scenario individually. .. 40

Table 3-2: Undersupported result map for 𝛄 and 𝐪𝟎, where 𝛄 = 𝟎 is an algorithm run

without Dynamic Impact. Each data point represents the average of 50 runs. Results

of optimizing the heuristically generated dataset. ... 52

Table 3-3: MKP SAC94 datasets. Dynamic Impact result comparison of ACO without

Dynamic Impact and ACO with Dynamic Impact. Each dataset is a result of 100 runs.

 ... 58

Table 3-4: SAC94 results comparison with recently published research. 59

Table 3-5: MKP GK datasets. ACO results with Dynamic Impact are compared against

ACO without Dynamic Impact as well as best performing other algorithm results taken

from recently published papers. ... 62

Table 4-1: Dynamic datasets optimal result scores of selected datasets. Optimal result

scores are the sum of 0 states, 10 states, 25 states, 50 states, 75 states, and 100

states. ... 82

Table 5-1: ACO with Aphids pseudo-code ... 96

Table 5-2: Aphids’ tuneable parameters table. Each parameter has a default value,

min-max value range used in tests, and test resolution. ... 107

Table 5-3: Dynamic optimization average result gap of all optimization strategies. Each

data point is an average of all dynamic states’ result gap over ten algorithm runs.

(Lower is better) ... 113

viii

Table 5-4: Dynamic optimization result gap standard deviation of all optimization

strategies. Each data point is a standard deviation of the dynamic optimization result

gap with a sample size of 10 runs. ... 114

Table 5-5: Dynamic optimization average gap slip of all optimization strategies. Each

data point is an average of all dynamic states gap slip over ten algorithm runs. (Lower

is better) ... 115

ix

List of figures

Figure 1-1: HEDCOS – High Efficiency Dynamic Combinatorial Optimization System,

contribution to the science of this thesis. HEDCOS is a collection of advancements for

ACO algorithm aimed at achieving high-quality solutions quickly. 4

Figure 2-1: Classification of dynamic optimization. On the left-hand side, Discrete

dynamic optimization is displayed with a discrete optimization problem state change

based on an event trigger. On the right-hand-side popular Continuous DOP, a moving

peaks benchmark is visualized for two input dimensions from IEEE CEC 2022

benchmark set [19]. This research focuses on solving types of problems portrayed on

the left-hand side. ... 14

Figure 2-2: Illustration of ants searching for the shortest path 21

Figure 2-3: Normal Convergence of Full-Restart strategy in abundant time

optimization. The chart displays a minimization problem’s convergence for two

dynamic states, where the algorithm has plenty of time to converge to a “good” solution

in both instances. Both initial and following states show identical convergence

patterns. ... 28

Figure 2-4: Normal Convergence of Pheromone-Sharing strategy in abundant time

optimization. The chart displays a minimization problem’s convergence for two

dynamic states, where the algorithm has plenty of time to converge to a “good” solution

in both instances. The initial state converges normally, and the following state starts

at a significantly better fitness level but shows poorer convergence. Then poorer

convergence leads to poorer final fitness results. .. 30

Figure 2-5: The convergence goal of ACO with Aphids strategy in abundant time

optimization. The chart displays a minimization problem’s convergence for two

dynamic states, where the algorithm has plenty of time to converge to a “good” solution

in both instances. The initial state converges normally, and the following state starts

at a significantly better fitness level similar to the Pheromone-Sharing strategy and

shows equally good convergence to the Full-Restart strategy. Then a good restart

fitness after the dynamic change and a good convergence lead to even better results

than the final result of the Full-Restart strategy. ... 31

Figure 2-6: All strategies convergence compared in time-restricted optimization. The

chart displays a minimization problem’s convergence for ten dynamic states changing

x

frequently. Aphids’ strategy combines great optimization convergence observed in the

Full-Restart Strategy with low state change fitness penalty observed in the

Pheromone-Sharing strategy. The combination of these strengths allows for better

interstate convergence. .. 32

Figure 2-7: Close-up image of an ant guarding its aphids. 33

Figure 3-1: Simple example of Multidimensional Knapsack Problem with two packing

dimensions of weight and volume .. 41

Figure 3-2: Dynamic Impact comparison on best configurations. Average of 50 runs.

Error bars indicate one standard deviation. .. 52

Figure 3-3: ACO Dynamic Impact test - GK dataset results graph of the average gap.

Results are an average of 10 algorithm runs. ... 61

Figure 3-4: ACO with Dynamic Impact comparison to other recently published GK

dataset solution results. .. 62

Figure 4-1: Dataset state creation flowchart of Item Profits (Blue), Item Weights

(Orange), and Knapsack Capacities (Green). The flowchart shows the key

dependencies of each value adjustment in the generated state. 71

Figure 4-2: Item profit change to initial state for datasets generated from GK01 75

Figure 4-3: Average item weight change to initial state for datasets generated from

GK01 .. 76

Figure 4-4: Absolute item weight to initial state for datasets generated from GK01 . 76

Figure 4-5: Item profit change to the previous state for datasets generated from GK01

 ... 77

Figure 4-6: Average item weight to the previous state for datasets generated from

GK01 .. 78

Figure 4-7: Absolute item weight to the previous state for datasets generated from

GK01 .. 78

Figure 4-8: Optimal result distance to initial state for datasets generated from GK01

 ... 80

Figure 4-9: Optimal result distance to the previous state for datasets generated from

GK01 .. 81

Figure 4-10: Dynamic optimization performance of ACO Full-restart strategy for all

SAM levels. Each line shows the average gap convergence of GK01-GK11 dynamic

datasets group run 10 times each, totalling 110 runs. .. 84

xi

Figure 4-11: Dynamic optimization performance of ACO Pheromone-sharing strategy

for all SAM levels. Each line shows the average gap convergence of GK01-GK11

dynamic datasets group run 10 times each, totalling 110 runs. 85

Figure 4-12: Profit and weight distance effect for GK01 SAM-0.05 dataset initial state.

Each series represent the division of each item’s value and average weight into a

quadrant based on the initial state. On the initial state, the division is clearly visible.

 ... 86

Figure 4-13: Profit and weight distance effect for GK01 SAM-0.05 dataset last state.

Each series represent the division of each item’s value and average weight into a

quadrant based on the initial state. On the last state, items are significantly mixed up.

 ... 87

Figure 4-14: Optimal result effect GK01 SAM-0.05 dataset initial state 88

Figure 4-15: Optimal result effect, GK01 SAM-0.05 dataset last state. 88

Figure 4-16: Dynamic dataset constraint coverage effect, GK01 SAM-0.02 dataset,

items range 13-21 inclusive. ... 89

Figure 4-17: Dynamic dataset constraint coverage effect, GK01 SAM-0.05 dataset,

items range 13-21 inclusive. ... 90

Figure 4-18: Dynamic dataset optimal result coverage effect, GK01 SAM-0.02 dataset,

items range 7-21 inclusive. ... 91

Figure 4-19: Dynamic dataset optimal result coverage effect, GK01 SAM-0.01 dataset,

items range 7-21 inclusive. ... 92

Figure 5-1: ACO with Aphids algorithm flowchart. The green colour represents

Optimization system steps, the blue colour represents ACO algorithm steps, and the

orange colour represents novel steps to ACO with Aphids algorithm. 102

Figure 5-2: Experimental measurements visualization. The orange line represents a

measurement of each state’s result gap to the best know profit score. The green line

represents the result gap slip after the dynamic change. The total dynamic optimization

result gap is an average of all states’ result gap, and the total dynamic optimization

result gap is an average of all states’ gap slip. ... 106

Figure 5-3: ACO with Aphids hyper-parameter tuning test number 1. Aphids’ relocation

parameter test. The results show the best dynamic optimization performance is

achieved using 𝑨𝒓 = 𝟐. .. 108

xii

Figure 5-4: ACO with Aphids hyper-parameter tuning test number 2. Aphids’

honeydew production parameter test. The results show the best dynamic optimization

performance is achieved using 𝑨𝒉 = 𝟏. ... 109

Figure 5-5: ACO with Aphids hyper-parameter tuning test number 3. Aphids’ lay down

rate parameter test. The results show the best dynamic optimization performance is

achieved using 𝑨𝒍 = 𝟏. ... 110

Figure 5-6: ACO with Aphids hyper-parameter tuning test number 4. Aphids’ kill rate

parameter test. The results show the best dynamic optimization performance is

achieved using 𝑨𝒌 = 𝟎. 𝟖. .. 111

Figure 5-7: Dynamic optimization average performance of each dynamic optimization

strategy averaged per dataset group. Each data point is an average result gap of all

five dynamism levels run ten times. Error bars indicate the standard deviation of

experiment results. ... 116

Figure 5-8: Dynamic optimization average state’s result improvement from the first to

the last iteration of select optimization strategies broken down by dataset group. Each

result data point is an average result gap of all five dynamism levels run ten times.

 ... 117

Figure 5-9: Dynamic optimization average performance of each dynamic optimization

strategy averaged per dynamism. Each data point is an average result gap of all 11

dataset groups run ten times. Error bars indicate the standard deviation of experiment

results. .. 118

Figure 5-10: Dynamic optimization average state’s result improvement from the first to

the last iteration of select optimization strategies broken down by dynamism. Each

result data point is an average result gap of all 11 dataset groups run ten times. .. 119

Figure 5-11: Dynamic optimization average convergence performance through all

dynamic states. Each convergence performance result is an average convergence of

all 55 benchmark datasets run ten times. ... 120

Figure 5-12: Dynamic optimization average convergence performance through the first

ten dynamic states. Each convergence performance result is an average convergence

of all 55 benchmark datasets run ten times. ... 121

xiii

List of Abbreviations

AAM Aphid–Ant Mutualism

ABC Artificial Bee Colony

ACO Ant Colony Optimization

ACOCA Ant Colony Optimization with Cooperative Aphid

ACS Ant Colony System

AIS Artificial Immune System

ARA Artificial Raindrop Algorithm

AS Ant System

ASrank Rank-based Ant System

BAAA Binary Artificial Algae Algorithm

BPSOTVAC Binary Particle Swarm Optimization Time-Varying Acceleration Coefficients

CAP Cartesian Ant Programming

CGP Cartesian Genetic Programming

CS Cuckoo Search

CSSA Chaotic Salp Swarm algorithm

DBDE Dichotomous Binary Differential Evolution

DE Differential evolution

DGAA Distributed Guidance Anti-flocking Algorithm

DLEA Dynamic Learning Evolution Algorithm

DLHO Diverse Human Learning Optimization

DMFO Dynamic Multimodal Function Optimization

DMKP Dynamic Multidimensional Knapsack Problem

DMOOP Dynamic Multi-Objective Optimization Problem

DOP Dynamic Optimization Problem

DTSP Dynamic Traveling Salesman Problem

DVRP Dynamic Vehicle Routing Problem

EA Evolutionary Algorithm

FA Firefly Algorithm

FA Firefly Algorithm

GA Genetic Algorithm

GPGPU General-Purpose Graphics Processing Units

HEDCOS High Efficiency Dynamic Combinatorial Optimization System

HPSOGO Binary Particle Swarm Optimization with Genetic Operations

JSP Job-shop Scheduling Problem

MBO Monarch Butterfly Optimization

MC Membrane Computing

MFPA Flower Pollination Algorithm

MKP Multidimensional Knapsack Problem

MMAS Min-Max Ant System

MMPPFO Microchip Manufacturing Plant Production Floor Optimization

xiv

MPB Moving Peaks Benchmark

MS Moth Search

MWN Mobile Wireless Network

NBHS New Binary Harmony Search

NSGA Non-dominated Sorting Genetic Algorithm

PA Parallel Ant

P-ACO Population-based ACO

PAES Pareto Archived Evolution Strategy

PSO Particle Swarm Optimization

ROOT Robust Optimization Over Time

SA Simulated Annealing

SAM State Adjustment Magnitude

SDN Software Defined Network

SMA Slime Mould Algorithm

TR-BDS Random Binary Differential Search algorithm using the Tanh function

VRP Vehicle Routing Problem

1

Chapter 1. Introduction

In the current economic environment, where industries are expected to have ever-

increasing production output, the drive towards cost-effectiveness and efficient

resource allocation creates an ever-increasing demand for high-quality solutions to

business decision problems. Even a tiny fraction of cost-saving improvement on a

large business operation can significantly improve the business’s bottom line.

Combinatorial optimization can answer business questions such as “What is the best

factory production schedule to have the lowest overall delays of the finished product?”

or “What collection of stocks will provide the highest risk-adjusted return for a set

budget?”. While small optimization problems are easy to solve, many of us implicitly

make optimal decisions in our daily routines, like taking the shortest path to visit a

grocery store. Larger problems like university timetables can become challenging. The

complexity of such problems is exponential, meaning a tiny increase in problem size

significantly increases the efforts required to evaluate all possible combinations

required to find the optimal one. Such complexity decision problems are classified as

NP-Hard optimization problems, where an optimal solution cannot be found or verified

within polynomial time.

For large optimization problems finding the optimal solution is practically impossible.

Many of those problems present the search space that even the fastest

supercomputers would take thousands of years to find the optimal solution. However,

finding near-optimal solutions is usually good enough for practical applications if the

time taken to find the solution is significantly reduced. Some metaheuristic optimization

algorithms allow intelligently searching through a small subset of the total search

space and achieving a good solution.

Not all optimization algorithms are made equal. Every optimization algorithm has

strengths and weaknesses, and no optimization algorithm is the best choice for all

optimization problems. Over the last several decades, researchers have proposed

numerous algorithmic improvements and extensions that improve the algorithm’s

strengths or mitigate weaknesses. However, growing industrial competitiveness

constantly demands for better optimization algorithms and methods.

2

Some optimization problems are also subject to dynamically changing environments.

The change may occur to any aspect of the optimization problem, which changes the

optimal solution and possibly invalidates the solutions that are found. Dynamic

optimization is more difficult because the optimization algorithm has to find a new

solution every time dynamic change occurs. In a more recent development,

metaheuristic optimization algorithms were attempted to adapt to dynamic

optimization problems, where learned information is reused for further optimization

after the dynamic change.

This thesis explores algorithmic improvements of one metaheuristic optimization

algorithm called Ant Colony Optimization. The goal of algorithmic improvements is to

increase dynamic optimization solution quality. This goal is achieved through

improvements to dynamic optimization algorithmic methods and improvements to

static optimization convergence.

1.1. Motivation

Many industries rely on optimization for everyday operations. The most practical uses

of optimization are in the fields of scheduling, transportation, supply chain

management, financial portfolio management, and production control. Optimization

algorithm efficiency matters a lot in a fiercely competitive market. The quality of

solutions and optimization methods can enable more efficient use of resources and

allow a business to adapt to disruptions quicker. These disruptions can be as minor

as delayed container truck delivery or as significant as labour shortages caused by

Covid-19 pandemic lockdowns or disrupted material supplies due to political

sanctions.

Complex optimization problems often produce fragile solutions. When an optimization

problem accounts for a multitude of variables from many sources, the likelihood of

some variables changing and invalidating the solution is very high. For those large

optimization problems, changes can occur so frequently that the time taken to find an

acceptable quality solution is longer than the interval between changes. Dynamic

implementations of optimization algorithms, aiming to minimize the time needed to find

new solutions after the dynamic change, have gained more traction recently in the

research community. Usually, those dynamic changes are reasonably small, such that

3

overall solutions do not change significantly. Dynamic optimization algorithms exploit

this similarity and reuse learned information to find new solutions faster after the

dynamic change.

Ant Colony Optimization is an excellent algorithm to implement dynamic optimization

because ants’ behaviour is highly adaptable in nature. However, previous

implementations of the ACO algorithm for dynamic optimization are fairly rudimentary.

Those implementations exploit the strengths of regular ACO like pheromone or

population for the benefit of dynamic optimization. To further improve the quality and

performance of ACO for dynamic optimization, the development of dedicated methods

is necessary.

1.2. Thesis contributions

All of the research work presented in this thesis combines into the High Efficiency

Dynamic Combinatorial Optimization System. HEDCOS is a significant original

artefact that improves ACO solution quality for both static and dynamic optimization

problems without sacrificing the length of run time. The research on HEDCOS consists

of three major contributions to the science, which are presented in Chapters 3, 4, and

5. Chapter 3 and Chapter 5 propose new methods for the ACO algorithm that

significantly improve the quality of the solutions for static and dynamic optimization,

respectively. Chapter 4 proposes a new, fully defined combinatorial dynamic

optimization benchmark created using deterministic procedures. These benchmark

datasets are necessary to prove the validity of the work presented in Chapter 5.

4

Figure 1-1: HEDCOS – High Efficiency Dynamic Combinatorial Optimization System,

contribution to the science of this thesis. HEDCOS is a collection of advancements for

ACO algorithm aimed at achieving high-quality solutions quickly.

This thesis research work contributions can be summarized as follows:

1. Dynamic Impact for the Ant Colony Optimization: Dynamic Impact is an

extension method for Ant Colony Optimization algorithm. Dynamic Impact is

designed to improve convergence and solution quality solving complex

optimization problems with a non-linear relationship between resource

consumption and fitness, where resource consumption is the constraints of

optimization problems and fitness is the optimization objective function. This

proposed method is tested against the real-world Microchip Manufacturing Plant

Production Floor Optimization problem and the theoretical benchmark

Multidimensional Knapsack problem. Using Dynamic Impact on single objective

5

optimization, the fitness value is improved by 33.2% over the ACO algorithm

without Dynamic Impact for the MMPPFO problem. Furthermore, the MKP

benchmark instances of low complexity have been solved to a 100% success rate

even when a high degree of solution sparseness is observed. Large complexity

instances have shown the average gap improved by 4.26 times. The description of

the ACO with Dynamic Impact and the results have been published in the peer-

reviewed journal Swarm and Evolutionary Computation [1].

2. Dynamic Multidimensional Knapsack Problem benchmark creation

methodology and datasets: A new non-stochastic dataset generation method is

introduced to solve the research replicability problem. Implemented DMKP dataset

generator and published it in GitHub [2]. Then, 1405 fully defined DMKP

benchmark instances were generated using well-known static MKP benchmark

instances as the initial state. The benchmark instances are published in GitHub [3]

and IEEE Dataport [4]. Generated datasets were quantitatively and qualitatively

analysed, including visualizations made with the tool published in GitHub [5].

Furthermore, 445 datasets have the optimal result found for each state using a

linear solver. These fully defined DMKP datasets and the dataset generator

contributes to solving the research replicability problem. The method description

and dataset analysis have been published in the peer-reviewed journal Systems

and Soft Computing [6].

3. Ant Colony Optimization with Aphids for dynamic optimization problems: A

nature-inspired dynamic optimization strategy for ACO modelled after real-world

ants’ symbiotic relationship with aphids. The strategy improves the solution

recovery after dynamic environment change, such that using information from

previous dynamic optimization states initial results are as good as possible, and

convergence speed is minimally impacted. This strategy is tested for DMKP and

against identical ACO implementations using Full restart and Pheromone sharing

strategies, with all other variables isolated. ACO with Aphids has demonstrated

superior performance than the Pheromone share strategy in every test on average

gap reduced by 29.2%. Also, ACO with Aphids has outperformed the Full restart

strategy for large datasets groups, and the overall average gap is reduced by

52.5%. The algorithm description and results are submitted to the peer-reviewed

journal Swarm and Evolutionary Computation 3 Sep 2022 [7].

6

1.3. List of publications

Following are the materials published as part of this research:

• Published articles in peer-reviewed journals:

o J. Skackauskas, T. Kalganova, I. Dear and M. Janakiram, “Dynamic

impact for ant colony optimization algorithm,” Swarm and Evolutionary

Computation, 2021. DOI: https://doi.org/10.1016/j.swevo.2021.100993

o J. Skackauskas and T. Kalganova, “Dynamic Multidimensional

Knapsack Problem benchmark datasets,” Systems and Soft Computing,

2022. DOI: https://doi.org/10.1016/j.sasc.2022.200041

• Submitted articles to peer-reviewed journals:

o J. Skackauskas and T. Kalganova, "Herder Ants: Ant Colony

Optimization with Aphids for Discrete Event-Triggered Dynamic

Optimization Problems," Submitted to Swarm and Evolutionary

Computation, 3/9/2022.

• Published dataset materials:

o J. Skackauskas, T. Kalganova and M. Janakiram, “Microchip

Manufacturing Plant Production Floor Optimization (MMPPFO)

problem,” Figshare, 2020. DOI:

https://doi.org/10.17633/rd.brunel.11638323.v1

o J. Skackauskas and T. Kalganova, "Dynamic-MKP Benchmark

Datasets," IEEE Dataport, 2022. DOI: https://dx.doi.org/10.21227/6bfm-

bj82

o J. Skackauskas, “GitHub - Dynamic MKP Benchmark Datasets,” 2021.

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-

Benchmark-Datasets.

o J. Skackauskas, “GitHub - Dynamic MKP Benchmark Best Known

Results,” 2021. [Online]. Available:

7

https://github.com/jonasska/Dynamic-MKP-Benchmark-Best-Known-

results.

• Published software tools:

o J. Skackauskas, “GitHub - Dynamic MKP Datasets Generator,” 2021.

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-

Datasets-Generator.

o J. Skackauskas, “GitHub - Dynamic MKP Datasets Visualization,” 2021.

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-

Datasets-Visualization.

1.4. Thesis contents

This thesis is presented in 6 chapters. Chapter 1 introduces the background of the

research, outlines the problem and why it is important to solve it. Also, Chapter 1

presents an overview of the research work conducted in this thesis.

Chapter 2 presents a literature review on dynamic optimization with a deeper focus on

combinatorial dynamic optimization. The literature review analyses optimization

problems and algorithms to solve them. Although there is a variety of optimization

problems and algorithms, the literature review points out that it is difficult to compare

the optimization algorithms solving any combinatorial optimization problems due to a

lack of reputable combinatorial dynamic optimization benchmarks. Then, the literature

review analyses in depth Ant Colony Optimization algorithm to solve combinatorial

Dynamic Optimization Problems. Finally, in literature review presents two optimization

problems applied in experimental work.

Chapter 3 proposes an extension method for the ACO algorithm called Dynamic

Impact. Dynamic Impact is a novel method of calculating each edge’s contribution to

the fitness value and evaluating the potential consumption of the remaining problem

resources before including the edge to the partial solution. Two optimization problems

were used to test this method, real-world MMPPFO and theoretical benchmark MKP.

For both problems, adding Dynamic Impact measurably improved solution quality.

Furthermore, in Chapter 3, the description of Dynamic Impact includes generalized

formulas and a simplistic example that are easy to adopt for any optimization problem.

8

Chapter 4 introduces the deterministic dataset generation method that takes an

existing static benchmark dataset as an initial state and generates a dynamic dataset

with the desired number of states, where each state is an evolution from the previous

state. Then using this method, generated 1405 DMKP benchmark datasets of five

dynamism levels from the existing static MKP benchmark dataset library. Furthermore,

Chapter 4 presents a statistical analysis of DMKP benchmark datasets and an optimal

result analysis of small generated benchmark datasets. This benchmark solves the

problem of research replicability for combinatorial dynamic optimization. All previously

published research used stochastic methods to create dynamic optimization problems,

making it difficult to verify the research claims.

Chapter 5 introduces a novel dynamic optimization strategy for the ACO algorithm by

modelling real-world ants’ symbiotic relationship with aphids. Detailed ACO with

Aphids model includes pseudo-code and generalized formulas needed to implement

the model for a wide range of dynamic optimization problems. Then ACO with Aphids

was used to solve the DMKP benchmark and compared against Full-Restart and

Pheromone-Sharing strategies. Compared to Full-Restart and Pheromone-Sharing,

ACO with aphids has demonstrated better performance.

Finally, Chapter 6 presents the thesis conclusion and potential future research

directions.

1.5. Aims and objectives

The central aim of this research was to develop and investigate innovative techniques

that enhance the Ant Colony Optimization (ACO) algorithm for both static and dynamic

optimization problems. The objectives that facilitated this aim are enumerated as

follows:

1. To enhance the static problem-solving capabilities of the ACO algorithm:

This was achieved by proposing the Dynamic Impact method, designed to

improve convergence and solution quality for optimization problems with non-

linear relationships between resource consumption and fitness.

2. To contribute to the academic community through the creation of

Dynamic Multidimensional Knapsack Problem benchmark datasets:

These datasets were created to solve the research replicability issue in the field

9

of combinatorial dynamic optimization. The datasets provide a basis for

researchers to test and compare the efficacy of different dynamic optimization

strategies.

3. To augment the ACO algorithm for better performance in dynamic

optimization problems: The development of the 'Ant Colony Optimization with

Aphids' technique was a major step in this direction. By leveraging the symbiotic

relationship between ants and aphids, this technique was designed to enhance

the solution recovery after dynamic environment changes, enabling the ACO

algorithm to maintain its effectiveness in dynamically changing environments.

4. To empirically evaluate the developed techniques: The novel techniques

were rigorously tested on real-world and theoretical benchmark problems. The

results of these tests were used to assess the performance of the new

techniques, providing valuable insights and leading to further refinements.

5. To communicate the research outcomes: The findings of the research have

been published in peer-reviewed journals and other public platforms to

contribute to the collective knowledge in the field of combinatorial optimization.

By achieving these objectives, the research aimed to contribute significantly to the

body of knowledge on combinatorial optimization, providing practical tools for

industries and pushing the boundaries of current scientific understanding.

1.6. Methodology

This research adopted a comprehensive, well-structured approach to ensure a

thorough exploration of the topic. It began with an extensive literature review, which

provided a deep understanding of the Ant Colony Optimization (ACO) algorithm, its

modifications, and its various applications in tackling both static and dynamic

optimization problems. This groundwork was crucial, as it highlighted the gaps in

current research, thereby underscoring the need for enhanced, adaptable optimization

strategies.

After the literature review, the research then focused on the design and development

of the algorithmic enhancements to the ACO algorithm. The enhancements are

systematically aimed at improving ACO ability to solve combinatorial dynamic

optimization problems. Dynamic Impact method aimed to increase ACO algorithm

10

capacity to handle complex, non-linear optimization problems. Ant Colony

Optimization with Aphids aimed to boost the ACO algorithm's performance in dynamic

environments. And finally, development of DMKP benchmark datasets and

methodology which serves as a key resource for robust testing of the Dynamic Impact

method, the ACO with Aphids algorithm, and other dynamic optimization strategies in

the future.

Also, research methodology involves comprehensive empirical testing, data analysis,

and results dissemination. Both the Dynamic Impact method and the ACO with Aphids

technique are put through rigorous tests with established benchmarks. This enabled

a robust assessment of their effectiveness and facilitated their comparison with other

existing solutions. The outcomes were then meticulously analyzed and interpreted,

leading to an exhaustive examination of the results, the understanding of the strengths

and limitations of the developed methods, and the identification of potential avenues

for future research.

11

Chapter 2. Literature review

Robust dynamic optimization approaches are of particular interest for real-world

applications where problems at hand have a tendency to evolve over time and are not

predictable accurately in advance. Often such problems must have some mechanisms

to improve solutions in real-time as new data is obtained about disturbances or

incremental accuracy improvements of the optimization data. Although the concept of

dynamic optimization is not new, the research remains active to this day. Due to the

real-world business interests in ever-increasing efficiency and growth, any incremental

improvements in dynamic optimization are appreciated, according to a survey

conducted by Mavrovouniotis et al. [8]. Also, according to the No Free Lunch theorem

(NFL), all of the proposed strategies show an equivalent performance when applied to

all possible optimization problems [9]. The NFL theorem states that a general-purpose

optimization algorithm cannot be regarded as a universally-best choice. As a result,

the NFL encourages searching for more efficient methods and developing new

optimization techniques and strategies for different optimization problems.

This thesis aims to advance algorithmic methods that allow finding higher quality

solutions for dynamic optimization problems using Ant Colony Optimization algorithm.

Therefore, this literature review introduces the reader to the field of dynamic

optimization with Dynamic Optimization Problems and reviews available benchmarks

used to compare the algorithms solving DOPs and points out the dynamic

combinatorial optimization replicability limitations. Then, the literature review provides

a detailed look into the ACO algorithm and how ACO is currently used to solve DOPs.

The literature review points out two research gaps to improve the efficiency of the ACO

algorithm for combinatorial dynamic optimization. The need to improve sub-heuristics

for general algorithm convergence and the need to improve the combinatorial dynamic

optimization capabilities, possibly mimicking naturally occurring symbiotic

relationships between ants and aphids. Then, two optimization problems are reviewed

in detail to use in experimental work.

In the field of optimization, there are two major categories of optimization algorithms,

exact heuristic algorithms and approximate metaheuristic algorithms. The exact

heuristic algorithms are usually computationally efficient and find optimal solutions

12

significantly faster than a brute force method. Such algorithms are Branch and Bound

method [10], Linear Programming optimization [11], and Dynamic Programming [12].

However, these algorithms' computational complexity remains exponential, in big “O”

notation 𝑂(x𝑛), where x is base of exponential intrinsic to the algorithm, and 𝑛 is size

of the problem, or these algorithms only find the local optimum [13]. For large NP-Hard

optimization problems, only approximate intelligent metaheuristic methods have a

chance to find a good solution with polynomial computational complexity 𝑂(n𝑥). The

approximate method mean that final solutions may not be optimal, but for practical

reasons those solutions are good enough. This literature review section focuses on

these approximate intelligent metaheuristic algorithms.

2.1. Dynamic Optimization

Over the last couple of decades, the industry trend towards more efficient optimization

of some business aspects has pushed researchers to work on dedicated optimization

solutions that give a competitive advantage. One such solution is the algorithms

dedicated to solving Dynamic Optimization Problems. DOPs are defined as a

sequence of time-dependent problems where the fitness landscape shows some

exploitable similarities before and after the dynamic change [14]. Such dynamic

changes may have some parameters of the initial problem that can change, which

does not entirely invalidate the existing solution, but remain useful for further

optimization with some adjustments or fixes. Dynamic optimization is crucial when

some optimization problem details are unknown beforehand and subject to

unexpected changes. The most popular family of algorithms to solve such dynamic

optimization problems is the Evolutionary Algorithms (EAs) family [15].

Dynamic Optimization Problems are problems where the fitness landscape changes

over time due to various factors. Based on the characteristics of the change, the

problem instances, and the nature of the solution space, DOPs can be classified into

several types.

• Based on the Nature of the Search Space:

o Continuous DOPs: These involve problems where the variables to be

optimized are continuous in nature. They could be parameters of a

system that can take real-number values within certain constraints.

13

These problems include the optimization of multimodal functions, among

others.

o Discrete DOPs: These involve problems where the variables to be

optimized are discrete in nature. They could be a sequence of decisions

or selections that are to be made from a finite set. Problems like routing,

scheduling, and placement are examples of discrete DOPs.

• Based on the Nature of the Changes:

o Predictable DOPs: These are problems where the changes in the fitness

landscape occur in a predictable manner. These changes could follow a

certain pattern or trend that can be anticipated and prepared for in

advance.

o Unpredictable DOPs: These are problems where the changes in the

fitness landscape are random or chaotic and cannot be predicted

accurately. This unpredictability could be due to the nature of the system

or the environment in which the problem is being solved.

• Based on the Frequency of Changes:

o Periodic DOPs: These are problems where changes occur at regular

intervals. The changes could be subtle or drastic, but the key

characteristic is that they occur after fixed periods.

o Aperiodic DOPs: These are problems where changes occur irregularly

or at random intervals. The frequency of change is not constant and

cannot be accurately predicted.

• Based on the Severity of Changes:

o Small-scale DOPs: These are problems where changes in the fitness

landscape are minimal and do not significantly affect the quality of the

current solutions.

o Large-scale DOPs: These are problems where changes in the fitness

landscape are drastic and could render the current solutions completely

irrelevant or sub-optimal.

Understanding this taxonomy of DOPs can be useful for choosing the most appropriate

optimization algorithms and strategies. It helps in designing more effective and

adaptive algorithms, especially for complex real-world problems that may involve

multiple types of dynamic changes.

14

Continuous DOPs optimization is a widely researched topic with many published

algorithms and improvements [8]. Continuous optimization problems are commonly

modelled as functions mapping inputs to outputs, where both the input and output

variables are real numbers and subject to constraints. It is possible for continuous

optimization problems to be non-analytical and lack algebraic expressions of the

search space [16]. The time-domain component can be either a real value for a

continuously evolving problem domain or an integer value for a discretely evolving

problem domain.

This thesis, focuses on Event-triggered DOPs that are Discrete, Unpredictable,

Aperiodic, and Large-scale DOPs, as they pose some of the most challenging

conditions for dynamic optimization. These Discrete DOPs are modelled as the

combination of discrete decisions where solutions represent a logical set of conditions

and are evaluated by an objective function [17]. The dynamism of Discrete DOPs is

defined as a series of static optimization problem instances in sequential order called

“states” [18]. Each state has a slight variation of the search space, where the larger

variation makes the problem more dynamic and more challenging to solve.

Figure 2-1: Classification of dynamic optimization. On the left-hand side, Discrete

dynamic optimization is displayed with a discrete optimization problem state change

based on an event trigger. On the right-hand-side popular Continuous DOP, a moving

peaks benchmark is visualized for two input dimensions from IEEE CEC 2022

15

benchmark set [19]. This research focuses on solving types of problems portrayed on the

left-hand side.

In the field of dynamic optimization, Dynamic Multimodal Function Optimization

(DMFO), a continuous optimization problem, is by far the most popular theoretical

dynamic optimization problem. Often, some researchers mistakenly consider it as the

only Dynamic Optimization Problem, where most theoretical research comparisons

are presented [20], [21], [22]. However, the field of dynamic optimization is not limited

to continuous optimization problems. In fact, there are significantly more examples of

discrete combinatorial optimization problems [8], [23].

2.1.1. Dynamic Optimization Problems and real-world

applications

There are uncountably many real-world optimization problems. Every useful

implementation of a real-world problem considers optimization with a unique set of

parameters and goals to provide maximum benefit [24]. However, those differences

usually are generalizable such that the majority of these problems can fall within one

of the several major types of optimization problems known to researchers like routing,

assignment, scheduling, subset, and packing problems [25], [26], [27]. Algorithms that

solve one type of theoretical optimization problem often prove to be useful in solving

equivalent real-world optimization problems [28]. Some of the real-world optimization

problems published in the literature are categorized in Table 2-1.

Most of the practical use cases of dynamic optimization are in the fields of

transportation, facility control, production, scheduling, and communications. These

problems have a finite number of possible permutations and are formulated as

combinatorial optimization problems. Several examples of applied dynamic

optimization to a real-world problem are Traffic signal timing solved using a Genetic

Algorithm (GA) [29]. Control parameter optimization using Particle Swarm

Optimization (PSO) algorithm [30]. The Chaotic Salp Swarm algorithm (CSSA), which

is based on the PSO algorithm, has been applied to optimize a Software Defined

Network (SDN) to minimize deployment cost and latency [31]. Distributed Guidance

Anti-flocking Algorithm (DGAA) has been applied to Mobile Wireless Network (MWN)

optimization [32]. The Ant Colony Optimization algorithm has been applied to the

16

Railway Junction Rescheduling problem that aims to solve dynamic multi-objective

optimization and minimize timetable deviation and energy expenditure [33].

Table 2-1: Problem types of real-world optimization solved in the sample literature.

Type
Real-world optimization problem

Problem type

Routing Assignment Scheduling Subset Packing

D
y
n
am

ic

Traffic signal timing [29]

Control parameter optimization [30]

Software Defined Network [31]

Mobile Wireless Network [32]

Railway Junction Rescheduling [33]

Wireless Sensor Network [34]

S
ta

ti
c

Pipe Network Optimization [35]

Vehicle Route [36] [37]

Cargo loading [38]

Supply Chain Optimization [39] [40]

Facility layout problem [41] [42]

[43]

Project budgeting [44]

Portfolio management [45]

Cutting stock [46]

Integrated manufacturing floor

optimization

 [47] [48] [49]

[50] [51] [52]

Tool sequencing [53] [54]

School and university timetabling [55] [56] [57]

Resource sharing problem [58]

Brain tumour segmentation [59]

Big-Data analysis [60] [61] [62]

3D topology design [63] [64]

Power consumption prediction [65] [66]

Feature classification [67] [68]

Reinforcement learning model

design

 [69] [70]

Manufacturing parameter

optimization

 [71] [72]

Operations scheduling [73] [74]

Operations management [75]

Minimum Spanning Tree [76]

2.1.2. Existing methods to solve DOPs

Dynamic optimization is more challenging to solve than static optimization because

there are additional optimization goals besides the primary goal. In static optimization,

the main goal is to maximize or minimize the fitness value of the optimization problem’s

objective, given that the optimization problem is a single objective. However, for

17

dynamic optimization problems, the goal may not only be to minimize the fitness of the

single objective but also to show some additional convergence dynamics required for

successful optimization, like optimum tracking [77], best all states performance [78],

best average fitness [79], algorithm stability throughout optimization [80]. Many

developed dynamic optimization algorithms and algorithm extensions are designed to

tackle one or more of these goals.

The swarm and evolutionary algorithms dominate the field of dynamic optimization.

Genetic Algorithms [81], [82], [83], Particle Swarm Optimization [84], Artificial Raindrop

Algorithm (ARA) [85], Membrane Computing (MC) [86], and Ant Colony Optimization

[33], among many others [87], [88].

There are a lot of algorithmic improvements proposed to tackle the continuous DOP

Moving Peaks Benchmark (MPB). For example, several combinations of PSO

algorithm enhancements were tested to solve and track the optimum of MPB [89].

Several improved versions of EAs are used to solve these problems, like Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [90], [82], NSGA-III [91], Pareto

Archived Evolution Strategy (PAES) [92], Dynamic Learning Evolution Algorithm

(DLEA) [93]. Other dedicated algorithms for continuous dynamic optimization are

Differential evolution (DE) [94], Firefly Algorithm (FA) [87], and Artificial Immune

System (AIS) [88]. Overall scalability and performance of MPB have been explored on

multiple algorithms with generated heterogeneous and multimodal benchmarks [95].

Robust Optimization Over Time (ROOT) methodology has been proposed to enable

these algorithms to solve real-world optimization problems too [96].

Then, there are some examples adapted to solve Discrete DOPs and applied to both

theoretical and real-world optimization problems [33]. Genetic Algorithms are used to

optimize traffic signal timing control [29] as well as to solve the Dynamic

Multidimensional Knapsack Problem [97]. Particle Swarm Optimization algorithms are

used to optimize control parameters of a dynamic chemical process [30] as well as

Dynamic Traveling Salesman Problem [98], [99]. Ant Colony Optimization algorithms

are applied to railway junction scheduling problems [33] and DTSP [79].

The majority of purpose-built dynamic optimization algorithm research efforts are

dedicated to continuous domain dynamic optimization, where existing optimization

problems are well understood. Meanwhile, in the discrete domain, researchers

18

primarily focus on problem-solving and adaptation of algorithms to meet the particular

needs of those problems.

Table 2-2: Advantages and limitations of popular optimization algorithms solving

discrete optimization problems in sample literature.

Algorithm Advantages Limitations

Genetic Algorithms

[23] [29] [34] [77]

[80] [97]

Versatile for large range of

problems, both continuous and

discrete.

Algorithm often require many function

evaluations to converge, therefore can

be slower than other algorithms.

Particle Swarm

Optimization [30] [98]

[99]

Simple algorithm that requires

relatively few parameters to

implement.

Algorithm can often get trapped in local

optima and converge prematurely.

Ant Colony

Optimization [25] [33]

[78] [79]

Robust algorithm that can be applied

to variety of combinatorial

optimization problems without many

changes.

Algorithm can struggle to solve

continuous optimization problems.

2.1.3. Benchmarks to evaluate DOPs

A good benchmark dataset is necessary to evaluate dynamic optimization algorithm

performance accurately. Currently, fully defined dynamic optimization benchmarks

exist only for continuous domain Moving Peaks Benchmark (MPB), and discrete

domain problems use either benchmark generators or real-world optimization

instances.

The Moving Peaks Benchmark is a popular Continuous DOP type of benchmark with

a wide selection of benchmark suites like IEEE Congress on Evolutionary Computation

(IEEE CEC) benchmark suites [100], [101], [19], Composition Function (CF) Library

[102], and other test functions of multiple authors [103], [104]. Moving Peaks

Benchmark is a Dynamic Multimodal Function Optimization (DMFO) problem where

the modal surface is changing. Such change is usually defined as one or more

problem’s input parameters changing over time continuously or in discrete increments

[105]. The aim of DMFO is to track the global optimum point moving on the

hypersurface over time [16]. However, researchers usually track more near optimal

points too [106], [107]. The DMFO problem is well researched dynamic optimization

problem type because it is easy to use already available benchmark datasets of static

MFO problems [20]. Dynamic Multi-Objective Optimization Problem (DMOOP) is a

19

very popular subset problem of DMFO, where multiple different functions must be

optimized simultaneously as independent goals using the same input vector [21], [22].

For the discrete domain of dynamic optimization problems, researchers use

benchmark generators where optimization states are generated during the

optimization. A stochastic benchmark generator was used to create DMKP, where item

profits, item weights and knapsack capacities are changed with a normally distributed

random operator [97]. For a DTSP [98], [99] research work used a published TSPLIB

[108] library and randomly modified vertex’s location, which led to a generation of new

problems each time. Then solved, the DTSP using the PSO algorithm. For the

Dynamic Vehicle Routing Problem (DVRP) [109], research work used benchmark

instances of static VRP and applied a stochastic modification algorithm to change the

demands of the destinations and therefore recalculate the partially executed plan.

Similarly, static benchmark instances of Job-shop Scheduling Problem (JSP) like FT

instances introduced by Fischer and Thompson [110], LA instances introduced by

Lawrence [111], and ABZ instances introduced by Adams et al. [112] are often

extended with stochastic dataset generators [50].

There are many great examples of algorithmic advancements to benefit real-world

dynamic optimization, as mentioned in the earlier section. However, there remains

one problem with research conducted to solve real-world DOPs. Which is a lack of

publicly available datasets and, in some cases, also lack the implementation details in

order to reproduce the claims stated in the research conclusions. It is unreasonable to

expect businesses to publish real recorded historical data that could be reused in

further research, as it may be sensitive business information.

One apparent separation among academic research on dynamic optimization is that

all of the fully defined benchmark dynamic optimization problems solved are in the

continuous domain. All of the discrete benchmark problems are obtained from

benchmark datasets of static optimization problems, modifying the dataset using

stochastic methods. Stochastically generated problems can only be fairly compared if

the initial seed of the random operator is used the same each time. Otherwise, the

dataset optimums and the final result of the optimization problem would be different

with each algorithm run. The comparison of different algorithms could be improved if

the seed or better the dynamic optimization problem dataset instances or states were

20

recorded and shared in full detail. However, none of the research work has shared

neither seed nor dataset states, making it impossible to verify research claims and

compare results with future research advancements. Ideally, the dynamic optimization

problem datasets should be well-defined for each intermediate instance or state. The

datasets should be created using a non-stochastic method such that the dynamic

aspect of the dataset could be extended forward in the time domain.

2.2. Ant Colony Optimization algorithm

Ant Colony Optimization (ACO) is a nature-inspired optimization algorithm that uses

Ants as search agents navigating a search space. Navigation is mediated by

pheromones that ants are naturally drawn towards. While an ant is searching for food,

it deposits pheromone on its path, which attracts more ants. If the food is better, an

ant will deposit more pheromone, and therefore more ants will be attracted to the food

source, making the path even more dense pheromone. All pheromone is evaporating

slowly, and the paths that do not favour the search quickly become unattractive to the

ants, see Figure 2-2. Originally Ant Colony Optimization algorithm was designed for

the travelling salesman problem (TSP) described in Dorigo's [113] doctoral thesis in

1992. In ACO, ants use a stochastic construction heuristic to make probabilistic

decisions based on the pheromone trails and heuristic information. While the heuristic

information is based on the problem's search space, the pheromone represents

cumulatively learned ants’ experience.

21

Figure 2-2: Illustration of ants searching for the shortest path

There are several ACO algorithm implementations based on ACO heuristics, the

original Ant System (AS), and the most popular improvements of the Ant System are

the rank-based Ant System (ASrank) introduced by Bullnheimer et al. [114], Min-Max

Ant System (MMAS) introduced by Stützle and Hoos [115], Ant Colony System (ACS)

introduced by Dorigo and Gambardella [116], and Population-based ACO (P-ACO)

introduced by Guntsch and Middendorf [117]. The ASrank is an elitist strategy which

sorts the ants according to their solution performance and only allows several best

ants to deposit their pheromones after each iteration. The MMAS strategy uses the

pheromones bound to a minimum and maximum pheromone levels. At the start, the

MMAS strategy initializes pheromone values to the upper limit, which makes the

algorithm begin the search with a higher level of exploration. Like ASrank, the MMAS

strategy uses an elitist strategy for pheromone update, where local-best and

potentially global-best ant’s solution is used to update the pheromone [118].

Furthermore, the ACS uses probabilistic exploitation, where a portion of the path ants

travel is chosen deterministically rather than stochastically [119]. Finally, the P-ACO

22

uses a different method to update the pheromone. Instead of a typical pheromone

update with a selected ant’s result on every iteration, the P-ACO method keeps several

ranked ants’ solutions which are then used to create a new pheromone for every

iteration [120], [121].

2.2.1. Formal ACO definition

The baseline ACO algorithm implementation used for all research in this thesis is a

combination of the MMAS and the ACS, courtesy of M. Veluscek et al. [122]. The first

step of algorithm execution is search space initialization, in which search space 𝑁 is

filtered for all nodes to have only feasible edges and calculated heuristic information

𝜂𝑗,𝑖. Then according to MMAS strategy each edge’s pheromone is set to the maximum

value of 𝜏𝑚𝑎𝑥. Once the search space is prepared, the iterative search starts. In the

iterative search, a set of ants each builds a complete solution. Each ant starts building

with an empty partial solution 𝑠𝑝 = ∅. Then the ant searches for a single edge to add

to the partial solution. The ant can choose one of two modes of finding an edge

according to the ACS strategy [116]. First is the exploration mode, where each edge

is added stochastically to the solution. Second is the exploitation mode, where only

the best edge is selected deterministically. The ant search mode is chosen

stochastically with 𝑞0 exploitation parameter for each edge added to the partial

solution. The following probability equation of the edge:

𝑝𝑗,𝑖 =
𝜏𝑗,𝑖

𝛼 × 𝜂𝑗,𝑖
𝛽

∑(𝜏𝑗,𝑖
𝛼 × 𝜂𝑗,𝑖

𝛽
)

, ∀(𝑗, 𝑖) ∈ 𝑁(𝑠𝑝)
(2-1)

where 𝜏 is edge’s pheromone, 𝜂 is edge’s heuristic information, 𝑁(𝑠𝑝) is the set of all

feasible edges allowed to be added to the partial solution 𝑠𝑝, 𝛼 is a relative pheromone

importance, and 𝛽 is a relative heuristic information importance, 𝑗 and 𝑖 are the edges

and nodes of the search space, respectively. The search mode is chosen every time

an edge is added to the partial solution using proportional choice:

(𝑗, 𝑖) = {
𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑗,𝑖), 𝑖𝑓 𝑞 ≤ 𝑞0

𝑑𝑟𝑎𝑤(𝑝𝑗,𝑖), 𝑖𝑓 𝑞 > 𝑞0

(2-2)

where 𝑞 is uniformly distributed random number 0 ≤ 𝑞 < 1, 𝑞0 is the exploitation

parameter, 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑗,𝑖) is the exploitation mode function which gives the edge with

23

the highest probability, and 𝑑𝑟𝑎𝑤(𝑝𝑗,𝑖) is the exploration mode function that draws the

edge according to its calculated probability in formula (2-1). Once an ant search is

finished, the solution gets evaluated for solution fitness value, and the best solution is

passed to influence the global pheromone. At global pheromone update, the

pheromone is evaporated using the percentage indicated by 𝜌 parameter as in the

following equation:

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 ∗ (1 − 𝜌), ∀(𝑗, 𝑖) (2-3)

where 𝜌 is a constant parameter of the pheromone evaporation rate introduced by

Dorigo and Stützle [123]. The best ant solution is taken to lay down pheromone on

edges that it has visited while building the solution as in the following equation:

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 + 𝜌 ∗ Δ𝜏0, ∀(𝑗, 𝑖) ∈ 𝑠𝑝 (2-4)

where Δ𝜏0 is the pheromone update rate, 𝑠𝑝 is the solution of the chosen ant to lay

down the pheromone.

However, to utilize modern computer multicore architectures efficiently, Parallel Ant

(PA) optimization architecture is implemented courtesy of I. Dzalbs et al. [39]. For each

iteration, ants are split into several isolated local groups. At the start of the iteration,

each group gets a new local pheromone copied from the global pheromone. Then

each group performs a local search normally for all ants within the local group. All

groups perform the search and evaluate the fitness of each solution in parallel. After

all groups complete the search, the best performing ant’s solution is taken to perform

the update on the global pheromone.

2.2.2. Strengths, weaknesses and typical applications

The Ant Colony Optimization algorithm was initially intended to solve the TSP, which

aims to minimize the total path required to visit all cities [124]. The TSP is a graph

problem where nodes represent cities and edges represent paths between cities, and

each node must be visited only once [125]. Unlike other algorithms that maintain and

modify a population of solutions, ACO fully builds all ant solutions. When ant searches

for the next edge to add to the solution, all infeasible edges are calculated with zero

probability [126]. This building heuristic allows ants to build only feasible solutions,

which is a unique advantage for the ACO algorithm. The ACO algorithm is very good

24

at solving constrained combinatorial optimization problems that can be expressed as

a graph [127]. Furthermore, heuristic information gives ants a sense of direction when

pheromone trails are not intense, and all edges appear similarly strong in the search

space. It plays a crucial part in optimization convergence speed and produces

excellent results when little time is given to run the algorithm.

On the other hand, ACO is not an ideal algorithm for optimization problems that cannot

be easily expressed as a graph problem. For example, in order to solve continuous

optimization problems with ACO, the problem domain must be discretised [128]. There

is also a dedicated implementation of ACO for continuous optimization problems called

ACOR with the use of probability density functions generated from the population of

ant solutions [129]. However, besides this algorithm's authors, researchers agree that

other algorithms are better suited to solve continuous optimization [8].

ACO algorithm has been applied to a wide range of optimization problems that benefit

from ACO solution building heuristics, both academic and real-world demonstrating

the algorithm’s potential [25]. In the literature, research on ACO algorithm covers all

major combinatorial problems: scheduling problems [130], [53], [127], [131], [132],

subset problems [133], [134], [135], routing problems [136], [36], [137], and

assignment problems [138], [139]. Also, the ACO algorithm has been adopted for

many real-world optimization problems like Vehicle Routing Problem (VRP) [140],

airline company crew scheduling [141], grid power management [142], [143], network

routing optimization for cars [144] and wireless sensors [145], and supply chain

optimization [39], [146].

2.2.3. Sub-heuristics

Combinatorial search algorithms are designed to explore large search spaces

efficiently and quickly converge to a good solution. The efficiency is achieved using

metaheuristic methods that allow the search space to be explored more in areas of

greater reward. In the case of Ant Colony Optimization, the primary metaheuristic

method is a pheromone, which is iteratively learned when solving the optimization

problem. However, using pheromone alone does not make a performant optimization

engine and often requires many iterations to reach a good solution.

25

With the introduction of additional heuristics to ACO, much higher optimization

performance can be achieved. The first attempt by Stützle and Hoos [115] is the

introduction of heuristic information, which has significantly improved search

convergence speed and solution quality. The heuristic information uses precalculated

values for each edge that indicate the general quality of that edge. It guides the ant’s

search in addition to the learned pheromone.

As in the case of all algorithms, ACO has tuneable hyper-parameters that, once found,

a good combination of them for a specific problem can give much better results than

just using default values. It can be very time-consuming or require expert knowledge

of the problem domain to find a good set of hyper-parameters. The hyper-heuristic

methods were introduced by Burke et al. [147], which fine-tunes hyperparameters of

the search algorithm in an automatic way for a genetic algorithm. Then, later these

methods were applied to the ACO algorithm too [148], [149], [150].

In pursuit of better algorithm performance, the ACO algorithm can be coupled with a

problem-specific local search for some optimization problems. The local search takes

a completed candidate solution and applies a search operator that follows a

deterministic set of rules to improve it before it is used to lay down the pheromones

[78], [151].

Furthermore, purpose-made sub-heuristic enhancements can improve search

efficiency, converge faster, and produce better final solutions for certain problems.

Sub-heuristics are the heuristic methods used in the core of search algorithms [152].

Sub-heuristics for ACO is not a well-researched area. Therefore, for clarification, the

sub-heuristic method is referred to as an additional core search method that acts upon

the state of an incomplete, partial solution. The existing introductions of Sub-heuristic

enhancements are done for specific problems and are not generalized in any way.

Authors [153] have utilized such sub-heuristics for ACO algorithms for probability

calculations where branching can occur while building the solution. This sub-heuristic

method allowed them to have a transition operation that otherwise could not be

accounted for from previously explored solutions. The sub-heuristics are distinctly

different from more commonly used algorithmic augmentations such as local search

or hyper-heuristics. The sub-heuristic method is a primitive component of the

26

metaheuristic search core and can be used independently of local search and hyper-

heuristics.

Table 2-3: Comparison of Heuristic Methodologies in Combinatorial Search Algorithms:

Descriptions and Limitations

Methodology Description Limitations

Pheromone

(ACO)

Primary metaheuristic method in Ant

Colony Optimization that is iteratively

learned when solving the optimization

problem.

Often requires many iterations to reach

a good solution.

Heuristic

Information

Introduced by Stützle and Hoos to

significantly improve search

convergence speed and solution quality.

It uses precalculated values for each

edge to guide the ant's search.

There are no clear limitations mentioned

for heuristic information, but its

effectiveness might be problem-specific.

Hyper-heuristic

Methods

Introduced by Burke et al. for genetic

algorithms and later applied to ACO.

Fine-tunes hyperparameters of the

search algorithm automatically.

Finding a good combination of

hyperparameters for a specific problem

can be very time-consuming or require

expert knowledge of the problem

domain.

Local Search A problem-specific local search coupled

with ACO can improve performance.

The local search applies a deterministic

set of rules to a completed candidate

solution to improve it before it is used to

lay down the pheromones.

The effectiveness of local search might

be limited by the specifics of the problem

being solved and the quality of the rules

applied.

Sub-heuristic

Enhancements

These methods used in the core of

search algorithms can improve search

efficiency, convergence speed, and final

solution quality for certain problems.

Sub-heuristics are not a well-

researched area and the existing

enhancements are specific to certain

problems and not generalized. They

might not account for certain transitions

that could occur while building the

solution.

27

2.2.4. Existing ACO methods to solve DOPs

Numerous studies have been conducted on the Ant Colony Optimization algorithm to

solve problems of evolving nature [154], [155], [156]. In the classical Ant Colony

Optimization algorithm, changing any aspect of the optimization problem leads to

explored solutions becoming infeasible and or suboptimal [157]. In nature, real ants

constantly face environmental changes such as new food sources appearing or being

removed and pathway blockage. However, ants do not start a complete search from

scratch. Usually, algorithms solving static optimization problems are finely tuned to

converge quickly onto optimum solutions in the search static search space. However,

such behaviour might not be desirable for dynamic optimization problems because

fast and precise algorithms usually struggle to explore search space after the dynamic

change. The challenge is to enable an artificial ant colony to explore new changes in

the problem space efficiently [158]. There are several explored methods of Ant Colony

Optimization in the dynamic environment.

In dynamic optimization literature, research usually tackles one of the two types of

dynamic optimization problems. The first type is the optimization problems executed

in the time domain, which has predictable dynamism patterns. These patterns of

problem dynamics are solved as an additional dimension of variable edge cost in

single goal optimization. This type of optimization problem does not require a special

dynamic optimization algorithm but requires modification for the optimization problem

definition. Typical applications of such predictive optimization are in routing problems

like Vehicle Routing Problem (VRP) [159] [160], electric grid energy management

[143], or scheduling problems [161]. The second type of DOPs is unpredictable event-

triggered DOPs. When dynamic environment changes cannot be predicted, the

problem must be solved again. Two major strategies for the ACO algorithm have been

researched to solve the unpredictable event-triggered DOPs, Full-Restart and

Pheromone-Share strategies.

2.2.4.1. Full-Restart strategy

The most common approach to solving dynamic optimization problems when changes

are unpredictable is to restart the search entirely. When changes occur in search

space, the whole optimization is started from the beginning, clearing out all information

28

associated with the previous state. This approach is the simplest as it does not require

explicit algorithm modification and relies on the algorithm to quickly converge to the

new good solution [162]. The Full-Restart strategy does not share any information

between optimization states, and each state is optimized independently. After the full

restart algorithm usually converges in an identical pattern to the state before, as shown

in Figure 2-3.

In the literature, Two ACO dynamic optimization strategies, Full-Restart and

Pheromone-Sharing, have been compared by Angus & Hendtlass [157]. The

conclusion was reached that for Dynamic Traveling Salesman Problem, the

Pheromone-Sharing strategy has given a faster convergence rate to a good solution.

Still, the Full-Restart strategy has allowed converging to a more optimal solution. Then,

ACO algorithm Full-Restart strategy was used in a railway routing problem, and the

solutions rebuild and deployed in real-time, allowing the algorithm to run for a limited

amount of time, and deploy the best solution that the algorithm has found [163].

Furthermore, the ACO Full-Restart strategy was investigated on real-time dynamic

optimization problems, where optimal schedules and routes are already in use and

partially completed. The dynamic changes alter the remaining part of the solution,

which requires to be reoptimized for problems like VRP [156], and Job-shop

Scheduling Problem (JSP) [164].

Figure 2-3: Normal Convergence of Full-Restart strategy in abundant time optimization.

The chart displays a minimization problem’s convergence for two dynamic states, where

29

the algorithm has plenty of time to converge to a “good” solution in both instances. Both

initial and following states show identical convergence patterns.

2.2.4.2. Pheromone-Sharing strategy

When unpredictable dynamic change occurs in the environment, the search space

changes too. However, changes in the nodes and the edges of the new search space

are usually small enough and can map to the old search space. Therefore, the artificial

ants can reuse a large part or the whole pheromone matrix from the previous

optimization state. In cases where dynamic changes are significant to the extent that

some parts of the search space do not map the pheromone matrix correctly, a heuristic

fix can be applied to maximize the usefulness of the pheromone matrix from the

previous state.

In literature, some ACO-based methods rebuild solutions on the existing pheromone

matrix where new edges get applied to normalized pheromone level allowing ants to

have a fair exploration in new search space [157]. Other development has tried several

pheromone initialization strategies for new edges with the proposed Local random

restart strategy, which initializes new edges with a random value, and the Local restart

strategy, which initializes new edges with 0 pheromone value [155]. Approaches

based on Population-ACO use the pheromone initialization process described by

Guntsch & Middendorf [120], where an arbitrary number of elitist ant solutions create

a pheromone matrix for every new iteration. Then Population-ACO based solutions

can also be fixed using heuristic methods after the dynamic change, which give a good

head start for the pheromone quality after the dynamic change [79], [165]. Generally,

the Pheromone-Sharing strategy makes a trade-off, shown in Figure 2-4, to

significantly reduce the fitness penalty after the dynamic change at the cost of reduced

convergence speed due to the necessity to evaporate previous state dynamics.

30

Figure 2-4: Normal Convergence of Pheromone-Sharing strategy in abundant time

optimization. The chart displays a minimization problem’s convergence for two dynamic

states, where the algorithm has plenty of time to converge to a “good” solution in both

instances. The initial state converges normally, and the following state starts at a

significantly better fitness level but shows poorer convergence. Then poorer convergence

leads to poorer final fitness results.

2.2.5. Need for discrete event-triggered dynamic

optimization system

Both dynamic optimization strategies overviewed above have their specific

advantages and disadvantages. The Pheromone-Sharing strategy significantly

improves solution quality after the dynamic change because the pheromone matrix is

reused for the new optimization state after the event triggers a dynamic change. When

dynamic changes are triggered frequently, the Pheromone-Sharing strategy allows for

gradual interstate convergence, which is better than the Full-Restart strategy, see

Figure 2-6. However, some portion of the pheromone from the previous state must

evaporate gradually, slowing the discovery of new paths. Therefore, the convergence

of the Pheromone-Sharing strategy is usually slightly worse than the convergence if

the search is restarted. On the other hand, the Full-Restart strategy performs good

quality optimization when dynamic changes are triggered very infrequently, and the

algorithm has plenty of time for convergence. However, when dynamic changes occur

31

frequently, the Full-Restart strategy carries no information and restarts the search

completely with poor results, see Figure 2-6.

Ideally, a purpose-built dynamic optimization method could combine the strengths of

the Full-Restart strategy’s convergence speed and the Pheromone-Sharing strategy’s

good solution quality after the dynamic change. This work introduces a purpose-built

dynamic optimization strategy for the ACO algorithm called “ACO with Aphids”. The

ACO with Aphids is a nature-inspired dynamic optimization strategy that builds robust

optimization without the drawbacks of poor convergence and poor restart after the

dynamic change. In Figure 2-5, the ideal ACO with Aphids example is shown. In this

example, after the dynamic change, fitness is equally good to the fitness of the

Pheromone-Sharing strategy, but the convergence slope is as good as the Full-Restart

strategy convergence.

Figure 2-5: The convergence goal of ACO with Aphids strategy in abundant time

optimization. The chart displays a minimization problem’s convergence for two dynamic

states, where the algorithm has plenty of time to converge to a “good” solution in both

instances. The initial state converges normally, and the following state starts at a

significantly better fitness level similar to the Pheromone-Sharing strategy and shows

equally good convergence to the Full-Restart strategy. Then a good restart fitness after

the dynamic change and a good convergence lead to even better results than the final

result of the Full-Restart strategy.

A good dynamic optimization system should display the biggest solution quality

improvements for frequently changing dynamic optimization. When the time is limited

32

to perform the optimization of each state, at the start, fitness usually does not converge

to an acceptable level, but the following states’ optimization continues to improve the

fitness further. ACO with Aphids strategy aims to intelligently reuse the information

acquired during previous states’ optimization such that after the dynamic change is

triggered, the penalty to optimization fitness is minimal, and further convergence is

unimpeded. This way, maximum interstate convergence equilibrium is possible, see

Figure 2-6.

Figure 2-6: All strategies convergence compared in time-restricted optimization. The

chart displays a minimization problem’s convergence for ten dynamic states changing

frequently. Aphids’ strategy combines great optimization convergence observed in the

Full-Restart Strategy with low state change fitness penalty observed in the Pheromone-

Sharing strategy. The combination of these strengths allows for better interstate

convergence.

2.2.6. Nature of Herder Ants

Some of the ant species, namely Lasius niger [166], care for and herd aphids. Aphids

are tiny green bugs feeding plants and producing honeydew as waste. The honeydew

is a sugar-rich liquid that is very nutritious to ants and acts as an additional food

source. The relationship between ants and aphids is symbiotic. While ants feed on the

aphids’ wasted honeydew, ants also protect aphids from their natural predators [167].

The pheromone laid down by ants has a behavioural effect on aphids. In the ants’

pheromone presence, aphids move slower and produce more honeydew [168]. There

33

was also observed that ants may prey on aphids based on aphid density, honeydew

production, and how much other ants tended to aphids [169].

Figure 2-7: Close-up image of an ant guarding its aphids.

2.2.7. Use of aphids in other optimization algorithms

The novel use of the relationship between ants and aphids in optimization algorithms

has seen promising developments. These include the Ant Colony Optimization with

Cooperative Aphid, Cartesian Ant Programming, and Aphid-Ant Mutualism, each

successfully addressing different optimization problems.

Aphid–Ant Mutualism (AAM) is a heterogeneous population-based algorithm that

considers two types of individuals: ants and aphids [170]. In this algorithm, aphids

perform a search in tandem with ants' search but with a different fitness function.

Researchers have applied this algorithm to solve Multimodal Function Optimization

benchmarks.

Cartesian Ant Programming (CAP) is a Cartesian Genetic Programming (CGP)

algorithm that uses ants and aphids to optimize connections among function symbols

[171]. In this algorithm, ants perform a search to find a valid set of connections and

use the solution to deposit the pheromone on each connection to attract more ants. In

addition to the pheromone, ants are also attracted to honeydew, which is deposited

by aphids on every node.

34

Ant Colony Optimization with Cooperative Aphid (ACOCA) is a cooperative search

method that combines the capabilities of an ant and aphid [172]. In this method, the

ant and the aphid work together to give a solution. The information that the aphids

provide is then treated as honey, and the search solutions of the ant are influenced by

the honey. This method was tested to solve Traveling Salesman Problem (TSP).

So far, a symbiotic relationship between ants and aphids has not been attempted to

model to benefit the discrete dynamic optimization. Aphids are tiny animals that ants

tend to by placing them on plants, protecting them from predators, and collecting their

waste honeydew. When too many aphids exist, a portion of them is killed to maintain

the optimal aphid population. In simplistic terms, aphid’s honeydew production can

represent the current state of the dynamic environment and use ants’ behaviour of

tending, relocating, and killing aphids to optimize for maximum food supply from the

original ant’s objective supplemented with honeydew supply from aphids.

2.3. Chapter Summary

This chapter has presented the general literature on dynamic optimization, Dynamic

Optimization Problems with real-world applications, methods to solve them, and

existing benchmarks to compare the performance of the dynamic optimization

algorithms. Then this chapter presented the Ant Colony Optimization (ACO) algorithm

in detail and showed how this algorithm had been applied to solve DOPs. Finally, this

chapter presented two optimization problems in detail to use in experimental work.

In summary of this literature review, three main takeaways stand out as gaps in the

knowledge and require further research.

Sub-heuristic methods have the potential to significantly increase ACO search

efficiency to converge faster and converge to a better solution. For some optimization

problems, additional heuristics within the ACO search core may yield significant

search quality improvements. However, the methodology and applications are lacking

in the literature review. Therefore, Chapter 3 presents a further investigation and a

formal description of a new generalizable sub-heuristic method called Dynamic

Impact. Also, ACO with Dynamic Impact is applied to MMFFPO and MKP problems.

The advancement in the sub-heuristic methods of the ACO algorithm should improve

the convergence within each state’s optimization.

35

So far, most theoretical research on dynamic optimization with comparable qualities

has been done primarily on continuous domain dynamic optimization. The research

on discrete domain dynamic optimization problems is either solving theoretical

optimization problems by modifying datasets using stochastic methods or solving a

real-world optimization problem. Optimization solutions of stochastically generated

dynamic optimization datasets cannot be fairly compared because dataset results and

optimal values will have some variance. Also, research on real-world optimization

problems usually does not share the dataset used for the optimization. Therefore,

Chapter 4 introduced a new non-stochastic dataset creation method and published

fully defined Dynamic Multidimensional Knapsack Problem datasets.

Currently, ACO solving DOPs use one of two rudimentary dynamic optimization

strategies that are easy to integrate into standard ACO algorithms, Full-Restart and

Pheromone-Sharing. The standard ACO algorithm was not designed initially with

dynamic optimization in mind. However, in nature ant species manifest behaviour that

helps adapt to dynamic changes by herding aphids. Currently, no research is

conducted on the relationship between ants and aphids for the benefit of effective

discrete dynamic optimization techniques. Therefore, Chapter 5 proposed a new

dynamic optimization strategy called ACO with Aphids to improve overall optimization

performance by solving the DMKP benchmark and comparing it against Full-Restart

and Pheromone-Sharing strategies. Dedicated ACO design for dynamic optimization

should improve inter-state convergence. Those positive optimization performance

gains will further compound with sub-heuristic ACO improvements.

36

Chapter 3. Dynamic Impact: a sub-

heuristic method for ACO search

This chapter presents a design and experimentation on a sub-heuristic search method

for the Ant Colony Optimization (ACO) algorithm called Dynamic Impact to address

the limitations of the sub-heuristic search found in the previous chapter. The chapter

also provides insight into how Dynamic Impact can be used for any constrained

optimization problem. This method is then used to solve real-world Microchip

Manufacturing Plant Production Floor Optimization (MMPPFO) problem and solve a

theoretical Multidimensional Knapsack problem (MKP) for further validation and

compare ACO with Dynamic Impact solution results to peer published work and their

results.

3.1. Dynamic Impact methodology

Some optimization problems may not have reliable static heuristic information that can

be precalculated before the search. These optimization problems are usually

resource-constrained, and fitness relies on a collection of edges rather than individual

edges. For such an optimization problem, the state of a partial solution becomes a

vital factor when choosing which edges to add to that partial solution. This research

proposes the Dynamic Impact evaluation method as an extension to the Ant Colony

Optimization algorithm core to improve solution quality and convergence speed.

3.1.1. Dynamic Impact for Ant Colony Optimization

algorithm

The goal of Dynamic Impact is to enable rapid search identification of the good

collection of edges for the solution. Dynamic Impact evaluation is a novel method of

calculating each edge’s contribution to the fitness value and evaluating the potential

consumption of the remaining problem resources before including the edge to the

partial solution. This method allows ants to choose edges more accurately that benefit

the search’s fitness value of the solution the most and use the lowest fraction of

37

remaining resources. This method is the third component in an edge’s probability

calculation, along with pheromone and heuristic information. The Dynamic Impact

method is also a myopic search component, improving search accuracy similar to the

heuristic information.

Edge’s probability calculation using Dynamic Impact:

𝑝𝑗,𝑖 =
𝜏𝑗,𝑖

𝛼 ∗ 𝜂𝑗,𝑖
𝛽

∗ 𝐷𝐼𝑗,𝑖
𝛾

(𝑠𝑝)

∑ (𝜏𝑗,𝑖
𝛼 ∗ 𝜂𝑗,𝑖

𝛽
∗ 𝐷𝐼𝑗,𝑖

𝛾
(𝑠𝑝))

, ∀(𝑗, 𝑖) ∈ 𝑁(𝑠𝑝)
(3-1)

where 𝐷𝐼𝑗,𝑖
𝛾

(𝑠𝑝) is Dynamic Impact component in probability calculation at the partial

solution state 𝑠𝑝, 𝛾 (gamma) is a relative importance of Dynamic Impact, 𝑗 and 𝑖 are

the edges and nodes of the search space, respectively.

The proposed Dynamic Impact component evaluation is unlike static heuristic

information and pheromone. This component depends on the current state of a partial

solution and is not pre-calculated like heuristic information. It is designed to change

every time an edge is added to a solution. Therefore, like the pheromone, it cannot be

updated after each solution is completed.

The best formula for Dynamic Impact calculation depends on the optimization problem

and optimization goals. A fitness function or a simplified version of a fitness function

is used to calculate Dynamic Impact. In the cases where the fitness function is a non-

linear relationship of the combination of edges, the Dynamic Impact measures how

much each edge impacts the fitness value for a partial solution. Also, it measures the

consumption of remaining resources defined as problem constraints in relation to a

reward received from using this edge. The general formula of Dynamic Impact can be

expressed as follows:

𝐷𝐼𝑒 = (𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝))
𝐴

× (
𝛺(𝑠𝑝 + 𝑒)

𝛺(𝑠𝑝)
)

(3-2)

where 𝐷𝐼𝑒 is Dynamic Impact for 𝑒 edge. 𝐴 is a sign constant of optimization goal: +1

for maximization and −1 for minimization objectives. 𝑓(𝑠𝑝) and 𝑓(𝑠𝑝 + 𝑒) note the

fitness values of a partial solution without and with an added edge, respectively.

Similarly, 𝛺(𝑠𝑝) and 𝛺(𝑠𝑝 + 𝑒) are notations of remaining constraints of the partial

solution without and with an added edge, respectively. In this theoretical Dynamic

38

Impact calculation, the value is a difference in fitness value multiplied by the proportion

of the remaining resources with the edge. For example, Dynamic Impact is a perceived

value in a given state for the maximization objective where the highest increase in

fitness may not be the most beneficial if it takes a disproportionally large part of the

remaining constraints. Depending on an optimisation problem, some parts of this

Dynamic Impact function may be simplified. For example, in cases where fitness is a

linear sum of its solution components 𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝) can be simplified to just

individual fitness of an edge: 𝑓(𝑒). Also, the equation’s constraints part could be

simplified too, depending on if it has non-linear nature or omitted if constraints have

no relevance to the solution. Lastly, the Dynamic Impact formula must always be

formulated such that it is always more than zero 𝑖. 𝑒. 𝐷𝐼𝑒 > 0.

The concept of Dynamic Impact is similar to the dynamic heuristic information

described in [134], [173] research work. The Dynamic Impact and dynamic heuristic

information both depend on the state of the partial solution. However, the Dynamic

Impact is an additional component in the probability calculation and can be used along

with static heuristic information if optimization problems can benefit. The Dynamic

Impact is a broader operator in edges probability calculation that captures remaining

resources consumption and exploits the non-linearity of the fitness function.

Furthermore, the ACO algorithm that supports static heuristic information and Dynamic

Impact at the same time is more useful in the general setting to optimize combinatorial

optimization problems.

In summary, Dynamic Impact evaluation, similarly to static heuristic information, is a

myopic search component. However, it is evaluated as each edge is added to a partial

solution, making it more versatile in optimization problems where static heuristic

information values cannot be calculated in advance or have a non-linear fitness

function.

3.1.2. Dynamic Impact example

Let us consider a simplistic example of vehicle routing where the objective is to

minimize the total time spent on a road for each vehicle, but the constraint is fuel in a

tank. For simplicity, we will assume that using a motorway is faster but use the most

fuel. While using an alternative route would be slower but use less fuel. In such an

39

example, using a motorway, the vehicle might reach the destination faster while using

more fuel than the more direct route in city traffic which is also much slower. Referring

to formula (3-2), this example is a minimization problem therefore 𝐴 ∶= −1. The fitness

impact of the edge for a linear fitness function is the linear fitness of the edge

𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝) = 𝑓(𝑒) ∶= 𝑇𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒) which is the time taken for a route. The

constraint of the problem is the remaining fuel 𝛺(𝑠𝑝) ∶= 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙, and each

edge uses the constraint by consuming the fuel 𝛺(𝑠𝑝 + 𝑒) ∶= 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 −

 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠(𝑅𝑜𝑢𝑡𝑒). Adding all components together, the final formula of the Dynamic

Impact example arithmetically simplifies to maximize the inverse time of the route while

using the least portion of the remaining fuel.

𝐷𝐼𝑅𝑜𝑢𝑡𝑒 = (𝑇𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒))
−1

×
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 − 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠(𝑅𝑜𝑢𝑡𝑒)

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙

=
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 − 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠(𝑅𝑜𝑢𝑡𝑒)

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 ∗ 𝑇𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒)

(3-3)

In Table 3-1, this formula has been used to demonstrate the difference in Dynamic

Impact, considering the only remaining fuel variable. There are three routes (edges)

to be considered in this table: First, fuel-efficient but slow. Second, medium-fast and

medium-fuel-efficient. Third, fast with high fuel consumption. Three scenarios of

remaining fuel are considered: low, medium, and high amounts of the remaining fuel.

In scenario number one, route number one has the highest Dynamic Impact because

a slower but fuel-efficient route is considered to be more attractive in a low-fuel

scenario. In the second scenario, with a medium amount of fuel, an average fast route

is the most attractive. And lastly, in the third scenario, where there is a lot of fuel left

to use, the Dynamic Impact strongly suggests the fastest route. The remaining fuel

level would not typically be considered in the standard ACO probability calculation,

and it would take many iterations for the ants to learn the best complete travel path

without having a myopic understanding of which of the routes are in their best interest

considering the partial solution an ant has already built. Using Dynamic Impact, ACO

can build better initial solutions and let pheromone continue the fine-tuning towards

optimal solution along with situation awareness provided by Dynamic Impact. The

pheromone and the heuristic information do not capture fuel information while building

a solution. The pheromone is updated after each iteration using a fully built solution,

and static heuristic information is precalculated before the optimization begins.

40

Table 3-1: Simplistic example of Dynamic Impact. Three parallel scenarios are shown,

which have three equivalent routes each. Dynamic Impact is calculated for each route in

each scenario individually.

Scenario Route
number

Route
distance

Average
route speed

Route
time

Fuel
consumption

Remaining
fuel

Dynamic
Impact

1
1 25 10 2.5 15

60
0.30

2 30 15 2 25 0.29
3 60 60 1 60 0.00

2
1 25 10 2.5 15

80
0.33

2 30 15 2 25 0.34
3 60 60 1 60 0.25

3
1 25 10 2.5 15

120
0.35

2 30 15 2 25 0.40
3 60 60 1 60 0.50

3.2. Applied optimization problems

In this chapter, two optimization problems are used to perform experimental work

Multi-dimensional Knapsack Problem (MKP) and Microchip manufacturing plant

production floor optimization (MMPPFO). This section serves as a comprehensive

introduction to both optimization problems.

3.2.1. Multi-dimensional Knapsack Problem (MKP)

MKP is a well-known set covering academic benchmark optimization. This problem

occurs in many different applications and is strongly NP-hard [174]. The MKP consists

of a set of 𝑛 items that have a profit 𝑃𝑖 > 0 and 𝑚 knapsacks with capacities 𝐶𝑘 > 0.

Each item 𝑖 uses defined 𝑊𝑖,𝑘 > 0 amount of capacity from each knapsack 𝑘. MKP

aims to find a set of items where the combined profit of those items is as high as

possible while the combined weight fits in all knapsacks [175], [133]. The nature of

packing different size items in all knapsacks simultaneously makes the feasible region

of the search very sparse [176]. Such sparsity is a great challenge for optimization

algorithms where good solutions are obtained by iterative convergence. The formal

description of MKP is as follows:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑖 × 𝑃𝑖

𝑛

𝑖=1

(3-5)

41

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑(𝑥𝑖 × 𝑊𝑖,𝑘) ≤ 𝐶𝑘

𝑛

𝑖=1

, ∀(𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ (ℕ ≤ 𝑚)
(3-6)

where 𝑛 and 𝑚 is a number of items and knapsacks in the problem. 𝑥𝑖 ∈ {0,1} is a

decision vector to take the item 𝐼𝑖. 𝑃𝑖 is the profit of the item 𝐼𝑖. 𝑊𝑖,𝑘 is the weight of 𝑖𝑡ℎ

item for the 𝑘𝑡ℎ knapsack. 𝐶𝑘 is the capacity of the 𝑘𝑡ℎ knapsack.

The concept of items with multidimensional weights fitting into multiple knapsacks can

be hard to imagine. This weight abstraction is much easier to understand with a simple,

practical example of a backpack with a maximum weight limit of 16 kilograms and a

maximum volume limit of 15 litres. All items have some weight and some volume. The

goal is to pick a set of items with the highest profitability without exceeding both the

weight and the volume of the backpack, see Figure 3-1.

Figure 3-1: Simple example of Multidimensional Knapsack Problem with two packing

dimensions of weight and volume

There are a lot of MKP benchmark datasets to solve and compare the results. Three

most frequently used MKP benchmark libraries are SAC94 benchmark collection of 55

small MKP instances up to 105 items per dataset. GK collection introduced by Glover

and Kochenbeger contains 11 much larger instances, up to 2500 items per dataset

[177]. OR library introduced by Chu and Beasley has the most datasets, 270 instances

42

of medium complexity up to 500 items [174]. The datasets can be found in this

Research Gate repository [178].

Algorithms developed to solve MKP are incredibly useful in solving real-world

optimization problems. Many practical optimization problems have an equivalent

expression to MKP like cargo loading [38], layout problem [41], project budgeting [44],

portfolio management [45], and cutting stock [46], to name a few.

Over the last several decades, many new improvements to optimization algorithms

have been proposed while pursuing better results of static MKP. Genetic algorithm

(GA) with sexual selection, where chromosomes selected for crossover must be the

opposite gender, proved to solve consistently better than comparable algorithm

without such method [179]. Improved GA with pattern substitution where bad genes

are replaced with good using the greedy method [180]. Ant Colony Optimization (ACO)

with adopted Min-Max Ant System (MMAS) has proved to be a competitive algorithm

solving benchmark MKP [181]. Also, massively parallel approaches were developed

for the ACO to improve result quality and reduce computation time using distributed

cloud computing [182] and General-Purpose Graphics Processing Units (GPGPU)

[183]. Set-based Particle Swarm Optimization (PSO) has been adopted to solve MKP,

a discrete version of PSO, while PSO is typically used to solve optimization problems

of continuous nature [184]. Then PSO further improved with added genetic crossover

operation [185] and local search [186].

3.2.2. Microchip manufacturing plant production floor

optimization (MMPPFO) problem

Microchip Manufacturing Plant Production Floor Optimization (MMPPFO) is a real-

world optimization problem the industry partner faces. The source of the following

problem description is agreed upon with the industry partner and is cleared for

publication. The details include problem purpose, terminology, abbreviations,

formulas, constraints, and optimization objectives. This information is sufficient to

recreate and thoroughly verify the experimental work’s findings using the same

dataset.

Microchip manufacturing is a complex process that utilizes expensive machinery. Tight

manufacturing schedules are used to run operations at maximum efficiency and

43

minimize machinery downtime while always maintaining products’ optimum stock

levels. Often predicted microchip demand does not meet observed actual demand,

and the microchip production schedule must be altered accordingly to meet the newly

specified demand.

Microchip manufacturing scheduling problems have been researched from various

points of view. Scheduling robotic arms of two-cluster tools in microchip manufacturing

facilities [187], transport scheduling in automated material handling systems for wafer

manufacturing plants [188], and wafer production as a job shop scheduling problem

[189]. This research on the MMPPFO problem approaches optimization as a resource-

constrained production scheduling problem.

The optimization problem starts with the initial wafer-lot production schedule and new

die request. To solve the problem, the wafer-lots schedule must be altered to support

all the changed and existing planned demands. Schedules can be altered by changing

the individual wafer-lot schedule in three major ways: pull-in, push-out, and offload.

Pull-in wafer-lot means to produce the wafer-lot earlier. Push-out means to produce

the wafer-lot later. Offload means to produce the wafer-lot in another fab. All wafer-lot

schedule alterations must comply with existing constraints, making the problem

combinatorial NP-hard. Wafer production is a complex process in a microchip

manufacturing plant. Each fab can produce a limited quantity of wafers in a selected

time window. The time window of this scheduling problem is one week. With known or

predicted future die demand, it is possible to create a wafer-lot production schedule

that maximizes fabs’ efficiency and supports all the requested demand. Moreover, it

is desired to support this new demand while having the lowest number of changes to

the schedule possible.

3.2.2.1. MMPPFO Problem definition

The following are the definitions of MMPPFO used for this research.

Wafer-lot (𝑊𝐿𝑖) is a non-divisible collection of silicon wafers of a single product to be

manufactured all at once and can support only one request. Wafer-lot is noted as 𝑊𝐿𝑖,

where 𝑖 is the index of the wafer-lot. Each wafer-lot has an original schedule slot that

can be altered in the problem optimization. For example, wafer-lot 𝑊𝐿100 can have its

44

commit week changed from 𝑊 = 5 to 𝑊 = 3, which is a pull-in operation. Also, at the

same time, it can be offloaded from 𝐹 = 𝐹30 fab to 𝐹 = 𝐹20.

Order is a silicon wafer product demand to be manufactured in a fab at a specified

week. Order is noted as 𝑂𝑗, where 𝑗 is the index of the order. Demand may not be fully

satisfied – undersupported, or it may have too many wafers scheduled –

oversupported. For example, order number 5 requests for 55 wafers, 𝑂5 = 55. This

demand can be supported using multiple wafer-lots.

Equipped capacity is the number of wafers of a specified product group that a fab is

able to produce at a given week. Equipped capacity is noted as 𝐶𝑃,𝐹,𝑊, where 𝑃 is

product group, 𝐹 is fab, 𝑊 is commit week at which the capacity is defined. Specified

fab capacity must not be violated as it is a physical equipment limitation. For example,

𝐶𝑃1,𝐹30,𝑊5 = 400 is the capacity at fab 𝐹30 in week 𝑊5 to make product group 𝑃100 is

400 wafers. The fab may produce more than one product group and will have their

capacity defined individually. Also, the fab capacity is defined for each week, as

production capacities can vary weekly.

Supported request is a sum of wafers of all wafer-lots that is scheduled to support the

request of 𝑂𝑗 order

𝑆𝑅(𝑂𝑗) = ∑ 𝑄(𝑊𝐿𝑖)

𝑖

, 𝑊𝐿𝑖 ∈ 𝑠𝑝 (3-7)

where 𝑆𝑅(𝑂𝑗) is the supported request of 𝑂𝑗 order, 𝑄(𝑊𝐿𝑖) is wafer quantity of 𝑊𝐿𝑖

wafer-lot, and wafer-lot 𝑊𝐿𝑖 belongs to a solution where it is used for 𝑂𝑗 order.

Undersupported request is a number of wafers lacking to support a given request in

full for 𝑂𝑗 order.

𝑈𝑆𝑅(𝑂𝑗) = 𝐷(𝑂𝑗) − 𝑆𝑅(𝑂𝑗) |
𝑖𝑓 𝐷(𝑂𝑗) > 𝑆𝑅(𝑂𝑗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

(3-8)

where 𝑈𝑆𝑅(𝑂𝑗) is the undersupported request of 𝑂𝑗 order, 𝐷(𝑂𝑗) is the demand of the

order.

Oversupported request is a number of wafers above the requested demand for 𝑂𝑗

order.

45

𝑂𝑆𝑅(𝑂𝑗) = 𝑆𝑅(𝑂𝑗) − 𝐷(𝑂𝑗) |
𝑖𝑓 𝐷(𝑂𝑗) < 𝑆𝑅(𝑂𝑗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

(3-9)

where 𝑂𝑆𝑅(𝑂𝑗) is the undersupported request of 𝑂𝑗 order.

Capacity utilization is a capacity that has been used for wafer production, calculated

from an output schedule of an optimization.

𝑈(𝐶𝑃,𝐹,𝑊) = ∑ 𝑄(𝑊𝐿𝑖),

𝑖

 𝑊𝐿𝑖 ∈ 𝑠𝑝 (3-10)

where 𝑈(𝐶𝑃,𝐹,𝑊) is the utilization of specified fab capacity 𝐶𝑃,𝐹,𝑊, and wafer-lot 𝑊𝐿𝑖

belongs to the solution where it is using fab capacity 𝐶𝑃,𝐹,𝑊.

Capacity waste is a capacity that has been left unused. Capacity waste cannot be

negative.

𝑊𝐴(𝐶𝑃,𝐹,𝑊) = 𝐶𝑃,𝐹,𝑊 − 𝑈(𝐶𝑃,𝐹,𝑊) (3-11)

where 𝑊𝐴(𝐶𝑃,𝐹,𝑊) is the waste of specified fab capacity 𝐶𝑃,𝐹,𝑊.

Problem solution is a schedule of wafer-lots to be manufactured, noted as 𝑠𝑝. The

schedule indicates what wafer-lots 𝑊𝐿𝑖 are manufactured at given commit week 𝑊,

and given fab 𝐹. A fully assembled solution must comply with all problem constraints.

Problem search space noted as 𝑁 is a collection of all vertices and all edges of feasible

combinatorial permutations.

3.2.2.2. Constraints

This optimization problem has a set of constraints that the optimization engine must

simultaneously consider when building a solution. Some constraints are combinatorial,

meaning that a combination of wafer-lots must satisfy a given constraint. Other

constraints are the search space constraints applied for an individual wafer-lot. Search

space constraints limit the total search space to be explored.

Capacity constraint

Fabs have equipped capacity that is a hard limit on how many wafers of a specified

product group can be scheduled for a given commit week. The sum of wafers must

46

always be lower or equal to equipped capacity. The limit is in effect as a sum of wafers

of wafer-lot collection for a given week and fab, thus it is a combinatorial constraint.

𝐶𝑃,𝐹,𝑊 > 𝑈(𝐶𝑃,𝐹,𝑊) (3-12)

Order support constraint

All wafers supporting an order must be committed on time or ahead of time. This way,

all wafer-lot permutations too late are not included as edges of search space, therefore

constraining search space.

𝑊(𝑊𝐿𝑖) ≤ 𝑊(𝑂𝑗), ∀(𝑗, 𝑖) ∈ 𝑁 (3-13)

where 𝑊(𝑊𝐿𝑖) is commit week of 𝑊𝐿𝑖, 𝑊(𝑂𝑗) is commit week of 𝑂𝑗 order, for all

permutations of 𝑗, 𝑖 that belong to search space 𝑁.

Pull-in, push-out constraint

Wafer-lot schedule changes must follow specified pull-in (bring forward production)

push-out (delay production) information, i.e. not all products can be pulled-in or

pushed-out. Pull-in operations for specific products can only be done in fabs that allow

such an operation. If necessary, push-out can be done only for a corresponding pull-

in operation to stay within capacity constraint. This constraint limits the search space

by allowing only limited pull-in or push-out operations out of all possible combinations.

Moreover, each push-out must have a corresponding pull-in operation applied in the

solution, thus making it a combinatorial constraint.

Offload constraint

Each wafer-lot can be offloaded to fabs that support the product group and the product

itself. This limits the search space by not including wafer-lot permutations of offload to

fabs that cannot produce the wafer-lot product.

3.2.2.3. Optimization objectives

In microchip manufacturing, efficiency can be expressed in several different ways.

Each solution produced by the ACO must be evaluated to get the fitness value. Then

solution fitness value is compared to other solutions. A solution with a lower fitness

value is a better solution for a minimization objective.

47

Minimum undersupported request

This optimization problem’s primary objective is to minimize undersupported requests

that ensure that all customer orders get silicon chips fulfilled on time. Minimizing the

undersupported request means that all orders should have wafer request supported

fully or have the least possible number of wafers undersupported.

𝑚𝑖𝑛 ∑ 𝑈𝑆𝑅(𝑂𝑗)

𝑗

 (3-14)

where 𝑈𝑆𝑅(𝑂𝑗) stands for UnderSupported Request of 𝑂𝑗 order.

For new silicon chip demand, it is possible that requested wafers could not be met with

an integer number of wafer-lots where wafer-lot has a fixed number of wafers that do

not match the demand precisely. In such a scenario, the request will be either

undersupported and have the orders not fully complete or oversupported and waste

the production that could be utilized to support other demands.

3.3. ACO with Dynamic Impact algorithm

performance investigation

In this section, two experiments have been conducted. First, solving the real-world

MMPPFO, and second, solving the theoretical MKP. Both experiments introduce the

specific implementations of ACO and tuned parameters. Most importantly, both

experiments provide the formula used for Dynamic Impact evaluation. And finally, the

experiment results are analysed.

3.3.1. ACO solving Microchip Manufacturing Plant

Production Floor Optimization

3.3.1.1. Search space preparation

Ants can only navigate efficiently in the prepared search space where all edges are

filtered for feasibility and have pheromone and heuristic information values attached

to them. In MMPPFO, a possible wafer-lot allocation for production is an edge of a

48

search space. One wafer-lot can have multiple permutations, including different

production weeks and production fabs.

3.3.1.2. Heuristic information

Ant Colony Optimization uses heuristic information that plays a crucial role in the

algorithm’s convergence [116]. Heuristic information gives ants a myopic benefit and

directs them to explore more promising parts of the search space and obtain good

initial solutions before strong pheromone trails are laid. Static heuristic information is

calculated during search space preparation and remains constant throughout the

entire algorithm run. For this experiment, the preliminary edge’s static heuristic

information is the following:

𝜂𝑗,𝑖 =
𝑂𝑗

𝑄(𝑊𝐿𝑖)

(3-15)

where 𝑂𝑗 is the number of wafers in the order and 𝑄(𝑊𝐿𝑖) is wafer quantity of 𝑊𝐿𝑖

wafer-lot. However, for the MMPPFO problem, the main objective, a minimum

undersupported request, preliminary testing has shown that ACO performed best

using 𝛽 = 0, in which case the heuristic information had not been used. This shows

that individual wafer-lots do not carry any significance over others, as only the total

collection of wafer-lots is essential.

3.3.1.3. Experimental dataset

For algorithm validity and performance testing, a synthetic dataset is used to cover

various corner cases that could occur in real optimization scenarios. The dataset was

generated with an industry partner using a real dataset basis with masked industry

secrets but preserved patterns and dynamics. The dataset used for this experiment is

published in the FigShare repository [190].

3.3.1.4. Dynamic Impact for MMPPFO optimization

Dynamic Impact’s goal for the MMPPFO problem is to quickly identify a good collection

of wafer-lots to support the order. The formula of Dynamic Impact for MMPPFO

minimum undersupported request objective has been obtained using the general

formula (3-2) as a guide with some adjustments.

49

The minimum undersupported request objective is a special case of minimization

objectives. An empty solution starts with a high fitness value, and each edge added to

the partial solution reduces the fitness. Such dynamics are treated as the negative of

the maximization objective, and therefore fitness impact term of the Dynamic Impact

formula is adjusted as follows:

(𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝))
𝐴

→ 𝑓(𝑠𝑝) − 𝑓(𝑠𝑝 + 𝑒)
(3-16)

Fitness impact of the edge is defined as non-linear support of the 𝑂𝑗 order and 𝑊𝐿𝑖

wafer-lot:

𝑓(𝑠𝑝 + 𝑒) ∶= 𝑚𝑎𝑥{𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖), 0} (3-17)

𝑓(𝑠𝑝) ∶= 𝑅𝐷(𝑂𝑗) (3-18)

𝑅𝐷(𝑂𝑗) = 𝐷(𝑂𝑗) − 𝑆𝑅(𝑂𝑗) (3-19)

𝑓(𝑠𝑝) − 𝑓(𝑠𝑝 + 𝑒) = 𝑅𝐷(𝑂𝑗) − 𝑚𝑎𝑥{𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖), 0} (3-20)

where 𝑓(𝑠𝑝 + 𝑒) is given the remaining demand minus wafer quantity of the 𝑊𝐿𝑖 wafer-

lot, 𝑓(𝑠𝑝) is given the remaining demand, 𝑅𝐷(𝑂𝑗) is remaining demand for the 𝑂𝑗 order,

𝐷(𝑂𝑗) the total demand of the order, and 𝑆𝑅(𝑂𝑗) is supported request of the order.

𝑄(𝑊𝐿𝑖) is the wafer quantity of 𝑊𝐿𝑖 wafer-lot.

The constrained resource of this problem is the fab capacity:

𝛺(𝑠𝑝 + 𝑒) ∶= 𝑅𝐶(𝐶𝑃,𝐹,𝑊) − 𝑄(𝑊𝐿𝑖) (3-21)

𝛺(𝑠𝑝) ∶= 𝑅𝐶(𝐶𝑃,𝐹,𝑊) (3-22)

𝑅𝐶(𝐶𝑃,𝐹,𝑊) = 𝐶𝑃,𝐹,𝑊 − 𝑈(𝐶𝑃,𝐹,𝑊) (3-23)

where 𝛺(𝑠𝑝 + 𝑒) is given the remaining fab capacity minus wafer quantity of the 𝑊𝐿𝑖

wafer-lot, 𝛺(𝑠𝑝) is given the remaining fab capacity. 𝑅𝐶(𝐶𝑃,𝐹,𝑊) is the remaining

capacity of the equipped fab capacity 𝐶𝑃,𝐹,𝑊.

It is important to note that the remaining capacity 𝑅𝐶(𝐶𝑃,𝐹,𝑊) and capacity waste

𝑊𝐴(𝐶𝑃,𝐹,𝑊) are equivalent expressions, and ideally, wasted capacity should be as low

as possible. Also, every wafer-lot produced on time contributes to fitness the same

50

amount as it consumes the fab capacity if the demand is higher than the wafer quantity

of the wafer-lot. However, the wafers produced over the demand do consume the fab

capacity and do not contribute to the fitness value. Both fitness and constraint

calculations are expressed in units of wafer quantity. This similarity of the units can be

exploited to increase computational efficiency. For this optimization problem, it is more

beneficial to count only the wafers over the remaining demand, which would consume

the equipped fab capacity that could potentially be used to produce other wafers and

support more demand:

𝛺(𝑠𝑝 + 𝑒)

𝛺(𝑠𝑝)
∶= 𝑚𝑎𝑥{𝑄(𝑊𝐿𝑖) − 𝑅𝐷(𝑂𝑗), 0}

(3-24)

This constraint impact part is a count and not a ratio, therefore it should be added to

the fitness impact part and not multiplied:

𝑓(𝑠𝑝) − 𝑓(𝑠𝑝 + 𝑒) +
𝛺(𝑠𝑝 + 𝑒)

𝛺(𝑠𝑝)
 = 𝑅𝐷(𝑂𝑗) − 𝑚𝑎𝑥{𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖), 0}

+ 𝑚𝑎𝑥{𝑄(𝑊𝐿𝑖) − 𝑅𝐷(𝑂𝑗), 0} = 𝑅𝐷(𝑂𝑗) − |𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖)|

(3-25)

Finally, the Dynamic Impact must respect 𝐷𝐼𝑒 > 0 rule, therefore for this optimization

problem, it is chosen to constrain the Dynamic Impact value not less than 0.1 such

that the algorithm does not calculate zero or negative probability for the edge 𝐷𝐼𝑗,𝑖 ≥

0.1. Then added all parts together, the final Dynamic Impact formula of minimum

undersupported request objective is as follows:

𝐷𝐼𝑗,𝑖 = 𝑚𝑎𝑥 {𝑅𝐷(𝑂𝑗) − |𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖)|, 0.1} (3-26)

This Dynamic Impact evaluation formula represents a simplified fitness function and

considers the wasteful fab capacity utilization. Once the demand is supported,

producing more wafers does not benefit fitness while wasting the wafer production

resources.

3.3.2. MMPPFO experiment results

The experiment is designed to test the benefit of using Dynamic Impact for the Min-

Max Ant System in order to achieve the best final result. In this experiment, two

probability parameters will be tested 𝑞0 and 𝛾. 𝛾 is the main variable that defines the

importance of Dynamic Impact. The experiment baseline is 𝛾 = 0 (Dynamic Impact

51

has no contribution to search probabilities). Moreover, in this experiment 𝑞0 – the ant

exploration hyperparameter is tested, as the optimal value of 𝑞0 often depends on the

other hyperparameters. 𝛾 and 𝑞0 are tested with a wide range of values to determine

the best possible combination of 𝛾 and 𝑞0, as well as to assert the baseline of the

experiment with 𝛾 = 0 parameter. In this experiment, the range of 𝛾 is from 0.125

growing exponentially to 16 by a factor of 2, and 𝑞0 is from 0 increasing linearly to 0.95

by an increment of 0.05.

The remaining parameters of the Min-Max Ant System have been established by

preliminary experimentation. The best combination of pheromone parameters is:

𝜏𝑚𝑎𝑥 = 1, 𝜏𝑚𝑖𝑛 = 0.001, 𝜌 = 0.1, Δ𝜏0 = 1. Configuration of probability parameters: 𝛼 =

1, 𝛽 = 0. Solutions are achieved by running 3,000 iterations using 2 sequential ants,

using 16 parallel ants as per Dzalbs et al. described architectural model [39].

In Table 3-2, the undersupported score is displayed for each of 𝑞0 and gamma

configuration combinations. Each data is an average score of 50 independent

algorithm runs. Firstly, the asserted baseline of 𝛾 = 0, which means Dynamic Impact

does not influence the search probability calculation. The best configuration of 𝛾 is 𝛾 =

0, 𝑞0 = 0.3, the corresponding result at this configuration is 31.0 wafers of

undersupported request. For the runs using Dynamic Impact, the best results are

obtained with configuration 𝛾 = 4, 𝑞0 = 0, and the result is 19.0 average wafers of

undersupported request score. When using higher levels of Dynamic Impact

importance, ACO algorithm tends to perform better using lower 𝑞0 values, which

means a preference towards exploration over exploitation. Using Dynamic Impact with

𝛾 = 4, consistently outperforms 𝛾 = 0 across wider range of 𝑞0 values. In the real-

world deployment scenarios where the algorithm’s 𝑞0 value is not tuned perfectly, but

only roughly estimated 𝑞0 value. Using the average of 5 best 𝑞0 settings, at 𝛾 = 4 is

22.1 wafers of undersupported request. In comparison, for an imperfectly tuned

baseline, the average of 5 best 𝑞0 settings at 𝛾 = 0 is 35.3 wafers of undersupported

request.

52

Table 3-2: Undersupported result map for 𝛄 and 𝐪𝟎, where 𝛄 = 𝟎 is an algorithm run

without Dynamic Impact. Each data point represents the average of 50 runs. Results of

optimizing the heuristically generated dataset.

 Gamma 𝛄

 0 0.125 0.25 0.5 1 2 4 8 16

q0

0 56.6 50.2 52.3 45.9 33.9 23.3 19.0 36.1 70.9

0.05 57.5 49.6 45.4 41.2 31.9 22.9 29.1 32.3 68.4

0.1 48.0 47.1 42.0 36.9 31.9 20.2 21.5 43.5 70.1

0.15 41.5 38.7 33.5 35.2 30.6 21.8 19.5 36.9 69.7

0.2 42.4 38.8 35.2 33.9 29.6 23.4 21.5 36.4 72.7

0.25 38.1 33.0 33.2 31.7 31.0 27.9 35.8 44.0 73.9

0.3 31.0 32.0 40.0 29.9 27.1 35.2 33.2 49.2 95.2

0.35 37.9 32.1 38.2 36.6 36.8 31.2 32.0 54.6 99.5

0.4 37.3 46.5 45.0 54.0 48.3 43.0 44.0 58.1 110.5

0.45 32.5 51.5 51.3 55.0 57.2 65.9 65.6 77.3 151.5

0.5 49.1 53.6 63.1 64.9 71.6 73.5 87.0 101.0 171.9

0.55 49.1 69.0 77.4 102.2 105.2 93.2 104.9 107.3 163.0

0.6 53.4 84.6 92.7 98.4 108.6 120.1 104.9 133.1 184.3

0.65 81.3 113.5 120.3 127.1 146.2 147.5 141.5 150.1 194.6

0.7 105.8 134.3 162.4 157.9 161.4 163.6 164.3 175.2 218.3

0.75 129.9 161.7 178.2 192.8 187.9 192.2 204.2 223.6 226.3

0.8 177.6 191.3 209.3 207.6 214.9 222.4 232.0 236.2 249.4

0.85 207.5 221.4 225.8 233.7 254.5 265.9 255.0 274.3 294.0

0.9 275.9 286.0 311.4 319.7 324.8 323.4 330.7 334.1 392.3

0.95 375.8 362.5 401.3 387.1 409.2 440.1 442.7 489.9 464.5

Moreover, in Figure 3-2, a more detailed comparison of best configurations among

baseline 𝛾 = 0, 𝑞0 = 0.3 and best configuration using Dynamic Impact evaluation 𝛾 =

4, 𝑞0 = 0. In the Figure 3-2, the main bar represents the average undersupported

score of 50 algorithm runs of the shown setting. The error bars indicate one standard

deviation of the scores across the runs.

Figure 3-2: Dynamic Impact comparison on best configurations. Average of 50 runs.

Error bars indicate one standard deviation.

On this optimization problem, with iterations limited to 3,000, using Dynamic Impact,

the undersupported request score has been improved on average by 38.5%.

0 10 20 30 40 50 60

gamma-4, q0-0

gamma-0, q0-0.3

Undersupported request score

A
C

O
 s

et
ti

n
g

Dynamic impact comparison on best configurations

53

Moreover, using Dynamic Impact, the standard deviation is reduced from 20.8 to 12.3.

This smaller standard deviation means lower quality solutions occur significantly less

often, making the performance more reliable in fast-paced environments or solving

large-scale optimization problems where a good solution is needed as soon as

possible.

Dynamic Impact comes with a small computational performance cost since Dynamic

Impact needs to be calculated for each wafer-lot probability calculation. ACO at best

configuration without Dynamic Impact, on average, runs 86.8 seconds. Using the best

configuration algorithm, ACO with Dynamic Impact took, on average, 96.9 seconds.

Dynamic Impact evaluation is, on average, 11.6% more expensive to compute each

iteration. Such a small addition in computational complexity was possible due to the

simplified wafer-lot impact on solution fitness value, compared to an unoptimized

version which could be several times more computationally expensive operation.

In conclusion, the Dynamic Impact method has proven to be highly beneficial for an

objective where the aim is to have a combination of elements adding up to the specific

requested size or number. This experiment has demonstrated that real-world problems

can be solved using an Ant Colony Optimization algorithm within acceptable

computational limits.

3.3.3. ACO solving Multidimensional Knapsack

Problem (MKP)

In addition to solving MMPPFO, ACO to solve MKP has also been implemented. The

purpose of solving MKP is to test the Dynamic Impact evaluation method on a

benchmark optimization problem and compare it against peer research results. The

MKP is a suitable problem to test Dynamic Impact because the nature of the

optimization goal is to find the collection of items of the highest profit that fit in the

knapsack. There is no preference over which items should be taken as long as they

all fit in the knapsack and ideally with the highest total profit. Such fungibility of items

makes it a good candidate problem to benefit from the Dynamic Impact evaluation

method.

54

3.3.3.1. Search space preparation

The search space of the MKP is simple. The search space is expressed in a single

dimension of binary option to take an item in the knapsack or not. Pheromone 𝜏𝑖,

heuristic information 𝜂𝑖, and Dynamic Impact 𝐷𝐼𝑖 are, in this case, also single-

dimensional. Each item’s probability calculation is done all at once before adding any

item into the partial solution.

3.3.3.2. Heuristic information

Similarly to MMPPFO, MKP’s maximum profit objective depends on the total profit of

the collection of all items taken in the knapsack. For this experiment, the preliminary

edge’s static heuristic information is the following:

𝜂𝑖 =
𝑃(𝐼𝑖)

𝑊(𝐼𝑖)

(3-27)

where 𝑊(𝐼𝑖) is weight, and 𝑃(𝐼𝑖) is the profit of the item defined in the input dataset.

The preliminary testing has shown that ACO performed best using 𝛽 = 0, in which

case the heuristic information was not used. This shows that none of the items are

more important in the knapsack than the others. Only a combination of the items that

all simultaneously fit in all knapsack dimensions must have the highest profit possible.

3.3.3.3. Experimental dataset

The datasets are obtained from the ResearchGate repository [178]. From this

repository, small SAC94 datasets and large GK datasets will be solved. For small

SAC94 datasets, the focus is on achieving optimal values with the highest possible

success rate. On larger GK datasets, the goal is to get the highest profit on average.

3.3.3.4. Dynamic Impact for MKP optimization

The dynamic Impact evaluation equation to solve MKP differs from the MMPPFO

problem as problem domains are not the same. For this problem, the Dynamic Impact

formula is the following:

55

𝐷𝐼𝑖 =
𝑁𝑃(𝐼𝑖)

𝐶𝐼(𝐼𝑖)

(3-28)

𝐶𝐼(𝐼𝑖) = 𝑚𝑎𝑥∀𝑗 {
𝑊(𝐼𝑖)

𝑅𝐶(𝐾𝑗)
} +

∑ {
𝑊(𝐼𝑖)

𝑅𝐶(𝐾𝑗)
}𝑗

𝑗

(3-29)

𝑁𝑃(𝐼𝑖) =
𝑃(𝐼𝑖)

𝑚𝑎𝑥{∀𝑃(𝐼)}

(3-30)

where 𝐷𝐼𝑖 – is Dynamic Impact for item 𝐼𝑖, calculated using normalized item profit over

the capacity impact of the item. Normalized profit 𝑁𝑃(𝐼𝑖) of the item 𝐼𝑖 is a constant

parameter precalculated using the profit of the item and the highest profit of all items.

It is essential to have normalized profit from 0 to 1 in Dynamic Impact such that

probability calculations have a constant range of inputs for any item profit magnitude

range across various input datasets. 𝐶𝐼(𝐼𝑖) is a capacity impact of the item 𝐼𝑖. This is

the most intense compute operation of the Dynamic Impact evaluation. It finds the

maximum weight utilization combined with the average weight utilization of remaining

knapsack capacities. The capacity impact has to be recalculated whenever doing the

probability calculations as it uses the remaining knapsack capacities 𝑅𝐶(𝐾𝑗) in contrast

to the total capacity that does not change while building the solution. When using the

remaining knapsack capacity, the current state of the solution is well reflected and can

impact the probability calculation to pick an item that does consume a lower portion of

available knapsack space for the same profit reward. 𝑊(𝐼𝑖) is weight, and 𝑃(𝐼𝑖) is the

profit of the item defined in the input dataset.

The dynamic Impact formula for MKP is obtained in relation to the general Dynamic

Impact formula (3-2). The formula component values are as follows: MKP is a

maximization problem 𝐴 ∶= 1. The fitness impact of the edge is the linear normalized

profit value of the item 𝐼𝑖 𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝) = 𝑓(𝑒) ∶= 𝑁𝑃(𝐼𝑖). The resource of the

MKP problem is capacity therefore 𝛺(𝑠𝑝) ∶= ∑ {𝑅𝐶(𝐾𝑗)}𝑗 which is the remaining

capacity of all knapsacks, and 𝛺(𝑠𝑝 + 𝑒) ∶= ∑ {𝑅𝐶(𝐾𝑗) − 𝑊(𝐼𝑖)}𝑗 which is the

remaining capacity of all knapsacks minus the weight of the item. However, for this

problem, to optimize Dynamic Impact for computational efficiency, the constraints are

adapted to use only one items weight over the remaining capacity like in the following

formula:

56

𝐷𝐼𝑖 =
 𝑓(𝑒)

(
𝛺(𝑒)

𝛺(𝑠𝑝)
)

(3-31)

It is slightly computationally cheaper to compute only items’ weight and get the same

overall result 𝛺(𝑒) ∶= ∑ {𝑊(𝐼𝑖)}𝑗 𝑗⁄ . Additionally, items of the MKP use multiple

knapsacks in disproportional quantities, and it is important to track not only the

average resource consumption impact but also the maximum impact on a single

knapsack too 𝛺(𝑒) ∶= 𝑚𝑎𝑥∀𝑗{𝑊(𝐼𝑖)}. For this reason, the capacity impact formula has

two components of resource consumption that complement each other.

3.3.4. MKP experiment results

This MKP experiment is chosen, in addition to solving the MMPPFO problem, to solve

a commonly available benchmark problem that has similar multiple item collection

characteristics. There are no recent papers published on Ant Colony Algorithm solving

MKP benchmark datasets. Therefore, it is logical to assume that there have not been

any successful attempts to achieve results on public benchmark datasets to a

comparable level to other published works.

Two sets of benchmark MKP datasets are considered in this experiment. The first set

of SAC94 are small datasets and are easy enough to find the optimal solutions of

those datasets within a reasonable amount of time. For these small datasets, the

algorithm success rate is analysed and compared to which algorithm, on average,

reaches the optimal solution quicker. The second set is large GK benchmark datasets.

These benchmark datasets’ combinatorial complexity is high enough that not all GK

datasets have known optimal values. Therefore, in Table 3-5 for comparison, the most

recent best-known values will be taken from [191] that combines their own reached

highest values as well as [192] and authors of the GK datasets [177]. For large GK

datasets, the aim is to get the highest possible profit or, in other words, to minimize a

profit gap to the best-known solution.

3.3.4.1. SAC94 results

For the SAC94 experiment, Min-Max Ant System parameters have been tuned with

preliminary experimentation. The best combination of pheromone parameters is:

57

𝜏𝑚𝑎𝑥 = 1, 𝜏𝑚𝑖𝑛 = 0.001, 𝜌 = 0.1. Configuration of probability parameters: 𝛼 = 1, 𝛽 = 0,

𝑞0 = 0.01. Solutions are achieved running 3,000 iterations using two sequential ants,

using 64 parallel ants as per [39] described architectural model. Experiment measures

success rate, best successful iteration, average successful iteration, and an average

profit of each dataset using Dynamic Impact versus algorithm without Dynamic Impact

implemented. Each data point is an average of 100 algorithm runs. In Table 3-3 SAC94

dataset results are presented. Ant Colony Optimization using Dynamic Impact

preliminary tests showed that the best convergence is achieved using Gamma (γ)

value set to 8. ACO with Dynamic Impact shows a 100% success rate in every single

dataset, while the same algorithm without Dynamic Impact manages to do so in 41 out

of 54 datasets and the remaining datasets average a 74.7% success rate. Moreover,

optimization with Dynamic Impact, on average, takes just 12.40 iterations and 0.046

seconds to reach the optimal value. On average, without Dynamic Impact, it takes

128.96 iterations and 0.25 seconds to reach optimal on 41 datasets that managed

successfully converge 100% of the time.

58

Table 3-3: MKP SAC94 datasets. Dynamic Impact result comparison of ACO without

Dynamic Impact and ACO with Dynamic Impact. Each dataset is a result of 100 runs.

 ACO without Dynamic Impact ACO with Dynamic Impact

Dataset

Problem

size (N

x M) Optimal

Success

rate

Best

successful

iteration

Average

successful

iteration

Average

time to

success

(seconds)

Average

profit

Success

rate

Best

successful

iteration

Average

successful

iteration

Average

time to

success

(seconds)

Average

profit

hp1 28 x 4 3418 0.97 3 n/a n/a 3417.58 1 0 0.75 0.00308 3418

hp2 35 x 4 3186 0.95 7 n/a n/a 3185.1 1 5 36.65 0.04048 3186

pb1 27 x 4 3090 1 4 334.51 0.25203 3090 1 0 0.59 0.00303 3090

pb2 34 x 4 3186 0.97 10 n/a n/a 3185.46 1 0 33.87 0.03768 3186

pb4 29 x 2 95168 1 6 17.97 0.01701 95168 1 0 0.71 0.00285 95168

pb5 20 x 10 2139 1 0 40.53 0.02307 2139 1 0 26.5 0.01661 2139

pb6 40 x 30 776 1 4 18.68 0.01815 776 1 0 0.14 0.00242 776

pb7 37 x 30 1035 0.94 10 n/a n/a 1034.47 1 0 4.6 0.00853 1035

pet2 10 x 10 87061 1 0 0.08 0.00169 87061 1 0 8.44 0.00514 87061

pet3 15 x 10 4015 1 0 4.02 0.00453 4015 1 0 0 0.00179 4015

pet4 20 x 10 6120 1 0 10.81 0.00924 6120 1 0 0 0.00211 6120

pet5 28 x 10 12400 1 7 13.92 0.0177 12400 1 0 0 0.00195 12400

pet6 39 x 5 10618 0.44 32 n/a n/a 10610.16 1 0 10.61 0.01599 10618

pet7 50 x 5 16537 1 36 249.55 0.41771 16537 1 12 67.62 0.12189 16537

sento1 60 x 30 7772 1 39 319.23 0.59452 7772 1 0 0.11 0.00396 7772

sento2 60 x 30 8722 0.65 53 n/a n/a 8718.54 1 0 1.94 0.01163 8722

weing1 28 x 2 141278 1 13 32.6 0.03052 141278 1 0 0 0.00155 141278

weing2 28 x 2 130883 1 14 36.05 0.02862 130883 1 0 0 0.00163 130883

weing3 28 x 2 95677 1 6 29.44 0.01889 95677 1 0 0 0.00154 95677

weing4 28 x 2 119337 1 7 21.87 0.01853 119337 1 0 0 0.00193 119337

weing5 28 x 2 98796 1 4 18.06 0.01286 98796 1 0 0 0.00164 98796

weing6 28 x 2 130623 1 11 43.77 0.03164 130623 1 0 0 0.00165 130623

weing7 105 x 2 1095445 0 n/a n/a n/a 1095136 1 4 456.14 2.06904 1095445

weing8 105 x 2 624319 0.03 1981 n/a n/a 620481.5 1 0 0.7 0.006 624319

weish01 30 x 5 4554 1 12 27.83 0.02154 4554 1 0 0 0.00212 4554

weish02 30 x 5 4536 0.91 7 n/a n/a 4535.55 1 0 0 0.0024 4536

weish03 30 x 5 4115 1 3 21.84 0.01619 4115 1 0 0 0.00211 4115

weish04 30 x 5 4561 1 1 12.33 0.0094 4561 1 0 0 0.0022 4561

weish05 30 x 5 4514 1 2 10.61 0.00862 4514 1 0 0 0.002 4514

weish06 40 x 5 5557 1 19 189.83 0.18289 5557 1 0 0.08 0.00251 5557

weish07 40 x 5 5567 1 14 35.38 0.03701 5567 1 0 0 0.00247 5567

weish08 40 x 5 5605 1 15 37.97 0.04175 5605 1 0 0 0.00254 5605

weish09 40 x 5 5246 1 18 31.22 0.02959 5246 1 0 0 0.00248 5246

weish10 50 x 5 6339 1 28 65.49 0.08092 6339 1 0 12.08 0.01763 6339

weish11 50 x 5 5643 1 18 62.45 0.06658 5643 1 0 0 0.00248 5643

weish12 50 x 5 6339 1 20 56.96 0.06909 6339 1 0 7.5 0.01246 6339

weish13 50 x 5 6159 1 18 35.51 0.04445 6159 1 0 0 0.00263 6159

weish14 60 x 5 6954 1 27 44.24 0.06997 6954 1 0 0 0.00267 6954

weish15 60 x 5 7486 1 35 74.64 0.11307 7486 1 0 0 0.00325 7486

weish16 60 x 5 7289 1 39 545.29 0.85691 7289 1 0 0.01 0.00308 7289

weish17 60 x 5 8633 1 30 78.55 0.1655 8633 1 0 0 0.00374 8633

weish18 70 x 5 9580 1 52 265.71 0.614 9580 1 0 0.52 0.00531 9580

weish19 70 x 5 7698 0.93 40 n/a n/a 7697.09 1 0 0 0.00346 7698

weish20 70 x 5 9450 1 61 398.67 0.85951 9450 1 0 0 0.00387 9450

weish21 70 x 5 9074 1 44 246.19 0.50368 9074 1 0 0.02 0.00369 9074

weish22 80 x 5 8947 0.56 54 n/a n/a 8939.08 1 0 0 0.00391 8947

weish23 80 x 5 8344 1 44 109.6 0.24405 8344 1 0 0.05 0.00383 8344

weish24 80 x 5 10220 1 74 476.98 1.34094 10220 1 0 0 0.00444 10220

weish25 80 x 5 9939 0.94 71 n/a n/a 9938.17 1 0 0 0.00403 9939

weish26 90 x 5 9584 0.48 71 n/a n/a 9567.44 1 0 0 0.00449 9584

weish27 90 x 5 9819 1 62 135.06 0.38311 9819 1 0 0 0.00448 9819

weish28 90 x 5 9492 1 65 421.75 1.14258 9492 1 0 0 0.00442 9492

weish29 90 x 5 9410 1 73 386.61 1.03829 9410 1 0 0 0.00436 9410

weish30 90 x 5 11191 1 64 325.52 1.1109 11191 1 0 0.01 0.00503 11191

59

Table 3-4: SAC94 results comparison with recently published research.

Dataset

Problem

size (N x

M) Optimal

ACO

without

Dynamic

Impact

ACO with

Dynamic

Impact

BPSOTVAC -

[193]

2014

DBDE -

[194]

2017

MFPA -

[195]

2018

HPSOGO -

[196]

2018

TR-

BDS -

[197]

2016

BAAA -

[198]

2016

hp1 28 x 4 3418 0.97 1 0.38 1 0.4 0.93

hp2 35 x 4 3186 0.95 1 0.67 0.97 0.27

pb1 27 x 4 3090 1 1 0.46 1 0.5 1

pb2 34 x 4 3186 0.97 1 0.73 0.97 1

pb4 29 x 2 95168 1 1 0.91 1 1

pb5 20 x 10 2139 1 1 0.84 1 0.8 1

pb6 40 x 30 776 1 1 0.5 1 0.57 1

pb7 37 x 30 1035 0.94 1 0.47 1 0.8 1

pet2 10 x 10 87061 1 1 1
pet3 15 x 10 4015 1 1
pet4 20 x 10 6120 1 1
pet5 28 x 10 12400 1 1
pet6 39 x 5 10618 0.44 1
pet7 50 x 5 16537 1 1
sento1 60 x 30 7772 1 1 0.57 0.43 1 0.16 0.8 1

sento2 60 x 30 8722 0.65 1 0.27 0 1 0.25 0.73 1

weing1 28 x 2 141278 1 1 1 1 0.1 1 1

weing2 28 x 2 130883 1 1 1 0.97 1 1 1

weing3 28 x 2 95677 1 1 0.92 0.6 1 1 0 1

weing4 28 x 2 119337 1 1 1 1 1 1 1 1

weing5 28 x 2 98796 1 1 1 0.3 1 0.7 1

weing6 28 x 2 130623 1 1 0.97 0.97 1 1 1 1

weing7 105 x 2 1E+06 0 1 0 0 1 0 0.58

weing8 105 x 2 624319 0.03 1 0.35 0 1 0.5 0.93

weish01 30 x 5 4554 1 1 1 1 1 1 1 1

weish02 30 x 5 4536 0.91 1 0.64 1 1 1 1 1

weish03 30 x 5 4115 1 1 0.99 1 1 1 1 1

weish04 30 x 5 4561 1 1 1 1 1 1 1 1

weish05 30 x 5 4514 1 1 1 1 1 1 1 1

weish06 40 x 5 5557 1 1 0.59 0.3 1 1 1 1

weish07 40 x 5 5567 1 1 0.96 0.33 1 1 0.98 1

weish08 40 x 5 5605 1 1 0.79 0.87 1 1 0.98 1

weish09 40 x 5 5246 1 1 1 1 1 1 1 1

weish10 50 x 5 6339 1 1 0.91 1 1 1 1 1

weish11 50 x 5 5643 1 1 0.88 0.63 1 1 0.92 1

weish12 50 x 5 6339 1 1 0.89 1 0.82 1 0.96 1

weish13 50 x 5 6159 1 1 1 1 1 0.35 0.98 1

weish14 60 x 5 6954 1 1 0.98 1 1 1 0.92 1

weish15 60 x 5 7486 1 1 1 1 1 1 0.96 1

weish16 60 x 5 7289 1 1 0.54 0.87 1 1 1 1

weish17 60 x 5 8633 1 1 1 0.67 1 1 1

weish18 70 x 5 9580 1 1 0.75 1 1 0.98 1

weish19 70 x 5 7698 0.93 1 0.65 1 1 1 0.96 1

weish20 70 x 5 9450 1 1 0.78 1 1 1 0.96 1

weish21 70 x 5 9074 1 1 0.74 1 1 0.1 0.96 1

weish22 80 x 5 8947 0.56 1 0.16 1 1 0.98 1

weish23 80 x 5 8344 1 1 0.85 0.23 1 0.92 0.45

weish24 80 x 5 10220 1 1 0.7 1 1 0.68 0.54

weish25 80 x 5 9939 0.94 1 0.49 0.97 1 0.84 1

weish26 90 x 5 9584 0.48 1 0.36 1 1 1 0.94 1

weish27 90 x 5 9819 1 1 0.99 0.97 1 0.98 1

weish28 90 x 5 9492 1 1 0.87 1 1 0.94 1

weish29 90 x 5 9410 1 1 0.86 1 1 0.92 1

weish30 90 x 5 11191 1 1 0.87 0.83 1 0.32 1

60

Also, the results of SAC94 are compared to recently published research on the state-

of-the-art optimization algorithms solving SAC94 datasets in Table 3-4. A Binary PSO

with Time-Varying Acceleration Coefficients (BPSOTVAC) proposed by Chih et al.

[193]. A Dichotomous Binary Differential Evolution (DBDE) proposed by Peng et al.

[194]. A Modified version of the Flower Pollination Algorithm (MFPA) proposed by

Abdel-Basset et al. [195]. A Binary Particle Swarm Optimization with Genetic

Operations (HPSOGO) introduced by Mingo López et al. [196]. A Random Binary

Differential Search algorithm using the Tanh function (TR-BDS) introduced by Liu et

al. [197]. A Binary Artificial Algae Algorithm (BAAA) introduced by Zhang et al. [198].

The primary comparison metric of all results is the success rate. In this example,

proposed ACO with Dynamic Impact shows superiority in solving small datasets. None

of the reviewed algorithms have such versatility in solving all of the datasets reliably

to the optimal value 100% of the time. The closest algorithm MFPA solves, on average,

99.42% successfully on the datasets published. However, it is essential to note that

this research paper [195] is inconclusive and does not have complete SAC94 dataset

results. Hence, the algorithm's versatility is not proven since the success rate is

unknown for the remaining datasets. Secondly, BAAA has a 95.2% average success

rate of 48 datasets. 42 out of 48 datasets have reached a 100% success rate. None

of the authors has considered pet2-pet7 datasets part of SAC94. “pet” datasets seem

to be an edge case, especially problematic for any optimization algorithm with

observed highly sparse nature. Despite small theoretical combinatorial complexity,

and are challenging to solve. None of the other research has published results solving

“pet” datasets, possibly due to difficulty handling a high degree of sparseness,

especially when it is expected to be easily solved as theoretical combinatorial

complexity is low.

3.3.4.2. GK results

The algorithm has been tuned slightly differently to solve large GK datasets. Dynamic

Impact importance parameter Gamma (γ) value is set to 32, and the algorithm is run

for 10000 iterations. The experiment measures the average profit obtained over ten

algorithm runs. Then the average profit is turned into the average gap using the best-

known profit values. In Figure 3-3, ACO with Dynamic Impact is compared to the same

algorithm without implemented Dynamic Impact running the same probability settings.

61

In absolute terms, ACO with Dynamic Impact gets an average gap reduction of 0.54%,

where the highest difference is in gk09 – 0.9% and the lowest is in gk01 – 0.27%. In

relative terms, the difference in the profit gap is, on average, 4.26 times lower, where

the highest is gk02, reducing the gap 10.4 times, and the lowest is gk03, reducing the

gap by 2.33 times.

Figure 3-3: ACO Dynamic Impact test - GK dataset results graph of the average gap.

Results are an average of 10 algorithm runs.

Furthermore, in Figure 3-4 well-performing ACO with Dynamic Impact algorithm is

stacked up against recently published solutions of GK dataset implementations.

Dantas – GPGPU SA [199] is GPU accelerated Simulated Annealing algorithm. Kong

– NBHS2 [200] out of several algorithms compared their proposed New Binary

Harmony Search type 2 was best performing for GK datasets. Wang – DLHO [201]

proposed a Diverse Human Learning Optimization algorithm that has performed the

best among compared solutions. On average, ACO with Dynamic Impact has a 0.31%

or 3.3 times lower gap than Dantas – GPGPU SA. However, ACO is outperformed by

a 0.05% gap difference on a single gk09 instance. Kong – NBHS2 has closer

performance and is, on average, 0.24% or 2.48 times behind ACO. However, no

instances outperform ACO, and the closest instance is gk07, falling behind by 0.07%

or 1.35 times. Lastly, ACO outperforms Wang – DLHO on average by 1.10% or 7.72

times.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

gk01 gk02 gk03 gk04 gk05 gk06 gk07 gk08 gk09 gk10 gk11

G
ap

 (
%

)

Dataset

Ant Colony Optimization Dynamic Impact test - average gap of
GK datasets

ACO without dynamic impact ACO with dynamic impact

62

Figure 3-4: ACO with Dynamic Impact comparison to other recently published GK

dataset solution results.

Table 3-5: MKP GK datasets. ACO results with Dynamic Impact are compared against

ACO without Dynamic Impact as well as best performing other algorithm results taken

from recently published papers.

Average profit Average gap

Dataset problem
size (N x
M)

Best
known
profit

ACO
without
Dynamic
Impact

ACO with
Dynamic
Impact

ACO
without
Dynamic
Impact

ACO
with
Dynamic
Impact

Dantas-
GPGPU
SA
[199]
2018

Kong-
NBHS2
[200]
2015

Wang-
DHLO
[201]
2017

gk01 100 x 15 3766 3750.7 3760.7 0.41% 0.14% 0.36% 0.29% 0.96%

gk02 100 x 25 3958 3937.2 3956 0.53% 0.05% 0.62% 0.30% 0.99%

gk03 150 x 25 5656 5621.8 5641.3 0.60% 0.26% 0.76% 0.55% 1.17%

gk04 150 x 50 5767 5733.5 5757 0.58% 0.17% 0.91% 0.46% 1.23%

gk05 200 x 25 7560 7511.8 7545 0.64% 0.20% 0.48% 0.43% 1.23%

gk06 200 x 50 7677 7621.8 7659.7 0.72% 0.23% 0.85% 0.49% 1.17%

gk07 500 x 25 19221 19104.1 19183.29 0.61% 0.20% 0.29% 0.26% 1.56%

gk08 500 x 50 18806 18662.3 18764 0.76% 0.22% 0.45% 0.56% 1.47%

gk09 1500 x 25 58089 57466.1 57987.2 1.07% 0.18% 0.13% 0.27% 1.59%

gk10 1500 x 50 57295 56703.9 57179.2 1.03% 0.20% 0.31% 0.54% 1.55%

gk11 2500 x 100 95238 94111.6 94937.6 1.18% 0.32% 0.44% 0.64% 1.36%

In conclusion, Dynamic Impact proved to significantly aid the search for small datasets

reliably reaching optimal value and large datasets significantly lower gap to the optimal

or best-known value. This ACO with Dynamic Impact currently is the best performing

algorithm for solving both large and small MKP benchmark instances.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

gk01 gk02 gk03 gk04 gk05 gk06 gk07 gk08 gk09 gk10 gk11

G
ap

 (
%

)

Dataset

ACO with Dynamic Impact comparison to other
implementations

ACO with dynamic impact Dantas - GPGPU SA Kong - NBHS2 Wang - DHLO

63

3.4. Chapter Summary

This research chapter has studied the Ant Colony Optimization sub-heuristic methods

to improve algorithm search convergence. The research has proposed an additional

component to the ACO algorithm probability calculation, which is called Dynamic

Impact. This method improved the convergence of optimization problems, where the

main optimization objective depends on a collection of smaller parts where each part

does not have any priority over another. Dynamic Impact, similarly to heuristic

information, is a myopic component of the search. The difference is that Dynamic

Impact is calculated each time probability is calculated, and it depends on the state of

the partial solution. In other words, Dynamic Impact is a simplified evaluation of each

edge’s impact on fitness function and resource consumption. The computational

overhead of using this method is shown to be low when implementation is optimized

for the specific problem. For the MMPPFO problem, this research has demonstrated

that using ACO with Dynamic Impact has significantly improved final solution quality

over the ACO without Dynamic Impact over the same number of search iterations.

Furthermore, ACO with Dynamic Impact showed significant performance

improvements when applied to the Multidimensional Knapsack Problem. For the small

SAC94 benchmark datasets, Dynamic Impact solves all instances to the optimal

solution very quickly, which is a significant improvement compared to peer-published

research. For the large GK benchmark datasets, Dynamic Impact, on average, 4.26

times closer to the best-known or optimal result within the same search efforts. All the

results show that ACO with Dynamic Impact is a new state of the art algorithm to solve

resource-constrained optimization problems.

Finally, the benefit of using Dynamic Impact can be exploited while performing the

iterative search. Dynamic Impact can also increase the efficiency of dynamic

optimization. Therefore, The ACO with Dynamic Impact algorithm will be used as a

baseline to develop a new nature-inspired dynamic optimization strategy in Chapter 5.

Contributions of this chapter to science are as follows:

• Introduction of Dynamic Impact a sub-heuristic method for the Ant Colony

Optimization algorithm that helps more accurately calculate the edge’s

64

probability while considering the remaining constrained resources of the

problem and non-linear fitness.

• Description of the methodology to apply Dynamic Impact effectively for a broad

range of academic and real-world problems.

• Proof that Dynamic Impact is beneficial for finding better results using the same

computational efforts in theoretical MKP and real-world MMPPFO problems.

• Also, shows that ACO with Dynamic Impact is superior in finding better

solutions for MKP benchmark instances than previous peer research.

The work presented in this chapter has been published in the peer-reviewed journal

Swarm and Evolutionary Computation, Elsevier [1].

65

Chapter 4. Dynamic MKP Benchmark

methodology

Before dynamic optimization can be tackled in this thesis, the issue of the lack of

replicable qualities in discrete dynamic optimization studies must be resolved. This

research chapter introduces a non-stochastic dataset generation methodology

applicable for discrete optimization problems. The dataset generation methodology

relies on an existing static benchmark dataset as an initial state to generate a dynamic

dataset with the desired number of states where each state is an evolution from the

previous state. The state’s creation is done in a non-stochastic way where generated

state always is the same for the constant input state and depends only on the input

state and datasets constraints defined in the initial state. Such generated dynamic

dataset is a collection of sequential states of a static dataset. The evolution of these

states is in a predictable and repeatable way such that one generated dynamic dataset

could be further extended with more states if needed. This research is vital because

fully defined datasets will be compatible with most dynamic optimization algorithms.

No special environments are needed to use the dataset generators, and dataset

generators do not need to rely on random operator seeds, which could be easily

overlooked. Then such dynamic optimization algorithm results can be independently

verified for result validity and directly compared with results obtained from other

dynamic optimization algorithms.

4.1. Dynamic MKP Datasets

4.1.1. Dynamic Multidimensional Knapsack Problem

The multidimensional Knapsack problem is widely used for benchmarking

combinatorial optimization algorithms [202]. Solutions to the MKP problem have

numerous applications in the real world, such as loading cargo optimization, slicing

problem, budget management, and investment portfolio management problem.

Therefore, there is a lot of interest in developing algorithms to solve the MKP problem.

Then, DMKP has also attracted some research community attention due to the nature

66

of the problem that can be easily extended into dynamic variant using static datasets

as the initial setting.

A dynamic variant of MKP, the Dynamic Multi-dimensional Knapsack Problem (DMKP)

is also an academic problem that uniquely benefits large-scale real-world optimization

problems with some degree of dynamism. The DMKP is a dynamic combinatorial

optimization problem, and it is formulated as a sequential series of static MKP

instances called states. Between sequential states, the numerical difference of each

item’s profit, item weights, and knapsack capacities should be reasonably small,

indicative of problem dynamism that occurs in the real world. The DMKP problem aims

to maximize the total profit of each state before a dynamic change occurs. The result

of DMKP is the sum of each state’s maximum profit.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (∑ 𝑥𝑠,𝑖 × 𝑃𝑠,𝑖

𝑛

𝑖=1

)

𝑆𝑚𝑎𝑥

𝑠=0

(4-1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑(𝑥𝑠,𝑖 × 𝑊𝑠,𝑖,𝑘) ≤ 𝐶𝑠,𝑘

𝑛

𝑖=1

,

∀(𝑠, 𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ (ℕ ≤ 𝑚), 𝑠 ∈ (0 ≤ ℕ ≤ 𝑆𝑚𝑎𝑥)

(4-2)

where 𝑠 is the index of the state, and 𝑆𝑚𝑎𝑥 is a number of states in the DMKP problem.

The equations state maximize the profit of the items in the decision vector in every

DMKP state, subject to item weights not exceeding all corresponding knapsack

capacities in every state.

This DMKP benchmark is a good test suite for testing and comparing the performance

of combinatorial optimization algorithms in a dynamic environment like Genetic

Algorithm (GA) [203], Particle Swarm Optimization (PSO) [204], Firefly Algorithm (FA)

[205], Monarch Butterfly Optimization (MBO) [206], Cuckoo Search (CS) [207],

Artificial Bee Colony (ABC) [208], Moth Search (MS) [209], Slime Mould Algorithm

(SMA) [210].

The DMKP can have one or multiple aspects of the dataset to be dynamic. In this

study, the profit of items, item weights, and knapsack capacities are set to vary in

discrete state intervals. The states are noted as 𝑆𝑡, 𝑡 ∈ {0,1,2, … }, where 𝑆0 is the initial

state of the MKP dataset, and 𝑡 is the state index. Each dynamic MKP state can be

solved individually as a static MKP instance.

67

All existing attempts to solve DMKP have involved using static MKP benchmarks as

the initial setting and introducing stochastic changes to some aspects of the

optimization problem and process over the time domain. [97] uses normally distributed

random operator to change item profits, item weights and knapsack capacities on OR

library initial datasets. Meanwhile, the research [211] has dynamic changes in item

profits, item weights and knapsack capacities, and all new randomly generated items.

4.1.2. Deterministic Dynamic MKP dataset creation

methodology

The approach of the deterministic state generation method is designed to use the

static instances of the existing benchmark MKP dataset as its initial state 𝑆0. Then

use the information from the initial dataset to create states in sequential order. The

dynamic dataset is created using a deterministic set of formulas. The deterministic

approach is essential to have the dataset reproducible. Using a stochastic method

would make the research reproducibility and extension more difficult.

In this research, the item profits, item weights, and knapsack capacities are adjusted

while generating a state. The new state’s adjustment factors are determined from the

values in the previous state and the constraints set by the initial state. The state

generation method has a “State Adjustment Magnitude” 𝛥 parameter to control the

difference in the profit, weight, and capacity value differences between the states. This

parameter is a constant for the entire dynamic dataset generation. The default value

is 0.05 or 5% of the allowable adjustment range. This parameter ensures that the

following states are reasonably similar to previous states, and none of the values has

been modified more than the upper limit of the dataset value range.

For the purposes of creating a deterministic state generation that is reproducible yet

chaotic, based on the information only taken from the previous state, the “3 value

modifier” operator 𝑋3𝑉(𝑣1, 𝑣2, 𝑣3) is introduced. This operator takes three values

𝑣1, 𝑣2, 𝑣3 and calculates them to one real value between -1 and 1:

𝑋3𝑉(𝑣1, 𝑣2, 𝑣3) = (𝐻3(𝑣1, 𝑣2 ∗ 2, 𝑣3 ∗ 5) ∗ 2 − 1)3 (4-3)

𝐻3(𝑣1, 𝑣2, 𝑣3) = 𝑓𝑟𝑎𝑐(𝑀(𝑣1) ∗ 𝑀(𝑣2) ∗ 𝑀(𝑣3) + 𝑀(𝑣1) + 𝑀(𝑣2) + 𝑀(𝑣3)) (4-4)

𝑓𝑟𝑎𝑐(𝑥) = 𝑥 − ⌊𝑥⌋ (4-5)

68

𝑀(𝑥) =
𝑥

10⌊log10 𝑥⌋
 (4-6)

where 𝑀(𝑥) is a mantissa of the number 𝑥, 𝑓𝑟𝑎𝑐(𝑥) is a fractional part of a number,

⌊𝑥⌋ is a rounded down number 𝑥, 𝐻3 is a simple numerical hash of three numbers

(𝑣1, 𝑣2, 𝑣3) that returns a number between 0 and 1 evenly distributed, and finally, 𝑋3𝑉

is a “3 value modifier”, a normalized value between -1 and 1 and has probability density

concentrated around 0. The property of having probability density concentrated around

0 in 𝑋3𝑉 gives small adjustment values for the majority of the dataset with a few larger

adjustments, which resembles in real-world optimization, the majority of minor

operational adjustments and a few more significant disruptions.

The state of the dynamic dataset is created first, calculating the state’s new item

profits, then new item weights, and lastly, new knapsack capacities. The dynamic

dataset generation method is designed to preserve each item’s value within the range

initial state’s 𝑆0 value range, which is an intrinsic item’s property easily expressed as

profit over average weight. Also, the new state’s profit and weight values cannot cross

their constraint boundaries. Then lastly, knapsack capacities are recalculated to keep

the same tightness as the initial state’s 𝑆0 tightness. Following is the list of constraints

that the new state must maintain:

• Minimum Profit min𝑃 = min
𝑖

𝑃0,𝑖

• Maximum Profit max𝑃 = max
𝑖

 𝑃0,𝑖

• Minimum Value min𝑉 = min
𝑖

𝑃0,𝑖

 𝑊0,𝑖

• Maximum Value max𝑉 = max
𝑖

𝑃0,𝑖

 𝑊0,𝑖

• Minimum Weight min𝑊 = min
𝑖,𝑘

 𝑊0,𝑖,𝑘

• Maximum Weight max𝑊 = max
𝑖,𝑘

 𝑊0,𝑖,𝑘

• Knapsack Tightness 𝑇𝑘 =
∑ 𝑊0,𝑖,𝑘

𝑚
𝑖=1

𝐶0,𝑘
 ∀ 𝑘

where 𝑃0,𝑖 is the profit of the 𝑖𝑡ℎ item in the initial state 𝑆0, 𝑊0,𝑖 is the average weight of

the 𝑖𝑡ℎ item in the initial state 𝑆0, 𝑊0,𝑖,𝑘 is the weight of the 𝑖𝑡ℎ item for the 𝑘𝑡ℎ knapsack

in the initial state 𝑆0, and finally 𝐶0,𝑘 is the knapsack capacity of the 𝑘𝑡ℎ knapsack in

the initial state 𝑆0.

69

New states can then be generated using these calculated constraints from the original

dataset and the current state data. The state generation method order is strictly

sequential, where the new state depends only on the most recent predecessor. To

make the explanation easily understandable, the process of creating a state involves

a current state which is noted as 𝑆𝑡 used as input in the state generation and a

successor new state which is noted as 𝑆𝑡+1. Each state 𝑆𝑡 has an independent set of

item profits 𝑃𝑡,𝑖, item weights 𝑊𝑡,𝑖,𝑘, and knapsack capacities 𝐶𝑡,𝑘, where 𝑡 notes the

state, 𝑖 notes the item, and 𝑘 notes the knapsack of the dataset.

Furthermore, for the state generation, the adjustment limits have to be set in

accordance with original constraints and the State Adjustment Magnitude 𝛥

parameter. The 𝛥 parameter is also called SAM in the code and charts with no special

characters’ support.

• Profit adjustment magnitude

𝛥𝑃 = 𝛥 ∗ (max𝑃 − min𝑃) (4-7)

• Weight adjustment magnitude

𝛥𝑊 = 𝛥 ∗ (max𝑊 − min𝑊) (4-8)

Profit generation is the first step of creating a new state 𝑆𝑡+1. For each item, profit 𝑃𝑡+1,𝑖

the procedure uses the profits of 3 items to calculate profit modifier using 𝑋3𝑉 operator

and original constraints to calculate chaotic profit adjustment within the limits of the

dataset characteristics.

𝑃𝑡+1,𝑖 = 𝑀𝑎𝑥(𝑀𝑖𝑛(𝑃𝑡,𝑖 + 𝑃𝑥 , 𝑚𝑎𝑥𝑉 ∗ 𝑊𝑡,𝑖), 𝑚𝑖𝑛𝑉 ∗ 𝑊𝑡,𝑖) (4-9)

𝑃𝑥 = 𝑋3𝑉(𝑃𝑡,𝑖−1, 𝑃𝑡,𝑖 , 𝑃𝑡,𝑖+1) ∗ 𝛥𝑃 + 𝑃𝑥𝑐 (4-10)

𝑃𝑥𝑐 = 𝑀𝑖𝑛(𝑚𝑎𝑥𝑃 − 𝑃𝑡,𝑖, 𝛥𝑃) − 𝑀𝑎𝑥(𝑃𝑡,𝑖 − 𝑚𝑖𝑛𝑃, 𝛥𝑃) (4-11)

where, 𝑃𝑡+1,𝑖 is a new item profit for the state 𝑆𝑡+1 of the 𝑖𝑡ℎ item that is applied for all

items ∀𝑖. This new profit is calculated using the current state’s profit 𝑃𝑡,𝑖 and profit

adjustment value 𝑃𝑥, then it is constrained within a minimum and a maximum allowed

item profit, which is a product of the item’s average weight and original value: 𝑚𝑎𝑥𝑉 ∗

𝑊𝑡,𝑖
̅̅ ̅̅ ̅ and 𝑚𝑖𝑛𝑉 ∗ 𝑊𝑡,𝑖

̅̅ ̅̅ ̅. The profit adjustment 𝑃𝑥 value is calculated using the profit

adjustment multiplier 𝛥𝑃 multiplied by 𝑋3𝑉 operator values taken from the current

item’s profit 𝑃𝑡,𝑖 and two adjacent item profits 𝑃𝑡,𝑖−1, 𝑃𝑡,𝑖+1 , then added profit adjustment

correction 𝑃𝑥𝑐. 𝑃𝑥𝑐 is a value that maintains the profit within initial dataset constraints

70

but allows free manipulation when profit 𝑃𝑡,𝑖 is within the profit range by at least a value

of 𝛥𝑃, in those cases 𝑃𝑥𝑐 = 0.

After profits are complete, the new state’s 𝑆𝑡+1 item weights are generated. For each

item’s weight 𝑊𝑡+1,𝑖,𝑘 the procedure uses weights of three items to calculate weight

modifier using 𝑋3𝑉 operator and original weight and value constraints to create a

chaotic weight modifier within the limits of the dataset characteristics.

𝑊𝑡+1,𝑖,𝑘 = 𝑀𝑎𝑥 (𝑀𝑖𝑛 (𝑊𝑡,𝑖,𝑘 + 𝑊𝑥 ,
𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
− 𝑊𝑡,𝑖) , 𝑊𝑡,𝑖 −

𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
)

(4-12)

𝑊𝑥 = (𝑋3𝑉(𝑊𝑡,𝑖−1,𝑘, 𝑊𝑡,𝑖,𝑘 , 𝑊𝑡,𝑖+1,𝑘) ∗ 𝛥𝑊 + 𝑊𝑥𝑐) (4-13)

𝑊𝑥𝑐 = 𝑀𝑖𝑛(𝑚𝑎𝑥𝑊 − 𝑊𝑡,𝑖,𝑘, 𝛥𝑊) − 𝑀𝑎𝑥(𝑊𝑡,𝑖,𝑘 − 𝑚𝑖𝑛𝑊, 𝛥𝑊) (4-14)

where, 𝑊𝑡+1,𝑖,𝑘is new item weight for state 𝑆𝑡+1 of the 𝑖𝑡ℎ item that is applied for all

items 𝑖 and all knapsacks 𝑘. In principle, the generation of weights is similar to the

generation of profits, except that it is also executed for all knapsacks. New item weight

is calculated using the weight of the current state 𝑊𝑡,𝑖,𝑘 added with weight adjustment

𝑊𝑥. This value is constrained between
𝑃𝑡,𝑖

𝑚𝑎𝑥𝑉
− 𝑊𝑡,𝑖

̅̅ ̅̅ ̅ and 𝑊𝑡,𝑖
̅̅ ̅̅ ̅ −

𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
 such that as a result

of the new weight, the item's value does not exceed the initial dataset's limits.
𝑃𝑡,𝑖

𝑚𝑎𝑥𝑉
−

𝑊𝑡,𝑖
̅̅ ̅̅ ̅ is items profit over the maximum value that gives minimum weight, and removing

average weight gives maximum allowed weight increase to the item. Similarly, 𝑊𝑡,𝑖
̅̅ ̅̅ ̅ −

𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
 gives maximum allowed weight decrease. The 𝑊𝑥 weight adjustment is

calculated using 𝑋3𝑉 operator with weight values of 3 adjacent items of the same

knapsack and is multiplied with the weight adjustment magnitude 𝛥𝑊 and added

weight adjustment correction 𝑊𝑥𝑐 value. 𝑊𝑥𝑐 is a similar value to 𝑃𝑥𝑐 that it ensures

each new weight is within dataset limits but does not restrict the adjustment.

And finally, the knapsack capacities are calculated for the state 𝑆𝑡+1. This is the

simplest calculation of them all. It uses the initial state’s knapsack tightness values

and the current state’s item weights to create new knapsack capacities to maintain the

same tightness as the initial state.

𝐶𝑡+1,𝑘 = ∑ 𝑊𝑡+1,𝑖,𝑘

𝑛

𝑖=1

∗ 𝑇𝑘, ∀𝑘
(4-15)

71

where, 𝐶𝑡+1,𝑘 is the new state’s capacity of the 𝑘 knapsack and is a sum of all item

weights for that knapsack multiplied by initial knapsack tightness 𝑇𝑘 of the 𝑘𝑡ℎ

knapsack.

A simplified example of dataset state creation is shown in Figure 4-1 below. For a

given input dataset state 𝑆𝑡, new item profit values 𝑃𝑡+1,𝑖 are calculated for all items 𝑖.

Each item’s profit calculation uses the profit values of three items from the input

dataset 𝑃𝑡,𝑖−1, 𝑃𝑡,𝑖, 𝑃𝑡,𝑖+1. Then 𝑋3𝑉 operator and 𝑃𝑥 functions are applied on selected

inputs. Then constrained profit values are exported. Similarly, new item weight values

𝑊𝑡+1,𝑖,𝑘 are calculated for all items 𝑖 and all knapsacks 𝑘. Also, each item’s weights

calculation uses weight values of three items for the same knapsack from the input

dataset 𝑊𝑡,𝑖−1,𝑘, 𝑊𝑡,𝑖,𝑘, 𝑊𝑡,𝑖+1,𝑘. Then 𝑋3𝑉 and 𝑊𝑥 functions are applied on those input

weights, and constrained item weight values are exported. Finally, new knapsack

capacities 𝐶𝑡+1,𝑘 are calculated for all knapsacks 𝑘. Each knapsack capacity

calculation uses all newly calculated item weights 𝑊𝑡+1,𝑖,𝑘 for a knapsack 𝑘. Then all

those weights are summed up and multiplied by the original knapsack tightness. Then

final knapsack capacity values are exported.

Figure 4-1: Dataset state creation flowchart of Item Profits (Blue), Item Weights

(Orange), and Knapsack Capacities (Green). The flowchart shows the key dependencies

of each value adjustment in the generated state.

72

4.1.3. Created dataset instances

Dynamic Multidimensional Knapsack Problem datasets are created using already

existing benchmark datasets as a basis of dataset generation. The original benchmark

datasets are taken from the ResearchGate repository [178]. For the purpose of this

research, OR and GK datasets are used to create dynamic datasets, while SAC94

datasets are omitted due to low complexity and inconsistent sparseness.

Dataset deterministic state generation method requires input 𝛥 SAM that sets the

difficulty to generate the next state. This difficulty magnitude limits the percentage

change applied for each adjusted value when generating a new state. If a value is too

high, the next state can appear nothing like the previous state. If the value is too low,

states might not differ at all due to the nature of integer numbers. Since 𝛥 SAM is the

maximum adjustment that will occur, it is recommended that minimum item weight

𝑚𝑖𝑛𝑊 and minimum item profit 𝑚𝑖𝑛𝑃 multiplied by 𝛥 is more than 10. This number is

chosen based on a reasonable probability that the item profit and weight adjustments

will be more than one and have reasonably low discrete distortion of integer numbers.

{
𝑚𝑖𝑛𝑊 ∗ 𝛥 ≥ 10
𝑚𝑖𝑛𝑃 ∗ 𝛥 ≥ 10

 (4-16)

The MKP datasets can be modified that preserves the original combinatorial

characteristics of the dataset by multiplying all item profits, item weights, and knapsack

capacities by a constant value. Using this method, dynamic GK datasets will be

modified by a factor of 123, which is large enough to eliminate the small adjustment

magnitude problem and reduce discrete distortion to a minimum. These modified

datasets will have slight adjustments to item weights, and profits affect the dataset

more accurately.

Following is the list of configurations chosen to generate Dynamic MKP benchmark

instances:

• 100 generated states with 𝛥 = 0.2

• 100 generated states with 𝛥 = 0.1

• 100 generated states with 𝛥 = 0.05

• 100 generated states with 𝛥 = 0.02

• 100 generated states with 𝛥 = 0.01

73

Using the method described, a total of 1405 dynamic datasets are generated. 55

dynamic dataset instances are generated from 11 static instances in the GK library,

and 1350 dynamic dataset instances are generated from 270 static instances in the

OR library.

4.2. Dataset Analysis

Generated dynamic MKP datasets are analysed in two ways: first, dataset statistical

analysis, and second, dataset optimal result analysis. The dataset statistical analysis

method is meant to determine what changes have occurred to each item from one

state to the next state and what is cumulative item discrepancy from the initial state to

the last generated state. Dataset states are analysed by profit distance, average

weight distance, and absolute weight distance. For dataset results analysis, each state

of the dynamic dataset is independently solved using a linear solver that finds the

optimal result for the state. The results of each state are compared by finding the

solution distance. The solution distance is calculated by counting how many different

items are between two state optimal result vectors.

Solution distance:

𝑆𝐷 =
 ∑ (𝑥1,𝑖 ⊕ 𝑥2,𝑖)

𝑛
𝑖=0

𝑛

(4-17)

where 𝑥1and 𝑥2 are optimal result vectors of dynamic dataset states 1 and 2. Each

result point is counted if one result vector includes it and the other result vector does

not. It is the normalized binary vector Hamming distance.

Profit distance:

𝑃𝐷 =
 ∑ (𝑃1,𝑖 − 𝑃2,𝑖)

𝑛
𝑖=0

𝑛

(4-18)

Average weight distance:

𝑊𝐷 =
 ∑ |∑ (𝑊1,𝑖,𝑘) 𝑚

𝑘=0 − ∑ (𝑊2,𝑖,𝑘)𝑚
𝑘=0 |𝑛

𝑖=0

𝑛

(4-19)

Absolute weight distance:

|𝑊𝐷| =
 ∑ (∑ |𝑊1,𝑖,𝑘 − 𝑊2,𝑖,𝑘 |𝑚

𝑘=0)𝑛
𝑖=0

𝑛

(4-20)

74

4.2.1. Statistical analysis metrics

Each dataset has its unique properties and constraints. Therefore, to do analysis, it is

essential to understand what boundaries are expected for each dataset due to its

constraints.

First, the theoretical solution distance 𝔼(𝑆𝐷) is the statistically expected value of

solution distance when results vectors of two non-correlated datasets in comparison

have random distribution with a constant solution tightness 𝑆𝑇. The formula can be

reduced to the following.

𝔼(𝑆𝐷) = 2 × (1 − 𝑆𝑇) ∗ 𝑆𝑇 (4-21)

Then theoretical profit distance 𝔼(𝑃𝐷) is the statistically expected profit distance for

two datasets that follow identical item size and item value constraints, but dataset

contents do not have any correlation. The formula can be reduced to the following.

𝔼(𝑃𝐷) =
𝑚𝑎𝑥𝑃 − 𝑚𝑖𝑛𝑃

3

(4-22)

Theoretical average weight distance 𝔼𝑊𝐷 is the statistically expected average

weight distance for two datasets that follow identical item size and item value

constraints, but dataset contents do not have any correlation. The formula can be

reduced to the following.

𝔼𝑊𝐷 = 𝑚0.5 ×
𝑚𝑎𝑥𝑊 − 𝑚𝑖𝑛𝑊

3

(4-23)

Theoretical absolute weight distance 𝔼|𝑊𝐷| is the statistically expected absolute

weight distance for two datasets that follow identical item size and item value

constraints, but dataset contents do not have any correlation. The formula can be

reduced to the following.

𝔼|𝑊𝐷| = 𝑚 ×
𝑚𝑎𝑥𝑊 − 𝑚𝑖𝑛𝑊

3

(4-24)

4.2.2. Example GK01 dynamic dataset statistical

analysis

The graph in Figure 4-2 shows how much each state’s all items’ profits are, on

average, different from the initial state. For the GK01 dataset, the theoretical profit

75

distance is 𝔼(𝑃𝐷) = 2050. The dynamic dataset generated with 𝛥 SAM - 0.2 has the

profit distance to the initial state approaching close to the theoretical profit distance

possible for a dataset with these constraints. Dynamic datasets generated with lower

𝛥 SAM value do not reach the theoretical value within 100 generated states of the

dynamic dataset.

Figure 4-2: Item profit change to initial state for datasets generated from GK01

The graph in Figure 4-3 shows how much all items’ average weight differs from the

initial state. For the GK01 dataset, the theoretical average weight distance is 𝔼𝑊𝐷 =

2382. The dynamic dataset generated the highest 𝛥 SAM - 0.2 has the average weight

distance far away from the possible theoretical average weight distance. Reaching the

theoretical average weight distance would take significantly more states. This is

because the dataset generation method has to simultaneously follow the limit of the

weight of the items for each knapsack and item’s value, which is the ratio of average

weight over profit. This makes item weight distribution significantly slower.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Item profit change to initial state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

76

Figure 4-3: Average item weight change to initial state for datasets generated from GK01

The graph in Figure 4-4 shows how much all items’ absolute weight of all knapsacks

is different from the initial state. For the GK01 dataset, theoretical absolute weight

distance 𝔼|𝑊𝐷| = 9225. Similar to theoretical average weight distance dynamic

dataset generated 𝛥 SAM - 0.2 has the average weight distance to the initial state far

away from the possible theoretical absolute weight distance. These values follow the

same set of constraints and are expressed using different calculations method.

Figure 4-4: Absolute item weight to initial state for datasets generated from GK01

0

50

100

150

200

250

300
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Average item weight change to initial state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

0

50

100

150

200

250

300

350

400

450

500

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Absolute item weight to initial state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

77

The graph in Figure 4-5 shows how much each states’ item profits are, on average,

different from the previous state. This profit change value is relatively constant

throughout all states of the dataset, as the measurement is not compounding over

multiple states. Also, this value is far below the theoretical profit distance. Having a

high distance from state to state would make a not useful dynamic dataset because of

high disturbances, making the dataset not have any relation among the states. Having

reasonably low profit change from state to state enables dynamic optimization

algorithms to reuse information in previous states to solve the next state.

Figure 4-5: Item profit change to the previous state for datasets generated from GK01

The graph in Figure 4-6 shows how much all items’ average weight of all knapsacks

is different from the previous state. Similarly to item profit, the average weight distance

is relatively constant, as the measurement is not compounding over multiple states.

0

50

100

150

200

250

300

350

400

450

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Item profit change to previous state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

78

Figure 4-6: Average item weight to the previous state for datasets generated from GK01

The graph in Figure 4-7 shows how much all items’ absolute weight of all knapsacks

is different from the previous state. Similarly to item profit, the average weight distance

is relatively constant, as the measurement is not compounding over multiple states

and is far from the theoretical absolute weight distance.

Figure 4-7: Absolute item weight to the previous state for datasets generated from GK01

0

5

10

15

20

25

30

35

40

45
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Average item weight to previous state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

0

10

20

30

40

50

60

70

80

90

100

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Absolute item weight to previous state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

79

4.3. Dynamic MKP dataset result analysis

Constrained optimization problems often have sparse solutions for ranked near-

optimal solutions. This is due to a large portion of search space being infeasible and

the remaining feasible space containing lots of close to optimal solutions distributed

far apart in the search space. Multidimensional Knapsack Problem’s solutions are

incredibly sparse. This is due to the sparse nature of packing problems and made

sparser by doing such packing in multiple dimensions. To analyse the results of the

dynamic datasets, a small selection of lower combinatorial complexity problem

instances in each state has been solved to the optimal solution using Google Or-tools

integer linear programming [212].

4.3.1. Example GK01 dynamic dataset result analysis

The graph in Figure 4-8 shows the progression of states’ optimal result distance to the

initial state 𝑆0 dataset. Where 0 all items in state’s optimal result are same as in initial

state’s optimal result items, and 1 all items in state’s optimal result are opposite of

initial state’s optimal result items. A higher 𝛥 value makes result distance to the initial

state’s result higher. GK01 Knapsack tightness is exactly 0.5, and the resulting

tightness is often very close to knapsack tightness. Therefore, the theoretical solution

distance is also 𝔼(𝑆𝐷) = 0.5. Over 100 states SAM - 0.01 and SAM - 0.02 are growing,

but SAM - 0.05, SAM - 0.1 and SAM - 0.2 do reach theoretical distance and stops

growing.

80

Figure 4-8: Optimal result distance to initial state for datasets generated from GK01

The graph in Figure 4-9 shows the progression of states’ optimal result distance to the

previous state. It shows how much difference is in items taken to the optimal solution

in comparison to the previous state 𝑆𝑖−1. For datasets with lower 𝛥 value, some states

solution distance is zero compared to the state before. Even with slight profit and item

weight changes, the optimal solution can still have the same items fit in the knapsack

for maximum profit. However, the final result profit will be different and such

information not reflected in this graph. Furthermore, with SAM - 0.2, the solution

distance is around 0.3 to the previous state, which is quite close to the theoretical

solution distance. This dataset characteristic might appear to be very challenging for

dynamic optimization algorithms to tackle since there are many changes in the optimal

result. This dataset is still valid, regardless of how challenging it is, to test how quickly

algorithms can adapt to significant change and find good results improved on previous

state’s results and not necessarily find the optimal result.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Optimal result distance to initial state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

81

Figure 4-9: Optimal result distance to the previous state for datasets generated from

GK01

4.3.2. Dynamic datasets' optimal result scores

The performance of the MKP result is measured with the total profit of items in the

knapsack. The optimal MKP result score is the maximum possible profit. Then for

dynamic MKP, result performance is measured with a sum of each dataset state result

profit. When each dynamic MKP dataset state result is found optimal, then the overall

dynamic dataset score is optimal.

Following is the table with the optimal result scores of the dynamic datasets. In Table

4-1, optimal result scores are shown for 50 datasets. There are optimal result scores

shown of partial dynamic dataset and full dynamic dataset for each of these datasets.

The result of 0 states which is only the initial state’s result, 10 states which is optimal

result summed up to 10th state, 25 states which is optimal result summed up to 25th

state, 50 states which is optimal result summed up to 50th state, 75 states which is

optimal result summed up to 75th state, and 100 states which is optimal result of a full

dataset.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

D
is

ta
n

ce

Dataset State number

Optimal result distance to previous state

gk01 SAM-0.01

gk01 SAM-0.02

gk01 SAM-0.05

gk01 SAM-0.1

gk01 SAM-0.2

82

Table 4-1: Dynamic datasets optimal result scores of selected datasets. Optimal result

scores are the sum of 0 states, 10 states, 25 states, 50 states, 75 states, and 100 states.

Dataset 0 states 10 states 25 states 50 states 75 states 100 states

gk01 SAM-0.01 463218 5089903 12043838 23653772 35281859 46897705

gk01 SAM-0.02 463218 5092327 12059177 23693904 35383395 47113463

gk01 SAM-0.05 463218 5113768 12097901 23892037 35778881 47610395

gk01 SAM-0.1 463218 5121272 12169486 24044573 35925950 47924151

gk01 SAM-0.2 463218 5177484 12293033 24189553 36116201 48166300

OR10x100-0.25_1 SAM-0.01 2836872 31205045 73830256 145018245 216448557 288212783

OR10x100-0.25_1 SAM-0.02 2836872 31176234 73779210 145071138 216174187 286840590

OR10x100-0.25_1 SAM-0.05 2836872 31123728 73635411 144442790 214350962 284811984

OR10x100-0.25_1 SAM-0.1 2836872 30805648 71709699 140660402 208541345 276564063

OR10x100-0.25_1 SAM-0.2 2836872 29648279 69427770 133693742 197679341 262428557

OR10x100-0.50_1 SAM-0.01 5091585 55953867 132336914 259552759 386384459 513376968

OR10x100-0.50_1 SAM-0.02 5091585 55866397 132033525 260305360 388821856 517324762

OR10x100-0.50_1 SAM-0.05 5091585 56065926 133118084 262589997 393619307 524410687

OR10x100-0.50_1 SAM-0.1 5091585 56629927 134571121 266159634 395126427 526352982

OR10x100-0.50_1 SAM-0.2 5091585 56542194 135328561 268860774 403977829 540243294

OR10x100-0.75_1 SAM-0.01 7057125 77643072 183396152 359231095 535672559 712133307

OR10x100-0.75_1 SAM-0.02 7057125 77369672 182892248 357984295 532064332 706249480

OR10x100-0.75_1 SAM-0.05 7057125 77602511 183329109 359336913 534961784 709195281

OR10x100-0.75_1 SAM-0.1 7057125 76740410 181074663 349629918 514015441 679144481

OR10x100-0.75_1 SAM-0.2 7057125 74281645 171926494 331859849 492799464 658580578

OR30x100-0.25_1 SAM-0.01 2699358 29687005 70191529 137774216 205487725 273471842

OR30x100-0.25_1 SAM-0.02 2699358 29702444 70268015 137971147 205397065 272700290

OR30x100-0.25_1 SAM-0.05 2699358 29502620 69475293 135491089 201383026 266403778

OR30x100-0.25_1 SAM-0.1 2699358 28900744 68183405 133807293 197430527 262757855

OR30x100-0.25_1 SAM-0.2 2699358 27977949 66054651 130252336 195671607 261708983

OR30x100-0.50_1 SAM-0.01 5014341 55059043 129891484 254621859 379817047 505328790

OR30x100-0.50_1 SAM-0.02 5014341 55025745 130037468 255079511 379914843 505524676

OR30x100-0.50_1 SAM-0.05 5014341 55200665 130045508 254327181 378085224 501037881

OR30x100-0.50_1 SAM-0.1 5014341 54810897 128082790 247397275 366761689 486607011

OR30x100-0.50_1 SAM-0.2 5014341 53103991 124497893 244395075 363760632 483039836

OR30x100-0.75_1 SAM-0.01 7071762 77864424 184162853 361344304 538697991 716206864

OR30x100-0.75_1 SAM-0.02 7071762 77780937 183865316 359936517 536422253 713362025

OR30x100-0.75_1 SAM-0.05 7071762 77932653 184544801 362035765 538160553 714949227

OR30x100-0.75_1 SAM-0.1 7071762 77557884 183180055 361505598 542978957 725238465

OR30x100-0.75_1 SAM-0.2 7071762 77189609 183136611 365412793 547980898 727926255

OR5x100-0.25_1 SAM-0.01 2998863 32939171 77757416 152752166 227713579 302850314

OR5x100-0.25_1 SAM-0.02 2998863 32821440 77541184 152413231 227296574 302426478

OR5x100-0.25_1 SAM-0.05 2998863 33098483 78857803 155459878 233754591 311477600

OR5x100-0.25_1 SAM-0.1 2998863 32819219 79103918 159026997 238008299 318890576

OR5x100-0.25_1 SAM-0.2 2998863 31792534 75667725 150669330 224083685 298265765

OR5x100-0.50_1 SAM-0.01 5259111 57816931 136753398 268534896 400626535 532774988

OR5x100-0.50_1 SAM-0.02 5259111 57739290 136877350 268314426 400103228 532502998

OR5x100-0.50_1 SAM-0.05 5259111 57570616 136465452 269864698 403784094 536018915

OR5x100-0.50_1 SAM-0.1 5259111 58845857 142707776 289653226 440496588 591692649

OR5x100-0.50_1 SAM-0.2 5259111 62153210 151213344 304160231 460660467 610787683

OR5x100-0.75_1 SAM-0.01 7358106 81027232 191732938 376103226 559814098 742782860

OR5x100-0.75_1 SAM-0.02 7358106 81164628 191864001 375883541 559920437 744012008

OR5x100-0.75_1 SAM-0.05 7358106 81539986 193322737 378920251 562125666 744462914

OR5x100-0.75_1 SAM-0.1 7358106 81354829 191189919 372271347 550102686 726936473

OR5x100-0.75_1 SAM-0.2 7358106 80952636 187322886 367257155 546541749 724836393

83

4.4. Comparative performance analysis

In addition to dataset statistical and optimal result analysis, comparative algorithm

performance is tested. A high-performance baseline ACO algorithm implementation

called ACO with Dynamic Impact [1] introduced in Chapter 3 has been adapted to

solve the Dynamic MKP benchmark. The algorithm has been configured to perform

two popular dynamic optimization strategies: Full-Restart and Pheromone-Sharing.

Full-Restart strategy is a standard optimization strategy, where each state is

considered independently, and after each state change, the optimization is restarted

from the beginning. The pheromone-Sharing strategy is a simple yet very effective

dynamic optimization strategy, where after each state change, the pheromone is

reused [157]. All tests have been executed on the AMD Threadripper 2990WX system

with the clock running at 2.9Ghz, with execution parallelism set to 32 threads on the

first NUMA node.

To cross-compare highly efficient dynamic optimization algorithm result scores of the

Dynamic MKP, each result profit has to be expressed as a profit gap to the best-known

profit, or the “result gap” for short. The result gap score is calculated for each state,

which is the percentage of the state’s result profit difference to the best-known profit.

The best-known results are submitted to a verified public repository [213]. Using the

result gap allows comparing algorithm performance quantitatively across all

benchmark instances.

The dynamic optimization results of the ACO algorithm are displayed in Figure 4-10

and Figure 4-11. The ACO algorithm solved all Dynamic MKP benchmark dataset

instances generated from the GK library in both instances. For each SAM 𝛥 value

there are 11 GK benchmark datasets run 10 times. Each dynamic dataset state run

time has been limited to 1 second per 100 items in the problem. For example, GK01

has 100 items therefore, each state is limited to 1 second runtime, GK03 with 150

items limited to 1.5s, and GK11 with 2500 items limited to 25s. In Figure 4-10, the

ACO algorithm with a Full-Restart strategy is configured to solve each dynamic state

independently, from the start, without any share of the learned knowledge from

previous state optimization. Every state for this optimization strategy appears as a new

optimization problem therefore, the convergence of every state is similar throughout

84

the whole optimization. Also, the 𝛥 value does not have an impact on the optimization

quality for ACO with Full-Restart strategy. In Figure 4-11 ACO algorithm with a

Pheromone-Sharing strategy continues to use the same pheromone after dynamic

state change and therefore has a significant head start to improve the solution further.

ACO with Pheromone-Sharing strategy can take a significant advantage when the 𝛥

value is low because each dynamic change is small and the optimal solution is not

significantly different compared to the state before the change.

Figure 4-10: Dynamic optimization performance of ACO Full-restart strategy for all

SAM levels. Each line shows the average gap convergence of GK01-GK11 dynamic

datasets group run 10 times each, totalling 110 runs.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Dynamic optimization average GK01-GK11 datasets
performance of ACO Full-Restart strategy through all

dynamic states

SAM-0.01 SAM-0.02 SAM-0.05 SAM-0.1 SAM-0.2

85

Figure 4-11: Dynamic optimization performance of ACO Pheromone-sharing strategy

for all SAM levels. Each line shows the average gap convergence of GK01-GK11 dynamic

datasets group run 10 times each, totalling 110 runs.

4.5. Further dynamic dataset analysis

Dynamic datasets are numerically heavy, and static on-the-paper visualizations such

as graphs, diagrams, or tables cannot show a complete picture and give the reader an

intuitive understanding of the dataset and its dynamics. For this reason, further dataset

analysis demonstration is developed. This analysis is not possible to be printed out,

therefore the analysis is published on GitHub with complete data of all dynamic

datasets [5].

4.5.1. Profit and weight distance effect

The profit and weight distance effect demonstration is a dynamic scatter plot where

each item is represented by a dot on a value over a size plot. All items are divided into

four groups by their weight and profit values. Groups are chosen considering two

factors. First, whether item profit is higher or lower than median item profit, and

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt
Dynamic optimization average GK01-GK11 datasets

performance of ACO Pheromone-sharing strategy through all
dynamic states

SAM-0.01 SAM-0.02 SAM-0.05 SAM-0.1 SAM-0.2

86

second, whether item weight is higher or lower than median item weight. Since profit

and weight are independent variables, this divides all items into four equally sized

groups. Each item is marked for the initial state dataset and remains constant in all

states of the dynamic dataset.

For example, the distance effect is displayed of dataset GK01 SAM-0.05 for the initial

state and the last state in Figure 4-12 and Figure 4-13. At first, for the initial state, the

plot appears evenly divided into four quadrants. Series 1 is initially low weight and low

value items; Series 2 is initially low weight and high value; Series 3 is initially high

weight and low value items; Series 4 is initially high weight and high value items. Then,

all groups become increasingly mixed up by advancing graphs through each state until

each series can appear to have low and high value and weight items scattered. When

the dataset profit and weights reach theoretically expected distance values, the groups

should look mixed entirely up. In the example of GK01 SAM-0.05 last state, the groups

do not appear to be completely mixed up. Most of the large weight items remained on

the heavy side, and most of the low weight items remained on the light side.

Figure 4-12: Profit and weight distance effect for GK01 SAM-0.05 dataset initial state.

Each series represent the division of each item’s value and average weight into a quadrant

based on the initial state. On the initial state, the division is clearly visible.

87

Figure 4-13: Profit and weight distance effect for GK01 SAM-0.05 dataset last state. Each

series represent the division of each item’s value and average weight into a quadrant

based on the initial state. On the last state, items are significantly mixed up.

4.5.2. Optimal result effect

Similarly to profit and weight distance effect demonstration, an optimal result effect

demonstration is a dynamic scatter plot where each item is represented by a dot on a

value over a size plot. However, in this dynamic plot, each item belongs in a group

according to the optimal result decision vector obtained from the linear solver solution

for each state. The item is either part of the optimal set or not. From one state to

another, the item may change the group to reflect a new optimal solution for that given

state.

For example, the optimal result is displayed of dataset GK01 SAM-0.05 for the initial

state and the last state in Figure 4-14 and Figure 4-15. In both example figures, the

higher value items are significantly more likely to be included in the optimal result

decision vector than lower value items. However, the item’s size does not appear to

impact the likelihood of being included in the optimal result decision vector.

88

Figure 4-14: Optimal result effect GK01 SAM-0.05 dataset initial state

Figure 4-15: Optimal result effect, GK01 SAM-0.05 dataset last state.

4.5.3. Dynamic dataset constraint coverage effect

This visualization chart is a group of line graphs where each line represents an item

of the dynamic dataset. The line shows the path of the item that has been moved

through the dataset constraint space. The chart can display up to 20 items at once,

and it can limit the number of dynamic states range for a more transparent comparison

of each item’s path.

For example, the dataset constraint coverage paths are displayed for items 13 to 21

inclusive and span through all states from 0 to 100 in Figure 4-16 and Figure 4-17.

The GK01 dataset generated using SAM-0.02 has all items cover a smaller, more

localized constraint space than GK01 SAM-0.05. Items in the GK01 SAM-0.05 dataset

89

has a broader coverage and has more overlap in the constraint space among the

items.

Figure 4-16: Dynamic dataset constraint coverage effect, GK01 SAM-0.02 dataset, items

range 13-21 inclusive.

90

Figure 4-17: Dynamic dataset constraint coverage effect, GK01 SAM-0.05 dataset, items

range 13-21 inclusive.

4.5.4. Dynamic dataset optimal result coverage effect

For the dynamic datasets with optimal results, the optimal result coverage of every

state can be displayed. This chart displays for all states whether the item belongs in

the decision vector of optimal solution or not. Orange colour represents an item in the

optimal set and blue colour represents a not optimal item. The chart also differentiates

the items always part of the optimal set with green colour series and items that are

never part of the optimal set with black colour series.

For example, optimal item’s decisions are displayed for items 7 to 21 inclusive and

span through all states from 0 to 100 in Figure 4-18 and Figure 4-19. In dataset GK01

SAM-0.01, where each item has mutated the least, more items have remained always

optimal or never optimal compared to dataset GK01 SAM-0.02, where items cover a

91

larger constraint area and therefore larger changes in size and value have an effect

on the optimal solution.

Figure 4-18: Dynamic dataset optimal result coverage effect, GK01 SAM-0.02 dataset,

items range 7-21 inclusive.

92

Figure 4-19: Dynamic dataset optimal result coverage effect, GK01 SAM-0.01 dataset,

items range 7-21 inclusive.

4.6. Chapter Summary

This research chapter has resolved a critical gap in discrete Dynamic Optimization

Problem (DOP) research. There were no fully defined DOP datasets upon which the

research could be based. Previous works have used stochastic generation methods

and have not preserved the optimization states or random operator seed values to

directly compare the optimization results. Therefore, it was impossible to evaluate

dynamic optimization algorithms fairly or conduct a repeatability study.

Introduced a non-stochastic dynamic dataset generation method that can consistently

generate the next state of dynamic MKP based on nothing but input dataset and 𝛥

value. The generated dataset will always be identical based on the input dataset.

93

Therefore, dynamic optimization algorithms can be cross-compared in future research

by any research work.

Using this dynamic dataset generation method, 1405 fully defined Dynamic MKP

benchmark instances were generated from the existing static MKP benchmark dataset

library. Then those dynamic datasets were published to be used as a Dynamic MKP

benchmark.

This chapter also provided a Dynamic MKP benchmark datasets analysis. The

datasets were analysed quantitatively for the range of dynamism of all dataset

parameters. Also, optimal result dynamics analysis was performed on 455 datasets

with low combinatorial complexity of 100 items, where all states were solved to optimal

result using a linear solver. Then developed an interactive tool for an additional

dynamic demonstration which helps to develop an intuitive understanding of the

dynamics of the datasets.

Finally, the new Dynamic MKP benchmark will be used in Chapter 5 to measure the

performance of the new nature-inspired dynamic optimization strategy developed for

the ACO algorithm. The non-stochastic nature of the benchmark makes it easy to

compare the results of the baseline optimization and the proposed algorithm.

The contributions of this research chapter to science are:

• Introduced a deterministic dynamic dataset generation method that takes a

static instance of the MKP dataset and generates a dynamic dataset

consistently. Dataset Generator is published on GitHub. [2]

• Generated new, fully defined Dynamic MKP benchmark instances from existing

static MKP benchmarks for consistent and repeatable cross research

reference. The benchmark datasets are published on GitHub [3] and IEEE

Dataport [4].

• The generated benchmarks are qualitatively and quantitatively analysed and

proven as valid Dynamic MKP datasets. The visualization tool is published on

GitHub. [5]

• The work presented in this chapter has been published in the in peer-reviewed

journal Systems and Soft Computing, Elsevier [6].

94

Chapter 5. Herder Ants: Ant Colony

Optimization with Aphids for Discrete

Event-Triggered Dynamic Optimization

Problems

As mentioned in Chapter 2 literature review, currently applied dynamic optimization

strategies for ACO algorithm are rudimentary and not explicitly designed with dynamic

optimization in mind. This research chapter introduces a discrete dynamic optimization

strategy called Ant Colony Optimization (ACO) with Aphids, modelled after a real-world

symbiotic relationship between ants and aphids. ACO with Aphids strategy is designed

to improve solution quality of discrete domain Dynamic Optimization Problems (DOPs)

with event-triggered discrete dynamism.

Up to recently, there was no existing Discrete event-triggered DOP benchmark to

evaluate the efficiency of proposed algorithms, especially for a limited time per state

of the dynamic optimization. This work uses fully-defined DMKP benchmark datasets

proposed in Chapter 4 and evaluates the efficiency of several different ACO dynamic

optimization strategies. Also, for maximum optimization performance, all implemented

dynamic optimization strategies are based on the best performing ACO with Dynamic

Impact configuration presented in Chapter 3.

5.1. Ant Colony Optimization with Aphids

The original Ant Colony Optimization (ACO) algorithm was described by Dorigo in his

doctoral thesis [113], solving Traveling Salesman Problem in 1992. ACO algorithm

has been modelled to mimic real ants’ behaviour. While navigating, ants deposit

pheromone on their path, and then other ants sense it and are drawn to it. A stronger

pheromone trail attracts more ants compared to a weaker pheromone trail. When an

ant travels a long distance from the food source to the nest, the pheromone trail is

naturally spread out over that distance, and the pheromone evaporates faster, making

the trail unattractive. On the other hand, if the path is short, each ant’s round trip time

95

is shorter, allowing the ant to deposit more pheromone on a short path and attract

even more ants. Such ant behaviour is fundamentally iterative and allows ants to

explore all the available areas for food sources and exploit already found food sources

using the shortest travel path.

However, this optimization algorithm was not modelled with dynamic optimization

problems in mind. But luckily, as mentioned in the literature review, some ants

manifest another behaviour, herding aphids. In nature, those ants tend to aphids and

collect their produced honeydew, providing an additional source of nutrition along with

their usual scavenged food. Within ants’ pheromone, aphids behave differently. They

move less and produce more honeydew, while ants protect them from predators. Also,

aphids rely on ants to relocate them when environmental conditions change. For

example, ants move them onto new fresher plants when the plant is no longer fresh.

Ants can prey on aphids once aphid’s honeydew production decreases or aphids’

population is too large.

5.1.1. ACO with Aphids design

This research proposes to use aphids in the ACO algorithm to increase the

performance of discrete dynamic optimization. In this algorithm, the aphids are

modelled as immobile food producers for ants to pick up. Ants must pick up this food

at each dynamic change of the problem, creating a baseline pheromone for the new

dynamic environment proportional to aphids’ distribution around search space. Then

ants continue to explore the current state of the environment by optimizing the

combinatorial optimization problem. Then after optimization is finished, ants kill a

portion of aphids and lay some new aphids on the best edges of the current state of

the environment. Aphids do not move independently, but after each dynamic change,

ants relocate a portion of aphids to a better location according to precalculated

heuristic information.

5.1.2. Optimization system

For discrete dynamic optimization, the ACO algorithm runs within the optimization

system to separate concerns of the optimization process and the data. The

optimization system handles fully defined benchmark data. The optimization system

96

mimics real-world dynamic optimization scenarios where future dynamic change is

unknown. Each state of the dynamic optimization problem is dispatched with a

constant time interval for the ACO to solve. Then ACO solves the optimization problem

at its current state until the next state is dispatched. The system also records the

fitness score and results of the ACO optimization for every state.

Generally, the degree of dynamism in the literature is defined as the frequency and

the magnitude of dynamic change [8]. However, for benchmark dynamic combinatorial

optimization problems, the main focus is only on the magnitude of dynamic change.

The frequency of dynamic change will be set to a constant time window such that a

fair comparison of dynamic optimization strategies is performed.

5.1.3. ACO with Aphids algorithm

ACO with Aphids design extends high performance ACO with Dynamic Impact

algorithm introduced in Chapter 3. Aphids represent learned information mediators

across all states of the dynamic optimization problem. For each dynamic optimization

problem’s state, the algorithm initializes search space with all feasible edges, sets

each edge’s pheromone to the default pheromone level 𝜏0, and precalculates heuristic

information. Before the ant search starts, ants perform two additional steps unique to

the ACO with Aphids algorithm. Firstly, they relocate aphids based on new search

space heuristic information and aphids’ relocation parameter. Then, ants collect

honeydew produced by aphids and set the initial pheromone level to base the search

in the new environment. Then ants perform iterative search normally for a given time

span. Once the search is terminated, ants kill a portion of aphids according to the

aphids’ kill parameter. And finally, ants lay down new aphids based on the best solution

found for the current state and aphids’ lay down parameter. The algorithm is further

summarised in the pseudo-code below.

Table 5-1: ACO with Aphids pseudo-code

Algorithm 1: ACO with Aphids

Input: Dynamic optimization problem dataset

Output: Solutions to the dynamic optimization problem

1. Initialize Aphids to default aphids’ level

2. FOR state IN dataset states DO

3. Load state data to memory

97

4. Prepare search space subroutine

5. Initialize Ants’ pheromone

4. Relocate Aphids

7. Collect honeydew by ants

8. WHILE no events AND no termination DO

9. Build Ant solution subroutine

10. Update ants’ pheromone

11. END WHILE

12. Record best state’s solution

13. Kill portion of aphids

14. Lay new Aphids based on the best solution

15. END FOR

5.1.3.1. Initialize Aphids to default aphids’ level

Aphids are initialized only once for dynamic optimization, and then aphids evolve

together with the dynamic environment. At the very start, aphids are initialized

uniformly for the whole search space. The parameter must be above zero for the

optimization algorithm to work correctly. The default value is 𝐴0 = 1.

𝐴𝑗,𝑖 ∶= 𝐴0, ∀(𝑗, 𝑖) (5-1)

Aphids’ level is assigned to the default aphids’ level on all edges, where, 𝐴𝑗,𝑖 is the

aphids’ level of 𝑗 node and 𝑖 edge, 𝐴0 is the default aphids’ level parameter.

5.1.3.2. Load data to memory and prepare search space

At any given point during dynamic optimization, only one dynamic optimization state

is loaded into memory. Previous optimization states are out of date and no longer help

in the optimization of the current state. Further states are not revealed to the

optimization algorithm as they are technically in the future. Then once the state is

revealed, search space has to be prepared for that state. In the prepared search

space, each edge has precalculated heuristic information 𝜂𝑗,𝑖. Every optimization

problem will have different formulas to calculate heuristic information since this

heuristic information is based on the expert knowledge of the optimization problem

that provides a myopic guide to the ACO algorithm.

98

5.1.3.3. Initialize ants’ pheromone

In the Min-Max Ant System, static optimization starts with an initial pheromone matrix

of default value 𝜏0 set to each edge. The same principle is applied to dynamic

optimization. ACO with Aphids algorithm initializes the pheromone matrix for each

optimization state to default pheromone value.

𝜏𝑗,𝑖 ∶= 𝜏0, ∀(𝑗, 𝑖) (5-2)

Ants’ pheromone is assigned to the default ants’ pheromone level on all edges, where,

𝜏𝑗,𝑖 is the pheromone level of 𝑗 node and 𝑖 edge, 𝜏0 is the default pheromone level

parameter.

5.1.3.4. Relocate aphids

When the optimization system introduces the new state, new heuristic information is

precalculated that can roughly point to areas where aphids should be placed. Ants use

precalculated heuristic information to relocate aphids from the search space areas

with worse heuristic information to areas with a better heuristic. Aphids are only

partially relocated based on heuristic information because the heuristic information is

not a perfectly accurate measure of fitness. Relocation of aphids noted by aphids’

relocation parameter 𝐴𝑟. The aphids’ relocation parameter is a multiplier value and

must not be negative 𝐴𝑟 > 0. The default value of the aphids’ relocation parameter

𝐴𝑟 = 1. However, the parameter value can be higher if heuristic information variance

is low, and vice versa.

𝐴𝑗,𝑖 ∶= 𝐴𝑗,𝑖 × (1 + (𝜂𝑗,𝑖 − �̅�) × 𝐴𝑟), ∀(𝑗, 𝑖) (5-3)

Aphids’ level is reassigned to new aphids’ level based on heuristic information and

aphids’ relocation parameter, where, 𝐴𝑗,𝑖 is the aphids’ level of 𝑗 node and 𝑖 edge, 𝐴𝑟

is the aphids’ relocation parameter, 𝜂𝑗,𝑖 is heuristic information of 𝑗 node and 𝑖 edge,

and �̅� is average heuristic information value across the entire search space.

5.1.3.5. Collect honeydew

Honeydew is a crucial product of aphids. Before the iterative search starts, ants pick

up the honeydew produced by aphids and lay pheromone on those edges where

honeydew is produced. The amount of pheromone laid down is proportional to the

99

amount of honeydew and, in turn, proportional to the number of aphids living on the

edge. The default value of the aphids’ honeydew production parameter 𝐴ℎ = 1.

Increasing or decreasing this parameter value increases or decreases aphids’ total

influence on the dynamic search. However, too much honeydew might affect ants’

ability to evaporate excess pheromone created while collecting honeydew.

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 + (𝐴𝑗,𝑖 × 𝐴ℎ), ∀(𝑗, 𝑖) (5-4)

Ants’ pheromone is reassigned to a new level based on aphids’ level and honeydew

production rate, where, 𝜏𝑗,𝑖 is the pheromone level of 𝑗 node and 𝑖 edge, 𝐴𝑗,𝑖 is the

number of aphids currently living on the 𝑗 node and 𝑖 edge, and 𝐴ℎ is the aphids’

honeydew production rate.

This newly laid pheromone forms a solid starting point for ACO to find good initial

solutions after the dynamic change has occurred. Aphids’ impact on pheromone is

applied only once, and its effect does not negatively impact the iterative search

convergence. Ants’ pheromone normally evaporates as the search progresses,

allowing ants to explore search space efficiently without getting stuck in the local

optima.

5.1.3.6. Build ant solution

ACO with Aphids performs iterative search normally as described in MMAS [115]. In

the iterative search, a set of ants each builds a complete solution independently. Each

ant starts the search with an empty partial solution 𝑠𝑝 = ∅. Then the ant searches for

a single edge to add to the partial solution. Ant stochastically adds edge to the solution

based on the calculated edge’s probability without exceeding the optimization problem

constraints. The solution is complete once every node’s objective is met or constraints

are exhausted.

5.1.3.7. Update ants’ pheromone

All completed ant solutions are evaluated against fitness function within a single

iteration. The best solution is then passed to update the global pheromone.

Pheromone update consists of two steps, first evaporation and second lay down.

During the evaporation step, a portion of pheromone is reduced by evaporation

parameter 𝜌 as in the following equation (5-5). Then the best ant solution is taken to

100

lay down pheromone on edges that it has visited while building the solution as in the

following equation (5-6):

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 × (1 − 𝜌), ∀(𝑗, 𝑖) (5-5)

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 + 𝜌 × Δ𝜏0, ∀(𝑗, 𝑖) ∈ 𝑠𝑝 (5-6)

where 𝜌 is a constant parameter of the pheromone evaporation rate introduced by

Dorigo and Stützle [123], Δ𝜏0 is the pheromone update rate, 𝑠𝑝 is the solution of the

chosen ant to lay down the pheromone.

5.1.3.8. Termination criteria

The search runtime is terminated of a current dynamic state when either one of three

conditions occurs, event-triggered, time-based or iteration based. The first condition is

when the dynamic change event is triggered. The system mimics the real-world

dynamic change in the optimization problem’s instance and dispatches new and

updated problem search space. The system treats the solutions to the old dynamic

state as invalid to the new search space and restarts the search. The second condition

is time-based. The optimization is considered complete when the optimization time

reaches a predefined time limit allocated for the optimization. The third condition is

iteration based. Similarly to time-based termination, the optimization is considered

complete when the iterative search has performed a predefined number of iterations.

5.1.3.9. Kill portion of aphids

After the iterative search is finished, a portion of aphids is killed based on the aphids’

kill rate parameter 𝐴𝑘. Killing aphids procedure ensures that aphids’ population does

not grow too much. Also, the killing aphids procedure further removes aphids from

poorly performing edges throughout multiple optimization states. Like in nature, a

portion of aphids must die such that aphids populations stay in equilibrium 𝐴𝑟 > 0. The

default value of the aphids’ kill rate parameter 𝐴𝑘 = 0.5, which kills half of the

remaining aphids.

𝐴𝑗,𝑖 ∶= 𝐴𝑗,𝑖 × (1 − 𝐴𝑘), ∀(𝑗, 𝑖) (5-7)

Aphids’ level is reassigned to a new aphids’ level based on aphids’ kill rate, where, 𝐴𝑗,𝑖

is the number of aphids on 𝑗 node and 𝑖 edge, and 𝐴𝑘 is the aphids’ kill rate.

101

5.1.3.10. Lay new aphids

The best solution found by ACO for the state is representative of that state’s

environment. Ants lay down new aphids on the edges of the search space that are

included in the best solution. Lay down aphids procedure increases the number of

aphids on well-performing edges and strengthens honeydew production. The default

value of the aphids’ lay down parameter 𝐴𝑙 = 1. However, this parameter can be

higher if typical solutions contain a small portion of edges available in the search space

and vice versa.

𝐴𝑗,𝑖 ∶= 𝐴𝑗,𝑖 + 𝐴𝑙 , ∀(𝑗, 𝑖) ∈ 𝑠𝑝 (5-8)

Aphids’ level is reassigned to a new aphids’ level based on aphids’ lay down rate,

where 𝐴𝑗,𝑖 is the number of aphids, 𝐴𝑙 is the aphids’ lay down rate, and 𝑠𝑝 is the best

solution chosen for lying down the aphids.

102

Figure 5-1: ACO with Aphids algorithm flowchart. The green colour represents

Optimization system steps, the blue colour represents ACO algorithm steps, and the

orange colour represents novel steps to ACO with Aphids algorithm.

103

5.2. Experimental setup

The experimental work presents the comparison of the proposed ACO with Aphids

dynamic optimization strategy against the two most popular ACO dynamic optimization

strategies: Full-Restart and Pheromone-Sharing [120], [214], [215].

5.2.1. Experimental dataset

A fully defined Dynamic Multidimensional Knapsack Problem (DMKP) benchmark,

introduced in Chapter 4, is taken to test the proposed algorithm's performance. Each

benchmark dataset includes complete information about each optimization problem

instance called states [3], [4], [6]. Each benchmark dataset contains 101 states, where

the first state is the initial state based on the static benchmark instance of the MKP

and 100 deterministically generated states. This benchmark is perfect for reliably

testing an event-triggered dynamic optimization system and comparing the results of

dynamic optimization algorithms. Also, DMKP suits this aim well because algorithmic

solutions solving MKP have a wide range of possible real-world applications.

From this benchmark library, 55 datasets of the GK group are used for the

experimental work. Each GK dataset has a unique complexity and dynamism

combination. There are eleven complexity levels in the range from the GK01 dynamic

dataset group with 100 items and 15 knapsacks to the GK11 dynamic dataset group

with 2,500 items and 100 knapsacks, and five dynamism levels indicated by the State

Adjustment Magnitude 𝛥 parameter: 𝛥 = 0.01, 𝛥 = 0.02, 𝛥 = 0.05, 𝛥 = 0.1, 𝛥 = 0.2.

The 𝛥 parameter is also called SAM in the code and charts with no special characters’

support. For the first experiment of ACO with Aphids hyper-parameter tuning, only

GK03 and GK08 complexities are used with all five dynamism levels. All 11 dataset

groups from the GK group with all five dynamism levels are used for the second

experiment of a full comparison of dynamic optimisation strategies.

5.2.2. Baseline ACO algorithm and optimization

system

All three dynamic optimization strategies are implemented within the same baseline

ACO core algorithm, solving static MKP benchmarks [1]. High-quality MKP solutions

104

were possible to achieve by utilizing a dynamic impact evaluation method in the ACO

edge’s probability calculation. Also, this baseline ACO algorithm implementation

efficiently utilizes modern multicore computer architectures by running multiple ant

searches in parallel within one iteration and synchronising before the pheromone

update.

A fair comparison of dynamic optimization algorithm performance is ensured by the

optimization system dispatching an event-trigger at a precise interval based on the

complexity of the optimization problem. Event-trigger dispatch based on time

eliminates any variations in algorithm execution overheads related to strategy. The

optimization system has the rule to dispatch events after a time period proportional to

the number of items in the dataset. Each state has 1 second to execute optimization

for every 200 items in the dataset. For example, any dataset in the GK01 dataset group

has 100 items. Therefore, each state is allowed to execute for only 0.5 seconds. The

GK11 is the largest dataset group with 2500 items per dataset. Therefore, each state

is allowed to execute for 12.5 seconds.

ACO algorithm hyper-parameters have been tuned in Chapter 3 and used throughout

all experimentation. The best combination of pheromone parameters is: 𝜏𝑚𝑎𝑥 = 1,

𝜏𝑚𝑖𝑛 = 0.001, 𝜌 = 0.1. Configuration of probability parameters: 𝛼 = 1, 𝛽 = 0, γ = 8,

𝑞0 = 0.01. Each iteration runs 512 ants in parallel.

The experimental environment is also carefully controlled to ensure the consistency of

computational power among the tests. All tests have been executed on the AMD

Threadripper 2990WX system with the clock running at 2.9Ghz. Only one experiment

was allowed to run on the system simultaneously without any other background tasks.

Execution parallelism is set to 32 threads on the first NUMA node. The ACO core

algorithm and dynamic optimization strategies are implemented in C++ language and

compiled with the MSVC compiler.

5.2.3. Experimental measurements

The absolute performance of the DMKP benchmark instance is the sum of each state’s

result profits. The total profit sum is a good overall performance indication because

each state equally contributes to the final result. A profit improvement of any state’s

result directly improves the total profit. The result performance is only comparable

105

against the same benchmark instance because every dataset instance will have a

different optimal total profit value. However, if the optimal or best-know values are

available, a comparable metric can be calculated as the result’s percentage difference

from the best-known result called the “result gap”. The goal is to minimize the result

gap, ideally to zero, which means the best-known or the optimal solution is found. The

result gap can be calculated for any single solution and plotted on a graph. Also,

dynamic algorithm performance can be measured using the difference in the result

gap that occurs after the dynamic change called the “gap slip”. Although gap slip is not

a primary objective of the optimization, it indicates how well the optimization algorithm

tackles a dynamic problem and should be minimized.

This research performs quantitative analysis across all benchmark instances using

“result gap” and “gap slip” metrics. The average result gap and average gap slip values

of each dynamic benchmark dataset are calculated from all dynamic states, as shown

in Figure 5-2. The best-known results are taken from a verified public repository [213].

Furthermore, all presented experimental measurements are the averages taken from

10 algorithm runs, and the standard deviation of the result gap is calculated to prove

statistical significance.

106

Figure 5-2: Experimental measurements visualization. The orange line represents a

measurement of each state’s result gap to the best know profit score. The green line

represents the result gap slip after the dynamic change. The total dynamic optimization

result gap is an average of all states’ result gap, and the total dynamic optimization result

gap is an average of all states’ gap slip.

5.3. Experimental results

The experimental work is split into two parts. The first part is dedicated to an iterative

tuning of ACO with Aphids strategy hyper-parameters using a reduced benchmark

dataset sample. Then the second part is dedicated to comparing ACO with Aphids

strategy with Full-Restart and Pheromone-Sharing strategies.

5.3.1. ACO with Aphids hyper-parameter tuning results

There are four new Aphids functions with tuneable parameters in the ACO with Aphids

algorithm, as shown in Figure 5-1. Initially, all Aphids tuneable parameters are

initialized to the default values, as shown in Table 5-2, and sweep the tested the

algorithm’s performance by varying one parameter value per test. The tests are

performed incrementally. The first test starts with all default parameter values, and the

following tests use the best parameter values found in the previous tests. Hyper-

parameter tuning is general to the algorithm, and tests can be performed on a subset

107

of datasets to reduce computational demand. GK03 and GK08 dataset groups with all

five dynamism levels are selected for the hyper parameter tuning test to represent low

and high complexity members of the benchmark.

Table 5-2: Aphids’ tuneable parameters table. Each parameter has a default value, min-

max value range used in tests, and test resolution.

Parameter Default Value Min Test

Value

Max Test

Value

Test

Resolution

Aphids’

relocation: 𝑨𝒓

1 0 2 0.25

Aphids’

honeydew

production: 𝑨𝒉

1 0 2 0.25

Aphids’ lay

down rate: 𝑨𝒍

1 0 2 0.25

Aphids’ kill

rate: 𝑨𝒌

0.5 0.01 1 0.2

The first tested parameter is Aphids’ relocation 𝐴𝑟. This parameter partially allows Ants

to relocate a portion of the Aphids based on the heuristic information. The heuristic

information is not a perfect measure of fitness. However, it can prove helpful for

dynamic optimization. The results show a clear optimization improvement with higher

𝐴𝑟 values and best-tested configuration is with 𝐴𝑟 = 2.

108

Figure 5-3: ACO with Aphids hyper-parameter tuning test number 1. Aphids’ relocation

parameter test. The results show the best dynamic optimization performance is achieved

using 𝑨𝒓 = 𝟐.

The second tested parameter is Aphids’ honeydew production 𝐴ℎ. This parameter

controls how much honeydew each aphid produces at the start of the iterative search,

where higher values result in stronger pheromone trails at the start of each dynamic

optimization state. The results show a significant optimization improvement with higher

𝐴ℎ values up to 𝐴ℎ = 1 after which the results had no more improvement. With

honeydew production above 1, Aphids saturate Ants’ pheromone trails with honeydew,

and extra honeydew does not further benefit the dynamic search.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Aphids' relocation parameter value

1. Aphids’ relocation parameter test

GK03 group GK08 group Average

109

Figure 5-4: ACO with Aphids hyper-parameter tuning test number 2. Aphids’ honeydew

production parameter test. The results show the best dynamic optimization performance

is achieved using 𝑨𝒉 = 𝟏.

The third tested parameter is Aphids’ lay down rate 𝐴𝑙. The results of the GK03

complexity group are not significantly diminished, and the larger GK08 complexity

group performs well too. This parameter controls how much Ants lay down new Aphids

on the edges of the best solution obtained in the previous state’s optimization. The

results show significant improvement with a lay down rate above 0, which is to be

expected. When no aphids are laid, the information is no longer shared between

states. When parameter 𝐴𝑙 = 1, it appears to be a middle ground where the smaller

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

0 0 0 0 0 0 0 0 0A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Aphids' honeydew production parameter value

2. Aphids’ honeydew production parameter test

GK03 group GK08 group Average

110

Figure 5-5: ACO with Aphids hyper-parameter tuning test number 3. Aphids’ lay down

rate parameter test. The results show the best dynamic optimization performance is

achieved using 𝑨𝒍 = 𝟏.

Finally, the last parameter tested is the Aphids’ kill rate 𝐴𝑘. This parameter controls

which portion of the aphids is killed after completing the iterative search. This

procedure ensures that the population does not grow too much and aphids are

removed from poorly performing edges. The results show a preference for a higher kill

rate 𝐴𝑘 = 0.8, but not killing all aphids, which leaves a small portion of carry-over

aphids from previous states.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

0 0 0 0 0 0 0 0 0A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Aphids' lay down rate parameter value

3. Aphids’ lay down rate parameter test

GK03 group GK08 group Average

111

Figure 5-6: ACO with Aphids hyper-parameter tuning test number 4. Aphids’ kill rate

parameter test. The results show the best dynamic optimization performance is achieved

using 𝑨𝒌 = 𝟎. 𝟖.

In summary of ACO with Aphids hyper-parameter tuning, the Aphids specific hyper-

parameters have been tested to find the best configuration to optimize the DMKP

problem. The configuration: 𝐴𝑟 = 2, 𝐴ℎ = 1, 𝐴𝑙 = 1, 𝐴𝑘 = 0.8 has been shown to

perform the best. This ACO with Aphids hyper-parameter configuration will be used

for the next experiment comparing ACO with aphids against the other two most

popular ACO dynamic optimization strategies.

5.3.2. ACO with Aphids comparison with other ACO

dynamic optimization strategies result

This experiment is dedicated to a full comparison of ACO with Aphids dynamic

optimization algorithm strategy with the other two most common dynamic optimization

strategies for ACO algorithm, Full-Restart and Pheromone-Sharing strategies. All

strategies are tested using 55 fully-defined DMKP benchmark datasets with eleven

dataset complexity groups from smallest GK01 to largest GK11 and five dynamism

levels from SAM-0.01 to SAM-0.2. All three dynamic optimization strategies are

implemented on the same ACO search core, and the experiments are conducted on

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0.01 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Aphids' kill rate parameter value

4. Aphids’ kill rate parameter test

GK03 group GK08 group Average

112

the isolated test system. Therefore, the only test variables are the dynamic

optimization strategies. The statistical results’ significance is proven with acquired

each data point by running the dynamic optimization ten times.

In this experiment, the DMKP benchmark datasets provide a wide range of complexity

and dynamism levels for testing the dynamic optimization strategies. The complexity

of the datasets is determined by the number of items and knapsacks involved, with

GK01 representing the simplest scenario and GK11 representing the most complex.

GK01 includes 100 items and 15 knapsacks, offering a relatively straightforward

scenario for the strategies to handle. This represents a relatively small-scale problem

scenario that might be encountered in practical applications such as small business

inventory management or simple resource allocation tasks. On the other end of the

spectrum, GK11 presents a more complicated scenario with 2500 items and 100

knapsacks. This scenario poses a significant challenge to the optimization strategies

due to the larger search space and the increased complexity in finding optimal

solutions. Situations mirroring this complexity could be found in larger-scale operations

such as supply chain management for large corporations or large-scale project

scheduling. The dynamism levels of the datasets range from SAM-0.01 to SAM-0.2.

SAM-0.01 corresponds to a maximum interstate dynamism level of 1%. This implies

that up to 1% of the problem parameters may change as the problem evolves,

representing a scenario with relatively minor changes. This could mirror real-world

situations where changes in the problem parameters are infrequent or subtle. SAM-

0.2, on the other hand, corresponds to a maximum interstate dynamism level of 20%.

This means that up to 20% of the problem parameters can change, representing a

highly dynamic scenario. This could reflect real-world situations where the problem

parameters can change significantly and frequently, such as in dynamic market

conditions or unstable operational environments. By using these datasets, the

experiment aims to assess the performance of the dynamic optimization strategies

across a broad range of complexity and dynamism levels, mirroring the various

conditions they might encounter in real-world applications. This comprehensive

approach ensures the robustness and applicability of the experimental results.

In Table 5-3, the results show an average result gap of each dynamic optimization

strategy for every dynamic benchmark dataset. The table also includes the average

summary per dataset group and dynamism level, as well as the total average of the

113

dynamic optimization strategy. Overall, the ACO with Aphids has shown the best

performance, with an average result gap of 0.519%. The second best was the

Pheromone-Sharing strategy, with an average gap of 0.733%. Lastly, the Full-Restart

strategy achieved an average result gap of 1.092%. In relative terms, these results

show that the ACO with Aphids strategy performed 110% better than the Full-Restart

strategy and 41% better than the Pheromone-Sharing strategy.

Table 5-3: Dynamic optimization average result gap of all optimization strategies. Each

data point is an average of all dynamic states’ result gap over ten algorithm runs. (Lower

is better)

Average results gap Dynamism
level

Dataset group Average

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11

Strategy

ACO with
Aphids

SAM-0.01 0.158% 0.160% 0.117% 0.171% 0.124% 0.159% 0.339% 0.429% 0.694% 0.652% 0.563% 0.324%

SAM-0.02 0.160% 0.191% 0.125% 0.160% 0.139% 0.189% 0.294% 0.437% 0.640% 0.696% 0.694% 0.339%

SAM-0.05 0.215% 0.259% 0.173% 0.241% 0.177% 0.335% 0.355% 0.595% 0.756% 0.902% 0.927% 0.449%

SAM-0.1 0.283% 0.347% 0.233% 0.454% 0.322% 0.539% 0.553% 0.951% 0.969% 1.208% 1.142% 0.636%

SAM-0.2 0.282% 0.407% 0.281% 0.566% 0.391% 0.708% 0.900% 1.354% 1.413% 1.641% 1.371% 0.847%

Average 0.220% 0.273% 0.186% 0.319% 0.231% 0.386% 0.488% 0.753% 0.894% 1.020% 0.939% 0.519%

Full-Restart

SAM-0.01 0.142% 0.199% 0.481% 0.933% 0.867% 1.100% 1.622% 1.777% 2.231% 2.011% 1.661% 1.184%

SAM-0.02 0.124% 0.191% 0.425% 0.876% 0.766% 1.040% 1.520% 1.822% 2.285% 2.266% 1.890% 1.200%

SAM-0.05 0.149% 0.194% 0.373% 0.799% 0.630% 0.969% 1.399% 1.649% 2.234% 2.134% 1.584% 1.101%

SAM-0.1 0.166% 0.177% 0.329% 0.735% 0.655% 0.916% 1.254% 1.504% 1.985% 1.896% 1.358% 0.998%

SAM-0.2 0.127% 0.163% 0.325% 0.683% 0.590% 0.888% 1.198% 1.547% 1.876% 1.915% 1.433% 0.977%

Average 0.142% 0.185% 0.387% 0.805% 0.701% 0.983% 1.399% 1.660% 2.122% 2.044% 1.585% 1.092%

Pheromone-
Sharing

SAM-0.01 0.180% 0.196% 0.211% 0.236% 0.184% 0.263% 0.227% 0.454% 0.750% 0.882% 1.137% 0.429%

SAM-0.02 0.190% 0.219% 0.218% 0.260% 0.190% 0.364% 0.268% 0.529% 0.805% 1.050% 1.229% 0.484%

SAM-0.05 0.276% 0.332% 0.283% 0.345% 0.225% 0.486% 0.420% 0.851% 1.082% 1.271% 1.300% 0.625%

SAM-0.1 0.337% 0.453% 0.377% 0.612% 0.381% 0.799% 0.831% 1.419% 1.938% 1.720% 1.344% 0.928%

SAM-0.2 0.340% 0.511% 0.471% 0.819% 0.497% 1.062% 1.565% 1.933% 2.490% 2.056% 1.457% 1.200%

Average 0.265% 0.342% 0.312% 0.454% 0.295% 0.595% 0.662% 1.037% 1.413% 1.396% 1.293% 0.733%

Furthermore, the result gap standard deviation of each experiment is shown in Table

5-4 to disprove a null hypothesis. Out of all tested dynamic optimization strategies, the

Full-Restart strategy had the lowest overall standard deviation of just 0.0104%, the

ACO with Aphids strategy had a larger overall standard deviation of 0.0195%, and the

Pheromone-Sharing strategy had the largest overall standard deviation of 0.0330%.

Statistical significance and rejection of the null hypothesis can be proved using the

two-sample unpaired t-test considering the result magnitude, standard deviation, and

sample size [216]. ACO with Aphids and Full-Restart strategies sample separations

result in a T-value of 81.9 and a P-value < 10−6. ACO with Aphids and Pheromone-

Sharing strategies sample separations result in a T-value of 17.7 and a P-value <

114

10−6. Both t-test groups reject the null hypothesis and show exceptionally statistically

significant sample separations.

Table 5-4: Dynamic optimization result gap standard deviation of all optimization

strategies. Each data point is a standard deviation of the dynamic optimization result gap

with a sample size of 10 runs.

Result gap standard
deviation

Dynamism
level

Dataset group Average

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11

Strategy

ACO with
Aphids

SAM-0.01 0.032% 0.030% 0.022% 0.034% 0.020% 0.025% 0.012% 0.015% 0.046% 0.012% 0.010% 0.026%

SAM-0.02 0.019% 0.027% 0.017% 0.018% 0.014% 0.021% 0.022% 0.013% 0.012% 0.014% 0.008% 0.018%

SAM-0.05 0.020% 0.027% 0.012% 0.022% 0.011% 0.019% 0.012% 0.012% 0.022% 0.019% 0.012% 0.018%

SAM-0.1 0.010% 0.020% 0.020% 0.012% 0.014% 0.029% 0.009% 0.012% 0.012% 0.011% 0.009% 0.016%

SAM-0.2 0.017% 0.025% 0.015% 0.010% 0.011% 0.046% 0.014% 0.013% 0.007% 0.011% 0.007% 0.019%

Average 0.021% 0.026% 0.017% 0.021% 0.015% 0.030% 0.014% 0.013% 0.024% 0.014% 0.009% 0.020%

Full-Restart

SAM-0.01 0.008% 0.005% 0.011% 0.011% 0.017% 0.014% 0.007% 0.006% 0.007% 0.004% 0.003% 0.009%

SAM-0.02 0.008% 0.009% 0.011% 0.012% 0.019% 0.008% 0.006% 0.005% 0.010% 0.006% 0.003% 0.010%

SAM-0.05 0.007% 0.010% 0.010% 0.015% 0.026% 0.006% 0.006% 0.008% 0.009% 0.007% 0.002% 0.011%

SAM-0.1 0.007% 0.008% 0.011% 0.016% 0.024% 0.014% 0.011% 0.010% 0.004% 0.005% 0.002% 0.012%

SAM-0.2 0.010% 0.012% 0.008% 0.010% 0.019% 0.006% 0.008% 0.006% 0.007% 0.006% 0.004% 0.010%

Average 0.008% 0.009% 0.010% 0.013% 0.021% 0.010% 0.008% 0.007% 0.008% 0.006% 0.003% 0.010%

Pheromone-
Sharing

SAM-0.01 0.036% 0.041% 0.035% 0.047% 0.019% 0.055% 0.014% 0.019% 0.102% 0.026% 0.022% 0.045%

SAM-0.02 0.020% 0.026% 0.040% 0.040% 0.020% 0.041% 0.019% 0.028% 0.021% 0.042% 0.016% 0.030%

SAM-0.05 0.023% 0.026% 0.016% 0.028% 0.012% 0.055% 0.021% 0.044% 0.018% 0.057% 0.012% 0.032%

SAM-0.1 0.017% 0.030% 0.018% 0.035% 0.007% 0.019% 0.025% 0.029% 0.029% 0.054% 0.005% 0.028%

SAM-0.2 0.014% 0.023% 0.025% 0.023% 0.013% 0.034% 0.029% 0.032% 0.023% 0.052% 0.006% 0.027%

Average 0.023% 0.030% 0.028% 0.036% 0.015% 0.043% 0.022% 0.031% 0.050% 0.048% 0.014% 0.033%

The average gap slip results show how much performance decreases on average after

each dynamic change. The gap slip is calculated using the first iteration’s result of the

current state minus the last iteration result before the dynamic change has occurred.

The average gap slip measurements are shown in Table 5-5 of each dynamic

optimization strategy for every dynamic benchmark dataset. Interestingly, the

Pheromone-Sharing strategy achieved the best average gap slip of only 0.240%.

Meanwhile, the ACO with Aphids strategy has achieved an average gap slip of

0.304%. Lastly, the Full-Restart strategy achieved the worst average gap slip of

1.420%.

115

Table 5-5: Dynamic optimization average gap slip of all optimization strategies. Each

data point is an average of all dynamic states gap slip over ten algorithm runs. (Lower is

better)

Average gap slip
Dynamism

level

Dataset group Average

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11

Strategy

ACO with
Aphids

SAM-0.01 0.050% 0.073% 0.103% 0.125% 0.155% 0.167% 0.128% 0.108% 0.013% 0.014% 0.005% 0.086%

SAM-0.02 0.101% 0.134% 0.169% 0.177% 0.185% 0.192% 0.146% 0.121% 0.038% 0.027% 0.009% 0.118%

SAM-0.05 0.263% 0.288% 0.339% 0.339% 0.292% 0.304% 0.197% 0.182% 0.073% 0.043% 0.026% 0.213%

SAM-0.1 0.563% 0.587% 0.607% 0.553% 0.532% 0.506% 0.334% 0.307% 0.178% 0.121% 0.043% 0.394%

SAM-0.2 1.062% 1.090% 1.116% 0.877% 0.956% 0.759% 0.684% 0.475% 0.410% 0.273% 0.074% 0.707%

Average 0.408% 0.434% 0.467% 0.414% 0.424% 0.386% 0.298% 0.239% 0.142% 0.096% 0.031% 0.304%

Full-Restart

SAM-0.01 2.730% 2.607% 2.400% 1.785% 2.049% 1.465% 1.333% 0.685% 0.474% 0.232% 0.060% 1.438%

SAM-0.02 2.645% 2.566% 2.390% 1.805% 2.220% 1.486% 1.474% 0.827% 0.542% 0.260% 0.078% 1.481%

SAM-0.05 2.518% 2.528% 2.337% 1.704% 2.101% 1.407% 1.700% 0.904% 0.709% 0.349% 0.071% 1.484%

SAM-0.1 2.355% 2.369% 2.174% 1.550% 1.916% 1.290% 1.608% 0.816% 0.698% 0.318% 0.061% 1.378%

SAM-0.2 2.242% 2.248% 2.085% 1.552% 1.861% 1.254% 1.467% 0.786% 0.641% 0.308% 0.061% 1.319%

Average 2.498% 2.464% 2.277% 1.679% 2.029% 1.380% 1.516% 0.804% 0.613% 0.293% 0.066% 1.420%

Pheromone-
Sharing

SAM-0.01 0.041% 0.052% 0.044% 0.047% 0.054% 0.043% 0.063% 0.077% 0.042% 0.043% 0.027% 0.048%

SAM-0.02 0.090% 0.096% 0.080% 0.084% 0.083% 0.079% 0.067% 0.082% 0.048% 0.047% 0.032% 0.072%

SAM-0.05 0.204% 0.203% 0.199% 0.208% 0.211% 0.181% 0.117% 0.133% 0.077% 0.071% 0.039% 0.149%

SAM-0.1 0.477% 0.476% 0.466% 0.434% 0.461% 0.365% 0.263% 0.226% 0.146% 0.119% 0.043% 0.316%

SAM-0.2 1.179% 1.044% 0.995% 0.707% 0.895% 0.555% 0.565% 0.314% 0.247% 0.178% 0.054% 0.612%

Average 0.398% 0.374% 0.357% 0.296% 0.341% 0.244% 0.215% 0.166% 0.112% 0.092% 0.039% 0.240%

The performance of dynamic dataset group results is visually compared in Figure 5-7.

For small benchmark dataset group instances GK01 and GK02, the Full-Restart

strategy performs the best with an average result gap of 0.14% and 0.18%,

respectively. This strategy solves each optimization state from the start, and

information learned from previous states does not negatively impact algorithm

convergence. The ACO with Aphids strategy demonstrated superior performance in

comparison to Full-Restart and Pheromone-Sharing strategies for all larger instances

GK03 through GK11. Additionally, the ACO with Aphids strategy outperforms the

Pheromone-Sharing strategy for every dynamic dataset group.

116

Figure 5-7: Dynamic optimization average performance of each dynamic optimization

strategy averaged per dataset group. Each data point is an average result gap of all five

dynamism levels run ten times. Error bars indicate the standard deviation of experiment

results.

The average performance of the state’s first and last iterations across all dynamic

dataset groups are compared in Figure 5-8. The upper mark indicates the average

result gap achieved within the first iteration after the dynamic change, and the lower

mark is the average final result achieved before the dynamic change occurs. The first

iteration of the Full-Restart strategy for all dataset groups has the worst result gap of

2.51%. This behaviour is expected because the Full-Restart strategy represents the

worst-case scenario where the information is not carried from one dynamic state to

the next, and each state has to converge independently. However, the Full-Restart

strategy also improves the result gap the most by an average of 1.42%. The first

iteration result gap of the ACO with Aphids strategy is, on average, 0.83%, which is

only slightly better than the result gap of the Pheromone-Sharing strategy of 0.99%.

However, the improvement of the ACO with Aphids strategy from the first iteration to

the last by 0.31% is more significant than the improvement of the Pheromone-Sharing

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Dynamic benchmark dataset group

Dynamic optimization average result performance of select
optimization strategies broken down by dataset group

ACO with Aphids Full-Restart Pheromone-Sharing

117

strategy by 0.25% for every dataset group. This indicates that aphids help ants adapt

to a new dynamic environment quicker, and the starting pheromone is less localized

to an outdated solution. The benefit of using aphids is compounded for especially large

benchmark dataset groups, like GK08 and larger.

Figure 5-8: Dynamic optimization average state’s result improvement from the first to

the last iteration of select optimization strategies broken down by dataset group. Each

result data point is an average result gap of all five dynamism levels run ten times.

Selected optimization strategies are also compared by performance for all dynamism

levels in Figure 5-9. The Full-Restart strategy performs almost equally well for all

dynamism levels, with an average result gap of 1.09%. This behaviour is expected as

the Full-Restart strategy solves each dynamic state independently, and the dynamism

level has no impact on algorithm performance. Then for both ACO with Aphids and

Pheromone-Sharing strategies, a lower dynamism level allows for better performance

because previously found solutions are changed to a lower degree and are more up-

to-date. On the flip side, the larger dynamism level hurts the dynamic optimization

performance of ACO with Aphids and Pheromone-Sharing strategies. At the highest

dynamism level, 𝛥 = 0.2 Pheromone-Sharing strategy is no longer beneficial over the

Full-Restart strategy. Furthermore, the ACO with Aphids strategy consistently

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Dynamic benchmark dataset group

Dynamic optimization average state's result improvement
from first to last iteration broken down by dataset group

ACO with Aphids Full-Restart Pheromone-Sharing

118

outperforms the Pheromone-Sharing strategy across all dynamism levels, on average

29.2% lower result gap, the lowest reduction for SAM-0.01 dynamism level is 24.4%,

and the highest reduction for SAM-0.1 dynamism level is 31.4%.

Figure 5-9: Dynamic optimization average performance of each dynamic optimization

strategy averaged per dynamism. Each data point is an average result gap of all 11 dataset

groups run ten times. Error bars indicate the standard deviation of experiment results.

The average performance of the first and last iteration of the state across all dynamism

levels is compared in Figure 5-10. Similarly to Figure 5-8, the upper mark indicates the

average result gap achieved within the first iteration after the dynamic change has

occurred, and the lower mark is the average final result achieved before the dynamic

change occurs. As expected for the Full-Restart strategy, dynamism has almost no

impact on the first iteration’s performance after the dynamic change because each

state is solved independently. ACO with Aphids and Pheromone-Sharing strategies,

higher dynamism causes more prominent performance degradation after the dynamic

change. However, on average, the overall first iteration performance of the ACO with

Aphids strategy is better by 15.6% than the Pheromone-Sharing strategy.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

SAM-0.01 SAM-0.02 SAM-0.05 SAM-0.1 SAM-0.2A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Dynamic benchmark dynamism level

Dynamic optimization average result performance of select
optimization strategies broken down by dynamism

ACO with Aphids Full-Restart Pheromone-Sharing

119

Figure 5-10: Dynamic optimization average state’s result improvement from the first to

the last iteration of select optimization strategies broken down by dynamism. Each result

data point is an average result gap of all 11 dataset groups run ten times.

Finally, the aggregate convergence through all states is compared in Figure 5-11.

Each convergence line represents the average convergence of all tested benchmark

datasets. The average convergence is calculated from the optimization result with a

normalized optimization time to account for differences in the time given for each

state’s optimization based on benchmark dataset complexity. The Pheromone-

Sharing strategy and ACO with Aphids strategy reach equilibrium over the first few

states where subsequent state solutions results are no closer to best-know solution

results than previous states’ solutions. Meanwhile, the Full-Restart strategy does not

show any inter-state convergence.

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

SAM-0.01 SAM-0.02 SAM-0.05 SAM-0.1 SAM-0.2

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Dynamic benchmark dynamism level

Dynamic optimization average state's result improvement
from first to last iteration broken down by dynamism

ACO with Aphids Full-Restart Pheromone-Sharing

120

Figure 5-11: Dynamic optimization average convergence performance through all

dynamic states. Each convergence performance result is an average convergence of all 55

benchmark datasets run ten times.

For a clearer view, Figure 5-12 shows the same aggregate convergence as in Figure

5-11, but only through the first ten states. The ACO with Aphids strategy starts with

significantly better first state optimization results than Full-Restart and Pheromone-

Sharing strategies. This first state’s convergence improvement is caused by a high

aphids’ relocation rate, which occurs in every state, including the first. Then as

predicted in Figure 2-6, the Full-Restart strategy converges almost equally for every

state. The Pheromone-Sharing strategy has a minimal result gap slip and a reduced

convergence slope. Finally, ACO with Aphids strategy has reasonably good result gap

slip while maintaining an excellent convergence slope after each dynamic change.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Optimization over time

Dynamic optimization average convergence performance
through all dynamic states

ACO with Aphids Full-Restart Pheromone-Sharing

121

Figure 5-12: Dynamic optimization average convergence performance through the first

ten dynamic states. Each convergence performance result is an average convergence of

all 55 benchmark datasets run ten times.

In summary, ACO with Aphids has outperformed the Pheromone-Sharing strategy and

has proven especially beneficial for large optimization problems. This demonstrates

how adding aphids to the ACO algorithm improves the dynamic performance of large

optimization problems with limited time allowed to converge. Also, for the smallest

optimization problems Full-Restart strategy has performed better than dedicated

strategies for dynamic optimization, as it was accurately predicted by previous

research [157].

5.4. Chapter Summary

This chapter aimed to solve the trade-off problem offered by currently used

rudimentary ACO dynamic optimization strategies. The full-Restart strategy shows a

significant penalty to solution quality after each dynamic change, and the Pheromone-

Sharing strategy has a reduced slope of convergence.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e
b

es
t

kn
o

w
 s

ta
te

's
 r

es
u

lt

Optimization over time

Dynamic optimization average convergence performance
through first ten dynamic states

ACO with Aphids Full-Restart Pheromone-Sharing

122

A nature-inspired addition to the Ant Colony Optimization algorithm was introduced to

improve its performance for discrete dynamic optimization problems. The proposed

method modelled ants’ interaction with aphids in the dynamic environment. In the real

world, Aphids produce honeydew which is nutritious to ants, and under ants’ influence,

aphids give up their mobility to increase honeydew production. This nature-inspired

interaction between ants and aphids is beneficial for dynamic optimization, where ants

control the population of the aphids and placed aphids mediate the information sharing

across dynamic states of the optimization problem.

Then ACO with Aphids algorithm has been tested against the two most popular

dynamic optimization strategies, Full-Restart and Pheromone-Sharing on Dynamic

Multidimensional Knapsack Problem (DMKP). ACO with Aphids has significantly

outperformed the Full-Restart strategy for large dataset groups and a limited amount

of time to solve each state. On average, the result gap was reduced by 52.5%, which

is a 110.5% better performance. Also, ACO with Aphids has outperformed the

Pheromone-Sharing strategy in every optimization scenario for all dynamism levels

and dataset group sizes. On average, the result gap was reduced by 29.2%, which is

a 41.2% better performance. The test results have proved ACO with Aphids superior

performance over both Full-Restart and Pheromone-Sharing strategies with rejected

null hypothesis, P-value less than 10−6.

Overall, the proposed ACO with Aphids algorithm proved to be a well-rounded,

dynamic optimization strategy with a strong ability to adapt to dynamic change and

maintain quick convergence. This strong adaptability further compounds through

several dynamic states for especially large optimization problems, where positive

convergence occurs over multiple dynamic optimization states.

The contributions of this research chapter to science are as follows:

• Introduced a new nature-inspired dynamic optimization strategy for ACO

algorithm with improved interstate convergence, called ACO with Aphids. The

strategy is modelled by mimicking the real-life symbiotic relationship between

ants and aphids.

• Provided the description of ACO with Aphids algorithm with enough detail to

make this strategy possible to apply to any dynamic optimization problem.

123

• Tested and proved the superior performance of ACO with Aphids algorithm

solving event-triggered Dynamic Multidimensional Knapsack Problem (DMKP)

against two most popular competing strategies: Pheromone-Sharing and Full-

Restart.

• The work presented in this chapter has been submitted to the peer-reviewed

journal Swarm and Evolutionary Computation, Elsevier [7].

124

Chapter 6. Conclusions and future work

6.1. Conclusions

This thesis studied Ant Colony Optimization (ACO) algorithm to maximize the

efficiency of solving Dynamic Optimization Problems (DOPs). In particular, solving

combinatorial DOPs which are much more representative of optimization problems

that occur in the real world. ACO algorithm is excellent at solving such problems due

to ants’ highly adaptable behaviour. The main contribution of this thesis is a High

Efficiency Dynamic Combinatorial Optimization System (HEDCOS), which combines

improvements made to the ACO algorithm.

This thesis HEDCOS addresses three identified important research gaps in the

literature on ACO solving combinatorial DOPs: One, dynamic optimization methods

for ACO inter-state convergence are rudimentary. Two, sub-heuristic ACO search

methods lack a generalized methodology to improve algorithm convergence. Three,

combinatorial dynamic optimization research lacks replicable qualities.

First, this thesis introduced a sub-heuristic ACO search method called Dynamic Impact

to improve algorithm convergence for constrained optimization problems. Dynamic

Impact is an additional component to the ACO algorithm probability calculation besides

pheromone and heuristic information. Similar to heuristic information, Dynamic Impact

is a myopic search component, but the value of Dynamic Impact depends on the state

of partial solution, which considers non-linear problem fitness and resource

consumption. ACO with Dynamic Impact was tested on real-world MMPPFO problem

and theoretical MKP problem. For the GK benchmark datasets, ACO with Dynamic

Impact results were 4.26 times closer to the best-known or optimal result within the

same search efforts. Dynamic Impact methodology is compatible with both static and

dynamic optimization problems.

Second, this thesis has resolved a critical gap in the replicability of combinatorial

dynamic optimization research and introduced a non-stochastic dynamic dataset

generator. Previously, researchers used either private real-world optimization datasets

or stochastically generated datasets from existing benchmarks without publishing

optimization states or stochastic generator seeds. This dataset generator removed all

125

randomness and used only deterministic methods to generate DMKP states in

sequential order. Then, created 1405 fully defined DMKP benchmark instances with 5

dynamism levels using this dataset generation method.

Third, this thesis introduced ACO with Aphids nature-inspired dynamic optimization

algorithm. The ACO with Aphids mimics the naturally occurring symbiotic relationship

between ants and aphids to improve the performance of discrete dynamic

optimization. Aphids help mediate information throughout dynamic optimization and

improve overall inter-state convergence. For an accurate comparison, ACO with

Aphids, Full-Restart and Pheromone-Sharing strategies were implemented on the

ACO with Dynamic Impact algorithm introduced earlier and solved the DMKP

benchmark. ACO with Aphids showed superior performance. On average, the result

gap was reduced by 52.5% compared to the Full-Restart strategy and 29.2%

compared to the Pheromone-Sharing strategy.

Overall, by developing HEDCOS, ACO algorithm combinatorial dynamic optimization

performance was improved by a total of 8.99 times compared to the baseline high-

performance parallel ACO solving MKP. Moreover, all optimization results are fully

replicable, which allows for transparent comparison with future research solutions.

However, while the High Efficiency Dynamic Combinatorial Optimization System

(HEDCOS) developed in this thesis showed significant performance improvements in

combinatorial dynamic optimization with ACO, the research has certain limitations.

The study was primarily validated using the theoretical DMKP benchmark and only

partially tested with real-world MMPPFO problem in a static environment. The

comparisons of the ACO with Aphids algorithm were limited to only two other ACO

dynamic optimization strategies.

6.2. Future work

HEDCOS was researched with real-world combinatorial DOPs in mind. However, it

was thoroughly tested with the theoretical DMKP benchmark and only partially with

real-world MMPPFO problem in a static environment. Naturally, the next step is to test

ACO with Aphids solving a dynamic variant of the MMPPFO problem.

126

ACO with Aphids algorithm has only been compared to the other two ACO dynamic

optimization strategies. In the future, it would be useful to perform dynamic

optimization tests to compare ACO with Aphids algorithm to other well-known dynamic

optimization algorithms based on GA and PSO.

The baseline ACO algorithm used in this research implements the pheromone logic

described by Stützle and Hoos in Min-Max Ant System. However, there is another

profoundly different pheromone mediation logic of Population-based ACO described

by Guntsch and Middendorf. Theoretically, aphids are compatible with both

pheromone mediation types. A competing P-ACO with Aphids algorithm is worth

investigating for both real-world applications and solving the DMKP benchmark.

This research has focused on single-objective optimization. However, many real-world

problems are multi-objective in nature, involving trade-offs between competing

objectives. Developing ACO methods that can handle these multi-objective problems

in dynamic environments represents an important future direction.

As the complexity and size of problems in industry continue to grow, the developed

algorithms need to keep pace. Future research should focus on scaling these

algorithms, testing them on larger and more complex problems. This exploration will

not only test the algorithms' limits but also provide valuable insight into their behaviour

and performance under high stress and large-scale conditions.

Integrating machine learning, particularly reinforcement learning, could offer a way to

enhance ACO algorithm performance. For instance, machine learning could be used

to learn the optimal parameters or strategies for the algorithm over time, reducing the

need for manual tuning and potentially leading to better results.

Many real-world optimization problems are influenced by real-time data streams such

as market prices, sensor data, or user behaviour. Future work could explore how to

incorporate such dynamic data into the optimization process, providing solutions that

are not just optimal but also timely and context-aware.

Lastly, DMKP benchmark datasets were created using a deterministic state generation

methodology where states are created in sequential order based on information within

the initial state. The same deterministic dataset generation principles can also be

127

adapted to other types of optimization problems, like the Traveling Salesman Problem

or Job-shop Scheduling Problem.

128

References

[1] J. Skackauskas, T. Kalganova, I. Dear and M. Janakiram, “Dynamic impact

for ant colony optimization algorithm,” Swarm and Evolutionary Computation,

vol. 69, 2022.

[2] J. Skackauskas, “GitHub - Dynamic MKP Datasets Generator,” 2021.

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-Datasets-

Generator. [Accessed 24 2 2021].

[3] J. Skackauskas, “GitHub - Dynamic MKP Benchmark Datasets,” 2021.

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-Benchmark-

Datasets. [Accessed 14 4 2021].

[4] J. Skackauskas, “Dynamic-MKP Benchmark Datasets,” IEEE Dataport, 2022.

[5] J. Skackauskas, “GitHub - Dynamic MKP Datasets Visualization,” 2021.

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-Datasets-

Visualization. [Accessed 1 1 2021].

[6] J. Skackauskas and T. Kalganova, “Dynamic Multidimensional Knapsack

Problem benchmark datasets,” Systems and Soft Computing, vol. 4, 2022.

[7] J. Skackauskas and T. Kalganova, “Herder Ants: Ant Colony Optimization

with Aphids for Discrete Event-Triggered Dynamic Optimization Problems,”

Submitted to Swarm and Evolutionary Computation, 2022.

[8] M. Mavrovouniotis, C. Li and S. Yang, “A survey of swarm intelligence for

dynamic optimization: Algorithms and applications,” Swarm and Evolutionary

Computation, vol. 33, pp. 1 - 17, 2017.

[9] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67 - 82, 1997.

129

[10] G. B. McMahon and P. G. Burton, “Flow-Shop Scheduling with the Branch-

and-Bound Method,” Operations research, vol. 15, no. 3, pp. 473 - 481, 1967.

[11] D. Bertsimas and J. N. Tsitsiklis, “Introduction to linear optimization,” Athena

Scientific, vol. 7, 1997.

[12] R. Bellman, “Dynamic programming,” Science, 1966.

[13] G. Steiner, “On the complexity of dynamic programming for sequencing

problems with precedence constraints,” Annals of operations research, vol.

26, no. 1-4, pp. 103 - 123, 1990.

[14] J. Branke and H. Schmeck, “Designing Evolutionary Algorithms for Dynamic

Optimization Problems,” Advances in Evolutionary Computing, pp. 239 - 262,

2003.

[15] C. Arango, P. Cortés, L. Onieva and A. Escudero, “Simulation‐Optimization

Models for the Dynamic Berth Allocation Problem,” Computer‐Aided Civil and

Infrastructure Engineering, vol. 28, no. 10, pp. 769 - 779, 2013.

[16] Y. Liu, X. Ling, Z. Shi, M. LV, J. Fang and L. Zhang, “A Survey on Particle

Swarm Optimization Algorithms for Multimodal Function Optimization,”

Journal of Software, vol. 6, no. 12, 2011.

[17] T. Stützle and H. H. Hoos, Stochastic Local Search, The Morgan Kaufmann

Series in Artificial Intelligence, 2005.

[18] M. Mavrovouniotis and S. Yang, “Ant colony optimization with immigrants

schemes for the dynamic travelling salesman problem with traffic factors,”

Applied Soft Computing, vol. 13, no. 10, pp. 4023 - 4037, 2013.

[19] D. Yazdani, J. Branke, M. N. Omidvar, X. Li, C. Li, M. Mavrovouniotis, T. T.

Nguyen, S. Yang and X. Yao, “IEEE CEC 2022 Competition on Dynamic

Optimization Problems Generated by Generalized Moving Peaks

Benchmark,” arXiv: 2106.06174, 2021.

[20] X. Li, M. G. Epitropakis, K. Deb and A. Engelbrecht, “Seeking Multiple

Solutions: An Updated Survey on Niching Methods and Their Applications,”

130

IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp. 518 - 538,

2017.

[21] Q. Li, J. Zou, S. Yang, J. Zheng and G. Ruan, “A predictive strategy based

on special points for evolutionary dynamic multi-objective optimization,” Soft

Computing, vol. 23, no. 11, pp. 3723 - 3739, 2018.

[22] C. Raquel and X. Yao, “Dynamic Multi-objective Optimization: A Survey of

the State-of-the-Art,” Evolutionary Computation for Dynamic Optimization

Problems, pp. 85 - 106, 2013.

[23] T. T. Nguyen, S. Yang and J. Branke, “Evolutionary dynamic optimization: A

survey of the state of the art,” Swarm and Evolutionary Computation, vol. 6,

pp. 1-24, 2012.

[24] X.-S. Yang, “Nature-inspired optimization algorithms: Challenges and open

problems,” Journal of computational science, 2020.

[25] M. Dorigo and T. Stützle, “Ant colony optimization: overview and recent

advances,” Handbook of metaheuristics, pp. 311-351, 2019.

[26] M. K. Y. Shambour, A. A. Abusnaina and A. I. Alsalibi, “Modified Global

Flower Pollination Algorithm and its Application for Optimization Problems,”

Interdisciplinary sciences : computational life sciences, vol. 11, no. 3, pp. 496

- 507, 2018.

[27] Y. Zheng, X. Lu, M. Zhang and S. Chen, “Optimization Problems and

Algorithms,” Biogeography-Based Optimization: Algorithms and Applications,

pp. 1 - 25, 2018.

[28] Q. Xu, Z. Xu and T. Ma, “A Short Survey and Challenges for Multiobjective

Evolutionary Algorithms Based on Decomposition,” 2019 International

Conference on Computer, Information and Telecommunication Systems

(CITS), pp. 1 - 5, 2019.

[29] Z. Yao, Y. Jiang, B. Zhao, X. Luo and B. Peng, “A dynamic optimization

method for adaptive signal control in a connected vehicle environment,”

131

Journal of Intelligent Transportation Systems, vol. 24, no. 2, pp. 184 - 200,

2020.

[30] Y. Zhou and X. Liu, “Control Parameterization‐Based Adaptive Particle

Swarm Approach for Solving Chemical Dynamic Optimization Problems,”

Chemical Engineering & Technology, vol. 37, no. 4, pp. 692 - 702, 2014.

[31] A. A. Ateya, A. Muthanna, A. Vybornova, A. D. Algarni, A. Abuarqoub, Y.

Koucheryavy and A. Koucheryavy, “Chaotic salp swarm algorithm for SDN

multi-controller networks,” Engineering Science and Technology, an

International Journal, vol. 22, no. 4, pp. 1001 - 1012, 2019.

[32] G.-G. Wang, C.-L. Wei, Y. Wang and W. Pedrycz, “Improving distributed anti-

flocking algorithm for dynamic coverage of mobile wireless networks with

obstacle avoidance,” Knowledge-based systems, vol. 225, p. 107133, 2021.

[33] J. Eaton, S. Yang and M. Gongora, “Ant Colony Optimization for Simulated

Dynamic Multi-Objective Railway Junction Rescheduling,” IEEE Transactions

on Intelligent Transportation Systems, vol. 18, no. 11, pp. 2980 - 2992, 2017.

[34] S. Ali, K.-u.-R. Khoumbati and D. N. Hakro, “Multi-Hop Optimization in

Wireless Sensor Networks using Genetic Algorithm,” University of Sindh

Journal of Information and Communication Technology, vol. 3, no. 4, pp. 193

- 197, 2019.

[35] M. H. Afshar, “A new transition rule for ant colony optimization algorithms:

application to pipe network optimization problems,” Engineering optimization,

vol. 37, no. 5, pp. 525 - 540, 2005.

[36] D. Favaretto, E. Moretti and P. Pellegrini, “Ant colony system for a VRP with

multiple time windows and multiple visits,” Journal of Interdisciplinary

Mathematics, vol. 10, no. 2, pp. 263 - 284, 04/2007.

[37] Y. Marinakis and M. Marinaki, “A hybrid genetic – Particle Swarm

Optimization Algorithm for the vehicle routing problem,” Expert systems with

applications, vol. 37, no. 2, pp. 1446 - 1455, 2010.

132

[38] F. T. Chan, R. Bhagwat, N. Kumar, M. Tiwari and P. Lam, “Development of a

decision support system for air-cargo pallets loading problem: A case study,”

Expert systems with applications, vol. 31, no. 3, pp. 472 - 485, 2006.

[39] I. Dzalbs and T. Kalganova, “Accelerating supply chains with Ant Colony

Optimization across range of hardware solutions,” Computers & industrial

engineering, vol. 147, no. arXiv:2001.08102, p. 106610, 2020.

[40] R. Z. Farahani and M. Elahipanah, “A genetic algorithm to optimize the total

cost and service level for just-in-time distribution in a supply chain,”

International journal of production economics, vol. 111, no. 2, pp. 229 - 243,

2008.

[41] X.-b. Liu and X.-m. Sun, “A multi-improved genetic algorithm for facility layout

optimisation based on slicing tree,” International journal of production

research, vol. 50, no. 18, pp. 5173 - 5180, 2012.

[42] A. Sadrzadeh, “A genetic algorithm with the heuristic procedure to solve the

multi-line layout problem,” Computers & industrial engineering, vol. 62, no. 4,

pp. 1055 - 1064, 2012.

[43] J. M. Palomo-Romero, L. Salas-Morera and L. García-Hernández, “An island

model genetic algorithm for unequal area facility layout problems,” Expert

systems with applications, vol. 68, pp. 151 - 162, 2017.

[44] Y.-H. Perng, Y.-K. Juan and H.-S. Hsu, “Genetic algorithm-based decision

support for the restoration budget allocation of historical buildings,” Building

and environment, vol. 42, no. 2, pp. 770 - 778, 2007.

[45] T.-c. Fu, C.-p. Chung and F.-l. Chung, “Adopting genetic algorithms for

technical analysis and portfolio management,” Computers & mathematics

with applications, vol. 66, no. 10, pp. 1743 - 1757, 2013.

[46] P. C. Gilmore and R. E. Gomory, “The Theory and Computation of Knapsack

Functions,” Operations research, vol. 14, no. 6, pp. 1045 - 1074, 1966.

133

[47] D. Yska, Y. Mei and M. Zhang, “Genetic Programming Hyper-Heuristic with

Cooperative Coevolution for Dynamic Flexible Job Shop Scheduling,”

Genetic Programming, pp. 306 - 321, 2018.

[48] Y. Fang, C. Peng, P. Lou, Z. Zhou, J. Hu and J. Yan, “Digital-Twin-Based Job

Shop Scheduling Toward Smart Manufacturing,” IEEE transactions on

industrial informatics, vol. 15, no. 12, pp. 6425 - 6435, 2019.

[49] T. Jamrus, C.-F. Chien, M. Gen and K. Sethanan, “Hybrid Particle Swarm

Optimization Combined With Genetic Operators for Flexible Job-Shop

Scheduling Under Uncertain Processing Time for Semiconductor

Manufacturing,” IEEE transactions on semiconductor manufacturing, vol. 31,

no. 1, pp. 32 - 41, 2018.

[50] F. Zhang, Y. Mei, S. Nguyen and M. Zhang, “Evolving Scheduling Heuristics

via Genetic Programming With Feature Selection in Dynamic Flexible Job-

Shop Scheduling,” IEEE transactions on cybernetics, vol. 51, no. 4, pp. 1797

- 1811, 2021.

[51] M. Fera, F. Fruggiero, A. Lambiase, R. Macchiaroli and V. Todisco, “A

modified genetic algorithm for time and cost optimization of an additive

manufacturing single-machine scheduling,” International journal of industrial

engineering computations, vol. 9, no. 4, pp. 423 - 438, 2018.

[52] R. Liu, X. Xie, K. Yu and Q. Hu, “A survey on simulation optimization for the

manufacturing system operation,” International journal of modelling &

simulation, vol. 38, no. 2, pp. 116 - 127, 2018.

[53] P. Udhayakumar and S. Kumanan, “Sequencing and scheduling of job and

tool in a flexible manufacturing system using ant colony optimization

algorithm,” International journal of advanced manufacturing technology, vol.

50, no. 9-12, pp. 1075 - 1084, 2010.

[54] Z. Wang, M. Rahman, Y. Wong and J. Sun, “Optimization of multi-pass milling

using parallel genetic algorithm and parallel genetic simulated annealing,”

134

International journal of machine tools & manufacture, vol. 45, no. 15, pp. 1726

- 1734, 2005.

[55] P. Pongcharoen, W. Promtet, P. Yenradee and C. Hicks, “Stochastic

Optimisation Timetabling Tool for university course scheduling,” International

journal of production economics, vol. 112, no. 2, pp. 903 - 918, 2008.

[56] A. A. Gozali and S. Fujimura, “Solving University Course Timetabling Problem

Using Multi-Depth Genetic Algorithm,” SHS web of conferences, vol. 77,

2020.

[57] N. N. H. Almaalei and N. A. M. R. Siti, “REVIEW OF ACO ALGORITHM ON

NETWORK AND SCHEDULING PROBLEM,” Compusoft, vol. 8, no. 7, pp.

3250-3260, 2019.

[58] G. Pinto, I. Ainbinder and G. Rabinowitz, “A genetic algorithm-based

approach for solving the resource-sharing and scheduling problem,”

Computers & industrial engineering, vol. 57, no. 3, pp. 1131 - 1143, 2009.

[59] A. R. Kavitha and C. Chellamuthu, “Brain tumour segmentation from MRI

image using genetic algorithm with fuzzy initialisation and seeded modified

region growing (GFSMRG) method,” The imaging science journal, vol. 64, no.

5, pp. 285 - 297, 2016.

[60] H.-L. Yang and Q.-F. Lin, “Opinion mining for multiple types of emotion-

embedded products/services through evolutionary strategy,” Expert systems

with applications, vol. 99, pp. 44 - 55, 2018.

[61] M. Dragoni, “An Evolutionary Strategy For Concept-Based Multi-Domain

Sentiment Analysis,” IEEE computational intelligence magazine, vol. 14, no.

2, pp. 18 - 27, 2019.

[62] S. Ghosh and S. Bhattacharya, “A data-driven understanding of COVID-19

dynamics using sequential genetic algorithm based probabilistic cellular

automata,” Applied soft computing, vol. 96, p. 106692, 2020.

135

[63] D. J. Munk, G. A. Vio and G. P. Steven, “Topology and shape optimization

methods using evolutionary algorithms: a review,” Structural and

multidisciplinary optimization, vol. 52, no. 3, pp. 613 - 631, 2015.

[64] M. H. Abolbashari and S. Keshavarzmanesh, “On various aspects of

application of the evolutionary structural optimization method for 2d and 3d

continuum structures,” Finite elements in analysis and design, vol. 42, no. 6,

pp. 478 - 491, 2006.

[65] M. Castelli, L. Trujillo, L. Vanneschi and A. Popovič, “Prediction of energy

performance of residential buildings: A genetic programming approach,”

Energy and buildings, vol. 102, pp. 67 - 74, 2015.

[66] A. Zameer, J. Arshad, A. Khan and M. A. Z. Raja, “Intelligent and robust

prediction of short term wind power using genetic programming based

ensemble of neural networks,” Energy conversion and management, vol. 134,

pp. 361 - 372, 2017.

[67] G. Mauša and T. Galinac Grbac, “Co-evolutionary multi-population genetic

programming for classification in software defect prediction: An empirical

case study,” Applied soft computing, vol. 55, pp. 331 - 351, 2017.

[68] B. Tran, B. Xue and M. Zhang, “Genetic programming for feature construction

and selection in classification on high-dimensional data,” Memetic computing,

vol. 8, no. 1, pp. 3 - 15, 2015.

[69] M. Suganuma, S. Shirakawa and T. Nagao, “A genetic programming

approach to designing convolutional neural network architectures,”

Proceedings of the Genetic and Evolutionary Computation Conference, pp.

497 - 504, 2017.

[70] D. Hein, S. Udluft and T. A. Runkler, “Interpretable policies for reinforcement

learning by genetic programming,” Engineering applications of artificial

intelligence, vol. 76, pp. 158 - 169, 2018.

[71] T. Uhlig and O. Rose, “Simulation-based optimization for groups of cluster

tools in semiconductor manufacturing using simulated annealing,”

136

Proceedings of the 2011 Winter Simulation Conference (WSC), pp. 1852 -

1863, 2011.

[72] S. L. Rosen and C. M. Harmonosky, “An improved simulated annealing

simulation optimization method for discrete parameter stochastic systems,”

Computers & operations research, vol. 32, no. 2, pp. 343 - 358, 2005.

[73] S.-W. Lin, C.-Y. Cheng, P. Pourhejazy and K.-C. Ying, “Multi-temperature

simulated annealing for optimizing mixed-blocking permutation flowshop

scheduling problems,” Expert systems with applications, vol. 165, 2021.

[74] W. Bożejko, Z. Hejducki and M. Wodecki, “Applying metaheuristic strategies

in construction projects management,” Journal of civil engineering and

management, vol. 18, no. 5, pp. 621 - 630, 2012.

[75] C. Lee, “A review of applications of genetic algorithms in operations

management,” Engineering applications of artificial intelligence, vol. 76, pp. 1

- 12, 2018.

[76] M. Savelsbergh and T. Volgenant, “Edge exchanges in the degree-

constrained minimum spanning tree problem,” Computers & operations

research, vol. 12, no. 4, pp. 341 - 348, 1985.

[77] W. Rand and R. Riolo, “Measurements for understanding the behavior of the

genetic algorithm in dynamic environments: a case study using the shaky

ladder hyperplane-defined functions,” Proceedings of the 7th annual

workshop on Genetic and evolutionary computation, pp. 32-38, 2005.

[78] M. Mavrovouniotis, F. M. Muller and S. Yang, “Ant Colony Optimization With

Local Search for Dynamic Traveling Salesman Problems,” IEEE transactions

on cybernetics, vol. 47, no. 7, pp. 1743 - 1756, 2017.

[79] M. Mavrovouniotis and S. Yang, “A memetic ant colony optimization algorithm

for the dynamic travelling salesman problem,” Soft Computing, vol. 15, no. 7,

pp. 1405 - 1425, 2011.

137

[80] J. Branke, “Evolutionary optimization in dynamic environments,” Springer

Science & Business Media, vol. 3, 2012.

[81] R. Chen, K. Li and X. Yao, “Dynamic Multiobjectives Optimization With a

Changing Number of Objectives,” IEEE Transactions on Evolutionary

Computation, vol. 22, no. 1, pp. 157 - 171, 2018.

[82] M. E. Breaban and A. Iftene, “Dynamic Objective Sampling in Many-objective

Optimization,” Procedia Computer Science, vol. 60, pp. 178 - 187, 2015.

[83] S. Guan, Q. Chen and W. Mo, “Evolving dynamic multiple-objective

optimization problems with objective replacement,” Springer, 2005.

[84] H. Lu and W. Chen, “Dynamic-objective particle swarm optimization for

constrained optimization problems,” Journal of Combinatorial Optimization,

vol. 12, no. 4, pp. 409 - 419, 2006.

[85] Q. Jiang, L. Wang, Y. Lin, X. Hei, G. Yu and X. Lu, “An efficient multi-objective

artificial raindrop algorithm and its application to dynamic optimization

problems in chemical processes,” Applied Soft Computing, vol. 58, pp. 354 -

377, 2017.

[86] L. Huang, I. Suh and A. Abraham, “ Dynamic multi-objective optimization

based on membrane computing for control of time-varying unstable plants.,”

Information Sciences, vol. 181, no. 11, pp. 2370-2391, 2011.

[87] F. B. Ozsoydan and A. Baykasoğlu, “Quantum firefly swarms for multimodal

dynamic optimization problems,” Expert Systems With Applications, vol. 115,

pp. 189 - 199, 2019.

[88] R. Liu, X. Song, L. Fang and More..., “An r-dominance-based preference

multi-objective optimization for many-objective optimization,” Soft Computing,

vol. 21, no. 17, pp. 5003 - 5024, 09/2017.

[89] A. Sharifi, J. Kazemi Kordestani, M. Mahdaviani and M. R. Meybodi, “A novel

hybrid adaptive collaborative approach based on particle swarm optimization

138

and local search for dynamic optimization problems,” Applied Soft

Computing, vol. 32, pp. 432 - 448, 2015.

[90] T. Friedrich, T. Kroeger and F. Neumann, “Weighted preferences in

evolutionary multi-objective optimization,” Machine Learning and

Cybernetics, vol. 4, no. 2, pp. 139 - 148, 04/2013.

[91] H. Zhang and G.-G. Wang, “Improved NSGA-III using transfer learning and

centroid distance for dynamic multi-objective optimization,” Complex &

intelligent systems, 2021.

[92] S. Rostami and A. Shenfield, “A multi-tier adaptive grid algorithm for the

evolutionary multi-objective optimisation of complex problems,” Soft

Computing, vol. 21, no. 17, pp. 4963 - 4979, 09/2017.

[93] G. Li, G.-G. Wang, J. Dong, W.-C. Yeh and K. Li, “DLEA: A dynamic learning

evolution algorithm for many-objective optimization,” Information sciences,

vol. 574, pp. 567 - 589, 2021.

[94] H. Abbass, R. Sarker and C. Newton, “PDE: a Pareto-frontier differential

evolution approach for multi-objective optimization problems,” Evolutionary

Computation, vol. 2, pp. 971-978, 2001.

[95] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen and X. Yao, “Scaling Up

Dynamic Optimization Problems: A Divide-and-Conquer Approach,” IEEE

Transactions on Evolutionary Computation, vol. 24, no. 1, pp. 1 - 15, 2020.

[96] H. Fu, B. Sendhoff, K. Tang and X. Yao, “Robust Optimization Over Time:

Problem Difficulties and Benchmark Problems,” IEEE Transactions on

Evolutionary Computation, vol. 19, no. 5, pp. 731 - 745, 2015.

[97] A. Ş. Uyar, “Experimental Comparison of Replacement Strategies in Steady

State Genetic Algorithms for the Dynamic MKP,” Applications of Evolutinary

Computing, vol. 4448, pp. 647 - 656, 2007.

139

[98] Ł. Strąk, R. Skinderowicz and U. Boryczka, “Adjustability of a discrete particle

swarm optimization for the dynamic TSP,” Soft Computing, vol. 22, no. 22,

pp. 7633 - 7648, 2018.

[99] Ł. Strąk, R. Skinderowicz, U. Boryczka and A. Nowakowski, “A Self-Adaptive

Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic

TSP,” Entropy (Basel, Switzerland), vol. 21, no. 8, 2019.

[100] M. N. Omidvar, X. Li and K. Tang, “Designing benchmark problems for large-

scale continuous optimization,” Information sciences, pp. 419 - 436, 2015.

[101] A. Ahrari, S. Elsayed, R. Sarker and D. Essam, “A New Prediction Approach

for Dynamic Multiobjective Optimization,” IEEE Congress on Evolutionary

Computation, pp. 2268 - 2275, 2019.

[102] S. Das, S. Maity, B.-Y. Qu and P. Suganthan, “Real-parameter evolutionary

multimodal optimization — A survey of the state-of-the-art,” Swarm and

evolutionary computation, pp. 71 - 88, 2011.

[103] K. N. Kaipa and D. Ghose, “Multimodal Function Optimization,” Glowworm

Swarm Optimization. Studies in Computational Intelligence, vol. 698, 2017.

[104] K. Deb, L. Thiele, M. Laumanns and E. Zitzler, “Scalable multi-objective

optimization test problems,” Proceedings of the 2002 Congress on

Evolutionary Computation, vol. 1, pp. 825 - 830, 2002.

[105] A. Ahrari, S. Elsayed, R. Sarker, D. Essam and C. A. Coello Coello, “Adaptive

Multilevel Prediction Method for Dynamic Multimodal Optimization,” IEEE

Transactions on Evolutionary Computation, vol. 25, no. 3, pp. 463 - 477,

2021.

[106] W. Luo, X. Lin, T. Zhu and P. Xu, “A clonal selection algorithm for dynamic

multimodal function optimization,” Swarm and Evolutionary Computation, vol.

50, 2019.

140

[107] S. Cheng, H. Lu, Y.-n. Guo, X. Lei, J. Liang, J. Chen and Y. Shi, “Dynamic

multimodal optimization: A preliminary study,” IEEE Congress on

Evolutionary Computation, pp. 279 - 285, 2019.

[108] G. Reinelt, “TSPLIB--A Traveling Salesman Problem Library,” INFORMS

journal on computing, vol. 3, no. 4, pp. 376 - 384, 1991.

[109] N. Ouertani, H. B. Ramdhan, S. Krichen, I. Nouaouri and H. Allaoui, “A New

Evolutionary Method to Deal with the Dynamic Vehicle Routing Problem,”

2018 IEEE International Conference on Technology Management,

Operations and Decisions (ICTMOD), pp. 1 - 5, 2018.

[110] H. Fisher and G. Thompson, “Probabilistic learning combinations of local job-

shop scheduling rules,” Englewood Cliffs, pp. 225-251, 1963.

[111] S. Lawrence, “Resource constrained project scheduling: an experimental

investigation of heuristic scheduling techniques,” Technical Report, GSIA,

Carnegie Mellon University, 1984.

[112] T. s. b. p. f. j.-s. scheduling, “Adams, Joseph; Balas, Egon; Zawack, Daniel,”

Management science, vol. 34, no. 3, pp. 391 - 401, 1988.

[113] M. Dorigo, “Optimization, Learning and Natural Algorithms,” 1992.

[114] B. Bullnheimer, R. F. Hartl and C. Strauß, “A new rank based version of the

Ant System. A computational study,” 1997.

[115] T. Stutzle and H. Hoos, “MAX-MIN Ant System and local search for the

traveling salesman problem,” IEEE, pp. 309 - 314, 1997.

[116] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative learning

approach to the traveling salesman problem,” IEEE transactions on

evolutionary computation, vol. 1, no. 1, pp. 53 - 66, 1997.

[117] M. Guntsch and M. Middendorf, “A Population Based Approach for ACO,”

Applications of Evolutionary Computing, pp. 72 - 81, 2002.

141

[118] T. Stützle and H. H. Hoos, “MAX–MIN ant system,” Future generation

computer systems, vol. 16, no. 8, pp. 889-914, 2000.

[119] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman

problem,” BioSystems, vol. 43, no. 2, pp. 73 - 81, 1997.

[120] M. Guntsch and M. Middendorf, “Applying population based ACO to dynamic

optimization problems.,” International Workshop on Ant Algorithms, pp. 111-

122, 2002.

[121] J. Eaton and S. Yang, “Dynamic railway junction rescheduling using

population based ant colony optimisation,” 2014 14th UK Workshop on

Computational Intelligence (UKCI), pp. 1 - 8, 2014.

[122] M. Veluscek, T. Kalganova, P. Broomhead and A. Grichnik, “Composite goal

methods for transportation network optimization,” Expert Systems With

Applications, vol. 42, no. 8, pp. 3852 - 3867, 05/2015.

[123] M. Dorigo and T. Stutzle, Ant Colony Optimization, 1st ed., Massachusetts:

The MIT Press, 2004.

[124] L. Gambardella and M. Dorigo, “Solving symmetric and asymmetric TSPs by

ant colonies,” Proceedings of IEEE International Conference on Evolutionary

Computation, pp. 622 - 627, 1996.

[125] T. Bui and B. Moon, “A new genetic approach for the traveling salesman

problem,” Proceedings of the First IEEE Conference on Evolutionary

Computation. IEEE World Congress on Computational Intelligence, vol. 1, pp.

7 - 12, 1994.

[126] T. Kötzing, F. Neumann, H. Röglin and C. Witt, “Theoretical analysis of two

ACO approaches,” Swarm intelligence, vol. 6, no. 1, pp. 1 - 21, 2011.

[127] D. Merkle, M. Middendorf and H. Schmeck, “Ant colony optimization for

resource-constrained project scheduling.,” Proceedings of the 2nd Annual

Conference on Genetic and Evolutionary Computation, pp. 893-900, 2000.

142

[128] S. Tsutsui, “Ant colony optimisation for continuous domains with aggregation

pheromones metaphor,” Proceedings of the The 5th International Conference

on Recent Advances in Soft Computing, pp. 207-212, 2004.

[129] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,”

European journal of operational research, vol. 185, no. 3, pp. 1155 - 1173,

2008.

[130] A. Colorni, M. Dorigo, V. Maniezzo and M. & Trubian, “Ant system for job-

shop scheduling,” Belgian Journal of Operations Research, Statistics and

Computer Science, vol. 34, no. 1, pp. 39-53, 1994.

[131] A. Bauer, B. Bullnheimer, R. Hartl and C. Strauss, “An ant colony optimization

approach for the single machine total tardiness problem,” IEEE, vol. 2, pp.

1445 - 1450, 1999.

[132] R.-H. Huang and C.-L. Yang, “Ant colony system for job shop scheduling with

time windows,” The International Journal of Advanced Manufacturing

Technology, vol. 39, no. 1, pp. 151 - 157, 2008.

[133] M. Kong, P. Tian and Y. Kao, “A new ant colony optimization algorithm for the

multidimensional Knapsack problem,” Computers and Operations Research,

vol. 35, no. 8, pp. 2672 - 2683, 2008.

[134] G. Leguizamon and Z. Michalewicz, “A new version of ant system for subset

problems,” Proceedings of the 1999 Congress on Evolutionary Computation-

CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1459 - 1464, 1999.

[135] Z.-G. Ren, Z.-R. Feng, L.-J. Ke and Z.-J. Zhang, “New ideas for applying ant

colony optimization to the set covering problem,” Computers & industrial

engineering, vol. 58, no. 4, pp. 774 - 784, 2010.

[136] M. Tuba and R. Jovanovic, “Improved ACO Algorithm with Pheromone

Correction Strategy for the Traveling Salesman Problem,” International

journal of computers, communications & control, vol. 8, no. 3, p. 477, 2013.

143

[137] A. Fayeez and E. Keedwell, “H-ACO: A Heterogeneous Ant Colony

Optimisation approach with Application to the Travelling Salesman,” Artificial

Evolution, pp. 144-161, 2018.

[138] S. J. SHYU, B. M. T. LIN and T.-S. HSIAO, “Ant colony optimization for the

cell assignment problem in PCS networks,” Computers & operations

research, vol. 33, no. 6, pp. 1713 - 1740, 2006.

[139] S. Fidanova and P. Pop, “An improved hybrid ant-local search algorithm for

the partition graph coloring problem,” Journal of computational and applied

mathematics, vol. 293, pp. 55 - 61, 2016.

[140] D. Coltorti and A. Rizzoli, “Ant colony optimization for real-world vehicle

routing problems,” SIGEVOlution, vol. 2, no. 2, pp. 2 - 9, 2007.

[141] G.-F. Deng and W.-T. Lin, “Ant colony optimization-based algorithm for airline

crew scheduling problem,” Expert systems with applications, vol. 38, no. 5,

pp. 5787 - 5793, 2011.

[142] C. Colson, M. Nehrir and C. Wang, “Ant colony optimization for microgrid

multi-objective power management,” IEEE/PES Power Systems Conference

and Exposition, pp. 1 - 7, 2009.

[143] M. Marzband, E. Yousefnejad, A. Sumper and J. L. Domínguez-García, “Real

time experimental implementation of optimum energy management system in

standalone Microgrid by using multi-layer ant colony optimization,”

International journal of electrical power & energy systems, vol. 75, pp. 265 -

274, 2016.

[144] G. Li, L. Boukhatem and J. Wu, “Adaptive Quality-of-Service-Based Routing

for Vehicular Ad Hoc Networks With Ant Colony Optimization,” IEEE

transactions on vehicular technology, vol. 66, no. 4, pp. 3249 - 3264, 2017.

[145] Z. Sun, M. Wei, Z. Zhang and G. Qu, “Secure Routing Protocol based on

Multi-objective Ant-colony-optimization for wireless sensor networks,”

Applied soft computing, vol. 77, p. 2019, 366 - 375.

144

[146] C. Silva, J. Sousa, T. Runkler and J. Sá da Costa, “Distributed supply chain

management using ant colony optimization,” European journal of operational

research, vol. 199, no. 2, pp. 349 - 358, 2009.

[147] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan and J. R.

Woodward, “Exploring Hyper-heuristic Methodologies with Genetic

Programming,” Computational intelligence: Collaboration, fusion and

emeregense, pp. 177-201, 2009.

[148] Z. A. Aziz, “Problem, Ant Colony Hyper-heuristics for Travelling Salesman,”

Procedia computer science, vol. 76, pp. 534 - 538, 2015.

[149] B. Duhart, F. Camarena, J. C. Ortiz-Bayliss, I. Amaya and H. Terashima-

Marín, “An Experimental Study on Ant Colony Optimization Hyper-Heuristics

for Solving the Knapsack Problem,” Pattern Recognition, pp. 62 - 71, 2018.

[150] I. Dzalbs and T. Kalganova, “Simple generate-evaluate strategy for tight-

budget parameter tuning problems,” 2020 IEEE Symposium Series on

Computational Intelligence (SSCI), pp. 783 - 790, 2020.

[151] R. Zhang, S. Song and C. Wu, “Robust Scheduling of Hot Rolling Production

by Local Search Enhanced Ant Colony Optimization Algorithm,” IEEE

transactions on industrial informatics, vol. 16, no. 4, pp. 2809 - 2819, 2020.

[152] R. Keller and R. Poli, “Toward subheuristic search,” 2008 IEEE Congress on

Evolutionary Computation (IEEE World Congress on Computational

Intelligence), pp. 3148 - 3155, 2008.

[153] S. Xu, Y. Liu and M. Chen, “Optimisation of partial collaborative transportation

scheduling in supply chain management with 3PL using ACO,” Expert

Systems With Applications, vol. 71, pp. 173 - 191, 2017.

[154] S. Zhang and T. N. Wong, “Flexible job-shop scheduling/rescheduling in

dynamic environment: a hybrid MAS/ACO approach,” International journal of

production research, vol. 55, no. 11, pp. 3173 - 3196, 2017.

145

[155] A. Prakasam and N. Savarimuthu, “Novel local restart strategies with hyper-

populated ant colonies for dynamic optimization problems,” Neural

Computing and Applications, vol. 31, no. 1, pp. 63 - 76, 2018.

[156] H. Xu, P. Pu and F. Duan, “A Hybrid Ant Colony Optimization for Dynamic

Multidepot Vehicle Routing Problem,” Discrete Dynamics in Nature and

Society, vol. 2018, pp. 1 - 10, 2018.

[157] D. Angus and T. Hendtlass, “Dynamic Ant Colony Optimisation,” Applied

Intelligence, vol. 23, no. 1, pp. 33 - 38, 2005.

[158] M. Helbig and A. P. Engelbrecht, “Performance measures for dynamic multi-

objective optimisation algorithms,” Information sciences, vol. 250, pp. 61 - 81,

2013.

[159] A. E. Rizzoli, R. Montemanni, E. Lucibello and L. M. Gambardella, “Ant colony

optimization for real-world vehicle routing problems: From theory to

applications,” Swarm Intelligence, vol. 1, no. 2, pp. 135 - 151, 2007.

[160] A. Donati, R. Montemanni, N. Casagrande and A. Rizzoli, “Time dependent

vehicle routing problem with a multi ant colony system.,” European Journal of

Operational Research, vol. 183, no. 3, pp. 1174-1191, 2008.

[161] W. Xiang and H. Lee, “Ant colony intelligence in multi-agent dynamic

manufacturing scheduling,” Engineering Applications of Artificial Intelligence,

vol. 21, no. 1, pp. 73 - 85, 2008.

[162] M. Krishnan, S. Yun and Y. M. Jung, “Dynamic clustering approach with ACO-

based mobile sink for data collection in WSNs,” Wireless Networks, vol. 25,

no. 8, pp. 4859 - 4871, 2018.

[163] M. Samà, P. Pellegrini, A. D’Ariano, J. Rodriguez and D. Pacciarelli, “Ant

colony optimization for the real-time train routing selection problem,”

Transportation Research Part B: Methodological, vol. 85, pp. 89-108, 2016.

[164] W. Meilin, Z. Xiangwei, D. Qingyun and H. Jinbin, “A dynamic schedule

methodology for discrete job shop problem based on Ant Colony

146

Optimization,” 2010 2nd IEEE International Conference on Information

Management and Engineering, pp. 306 - 309, 2010.

[165] J. Eaton, S. Yang and M. Mavrovouniotis, “Ant colony optimization with

immigrants schemes for the dynamic railway junction rescheduling problem

with multiple delays,” Soft Computing, vol. 20, no. 8, pp. 2951 - 2966, 2016.

[166] J. Offenberg, “Balancing between Mutualism and Exploitation: The Symbiotic

Interaction between Lasius Ants and Aphids,” Behavioral Ecology and

Sociobiology, vol. 49, no. 4, pp. 304 - 310, 2001.

[167] M. K. Fischer and A. W. Shingleton, “Host Plant and Ants Influence the

Honeydew Sugar Composition of Aphids,” Functional Ecology, vol. 15, no. 4,

pp. 544 - 550, 2001.

[168] C. Lang and F. Menzel, “Lasius niger ants discriminate aphids based on their

cuticular hydrocarbons,” Animal Behaviour, vol. 82, no. 6, pp. 1245 - 1254,

2011.

[169] H. Sakata, “How an ant decides to prey on or to attend aphids,” Population

Ecology, vol. 36, no. 1, pp. 45 - 51, 1994.

[170] N. Eslami, S. Yazdani, M. Mirzaei and E. Hadavandi, “Aphid–Ant Mutualism:

A novel nature-inspired metaheuristic algorithm for solving optimization

problems,” Mathematics and Computers in Simulation, vol. 201, pp. 362 -

395, 2022.

[171] J.-i. Kushida, A. Hara, T. Takahama and N. Mimura, “Cartesian ant

programming introducing symbiotic relationship between ants and aphids,”

2017 IEEE 10th International Workshop on Computational Intelligence and

Applications, pp. 115 - 120, 2017.

[172] N. Hara, Y. Shirasaki, S. Shimomura, Y. Uwate and Y. Nishio, “Combinatorial

Optimization by Cooperative Mechanism of Ant Colony and Aphid,”

International Workshop on Nonlinear Circuits, Communications and Signal

Processing, 2012.

147

[173] S. Fidanova, “Heuristics for multiple knapsack problem,” IADIS AC, pp. 255-

260, 2005.

[174] P. Chu and J. Beasley, “A Genetic Algorithm for the Multidimensional

Knapsack Problem,” Journal of heuristics, vol. 4, no. 1, pp. 63 - 86, 1998.

[175] J. Puchinger, G. R. Raidl and U. Pferschy, “The Multidimensional Knapsack

Problem: Structure and Algorithms,” INFORMS journal on computing, vol. 22,

no. 2, pp. 250 - 265, 2010.

[176] S. Khuri, T. Bäck and J. Heitkötter, “The zero/one multiple knapsack problem

and genetic algorithms,” Proceedings of the 1994 ACM symposium on

applied computing, pp. 188 - 193, 1994.

[177] F. Glover and G. A. Kochenberger, “Critical event tabu search for

multidimensional knapsack problems.,” Meta-Heuristics Springer, pp. 407-

427, 1996.

[178] J. H. Drake, “Benchmark instances for the Multidimensional Knapsack

Problem,” 2015. [Online]. Available:

https://www.researchgate.net/publication/271198281_Benchmark_instances

_for_the_Multidimensional_Knapsack_Problem. [Accessed 30 04 2019].

[179] M. J. Varnamkhasti and L. S. Lee, “A Genetic Algorithm Based on Sexual

Selection for the Multidimensional 0/1 Knapsack Problems.,” International

journal of modern physics. Conference series, vol. 9, pp. 422 - 431, 2012.

[180] X. Liu, F. Xiang and J. Mao, “An improved method for solving the large-scale

multidimensional 0-1 knapsack problem,” 2014 International Conference on

Electronics and Communication Systems (ICECS), pp. 1 - 6, 2014.

[181] L. Ke, Z. Feng, Z. Ren and X. Wei, “An ant colony optimization approach for

the multidimensional knapsack problem,” Journal of heuristics, vol. 16, no. 1,

pp. 65 - 83, 2010.

148

[182] R. T. Liu and X. J. Lv, “MapReduce-Based Ant Colony Optimization Algorithm

for Multi-Dimensional Knapsack Problem,” Applied mechanics and materials,

Vols. 380-384, pp. 1877 - 1880, 2013.

[183] H. Fingler, E. N. Cáceres, H. Mongelli and S. W. Song, “A CUDA based

Solution to the Multidimensional Knapsack Problem Using the Ant Colony

Optimization,” Procedia computer science, vol. 29, pp. 84 - 94, 2014.

[184] W.-N. Chen, J. Zhang, H. Chung, W.-L. Zhong, W.-G. Wu and Y.-h. Shi, “A

Novel Set-Based Particle Swarm Optimization Method for Discrete

Optimization Problems,” IEEE transactions on evolutionary computation, vol.

14, no. 2, pp. 278 - 300, 2010.

[185] A. Gherboudj, S. Labed and S. Chikhi, “A New Hybrid Binary Particle Swarm

Optimization Algorithm for Multidimensional Knapsack Problem,” Advances

in Computer Science, Engineering & Applications, pp. 489 - 498, 2012.

[186] M. Chih, “Three pseudo-utility ratio-inspired particle swarm optimization with

local search for multidimensional knapsack problem,” Swarm and

evolutionary computation, vol. 39, pp. 279 - 296, 2018.

[187] X. Li and R. Y. K. Fung, “Optimal K-unit cycle scheduling of two-cluster tools

with residency constraints and general robot moving times,” Journal of

Scheduling, vol. 19, no. 2, pp. 165 - 176, 2016.

[188] C. Schwenke and K. Kabitzsch, “Continuous flow transport scheduling for

conveyor-based AMHS in wafer fabs,” 2017 Winter Simulation Conference

(WSC), pp. 3588 - 3599, 2017.

[189] C. Guo, Z. Jiang, H. Zhang and N. Li, “Decomposition-based classified ant

colony optimization algorithm for scheduling semiconductor wafer fabrication

system,” Computers & Industrial Engineering, vol. 62, no. 1, pp. 141-151,

2012.

[190] J. Skackauskas, “Microchip Manufacturing Plant Production Floor

Optimization (MMPPFO) problem,” Figshare, 2020.

149

[191] S. V. Chupov, “An Approximate Algorithm for Lexicographic Search in

Multiple Orders for the Solution of the Multidimensional Boolean Knapsack

Problem,” Cybernetics and Systems Analysis, vol. 54, no. 4, pp. 563 - 575,

07/2018.

[192] M. Vasquez and J.-K. Hao, “A hybrid approach for the 0-1 multidimensional

knapsack problem,” IJCAI , pp. 328-333, 2001.

[193] M. Chih, C.-J. Lin, M.-S. Chern and T.-Y. Ou, “Particle swarm optimization

with time-varying acceleration coefficients for the multidimensional knapsack

problem,” Applied Mathematical Modelling, vol. 38, no. 4, pp. 1338 - 1350,

02/2014.

[194] H. Peng, Z. Wu, P. Shao and C. Deng, “Dichotomous Binary Differential

Evolution for Knapsack Problems,” Mathematical Problems in Engineering,

pp. 1 - 12, 2017.

[195] M. Abdel-Basset, D. El-Shahat, I. El-Henawy and A. K. Sangaiah, “A modified

flower pollination algorithm for the multidimensional knapsack problem:

human-centric decision making,” Springer Berlin Heidelberg, vol. 22, no. 13,

pp. 4221 - 4239, 07/2018.

[196] L. F. Mingo López, N. Gómez Blas and A. Arteta Albert, “Multidimensional

knapsack problem optimization using a binary particle swarm model with

genetic operations,” Soft Computing, vol. 22, no. 8, pp. 2567 - 2582, 04/2018.

[197] J. Liu, C. Wu, J. Cao, X. Wang and K. L. Teo, “A Binary differential search

algorithm for the 0–1 multidimensional knapsack problem,” Applied

Mathematical Modelling, vol. 40, no. 23-24, pp. 9788 - 9805, 12/2016.

[198] X. Zhang, C. Wu, J. Li, X. Wang, Z. Yang, J.-M. Lee and K.-H. Jung, “Binary

artificial algae algorithm for multidimensional knapsack problems,” Applied

Soft Computing, vol. 43, pp. 583 - 595, 06/2016.

[199] B. de Almeida Dantas and E. N. Cáceres, “An experimental evaluation of a

parallel simulated annealing approach for the 0–1 multidimensional knapsack

150

problem,” Journal of Parallel and Distributed Computing, vol. 120, pp. 211 -

221, 10/2018.

[200] X. Kong, L. Gao, H. Ouyang and S. Li, “Solving large-scale multidimensional

knapsack problems with a new binary harmony search algorithm,” Computers

and Operations Research, vol. 63, pp. 7 - 22, 11/2015.

[201] L. Wang, L. An, J. Pi, M. Fei and P. M. Pardalos, “A diverse human learning

optimization algorithm,” Journal of Global Optimization, vol. 67, no. 1, pp. 283

- 323, 01/2017.

[202] J. Branke, M. Orbayı and Ş. Uyar, “The Role of Representations in Dynamic

Knapsack Problems,” Applications of Evolutionary Computing, pp. 764 - 775,

2006.

[203] C. Groba, A. Sartal and X. H. Vázquez, “Solving the dynamic traveling

salesman problem using a genetic algorithm with trajectory prediction: An

application to fish aggregating devices,” Computers & Operations Research,

vol. 56, pp. 22 - 32, 2015.

[204] B. H. Nguyen, B. Xue, P. Andreae and M. Zhang, “A New Binary Particle

Swarm Optimization Approach: Momentum and Dynamic Balance Between

Exploration and Exploitation,” IEEE Transactions on Cybernetics, vol. 51, no.

2, pp. 589 - 603, 2021.

[205] Y. Feng, G.-G. Wang and L. Wang, “Solving randomized time-varying

knapsack problems by a novel global firefly algorithm,” Engineering with

Computers, vol. 34, no. 3, pp. 621 - 635, 2017.

[206] Y. Feng, G.-G. Wang, S. Deb, M. Lu and X.-J. Zhao, “Solving 0–1 knapsack

problem by a novel binary monarch butterfly optimization,” Neural Computing

and Applications, vol. 28, no. 7, pp. 1619 - 1634, 2015.

[207] Y. Feng, G.-G. Wang and X.-Z. Gao, “A Novel Hybrid Cuckoo Search

Algorithm with Global Harmony Search for 0-1 Knapsack Problems,”

151

International Journal of Computational Intelligence Systems, vol. 9, no. 6, p.

1174, 2016.

[208] J. Cao, B. Yin, X. Lu, Y. Kang and X. Chen, “A modified artificial bee colony

approach for the 0-1 knapsack problem,” Applied intelligence, vol. 48, no. 6,

pp. 1582 - 1595, 2017.

[209] Y. Feng and G.-G. Wang, “A binary moth search algorithm based on self-

learning for multidimensional knapsack problems,” Future Generation

Computer Systems, vol. 126, pp. 48 - 64, 2022.

[210] B. Abdollahzadeh, S. Barshandeh, H. Javadi and N. Epicoco, “An enhanced

binary slime mould algorithm for solving the 0–1 knapsack problem,”

Engineering with Computers, 2021.

[211] A. Baykasoğlu and F. B. Ozsoydan, “Evolutionary and population-based

methods versus constructive search strategies in dynamic combinatorial

optimization,” Information Sciences, vol. 420, pp. 159 - 183, 2017.

[212] Google, “GitHub - or-tools,” Google, 2015. [Online]. Available:

https://github.com/google/or-tools. [Accessed 16 12 2021].

[213] J. Skackauskas, “Dynamic MKP Benchmark Best Known Results,” 6 12 2021.

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-Benchmark-

Best-Known-results. [Accessed 7 12 2021].

[214] D. Angus and T. Hendtlass, “Ant Colony Optimisation Applied to a

Dynamically Changing Problem,” Developments in Applied Artificial

Intelligence, pp. 618 - 627, 2002.

[215] M. Mavrovouniotis, I. S. Bonilha, F. M. Muller, G. Ellinas and M. Polycarpou,

“Effective ACO-Based Memetic Algorithms for Symmetric and Asymmetric

Dynamic Changes,” IEEE Congress on Evolutionary Computation, pp. 2567

- 2574, 2019.

[216] N. Cressie and H. Whitford, “How to use the two sample t-test,” Biometrical

Journal, vol. 28, no. 2, pp. 131-148, 1986.

152

