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Abstract 

Dynamic combinatorial optimization is gaining popularity among industrial 

practitioners due to the ever-increasing scale of their optimization problems and efforts 

to solve them to remain competitive. Larger optimization problems are not only more 

computationally intense to optimize but also have more uncertainty within problem 

inputs. If some aspects of the problem are subject to dynamic change, it becomes a 

Dynamic Optimization Problem (DOP).  

In this thesis, a High Efficiency Dynamic Combinatorial Optimization System is built to 

solve challenging DOPs with high-quality solutions. The system is created using Ant 

Colony Optimization (ACO) baseline algorithm with three novel developments. 

First, introduced an extension method for ACO algorithm called Dynamic Impact. 

Dynamic Impact is designed to improve convergence and solution quality by solving 

challenging optimization problems with a non-linear relationship between resource 

consumption and fitness. This proposed method is tested against the real-world 

Microchip Manufacturing Plant Production Floor Optimization (MMPPFO) problem and 

the theoretical benchmark Multidimensional Knapsack Problem (MKP).  

Second, a non-stochastic dataset generation method was introduced to solve the 

dynamic optimization research replicability problem. This method uses a static 

benchmark dataset as a starting point and source of entropy to generate a sequence 

of dynamic states. Then using this method, 1405 Dynamic Multidimensional Knapsack 

Problem (DMKP) benchmark datasets were generated and published using famous 

static MKP benchmark instances as the initial state. 

Third, introduced a nature-inspired discrete dynamic optimization strategy for ACO by 

modelling real-world ants’ symbiotic relationship with aphids. ACO with Aphids 

strategy is designed to solve discrete domain DOPs with event-triggered discrete 

dynamism. The strategy improved inter-state convergence by allowing better solution 

recovery after dynamic environment changes. Aphids mediate the information from 

previous dynamic optimization states to maximize initial results performance and 

minimize the impact on convergence speed. This strategy is tested for DMKP and 
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against identical ACO implementations using Full-Restart and Pheromone-Sharing 

strategies, with all other variables isolated.  

Overall, Dynamic Impact and ACO with Aphids developments are compounding. Using 

Dynamic Impact on single objective optimization of MMPPFO, the fitness value was 

improved by 33.2% over the ACO algorithm without Dynamic Impact. MKP benchmark 

instances of low complexity have been solved to a 100% success rate even when a 

high degree of solution sparseness is observed, and large complexity instances have 

shown the average gap improved by 4.26 times. ACO with Aphids has also 

demonstrated superior performance over the Pheromone-Sharing strategy in every 

test on average gap reduced by 29.2% for a total compounded dynamic optimization 

performance improvement of 6.02 times. Also, ACO with Aphids has outperformed the 

Full-Restart strategy for large datasets groups, and the overall average gap is reduced 

by 52.5% for a total compounded dynamic optimization performance improvement of 

8.99 times. 
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Chapter 1. Introduction 

In the current economic environment, where industries are expected to have ever-

increasing production output, the drive towards cost-effectiveness and efficient 

resource allocation creates an ever-increasing demand for high-quality solutions to 

business decision problems. Even a tiny fraction of cost-saving improvement on a 

large business operation can significantly improve the business’s bottom line. 

Combinatorial optimization can answer business questions such as “What is the best 

factory production schedule to have the lowest overall delays of the finished product?” 

or “What collection of stocks will provide the highest risk-adjusted return for a set 

budget?”. While small optimization problems are easy to solve, many of us implicitly 

make optimal decisions in our daily routines, like taking the shortest path to visit a 

grocery store. Larger problems like university timetables can become challenging. The 

complexity of such problems is exponential, meaning a tiny increase in problem size 

significantly increases the efforts required to evaluate all possible combinations 

required to find the optimal one. Such complexity decision problems are classified as 

NP-Hard optimization problems, where an optimal solution cannot be found or verified 

within polynomial time.  

For large optimization problems finding the optimal solution is practically impossible. 

Many of those problems present the search space that even the fastest 

supercomputers would take thousands of years to find the optimal solution. However, 

finding near-optimal solutions is usually good enough for practical applications if the 

time taken to find the solution is significantly reduced. Some metaheuristic optimization 

algorithms allow intelligently searching through a small subset of the total search 

space and achieving a good solution.  

Not all optimization algorithms are made equal. Every optimization algorithm has 

strengths and weaknesses, and no optimization algorithm is the best choice for all 

optimization problems. Over the last several decades, researchers have proposed 

numerous algorithmic improvements and extensions that improve the algorithm’s 

strengths or mitigate weaknesses. However, growing industrial competitiveness 

constantly demands for better optimization algorithms and methods. 
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Some optimization problems are also subject to dynamically changing environments. 

The change may occur to any aspect of the optimization problem, which changes the 

optimal solution and possibly invalidates the solutions that are found. Dynamic 

optimization is more difficult because the optimization algorithm has to find a new 

solution every time dynamic change occurs. In a more recent development, 

metaheuristic optimization algorithms were attempted to adapt to dynamic 

optimization problems, where learned information is reused for further optimization 

after the dynamic change. 

This thesis explores algorithmic improvements of one metaheuristic optimization 

algorithm called Ant Colony Optimization. The goal of algorithmic improvements is to 

increase dynamic optimization solution quality. This goal is achieved through 

improvements to dynamic optimization algorithmic methods and improvements to 

static optimization convergence. 

1.1. Motivation 

Many industries rely on optimization for everyday operations. The most practical uses 

of optimization are in the fields of scheduling, transportation, supply chain 

management, financial portfolio management, and production control. Optimization 

algorithm efficiency matters a lot in a fiercely competitive market. The quality of 

solutions and optimization methods can enable more efficient use of resources and 

allow a business to adapt to disruptions quicker. These disruptions can be as minor 

as delayed container truck delivery or as significant as labour shortages caused by 

Covid-19 pandemic lockdowns or disrupted material supplies due to political 

sanctions. 

Complex optimization problems often produce fragile solutions. When an optimization 

problem accounts for a multitude of variables from many sources, the likelihood of 

some variables changing and invalidating the solution is very high. For those large 

optimization problems, changes can occur so frequently that the time taken to find an 

acceptable quality solution is longer than the interval between changes. Dynamic 

implementations of optimization algorithms, aiming to minimize the time needed to find 

new solutions after the dynamic change, have gained more traction recently in the 

research community. Usually, those dynamic changes are reasonably small, such that 
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overall solutions do not change significantly. Dynamic optimization algorithms exploit 

this similarity and reuse learned information to find new solutions faster after the 

dynamic change. 

Ant Colony Optimization is an excellent algorithm to implement dynamic optimization 

because ants’ behaviour is highly adaptable in nature. However, previous 

implementations of the ACO algorithm for dynamic optimization are fairly rudimentary. 

Those implementations exploit the strengths of regular ACO like pheromone or 

population for the benefit of dynamic optimization. To further improve the quality and 

performance of ACO for dynamic optimization, the development of dedicated methods 

is necessary.  

1.2. Thesis contributions 

All of the research work presented in this thesis combines into the High Efficiency 

Dynamic Combinatorial Optimization System. HEDCOS is a significant original 

artefact that improves ACO solution quality for both static and dynamic optimization 

problems without sacrificing the length of run time. The research on HEDCOS consists 

of three major contributions to the science, which are presented in Chapters 3, 4, and 

5. Chapter 3 and Chapter 5 propose new methods for the ACO algorithm that 

significantly improve the quality of the solutions for static and dynamic optimization, 

respectively. Chapter 4 proposes a new, fully defined combinatorial dynamic 

optimization benchmark created using deterministic procedures. These benchmark 

datasets are necessary to prove the validity of the work presented in Chapter 5. 
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Figure 1-1: HEDCOS – High Efficiency Dynamic Combinatorial Optimization System, 

contribution to the science of this thesis. HEDCOS is a collection of advancements for 

ACO algorithm aimed at achieving high-quality solutions quickly. 

This thesis research work contributions can be summarized as follows: 

1. Dynamic Impact for the Ant Colony Optimization: Dynamic Impact is an 

extension method for Ant Colony Optimization algorithm. Dynamic Impact is 

designed to improve convergence and solution quality solving complex 

optimization problems with a non-linear relationship between resource 

consumption and fitness, where resource consumption is the constraints of 

optimization problems and fitness is the optimization objective function. This 

proposed method is tested against the real-world Microchip Manufacturing Plant 

Production Floor Optimization problem and the theoretical benchmark 

Multidimensional Knapsack problem. Using Dynamic Impact on single objective 
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optimization, the fitness value is improved by 33.2% over the ACO algorithm 

without Dynamic Impact for the MMPPFO problem.  Furthermore, the MKP 

benchmark instances of low complexity have been solved to a 100% success rate 

even when a high degree of solution sparseness is observed. Large complexity 

instances have shown the average gap improved by 4.26 times. The description of 

the ACO with Dynamic Impact and the results have been published in the peer-

reviewed journal Swarm and Evolutionary Computation [1]. 

2. Dynamic Multidimensional Knapsack Problem benchmark creation 

methodology and datasets: A new non-stochastic dataset generation method is 

introduced to solve the research replicability problem. Implemented DMKP dataset 

generator and published it in GitHub [2]. Then, 1405 fully defined DMKP 

benchmark instances were generated using well-known static MKP benchmark 

instances as the initial state. The benchmark instances are published in GitHub [3] 

and IEEE Dataport [4]. Generated datasets were quantitatively and qualitatively 

analysed, including visualizations made with the tool published in GitHub [5]. 

Furthermore, 445 datasets have the optimal result found for each state using a 

linear solver. These fully defined DMKP datasets and the dataset generator 

contributes to solving the research replicability problem. The method description 

and dataset analysis have been published in the peer-reviewed journal Systems 

and Soft Computing [6]. 

3. Ant Colony Optimization with Aphids for dynamic optimization problems: A 

nature-inspired dynamic optimization strategy for ACO modelled after real-world 

ants’ symbiotic relationship with aphids. The strategy improves the solution 

recovery after dynamic environment change, such that using information from 

previous dynamic optimization states initial results are as good as possible, and 

convergence speed is minimally impacted. This strategy is tested for DMKP and 

against identical ACO implementations using Full restart and Pheromone sharing 

strategies, with all other variables isolated. ACO with Aphids has demonstrated 

superior performance than the Pheromone share strategy in every test on average 

gap reduced by 29.2%. Also, ACO with Aphids has outperformed the Full restart 

strategy for large datasets groups, and the overall average gap is reduced by 

52.5%. The algorithm description and results are submitted to the peer-reviewed 

journal Swarm and Evolutionary Computation 3 Sep 2022 [7]. 
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Computation, 2021. DOI: https://doi.org/10.1016/j.swevo.2021.100993 

o J. Skackauskas and T. Kalganova, “Dynamic Multidimensional 

Knapsack Problem benchmark datasets,” Systems and Soft Computing, 

2022. DOI: https://doi.org/10.1016/j.sasc.2022.200041 

• Submitted articles to peer-reviewed journals: 

o J. Skackauskas and T. Kalganova, "Herder Ants: Ant Colony 

Optimization with Aphids for Discrete Event-Triggered Dynamic 

Optimization Problems," Submitted to Swarm and Evolutionary 

Computation, 3/9/2022.  

• Published dataset materials: 

o J. Skackauskas, T. Kalganova and M. Janakiram, “Microchip 

Manufacturing Plant Production Floor Optimization (MMPPFO) 

problem,” Figshare, 2020. DOI: 

https://doi.org/10.17633/rd.brunel.11638323.v1 

o J. Skackauskas and T. Kalganova, "Dynamic-MKP Benchmark 

Datasets," IEEE Dataport, 2022. DOI: https://dx.doi.org/10.21227/6bfm-

bj82 

o J. Skackauskas, “GitHub - Dynamic MKP Benchmark Datasets,” 2021. 

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-

Benchmark-Datasets. 

o J. Skackauskas, “GitHub - Dynamic MKP Benchmark Best Known 

Results,” 2021. [Online]. Available: 
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https://github.com/jonasska/Dynamic-MKP-Benchmark-Best-Known-

results. 

• Published software tools: 

o J. Skackauskas, “GitHub - Dynamic MKP Datasets Generator,” 2021. 

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-

Datasets-Generator. 

o J. Skackauskas, “GitHub - Dynamic MKP Datasets Visualization,” 2021. 

[Online]. Available: https://github.com/jonasska/Dynamic-MKP-

Datasets-Visualization. 

1.4. Thesis contents 

This thesis is presented in 6 chapters. Chapter 1 introduces the background of the 

research, outlines the problem and why it is important to solve it. Also, Chapter 1 

presents an overview of the research work conducted in this thesis.  

Chapter 2 presents a literature review on dynamic optimization with a deeper focus on 

combinatorial dynamic optimization. The literature review analyses optimization 

problems and algorithms to solve them. Although there is a variety of optimization 

problems and algorithms, the literature review points out that it is difficult to compare 

the optimization algorithms solving any combinatorial optimization problems due to a 

lack of reputable combinatorial dynamic optimization benchmarks. Then, the literature 

review analyses in depth Ant Colony Optimization algorithm to solve combinatorial 

Dynamic Optimization Problems. Finally, in literature review presents two optimization 

problems applied in experimental work. 

Chapter 3 proposes an extension method for the ACO algorithm called Dynamic 

Impact. Dynamic Impact is a novel method of calculating each edge’s contribution to 

the fitness value and evaluating the potential consumption of the remaining problem 

resources before including the edge to the partial solution. Two optimization problems 

were used to test this method, real-world MMPPFO and theoretical benchmark MKP. 

For both problems, adding Dynamic Impact measurably improved solution quality. 

Furthermore, in Chapter 3, the description of Dynamic Impact includes generalized 

formulas and a simplistic example that are easy to adopt for any optimization problem.   
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Chapter 4 introduces the deterministic dataset generation method that takes an 

existing static benchmark dataset as an initial state and generates a dynamic dataset 

with the desired number of states, where each state is an evolution from the previous 

state. Then using this method, generated 1405 DMKP benchmark datasets of five 

dynamism levels from the existing static MKP benchmark dataset library. Furthermore, 

Chapter 4 presents a statistical analysis of DMKP benchmark datasets and an optimal 

result analysis of small generated benchmark datasets. This benchmark solves the 

problem of research replicability for combinatorial dynamic optimization. All previously 

published research used stochastic methods to create dynamic optimization problems, 

making it difficult to verify the research claims. 

Chapter 5 introduces a novel dynamic optimization strategy for the ACO algorithm by 

modelling real-world ants’ symbiotic relationship with aphids. Detailed ACO with 

Aphids model includes pseudo-code and generalized formulas needed to implement 

the model for a wide range of dynamic optimization problems. Then ACO with Aphids 

was used to solve the DMKP benchmark and compared against Full-Restart and 

Pheromone-Sharing strategies. Compared to Full-Restart and Pheromone-Sharing, 

ACO with aphids has demonstrated better performance. 

Finally, Chapter 6 presents the thesis conclusion and potential future research 

directions.  

1.5. Aims and objectives 

The central aim of this research was to develop and investigate innovative techniques 

that enhance the Ant Colony Optimization (ACO) algorithm for both static and dynamic 

optimization problems. The objectives that facilitated this aim are enumerated as 

follows: 

1. To enhance the static problem-solving capabilities of the ACO algorithm: 

This was achieved by proposing the Dynamic Impact method, designed to 

improve convergence and solution quality for optimization problems with non-

linear relationships between resource consumption and fitness. 

2. To contribute to the academic community through the creation of 

Dynamic Multidimensional Knapsack Problem benchmark datasets: 

These datasets were created to solve the research replicability issue in the field 
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of combinatorial dynamic optimization. The datasets provide a basis for 

researchers to test and compare the efficacy of different dynamic optimization 

strategies. 

3. To augment the ACO algorithm for better performance in dynamic 

optimization problems: The development of the 'Ant Colony Optimization with 

Aphids' technique was a major step in this direction. By leveraging the symbiotic 

relationship between ants and aphids, this technique was designed to enhance 

the solution recovery after dynamic environment changes, enabling the ACO 

algorithm to maintain its effectiveness in dynamically changing environments. 

4. To empirically evaluate the developed techniques: The novel techniques 

were rigorously tested on real-world and theoretical benchmark problems. The 

results of these tests were used to assess the performance of the new 

techniques, providing valuable insights and leading to further refinements. 

5. To communicate the research outcomes: The findings of the research have 

been published in peer-reviewed journals and other public platforms to 

contribute to the collective knowledge in the field of combinatorial optimization. 

By achieving these objectives, the research aimed to contribute significantly to the 

body of knowledge on combinatorial optimization, providing practical tools for 

industries and pushing the boundaries of current scientific understanding. 

1.6. Methodology  

This research adopted a comprehensive, well-structured approach to ensure a 

thorough exploration of the topic. It began with an extensive literature review, which 

provided a deep understanding of the Ant Colony Optimization (ACO) algorithm, its 

modifications, and its various applications in tackling both static and dynamic 

optimization problems. This groundwork was crucial, as it highlighted the gaps in 

current research, thereby underscoring the need for enhanced, adaptable optimization 

strategies. 

After the literature review, the research then focused on the design and development 

of the algorithmic enhancements to the ACO algorithm. The enhancements are 

systematically aimed at improving ACO ability to solve combinatorial dynamic 

optimization problems. Dynamic Impact method aimed to increase ACO algorithm 
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capacity to handle complex, non-linear optimization problems. Ant Colony 

Optimization with Aphids aimed to boost the ACO algorithm's performance in dynamic 

environments. And finally, development of DMKP benchmark datasets and 

methodology which serves as a key resource for robust testing of the Dynamic Impact 

method, the ACO with Aphids algorithm, and other dynamic optimization strategies in 

the future. 

Also, research methodology involves comprehensive empirical testing, data analysis, 

and results dissemination. Both the Dynamic Impact method and the ACO with Aphids 

technique are put through rigorous tests with established benchmarks. This enabled 

a robust assessment of their effectiveness and facilitated their comparison with other 

existing solutions. The outcomes were then meticulously analyzed and interpreted, 

leading to an exhaustive examination of the results, the understanding of the strengths 

and limitations of the developed methods, and the identification of potential avenues 

for future research. 
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Chapter 2. Literature review 

Robust dynamic optimization approaches are of particular interest for real-world 

applications where problems at hand have a tendency to evolve over time and are not 

predictable accurately in advance. Often such problems must have some mechanisms 

to improve solutions in real-time as new data is obtained about disturbances or 

incremental accuracy improvements of the optimization data. Although the concept of 

dynamic optimization is not new, the research remains active to this day. Due to the 

real-world business interests in ever-increasing efficiency and growth, any incremental 

improvements in dynamic optimization are appreciated, according to a survey 

conducted by Mavrovouniotis et al. [8]. Also, according to the No Free Lunch theorem 

(NFL), all of the proposed strategies show an equivalent performance when applied to 

all possible optimization problems [9]. The NFL theorem states that a general-purpose 

optimization algorithm cannot be regarded as a universally-best choice. As a result, 

the NFL encourages searching for more efficient methods and developing new 

optimization techniques and strategies for different optimization problems. 

This thesis aims to advance algorithmic methods that allow finding higher quality 

solutions for dynamic optimization problems using Ant Colony Optimization algorithm. 

Therefore, this literature review introduces the reader to the field of dynamic 

optimization with Dynamic Optimization Problems and reviews available benchmarks 

used to compare the algorithms solving DOPs and points out the dynamic 

combinatorial optimization replicability limitations. Then, the literature review provides 

a detailed look into the ACO algorithm and how ACO is currently used to solve DOPs. 

The literature review points out two research gaps to improve the efficiency of the ACO 

algorithm for combinatorial dynamic optimization. The need to improve sub-heuristics 

for general algorithm convergence and the need to improve the combinatorial dynamic 

optimization capabilities, possibly mimicking naturally occurring symbiotic 

relationships between ants and aphids. Then, two optimization problems are reviewed 

in detail to use in experimental work.  

In the field of optimization, there are two major categories of optimization algorithms, 

exact heuristic algorithms and approximate metaheuristic algorithms. The exact 

heuristic algorithms are usually computationally efficient and find optimal solutions 
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significantly faster than a brute force method. Such algorithms are Branch and Bound 

method [10], Linear Programming optimization [11], and Dynamic Programming [12]. 

However, these algorithms' computational complexity remains exponential, in big “O” 

notation 𝑂(x𝑛), where x is base of exponential intrinsic to the algorithm, and 𝑛 is size 

of the problem, or these algorithms only find the local optimum [13]. For large NP-Hard 

optimization problems, only approximate intelligent metaheuristic methods have a 

chance to find a good solution with polynomial computational complexity 𝑂(n𝑥). The 

approximate method mean that final solutions may not be optimal, but for practical 

reasons those solutions are good enough. This literature review section focuses on 

these approximate intelligent metaheuristic algorithms. 

2.1. Dynamic Optimization 

Over the last couple of decades, the industry trend towards more efficient optimization 

of some business aspects has pushed researchers to work on dedicated optimization 

solutions that give a competitive advantage. One such solution is the algorithms 

dedicated to solving Dynamic Optimization Problems. DOPs are defined as a 

sequence of time-dependent problems where the fitness landscape shows some 

exploitable similarities before and after the dynamic change [14]. Such dynamic 

changes may have some parameters of the initial problem that can change, which 

does not entirely invalidate the existing solution, but remain useful for further 

optimization with some adjustments or fixes. Dynamic optimization is crucial when 

some optimization problem details are unknown beforehand and subject to 

unexpected changes. The most popular family of algorithms to solve such dynamic 

optimization problems is the Evolutionary Algorithms (EAs) family [15].  

Dynamic Optimization Problems are problems where the fitness landscape changes 

over time due to various factors. Based on the characteristics of the change, the 

problem instances, and the nature of the solution space, DOPs can be classified into 

several types. 

• Based on the Nature of the Search Space: 

o Continuous DOPs: These involve problems where the variables to be 

optimized are continuous in nature. They could be parameters of a 

system that can take real-number values within certain constraints. 
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These problems include the optimization of multimodal functions, among 

others. 

o Discrete DOPs: These involve problems where the variables to be 

optimized are discrete in nature. They could be a sequence of decisions 

or selections that are to be made from a finite set. Problems like routing, 

scheduling, and placement are examples of discrete DOPs.  

• Based on the Nature of the Changes: 

o Predictable DOPs: These are problems where the changes in the fitness 

landscape occur in a predictable manner. These changes could follow a 

certain pattern or trend that can be anticipated and prepared for in 

advance. 

o Unpredictable DOPs: These are problems where the changes in the 

fitness landscape are random or chaotic and cannot be predicted 

accurately. This unpredictability could be due to the nature of the system 

or the environment in which the problem is being solved. 

• Based on the Frequency of Changes: 

o Periodic DOPs: These are problems where changes occur at regular 

intervals. The changes could be subtle or drastic, but the key 

characteristic is that they occur after fixed periods. 

o Aperiodic DOPs: These are problems where changes occur irregularly 

or at random intervals. The frequency of change is not constant and 

cannot be accurately predicted. 

• Based on the Severity of Changes: 

o Small-scale DOPs: These are problems where changes in the fitness 

landscape are minimal and do not significantly affect the quality of the 

current solutions. 

o Large-scale DOPs: These are problems where changes in the fitness 

landscape are drastic and could render the current solutions completely 

irrelevant or sub-optimal. 

Understanding this taxonomy of DOPs can be useful for choosing the most appropriate 

optimization algorithms and strategies. It helps in designing more effective and 

adaptive algorithms, especially for complex real-world problems that may involve 

multiple types of dynamic changes. 
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Continuous DOPs optimization is a widely researched topic with many published 

algorithms and improvements [8]. Continuous optimization problems are commonly 

modelled as functions mapping inputs to outputs, where both the input and output 

variables are real numbers and subject to constraints. It is possible for continuous 

optimization problems to be non-analytical and lack algebraic expressions of the 

search space [16]. The time-domain component can be either a real value for a 

continuously evolving problem domain or an integer value for a discretely evolving 

problem domain.  

This thesis, focuses on Event-triggered DOPs that are Discrete, Unpredictable, 

Aperiodic, and Large-scale DOPs, as they pose some of the most challenging 

conditions for dynamic optimization. These Discrete DOPs are modelled as the 

combination of discrete decisions where solutions represent a logical set of conditions 

and are evaluated by an objective function [17]. The dynamism of Discrete DOPs is 

defined as a series of static optimization problem instances in sequential order called 

“states” [18]. Each state has a slight variation of the search space, where the larger 

variation makes the problem more dynamic and more challenging to solve. 

 

Figure 2-1: Classification of dynamic optimization. On the left-hand side, Discrete 

dynamic optimization is displayed with a discrete optimization problem state change 

based on an event trigger. On the right-hand-side popular Continuous DOP, a moving 

peaks benchmark is visualized for two input dimensions from IEEE CEC 2022 
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benchmark set [19]. This research focuses on solving types of problems portrayed on the 

left-hand side. 

In the field of dynamic optimization, Dynamic Multimodal Function Optimization 

(DMFO), a continuous optimization problem, is by far the most popular theoretical 

dynamic optimization problem. Often, some researchers mistakenly consider it as the 

only Dynamic Optimization Problem, where most theoretical research comparisons 

are presented [20], [21], [22]. However, the field of dynamic optimization is not limited 

to continuous optimization problems. In fact, there are significantly more examples of 

discrete combinatorial optimization problems [8], [23].  

2.1.1. Dynamic Optimization Problems and real-world 

applications 

There are uncountably many real-world optimization problems. Every useful 

implementation of a real-world problem considers optimization with a unique set of 

parameters and goals to provide maximum benefit [24]. However, those differences 

usually are generalizable such that the majority of these problems can fall within one 

of the several major types of optimization problems known to researchers like routing, 

assignment, scheduling, subset, and packing problems [25], [26], [27]. Algorithms that 

solve one type of theoretical optimization problem often prove to be useful in solving 

equivalent real-world optimization problems [28]. Some of the real-world optimization 

problems published in the literature are categorized in Table 2-1. 

Most of the practical use cases of dynamic optimization are in the fields of 

transportation, facility control, production, scheduling, and communications. These 

problems have a finite number of possible permutations and are formulated as 

combinatorial optimization problems. Several examples of applied dynamic 

optimization to a real-world problem are Traffic signal timing solved using a Genetic 

Algorithm (GA) [29]. Control parameter optimization using Particle Swarm 

Optimization (PSO) algorithm [30]. The Chaotic Salp Swarm algorithm (CSSA), which 

is based on the PSO algorithm, has been applied to optimize a Software Defined 

Network (SDN) to minimize deployment cost and latency [31]. Distributed Guidance 

Anti-flocking Algorithm (DGAA) has been applied to Mobile Wireless Network (MWN) 

optimization [32]. The Ant Colony Optimization algorithm has been applied to the 
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Railway Junction Rescheduling problem that aims to solve dynamic multi-objective 

optimization and minimize timetable deviation and energy expenditure [33]. 

Table 2-1: Problem types of real-world optimization solved in the sample literature. 

Type 
Real-world optimization problem 

Problem type 

Routing Assignment Scheduling Subset Packing  

D
y
n
am

ic
 

Traffic signal timing   [29]   

Control parameter optimization  [30]    

Software Defined Network  [31]     

Mobile Wireless Network [32]     

Railway Junction Rescheduling   [33]   

Wireless Sensor Network  [34]     

S
ta

ti
c 

Pipe Network Optimization [35]     

Vehicle Route  [36] [37]     

Cargo loading     [38] 

Supply Chain Optimization  [39] [40]     

Facility layout problem     [41] [42] 

[43] 

Project budgeting     [44]  

Portfolio management     [45]  

Cutting stock     [46] 

Integrated manufacturing floor 

optimization 

  [47] [48] [49] 

[50] [51] [52] 

  

Tool sequencing    [53] [54]   

School and university timetabling   [55] [56] [57]   

Resource sharing problem  [58]    

Brain tumour segmentation  [59]    

Big-Data analysis   [60] [61] [62]    

3D topology design   [63] [64]    

Power consumption prediction   [65] [66]    

Feature classification   [67] [68]    

Reinforcement learning model 

design 

 [69] [70]    

Manufacturing parameter 

optimization  

 [71] [72]    

Operations scheduling    [73] [74]   

Operations management   [75]   

Minimum Spanning Tree [76]     

2.1.2. Existing methods to solve DOPs  

Dynamic optimization is more challenging to solve than static optimization because 

there are additional optimization goals besides the primary goal. In static optimization, 

the main goal is to maximize or minimize the fitness value of the optimization problem’s 

objective, given that the optimization problem is a single objective. However, for 



17 

 

dynamic optimization problems, the goal may not only be to minimize the fitness of the 

single objective but also to show some additional convergence dynamics required for 

successful optimization, like optimum tracking [77], best all states performance [78], 

best average fitness [79], algorithm stability throughout optimization [80]. Many 

developed dynamic optimization algorithms and algorithm extensions are designed to 

tackle one or more of these goals. 

The swarm and evolutionary algorithms dominate the field of dynamic optimization. 

Genetic Algorithms [81], [82], [83], Particle Swarm Optimization [84], Artificial Raindrop 

Algorithm (ARA) [85], Membrane Computing (MC) [86], and Ant Colony Optimization 

[33], among many others [87], [88]. 

There are a lot of algorithmic improvements proposed to tackle the continuous DOP 

Moving Peaks Benchmark (MPB). For example, several combinations of PSO 

algorithm enhancements were tested to solve and track the optimum of MPB [89]. 

Several improved versions of EAs are used to solve these problems, like Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [90], [82], NSGA-III [91], Pareto 

Archived Evolution Strategy (PAES) [92],  Dynamic Learning Evolution Algorithm 

(DLEA) [93]. Other dedicated algorithms for continuous dynamic optimization are 

Differential evolution (DE) [94], Firefly Algorithm (FA) [87], and Artificial Immune 

System (AIS) [88]. Overall scalability and performance of MPB have been explored on 

multiple algorithms with generated heterogeneous and multimodal benchmarks [95]. 

Robust Optimization Over Time (ROOT) methodology has been proposed to enable 

these algorithms to solve real-world optimization problems too [96].  

Then, there are some examples adapted to solve Discrete DOPs and applied to both 

theoretical and real-world optimization problems [33]. Genetic Algorithms are used to 

optimize traffic signal timing control [29] as well as to solve the Dynamic 

Multidimensional Knapsack Problem [97]. Particle Swarm Optimization  algorithms are 

used to optimize control parameters of a dynamic chemical process [30] as well as 

Dynamic Traveling Salesman Problem [98], [99]. Ant Colony Optimization algorithms 

are applied to railway junction scheduling problems [33] and DTSP [79]. 

The majority of purpose-built dynamic optimization algorithm research efforts are 

dedicated to continuous domain dynamic optimization, where existing optimization 

problems are well understood. Meanwhile, in the discrete domain, researchers 
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primarily focus on problem-solving and adaptation of algorithms to meet the particular 

needs of those problems.  

Table 2-2: Advantages and limitations of popular optimization algorithms solving 

discrete optimization problems in sample literature. 

Algorithm Advantages Limitations 

Genetic Algorithms 

[23] [29] [34] [77] 

[80] [97]  

Versatile for large range of 

problems, both continuous and 

discrete. 

Algorithm often require many function 

evaluations to converge, therefore can 

be slower than other algorithms. 

Particle Swarm 

Optimization [30] [98] 

[99] 

Simple algorithm that requires 

relatively few parameters to 

implement. 

Algorithm can often get trapped in local 

optima and converge prematurely. 

Ant Colony 

Optimization [25] [33] 

[78] [79] 

Robust algorithm that can be applied 

to variety of combinatorial 

optimization problems without many 

changes. 

Algorithm can struggle to solve 

continuous optimization problems.  

2.1.3. Benchmarks to evaluate DOPs 

A good benchmark dataset is necessary to evaluate dynamic optimization algorithm 

performance accurately. Currently, fully defined dynamic optimization benchmarks 

exist only for continuous domain Moving Peaks Benchmark (MPB), and discrete 

domain problems use either benchmark generators or real-world optimization 

instances. 

The Moving Peaks Benchmark is a popular Continuous DOP type of benchmark with 

a wide selection of benchmark suites like IEEE Congress on Evolutionary Computation 

(IEEE CEC) benchmark suites [100], [101], [19], Composition Function (CF) Library 

[102], and other test functions of multiple authors [103], [104]. Moving Peaks 

Benchmark is a Dynamic Multimodal Function Optimization (DMFO) problem where 

the modal surface is changing. Such change is usually defined as one or more 

problem’s input parameters changing over time continuously or in discrete increments 

[105]. The aim of DMFO is to track the global optimum point moving on the 

hypersurface over time [16]. However, researchers usually track more near optimal 

points too [106], [107]. The DMFO problem is well researched dynamic optimization 

problem type because it is easy to use already available benchmark datasets of static 

MFO problems [20]. Dynamic Multi-Objective Optimization Problem (DMOOP) is a 
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very popular subset problem of DMFO, where multiple different functions must be 

optimized simultaneously as independent goals using the same input vector [21], [22].  

For the discrete domain of dynamic optimization problems, researchers use 

benchmark generators where optimization states are generated during the 

optimization. A stochastic benchmark generator was used to create DMKP, where item 

profits, item weights and knapsack capacities are changed with a normally distributed 

random operator [97]. For a DTSP [98], [99] research work used a published TSPLIB 

[108] library and randomly modified vertex’s location, which led to a generation of new 

problems each time. Then solved, the DTSP using the PSO algorithm. For the 

Dynamic Vehicle Routing Problem (DVRP) [109], research work used benchmark 

instances of static VRP and applied a stochastic modification algorithm to change the 

demands of the destinations and therefore recalculate the partially executed plan. 

Similarly, static benchmark instances of Job-shop Scheduling Problem (JSP) like FT 

instances introduced by Fischer and Thompson [110], LA instances introduced by 

Lawrence [111], and ABZ instances introduced by Adams et al. [112] are often 

extended with stochastic dataset generators [50]. 

There are many great examples of algorithmic advancements to benefit real-world 

dynamic optimization, as mentioned in the earlier section.  However, there remains 

one problem with research conducted to solve real-world DOPs. Which is a lack of 

publicly available datasets and, in some cases, also lack the implementation details in 

order to reproduce the claims stated in the research conclusions. It is unreasonable to 

expect businesses to publish real recorded historical data that could be reused in 

further research, as it may be sensitive business information. 

One apparent separation among academic research on dynamic optimization is that 

all of the fully defined benchmark dynamic optimization problems solved are in the 

continuous domain. All of the discrete benchmark problems are obtained from 

benchmark datasets of static optimization problems, modifying the dataset using 

stochastic methods. Stochastically generated problems can only be fairly compared if 

the initial seed of the random operator is used the same each time. Otherwise, the 

dataset optimums and the final result of the optimization problem would be different 

with each algorithm run. The comparison of different algorithms could be improved if 

the seed or better the dynamic optimization problem dataset instances or states were 
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recorded and shared in full detail. However, none of the research work has shared 

neither seed nor dataset states, making it impossible to verify research claims and 

compare results with future research advancements. Ideally, the dynamic optimization 

problem datasets should be well-defined for each intermediate instance or state. The 

datasets should be created using a non-stochastic method such that the dynamic 

aspect of the dataset could be extended forward in the time domain. 

2.2. Ant Colony Optimization algorithm 

Ant Colony Optimization (ACO) is a nature-inspired optimization algorithm that uses 

Ants as search agents navigating a search space. Navigation is mediated by 

pheromones that ants are naturally drawn towards. While an ant is searching for food, 

it deposits pheromone on its path, which attracts more ants. If the food is better, an 

ant will deposit more pheromone, and therefore more ants will be attracted to the food 

source, making the path even more dense pheromone. All pheromone is evaporating 

slowly, and the paths that do not favour the search quickly become unattractive to the 

ants, see Figure 2-2. Originally Ant Colony Optimization algorithm was designed for 

the travelling salesman problem (TSP) described in Dorigo's [113] doctoral thesis in 

1992. In ACO, ants use a stochastic construction heuristic to make probabilistic 

decisions based on the pheromone trails and heuristic information. While the heuristic 

information is based on the problem's search space, the pheromone represents 

cumulatively learned ants’ experience. 
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Figure 2-2: Illustration of ants searching for the shortest path 

There are several ACO algorithm implementations based on ACO heuristics, the 

original Ant System (AS), and the most popular improvements of the Ant System are 

the rank-based Ant System (ASrank) introduced by Bullnheimer et al. [114], Min-Max 

Ant System (MMAS) introduced by Stützle and Hoos [115], Ant Colony System (ACS) 

introduced by Dorigo and Gambardella [116], and Population-based ACO (P-ACO) 

introduced by Guntsch and Middendorf [117]. The ASrank is an elitist strategy which 

sorts the ants according to their solution performance and only allows several best 

ants to deposit their pheromones after each iteration. The MMAS strategy uses the 

pheromones bound to a minimum and maximum pheromone levels. At the start, the 

MMAS strategy initializes pheromone values to the upper limit, which makes the 

algorithm begin the search with a higher level of exploration. Like ASrank, the MMAS 

strategy uses an elitist strategy for pheromone update, where local-best and 

potentially global-best ant’s solution is used to update the pheromone [118]. 

Furthermore, the ACS uses probabilistic exploitation, where a portion of the path ants 

travel is chosen deterministically rather than stochastically [119]. Finally, the P-ACO 
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uses a different method to update the pheromone. Instead of a typical pheromone 

update with a selected ant’s result on every iteration, the P-ACO method keeps several 

ranked ants’ solutions which are then used to create a new pheromone for every 

iteration [120], [121]. 

2.2.1. Formal ACO definition 

The baseline ACO algorithm implementation used for all research in this thesis is a 

combination of the MMAS and the ACS, courtesy of M. Veluscek et al. [122]. The first 

step of algorithm execution is search space initialization, in which search space 𝑁 is 

filtered for all nodes to have only feasible edges and calculated heuristic information 

𝜂𝑗,𝑖. Then according to MMAS strategy each edge’s pheromone is set to the maximum 

value of 𝜏𝑚𝑎𝑥. Once the search space is prepared, the iterative search starts. In the 

iterative search, a set of ants each builds a complete solution. Each ant starts building 

with an empty partial solution 𝑠𝑝 = ∅. Then the ant searches for a single edge to add 

to the partial solution. The ant can choose one of two modes of finding an edge 

according to the ACS strategy [116]. First is the exploration mode, where each edge 

is added stochastically to the solution. Second is the exploitation mode, where only 

the best edge is selected deterministically. The ant search mode is chosen 

stochastically with 𝑞0 exploitation parameter for each edge added to the partial 

solution. The following probability equation of the edge: 

𝑝𝑗,𝑖 =
𝜏𝑗,𝑖

𝛼 ×  𝜂𝑗,𝑖
𝛽

∑(𝜏𝑗,𝑖
𝛼 × 𝜂𝑗,𝑖

𝛽
)

,       ∀(𝑗, 𝑖)  ∈  𝑁(𝑠𝑝)  
(2-1) 

where 𝜏 is edge’s pheromone, 𝜂 is edge’s heuristic information, 𝑁(𝑠𝑝) is the set of all 

feasible edges allowed to be added to the partial solution 𝑠𝑝, 𝛼 is a relative pheromone 

importance, and 𝛽 is a relative heuristic information importance, 𝑗 and 𝑖 are the edges 

and nodes of the search space, respectively. The search mode is chosen every time 

an edge is added to the partial solution using proportional choice: 

(𝑗, 𝑖) = {
𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑗,𝑖), 𝑖𝑓 𝑞 ≤ 𝑞0 

𝑑𝑟𝑎𝑤(𝑝𝑗,𝑖), 𝑖𝑓 𝑞 > 𝑞0
 

(2-2) 

where 𝑞 is uniformly distributed random number 0 ≤ 𝑞 < 1, 𝑞0 is the exploitation 

parameter, 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑗,𝑖) is the exploitation mode function which gives the edge with 
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the highest probability, and 𝑑𝑟𝑎𝑤(𝑝𝑗,𝑖) is the exploration mode function that draws the 

edge according to its calculated probability in formula (2-1). Once an ant search is 

finished, the solution gets evaluated for solution fitness value, and the best solution is 

passed to influence the global pheromone. At global pheromone update, the 

pheromone is evaporated using the percentage indicated by 𝜌 parameter as in the 

following equation: 

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 ∗ (1 − 𝜌), ∀(𝑗, 𝑖) (2-3) 

where 𝜌 is a constant parameter of the pheromone evaporation rate introduced by 

Dorigo and Stützle [123]. The best ant solution is taken to lay down pheromone on 

edges that it has visited while building the solution as in the following equation: 

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 + 𝜌 ∗ Δ𝜏0, ∀(𝑗, 𝑖) ∈ 𝑠𝑝 (2-4) 

where Δ𝜏0 is the pheromone update rate, 𝑠𝑝 is the solution of the chosen ant to lay 

down the pheromone.  

However, to utilize modern computer multicore architectures efficiently, Parallel Ant 

(PA) optimization architecture is implemented courtesy of I. Dzalbs et al. [39]. For each 

iteration, ants are split into several isolated local groups. At the start of the iteration, 

each group gets a new local pheromone copied from the global pheromone. Then 

each group performs a local search normally for all ants within the local group. All 

groups perform the search and evaluate the fitness of each solution in parallel. After 

all groups complete the search, the best performing ant’s solution is taken to perform 

the update on the global pheromone.  

2.2.2. Strengths, weaknesses and typical applications 

The Ant Colony Optimization algorithm was initially intended to solve the TSP, which 

aims to minimize the total path required to visit all cities [124]. The TSP is a graph 

problem where nodes represent cities and edges represent paths between cities, and 

each node must be visited only once [125]. Unlike other algorithms that maintain and 

modify a population of solutions, ACO fully builds all ant solutions. When ant searches 

for the next edge to add to the solution, all infeasible edges are calculated with zero 

probability [126]. This building heuristic allows ants to build only feasible solutions, 

which is a unique advantage for the ACO algorithm. The ACO algorithm is very good 
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at solving constrained combinatorial optimization problems that can be expressed as 

a graph [127]. Furthermore, heuristic information gives ants a sense of direction when 

pheromone trails are not intense, and all edges appear similarly strong in the search 

space. It plays a crucial part in optimization convergence speed and produces 

excellent results when little time is given to run the algorithm.  

On the other hand, ACO is not an ideal algorithm for optimization problems that cannot 

be easily expressed as a graph problem. For example, in order to solve continuous 

optimization problems with ACO, the problem domain must be discretised [128]. There 

is also a dedicated implementation of ACO for continuous optimization problems called 

ACOR with the use of probability density functions generated from the population of 

ant solutions [129]. However, besides this algorithm's authors, researchers agree that 

other algorithms are better suited to solve continuous optimization [8]. 

ACO algorithm has been applied to a wide range of optimization problems that benefit 

from ACO solution building heuristics, both academic and real-world demonstrating 

the algorithm’s potential [25]. In the literature, research on ACO algorithm covers all 

major combinatorial problems: scheduling problems [130], [53], [127], [131], [132], 

subset problems [133], [134], [135], routing problems [136], [36], [137], and 

assignment problems [138], [139]. Also, the ACO algorithm has been adopted for 

many real-world optimization problems like Vehicle Routing Problem (VRP) [140], 

airline company crew scheduling [141], grid power management [142], [143], network 

routing optimization for cars [144] and wireless sensors [145], and supply chain 

optimization [39], [146]. 

2.2.3. Sub-heuristics 

Combinatorial search algorithms are designed to explore large search spaces 

efficiently and quickly converge to a good solution. The efficiency is achieved using 

metaheuristic methods that allow the search space to be explored more in areas of 

greater reward. In the case of Ant Colony Optimization, the primary metaheuristic 

method is a pheromone, which is iteratively learned when solving the optimization 

problem. However, using pheromone alone does not make a performant optimization 

engine and often requires many iterations to reach a good solution.  
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With the introduction of additional heuristics to ACO, much higher optimization 

performance can be achieved. The first attempt by Stützle and Hoos [115] is the 

introduction of heuristic information, which has significantly improved search 

convergence speed and solution quality. The heuristic information uses precalculated 

values for each edge that indicate the general quality of that edge. It guides the ant’s 

search in addition to the learned pheromone.  

As in the case of all algorithms, ACO has tuneable hyper-parameters that, once found, 

a good combination of them for a specific problem can give much better results than 

just using default values. It can be very time-consuming or require expert knowledge 

of the problem domain to find a good set of hyper-parameters. The hyper-heuristic 

methods were introduced by Burke et al. [147], which fine-tunes hyperparameters of 

the search algorithm in an automatic way for a genetic algorithm. Then, later these 

methods were applied to the ACO algorithm too [148], [149], [150]. 

In pursuit of better algorithm performance, the ACO algorithm can be coupled with a 

problem-specific local search for some optimization problems. The local search takes 

a completed candidate solution and applies a search operator that follows a 

deterministic set of rules to improve it before it is used to lay down the pheromones 

[78], [151]. 

Furthermore, purpose-made sub-heuristic enhancements can improve search 

efficiency, converge faster, and produce better final solutions for certain problems. 

Sub-heuristics are the heuristic methods used in the core of search algorithms [152]. 

Sub-heuristics for ACO is not a well-researched area. Therefore, for clarification, the 

sub-heuristic method is referred to as an additional core search method that acts upon 

the state of an incomplete, partial solution. The existing introductions of Sub-heuristic 

enhancements are done for specific problems and are not generalized in any way. 

Authors [153] have utilized such sub-heuristics for ACO algorithms for probability 

calculations where branching can occur while building the solution. This sub-heuristic 

method allowed them to have a transition operation that otherwise could not be 

accounted for from previously explored solutions. The sub-heuristics are distinctly 

different from more commonly used algorithmic augmentations such as local search 

or hyper-heuristics. The sub-heuristic method is a primitive component of the 
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metaheuristic search core and can be used independently of local search and hyper-

heuristics. 

Table 2-3: Comparison of Heuristic Methodologies in Combinatorial Search Algorithms: 

Descriptions and Limitations 

Methodology Description Limitations 

Pheromone 

(ACO)  

Primary metaheuristic method in Ant 

Colony Optimization that is iteratively 

learned when solving the optimization 

problem. 

Often requires many iterations to reach 

a good solution. 

Heuristic 

Information 

Introduced by Stützle and Hoos to 

significantly improve search 

convergence speed and solution quality. 

It uses precalculated values for each 

edge to guide the ant's search. 

There are no clear limitations mentioned 

for heuristic information, but its 

effectiveness might be problem-specific. 

Hyper-heuristic 

Methods 

Introduced by Burke et al. for genetic 

algorithms and later applied to ACO. 

Fine-tunes hyperparameters of the 

search algorithm automatically. 

Finding a good combination of 

hyperparameters for a specific problem 

can be very time-consuming or require 

expert knowledge of the problem 

domain. 

Local Search A problem-specific local search coupled 

with ACO can improve performance. 

The local search applies a deterministic 

set of rules to a completed candidate 

solution to improve it before it is used to 

lay down the pheromones. 

The effectiveness of local search might 

be limited by the specifics of the problem 

being solved and the quality of the rules 

applied. 

Sub-heuristic 

Enhancements 

These methods used in the core of 

search algorithms can improve search 

efficiency, convergence speed, and final 

solution quality for certain problems. 

Sub-heuristics are not a well-

researched area and the existing 

enhancements are specific to certain 

problems and not generalized. They 

might not account for certain transitions 

that could occur while building the 

solution. 
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2.2.4. Existing ACO methods to solve DOPs 

Numerous studies have been conducted on the Ant Colony Optimization algorithm to 

solve problems of evolving nature [154], [155], [156]. In the classical Ant Colony 

Optimization algorithm, changing any aspect of the optimization problem leads to 

explored solutions becoming infeasible and or suboptimal [157]. In nature, real ants 

constantly face environmental changes such as new food sources appearing or being 

removed and pathway blockage. However, ants do not start a complete search from 

scratch. Usually, algorithms solving static optimization problems are finely tuned to 

converge quickly onto optimum solutions in the search static search space. However, 

such behaviour might not be desirable for dynamic optimization problems because 

fast and precise algorithms usually struggle to explore search space after the dynamic 

change. The challenge is to enable an artificial ant colony to explore new changes in 

the problem space efficiently [158]. There are several explored methods of Ant Colony 

Optimization in the dynamic environment. 

In dynamic optimization literature, research usually tackles one of the two types of 

dynamic optimization problems. The first type is the optimization problems executed 

in the time domain, which has predictable dynamism patterns. These patterns of 

problem dynamics are solved as an additional dimension of variable edge cost in 

single goal optimization. This type of optimization problem does not require a special 

dynamic optimization algorithm but requires modification for the optimization problem 

definition. Typical applications of such predictive optimization are in routing problems 

like Vehicle Routing Problem (VRP) [159] [160], electric grid energy management 

[143], or scheduling problems [161]. The second type of DOPs is unpredictable event-

triggered DOPs. When dynamic environment changes cannot be predicted, the 

problem must be solved again. Two major strategies for the ACO algorithm have been 

researched to solve the unpredictable event-triggered DOPs, Full-Restart and 

Pheromone-Share strategies. 

2.2.4.1. Full-Restart strategy 

The most common approach to solving dynamic optimization problems when changes 

are unpredictable is to restart the search entirely. When changes occur in search 

space, the whole optimization is started from the beginning, clearing out all information 
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associated with the previous state. This approach is the simplest as it does not require 

explicit algorithm modification and relies on the algorithm to quickly converge to the 

new good solution [162]. The Full-Restart strategy does not share any information 

between optimization states, and each state is optimized independently. After the full 

restart algorithm usually converges in an identical pattern to the state before, as shown 

in Figure 2-3. 

In the literature, Two ACO dynamic optimization strategies, Full-Restart and 

Pheromone-Sharing, have been compared by Angus & Hendtlass [157]. The 

conclusion was reached that for Dynamic Traveling Salesman Problem, the 

Pheromone-Sharing strategy has given a faster convergence rate to a good solution. 

Still, the Full-Restart strategy has allowed converging to a more optimal solution. Then, 

ACO algorithm Full-Restart strategy was used in a railway routing problem, and the 

solutions rebuild and deployed in real-time, allowing the algorithm to run for a limited 

amount of time, and deploy the best solution that the algorithm has found [163]. 

Furthermore, the ACO Full-Restart strategy was investigated on real-time dynamic 

optimization problems, where optimal schedules and routes are already in use and 

partially completed. The dynamic changes alter the remaining part of the solution, 

which requires to be reoptimized for problems like VRP [156], and Job-shop 

Scheduling Problem (JSP) [164]. 

 

Figure 2-3: Normal Convergence of Full-Restart strategy in abundant time optimization. 

The chart displays a minimization problem’s convergence for two dynamic states, where 
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the algorithm has plenty of time to converge to a “good” solution in both instances. Both 

initial and following states show identical convergence patterns. 

2.2.4.2. Pheromone-Sharing strategy 

When unpredictable dynamic change occurs in the environment, the search space 

changes too. However, changes in the nodes and the edges of the new search space 

are usually small enough and can map to the old search space. Therefore, the artificial 

ants can reuse a large part or the whole pheromone matrix from the previous 

optimization state. In cases where dynamic changes are significant to the extent that 

some parts of the search space do not map the pheromone matrix correctly, a heuristic 

fix can be applied to maximize the usefulness of the pheromone matrix from the 

previous state.  

In literature, some ACO-based methods rebuild solutions on the existing pheromone 

matrix where new edges get applied to normalized pheromone level allowing ants to 

have a fair exploration in new search space [157]. Other development has tried several 

pheromone initialization strategies for new edges with the proposed Local random 

restart strategy, which initializes new edges with a random value, and the Local restart 

strategy, which initializes new edges with 0 pheromone value [155]. Approaches 

based on Population-ACO use the pheromone initialization process described by 

Guntsch & Middendorf [120], where an arbitrary number of elitist ant solutions create 

a pheromone matrix for every new iteration. Then Population-ACO based solutions 

can also be fixed using heuristic methods after the dynamic change, which give a good 

head start for the pheromone quality after the dynamic change [79], [165]. Generally, 

the Pheromone-Sharing strategy makes a trade-off, shown in Figure 2-4, to 

significantly reduce the fitness penalty after the dynamic change at the cost of reduced 

convergence speed due to the necessity to evaporate previous state dynamics. 
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Figure 2-4: Normal Convergence of Pheromone-Sharing strategy in abundant time 

optimization. The chart displays a minimization problem’s convergence for two dynamic 

states, where the algorithm has plenty of time to converge to a “good” solution in both 

instances. The initial state converges normally, and the following state starts at a 

significantly better fitness level but shows poorer convergence. Then poorer convergence 

leads to poorer final fitness results. 

2.2.5. Need for discrete event-triggered dynamic 

optimization system 

Both dynamic optimization strategies overviewed above have their specific 

advantages and disadvantages. The Pheromone-Sharing strategy significantly 

improves solution quality after the dynamic change because the pheromone matrix is 

reused for the new optimization state after the event triggers a dynamic change. When 

dynamic changes are triggered frequently, the Pheromone-Sharing strategy allows for 

gradual interstate convergence, which is better than the Full-Restart strategy, see 

Figure 2-6. However, some portion of the pheromone from the previous state must 

evaporate gradually, slowing the discovery of new paths. Therefore, the convergence 

of the Pheromone-Sharing strategy is usually slightly worse than the convergence if 

the search is restarted. On the other hand, the Full-Restart strategy performs good 

quality optimization when dynamic changes are triggered very infrequently, and the 

algorithm has plenty of time for convergence. However, when dynamic changes occur 
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frequently, the Full-Restart strategy carries no information and restarts the search 

completely with poor results, see Figure 2-6.  

Ideally, a purpose-built dynamic optimization method could combine the strengths of 

the Full-Restart strategy’s convergence speed and the Pheromone-Sharing strategy’s 

good solution quality after the dynamic change. This work introduces a purpose-built 

dynamic optimization strategy for the ACO algorithm called “ACO with Aphids”. The 

ACO with Aphids is a nature-inspired dynamic optimization strategy that builds robust 

optimization without the drawbacks of poor convergence and poor restart after the 

dynamic change. In Figure 2-5, the ideal ACO with Aphids example is shown. In this 

example, after the dynamic change, fitness is equally good to the fitness of the 

Pheromone-Sharing strategy, but the convergence slope is as good as the Full-Restart 

strategy convergence.  

 

Figure 2-5: The convergence goal of ACO with Aphids strategy in abundant time 

optimization. The chart displays a minimization problem’s convergence for two dynamic 

states, where the algorithm has plenty of time to converge to a “good” solution in both 

instances. The initial state converges normally, and the following state starts at a 

significantly better fitness level similar to the Pheromone-Sharing strategy and shows 

equally good convergence to the Full-Restart strategy. Then a good restart fitness after 

the dynamic change and a good convergence lead to even better results than the final 

result of the Full-Restart strategy. 

A good dynamic optimization system should display the biggest solution quality 

improvements for frequently changing dynamic optimization. When the time is limited 
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to perform the optimization of each state, at the start, fitness usually does not converge 

to an acceptable level, but the following states’ optimization continues to improve the 

fitness further. ACO with Aphids strategy aims to intelligently reuse the information 

acquired during previous states’ optimization such that after the dynamic change is 

triggered, the penalty to optimization fitness is minimal, and further convergence is 

unimpeded. This way, maximum interstate convergence equilibrium is possible, see 

Figure 2-6. 

 

Figure 2-6: All strategies convergence compared in time-restricted optimization. The 

chart displays a minimization problem’s convergence for ten dynamic states changing 

frequently. Aphids’ strategy combines great optimization convergence observed in the 

Full-Restart Strategy with low state change fitness penalty observed in the Pheromone-

Sharing strategy. The combination of these strengths allows for better interstate 

convergence.  

2.2.6. Nature of Herder Ants  

Some of the ant species, namely Lasius niger [166], care for and herd aphids. Aphids 

are tiny green bugs feeding plants and producing honeydew as waste. The honeydew 

is a sugar-rich liquid that is very nutritious to ants and acts as an additional food 

source. The relationship between ants and aphids is symbiotic. While ants feed on the 

aphids’ wasted honeydew, ants also protect aphids from their natural predators [167]. 

The pheromone laid down by ants has a behavioural effect on aphids. In the ants’ 

pheromone presence, aphids move slower and produce more honeydew [168]. There 
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was also observed that ants may prey on aphids based on aphid density, honeydew 

production, and how much other ants tended to aphids [169].  

 

Figure 2-7: Close-up image of an ant guarding its aphids. 

2.2.7. Use of aphids in other optimization algorithms 

The novel use of the relationship between ants and aphids in optimization algorithms 

has seen promising developments. These include the Ant Colony Optimization with 

Cooperative Aphid, Cartesian Ant Programming, and Aphid-Ant Mutualism, each 

successfully addressing different optimization problems. 

Aphid–Ant Mutualism (AAM) is a heterogeneous population-based algorithm that 

considers two types of individuals: ants and aphids [170]. In this algorithm, aphids 

perform a search in tandem with ants' search but with a different fitness function. 

Researchers have applied this algorithm to solve Multimodal Function Optimization 

benchmarks.  

Cartesian Ant Programming (CAP) is a Cartesian Genetic Programming (CGP) 

algorithm that uses ants and aphids to optimize connections among function symbols 

[171]. In this algorithm, ants perform a search to find a valid set of connections and 

use the solution to deposit the pheromone on each connection to attract more ants. In 

addition to the pheromone, ants are also attracted to honeydew, which is deposited 

by aphids on every node. 
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Ant Colony Optimization with Cooperative Aphid (ACOCA) is a cooperative search 

method that combines the capabilities of an ant and aphid [172]. In this method, the 

ant and the aphid work together to give a solution. The information that the aphids 

provide is then treated as honey, and the search solutions of the ant are influenced by 

the honey. This method was tested to solve Traveling Salesman Problem (TSP). 

So far, a symbiotic relationship between ants and aphids has not been attempted to 

model to benefit the discrete dynamic optimization. Aphids are tiny animals that ants 

tend to by placing them on plants, protecting them from predators, and collecting their 

waste honeydew. When too many aphids exist, a portion of them is killed to maintain 

the optimal aphid population. In simplistic terms, aphid’s honeydew production can 

represent the current state of the dynamic environment and use ants’ behaviour of 

tending, relocating, and killing aphids to optimize for maximum food supply from the 

original ant’s objective supplemented with honeydew supply from aphids. 

2.3. Chapter Summary 

This chapter has presented the general literature on dynamic optimization, Dynamic 

Optimization Problems with real-world applications, methods to solve them, and 

existing benchmarks to compare the performance of the dynamic optimization 

algorithms. Then this chapter presented the Ant Colony Optimization (ACO) algorithm 

in detail and showed how this algorithm had been applied to solve DOPs. Finally, this 

chapter presented two optimization problems in detail to use in experimental work. 

In summary of this literature review, three main takeaways stand out as gaps in the 

knowledge and require further research. 

Sub-heuristic methods have the potential to significantly increase ACO search 

efficiency to converge faster and converge to a better solution. For some optimization 

problems, additional heuristics within the ACO search core may yield significant 

search quality improvements. However, the methodology and applications are lacking 

in the literature review. Therefore, Chapter 3 presents a further investigation and a 

formal description of a new generalizable sub-heuristic method called Dynamic 

Impact. Also, ACO with Dynamic Impact is applied to MMFFPO and MKP problems. 

The advancement in the sub-heuristic methods of the ACO algorithm should improve 

the convergence within each state’s optimization. 
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So far, most theoretical research on dynamic optimization with comparable qualities 

has been done primarily on continuous domain dynamic optimization. The research 

on discrete domain dynamic optimization problems is either solving theoretical 

optimization problems by modifying datasets using stochastic methods or solving a 

real-world optimization problem. Optimization solutions of stochastically generated 

dynamic optimization datasets cannot be fairly compared because dataset results and 

optimal values will have some variance. Also, research on real-world optimization 

problems usually does not share the dataset used for the optimization. Therefore, 

Chapter 4 introduced a new non-stochastic dataset creation method and published 

fully defined Dynamic Multidimensional Knapsack Problem datasets. 

Currently, ACO solving DOPs use one of two rudimentary dynamic optimization 

strategies that are easy to integrate into standard ACO algorithms, Full-Restart and 

Pheromone-Sharing. The standard ACO algorithm was not designed initially with 

dynamic optimization in mind. However, in nature ant species manifest behaviour that 

helps adapt to dynamic changes by herding aphids. Currently, no research is 

conducted on the relationship between ants and aphids for the benefit of effective 

discrete dynamic optimization techniques. Therefore, Chapter 5 proposed a new 

dynamic optimization strategy called ACO with Aphids to improve overall optimization 

performance by solving the DMKP benchmark and comparing it against Full-Restart 

and Pheromone-Sharing strategies. Dedicated ACO design for dynamic optimization 

should improve inter-state convergence. Those positive optimization performance 

gains will further compound with sub-heuristic ACO improvements.  
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Chapter 3. Dynamic Impact: a sub-

heuristic method for ACO search  

This chapter presents a design and experimentation on a sub-heuristic search method 

for the Ant Colony Optimization (ACO) algorithm called Dynamic Impact to address 

the limitations of the sub-heuristic search found in the previous chapter. The chapter 

also provides insight into how Dynamic Impact can be used for any constrained 

optimization problem. This method is then used to solve real-world Microchip 

Manufacturing Plant Production Floor Optimization (MMPPFO) problem and solve a 

theoretical Multidimensional Knapsack problem (MKP) for further validation and 

compare ACO with Dynamic Impact solution results to peer published work and their 

results. 

3.1. Dynamic Impact methodology 

Some optimization problems may not have reliable static heuristic information that can 

be precalculated before the search. These optimization problems are usually 

resource-constrained, and fitness relies on a collection of edges rather than individual 

edges. For such an optimization problem, the state of a partial solution becomes a 

vital factor when choosing which edges to add to that partial solution. This research 

proposes the Dynamic Impact evaluation method as an extension to the Ant Colony 

Optimization algorithm core to improve solution quality and convergence speed.  

3.1.1. Dynamic Impact for Ant Colony Optimization 

algorithm 

The goal of Dynamic Impact is to enable rapid search identification of the good 

collection of edges for the solution. Dynamic Impact evaluation is a novel method of 

calculating each edge’s contribution to the fitness value and evaluating the potential 

consumption of the remaining problem resources before including the edge to the 

partial solution. This method allows ants to choose edges more accurately that benefit 

the search’s fitness value of the solution the most and use the lowest fraction of 



37 

 

remaining resources. This method is the third component in an edge’s probability 

calculation, along with pheromone and heuristic information. The Dynamic Impact 

method is also a myopic search component, improving search accuracy similar to the 

heuristic information.  

Edge’s probability calculation using Dynamic Impact: 

𝑝𝑗,𝑖 =
𝜏𝑗,𝑖

𝛼 ∗  𝜂𝑗,𝑖
𝛽

∗ 𝐷𝐼𝑗,𝑖
𝛾

(𝑠𝑝)

∑ (𝜏𝑗,𝑖
𝛼 ∗  𝜂𝑗,𝑖

𝛽
∗ 𝐷𝐼𝑗,𝑖

𝛾
(𝑠𝑝))

,   ∀(𝑗, 𝑖)  ∈  𝑁(𝑠𝑝)  
(3-1) 

where 𝐷𝐼𝑗,𝑖
𝛾

(𝑠𝑝) is Dynamic Impact component in probability calculation at the partial 

solution state 𝑠𝑝,  𝛾  (gamma) is a relative importance of Dynamic Impact, 𝑗 and 𝑖 are 

the edges and nodes of the search space, respectively.  

The proposed Dynamic Impact component evaluation is unlike static heuristic 

information and pheromone. This component depends on the current state of a partial 

solution and is not pre-calculated like heuristic information. It is designed to change 

every time an edge is added to a solution. Therefore, like the pheromone, it cannot be 

updated after each solution is completed. 

The best formula for Dynamic Impact calculation depends on the optimization problem 

and optimization goals. A fitness function or a simplified version of a fitness function 

is used to calculate Dynamic Impact. In the cases where the fitness function is a non-

linear relationship of the combination of edges, the Dynamic Impact measures how 

much each edge impacts the fitness value for a partial solution. Also, it measures the 

consumption of remaining resources defined as problem constraints in relation to a 

reward received from using this edge. The general formula of Dynamic Impact can be 

expressed as follows: 

𝐷𝐼𝑒 = (𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝))
𝐴

× (
𝛺(𝑠𝑝 + 𝑒)

𝛺(𝑠𝑝)
) 

(3-2) 

where 𝐷𝐼𝑒 is Dynamic Impact for 𝑒 edge. 𝐴 is a sign constant of optimization goal: +1 

for maximization and −1 for minimization objectives. 𝑓(𝑠𝑝) and  𝑓(𝑠𝑝 + 𝑒) note the 

fitness values of a partial solution without and with an added edge, respectively. 

Similarly, 𝛺(𝑠𝑝) and 𝛺(𝑠𝑝 + 𝑒) are notations of remaining constraints of the partial 

solution without and with an added edge, respectively. In this theoretical Dynamic 
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Impact calculation, the value is a difference in fitness value multiplied by the proportion 

of the remaining resources with the edge. For example, Dynamic Impact is a perceived 

value in a given state for the maximization objective where the highest increase in 

fitness may not be the most beneficial if it takes a disproportionally large part of the 

remaining constraints. Depending on an optimisation problem, some parts of this 

Dynamic Impact function may be simplified. For example, in cases where fitness is a 

linear sum of its solution components 𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝) can be simplified to just 

individual fitness of an edge: 𝑓(𝑒). Also, the equation’s constraints part could be 

simplified too, depending on if it has non-linear nature or omitted if constraints have 

no relevance to the solution. Lastly, the Dynamic Impact formula must always be 

formulated such that it is always more than zero 𝑖. 𝑒. 𝐷𝐼𝑒 > 0. 

The concept of Dynamic Impact is similar to the dynamic heuristic information 

described in [134], [173] research work. The Dynamic Impact and dynamic heuristic 

information both depend on the state of the partial solution. However, the Dynamic 

Impact is an additional component in the probability calculation and can be used along 

with static heuristic information if optimization problems can benefit. The Dynamic 

Impact is a broader operator in edges probability calculation that captures remaining 

resources consumption and exploits the non-linearity of the fitness function. 

Furthermore, the ACO algorithm that supports static heuristic information and Dynamic 

Impact at the same time is more useful in the general setting to optimize combinatorial 

optimization problems. 

In summary, Dynamic Impact evaluation, similarly to static heuristic information, is a 

myopic search component. However, it is evaluated as each edge is added to a partial 

solution, making it more versatile in optimization problems where static heuristic 

information values cannot be calculated in advance or have a non-linear fitness 

function.  

3.1.2. Dynamic Impact example 

Let us consider a simplistic example of vehicle routing where the objective is to 

minimize the total time spent on a road for each vehicle, but the constraint is fuel in a 

tank. For simplicity, we will assume that using a motorway is faster but use the most 

fuel. While using an alternative route would be slower but use less fuel. In such an 
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example, using a motorway, the vehicle might reach the destination faster while using 

more fuel than the more direct route in city traffic which is also much slower. Referring 

to formula (3-2), this example is a minimization problem therefore 𝐴 ∶= −1. The fitness 

impact of the edge for a linear fitness function is the linear fitness of the edge 

𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝) =  𝑓(𝑒)  ∶=  𝑇𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒) which is the time taken for a route. The 

constraint of the problem is the remaining fuel 𝛺(𝑠𝑝)  ∶=  𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙, and each 

edge uses the constraint by consuming the fuel  𝛺(𝑠𝑝 + 𝑒)  ∶=  𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 −

 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠(𝑅𝑜𝑢𝑡𝑒). Adding all components together, the final formula of the Dynamic 

Impact example arithmetically simplifies to maximize the inverse time of the route while 

using the least portion of the remaining fuel.  

𝐷𝐼𝑅𝑜𝑢𝑡𝑒 = (𝑇𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒))
−1

×
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 −  𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠(𝑅𝑜𝑢𝑡𝑒)

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙
 

=
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 −  𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠(𝑅𝑜𝑢𝑡𝑒)

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 ∗ 𝑇𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒)
 

(3-3) 

 

In Table 3-1, this formula has been used to demonstrate the difference in Dynamic 

Impact, considering the only remaining fuel variable. There are three routes (edges) 

to be considered in this table: First, fuel-efficient but slow. Second, medium-fast and 

medium-fuel-efficient. Third, fast with high fuel consumption. Three scenarios of 

remaining fuel are considered: low, medium, and high amounts of the remaining fuel. 

In scenario number one, route number one has the highest Dynamic Impact because 

a slower but fuel-efficient route is considered to be more attractive in a low-fuel 

scenario. In the second scenario, with a medium amount of fuel, an average fast route 

is the most attractive. And lastly, in the third scenario, where there is a lot of fuel left 

to use, the Dynamic Impact strongly suggests the fastest route. The remaining fuel 

level would not typically be considered in the standard ACO probability calculation, 

and it would take many iterations for the ants to learn the best complete travel path 

without having a myopic understanding of which of the routes are in their best interest 

considering the partial solution an ant has already built. Using Dynamic Impact, ACO 

can build better initial solutions and let pheromone continue the fine-tuning towards 

optimal solution along with situation awareness provided by Dynamic Impact. The 

pheromone and the heuristic information do not capture fuel information while building 

a solution. The pheromone is updated after each iteration using a fully built solution, 

and static heuristic information is precalculated before the optimization begins. 
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Table 3-1: Simplistic example of Dynamic Impact. Three parallel scenarios are shown, 

which have three equivalent routes each. Dynamic Impact is calculated for each route in 

each scenario individually. 

Scenario Route 
number 

Route 
distance  

Average 
route speed 

Route 
time 

Fuel 
consumption 

Remaining 
fuel 

Dynamic 
Impact  

1 
1 25 10 2.5 15 

60 
0.30 

2 30 15 2 25 0.29 
3 60 60 1 60 0.00 

2 
1 25 10 2.5 15 

80 
0.33 

2 30 15 2 25 0.34 
3 60 60 1 60 0.25 

3 
1 25 10 2.5 15 

120 
0.35 

2 30 15 2 25 0.40 
3 60 60 1 60 0.50 

 

3.2. Applied optimization problems  

In this chapter, two optimization problems are used to perform experimental work 

Multi-dimensional Knapsack Problem (MKP) and Microchip manufacturing plant 

production floor optimization (MMPPFO). This section serves as a comprehensive 

introduction to both optimization problems. 

3.2.1. Multi-dimensional Knapsack Problem (MKP) 

MKP is a well-known set covering academic benchmark optimization. This problem 

occurs in many different applications and is strongly NP-hard [174]. The MKP consists 

of a set of 𝑛 items that have a profit 𝑃𝑖 > 0 and 𝑚 knapsacks with capacities 𝐶𝑘 > 0. 

Each item 𝑖 uses defined 𝑊𝑖,𝑘 > 0 amount of capacity from each knapsack 𝑘. MKP 

aims to find a set of items where the combined profit of those items is as high as 

possible while the combined weight fits in all knapsacks [175], [133]. The nature of 

packing different size items in all knapsacks simultaneously makes the feasible region 

of the search very sparse [176]. Such sparsity is a great challenge for optimization 

algorithms where good solutions are obtained by iterative convergence. The formal 

description of MKP is as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑖 × 𝑃𝑖

𝑛

𝑖=1

 
(3-5) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑(𝑥𝑖 × 𝑊𝑖,𝑘) ≤ 𝐶𝑘

𝑛

𝑖=1

, ∀(𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ (ℕ ≤ 𝑚) 
(3-6) 

where 𝑛  and 𝑚 is a number of items and knapsacks in the problem. 𝑥𝑖 ∈ {0,1} is a 

decision vector to take the item 𝐼𝑖. 𝑃𝑖 is the profit of the item 𝐼𝑖. 𝑊𝑖,𝑘 is the weight of 𝑖𝑡ℎ 

item for the 𝑘𝑡ℎ knapsack. 𝐶𝑘 is the capacity of the 𝑘𝑡ℎ knapsack. 

The concept of items with multidimensional weights fitting into multiple knapsacks can 

be hard to imagine. This weight abstraction is much easier to understand with a simple, 

practical example of a backpack with a maximum weight limit of 16 kilograms and a 

maximum volume limit of 15 litres. All items have some weight and some volume. The 

goal is to pick a set of items with the highest profitability without exceeding both the 

weight and the volume of the backpack, see Figure 3-1.  

 

Figure 3-1: Simple example of Multidimensional Knapsack Problem with two packing 

dimensions of weight and volume 

There are a lot of MKP benchmark datasets to solve and compare the results. Three 

most frequently used MKP benchmark libraries are SAC94 benchmark collection of 55 

small MKP instances up to 105 items per dataset. GK collection introduced by Glover 

and Kochenbeger contains 11 much larger instances, up to 2500 items per dataset 

[177]. OR library introduced by Chu and Beasley has the most datasets, 270 instances 
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of medium complexity up to 500 items [174]. The datasets can be found in this 

Research Gate repository [178]. 

Algorithms developed to solve MKP are incredibly useful in solving real-world 

optimization problems. Many practical optimization problems have an equivalent 

expression to MKP like cargo loading [38], layout problem [41], project budgeting [44], 

portfolio management [45], and cutting stock [46], to name a few.  

Over the last several decades, many new improvements to optimization algorithms 

have been proposed while pursuing better results of static MKP. Genetic algorithm 

(GA) with sexual selection, where chromosomes selected for crossover must be the 

opposite gender, proved to solve consistently better than comparable algorithm 

without such method [179]. Improved GA with pattern substitution where bad genes 

are replaced with good using the greedy method [180]. Ant Colony Optimization (ACO) 

with adopted Min-Max Ant System (MMAS) has proved to be a competitive algorithm 

solving benchmark MKP [181]. Also, massively parallel approaches were developed 

for the ACO to improve result quality and reduce computation time using distributed 

cloud computing [182] and General-Purpose Graphics Processing Units (GPGPU) 

[183]. Set-based Particle Swarm Optimization (PSO) has been adopted to solve MKP, 

a discrete version of PSO, while PSO is typically used to solve optimization problems 

of continuous nature [184]. Then PSO further improved with added genetic crossover 

operation [185] and local search [186]. 

3.2.2. Microchip manufacturing plant production floor 

optimization (MMPPFO) problem  

Microchip Manufacturing Plant Production Floor Optimization (MMPPFO) is a real-

world optimization problem the industry partner faces. The source of the following 

problem description is agreed upon with the industry partner and is cleared for 

publication. The details include problem purpose, terminology, abbreviations, 

formulas, constraints, and optimization objectives. This information is sufficient to 

recreate and thoroughly verify the experimental work’s findings using the same 

dataset. 

Microchip manufacturing is a complex process that utilizes expensive machinery. Tight 

manufacturing schedules are used to run operations at maximum efficiency and 
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minimize machinery downtime while always maintaining products’ optimum stock 

levels. Often predicted microchip demand does not meet observed actual demand, 

and the microchip production schedule must be altered accordingly to meet the newly 

specified demand.   

Microchip manufacturing scheduling problems have been researched from various 

points of view. Scheduling robotic arms of two-cluster tools in microchip manufacturing 

facilities [187], transport scheduling in automated material handling systems for wafer 

manufacturing plants [188], and wafer production as a job shop scheduling problem 

[189]. This research on the MMPPFO problem approaches optimization as a resource-

constrained production scheduling problem. 

The optimization problem starts with the initial wafer-lot production schedule and new 

die request. To solve the problem, the wafer-lots schedule must be altered to support 

all the changed and existing planned demands. Schedules can be altered by changing 

the individual wafer-lot schedule in three major ways: pull-in, push-out, and offload. 

Pull-in wafer-lot means to produce the wafer-lot earlier. Push-out means to produce 

the wafer-lot later. Offload means to produce the wafer-lot in another fab. All wafer-lot 

schedule alterations must comply with existing constraints, making the problem 

combinatorial NP-hard. Wafer production is a complex process in a microchip 

manufacturing plant. Each fab can produce a limited quantity of wafers in a selected 

time window. The time window of this scheduling problem is one week. With known or 

predicted future die demand, it is possible to create a wafer-lot production schedule 

that maximizes fabs’ efficiency and supports all the requested demand. Moreover, it 

is desired to support this new demand while having the lowest number of changes to 

the schedule possible.  

3.2.2.1. MMPPFO Problem definition 

The following are the definitions of MMPPFO used for this research. 

Wafer-lot (𝑊𝐿𝑖) is a non-divisible collection of silicon wafers of a single product to be 

manufactured all at once and can support only one request. Wafer-lot is noted as 𝑊𝐿𝑖, 

where 𝑖 is the index of the wafer-lot. Each wafer-lot has an original schedule slot that 

can be altered in the problem optimization. For example, wafer-lot 𝑊𝐿100 can have its 
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commit week changed from 𝑊 = 5 to 𝑊 = 3, which is a pull-in operation. Also, at the 

same time, it can be offloaded from 𝐹 = 𝐹30 fab to 𝐹 = 𝐹20. 

Order is a silicon wafer product demand to be manufactured in a fab at a specified 

week. Order is noted as 𝑂𝑗, where 𝑗 is the index of the order. Demand may not be fully 

satisfied – undersupported, or it may have too many wafers scheduled – 

oversupported. For example, order number 5 requests for 55 wafers, 𝑂5 = 55. This 

demand can be supported using multiple wafer-lots.  

Equipped capacity is the number of wafers of a specified product group that a fab is 

able to produce at a given week. Equipped capacity is noted as 𝐶𝑃,𝐹,𝑊, where 𝑃 is 

product group, 𝐹 is fab, 𝑊 is commit week at which the capacity is defined. Specified 

fab capacity must not be violated as it is a physical equipment limitation. For example, 

𝐶𝑃1,𝐹30,𝑊5 = 400 is the capacity at fab 𝐹30 in week 𝑊5 to make product group 𝑃100 is 

400 wafers. The fab may produce more than one product group and will have their 

capacity defined individually. Also, the fab capacity is defined for each week, as 

production capacities can vary weekly.  

Supported request is a sum of wafers of all wafer-lots that is scheduled to support the 

request of 𝑂𝑗 order  

𝑆𝑅(𝑂𝑗) = ∑ 𝑄(𝑊𝐿𝑖)

𝑖

,         𝑊𝐿𝑖 ∈ 𝑠𝑝 (3-7) 

where 𝑆𝑅(𝑂𝑗) is the supported request of 𝑂𝑗 order, 𝑄(𝑊𝐿𝑖) is wafer quantity of 𝑊𝐿𝑖 

wafer-lot, and wafer-lot 𝑊𝐿𝑖 belongs to a solution where it is used for 𝑂𝑗 order. 

Undersupported request is a number of wafers lacking to support a given request in 

full for 𝑂𝑗 order.  

𝑈𝑆𝑅(𝑂𝑗) = 𝐷(𝑂𝑗) − 𝑆𝑅(𝑂𝑗) |
𝑖𝑓 𝐷(𝑂𝑗) > 𝑆𝑅(𝑂𝑗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0
 

(3-8) 

where 𝑈𝑆𝑅(𝑂𝑗) is the undersupported request of 𝑂𝑗 order, 𝐷(𝑂𝑗) is the demand of the 

order. 

Oversupported request is a number of wafers above the requested demand for 𝑂𝑗 

order.  
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𝑂𝑆𝑅(𝑂𝑗) = 𝑆𝑅(𝑂𝑗) − 𝐷(𝑂𝑗) |
𝑖𝑓 𝐷(𝑂𝑗) < 𝑆𝑅(𝑂𝑗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0
 

(3-9) 

where 𝑂𝑆𝑅(𝑂𝑗) is the undersupported request of 𝑂𝑗 order. 

Capacity utilization is a capacity that has been used for wafer production, calculated 

from an output schedule of an optimization.  

𝑈(𝐶𝑃,𝐹,𝑊) = ∑ 𝑄(𝑊𝐿𝑖),  

𝑖

     𝑊𝐿𝑖 ∈ 𝑠𝑝 (3-10) 

where 𝑈(𝐶𝑃,𝐹,𝑊) is the utilization of specified fab capacity 𝐶𝑃,𝐹,𝑊, and wafer-lot 𝑊𝐿𝑖 

belongs to the solution where it is using fab capacity 𝐶𝑃,𝐹,𝑊. 

Capacity waste is a capacity that has been left unused. Capacity waste cannot be 

negative. 

𝑊𝐴(𝐶𝑃,𝐹,𝑊) = 𝐶𝑃,𝐹,𝑊 − 𝑈(𝐶𝑃,𝐹,𝑊) (3-11) 

where 𝑊𝐴(𝐶𝑃,𝐹,𝑊) is the waste of specified fab capacity 𝐶𝑃,𝐹,𝑊. 

Problem solution is a schedule of wafer-lots to be manufactured, noted as 𝑠𝑝. The 

schedule indicates what wafer-lots 𝑊𝐿𝑖 are manufactured at given commit week 𝑊, 

and given fab 𝐹. A fully assembled solution must comply with all problem constraints. 

Problem search space noted as 𝑁 is a collection of all vertices and all edges of feasible 

combinatorial permutations.  

3.2.2.2. Constraints  

This optimization problem has a set of constraints that the optimization engine must 

simultaneously consider when building a solution. Some constraints are combinatorial, 

meaning that a combination of wafer-lots must satisfy a given constraint. Other 

constraints are the search space constraints applied for an individual wafer-lot. Search 

space constraints limit the total search space to be explored.  

Capacity constraint 

Fabs have equipped capacity that is a hard limit on how many wafers of a specified 

product group can be scheduled for a given commit week. The sum of wafers must 
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always be lower or equal to equipped capacity. The limit is in effect as a sum of wafers 

of wafer-lot collection for a given week and fab, thus it is a combinatorial constraint. 

𝐶𝑃,𝐹,𝑊 > 𝑈(𝐶𝑃,𝐹,𝑊) (3-12) 

Order support constraint 

All wafers supporting an order must be committed on time or ahead of time. This way, 

all wafer-lot permutations too late are not included as edges of search space, therefore 

constraining search space. 

𝑊(𝑊𝐿𝑖) ≤  𝑊(𝑂𝑗),      ∀(𝑗, 𝑖)  ∈  𝑁 (3-13) 

where 𝑊(𝑊𝐿𝑖) is commit week of 𝑊𝐿𝑖, 𝑊(𝑂𝑗) is commit week of 𝑂𝑗  order, for all 

permutations of 𝑗, 𝑖 that belong to search space 𝑁. 

Pull-in, push-out constraint 

Wafer-lot schedule changes must follow specified pull-in (bring forward production) 

push-out (delay production) information, i.e. not all products can be pulled-in or 

pushed-out. Pull-in operations for specific products can only be done in fabs that allow 

such an operation. If necessary, push-out can be done only for a corresponding pull-

in operation to stay within capacity constraint. This constraint limits the search space 

by allowing only limited pull-in or push-out operations out of all possible combinations. 

Moreover, each push-out must have a corresponding pull-in operation applied in the 

solution, thus making it a combinatorial constraint. 

Offload constraint 

Each wafer-lot can be offloaded to fabs that support the product group and the product 

itself. This limits the search space by not including wafer-lot permutations of offload to 

fabs that cannot produce the wafer-lot product.  

3.2.2.3. Optimization objectives 

In microchip manufacturing, efficiency can be expressed in several different ways. 

Each solution produced by the ACO must be evaluated to get the fitness value. Then 

solution fitness value is compared to other solutions. A solution with a lower fitness 

value is a better solution for a minimization objective.  
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Minimum undersupported request 

This optimization problem’s primary objective is to minimize undersupported requests 

that ensure that all customer orders get silicon chips fulfilled on time.  Minimizing the 

undersupported request means that all orders should have wafer request supported 

fully or have the least possible number of wafers undersupported.  

𝑚𝑖𝑛 ∑ 𝑈𝑆𝑅(𝑂𝑗)

𝑗

 (3-14) 

where 𝑈𝑆𝑅(𝑂𝑗) stands for UnderSupported Request of 𝑂𝑗 order. 

For new silicon chip demand, it is possible that requested wafers could not be met with 

an integer number of wafer-lots where wafer-lot has a fixed number of wafers that do 

not match the demand precisely. In such a scenario, the request will be either 

undersupported and have the orders not fully complete or oversupported and waste 

the production that could be utilized to support other demands. 

 

3.3. ACO with Dynamic Impact algorithm 

performance investigation 

In this section, two experiments have been conducted. First, solving the real-world 

MMPPFO, and second, solving the theoretical MKP. Both experiments introduce the 

specific implementations of ACO and tuned parameters. Most importantly, both 

experiments provide the formula used for Dynamic Impact evaluation. And finally, the 

experiment results are analysed.  

3.3.1. ACO solving Microchip Manufacturing Plant 

Production Floor Optimization 

3.3.1.1. Search space preparation  

Ants can only navigate efficiently in the prepared search space where all edges are 

filtered for feasibility and have pheromone and heuristic information values attached 

to them. In MMPPFO, a possible wafer-lot allocation for production is an edge of a 
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search space. One wafer-lot can have multiple permutations, including different 

production weeks and production fabs.  

3.3.1.2. Heuristic information  

Ant Colony Optimization uses heuristic information that plays a crucial role in the 

algorithm’s convergence [116]. Heuristic information gives ants a myopic benefit and 

directs them to explore more promising parts of the search space and obtain good 

initial solutions before strong pheromone trails are laid. Static heuristic information is 

calculated during search space preparation and remains constant throughout the 

entire algorithm run. For this experiment, the preliminary edge’s static heuristic 

information is the following: 

𝜂𝑗,𝑖 =
𝑂𝑗

𝑄(𝑊𝐿𝑖)
 

(3-15) 

where 𝑂𝑗 is the number of wafers in the order and 𝑄(𝑊𝐿𝑖) is wafer quantity of 𝑊𝐿𝑖 

wafer-lot. However, for the MMPPFO problem, the main objective, a minimum 

undersupported request, preliminary testing has shown that ACO performed best 

using 𝛽 = 0, in which case the heuristic information had not been used. This shows 

that individual wafer-lots do not carry any significance over others, as only the total 

collection of wafer-lots is essential. 

3.3.1.3. Experimental dataset 

For algorithm validity and performance testing, a synthetic dataset is used to cover 

various corner cases that could occur in real optimization scenarios. The dataset was 

generated with an industry partner using a real dataset basis with masked industry 

secrets but preserved patterns and dynamics. The dataset used for this experiment is 

published in the FigShare repository [190]. 

3.3.1.4. Dynamic Impact for MMPPFO optimization  

Dynamic Impact’s goal for the MMPPFO problem is to quickly identify a good collection 

of wafer-lots to support the order. The formula of Dynamic Impact for MMPPFO 

minimum undersupported request objective has been obtained using the general 

formula (3-2) as a guide with some adjustments.  
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The minimum undersupported request objective is a special case of minimization 

objectives. An empty solution starts with a high fitness value, and each edge added to 

the partial solution reduces the fitness. Such dynamics are treated as the negative of 

the maximization objective, and therefore fitness impact term of the Dynamic Impact 

formula is adjusted as follows: 

(𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝))
𝐴

→ 𝑓(𝑠𝑝) − 𝑓(𝑠𝑝 + 𝑒) 
(3-16) 

Fitness impact of the edge is defined as non-linear support of the 𝑂𝑗 order and 𝑊𝐿𝑖 

wafer-lot: 

𝑓(𝑠𝑝 + 𝑒) ∶=  𝑚𝑎𝑥{𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖), 0} (3-17) 

𝑓(𝑠𝑝) ∶= 𝑅𝐷(𝑂𝑗) (3-18) 

𝑅𝐷(𝑂𝑗) = 𝐷(𝑂𝑗) − 𝑆𝑅(𝑂𝑗) (3-19) 

𝑓(𝑠𝑝) − 𝑓(𝑠𝑝 + 𝑒) = 𝑅𝐷(𝑂𝑗) − 𝑚𝑎𝑥{𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖), 0} (3-20) 

where 𝑓(𝑠𝑝 + 𝑒) is given the remaining demand minus wafer quantity of the 𝑊𝐿𝑖 wafer-

lot, 𝑓(𝑠𝑝) is given the remaining demand, 𝑅𝐷(𝑂𝑗) is remaining demand for the 𝑂𝑗 order, 

𝐷(𝑂𝑗) the total demand of the order, and 𝑆𝑅(𝑂𝑗) is supported request of the order. 

𝑄(𝑊𝐿𝑖) is the wafer quantity of 𝑊𝐿𝑖 wafer-lot. 

The constrained resource of this problem is the fab capacity: 

𝛺(𝑠𝑝 + 𝑒)  ∶=  𝑅𝐶(𝐶𝑃,𝐹,𝑊) − 𝑄(𝑊𝐿𝑖) (3-21) 

𝛺(𝑠𝑝)  ∶=  𝑅𝐶(𝐶𝑃,𝐹,𝑊) (3-22) 

𝑅𝐶(𝐶𝑃,𝐹,𝑊) = 𝐶𝑃,𝐹,𝑊 − 𝑈(𝐶𝑃,𝐹,𝑊) (3-23) 

where 𝛺(𝑠𝑝 + 𝑒) is given the remaining fab capacity minus wafer quantity of the 𝑊𝐿𝑖 

wafer-lot, 𝛺(𝑠𝑝) is given the remaining fab capacity. 𝑅𝐶(𝐶𝑃,𝐹,𝑊) is the remaining 

capacity of the equipped fab capacity 𝐶𝑃,𝐹,𝑊.  

It is important to note that the remaining capacity 𝑅𝐶(𝐶𝑃,𝐹,𝑊) and capacity waste 

𝑊𝐴(𝐶𝑃,𝐹,𝑊) are equivalent expressions, and ideally, wasted capacity should be as low 

as possible. Also, every wafer-lot produced on time contributes to fitness the same 
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amount as it consumes the fab capacity if the demand is higher than the wafer quantity 

of the wafer-lot. However, the wafers produced over the demand do consume the fab 

capacity and do not contribute to the fitness value. Both fitness and constraint 

calculations are expressed in units of wafer quantity. This similarity of the units can be 

exploited to increase computational efficiency. For this optimization problem, it is more 

beneficial to count only the wafers over the remaining demand, which would consume 

the equipped fab capacity that could potentially be used to produce other wafers and 

support more demand: 

𝛺(𝑠𝑝 + 𝑒)

𝛺(𝑠𝑝)
∶= 𝑚𝑎𝑥{𝑄(𝑊𝐿𝑖) −  𝑅𝐷(𝑂𝑗), 0} 

(3-24) 

This constraint impact part is a count and not a ratio, therefore it should be added to 

the fitness impact part and not multiplied: 

𝑓(𝑠𝑝) − 𝑓(𝑠𝑝 + 𝑒) +
𝛺(𝑠𝑝 + 𝑒)

𝛺(𝑠𝑝)
 = 𝑅𝐷(𝑂𝑗) − 𝑚𝑎𝑥{𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖), 0}

+ 𝑚𝑎𝑥{𝑄(𝑊𝐿𝑖) −  𝑅𝐷(𝑂𝑗), 0} = 𝑅𝐷(𝑂𝑗) − |𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖)| 

(3-25) 

Finally, the Dynamic Impact must respect 𝐷𝐼𝑒 > 0 rule, therefore for this optimization 

problem, it is chosen to constrain the Dynamic Impact value not less than 0.1 such 

that the algorithm does not calculate zero or negative probability for the edge 𝐷𝐼𝑗,𝑖 ≥

0.1. Then added all parts together, the final Dynamic Impact formula of minimum 

undersupported request objective is as follows: 

𝐷𝐼𝑗,𝑖 = 𝑚𝑎𝑥 {𝑅𝐷(𝑂𝑗) − |𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖)|, 0.1} (3-26) 

This Dynamic Impact evaluation formula represents a simplified fitness function and 

considers the wasteful fab capacity utilization. Once the demand is supported, 

producing more wafers does not benefit fitness while wasting the wafer production 

resources.  

3.3.2. MMPPFO experiment results 

The experiment is designed to test the benefit of using Dynamic Impact for the Min-

Max Ant System in order to achieve the best final result. In this experiment, two 

probability parameters will be tested 𝑞0 and 𝛾. 𝛾 is the main variable that defines the 

importance of Dynamic Impact. The experiment baseline is 𝛾 = 0 (Dynamic Impact 
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has no contribution to search probabilities). Moreover, in this experiment 𝑞0 – the ant 

exploration hyperparameter is tested, as the optimal value of 𝑞0 often depends on the 

other hyperparameters. 𝛾 and 𝑞0 are tested with a wide range of values to determine 

the best possible combination of 𝛾 and 𝑞0, as well as to assert the baseline of the 

experiment with 𝛾 = 0 parameter. In this experiment, the range of 𝛾 is from 0.125 

growing exponentially to 16 by a factor of 2, and 𝑞0 is from 0 increasing linearly to 0.95 

by an increment of 0.05.  

The remaining parameters of the Min-Max Ant System have been established by 

preliminary experimentation. The best combination of pheromone parameters is: 

𝜏𝑚𝑎𝑥 = 1, 𝜏𝑚𝑖𝑛 = 0.001, 𝜌 = 0.1, Δ𝜏0 = 1. Configuration of probability parameters: 𝛼 =

1, 𝛽 = 0. Solutions are achieved by running 3,000 iterations using 2 sequential ants, 

using 16 parallel ants as per Dzalbs et al. described architectural model [39].  

In Table 3-2, the undersupported score is displayed for each of 𝑞0 and gamma 

configuration combinations. Each data is an average score of 50 independent 

algorithm runs. Firstly, the asserted baseline of 𝛾 = 0, which means Dynamic Impact 

does not influence the search probability calculation. The best configuration of 𝛾 is 𝛾 =

0, 𝑞0 = 0.3, the corresponding result at this configuration is 31.0 wafers of 

undersupported request. For the runs using Dynamic Impact, the best results are 

obtained with configuration 𝛾 = 4, 𝑞0 = 0, and the result is 19.0 average wafers of 

undersupported request score. When using higher levels of Dynamic Impact 

importance, ACO algorithm tends to perform better using lower 𝑞0 values, which 

means a preference towards exploration over exploitation. Using Dynamic Impact with 

𝛾 = 4, consistently outperforms 𝛾 = 0 across wider range of 𝑞0 values. In the real-

world deployment scenarios where the algorithm’s 𝑞0 value is not tuned perfectly, but 

only roughly estimated 𝑞0 value. Using the average of 5 best 𝑞0 settings, at 𝛾 = 4 is 

22.1 wafers of undersupported request. In comparison, for an imperfectly tuned 

baseline, the average of 5 best 𝑞0 settings at 𝛾 = 0 is 35.3 wafers of undersupported 

request. 
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Table 3-2: Undersupported result map for 𝛄 and 𝐪𝟎, where 𝛄 = 𝟎 is an algorithm run 

without Dynamic Impact. Each data point represents the average of 50 runs. Results of 

optimizing the heuristically generated dataset. 

  Gamma 𝛄 

   0 0.125 0.25 0.5 1 2 4 8 16 

q0 

0 56.6 50.2 52.3 45.9 33.9 23.3 19.0 36.1 70.9 

0.05 57.5 49.6 45.4 41.2 31.9 22.9 29.1 32.3 68.4 

0.1 48.0 47.1 42.0 36.9 31.9 20.2 21.5 43.5 70.1 

0.15 41.5 38.7 33.5 35.2 30.6 21.8 19.5 36.9 69.7 

0.2 42.4 38.8 35.2 33.9 29.6 23.4 21.5 36.4 72.7 

0.25 38.1 33.0 33.2 31.7 31.0 27.9 35.8 44.0 73.9 

0.3 31.0 32.0 40.0 29.9 27.1 35.2 33.2 49.2 95.2 

0.35 37.9 32.1 38.2 36.6 36.8 31.2 32.0 54.6 99.5 

0.4 37.3 46.5 45.0 54.0 48.3 43.0 44.0 58.1 110.5 

0.45 32.5 51.5 51.3 55.0 57.2 65.9 65.6 77.3 151.5 

0.5 49.1 53.6 63.1 64.9 71.6 73.5 87.0 101.0 171.9 

0.55 49.1 69.0 77.4 102.2 105.2 93.2 104.9 107.3 163.0 

0.6 53.4 84.6 92.7 98.4 108.6 120.1 104.9 133.1 184.3 

0.65 81.3 113.5 120.3 127.1 146.2 147.5 141.5 150.1 194.6 

0.7 105.8 134.3 162.4 157.9 161.4 163.6 164.3 175.2 218.3 

0.75 129.9 161.7 178.2 192.8 187.9 192.2 204.2 223.6 226.3 

0.8 177.6 191.3 209.3 207.6 214.9 222.4 232.0 236.2 249.4 

0.85 207.5 221.4 225.8 233.7 254.5 265.9 255.0 274.3 294.0 

0.9 275.9 286.0 311.4 319.7 324.8 323.4 330.7 334.1 392.3 

0.95 375.8 362.5 401.3 387.1 409.2 440.1 442.7 489.9 464.5 

 

Moreover, in Figure 3-2, a more detailed comparison of best configurations among 

baseline 𝛾 = 0, 𝑞0 = 0.3 and best configuration using Dynamic Impact evaluation 𝛾 =

4, 𝑞0 = 0. In the Figure 3-2, the main bar represents the average undersupported 

score of 50 algorithm runs of the shown setting. The error bars indicate one standard 

deviation of the scores across the runs.  

 

Figure 3-2: Dynamic Impact comparison on best configurations. Average of 50 runs. 

Error bars indicate one standard deviation. 

On this optimization problem, with iterations limited to 3,000, using Dynamic Impact, 

the undersupported request score has been improved on average by 38.5%. 
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Moreover, using Dynamic Impact, the standard deviation is reduced from 20.8 to 12.3. 

This smaller standard deviation means lower quality solutions occur significantly less 

often, making the performance more reliable in fast-paced environments or solving 

large-scale optimization problems where a good solution is needed as soon as 

possible.  

Dynamic Impact comes with a small computational performance cost since Dynamic 

Impact needs to be calculated for each wafer-lot probability calculation. ACO at best 

configuration without Dynamic Impact, on average, runs 86.8 seconds. Using the best 

configuration algorithm, ACO with Dynamic Impact took, on average, 96.9 seconds. 

Dynamic Impact evaluation is, on average, 11.6% more expensive to compute each 

iteration. Such a small addition in computational complexity was possible due to the 

simplified wafer-lot impact on solution fitness value, compared to an unoptimized 

version which could be several times more computationally expensive operation.  

In conclusion, the Dynamic Impact method has proven to be highly beneficial for an 

objective where the aim is to have a combination of elements adding up to the specific 

requested size or number. This experiment has demonstrated that real-world problems 

can be solved using an Ant Colony Optimization algorithm within acceptable 

computational limits. 

3.3.3. ACO solving Multidimensional Knapsack 

Problem (MKP) 

In addition to solving MMPPFO, ACO to solve MKP has also been implemented. The 

purpose of solving MKP is to test the Dynamic Impact evaluation method on a 

benchmark optimization problem and compare it against peer research results. The 

MKP is a suitable problem to test Dynamic Impact because the nature of the 

optimization goal is to find the collection of items of the highest profit that fit in the 

knapsack. There is no preference over which items should be taken as long as they 

all fit in the knapsack and ideally with the highest total profit. Such fungibility of items 

makes it a good candidate problem to benefit from the Dynamic Impact evaluation 

method. 
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3.3.3.1. Search space preparation 

The search space of the MKP is simple. The search space is expressed in a single 

dimension of binary option to take an item in the knapsack or not. Pheromone 𝜏𝑖, 

heuristic information 𝜂𝑖, and Dynamic Impact 𝐷𝐼𝑖 are, in this case, also single-

dimensional. Each item’s probability calculation is done all at once before adding any 

item into the partial solution.  

3.3.3.2. Heuristic information 

Similarly to MMPPFO, MKP’s maximum profit objective depends on the total profit of 

the collection of all items taken in the knapsack. For this experiment, the preliminary 

edge’s static heuristic information is the following: 

𝜂𝑖 =
𝑃(𝐼𝑖)

𝑊(𝐼𝑖)
 

(3-27) 

where 𝑊(𝐼𝑖) is weight, and 𝑃(𝐼𝑖) is the profit of the item defined in the input dataset. 

The preliminary testing has shown that ACO performed best using 𝛽 = 0, in which 

case the heuristic information was not used. This shows that none of the items are 

more important in the knapsack than the others. Only a combination of the items that 

all simultaneously fit in all knapsack dimensions must have the highest profit possible. 

3.3.3.3. Experimental dataset 

The datasets are obtained from the ResearchGate repository [178]. From this 

repository, small SAC94 datasets and large GK datasets will be solved. For small 

SAC94 datasets, the focus is on achieving optimal values with the highest possible 

success rate. On larger GK datasets, the goal is to get the highest profit on average. 

3.3.3.4. Dynamic Impact for MKP optimization 

The dynamic Impact evaluation equation to solve MKP differs from the MMPPFO 

problem as problem domains are not the same. For this problem, the Dynamic Impact 

formula is the following: 



55 

 

𝐷𝐼𝑖 =
𝑁𝑃(𝐼𝑖)

𝐶𝐼(𝐼𝑖)
 

(3-28) 

𝐶𝐼(𝐼𝑖) = 𝑚𝑎𝑥∀𝑗 {
𝑊(𝐼𝑖)

𝑅𝐶(𝐾𝑗)
} +

∑ {
𝑊(𝐼𝑖)

𝑅𝐶(𝐾𝑗)
}𝑗

𝑗
 

(3-29) 

 

𝑁𝑃(𝐼𝑖) =
𝑃(𝐼𝑖)

𝑚𝑎𝑥{∀𝑃(𝐼)}
 

(3-30) 

where 𝐷𝐼𝑖 – is Dynamic Impact for item 𝐼𝑖, calculated using normalized item profit over 

the capacity impact of the item. Normalized profit 𝑁𝑃(𝐼𝑖) of the item 𝐼𝑖 is a constant 

parameter precalculated using the profit of the item and the highest profit of all items. 

It is essential to have normalized profit from 0 to 1 in Dynamic Impact such that 

probability calculations have a constant range of inputs for any item profit magnitude 

range across various input datasets. 𝐶𝐼(𝐼𝑖) is a capacity impact of the item 𝐼𝑖. This is 

the most intense compute operation of the Dynamic Impact evaluation. It finds the 

maximum weight utilization combined with the average weight utilization of remaining 

knapsack capacities. The capacity impact has to be recalculated whenever doing the 

probability calculations as it uses the remaining knapsack capacities 𝑅𝐶(𝐾𝑗) in contrast 

to the total capacity that does not change while building the solution. When using the 

remaining knapsack capacity, the current state of the solution is well reflected and can 

impact the probability calculation to pick an item that does consume a lower portion of 

available knapsack space for the same profit reward. 𝑊(𝐼𝑖) is weight, and 𝑃(𝐼𝑖) is the 

profit of the item defined in the input dataset. 

The dynamic Impact formula for MKP is obtained in relation to the general Dynamic 

Impact formula (3-2). The formula component values are as follows: MKP is a 

maximization problem 𝐴 ∶= 1. The fitness impact of the edge is the linear normalized 

profit value of the item 𝐼𝑖 𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝) =  𝑓(𝑒)  ∶=  𝑁𝑃(𝐼𝑖). The resource of the 

MKP problem is capacity therefore 𝛺(𝑠𝑝)  ∶=  ∑ {𝑅𝐶(𝐾𝑗)}𝑗  which is the remaining 

capacity of all knapsacks, and 𝛺(𝑠𝑝 + 𝑒)  ∶= ∑ {𝑅𝐶(𝐾𝑗) − 𝑊(𝐼𝑖)}𝑗  which is the 

remaining capacity of all knapsacks minus the weight of the item. However, for this 

problem, to optimize Dynamic Impact for computational efficiency, the constraints are 

adapted to use only one items weight over the remaining capacity like in the following 

formula:  
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𝐷𝐼𝑖 =
 𝑓(𝑒)

(
𝛺(𝑒)

𝛺(𝑠𝑝)
)

 
(3-31) 

It is slightly computationally cheaper to compute only items’ weight and get the same 

overall result 𝛺(𝑒)  ∶= ∑ {𝑊(𝐼𝑖)}𝑗 𝑗⁄ . Additionally, items of the MKP use multiple 

knapsacks in disproportional quantities, and it is important to track not only the 

average resource consumption impact but also the maximum impact on a single 

knapsack too 𝛺(𝑒)  ∶= 𝑚𝑎𝑥∀𝑗{𝑊(𝐼𝑖)}. For this reason, the capacity impact formula has 

two components of resource consumption that complement each other.  

3.3.4. MKP experiment results 

This MKP experiment is chosen, in addition to solving the MMPPFO problem, to solve 

a commonly available benchmark problem that has similar multiple item collection 

characteristics. There are no recent papers published on Ant Colony Algorithm solving 

MKP benchmark datasets. Therefore, it is logical to assume that there have not been 

any successful attempts to achieve results on public benchmark datasets to a 

comparable level to other published works.  

Two sets of benchmark MKP datasets are considered in this experiment. The first set 

of SAC94 are small datasets and are easy enough to find the optimal solutions of 

those datasets within a reasonable amount of time. For these small datasets, the 

algorithm success rate is analysed and compared to which algorithm, on average, 

reaches the optimal solution quicker. The second set is large GK benchmark datasets. 

These benchmark datasets’ combinatorial complexity is high enough that not all GK 

datasets have known optimal values. Therefore, in Table 3-5 for comparison, the most 

recent best-known values will be taken from [191] that combines their own reached 

highest values as well as [192] and authors of the GK datasets [177]. For large GK 

datasets, the aim is to get the highest possible profit or, in other words, to minimize a 

profit gap to the best-known solution. 

3.3.4.1. SAC94 results 

For the SAC94 experiment, Min-Max Ant System parameters have been tuned with 

preliminary experimentation. The best combination of pheromone parameters is: 
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𝜏𝑚𝑎𝑥 = 1, 𝜏𝑚𝑖𝑛 = 0.001, 𝜌 = 0.1. Configuration of probability parameters: 𝛼 = 1, 𝛽 = 0, 

𝑞0 = 0.01. Solutions are achieved running 3,000 iterations using two sequential ants, 

using 64 parallel ants as per [39] described architectural model. Experiment measures 

success rate, best successful iteration, average successful iteration, and an average 

profit of each dataset using Dynamic Impact versus algorithm without Dynamic Impact 

implemented. Each data point is an average of 100 algorithm runs. In Table 3-3 SAC94 

dataset results are presented. Ant Colony Optimization using Dynamic Impact 

preliminary tests showed that the best convergence is achieved using Gamma (γ) 

value set to 8. ACO with Dynamic Impact shows a 100% success rate in every single 

dataset, while the same algorithm without Dynamic Impact manages to do so in 41 out 

of 54 datasets and the remaining datasets average a 74.7% success rate. Moreover, 

optimization with Dynamic Impact, on average, takes just 12.40 iterations and 0.046 

seconds to reach the optimal value. On average, without Dynamic Impact, it takes 

128.96 iterations and 0.25 seconds to reach optimal on 41 datasets that managed 

successfully converge 100% of the time. 
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Table 3-3: MKP SAC94 datasets. Dynamic Impact result comparison of ACO without 

Dynamic Impact and ACO with Dynamic Impact. Each dataset is a result of 100 runs. 

   ACO without Dynamic Impact ACO with Dynamic Impact 

Dataset 

Problem 

size (N 

x M) Optimal 

Success 

rate 

Best 

successful 

iteration 

Average 

successful 

iteration 

Average 

time to 

success 

(seconds) 

Average 

profit 

Success 

rate 

Best 

successful 

iteration 

Average 

successful 

iteration 

Average 

time to 

success 

(seconds) 

Average 

profit 

hp1 28 x 4 3418 0.97 3 n/a n/a 3417.58 1 0 0.75 0.00308 3418 

hp2 35 x 4 3186 0.95 7 n/a n/a 3185.1 1 5 36.65 0.04048 3186 

pb1 27 x 4 3090 1 4 334.51 0.25203 3090 1 0 0.59 0.00303 3090 

pb2 34 x 4 3186 0.97 10 n/a n/a 3185.46 1 0 33.87 0.03768 3186 

pb4 29 x 2 95168 1 6 17.97 0.01701 95168 1 0 0.71 0.00285 95168 

pb5 20 x 10 2139 1 0 40.53 0.02307 2139 1 0 26.5 0.01661 2139 

pb6 40 x 30 776 1 4 18.68 0.01815 776 1 0 0.14 0.00242 776 

pb7 37 x 30 1035 0.94 10 n/a n/a 1034.47 1 0 4.6 0.00853 1035 

pet2 10 x 10 87061 1 0 0.08 0.00169 87061 1 0 8.44 0.00514 87061 

pet3 15 x 10 4015 1 0 4.02 0.00453 4015 1 0 0 0.00179 4015 

pet4 20 x 10 6120 1 0 10.81 0.00924 6120 1 0 0 0.00211 6120 

pet5 28 x 10 12400 1 7 13.92 0.0177 12400 1 0 0 0.00195 12400 

pet6 39 x 5 10618 0.44 32 n/a n/a 10610.16 1 0 10.61 0.01599 10618 

pet7 50 x 5 16537 1 36 249.55 0.41771 16537 1 12 67.62 0.12189 16537 

sento1 60 x 30 7772 1 39 319.23 0.59452 7772 1 0 0.11 0.00396 7772 

sento2 60 x 30 8722 0.65 53 n/a n/a 8718.54 1 0 1.94 0.01163 8722 

weing1 28 x 2 141278 1 13 32.6 0.03052 141278 1 0 0 0.00155 141278 

weing2 28 x 2 130883 1 14 36.05 0.02862 130883 1 0 0 0.00163 130883 

weing3 28 x 2 95677 1 6 29.44 0.01889 95677 1 0 0 0.00154 95677 

weing4 28 x 2 119337 1 7 21.87 0.01853 119337 1 0 0 0.00193 119337 

weing5 28 x 2 98796 1 4 18.06 0.01286 98796 1 0 0 0.00164 98796 

weing6 28 x 2 130623 1 11 43.77 0.03164 130623 1 0 0 0.00165 130623 

weing7 105 x 2 1095445 0 n/a n/a n/a 1095136 1 4 456.14 2.06904 1095445 

weing8 105 x 2 624319 0.03 1981 n/a n/a 620481.5 1 0 0.7 0.006 624319 

weish01 30 x 5 4554 1 12 27.83 0.02154 4554 1 0 0 0.00212 4554 

weish02 30 x 5 4536 0.91 7 n/a n/a 4535.55 1 0 0 0.0024 4536 

weish03 30 x 5 4115 1 3 21.84 0.01619 4115 1 0 0 0.00211 4115 

weish04 30 x 5 4561 1 1 12.33 0.0094 4561 1 0 0 0.0022 4561 

weish05 30 x 5 4514 1 2 10.61 0.00862 4514 1 0 0 0.002 4514 

weish06 40 x 5 5557 1 19 189.83 0.18289 5557 1 0 0.08 0.00251 5557 

weish07 40 x 5 5567 1 14 35.38 0.03701 5567 1 0 0 0.00247 5567 

weish08 40 x 5 5605 1 15 37.97 0.04175 5605 1 0 0 0.00254 5605 

weish09 40 x 5 5246 1 18 31.22 0.02959 5246 1 0 0 0.00248 5246 

weish10 50 x 5 6339 1 28 65.49 0.08092 6339 1 0 12.08 0.01763 6339 

weish11 50 x 5 5643 1 18 62.45 0.06658 5643 1 0 0 0.00248 5643 

weish12 50 x 5 6339 1 20 56.96 0.06909 6339 1 0 7.5 0.01246 6339 

weish13 50 x 5 6159 1 18 35.51 0.04445 6159 1 0 0 0.00263 6159 

weish14 60 x 5 6954 1 27 44.24 0.06997 6954 1 0 0 0.00267 6954 

weish15 60 x 5 7486 1 35 74.64 0.11307 7486 1 0 0 0.00325 7486 

weish16 60 x 5 7289 1 39 545.29 0.85691 7289 1 0 0.01 0.00308 7289 

weish17 60 x 5 8633 1 30 78.55 0.1655 8633 1 0 0 0.00374 8633 

weish18 70 x 5 9580 1 52 265.71 0.614 9580 1 0 0.52 0.00531 9580 

weish19 70 x 5 7698 0.93 40 n/a n/a 7697.09 1 0 0 0.00346 7698 

weish20 70 x 5 9450 1 61 398.67 0.85951 9450 1 0 0 0.00387 9450 

weish21 70 x 5 9074 1 44 246.19 0.50368 9074 1 0 0.02 0.00369 9074 

weish22 80 x 5 8947 0.56 54 n/a n/a 8939.08 1 0 0 0.00391 8947 

weish23 80 x 5 8344 1 44 109.6 0.24405 8344 1 0 0.05 0.00383 8344 

weish24 80 x 5 10220 1 74 476.98 1.34094 10220 1 0 0 0.00444 10220 

weish25 80 x 5 9939 0.94 71 n/a n/a 9938.17 1 0 0 0.00403 9939 

weish26 90 x 5 9584 0.48 71 n/a n/a 9567.44 1 0 0 0.00449 9584 

weish27 90 x 5 9819 1 62 135.06 0.38311 9819 1 0 0 0.00448 9819 

weish28 90 x 5 9492 1 65 421.75 1.14258 9492 1 0 0 0.00442 9492 

weish29 90 x 5 9410 1 73 386.61 1.03829 9410 1 0 0 0.00436 9410 

weish30 90 x 5 11191 1 64 325.52 1.1109 11191 1 0 0.01 0.00503 11191 
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Table 3-4: SAC94 results comparison with recently published research. 

Dataset 

Problem 

size (N x 

M) Optimal 

ACO 

without 

Dynamic 

Impact 

ACO with 

Dynamic 

Impact 

BPSOTVAC -  

[193]  

2014 

DBDE -  

[194] 

2017 

MFPA -  

[195]  

2018 

HPSOGO -  

[196]  

2018 

TR-

BDS - 

[197] 

2016 

BAAA -  

[198] 

2016 

hp1 28 x 4 3418 0.97 1 0.38  1  0.4 0.93 

hp2 35 x 4 3186 0.95 1 0.67    0.97 0.27 

pb1 27 x 4 3090 1 1 0.46  1  0.5 1 

pb2 34 x 4 3186 0.97 1 0.73    0.97 1 

pb4 29 x 2 95168 1 1 0.91    1 1 

pb5 20 x 10 2139 1 1 0.84  1  0.8 1 

pb6 40 x 30 776 1 1 0.5  1  0.57 1 

pb7 37 x 30 1035 0.94 1 0.47  1  0.8 1 

pet2 10 x 10 87061 1 1   1    
pet3 15 x 10 4015 1 1       
pet4 20 x 10 6120 1 1       
pet5 28 x 10 12400 1 1       
pet6 39 x 5 10618 0.44 1       
pet7 50 x 5 16537 1 1       
sento1 60 x 30 7772 1 1 0.57 0.43 1 0.16 0.8 1 

sento2 60 x 30 8722 0.65 1 0.27 0 1 0.25 0.73 1 

weing1 28 x 2 141278 1 1 1 1  0.1 1 1 

weing2 28 x 2 130883 1 1 1 0.97  1 1 1 

weing3 28 x 2 95677 1 1 0.92 0.6 1 1 0 1 

weing4 28 x 2 119337 1 1 1 1 1 1 1 1 

weing5 28 x 2 98796 1 1 1 0.3  1 0.7 1 

weing6 28 x 2 130623 1 1 0.97 0.97 1 1 1 1 

weing7 105 x 2 1E+06 0 1 0 0  1 0 0.58 

weing8 105 x 2 624319 0.03 1 0.35 0  1 0.5 0.93 

weish01 30 x 5 4554 1 1 1 1 1 1 1 1 

weish02 30 x 5 4536 0.91 1 0.64 1 1 1 1 1 

weish03 30 x 5 4115 1 1 0.99 1 1 1 1 1 

weish04 30 x 5 4561 1 1 1 1 1 1 1 1 

weish05 30 x 5 4514 1 1 1 1 1 1 1 1 

weish06 40 x 5 5557 1 1 0.59 0.3 1 1 1 1 

weish07 40 x 5 5567 1 1 0.96 0.33 1 1 0.98 1 

weish08 40 x 5 5605 1 1 0.79 0.87 1 1 0.98 1 

weish09 40 x 5 5246 1 1 1 1 1 1 1 1 

weish10 50 x 5 6339 1 1 0.91 1 1 1 1 1 

weish11 50 x 5 5643 1 1 0.88 0.63 1 1 0.92 1 

weish12 50 x 5 6339 1 1 0.89 1 0.82 1 0.96 1 

weish13 50 x 5 6159 1 1 1 1 1 0.35 0.98 1 

weish14 60 x 5 6954 1 1 0.98 1 1 1 0.92 1 

weish15 60 x 5 7486 1 1 1 1 1 1 0.96 1 

weish16 60 x 5 7289 1 1 0.54 0.87 1 1 1 1 

weish17 60 x 5 8633 1 1 1 0.67  1 1 1 

weish18 70 x 5 9580 1 1 0.75 1  1 0.98 1 

weish19 70 x 5 7698 0.93 1 0.65 1 1 1 0.96 1 

weish20 70 x 5 9450 1 1 0.78 1 1 1 0.96 1 

weish21 70 x 5 9074 1 1 0.74 1 1 0.1 0.96 1 

weish22 80 x 5 8947 0.56 1 0.16 1  1 0.98 1 

weish23 80 x 5 8344 1 1 0.85 0.23  1 0.92 0.45 

weish24 80 x 5 10220 1 1 0.7 1  1 0.68 0.54 

weish25 80 x 5 9939 0.94 1 0.49 0.97  1 0.84 1 

weish26 90 x 5 9584 0.48 1 0.36 1 1 1 0.94 1 

weish27 90 x 5 9819 1 1 0.99 0.97  1 0.98 1 

weish28 90 x 5 9492 1 1 0.87 1  1 0.94 1 

weish29 90 x 5 9410 1 1 0.86 1  1 0.92 1 

weish30 90 x 5 11191 1 1 0.87 0.83  1 0.32 1 
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Also, the results of SAC94 are compared to recently published research on the state-

of-the-art optimization algorithms solving SAC94 datasets in Table 3-4. A Binary PSO 

with Time-Varying Acceleration Coefficients (BPSOTVAC) proposed by Chih et al. 

[193]. A Dichotomous Binary Differential Evolution (DBDE) proposed by Peng et al. 

[194]. A Modified version of the Flower Pollination Algorithm (MFPA) proposed by 

Abdel-Basset et al. [195]. A Binary Particle Swarm Optimization with Genetic 

Operations (HPSOGO) introduced by Mingo López et al. [196]. A Random Binary 

Differential Search algorithm using the Tanh function (TR-BDS) introduced by Liu et 

al. [197]. A Binary Artificial Algae Algorithm (BAAA) introduced by Zhang et al. [198]. 

The primary comparison metric of all results is the success rate. In this example, 

proposed ACO with Dynamic Impact shows superiority in solving small datasets. None 

of the reviewed algorithms have such versatility in solving all of the datasets reliably 

to the optimal value 100% of the time. The closest algorithm MFPA solves, on average, 

99.42% successfully on the datasets published. However, it is essential to note that 

this research paper [195] is inconclusive and does not have complete SAC94 dataset 

results. Hence, the algorithm's versatility is not proven since the success rate is 

unknown for the remaining datasets. Secondly, BAAA has a 95.2% average success 

rate of 48 datasets. 42 out of 48 datasets have reached a 100% success rate. None 

of the authors has considered pet2-pet7 datasets part of SAC94. “pet” datasets seem 

to be an edge case, especially problematic for any optimization algorithm with 

observed highly sparse nature. Despite small theoretical combinatorial complexity, 

and are challenging to solve. None of the other research has published results solving 

“pet” datasets, possibly due to difficulty handling a high degree of sparseness, 

especially when it is expected to be easily solved as theoretical combinatorial 

complexity is low. 

3.3.4.2. GK results  

The algorithm has been tuned slightly differently to solve large GK datasets. Dynamic 

Impact importance parameter Gamma (γ) value is set to 32, and the algorithm is run 

for 10000 iterations. The experiment measures the average profit obtained over ten 

algorithm runs. Then the average profit is turned into the average gap using the best-

known profit values. In Figure 3-3, ACO with Dynamic Impact is compared to the same 

algorithm without implemented Dynamic Impact running the same probability settings. 
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In absolute terms, ACO with Dynamic Impact gets an average gap reduction of 0.54%, 

where the highest difference is in gk09 – 0.9% and the lowest is in gk01 – 0.27%. In 

relative terms, the difference in the profit gap is, on average, 4.26 times lower, where 

the highest is gk02, reducing the gap 10.4 times, and the lowest is gk03, reducing the 

gap by 2.33 times. 

 

Figure 3-3: ACO Dynamic Impact test - GK dataset results graph of the average gap. 

Results are an average of 10 algorithm runs. 

Furthermore, in Figure 3-4 well-performing ACO with Dynamic Impact algorithm is 

stacked up against recently published solutions of GK dataset implementations. 

Dantas – GPGPU SA [199] is GPU accelerated Simulated Annealing algorithm. Kong 

– NBHS2 [200] out of several algorithms compared their proposed New Binary 

Harmony Search type 2 was best performing for GK datasets. Wang – DLHO [201] 

proposed a Diverse Human Learning Optimization algorithm that has performed the 

best among compared solutions. On average, ACO with Dynamic Impact has a 0.31% 

or 3.3 times lower gap than Dantas – GPGPU SA. However, ACO is outperformed by 

a 0.05% gap difference on a single gk09 instance.  Kong – NBHS2 has closer 

performance and is, on average, 0.24% or 2.48 times behind ACO. However, no 

instances outperform ACO, and the closest instance is gk07, falling behind by 0.07% 

or 1.35 times. Lastly, ACO outperforms Wang – DLHO on average by 1.10% or 7.72 

times.  
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Figure 3-4: ACO with Dynamic Impact comparison to other recently published GK 

dataset solution results. 

Table 3-5: MKP GK datasets. ACO results with Dynamic Impact are compared against 

ACO without Dynamic Impact as well as best performing other algorithm results taken 

from recently published papers. 
 

 
 

Average profit Average gap 

Dataset problem 
size (N x 
M) 

Best 
known 
profit 

ACO 
without 
Dynamic 
Impact 

ACO with 
Dynamic 
Impact 

ACO 
without 
Dynamic 
Impact 

ACO 
with 
Dynamic 
Impact 

Dantas- 
GPGPU 
SA 
[199] 
2018 

Kong-  
NBHS2 
[200] 
2015 

Wang- 
DHLO 
[201] 
2017 

gk01 100 x 15 3766 3750.7 3760.7 0.41% 0.14% 0.36% 0.29% 0.96% 

gk02 100 x 25 3958 3937.2 3956 0.53% 0.05% 0.62% 0.30% 0.99% 

gk03 150 x 25 5656 5621.8 5641.3 0.60% 0.26% 0.76% 0.55% 1.17% 

gk04 150 x 50 5767 5733.5 5757 0.58% 0.17% 0.91%   0.46% 1.23% 

gk05 200 x 25 7560 7511.8 7545 0.64% 0.20% 0.48% 0.43% 1.23% 

gk06 200 x 50 7677 7621.8 7659.7 0.72% 0.23% 0.85% 0.49% 1.17% 

gk07 500 x 25 19221 19104.1 19183.29 0.61% 0.20% 0.29% 0.26% 1.56% 

gk08 500 x 50 18806 18662.3 18764 0.76% 0.22% 0.45% 0.56% 1.47% 

gk09 1500 x 25 58089 57466.1 57987.2 1.07% 0.18% 0.13% 0.27% 1.59% 

gk10 1500 x 50 57295 56703.9 57179.2 1.03% 0.20% 0.31% 0.54% 1.55% 

gk11 2500 x 100 95238 94111.6 94937.6 1.18% 0.32% 0.44% 0.64% 1.36% 

In conclusion, Dynamic Impact proved to significantly aid the search for small datasets 

reliably reaching optimal value and large datasets significantly lower gap to the optimal 

or best-known value. This ACO with Dynamic Impact currently is the best performing 

algorithm for solving both large and small MKP benchmark instances. 
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3.4. Chapter Summary  

This research chapter has studied the Ant Colony Optimization sub-heuristic methods 

to improve algorithm search convergence. The research has proposed an additional 

component to the ACO algorithm probability calculation, which is called Dynamic 

Impact. This method improved the convergence of optimization problems, where the 

main optimization objective depends on a collection of smaller parts where each part 

does not have any priority over another. Dynamic Impact, similarly to heuristic 

information, is a myopic component of the search. The difference is that Dynamic 

Impact is calculated each time probability is calculated, and it depends on the state of 

the partial solution. In other words, Dynamic Impact is a simplified evaluation of each 

edge’s impact on fitness function and resource consumption. The computational 

overhead of using this method is shown to be low when implementation is optimized 

for the specific problem. For the MMPPFO problem, this research has demonstrated 

that using ACO with Dynamic Impact has significantly improved final solution quality 

over the ACO without Dynamic Impact over the same number of search iterations. 

Furthermore, ACO with Dynamic Impact showed significant performance 

improvements when applied to the Multidimensional Knapsack Problem. For the small 

SAC94 benchmark datasets, Dynamic Impact solves all instances to the optimal 

solution very quickly, which is a significant improvement compared to peer-published 

research.  For the large GK benchmark datasets, Dynamic Impact, on average, 4.26 

times closer to the best-known or optimal result within the same search efforts. All the 

results show that ACO with Dynamic Impact is a new state of the art algorithm to solve 

resource-constrained optimization problems. 

Finally, the benefit of using Dynamic Impact can be exploited while performing the 

iterative search. Dynamic Impact can also increase the efficiency of dynamic 

optimization. Therefore, The ACO with Dynamic Impact algorithm will be used as a 

baseline to develop a new nature-inspired dynamic optimization strategy in Chapter 5.  

Contributions of this chapter to science are as follows: 

• Introduction of Dynamic Impact a sub-heuristic method for the Ant Colony 

Optimization algorithm that helps more accurately calculate the edge’s 
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probability while considering the remaining constrained resources of the 

problem and non-linear fitness.  

• Description of the methodology to apply Dynamic Impact effectively for a broad 

range of academic and real-world problems.  

• Proof that Dynamic Impact is beneficial for finding better results using the same 

computational efforts in theoretical MKP and real-world MMPPFO problems.  

• Also, shows that ACO with Dynamic Impact is superior in finding better 

solutions for MKP benchmark instances than previous peer research. 

The work presented in this chapter has been published in the peer-reviewed journal 

Swarm and Evolutionary Computation, Elsevier [1].  
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Chapter 4. Dynamic MKP Benchmark 

methodology 

Before dynamic optimization can be tackled in this thesis, the issue of the lack of 

replicable qualities in discrete dynamic optimization studies must be resolved. This 

research chapter introduces a non-stochastic dataset generation methodology 

applicable for discrete optimization problems. The dataset generation methodology 

relies on an existing static benchmark dataset as an initial state to generate a dynamic 

dataset with the desired number of states where each state is an evolution from the 

previous state. The state’s creation is done in a non-stochastic way where generated 

state always is the same for the constant input state and depends only on the input 

state and datasets constraints defined in the initial state. Such generated dynamic 

dataset is a collection of sequential states of a static dataset. The evolution of these 

states is in a predictable and repeatable way such that one generated dynamic dataset 

could be further extended with more states if needed. This research is vital because 

fully defined datasets will be compatible with most dynamic optimization algorithms. 

No special environments are needed to use the dataset generators, and dataset 

generators do not need to rely on random operator seeds, which could be easily 

overlooked. Then such dynamic optimization algorithm results can be independently 

verified for result validity and directly compared with results obtained from other 

dynamic optimization algorithms. 

4.1. Dynamic MKP Datasets 

4.1.1. Dynamic Multidimensional Knapsack Problem 

The multidimensional Knapsack problem is widely used for benchmarking 

combinatorial optimization algorithms [202]. Solutions to the MKP problem have 

numerous applications in the real world, such as loading cargo optimization, slicing 

problem, budget management, and investment portfolio management problem. 

Therefore, there is a lot of interest in developing algorithms to solve the MKP problem. 

Then, DMKP has also attracted some research community attention due to the nature 
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of the problem that can be easily extended into dynamic variant using static datasets 

as the initial setting.  

A dynamic variant of MKP, the Dynamic Multi-dimensional Knapsack Problem (DMKP) 

is also an academic problem that uniquely benefits large-scale real-world optimization 

problems with some degree of dynamism. The DMKP is a dynamic combinatorial 

optimization problem, and it is formulated as a sequential series of static MKP 

instances called states. Between sequential states, the numerical difference of each 

item’s profit, item weights, and knapsack capacities should be reasonably small, 

indicative of problem dynamism that occurs in the real world. The DMKP problem aims 

to maximize the total profit of each state before a dynamic change occurs. The result 

of DMKP is the sum of each state’s maximum profit. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (∑ 𝑥𝑠,𝑖 × 𝑃𝑠,𝑖

𝑛

𝑖=1

)

𝑆𝑚𝑎𝑥

𝑠=0

 

(4-1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑(𝑥𝑠,𝑖 × 𝑊𝑠,𝑖,𝑘) ≤ 𝐶𝑠,𝑘

𝑛

𝑖=1

,   

∀(𝑠, 𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ (ℕ ≤ 𝑚), 𝑠 ∈ (0 ≤ ℕ ≤ 𝑆𝑚𝑎𝑥) 

(4-2) 

where 𝑠 is the index of the state, and 𝑆𝑚𝑎𝑥 is a number of states in the DMKP problem. 

The equations state maximize the profit of the items in the decision vector in every 

DMKP state, subject to item weights not exceeding all corresponding knapsack 

capacities in every state. 

This DMKP benchmark is a good test suite for testing and comparing the performance 

of combinatorial optimization algorithms in a dynamic environment like Genetic 

Algorithm (GA) [203], Particle Swarm Optimization (PSO) [204], Firefly Algorithm (FA) 

[205], Monarch Butterfly Optimization (MBO) [206], Cuckoo Search (CS) [207], 

Artificial Bee Colony (ABC) [208], Moth Search (MS) [209], Slime Mould Algorithm 

(SMA) [210]. 

The DMKP can have one or multiple aspects of the dataset to be dynamic. In this 

study, the profit of items, item weights, and knapsack capacities are set to vary in 

discrete state intervals. The states are noted as 𝑆𝑡, 𝑡 ∈ {0,1,2, … }, where 𝑆0 is the initial 

state of the MKP dataset, and 𝑡 is the state index. Each dynamic MKP state can be 

solved individually as a static MKP instance.  
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All existing attempts to solve DMKP have involved using static MKP benchmarks as 

the initial setting and introducing stochastic changes to some aspects of the 

optimization problem and process over the time domain. [97] uses normally distributed 

random operator to change item profits, item weights and knapsack capacities on OR 

library initial datasets. Meanwhile, the research [211] has dynamic changes in item 

profits, item weights and knapsack capacities, and all new randomly generated items. 

4.1.2. Deterministic Dynamic MKP dataset creation 

methodology 

The approach of the deterministic state generation method is designed to use the 

static instances of the existing benchmark MKP dataset as its initial state  𝑆0. Then 

use the information from the initial dataset to create states in sequential order. The 

dynamic dataset is created using a deterministic set of formulas. The deterministic 

approach is essential to have the dataset reproducible. Using a stochastic method 

would make the research reproducibility and extension more difficult.  

In this research, the item profits, item weights, and knapsack capacities are adjusted 

while generating a state. The new state’s adjustment factors are determined from the 

values in the previous state and the constraints set by the initial state. The state 

generation method has a “State Adjustment Magnitude” 𝛥 parameter to control the 

difference in the profit, weight, and capacity value differences between the states. This 

parameter is a constant for the entire dynamic dataset generation. The default value 

is 0.05 or 5% of the allowable adjustment range. This parameter ensures that the 

following states are reasonably similar to previous states, and none of the values has 

been modified more than the upper limit of the dataset value range. 

For the purposes of creating a deterministic state generation that is reproducible yet 

chaotic, based on the information only taken from the previous state, the “3 value 

modifier” operator 𝑋3𝑉(𝑣1, 𝑣2, 𝑣3) is introduced. This operator takes three values 

𝑣1, 𝑣2, 𝑣3 and calculates them to one real value between -1 and 1:  

𝑋3𝑉(𝑣1, 𝑣2, 𝑣3) =  (𝐻3(𝑣1, 𝑣2 ∗ 2, 𝑣3 ∗ 5) ∗ 2 − 1)3 (4-3) 

𝐻3(𝑣1, 𝑣2, 𝑣3) = 𝑓𝑟𝑎𝑐(𝑀(𝑣1) ∗ 𝑀(𝑣2) ∗ 𝑀(𝑣3) + 𝑀(𝑣1) + 𝑀(𝑣2) + 𝑀(𝑣3)) (4-4) 

𝑓𝑟𝑎𝑐(𝑥) = 𝑥 −  ⌊𝑥⌋ (4-5) 
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𝑀(𝑥) =
𝑥

10⌊log10 𝑥⌋
 (4-6) 

where 𝑀(𝑥) is a mantissa of the number 𝑥, 𝑓𝑟𝑎𝑐(𝑥) is a fractional part of a number, 

⌊𝑥⌋ is a rounded down number 𝑥, 𝐻3 is a simple numerical hash of three numbers 

(𝑣1, 𝑣2, 𝑣3) that returns a number between 0 and 1 evenly distributed, and finally, 𝑋3𝑉 

is a “3 value modifier”, a normalized value between -1 and 1 and has probability density 

concentrated around 0. The property of having probability density concentrated around 

0 in 𝑋3𝑉 gives small adjustment values for the majority of the dataset with a few larger 

adjustments, which resembles in real-world optimization, the majority of minor 

operational adjustments and a few more significant disruptions. 

The state of the dynamic dataset is created first, calculating the state’s new item 

profits, then new item weights, and lastly, new knapsack capacities. The dynamic 

dataset generation method is designed to preserve each item’s value within the range 

initial state’s  𝑆0 value range, which is an intrinsic item’s property easily expressed as 

profit over average weight. Also, the new state’s profit and weight values cannot cross 

their constraint boundaries. Then lastly, knapsack capacities are recalculated to keep 

the same tightness as the initial state’s  𝑆0 tightness. Following is the list of constraints 

that the new state must maintain:  

• Minimum Profit  min𝑃 = min
𝑖

𝑃0,𝑖 

• Maximum Profit  max𝑃 = max
𝑖

 𝑃0,𝑖  

• Minimum Value  min𝑉 = min
𝑖

𝑃0,𝑖

 𝑊0,𝑖 
 

• Maximum Value max𝑉 = max
𝑖

 
𝑃0,𝑖

 𝑊0,𝑖 
 

• Minimum Weight  min𝑊 = min
𝑖,𝑘

 𝑊0,𝑖,𝑘 

• Maximum Weight  max𝑊 = max
𝑖,𝑘

 𝑊0,𝑖,𝑘  

• Knapsack Tightness  𝑇𝑘 =
∑ 𝑊0,𝑖,𝑘

𝑚
𝑖=1

𝐶0,𝑘
 ∀ 𝑘 

where 𝑃0,𝑖 is the profit of the 𝑖𝑡ℎ item in the initial state 𝑆0, 𝑊0,𝑖 is the average weight of 

the 𝑖𝑡ℎ item in the initial state 𝑆0, 𝑊0,𝑖,𝑘 is the weight of the 𝑖𝑡ℎ item for the 𝑘𝑡ℎ knapsack 

in the initial state 𝑆0, and finally 𝐶0,𝑘 is the knapsack capacity of the 𝑘𝑡ℎ knapsack in 

the initial state 𝑆0. 
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New states can then be generated using these calculated constraints from the original 

dataset and the current state data. The state generation method order is strictly 

sequential, where the new state depends only on the most recent predecessor. To 

make the explanation easily understandable, the process of creating a state involves 

a current state which is noted as 𝑆𝑡 used as input in the state generation and a 

successor new state which is noted as 𝑆𝑡+1. Each state 𝑆𝑡 has an independent set of 

item profits 𝑃𝑡,𝑖, item weights 𝑊𝑡,𝑖,𝑘, and knapsack capacities 𝐶𝑡,𝑘, where 𝑡 notes the 

state, 𝑖 notes the item, and 𝑘 notes the knapsack of the dataset. 

Furthermore, for the state generation, the adjustment limits have to be set in 

accordance with original constraints and the State Adjustment Magnitude 𝛥 

parameter. The 𝛥 parameter is also called SAM in the code and charts with no special 

characters’ support. 

• Profit adjustment magnitude 

𝛥𝑃 =  𝛥 ∗ (max𝑃 −  min𝑃) (4-7) 

• Weight adjustment magnitude  

𝛥𝑊 =  𝛥 ∗ (max𝑊 −  min𝑊) (4-8) 

Profit generation is the first step of creating a new state 𝑆𝑡+1. For each item, profit 𝑃𝑡+1,𝑖 

the procedure uses the profits of 3 items to calculate profit modifier using 𝑋3𝑉 operator 

and original constraints to calculate chaotic profit adjustment within the limits of the 

dataset characteristics. 

𝑃𝑡+1,𝑖 =  𝑀𝑎𝑥(𝑀𝑖𝑛(𝑃𝑡,𝑖 + 𝑃𝑥 , 𝑚𝑎𝑥𝑉 ∗ 𝑊𝑡,𝑖), 𝑚𝑖𝑛𝑉 ∗ 𝑊𝑡,𝑖) (4-9) 

𝑃𝑥 = 𝑋3𝑉(𝑃𝑡,𝑖−1, 𝑃𝑡,𝑖 , 𝑃𝑡,𝑖+1) ∗  𝛥𝑃 + 𝑃𝑥𝑐 (4-10) 

𝑃𝑥𝑐 = 𝑀𝑖𝑛(𝑚𝑎𝑥𝑃 − 𝑃𝑡,𝑖, 𝛥𝑃) − 𝑀𝑎𝑥(𝑃𝑡,𝑖 − 𝑚𝑖𝑛𝑃, 𝛥𝑃) (4-11) 

where, 𝑃𝑡+1,𝑖 is a new item profit for the state 𝑆𝑡+1 of the 𝑖𝑡ℎ item that is applied for all 

items ∀𝑖. This new profit is calculated using the current state’s profit 𝑃𝑡,𝑖 and profit 

adjustment value 𝑃𝑥, then it is constrained within a minimum and a maximum allowed 

item profit, which is a product of the item’s average weight and original value:  𝑚𝑎𝑥𝑉 ∗

𝑊𝑡,𝑖
̅̅ ̅̅ ̅ and 𝑚𝑖𝑛𝑉 ∗ 𝑊𝑡,𝑖

̅̅ ̅̅ ̅. The profit adjustment 𝑃𝑥 value is calculated using the profit 

adjustment multiplier 𝛥𝑃 multiplied by 𝑋3𝑉 operator values taken from the current 

item’s profit 𝑃𝑡,𝑖 and two adjacent item profits 𝑃𝑡,𝑖−1, 𝑃𝑡,𝑖+1 , then added profit adjustment 

correction 𝑃𝑥𝑐. 𝑃𝑥𝑐 is a value that maintains the profit within initial dataset constraints 
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but allows free manipulation when profit 𝑃𝑡,𝑖 is within the profit range by at least a value 

of 𝛥𝑃, in those cases 𝑃𝑥𝑐 = 0. 

After profits are complete, the new state’s 𝑆𝑡+1 item weights are generated. For each 

item’s weight 𝑊𝑡+1,𝑖,𝑘 the procedure uses weights of three items to calculate weight 

modifier using 𝑋3𝑉 operator and original weight and value constraints to create a 

chaotic weight modifier within the limits of the dataset characteristics. 

𝑊𝑡+1,𝑖,𝑘 =  𝑀𝑎𝑥 (𝑀𝑖𝑛 (𝑊𝑡,𝑖,𝑘 + 𝑊𝑥 ,
𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
− 𝑊𝑡,𝑖) , 𝑊𝑡,𝑖 −

𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
) 

(4-12) 

𝑊𝑥 = (𝑋3𝑉(𝑊𝑡,𝑖−1,𝑘, 𝑊𝑡,𝑖,𝑘 , 𝑊𝑡,𝑖+1,𝑘) ∗   𝛥𝑊 + 𝑊𝑥𝑐) (4-13) 

𝑊𝑥𝑐 = 𝑀𝑖𝑛(𝑚𝑎𝑥𝑊 − 𝑊𝑡,𝑖,𝑘, 𝛥𝑊) − 𝑀𝑎𝑥(𝑊𝑡,𝑖,𝑘 − 𝑚𝑖𝑛𝑊, 𝛥𝑊) (4-14) 

where, 𝑊𝑡+1,𝑖,𝑘is new item weight for state 𝑆𝑡+1 of the 𝑖𝑡ℎ item that is applied for all 

items 𝑖 and all knapsacks 𝑘. In principle, the generation of weights is similar to the 

generation of profits, except that it is also executed for all knapsacks. New item weight 

is calculated using the weight of the current state 𝑊𝑡,𝑖,𝑘 added with weight adjustment 

𝑊𝑥. This value is constrained between 
𝑃𝑡,𝑖

𝑚𝑎𝑥𝑉
− 𝑊𝑡,𝑖

̅̅ ̅̅ ̅ and 𝑊𝑡,𝑖
̅̅ ̅̅ ̅ −

𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
 such that as a result 

of the new weight, the item's value does not exceed the initial dataset's limits. 
𝑃𝑡,𝑖

𝑚𝑎𝑥𝑉
−

𝑊𝑡,𝑖
̅̅ ̅̅ ̅ is items profit over the maximum value that gives minimum weight, and removing 

average weight gives maximum allowed weight increase to the item. Similarly, 𝑊𝑡,𝑖
̅̅ ̅̅ ̅ −

𝑃𝑡,𝑖

𝑚𝑖𝑛𝑉
 gives maximum allowed weight decrease. The 𝑊𝑥 weight adjustment is 

calculated using 𝑋3𝑉 operator with weight values of 3 adjacent items of the same 

knapsack and is multiplied with the weight adjustment magnitude 𝛥𝑊 and added 

weight adjustment correction 𝑊𝑥𝑐 value. 𝑊𝑥𝑐 is a similar value to 𝑃𝑥𝑐 that it ensures 

each new weight is within dataset limits but does not restrict the adjustment.  

And finally, the knapsack capacities are calculated for the state 𝑆𝑡+1. This is the 

simplest calculation of them all. It uses the initial state’s knapsack tightness values 

and the current state’s item weights to create new knapsack capacities to maintain the 

same tightness as the initial state. 

𝐶𝑡+1,𝑘 = ∑ 𝑊𝑡+1,𝑖,𝑘

𝑛

𝑖=1

∗  𝑇𝑘,   ∀𝑘 
(4-15) 
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where, 𝐶𝑡+1,𝑘 is the new state’s capacity of the 𝑘 knapsack and is a sum of all item 

weights for that knapsack multiplied by initial knapsack tightness 𝑇𝑘 of the 𝑘𝑡ℎ 

knapsack.  

A simplified example of dataset state creation is shown in Figure 4-1 below. For a 

given input dataset state 𝑆𝑡, new item profit values 𝑃𝑡+1,𝑖 are calculated for all items 𝑖. 

Each item’s profit calculation uses the profit values of three items from the input 

dataset 𝑃𝑡,𝑖−1, 𝑃𝑡,𝑖, 𝑃𝑡,𝑖+1. Then 𝑋3𝑉 operator and 𝑃𝑥 functions are applied on selected 

inputs. Then constrained profit values are exported. Similarly, new item weight values 

𝑊𝑡+1,𝑖,𝑘 are calculated for all items 𝑖 and all knapsacks 𝑘. Also, each item’s weights 

calculation uses weight values of three items for the same knapsack from the input 

dataset 𝑊𝑡,𝑖−1,𝑘, 𝑊𝑡,𝑖,𝑘, 𝑊𝑡,𝑖+1,𝑘. Then 𝑋3𝑉 and 𝑊𝑥 functions are applied on those input 

weights, and constrained item weight values are exported. Finally, new knapsack 

capacities 𝐶𝑡+1,𝑘 are calculated for all knapsacks 𝑘. Each knapsack capacity 

calculation uses all newly calculated item weights 𝑊𝑡+1,𝑖,𝑘 for a knapsack 𝑘. Then all 

those weights are summed up and multiplied by the original knapsack tightness. Then 

final knapsack capacity values are exported.  

Figure 4-1: Dataset state creation flowchart of Item Profits (Blue), Item Weights 

(Orange), and Knapsack Capacities (Green). The flowchart shows the key dependencies 

of each value adjustment in the generated state. 
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4.1.3. Created dataset instances 

Dynamic Multidimensional Knapsack Problem datasets are created using already 

existing benchmark datasets as a basis of dataset generation. The original benchmark 

datasets are taken from the ResearchGate repository [178]. For the purpose of this 

research, OR and GK datasets are used to create dynamic datasets, while SAC94 

datasets are omitted due to low complexity and inconsistent sparseness.  

Dataset deterministic state generation method requires input 𝛥 SAM that sets the 

difficulty to generate the next state. This difficulty magnitude limits the percentage 

change applied for each adjusted value when generating a new state. If a value is too 

high, the next state can appear nothing like the previous state. If the value is too low, 

states might not differ at all due to the nature of integer numbers. Since 𝛥 SAM is the 

maximum adjustment that will occur, it is recommended that minimum item weight 

𝑚𝑖𝑛𝑊 and minimum item profit 𝑚𝑖𝑛𝑃 multiplied by 𝛥 is more than 10. This number is 

chosen based on a reasonable probability that the item profit and weight adjustments 

will be more than one and have reasonably low discrete distortion of integer numbers.  

{
𝑚𝑖𝑛𝑊 ∗  𝛥 ≥ 10
𝑚𝑖𝑛𝑃 ∗  𝛥 ≥ 10

 (4-16) 

The MKP datasets can be modified that preserves the original combinatorial 

characteristics of the dataset by multiplying all item profits, item weights, and knapsack 

capacities by a constant value. Using this method, dynamic GK datasets will be 

modified by a factor of 123, which is large enough to eliminate the small adjustment 

magnitude problem and reduce discrete distortion to a minimum. These modified 

datasets will have slight adjustments to item weights, and profits affect the dataset 

more accurately. 

Following is the list of configurations chosen to generate Dynamic MKP benchmark 

instances: 

• 100 generated states with 𝛥 = 0.2 

• 100 generated states with 𝛥 = 0.1 

• 100 generated states with 𝛥 = 0.05 

• 100 generated states with 𝛥 = 0.02 

• 100 generated states with 𝛥 = 0.01 
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Using the method described, a total of 1405 dynamic datasets are generated. 55 

dynamic dataset instances are generated from 11 static instances in the GK library, 

and 1350 dynamic dataset instances are generated from 270 static instances in the 

OR library.  

4.2. Dataset Analysis 

Generated dynamic MKP datasets are analysed in two ways: first, dataset statistical 

analysis, and second, dataset optimal result analysis. The dataset statistical analysis 

method is meant to determine what changes have occurred to each item from one 

state to the next state and what is cumulative item discrepancy from the initial state to 

the last generated state. Dataset states are analysed by profit distance, average 

weight distance, and absolute weight distance. For dataset results analysis, each state 

of the dynamic dataset is independently solved using a linear solver that finds the 

optimal result for the state. The results of each state are compared by finding the 

solution distance. The solution distance is calculated by counting how many different 

items are between two state optimal result vectors.  

Solution distance:  

𝑆𝐷 =
 ∑ (𝑥1,𝑖  ⊕ 𝑥2,𝑖)

𝑛
𝑖=0  

𝑛
 

(4-17) 

where 𝑥1and 𝑥2 are optimal result vectors of dynamic dataset states 1 and 2. Each 

result point is counted if one result vector includes it and the other result vector does 

not. It is the normalized binary vector Hamming distance.  

Profit distance:   

𝑃𝐷 =
 ∑ (𝑃1,𝑖  − 𝑃2,𝑖)

𝑛
𝑖=0  

𝑛
 

(4-18) 

Average weight distance: 

𝑊𝐷 =
 ∑ |∑ (𝑊1,𝑖,𝑘) 𝑚

𝑘=0 −  ∑ (𝑊2,𝑖,𝑘)𝑚
𝑘=0 |𝑛

𝑖=0  

𝑛
 

(4-19) 

Absolute weight distance:  

|𝑊𝐷| =
  ∑ (∑ |𝑊1,𝑖,𝑘 − 𝑊2,𝑖,𝑘 |𝑚

𝑘=0 )𝑛
𝑖=0  

𝑛
 

(4-20) 
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4.2.1. Statistical analysis metrics 

Each dataset has its unique properties and constraints. Therefore, to do analysis, it is 

essential to understand what boundaries are expected for each dataset due to its 

constraints.  

First, the theoretical solution distance 𝔼(𝑆𝐷) is the statistically expected value of 

solution distance when results vectors of two non-correlated datasets in comparison 

have random distribution with a constant solution tightness 𝑆𝑇.  The formula can be 

reduced to the following. 

𝔼(𝑆𝐷) = 2 × (1 − 𝑆𝑇) ∗ 𝑆𝑇 (4-21) 

Then theoretical profit distance 𝔼(𝑃𝐷) is the statistically expected profit distance for 

two datasets that follow identical item size and item value constraints, but dataset 

contents do not have any correlation. The formula can be reduced to the following. 

𝔼(𝑃𝐷) =
𝑚𝑎𝑥𝑃 −  𝑚𝑖𝑛𝑃

3
 

(4-22) 

Theoretical average weight distance 𝔼𝑊𝐷 is the statistically expected average 

weight distance for two datasets that follow identical item size and item value 

constraints, but dataset contents do not have any correlation. The formula can be 

reduced to the following. 

𝔼𝑊𝐷 =  𝑚0.5 ×
𝑚𝑎𝑥𝑊 −  𝑚𝑖𝑛𝑊

3
 

(4-23) 

Theoretical absolute weight distance 𝔼|𝑊𝐷| is the statistically expected absolute 

weight distance for two datasets that follow identical item size and item value 

constraints, but dataset contents do not have any correlation. The formula can be 

reduced to the following. 

𝔼|𝑊𝐷| =  𝑚 ×
𝑚𝑎𝑥𝑊 −  𝑚𝑖𝑛𝑊

3
 

(4-24) 

4.2.2. Example GK01 dynamic dataset statistical 

analysis 

The graph in Figure 4-2 shows how much each state’s all items’ profits are, on 

average, different from the initial state. For the GK01 dataset, the theoretical profit 
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distance is 𝔼(𝑃𝐷) =  2050. The dynamic dataset generated with 𝛥 SAM - 0.2 has the 

profit distance to the initial state approaching close to the theoretical profit distance 

possible for a dataset with these constraints. Dynamic datasets generated with lower 

𝛥 SAM value do not reach the theoretical value within 100 generated states of the 

dynamic dataset. 

 

Figure 4-2: Item profit change to initial state for datasets generated from GK01 

The graph in Figure 4-3 shows how much all items’ average weight differs from the 

initial state. For the GK01 dataset, the theoretical average weight distance is 𝔼𝑊𝐷 =

2382. The dynamic dataset generated the highest 𝛥 SAM - 0.2 has the average weight 

distance far away from the possible theoretical average weight distance. Reaching the 

theoretical average weight distance would take significantly more states. This is 

because the dataset generation method has to simultaneously follow the limit of the 

weight of the items for each knapsack and item’s value, which is the ratio of average 

weight over profit. This makes item weight distribution significantly slower. 
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Figure 4-3: Average item weight change to initial state for datasets generated from GK01 

The graph in Figure 4-4 shows how much all items’ absolute weight of all knapsacks 

is different from the initial state. For the GK01 dataset, theoretical absolute weight 

distance 𝔼|𝑊𝐷| = 9225. Similar to theoretical average weight distance dynamic 

dataset generated 𝛥 SAM - 0.2 has the average weight distance to the initial state far 

away from the possible theoretical absolute weight distance. These values follow the 

same set of constraints and are expressed using different calculations method.  

 

Figure 4-4: Absolute item weight to initial state for datasets generated from GK01 
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The graph in Figure 4-5 shows how much each states’ item profits are, on average, 

different from the previous state. This profit change value is relatively constant 

throughout all states of the dataset, as the measurement is not compounding over 

multiple states. Also, this value is far below the theoretical profit distance. Having a 

high distance from state to state would make a not useful dynamic dataset because of 

high disturbances, making the dataset not have any relation among the states. Having 

reasonably low profit change from state to state enables dynamic optimization 

algorithms to reuse information in previous states to solve the next state. 

 

Figure 4-5: Item profit change to the previous state for datasets generated from GK01 

The graph in Figure 4-6 shows how much all items’ average weight of all knapsacks 

is different from the previous state. Similarly to item profit, the average weight distance 

is relatively constant, as the measurement is not compounding over multiple states. 
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Figure 4-6: Average item weight to the previous state for datasets generated from GK01 

The graph in Figure 4-7 shows how much all items’ absolute weight of all knapsacks 

is different from the previous state. Similarly to item profit, the average weight distance 

is relatively constant, as the measurement is not compounding over multiple states 

and is far from the theoretical absolute weight distance. 

 

Figure 4-7: Absolute item weight to the previous state for datasets generated from GK01 
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4.3. Dynamic MKP dataset result analysis 

Constrained optimization problems often have sparse solutions for ranked near-

optimal solutions. This is due to a large portion of search space being infeasible and 

the remaining feasible space containing lots of close to optimal solutions distributed 

far apart in the search space. Multidimensional Knapsack Problem’s solutions are 

incredibly sparse. This is due to the sparse nature of packing problems and made 

sparser by doing such packing in multiple dimensions. To analyse the results of the 

dynamic datasets, a small selection of lower combinatorial complexity problem 

instances in each state has been solved to the optimal solution using Google Or-tools 

integer linear programming [212].  

4.3.1. Example GK01 dynamic dataset result analysis 

The graph in Figure 4-8 shows the progression of states’ optimal result distance to the 

initial state 𝑆0 dataset. Where 0 all items in state’s optimal result are same as in initial 

state’s optimal result items, and 1 all items in state’s optimal result are opposite of 

initial state’s optimal result items. A higher 𝛥 value makes result distance to the initial 

state’s result higher. GK01 Knapsack tightness is exactly 0.5, and the resulting 

tightness is often very close to knapsack tightness. Therefore, the theoretical solution 

distance is also 𝔼(𝑆𝐷) = 0.5. Over 100 states SAM - 0.01 and SAM - 0.02 are growing, 

but SAM - 0.05, SAM - 0.1 and SAM - 0.2 do reach theoretical distance and stops 

growing. 
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Figure 4-8: Optimal result distance to initial state for datasets generated from GK01 

The graph in Figure 4-9 shows the progression of states’ optimal result distance to the 

previous state. It shows how much difference is in items taken to the optimal solution 

in comparison to the previous state 𝑆𝑖−1. For datasets with lower 𝛥 value, some states 

solution distance is zero compared to the state before. Even with slight profit and item 

weight changes, the optimal solution can still have the same items fit in the knapsack 

for maximum profit. However, the final result profit will be different and such 

information not reflected in this graph. Furthermore, with SAM - 0.2, the solution 

distance is around 0.3 to the previous state, which is quite close to the theoretical 

solution distance. This dataset characteristic might appear to be very challenging for 

dynamic optimization algorithms to tackle since there are many changes in the optimal 

result. This dataset is still valid, regardless of how challenging it is, to test how quickly 

algorithms can adapt to significant change and find good results improved on previous 

state’s results and not necessarily find the optimal result.  
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Figure 4-9: Optimal result distance to the previous state for datasets generated from 

GK01 

4.3.2. Dynamic datasets' optimal result scores  

The performance of the MKP result is measured with the total profit of items in the 

knapsack. The optimal MKP result score is the maximum possible profit. Then for 

dynamic MKP, result performance is measured with a sum of each dataset state result 

profit. When each dynamic MKP dataset state result is found optimal, then the overall 

dynamic dataset score is optimal. 

Following is the table with the optimal result scores of the dynamic datasets. In Table 

4-1, optimal result scores are shown for 50 datasets. There are optimal result scores 

shown of partial dynamic dataset and full dynamic dataset for each of these datasets. 

The result of 0 states which is only the initial state’s result, 10 states which is optimal 

result summed up to 10th state, 25 states which is optimal result summed up to 25th 

state, 50 states which is optimal result summed up to 50th state, 75 states which is 

optimal result summed up to 75th state, and 100 states which is optimal result of a full 

dataset.  
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Table 4-1: Dynamic datasets optimal result scores of selected datasets. Optimal result 

scores are the sum of 0 states, 10 states, 25 states, 50 states, 75 states, and 100 states.  

Dataset 0 states 10 states 25 states 50 states 75 states 100 states 

gk01 SAM-0.01 463218 5089903 12043838 23653772 35281859 46897705 

gk01 SAM-0.02 463218 5092327 12059177 23693904 35383395 47113463 

gk01 SAM-0.05 463218 5113768 12097901 23892037 35778881 47610395 

gk01 SAM-0.1 463218 5121272 12169486 24044573 35925950 47924151 

gk01 SAM-0.2 463218 5177484 12293033 24189553 36116201 48166300 

OR10x100-0.25_1 SAM-0.01 2836872 31205045 73830256 145018245 216448557 288212783 

OR10x100-0.25_1 SAM-0.02 2836872 31176234 73779210 145071138 216174187 286840590 

OR10x100-0.25_1 SAM-0.05 2836872 31123728 73635411 144442790 214350962 284811984 

OR10x100-0.25_1 SAM-0.1 2836872 30805648 71709699 140660402 208541345 276564063 

OR10x100-0.25_1 SAM-0.2 2836872 29648279 69427770 133693742 197679341 262428557 

OR10x100-0.50_1 SAM-0.01 5091585 55953867 132336914 259552759 386384459 513376968 

OR10x100-0.50_1 SAM-0.02 5091585 55866397 132033525 260305360 388821856 517324762 

OR10x100-0.50_1 SAM-0.05 5091585 56065926 133118084 262589997 393619307 524410687 

OR10x100-0.50_1 SAM-0.1 5091585 56629927 134571121 266159634 395126427 526352982 

OR10x100-0.50_1 SAM-0.2 5091585 56542194 135328561 268860774 403977829 540243294 

OR10x100-0.75_1 SAM-0.01 7057125 77643072 183396152 359231095 535672559 712133307 

OR10x100-0.75_1 SAM-0.02 7057125 77369672 182892248 357984295 532064332 706249480 

OR10x100-0.75_1 SAM-0.05 7057125 77602511 183329109 359336913 534961784 709195281 

OR10x100-0.75_1 SAM-0.1 7057125 76740410 181074663 349629918 514015441 679144481 

OR10x100-0.75_1 SAM-0.2 7057125 74281645 171926494 331859849 492799464 658580578 

OR30x100-0.25_1 SAM-0.01 2699358 29687005 70191529 137774216 205487725 273471842 

OR30x100-0.25_1 SAM-0.02 2699358 29702444 70268015 137971147 205397065 272700290 

OR30x100-0.25_1 SAM-0.05 2699358 29502620 69475293 135491089 201383026 266403778 

OR30x100-0.25_1 SAM-0.1 2699358 28900744 68183405 133807293 197430527 262757855 

OR30x100-0.25_1 SAM-0.2 2699358 27977949 66054651 130252336 195671607 261708983 

OR30x100-0.50_1 SAM-0.01 5014341 55059043 129891484 254621859 379817047 505328790 

OR30x100-0.50_1 SAM-0.02 5014341 55025745 130037468 255079511 379914843 505524676 

OR30x100-0.50_1 SAM-0.05 5014341 55200665 130045508 254327181 378085224 501037881 

OR30x100-0.50_1 SAM-0.1 5014341 54810897 128082790 247397275 366761689 486607011 

OR30x100-0.50_1 SAM-0.2 5014341 53103991 124497893 244395075 363760632 483039836 

OR30x100-0.75_1 SAM-0.01 7071762 77864424 184162853 361344304 538697991 716206864 

OR30x100-0.75_1 SAM-0.02 7071762 77780937 183865316 359936517 536422253 713362025 

OR30x100-0.75_1 SAM-0.05 7071762 77932653 184544801 362035765 538160553 714949227 

OR30x100-0.75_1 SAM-0.1 7071762 77557884 183180055 361505598 542978957 725238465 

OR30x100-0.75_1 SAM-0.2 7071762 77189609 183136611 365412793 547980898 727926255 

OR5x100-0.25_1 SAM-0.01 2998863 32939171 77757416 152752166 227713579 302850314 

OR5x100-0.25_1 SAM-0.02 2998863 32821440 77541184 152413231 227296574 302426478 

OR5x100-0.25_1 SAM-0.05 2998863 33098483 78857803 155459878 233754591 311477600 

OR5x100-0.25_1 SAM-0.1 2998863 32819219 79103918 159026997 238008299 318890576 

OR5x100-0.25_1 SAM-0.2 2998863 31792534 75667725 150669330 224083685 298265765 

OR5x100-0.50_1 SAM-0.01 5259111 57816931 136753398 268534896 400626535 532774988 

OR5x100-0.50_1 SAM-0.02 5259111 57739290 136877350 268314426 400103228 532502998 

OR5x100-0.50_1 SAM-0.05 5259111 57570616 136465452 269864698 403784094 536018915 

OR5x100-0.50_1 SAM-0.1 5259111 58845857 142707776 289653226 440496588 591692649 

OR5x100-0.50_1 SAM-0.2 5259111 62153210 151213344 304160231 460660467 610787683 

OR5x100-0.75_1 SAM-0.01 7358106 81027232 191732938 376103226 559814098 742782860 

OR5x100-0.75_1 SAM-0.02 7358106 81164628 191864001 375883541 559920437 744012008 

OR5x100-0.75_1 SAM-0.05 7358106 81539986 193322737 378920251 562125666 744462914 

OR5x100-0.75_1 SAM-0.1 7358106 81354829 191189919 372271347 550102686 726936473 

OR5x100-0.75_1 SAM-0.2 7358106 80952636 187322886 367257155 546541749 724836393 
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4.4. Comparative performance analysis 

In addition to dataset statistical and optimal result analysis, comparative algorithm 

performance is tested. A high-performance baseline ACO algorithm implementation 

called ACO with Dynamic Impact [1] introduced in Chapter 3 has been adapted to 

solve the Dynamic MKP benchmark. The algorithm has been configured to perform 

two popular dynamic optimization strategies: Full-Restart and Pheromone-Sharing. 

Full-Restart strategy is a standard optimization strategy, where each state is 

considered independently, and after each state change, the optimization is restarted 

from the beginning. The pheromone-Sharing strategy is a simple yet very effective 

dynamic optimization strategy, where after each state change, the pheromone is 

reused [157]. All tests have been executed on the AMD Threadripper 2990WX system 

with the clock running at 2.9Ghz, with execution parallelism set to 32 threads on the 

first NUMA node.  

To cross-compare highly efficient dynamic optimization algorithm result scores of the 

Dynamic MKP, each result profit has to be expressed as a profit gap to the best-known 

profit, or the “result gap” for short. The result gap score is calculated for each state, 

which is the percentage of the state’s result profit difference to the best-known profit. 

The best-known results are submitted to a verified public repository [213]. Using the 

result gap allows comparing algorithm performance quantitatively across all 

benchmark instances.  

The dynamic optimization results of the ACO algorithm are displayed in Figure 4-10 

and Figure 4-11. The ACO algorithm solved all Dynamic MKP benchmark dataset 

instances generated from the GK library in both instances. For each SAM 𝛥 value 

there are 11 GK benchmark datasets run 10 times. Each dynamic dataset state run 

time has been limited to 1 second per 100 items in the problem. For example, GK01 

has 100 items therefore, each state is limited to 1 second runtime, GK03 with 150 

items limited to 1.5s, and GK11 with 2500 items limited to 25s. In Figure 4-10, the 

ACO algorithm with a Full-Restart strategy is configured to solve each dynamic state 

independently, from the start, without any share of the learned knowledge from 

previous state optimization. Every state for this optimization strategy appears as a new 

optimization problem therefore, the convergence of every state is similar throughout 
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the whole optimization. Also, the 𝛥 value does not have an impact on the optimization 

quality for ACO with Full-Restart strategy. In Figure 4-11 ACO algorithm with a 

Pheromone-Sharing strategy continues to use the same pheromone after dynamic 

state change and therefore has a significant head start to improve the solution further. 

ACO with Pheromone-Sharing strategy can take a significant advantage when the 𝛥 

value is low because each dynamic change is small and the optimal solution is not 

significantly different compared to the state before the change. 

 

Figure 4-10: Dynamic optimization performance of ACO Full-restart strategy for all 

SAM levels. Each line shows the average gap convergence of GK01-GK11 dynamic 

datasets group run 10 times each, totalling 110 runs. 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

A
ve

ra
ge

 g
ap

 p
er

ce
n

ta
ge

 t
o

 t
h

e 
b

es
t 

kn
o

w
 s

ta
te

's
 r

es
u

lt

Dynamic optimization average GK01-GK11 datasets 
performance of ACO Full-Restart strategy through all 

dynamic states

SAM-0.01 SAM-0.02 SAM-0.05 SAM-0.1 SAM-0.2



85 

 

 

Figure 4-11: Dynamic optimization performance of ACO Pheromone-sharing strategy 

for all SAM levels. Each line shows the average gap convergence of GK01-GK11 dynamic 

datasets group run 10 times each, totalling 110 runs. 

4.5. Further dynamic dataset analysis 

Dynamic datasets are numerically heavy, and static on-the-paper visualizations such 

as graphs, diagrams, or tables cannot show a complete picture and give the reader an 

intuitive understanding of the dataset and its dynamics. For this reason, further dataset 

analysis demonstration is developed. This analysis is not possible to be printed out, 

therefore the analysis is published on GitHub with complete data of all dynamic 

datasets [5].  

4.5.1. Profit and weight distance effect 

The profit and weight distance effect demonstration is a dynamic scatter plot where 

each item is represented by a dot on a value over a size plot. All items are divided into 

four groups by their weight and profit values. Groups are chosen considering two 

factors. First, whether item profit is higher or lower than median item profit, and 
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second, whether item weight is higher or lower than median item weight. Since profit 

and weight are independent variables, this divides all items into four equally sized 

groups. Each item is marked for the initial state dataset and remains constant in all 

states of the dynamic dataset.  

For example, the distance effect is displayed of dataset GK01 SAM-0.05 for the initial 

state and the last state in Figure 4-12 and Figure 4-13. At first, for the initial state, the 

plot appears evenly divided into four quadrants. Series 1 is initially low weight and low 

value items; Series 2 is initially low weight and high value; Series 3 is initially high 

weight and low value items; Series 4 is initially high weight and high value items. Then, 

all groups become increasingly mixed up by advancing graphs through each state until 

each series can appear to have low and high value and weight items scattered. When 

the dataset profit and weights reach theoretically expected distance values, the groups 

should look mixed entirely up. In the example of GK01 SAM-0.05 last state, the groups 

do not appear to be completely mixed up. Most of the large weight items remained on 

the heavy side, and most of the low weight items remained on the light side. 

 

Figure 4-12: Profit and weight distance effect for GK01 SAM-0.05 dataset initial state. 

Each series represent the division of each item’s value and average weight into a quadrant 

based on the initial state. On the initial state, the division is clearly visible. 
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Figure 4-13: Profit and weight distance effect for GK01 SAM-0.05 dataset last state. Each 

series represent the division of each item’s value and average weight into a quadrant 

based on the initial state. On the last state, items are significantly mixed up. 

4.5.2. Optimal result effect 

Similarly to profit and weight distance effect demonstration, an optimal result effect 

demonstration is a dynamic scatter plot where each item is represented by a dot on a 

value over a size plot. However, in this dynamic plot, each item belongs in a group 

according to the optimal result decision vector obtained from the linear solver solution 

for each state. The item is either part of the optimal set or not. From one state to 

another, the item may change the group to reflect a new optimal solution for that given 

state. 

For example, the optimal result is displayed of dataset GK01 SAM-0.05 for the initial 

state and the last state in Figure 4-14 and Figure 4-15. In both example figures, the 

higher value items are significantly more likely to be included in the optimal result 

decision vector than lower value items. However, the item’s size does not appear to 

impact the likelihood of being included in the optimal result decision vector. 
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Figure 4-14: Optimal result effect GK01 SAM-0.05 dataset initial state 

 

Figure 4-15: Optimal result effect, GK01 SAM-0.05 dataset last state. 

4.5.3. Dynamic dataset constraint coverage effect 

This visualization chart is a group of line graphs where each line represents an item 

of the dynamic dataset. The line shows the path of the item that has been moved 

through the dataset constraint space. The chart can display up to 20 items at once, 

and it can limit the number of dynamic states range for a more transparent comparison 

of each item’s path.  

For example, the dataset constraint coverage paths are displayed for items 13 to 21 

inclusive and span through all states from 0 to 100 in Figure 4-16 and Figure 4-17. 

The GK01 dataset generated using SAM-0.02 has all items cover a smaller, more 

localized constraint space than GK01 SAM-0.05. Items in the GK01 SAM-0.05 dataset 



89 

 

has a broader coverage and has more overlap in the constraint space among the 

items. 

 

Figure 4-16: Dynamic dataset constraint coverage effect, GK01 SAM-0.02 dataset, items 

range 13-21 inclusive. 
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Figure 4-17: Dynamic dataset constraint coverage effect, GK01 SAM-0.05 dataset, items 

range 13-21 inclusive. 

4.5.4. Dynamic dataset optimal result coverage effect 

For the dynamic datasets with optimal results, the optimal result coverage of every 

state can be displayed. This chart displays for all states whether the item belongs in 

the decision vector of optimal solution or not. Orange colour represents an item in the 

optimal set and blue colour represents a not optimal item. The chart also differentiates 

the items always part of the optimal set with green colour series and items that are 

never part of the optimal set with black colour series.  

For example, optimal item’s decisions are displayed for items 7 to 21 inclusive and 

span through all states from 0 to 100 in Figure 4-18 and Figure 4-19. In dataset GK01 

SAM-0.01, where each item has mutated the least, more items have remained always 

optimal or never optimal compared to dataset GK01 SAM-0.02, where items cover a 
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larger constraint area and therefore larger changes in size and value have an effect 

on the optimal solution. 

 

Figure 4-18: Dynamic dataset optimal result coverage effect, GK01 SAM-0.02 dataset, 

items range 7-21 inclusive. 
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Figure 4-19: Dynamic dataset optimal result coverage effect, GK01 SAM-0.01 dataset, 

items range 7-21 inclusive. 

4.6. Chapter Summary 

This research chapter has resolved a critical gap in discrete Dynamic Optimization 

Problem (DOP) research. There were no fully defined DOP datasets upon which the 

research could be based. Previous works have used stochastic generation methods 

and have not preserved the optimization states or random operator seed values to 

directly compare the optimization results. Therefore, it was impossible to evaluate 

dynamic optimization algorithms fairly or conduct a repeatability study.  

Introduced a non-stochastic dynamic dataset generation method that can consistently 

generate the next state of dynamic MKP based on nothing but input dataset and 𝛥 

value. The generated dataset will always be identical based on the input dataset. 
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Therefore, dynamic optimization algorithms can be cross-compared in future research 

by any research work. 

Using this dynamic dataset generation method, 1405 fully defined Dynamic MKP 

benchmark instances were generated from the existing static MKP benchmark dataset 

library. Then those dynamic datasets were published to be used as a Dynamic MKP 

benchmark. 

This chapter also provided a Dynamic MKP benchmark datasets analysis. The 

datasets were analysed quantitatively for the range of dynamism of all dataset 

parameters. Also, optimal result dynamics analysis was performed on 455 datasets 

with low combinatorial complexity of 100 items, where all states were solved to optimal 

result using a linear solver. Then developed an interactive tool for an additional 

dynamic demonstration which helps to develop an intuitive understanding of the 

dynamics of the datasets. 

Finally, the new Dynamic MKP benchmark will be used in Chapter 5 to measure the 

performance of the new nature-inspired dynamic optimization strategy developed for 

the ACO algorithm. The non-stochastic nature of the benchmark makes it easy to 

compare the results of the baseline optimization and the proposed algorithm. 

The contributions of this research chapter to science are:  

• Introduced a deterministic dynamic dataset generation method that takes a 

static instance of the MKP dataset and generates a dynamic dataset 

consistently. Dataset Generator is published on GitHub. [2] 

• Generated new, fully defined Dynamic MKP benchmark instances from existing 

static MKP benchmarks for consistent and repeatable cross research 

reference. The benchmark datasets are published on GitHub [3] and IEEE 

Dataport [4]. 

• The generated benchmarks are qualitatively and quantitatively analysed and 

proven as valid Dynamic MKP datasets. The visualization tool is published on 

GitHub. [5] 

• The work presented in this chapter has been published in the in peer-reviewed 

journal Systems and Soft Computing, Elsevier [6]. 
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Chapter 5. Herder Ants: Ant Colony 

Optimization with Aphids for Discrete 

Event-Triggered Dynamic Optimization 

Problems  

As mentioned in Chapter 2 literature review, currently applied dynamic optimization 

strategies for ACO algorithm are rudimentary and not explicitly designed with dynamic 

optimization in mind. This research chapter introduces a discrete dynamic optimization 

strategy called Ant Colony Optimization (ACO) with Aphids, modelled after a real-world 

symbiotic relationship between ants and aphids. ACO with Aphids strategy is designed 

to improve solution quality of discrete domain Dynamic Optimization Problems (DOPs) 

with event-triggered discrete dynamism. 

Up to recently, there was no existing Discrete event-triggered DOP benchmark to 

evaluate the efficiency of proposed algorithms, especially for a limited time per state 

of the dynamic optimization. This work uses fully-defined DMKP benchmark datasets 

proposed in Chapter 4 and evaluates the efficiency of several different ACO dynamic 

optimization strategies. Also, for maximum optimization performance, all implemented 

dynamic optimization strategies are based on the best performing ACO with Dynamic 

Impact configuration presented in Chapter 3.  

5.1. Ant Colony Optimization with Aphids 

The original Ant Colony Optimization (ACO) algorithm was described by Dorigo in his 

doctoral thesis [113], solving Traveling Salesman Problem in 1992. ACO algorithm 

has been modelled to mimic real ants’ behaviour. While navigating, ants deposit 

pheromone on their path, and then other ants sense it and are drawn to it. A stronger 

pheromone trail attracts more ants compared to a weaker pheromone trail. When an 

ant travels a long distance from the food source to the nest, the pheromone trail is 

naturally spread out over that distance, and the pheromone evaporates faster, making 

the trail unattractive. On the other hand, if the path is short, each ant’s round trip time 



95 

 

is shorter, allowing the ant to deposit more pheromone on a short path and attract 

even more ants. Such ant behaviour is fundamentally iterative and allows ants to 

explore all the available areas for food sources and exploit already found food sources 

using the shortest travel path.  

However, this optimization algorithm was not modelled with dynamic optimization 

problems in mind. But luckily, as mentioned in the literature review, some ants 

manifest another behaviour, herding aphids. In nature, those ants tend to aphids and 

collect their produced honeydew, providing an additional source of nutrition along with 

their usual scavenged food. Within ants’ pheromone, aphids behave differently. They 

move less and produce more honeydew, while ants protect them from predators. Also, 

aphids rely on ants to relocate them when environmental conditions change. For 

example, ants move them onto new fresher plants when the plant is no longer fresh. 

Ants can prey on aphids once aphid’s honeydew production decreases or aphids’ 

population is too large.  

5.1.1. ACO with Aphids design 

This research proposes to use aphids in the ACO algorithm to increase the 

performance of discrete dynamic optimization. In this algorithm, the aphids are 

modelled as immobile food producers for ants to pick up. Ants must pick up this food 

at each dynamic change of the problem, creating a baseline pheromone for the new 

dynamic environment proportional to aphids’ distribution around search space. Then 

ants continue to explore the current state of the environment by optimizing the 

combinatorial optimization problem. Then after optimization is finished, ants kill a 

portion of aphids and lay some new aphids on the best edges of the current state of 

the environment. Aphids do not move independently, but after each dynamic change, 

ants relocate a portion of aphids to a better location according to precalculated 

heuristic information. 

5.1.2. Optimization system  

For discrete dynamic optimization, the ACO algorithm runs within the optimization 

system to separate concerns of the optimization process and the data. The 

optimization system handles fully defined benchmark data. The optimization system 
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mimics real-world dynamic optimization scenarios where future dynamic change is 

unknown. Each state of the dynamic optimization problem is dispatched with a 

constant time interval for the ACO to solve. Then ACO solves the optimization problem 

at its current state until the next state is dispatched. The system also records the 

fitness score and results of the ACO optimization for every state. 

Generally, the degree of dynamism in the literature is defined as the frequency and 

the magnitude of dynamic change [8]. However, for benchmark dynamic combinatorial 

optimization problems, the main focus is only on the magnitude of dynamic change. 

The frequency of dynamic change will be set to a constant time window such that a 

fair comparison of dynamic optimization strategies is performed.  

5.1.3. ACO with Aphids algorithm 

ACO with Aphids design extends high performance ACO with Dynamic Impact 

algorithm introduced in Chapter 3. Aphids represent learned information mediators 

across all states of the dynamic optimization problem. For each dynamic optimization 

problem’s state, the algorithm initializes search space with all feasible edges, sets 

each edge’s pheromone to the default pheromone level 𝜏0, and precalculates heuristic 

information. Before the ant search starts, ants perform two additional steps unique to 

the ACO with Aphids algorithm. Firstly, they relocate aphids based on new search 

space heuristic information and aphids’ relocation parameter. Then, ants collect 

honeydew produced by aphids and set the initial pheromone level to base the search 

in the new environment. Then ants perform iterative search normally for a given time 

span. Once the search is terminated, ants kill a portion of aphids according to the 

aphids’ kill parameter. And finally, ants lay down new aphids based on the best solution 

found for the current state and aphids’ lay down parameter. The algorithm is further 

summarised in the pseudo-code below. 

Table 5-1: ACO with Aphids pseudo-code 

Algorithm 1: ACO with Aphids 

Input: Dynamic optimization problem dataset 

Output: Solutions to the dynamic optimization problem 

1. Initialize Aphids to default aphids’ level 

2. FOR state IN dataset states DO 

3.    Load state data to memory 
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4.    Prepare search space subroutine 

5.    Initialize Ants’ pheromone 

4.    Relocate Aphids  

7.    Collect honeydew by ants 

8.    WHILE no events AND no termination DO 

9.       Build Ant solution subroutine 

10.       Update ants’ pheromone 

11.    END WHILE 

12.    Record best state’s solution 

13.    Kill portion of aphids 

14.    Lay new Aphids based on the best solution 

15. END FOR 

5.1.3.1. Initialize Aphids to default aphids’ level 

Aphids are initialized only once for dynamic optimization, and then aphids evolve 

together with the dynamic environment. At the very start, aphids are initialized 

uniformly for the whole search space. The parameter must be above zero for the 

optimization algorithm to work correctly. The default value is 𝐴0 = 1. 

𝐴𝑗,𝑖 ∶= 𝐴0, ∀(𝑗, 𝑖) (5-1) 

Aphids’ level is assigned to the default aphids’ level on all edges, where, 𝐴𝑗,𝑖 is the 

aphids’ level of 𝑗 node and 𝑖 edge, 𝐴0 is the default aphids’ level parameter.  

5.1.3.2. Load data to memory and prepare search space 

At any given point during dynamic optimization, only one dynamic optimization state 

is loaded into memory. Previous optimization states are out of date and no longer help 

in the optimization of the current state. Further states are not revealed to the 

optimization algorithm as they are technically in the future. Then once the state is 

revealed, search space has to be prepared for that state. In the prepared search 

space, each edge has precalculated heuristic information 𝜂𝑗,𝑖. Every optimization 

problem will have different formulas to calculate heuristic information since this 

heuristic information is based on the expert knowledge of the optimization problem 

that provides a myopic guide to the ACO algorithm.  
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5.1.3.3. Initialize ants’ pheromone 

In the Min-Max Ant System, static optimization starts with an initial pheromone matrix 

of default value 𝜏0 set to each edge. The same principle is applied to dynamic 

optimization. ACO with Aphids algorithm initializes the pheromone matrix for each 

optimization state to default pheromone value. 

𝜏𝑗,𝑖 ∶= 𝜏0, ∀(𝑗, 𝑖) (5-2) 

Ants’ pheromone is assigned to the default ants’ pheromone level on all edges, where, 

𝜏𝑗,𝑖 is the pheromone level of 𝑗 node and 𝑖 edge, 𝜏0 is the default pheromone level 

parameter. 

5.1.3.4. Relocate aphids 

When the optimization system introduces the new state, new heuristic information is 

precalculated that can roughly point to areas where aphids should be placed. Ants use 

precalculated heuristic information to relocate aphids from the search space areas 

with worse heuristic information to areas with a better heuristic. Aphids are only 

partially relocated based on heuristic information because the heuristic information is 

not a perfectly accurate measure of fitness. Relocation of aphids noted by aphids’ 

relocation parameter 𝐴𝑟.  The aphids’ relocation parameter is a multiplier value and 

must not be negative 𝐴𝑟 > 0. The default value of the aphids’ relocation parameter 

𝐴𝑟 = 1. However, the parameter value can be higher if heuristic information variance 

is low, and vice versa. 

𝐴𝑗,𝑖 ∶= 𝐴𝑗,𝑖 × (1 + (𝜂𝑗,𝑖 − �̅�) × 𝐴𝑟), ∀(𝑗, 𝑖) (5-3) 

Aphids’ level is reassigned to new aphids’ level based on heuristic information and 

aphids’ relocation parameter, where, 𝐴𝑗,𝑖 is the aphids’ level of 𝑗 node and 𝑖 edge, 𝐴𝑟 

is the aphids’ relocation parameter, 𝜂𝑗,𝑖 is heuristic information of 𝑗 node and 𝑖 edge, 

and �̅� is average heuristic information value across the entire search space. 

5.1.3.5. Collect honeydew 

Honeydew is a crucial product of aphids. Before the iterative search starts, ants pick 

up the honeydew produced by aphids and lay pheromone on those edges where 

honeydew is produced. The amount of pheromone laid down is proportional to the 
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amount of honeydew and, in turn, proportional to the number of aphids living on the 

edge. The default value of the aphids’ honeydew production parameter 𝐴ℎ = 1. 

Increasing or decreasing this parameter value increases or decreases aphids’ total 

influence on the dynamic search. However, too much honeydew might affect ants’ 

ability to evaporate excess pheromone created while collecting honeydew. 

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 + (𝐴𝑗,𝑖 × 𝐴ℎ), ∀(𝑗, 𝑖) (5-4) 

Ants’ pheromone is reassigned to a new level based on aphids’ level and honeydew 

production rate, where, 𝜏𝑗,𝑖 is the pheromone level of 𝑗 node and 𝑖 edge, 𝐴𝑗,𝑖 is the 

number of aphids currently living on the 𝑗 node and 𝑖 edge, and 𝐴ℎ is the aphids’ 

honeydew production rate.  

This newly laid pheromone forms a solid starting point for ACO to find good initial 

solutions after the dynamic change has occurred. Aphids’ impact on pheromone is 

applied only once, and its effect does not negatively impact the iterative search 

convergence. Ants’ pheromone normally evaporates as the search progresses, 

allowing ants to explore search space efficiently without getting stuck in the local 

optima. 

5.1.3.6. Build ant solution 

ACO with Aphids performs iterative search normally as described in MMAS [115]. In 

the iterative search, a set of ants each builds a complete solution independently. Each 

ant starts the search with an empty partial solution 𝑠𝑝 = ∅. Then the ant searches for 

a single edge to add to the partial solution. Ant stochastically adds edge to the solution 

based on the calculated edge’s probability without exceeding the optimization problem 

constraints. The solution is complete once every node’s objective is met or constraints 

are exhausted. 

5.1.3.7. Update ants’ pheromone 

All completed ant solutions are evaluated against fitness function within a single 

iteration. The best solution is then passed to update the global pheromone. 

Pheromone update consists of two steps, first evaporation and second lay down. 

During the evaporation step, a portion of pheromone is reduced by evaporation 

parameter 𝜌 as in the following equation (5-5). Then the best ant solution is taken to 
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lay down pheromone on edges that it has visited while building the solution as in the 

following equation (5-6): 

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 × (1 − 𝜌), ∀(𝑗, 𝑖) (5-5) 

𝜏𝑗,𝑖 ∶= 𝜏𝑗,𝑖 + 𝜌 × Δ𝜏0, ∀(𝑗, 𝑖) ∈ 𝑠𝑝 (5-6) 

where 𝜌 is a constant parameter of the pheromone evaporation rate introduced by 

Dorigo and Stützle [123], Δ𝜏0 is the pheromone update rate, 𝑠𝑝 is the solution of the 

chosen ant to lay down the pheromone. 

5.1.3.8. Termination criteria 

The search runtime is terminated of a current dynamic state when either one of three 

conditions occurs, event-triggered, time-based or iteration based. The first condition is 

when the dynamic change event is triggered. The system mimics the real-world 

dynamic change in the optimization problem’s instance and dispatches new and 

updated problem search space. The system treats the solutions to the old dynamic 

state as invalid to the new search space and restarts the search. The second condition 

is time-based. The optimization is considered complete when the optimization time 

reaches a predefined time limit allocated for the optimization. The third condition is 

iteration based. Similarly to time-based termination, the optimization is considered 

complete when the iterative search has performed a predefined number of iterations.  

5.1.3.9. Kill portion of aphids 

After the iterative search is finished, a portion of aphids is killed based on the aphids’ 

kill rate parameter 𝐴𝑘. Killing aphids procedure ensures that aphids’ population does 

not grow too much. Also, the killing aphids procedure further removes aphids from 

poorly performing edges throughout multiple optimization states. Like in nature, a 

portion of aphids must die such that aphids populations stay in equilibrium 𝐴𝑟 > 0. The 

default value of the aphids’ kill rate parameter 𝐴𝑘 = 0.5, which kills half of the 

remaining aphids.  

𝐴𝑗,𝑖 ∶= 𝐴𝑗,𝑖 × (1 − 𝐴𝑘), ∀(𝑗, 𝑖) (5-7) 

Aphids’ level is reassigned to a new aphids’ level based on aphids’ kill rate, where, 𝐴𝑗,𝑖 

is the number of aphids on 𝑗 node and 𝑖 edge, and 𝐴𝑘 is the aphids’ kill rate. 
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5.1.3.10. Lay new aphids  

The best solution found by ACO for the state is representative of that state’s 

environment. Ants lay down new aphids on the edges of the search space that are 

included in the best solution. Lay down aphids procedure increases the number of 

aphids on well-performing edges and strengthens honeydew production. The default 

value of the aphids’ lay down parameter 𝐴𝑙 = 1. However, this parameter can be 

higher if typical solutions contain a small portion of edges available in the search space 

and vice versa. 

𝐴𝑗,𝑖 ∶= 𝐴𝑗,𝑖 + 𝐴𝑙 , ∀(𝑗, 𝑖) ∈ 𝑠𝑝 (5-8) 

Aphids’ level is reassigned to a new aphids’ level based on aphids’ lay down rate, 

where 𝐴𝑗,𝑖 is the number of aphids, 𝐴𝑙 is the aphids’ lay down rate, and 𝑠𝑝 is the best 

solution chosen for lying down the aphids. 
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Figure 5-1: ACO with Aphids algorithm flowchart. The green colour represents 

Optimization system steps, the blue colour represents ACO algorithm steps, and the 

orange colour represents novel steps to ACO with Aphids algorithm. 
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5.2. Experimental setup 

The experimental work presents the comparison of the proposed ACO with Aphids 

dynamic optimization strategy against the two most popular ACO dynamic optimization 

strategies: Full-Restart and Pheromone-Sharing  [120], [214], [215]. 

5.2.1. Experimental dataset 

A fully defined Dynamic Multidimensional Knapsack Problem (DMKP) benchmark, 

introduced in Chapter 4, is taken to test the proposed algorithm's performance. Each 

benchmark dataset includes complete information about each optimization problem 

instance called states [3], [4], [6]. Each benchmark dataset contains 101 states, where 

the first state is the initial state based on the static benchmark instance of the MKP 

and 100 deterministically generated states. This benchmark is perfect for reliably 

testing an event-triggered dynamic optimization system and comparing the results of 

dynamic optimization algorithms. Also, DMKP suits this aim well because algorithmic 

solutions solving MKP have a wide range of possible real-world applications.  

From this benchmark library, 55 datasets of the GK group are used for the 

experimental work. Each GK dataset has a unique complexity and dynamism 

combination. There are eleven complexity levels in the range from the GK01 dynamic 

dataset group with 100 items and 15 knapsacks to the GK11 dynamic dataset group 

with 2,500 items and 100 knapsacks, and five dynamism levels indicated by the State 

Adjustment Magnitude 𝛥 parameter: 𝛥 = 0.01, 𝛥 = 0.02, 𝛥 = 0.05, 𝛥 = 0.1, 𝛥 = 0.2. 

The 𝛥 parameter is also called SAM in the code and charts with no special characters’ 

support. For the first experiment of ACO with Aphids hyper-parameter tuning, only 

GK03 and GK08 complexities are used with all five dynamism levels. All 11 dataset 

groups from the GK group with all five dynamism levels are used for the second 

experiment of a full comparison of dynamic optimisation strategies. 

5.2.2. Baseline ACO algorithm and optimization 

system 

All three dynamic optimization strategies are implemented within the same baseline 

ACO core algorithm, solving static MKP benchmarks [1]. High-quality MKP solutions 
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were possible to achieve by utilizing a dynamic impact evaluation method in the ACO 

edge’s probability calculation. Also, this baseline ACO algorithm implementation 

efficiently utilizes modern multicore computer architectures by running multiple ant 

searches in parallel within one iteration and synchronising before the pheromone 

update.  

A fair comparison of dynamic optimization algorithm performance is ensured by the 

optimization system dispatching an event-trigger at a precise interval based on the 

complexity of the optimization problem. Event-trigger dispatch based on time 

eliminates any variations in algorithm execution overheads related to strategy. The 

optimization system has the rule to dispatch events after a time period proportional to 

the number of items in the dataset. Each state has 1 second to execute optimization 

for every 200 items in the dataset. For example, any dataset in the GK01 dataset group 

has 100 items. Therefore, each state is allowed to execute for only 0.5 seconds. The 

GK11 is the largest dataset group with 2500 items per dataset. Therefore, each state 

is allowed to execute for 12.5 seconds. 

ACO algorithm hyper-parameters have been tuned in Chapter 3 and used throughout 

all experimentation. The best combination of pheromone parameters is: 𝜏𝑚𝑎𝑥 = 1, 

𝜏𝑚𝑖𝑛 = 0.001, 𝜌 = 0.1. Configuration of probability parameters: 𝛼 = 1, 𝛽 = 0, γ = 8, 

𝑞0 = 0.01. Each iteration runs 512 ants in parallel. 

The experimental environment is also carefully controlled to ensure the consistency of 

computational power among the tests. All tests have been executed on the AMD 

Threadripper 2990WX system with the clock running at 2.9Ghz. Only one experiment 

was allowed to run on the system simultaneously without any other background tasks. 

Execution parallelism is set to 32 threads on the first NUMA node. The ACO core 

algorithm and dynamic optimization strategies are implemented in C++ language and 

compiled with the MSVC compiler. 

5.2.3. Experimental measurements 

The absolute performance of the DMKP benchmark instance is the sum of each state’s 

result profits. The total profit sum is a good overall performance indication because 

each state equally contributes to the final result. A profit improvement of any state’s 

result directly improves the total profit. The result performance is only comparable 
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against the same benchmark instance because every dataset instance will have a 

different optimal total profit value. However, if the optimal or best-know values are 

available, a comparable metric can be calculated as the result’s percentage difference 

from the best-known result called the “result gap”. The goal is to minimize the result 

gap, ideally to zero, which means the best-known or the optimal solution is found. The 

result gap can be calculated for any single solution and plotted on a graph. Also, 

dynamic algorithm performance can be measured using the difference in the result 

gap that occurs after the dynamic change called the “gap slip”. Although gap slip is not 

a primary objective of the optimization, it indicates how well the optimization algorithm 

tackles a dynamic problem and should be minimized.  

This research performs quantitative analysis across all benchmark instances using 

“result gap” and “gap slip” metrics. The average result gap and average gap slip values 

of each dynamic benchmark dataset are calculated from all dynamic states, as shown 

in Figure 5-2. The best-known results are taken from a verified public repository [213]. 

Furthermore, all presented experimental measurements are the averages taken from 

10 algorithm runs, and the standard deviation of the result gap is calculated to prove 

statistical significance. 
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Figure 5-2: Experimental measurements visualization. The orange line represents a 

measurement of each state’s result gap to the best know profit score. The green line 

represents the result gap slip after the dynamic change. The total dynamic optimization 

result gap is an average of all states’ result gap, and the total dynamic optimization result 

gap is an average of all states’ gap slip. 

5.3. Experimental results 

The experimental work is split into two parts. The first part is dedicated to an iterative 

tuning of ACO with Aphids strategy hyper-parameters using a reduced benchmark 

dataset sample. Then the second part is dedicated to comparing ACO with Aphids 

strategy with Full-Restart and Pheromone-Sharing strategies. 

5.3.1. ACO with Aphids hyper-parameter tuning results 

There are four new Aphids functions with tuneable parameters in the ACO with Aphids 

algorithm, as shown in Figure 5-1. Initially, all Aphids tuneable parameters are 

initialized to the default values, as shown in Table 5-2, and sweep the tested the 

algorithm’s performance by varying one parameter value per test. The tests are 

performed incrementally. The first test starts with all default parameter values, and the 

following tests use the best parameter values found in the previous tests. Hyper-

parameter tuning is general to the algorithm, and tests can be performed on a subset 
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of datasets to reduce computational demand. GK03 and GK08 dataset groups with all 

five dynamism levels are selected for the hyper parameter tuning test to represent low 

and high complexity members of the benchmark. 

Table 5-2: Aphids’ tuneable parameters table. Each parameter has a default value, min-

max value range used in tests, and test resolution. 

Parameter Default Value Min Test 

Value 

Max Test 

Value 

Test 

Resolution 

Aphids’ 

relocation: 𝑨𝒓 

1 0 2 0.25 

Aphids’ 

honeydew 

production: 𝑨𝒉 

1 0 2 0.25 

Aphids’ lay 

down rate: 𝑨𝒍 

1 0 2 0.25 

Aphids’ kill 

rate: 𝑨𝒌 

0.5 0.01 1 0.2 

The first tested parameter is Aphids’ relocation 𝐴𝑟. This parameter partially allows Ants 

to relocate a portion of the Aphids based on the heuristic information. The heuristic 

information is not a perfect measure of fitness. However, it can prove helpful for 

dynamic optimization. The results show a clear optimization improvement with higher 

𝐴𝑟 values and best-tested configuration is with 𝐴𝑟 = 2. 
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Figure 5-3: ACO with Aphids hyper-parameter tuning test number 1. Aphids’ relocation 

parameter test. The results show the best dynamic optimization performance is achieved 

using 𝑨𝒓 = 𝟐. 

The second tested parameter is Aphids’ honeydew production 𝐴ℎ. This parameter 

controls how much honeydew each aphid produces at the start of the iterative search, 

where higher values result in stronger pheromone trails at the start of each dynamic 

optimization state. The results show a significant optimization improvement with higher 

𝐴ℎ values up to 𝐴ℎ = 1 after which the results had no more improvement. With 

honeydew production above 1, Aphids saturate Ants’ pheromone trails with honeydew, 

and extra honeydew does not further benefit the dynamic search. 
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Figure 5-4: ACO with Aphids hyper-parameter tuning test number 2. Aphids’ honeydew 

production parameter test. The results show the best dynamic optimization performance 

is achieved using 𝑨𝒉 = 𝟏. 

The third tested parameter is Aphids’ lay down rate 𝐴𝑙. The results of the GK03 

complexity group are not significantly diminished, and the larger GK08 complexity 

group performs well too. This parameter controls how much Ants lay down new Aphids 

on the edges of the best solution obtained in the previous state’s optimization. The 

results show significant improvement with a lay down rate above 0, which is to be 

expected. When no aphids are laid, the information is no longer shared between 

states. When parameter 𝐴𝑙 = 1, it appears to be a middle ground where the smaller  
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Figure 5-5: ACO with Aphids hyper-parameter tuning test number 3. Aphids’ lay down 

rate parameter test. The results show the best dynamic optimization performance is 

achieved using 𝑨𝒍 = 𝟏. 

Finally, the last parameter tested is the Aphids’ kill rate 𝐴𝑘. This parameter controls 

which portion of the aphids is killed after completing the iterative search. This 

procedure ensures that the population does not grow too much and aphids are 

removed from poorly performing edges. The results show a preference for a higher kill 

rate 𝐴𝑘 = 0.8, but not killing all aphids, which leaves a small portion of carry-over 

aphids from previous states. 
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Figure 5-6: ACO with Aphids hyper-parameter tuning test number 4. Aphids’ kill rate 

parameter test. The results show the best dynamic optimization performance is achieved 

using 𝑨𝒌 = 𝟎. 𝟖. 

In summary of ACO with Aphids hyper-parameter tuning, the Aphids specific hyper-

parameters have been tested to find the best configuration to optimize the DMKP 

problem. The configuration: 𝐴𝑟 = 2, 𝐴ℎ = 1, 𝐴𝑙 = 1, 𝐴𝑘 = 0.8 has been shown to 

perform the best. This ACO with Aphids hyper-parameter configuration will be used 

for the next experiment comparing ACO with aphids against the other two most 

popular ACO dynamic optimization strategies. 

5.3.2. ACO with Aphids comparison with other ACO 

dynamic optimization strategies result 

This experiment is dedicated to a full comparison of ACO with Aphids dynamic 

optimization algorithm strategy with the other two most common dynamic optimization 

strategies for ACO algorithm, Full-Restart and Pheromone-Sharing strategies. All 

strategies are tested using 55 fully-defined DMKP benchmark datasets with eleven 

dataset complexity groups from smallest GK01 to largest GK11 and five dynamism 

levels from SAM-0.01 to SAM-0.2. All three dynamic optimization strategies are 

implemented on the same ACO search core, and the experiments are conducted on 
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the isolated test system. Therefore, the only test variables are the dynamic 

optimization strategies. The statistical results’ significance is proven with acquired 

each data point by running the dynamic optimization ten times. 

In this experiment, the DMKP benchmark datasets provide a wide range of complexity 

and dynamism levels for testing the dynamic optimization strategies. The complexity 

of the datasets is determined by the number of items and knapsacks involved, with 

GK01 representing the simplest scenario and GK11 representing the most complex. 

GK01 includes 100 items and 15 knapsacks, offering a relatively straightforward 

scenario for the strategies to handle. This represents a relatively small-scale problem 

scenario that might be encountered in practical applications such as small business 

inventory management or simple resource allocation tasks. On the other end of the 

spectrum, GK11 presents a more complicated scenario with 2500 items and 100 

knapsacks. This scenario poses a significant challenge to the optimization strategies 

due to the larger search space and the increased complexity in finding optimal 

solutions. Situations mirroring this complexity could be found in larger-scale operations 

such as supply chain management for large corporations or large-scale project 

scheduling. The dynamism levels of the datasets range from SAM-0.01 to SAM-0.2. 

SAM-0.01 corresponds to a maximum interstate dynamism level of 1%. This implies 

that up to 1% of the problem parameters may change as the problem evolves, 

representing a scenario with relatively minor changes. This could mirror real-world 

situations where changes in the problem parameters are infrequent or subtle. SAM-

0.2, on the other hand, corresponds to a maximum interstate dynamism level of 20%. 

This means that up to 20% of the problem parameters can change, representing a 

highly dynamic scenario. This could reflect real-world situations where the problem 

parameters can change significantly and frequently, such as in dynamic market 

conditions or unstable operational environments. By using these datasets, the 

experiment aims to assess the performance of the dynamic optimization strategies 

across a broad range of complexity and dynamism levels, mirroring the various 

conditions they might encounter in real-world applications. This comprehensive 

approach ensures the robustness and applicability of the experimental results. 

In Table 5-3, the results show an average result gap of each dynamic optimization 

strategy for every dynamic benchmark dataset. The table also includes the average 

summary per dataset group and dynamism level, as well as the total average of the 
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dynamic optimization strategy. Overall, the ACO with Aphids has shown the best 

performance, with an average result gap of 0.519%. The second best was the 

Pheromone-Sharing strategy, with an average gap of 0.733%. Lastly, the Full-Restart 

strategy achieved an average result gap of 1.092%. In relative terms, these results 

show that the ACO with Aphids strategy performed 110% better than the Full-Restart 

strategy and 41% better than the Pheromone-Sharing strategy. 

Table 5-3: Dynamic optimization average result gap of all optimization strategies. Each 

data point is an average of all dynamic states’ result gap over ten algorithm runs. (Lower 

is better) 

Average results gap Dynamism 
level 

Dataset group Average 

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11  

Strategy 

ACO with 
Aphids 

SAM-0.01 0.158% 0.160% 0.117% 0.171% 0.124% 0.159% 0.339% 0.429% 0.694% 0.652% 0.563% 0.324% 

SAM-0.02 0.160% 0.191% 0.125% 0.160% 0.139% 0.189% 0.294% 0.437% 0.640% 0.696% 0.694% 0.339% 

SAM-0.05 0.215% 0.259% 0.173% 0.241% 0.177% 0.335% 0.355% 0.595% 0.756% 0.902% 0.927% 0.449% 

SAM-0.1 0.283% 0.347% 0.233% 0.454% 0.322% 0.539% 0.553% 0.951% 0.969% 1.208% 1.142% 0.636% 

SAM-0.2 0.282% 0.407% 0.281% 0.566% 0.391% 0.708% 0.900% 1.354% 1.413% 1.641% 1.371% 0.847% 

Average 0.220% 0.273% 0.186% 0.319% 0.231% 0.386% 0.488% 0.753% 0.894% 1.020% 0.939% 0.519% 

Full-Restart 

SAM-0.01 0.142% 0.199% 0.481% 0.933% 0.867% 1.100% 1.622% 1.777% 2.231% 2.011% 1.661% 1.184% 

SAM-0.02 0.124% 0.191% 0.425% 0.876% 0.766% 1.040% 1.520% 1.822% 2.285% 2.266% 1.890% 1.200% 

SAM-0.05 0.149% 0.194% 0.373% 0.799% 0.630% 0.969% 1.399% 1.649% 2.234% 2.134% 1.584% 1.101% 

SAM-0.1 0.166% 0.177% 0.329% 0.735% 0.655% 0.916% 1.254% 1.504% 1.985% 1.896% 1.358% 0.998% 

SAM-0.2 0.127% 0.163% 0.325% 0.683% 0.590% 0.888% 1.198% 1.547% 1.876% 1.915% 1.433% 0.977% 

Average 0.142% 0.185% 0.387% 0.805% 0.701% 0.983% 1.399% 1.660% 2.122% 2.044% 1.585% 1.092% 

Pheromone-
Sharing 

SAM-0.01 0.180% 0.196% 0.211% 0.236% 0.184% 0.263% 0.227% 0.454% 0.750% 0.882% 1.137% 0.429% 

SAM-0.02 0.190% 0.219% 0.218% 0.260% 0.190% 0.364% 0.268% 0.529% 0.805% 1.050% 1.229% 0.484% 

SAM-0.05 0.276% 0.332% 0.283% 0.345% 0.225% 0.486% 0.420% 0.851% 1.082% 1.271% 1.300% 0.625% 

SAM-0.1 0.337% 0.453% 0.377% 0.612% 0.381% 0.799% 0.831% 1.419% 1.938% 1.720% 1.344% 0.928% 

SAM-0.2 0.340% 0.511% 0.471% 0.819% 0.497% 1.062% 1.565% 1.933% 2.490% 2.056% 1.457% 1.200% 

Average 0.265% 0.342% 0.312% 0.454% 0.295% 0.595% 0.662% 1.037% 1.413% 1.396% 1.293% 0.733% 

Furthermore, the result gap standard deviation of each experiment is shown in Table 

5-4 to disprove a null hypothesis. Out of all tested dynamic optimization strategies, the 

Full-Restart strategy had the lowest overall standard deviation of just 0.0104%, the 

ACO with Aphids strategy had a larger overall standard deviation of 0.0195%, and the 

Pheromone-Sharing strategy had the largest overall standard deviation of 0.0330%. 

Statistical significance and rejection of the null hypothesis can be proved using the 

two-sample unpaired t-test considering the result magnitude, standard deviation, and 

sample size [216]. ACO with Aphids and Full-Restart strategies sample separations 

result in a T-value of 81.9 and a P-value < 10−6. ACO with Aphids and Pheromone-

Sharing strategies sample separations result in a T-value of 17.7 and a P-value <
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10−6. Both t-test groups reject the null hypothesis and show exceptionally statistically 

significant sample separations.  

Table 5-4: Dynamic optimization result gap standard deviation of all optimization 

strategies. Each data point is a standard deviation of the dynamic optimization result gap 

with a sample size of 10 runs. 

Result gap standard 
deviation 

Dynamism 
level 

Dataset group Average 

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11  

Strategy 

ACO with 
Aphids 

SAM-0.01 0.032% 0.030% 0.022% 0.034% 0.020% 0.025% 0.012% 0.015% 0.046% 0.012% 0.010% 0.026% 

SAM-0.02 0.019% 0.027% 0.017% 0.018% 0.014% 0.021% 0.022% 0.013% 0.012% 0.014% 0.008% 0.018% 

SAM-0.05 0.020% 0.027% 0.012% 0.022% 0.011% 0.019% 0.012% 0.012% 0.022% 0.019% 0.012% 0.018% 

SAM-0.1 0.010% 0.020% 0.020% 0.012% 0.014% 0.029% 0.009% 0.012% 0.012% 0.011% 0.009% 0.016% 

SAM-0.2 0.017% 0.025% 0.015% 0.010% 0.011% 0.046% 0.014% 0.013% 0.007% 0.011% 0.007% 0.019% 

Average 0.021% 0.026% 0.017% 0.021% 0.015% 0.030% 0.014% 0.013% 0.024% 0.014% 0.009% 0.020% 

Full-Restart 

SAM-0.01 0.008% 0.005% 0.011% 0.011% 0.017% 0.014% 0.007% 0.006% 0.007% 0.004% 0.003% 0.009% 

SAM-0.02 0.008% 0.009% 0.011% 0.012% 0.019% 0.008% 0.006% 0.005% 0.010% 0.006% 0.003% 0.010% 

SAM-0.05 0.007% 0.010% 0.010% 0.015% 0.026% 0.006% 0.006% 0.008% 0.009% 0.007% 0.002% 0.011% 

SAM-0.1 0.007% 0.008% 0.011% 0.016% 0.024% 0.014% 0.011% 0.010% 0.004% 0.005% 0.002% 0.012% 

SAM-0.2 0.010% 0.012% 0.008% 0.010% 0.019% 0.006% 0.008% 0.006% 0.007% 0.006% 0.004% 0.010% 

Average 0.008% 0.009% 0.010% 0.013% 0.021% 0.010% 0.008% 0.007% 0.008% 0.006% 0.003% 0.010% 

Pheromone-
Sharing 

SAM-0.01 0.036% 0.041% 0.035% 0.047% 0.019% 0.055% 0.014% 0.019% 0.102% 0.026% 0.022% 0.045% 

SAM-0.02 0.020% 0.026% 0.040% 0.040% 0.020% 0.041% 0.019% 0.028% 0.021% 0.042% 0.016% 0.030% 

SAM-0.05 0.023% 0.026% 0.016% 0.028% 0.012% 0.055% 0.021% 0.044% 0.018% 0.057% 0.012% 0.032% 

SAM-0.1 0.017% 0.030% 0.018% 0.035% 0.007% 0.019% 0.025% 0.029% 0.029% 0.054% 0.005% 0.028% 

SAM-0.2 0.014% 0.023% 0.025% 0.023% 0.013% 0.034% 0.029% 0.032% 0.023% 0.052% 0.006% 0.027% 

Average 0.023% 0.030% 0.028% 0.036% 0.015% 0.043% 0.022% 0.031% 0.050% 0.048% 0.014% 0.033% 

The average gap slip results show how much performance decreases on average after 

each dynamic change. The gap slip is calculated using the first iteration’s result of the 

current state minus the last iteration result before the dynamic change has occurred. 

The average gap slip measurements are shown in Table 5-5 of each dynamic 

optimization strategy for every dynamic benchmark dataset. Interestingly, the 

Pheromone-Sharing strategy achieved the best average gap slip of only 0.240%. 

Meanwhile, the ACO with Aphids strategy has achieved an average gap slip of 

0.304%. Lastly, the Full-Restart strategy achieved the worst average gap slip of 

1.420%. 
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Table 5-5: Dynamic optimization average gap slip of all optimization strategies. Each 

data point is an average of all dynamic states gap slip over ten algorithm runs. (Lower is 

better) 

Average gap slip 
Dynamism 

level 

Dataset group Average 

GK01 GK02 GK03 GK04 GK05 GK06 GK07 GK08 GK09 GK10 GK11  

Strategy 

ACO with 
Aphids 

SAM-0.01 0.050% 0.073% 0.103% 0.125% 0.155% 0.167% 0.128% 0.108% 0.013% 0.014% 0.005% 0.086% 

SAM-0.02 0.101% 0.134% 0.169% 0.177% 0.185% 0.192% 0.146% 0.121% 0.038% 0.027% 0.009% 0.118% 

SAM-0.05 0.263% 0.288% 0.339% 0.339% 0.292% 0.304% 0.197% 0.182% 0.073% 0.043% 0.026% 0.213% 

SAM-0.1 0.563% 0.587% 0.607% 0.553% 0.532% 0.506% 0.334% 0.307% 0.178% 0.121% 0.043% 0.394% 

SAM-0.2 1.062% 1.090% 1.116% 0.877% 0.956% 0.759% 0.684% 0.475% 0.410% 0.273% 0.074% 0.707% 

Average 0.408% 0.434% 0.467% 0.414% 0.424% 0.386% 0.298% 0.239% 0.142% 0.096% 0.031% 0.304% 

Full-Restart 

SAM-0.01 2.730% 2.607% 2.400% 1.785% 2.049% 1.465% 1.333% 0.685% 0.474% 0.232% 0.060% 1.438% 

SAM-0.02 2.645% 2.566% 2.390% 1.805% 2.220% 1.486% 1.474% 0.827% 0.542% 0.260% 0.078% 1.481% 

SAM-0.05 2.518% 2.528% 2.337% 1.704% 2.101% 1.407% 1.700% 0.904% 0.709% 0.349% 0.071% 1.484% 

SAM-0.1 2.355% 2.369% 2.174% 1.550% 1.916% 1.290% 1.608% 0.816% 0.698% 0.318% 0.061% 1.378% 

SAM-0.2 2.242% 2.248% 2.085% 1.552% 1.861% 1.254% 1.467% 0.786% 0.641% 0.308% 0.061% 1.319% 

Average 2.498% 2.464% 2.277% 1.679% 2.029% 1.380% 1.516% 0.804% 0.613% 0.293% 0.066% 1.420% 

Pheromone-
Sharing 

SAM-0.01 0.041% 0.052% 0.044% 0.047% 0.054% 0.043% 0.063% 0.077% 0.042% 0.043% 0.027% 0.048% 

SAM-0.02 0.090% 0.096% 0.080% 0.084% 0.083% 0.079% 0.067% 0.082% 0.048% 0.047% 0.032% 0.072% 

SAM-0.05 0.204% 0.203% 0.199% 0.208% 0.211% 0.181% 0.117% 0.133% 0.077% 0.071% 0.039% 0.149% 

SAM-0.1 0.477% 0.476% 0.466% 0.434% 0.461% 0.365% 0.263% 0.226% 0.146% 0.119% 0.043% 0.316% 

SAM-0.2 1.179% 1.044% 0.995% 0.707% 0.895% 0.555% 0.565% 0.314% 0.247% 0.178% 0.054% 0.612% 

Average 0.398% 0.374% 0.357% 0.296% 0.341% 0.244% 0.215% 0.166% 0.112% 0.092% 0.039% 0.240% 

The performance of dynamic dataset group results is visually compared in Figure 5-7. 

For small benchmark dataset group instances GK01 and GK02, the Full-Restart 

strategy performs the best with an average result gap of 0.14% and 0.18%, 

respectively. This strategy solves each optimization state from the start, and 

information learned from previous states does not negatively impact algorithm 

convergence. The ACO with Aphids strategy demonstrated superior performance in 

comparison to Full-Restart and Pheromone-Sharing strategies for all larger instances 

GK03 through GK11. Additionally, the ACO with Aphids strategy outperforms the 

Pheromone-Sharing strategy for every dynamic dataset group. 
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Figure 5-7: Dynamic optimization average performance of each dynamic optimization 

strategy averaged per dataset group. Each data point is an average result gap of all five 

dynamism levels run ten times. Error bars indicate the standard deviation of experiment 

results. 

The average performance of the state’s first and last iterations across all dynamic 

dataset groups are compared in Figure 5-8. The upper mark indicates the average 

result gap achieved within the first iteration after the dynamic change, and the lower 

mark is the average final result achieved before the dynamic change occurs. The first 

iteration of the Full-Restart strategy for all dataset groups has the worst result gap of 

2.51%. This behaviour is expected because the Full-Restart strategy represents the 

worst-case scenario where the information is not carried from one dynamic state to 

the next, and each state has to converge independently. However, the Full-Restart 

strategy also improves the result gap the most by an average of 1.42%. The first 

iteration result gap of the ACO with Aphids strategy is, on average, 0.83%, which is 

only slightly better than the result gap of the Pheromone-Sharing strategy of 0.99%. 

However, the improvement of the ACO with Aphids strategy from the first iteration to 

the last by 0.31% is more significant than the improvement of the Pheromone-Sharing 
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strategy by 0.25% for every dataset group. This indicates that aphids help ants adapt 

to a new dynamic environment quicker, and the starting pheromone is less localized 

to an outdated solution. The benefit of using aphids is compounded for especially large 

benchmark dataset groups, like GK08 and larger. 

 

Figure 5-8: Dynamic optimization average state’s result improvement from the first to 

the last iteration of select optimization strategies broken down by dataset group. Each 

result data point is an average result gap of all five dynamism levels run ten times. 

Selected optimization strategies are also compared by performance for all dynamism 

levels in Figure 5-9. The Full-Restart strategy performs almost equally well for all 

dynamism levels, with an average result gap of 1.09%. This behaviour is expected as 

the Full-Restart strategy solves each dynamic state independently, and the dynamism 

level has no impact on algorithm performance. Then for both ACO with Aphids and 

Pheromone-Sharing strategies, a lower dynamism level allows for better performance 

because previously found solutions are changed to a lower degree and are more up-

to-date. On the flip side, the larger dynamism level hurts the dynamic optimization 

performance of ACO with Aphids and Pheromone-Sharing strategies. At the highest 

dynamism level, 𝛥 = 0.2 Pheromone-Sharing strategy is no longer beneficial over the 

Full-Restart strategy. Furthermore, the ACO with Aphids strategy consistently 
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outperforms the Pheromone-Sharing strategy across all dynamism levels, on average 

29.2% lower result gap, the lowest reduction for SAM-0.01 dynamism level is 24.4%, 

and the highest reduction for SAM-0.1 dynamism level is 31.4%. 

 

Figure 5-9: Dynamic optimization average performance of each dynamic optimization 

strategy averaged per dynamism. Each data point is an average result gap of all 11 dataset 

groups run ten times. Error bars indicate the standard deviation of experiment results. 

The average performance of the first and last iteration of the state across all dynamism 

levels is compared in Figure 5-10. Similarly to Figure 5-8, the upper mark indicates the 

average result gap achieved within the first iteration after the dynamic change has 

occurred, and the lower mark is the average final result achieved before the dynamic 

change occurs. As expected for the Full-Restart strategy, dynamism has almost no 

impact on the first iteration’s performance after the dynamic change because each 

state is solved independently. ACO with Aphids and Pheromone-Sharing strategies, 

higher dynamism causes more prominent performance degradation after the dynamic 

change. However, on average, the overall first iteration performance of the ACO with 

Aphids strategy is better by 15.6% than the Pheromone-Sharing strategy.  
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Figure 5-10: Dynamic optimization average state’s result improvement from the first to 

the last iteration of select optimization strategies broken down by dynamism. Each result 

data point is an average result gap of all 11 dataset groups run ten times. 

Finally, the aggregate convergence through all states is compared in Figure 5-11. 

Each convergence line represents the average convergence of all tested benchmark 

datasets. The average convergence is calculated from the optimization result with a 

normalized optimization time to account for differences in the time given for each 

state’s optimization based on benchmark dataset complexity. The Pheromone-

Sharing strategy and ACO with Aphids strategy reach equilibrium over the first few 

states where subsequent state solutions results are no closer to best-know solution 

results than previous states’ solutions. Meanwhile, the Full-Restart strategy does not 

show any inter-state convergence. 
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Figure 5-11: Dynamic optimization average convergence performance through all 

dynamic states. Each convergence performance result is an average convergence of all 55 

benchmark datasets run ten times. 

For a clearer view, Figure 5-12 shows the same aggregate convergence as in Figure 

5-11, but only through the first ten states. The ACO with Aphids strategy starts with 

significantly better first state optimization results than Full-Restart and Pheromone-

Sharing strategies. This first state’s convergence improvement is caused by a high 

aphids’ relocation rate, which occurs in every state, including the first. Then as 

predicted in Figure 2-6, the Full-Restart strategy converges almost equally for every 

state. The Pheromone-Sharing strategy has a minimal result gap slip and a reduced 

convergence slope. Finally, ACO with Aphids strategy has reasonably good result gap 

slip while maintaining an excellent convergence slope after each dynamic change.  
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Figure 5-12: Dynamic optimization average convergence performance through the first 

ten dynamic states. Each convergence performance result is an average convergence of 

all 55 benchmark datasets run ten times. 

In summary, ACO with Aphids has outperformed the Pheromone-Sharing strategy and 

has proven especially beneficial for large optimization problems. This demonstrates 

how adding aphids to the ACO algorithm improves the dynamic performance of large 

optimization problems with limited time allowed to converge. Also, for the smallest 

optimization problems Full-Restart strategy has performed better than dedicated 

strategies for dynamic optimization, as it was accurately predicted by previous 

research [157]. 

5.4. Chapter Summary 

This chapter aimed to solve the trade-off problem offered by currently used 

rudimentary ACO dynamic optimization strategies. The full-Restart strategy shows a 

significant penalty to solution quality after each dynamic change, and the Pheromone-

Sharing strategy has a reduced slope of convergence. 
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A nature-inspired addition to the Ant Colony Optimization algorithm was introduced to 

improve its performance for discrete dynamic optimization problems. The proposed 

method modelled ants’ interaction with aphids in the dynamic environment. In the real 

world, Aphids produce honeydew which is nutritious to ants, and under ants’ influence, 

aphids give up their mobility to increase honeydew production. This nature-inspired 

interaction between ants and aphids is beneficial for dynamic optimization, where ants 

control the population of the aphids and placed aphids mediate the information sharing 

across dynamic states of the optimization problem. 

Then ACO with Aphids algorithm has been tested against the two most popular 

dynamic optimization strategies, Full-Restart and Pheromone-Sharing on Dynamic 

Multidimensional Knapsack Problem (DMKP). ACO with Aphids has significantly 

outperformed the Full-Restart strategy for large dataset groups and a limited amount 

of time to solve each state. On average, the result gap was reduced by 52.5%, which 

is a 110.5% better performance. Also, ACO with Aphids has outperformed the 

Pheromone-Sharing strategy in every optimization scenario for all dynamism levels 

and dataset group sizes. On average, the result gap was reduced by 29.2%, which is 

a 41.2% better performance. The test results have proved ACO with Aphids superior 

performance over both Full-Restart and Pheromone-Sharing strategies with rejected 

null hypothesis, P-value less than 10−6. 

Overall, the proposed ACO with Aphids algorithm proved to be a well-rounded, 

dynamic optimization strategy with a strong ability to adapt to dynamic change and 

maintain quick convergence. This strong adaptability further compounds through 

several dynamic states for especially large optimization problems, where positive 

convergence occurs over multiple dynamic optimization states. 

The contributions of this research chapter to science are as follows: 

• Introduced a new nature-inspired dynamic optimization strategy for ACO 

algorithm with improved interstate convergence, called ACO with Aphids. The 

strategy is modelled by mimicking the real-life symbiotic relationship between 

ants and aphids.   

• Provided the description of ACO with Aphids algorithm with enough detail to 

make this strategy possible to apply to any dynamic optimization problem. 
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• Tested and proved the superior performance of ACO with Aphids algorithm 

solving event-triggered Dynamic Multidimensional Knapsack Problem (DMKP) 

against two most popular competing strategies: Pheromone-Sharing and Full-

Restart. 

• The work presented in this chapter has been submitted to the peer-reviewed 

journal Swarm and Evolutionary Computation, Elsevier [7]. 
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Chapter 6. Conclusions and future work 

6.1. Conclusions 

This thesis studied Ant Colony Optimization (ACO) algorithm to maximize the 

efficiency of solving Dynamic Optimization Problems (DOPs). In particular, solving 

combinatorial DOPs which are much more representative of optimization problems 

that occur in the real world. ACO algorithm is excellent at solving such problems due 

to ants’ highly adaptable behaviour. The main contribution of this thesis is a High 

Efficiency Dynamic Combinatorial Optimization System (HEDCOS), which combines 

improvements made to the ACO algorithm. 

This thesis HEDCOS addresses three identified important research gaps in the 

literature on ACO solving combinatorial DOPs: One, dynamic optimization methods 

for ACO inter-state convergence are rudimentary. Two, sub-heuristic ACO search 

methods lack a generalized methodology to improve algorithm convergence. Three, 

combinatorial dynamic optimization research lacks replicable qualities.  

First, this thesis introduced a sub-heuristic ACO search method called Dynamic Impact 

to improve algorithm convergence for constrained optimization problems. Dynamic 

Impact is an additional component to the ACO algorithm probability calculation besides 

pheromone and heuristic information. Similar to heuristic information, Dynamic Impact 

is a myopic search component, but the value of Dynamic Impact depends on the state 

of partial solution, which considers non-linear problem fitness and resource 

consumption. ACO with Dynamic Impact was tested on real-world MMPPFO problem 

and theoretical MKP problem. For the GK benchmark datasets, ACO with Dynamic 

Impact results were 4.26 times closer to the best-known or optimal result within the 

same search efforts. Dynamic Impact methodology is compatible with both static and 

dynamic optimization problems.  

Second, this thesis has resolved a critical gap in the replicability of combinatorial 

dynamic optimization research and introduced a non-stochastic dynamic dataset 

generator. Previously, researchers used either private real-world optimization datasets 

or stochastically generated datasets from existing benchmarks without publishing 

optimization states or stochastic generator seeds. This dataset generator removed all 
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randomness and used only deterministic methods to generate DMKP states in 

sequential order. Then, created 1405 fully defined DMKP benchmark instances with 5 

dynamism levels using this dataset generation method. 

Third, this thesis introduced ACO with Aphids nature-inspired dynamic optimization 

algorithm. The ACO with Aphids mimics the naturally occurring symbiotic relationship 

between ants and aphids to improve the performance of discrete dynamic 

optimization. Aphids help mediate information throughout dynamic optimization and 

improve overall inter-state convergence. For an accurate comparison, ACO with 

Aphids, Full-Restart and Pheromone-Sharing strategies were implemented on the 

ACO with Dynamic Impact algorithm introduced earlier and solved the DMKP 

benchmark. ACO with Aphids showed superior performance. On average, the result 

gap was reduced by 52.5% compared to the Full-Restart strategy and 29.2% 

compared to the Pheromone-Sharing strategy.  

Overall, by developing HEDCOS, ACO algorithm combinatorial dynamic optimization 

performance was improved by a total of 8.99 times compared to the baseline high-

performance parallel ACO solving MKP. Moreover, all optimization results are fully 

replicable, which allows for transparent comparison with future research solutions. 

However, while the High Efficiency Dynamic Combinatorial Optimization System 

(HEDCOS) developed in this thesis showed significant performance improvements in 

combinatorial dynamic optimization with ACO, the research has certain limitations. 

The study was primarily validated using the theoretical DMKP benchmark and only 

partially tested with real-world MMPPFO problem in a static environment. The 

comparisons of the ACO with Aphids algorithm were limited to only two other ACO 

dynamic optimization strategies. 

6.2. Future work 

HEDCOS was researched with real-world combinatorial DOPs in mind. However, it 

was thoroughly tested with the theoretical DMKP benchmark and only partially with 

real-world MMPPFO problem in a static environment. Naturally, the next step is to test 

ACO with Aphids solving a dynamic variant of the MMPPFO problem. 
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ACO with Aphids algorithm has only been compared to the other two ACO dynamic 

optimization strategies. In the future, it would be useful to perform dynamic 

optimization tests to compare ACO with Aphids algorithm to other well-known dynamic 

optimization algorithms based on GA and PSO. 

The baseline ACO algorithm used in this research implements the pheromone logic 

described by Stützle and Hoos in Min-Max Ant System. However, there is another 

profoundly different pheromone mediation logic of Population-based ACO described 

by Guntsch and Middendorf. Theoretically, aphids are compatible with both 

pheromone mediation types. A competing P-ACO with Aphids algorithm is worth 

investigating for both real-world applications and solving the DMKP benchmark. 

This research has focused on single-objective optimization. However, many real-world 

problems are multi-objective in nature, involving trade-offs between competing 

objectives. Developing ACO methods that can handle these multi-objective problems 

in dynamic environments represents an important future direction. 

As the complexity and size of problems in industry continue to grow, the developed 

algorithms need to keep pace. Future research should focus on scaling these 

algorithms, testing them on larger and more complex problems. This exploration will 

not only test the algorithms' limits but also provide valuable insight into their behaviour 

and performance under high stress and large-scale conditions. 

Integrating machine learning, particularly reinforcement learning, could offer a way to 

enhance ACO algorithm performance. For instance, machine learning could be used 

to learn the optimal parameters or strategies for the algorithm over time, reducing the 

need for manual tuning and potentially leading to better results. 

Many real-world optimization problems are influenced by real-time data streams such 

as market prices, sensor data, or user behaviour. Future work could explore how to 

incorporate such dynamic data into the optimization process, providing solutions that 

are not just optimal but also timely and context-aware. 

Lastly, DMKP benchmark datasets were created using a deterministic state generation 

methodology where states are created in sequential order based on information within 

the initial state. The same deterministic dataset generation principles can also be 
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adapted to other types of optimization problems, like the Traveling Salesman Problem 

or Job-shop Scheduling Problem. 
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