25 research outputs found

    Ant Colony Optimization For Survivable Virtual Topology Mapping In Optical Wdm Networks

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2009Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2009İnternet kullanımının her geçen gün biraz daha yaygınlaşması, bant genişliği problemini de beraberinde getirmiştir. Bu ihtiyacı karşılamak amacıyla, optik ağlarda WDM (dalga boyu bölmeli çoğullama – wavelength division multiplexing) teknolojisi kullanılarak fiber kabloların kapasitesi, her biri farklı dalga boyunda çalışan yüzlerce farklı iletim kanalına bölünmüştür. Paket iletimi yapan üst katmanların kullanacağı uçtan uca kurulan optik bağlantılara ışıkyolu denir. Ağda kurulan tüm ışıkyolları ağın sanal topolojisini oluşturur. Bir fiber üzerinde farklı dalga boylarında olmak koşuluyla birden fazla ışıkyolu yönlendirilebilir. Fakat bir fiberin herhangi bir şekilde hasara uğraması, üzerinden geçen bütün ışıkyollarının kopması sonucu ciddi boyutlarda veri kaybına neden olur. Bu durumdan korunma yöntemlerinden biri ışıkyollarının fiberler üzerinde hataya bağışık şekilde yönlendirilmesidir öyle ki fiziksel katmanda bir ya da daha fazla bağlantı koptuğunda sanal topoloji hala bağlı kalmalıdır. Bu çalışmanın amacı altı farklı karınca koloni algoritması kullanılarak fiberlerin kapasite kısıtlarını aşmadan ve ağ kaynaklarının kullanımını minimize edecek şekilde ışıkyollarını hataya bağışık olarak fiziksel topoloji üzerinde yönlendirmek ve algoritmaları başarım, hız ve ağ kaynaklarının etkin kullanımı açısından karşılaştırmaktır.As the internet use increases significantly in everyday life, the need for bandwidth increases accordingly. To meet this need, high capacity of fibers used in optical networks, can be divided into many channels, using the WDM technology. End-to-end optical connections that the packet layer (IP, Ethernet, etc.) uses are called lightpaths. All the lightpaths set up on the network form the virtual topology. A fiber is able to route more than one ligthpaths with different wavelengths. Any damage to a fiber causes all the channels routed through this link to be broken, which may result in a serious amount of data loss. As a solution to this problem, the virtual layer can be mapped onto the physical topology, such that, a failure on any physical link does not disconnect the virtual topology. This is known as the survivable virtual topology mapping problem. In this study, our aim is to compare the performance of six different ant colony algorithms in finding a survivable mapping of a given virtual topology while minimizing the used wavelength links and without violating the wavelength capacity of fibers in terms of success rates, speed and resource usage.Yüksek LisansM.Sc

    ACODV : Ant Colony Optimisation Distance Vector routing in ad hoc networks

    Get PDF
    A mobile ad hoc network is a collection of wireless mobile devices which dynamically form a temporary network, without using any existing network infrastructure or centralised administration. Each node in the network effectively becomes a router, and forwards packets towards the packet’s destination node. Ad hoc networks are characterized by frequently changing network topology, multi-hop wireless connections and the need for dynamic, efficient routing protocols. The overarching requirement for low power consumption, as battery powered sensors may be required to operate for years without battery replacement; An emphasis on reliable communication as opposed to real-time communication, it is more important for packets to arrive reliably than to arrive quickly; and Very scarce processing and memory resources, as these sensors are often implemented on small low-power microprocessors. This work provides overviews of routing protocols in ad hoc networks, swarm intelligence, and swarm intelligence applied to ad hoc routing. Various mechanisms that are commonly encountered in ad hoc routing are experimentally evaluated under situations as close to real-life as possible. Where possible, enhancements to the mechanisms are suggested and evaluated. Finally, a routing protocol suitable for such low-power sensor networks is defined and benchmarked in various scenarios against the Ad hoc On-Demand Distance Vector (AODV) algorithm.Dissertation (MSc)--University of Pretoria, 2005.Computer ScienceUnrestricte

    AN IMPROVED BARE-BONES PARTICLE SWARM ALGORITHM FOR MULTI-OBJECTIVE OPTIMIZATION WITH APPLICATION TO THE ENGINEERING STRUCTURES

    Get PDF
    In this paper, an improved bare-bones multi-objective particle swarm algorithm is proposed to solve the multi-objective size optimization problems with non-linearity and constraints in structural design and optimization. Firstly, the development of particle individual guide and the randomness of gravity factor are increased by modifying the updated form of particle position. Then, the combination of spatial grid density and congestion distance ranking is used to maintain the external archive, which is divided into two parts: feasible solution set and infeasible solution set. Next, the global best positions are determined by increasing the probability allocation strategy which varies with time. The algorithmic complexity is given and the performance of solution ability, convergence and constraint processing are analyzed through standard test functions and compared with other algorithms. Next, as a case study, a support frame of triangle track wheel is optimized by the BB-MOPSO and improved BB-MOPSO. The results show that the improved algorithm improves the cross-region exploration, optimal solution distribution and convergence of the bare-bones particle swarm optimization algorithm, which can effectively solve the multi-objective size optimization problem with non-linearity and constraints

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Biological responses and control of California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae)

    Get PDF
    In many citrus areas around the world and within citrus-producing regions of Australia, the California red scale (CRS), Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), is considered the most important pests of citrus. The main biological control agents of Ao. aurantii in this zone are the parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae). In order to improve the biological control of Ao. aurantii several biotic and abiotic factors were studied, that may affect the efficiency of A. melinus in the laboratory and the field. More concretely, reproductive potential and age-specific fecundity schedules of Ao. aurantii were studied in the laboratory at constant temperatures (20, 23 and 27°C), while the biological parameters of its parasitoid A. melinus were conducted at 27°C. Results revealed that the net reproduction rate (Ro) was considerably higher for Ao. aurantii than A. melinus, which reached 28.14 at 27°C, indicating its high reproductive capacity. Moreover, the net reproduction rate obtained for A. melinus indicates a low substitution potential for each female having Ao. aurantii as a host under laboratory conditions. The intrinsic rate of increase (rm) of A. melinus (0.188 ♀/♀/day) was significantly greater than that of Ao. aurantii (0.080) at 27°C. Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be exploited by parasitoids of the herbivore as host location cues. The VOCs from non-infested and Ao. aurantii-infested citrus fruit were investigated using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The data showed that more than 52 different compounds were identified, and different emissions associated attributed to herbivore activity were found for all fruit species (lemon, orange, mandarin and Tahitian lime). However, a single compound was exclusively produced by infested lemon fruit, while two compounds were significantly increased, and two compounds were only present in non-infested lemon. Five compounds were significantly increased in infested mandarins. For orange, five compounds were increased, and five compounds were exclusively presented in infested fruit. For lime fruit, eighteen of these compounds were increased, one was decreased, whereas five compounds were produced exclusively from infested lime fruit. Two putative herbivores-induced plant volatiles, d-limonene and β-ocimene, were significantly increased by Ao. aurantii infestation in all infested fruit, regardless of the citrus species. Subsequently, the preferences of female parasitoid on infested or healthy fruit in olfactometer bioassays were evaluated. Then in order to understand the magnitude of volatile attractiveness, the innate attractiveness of VOCs to A. melinus females in varying densities were tested in the laboratory. The results of the olfactometer assays that tested the behaviour of A. melinus to the different compounds emitted from infested and non-infested citrus fruit showed no such preference when compared between non-infested and infested oranges, mandarins and lime fruit; whilst, there were significant preferences for lemon fruit infested with Ao. aurantii over non-infested ones. For assessment, the attraction of synthetic Herbivore induced plant volatiles (HIPVs), four different concentrations (5,10, 15 and 20 μl/ml) of d-l-limonene and β-ocimene were investigated. However, mated A. melinus females preferred the reward-associated VOC more than hexane control in the case of d-limonene at the tested dosages of 15 and 20 μl/ml, β-ocimene at tested dosages of 10, 15 and 20 μl/ml. Finally, this study evaluated the dispersal ability of released A. melinus adults and their effect on the parasitism percentage, using d-limonene and β-ocimene with yellow sticky traps and scoring percentage parasitism on infested fruit. Under field conditions, the natural enemies’ effectiveness in controlling pests is largely correlated with their capability to spread towards infested crops. In this study, d-limonene and β-ocimene were examined for their attractiveness to California red scale parasitoid A. melinus in the field after augmentative releases. Field experiments demonstrated that lures baited with isolates of d-limonene and\or β-ocimene, which significantly attracted some species of natural enemies but had no significant impact on others. The number of A. melinus captured during the whole trial was greater in the traps treated with volatiles than the control. Finally, the overall parasitism rates were not increased by synthetic HIPV lures, but there was evidence that lures may increase parasitism of California red scale when there is a decrease in the amount of volatile organic compounds due to lack of healthy and infested fruit. In conclusion, HIPVs can potentially play important roles in attracting and exploiting natural enemies to reduce pest infestations

    Self–organised multi agent system for search and rescue operations

    Get PDF
    Autonomous multi-agent systems perform inadequately in time critical missions, while they tend to explore exhaustively each location of the field in one phase with out selecting the pertinent strategy. This research aims to solve this problem by introducing a hierarchy of exploration strategies. Agents explore an unknown search terrain with complex topology in multiple predefined stages by performing pertinent strategies depending on their previous observations. Exploration inside unknown, cluttered, and confined environments is one of the main challenges for search and rescue robots inside collapsed buildings. In this regard we introduce our novel exploration algorithm for multi–agent system, that is able to perform a fast, fair, and thorough search as well as solving the multi–agent traffic congestion. Our simulations have been performed on different test environments in which the complexity of the search field has been defined by fractal dimension of Brownian movements. The exploration stages are depicted as defined arenas of National Institute of Standard and Technology (NIST). NIST introduced three scenarios of progressive difficulty: yellow, orange, and red. The main concentration of this research is on the red arena with the least structure and most challenging parts to robot nimbleness

    Identifying and Mitigating Security Risks in Multi-Level Systems-of-Systems Environments

    Get PDF
    In recent years, organisations, governments, and cities have taken advantage of the many benefits and automated processes Information and Communication Technology (ICT) offers, evolving their existing systems and infrastructures into highly connected and complex Systems-of-Systems (SoS). These infrastructures endeavour to increase robustness and offer some resilience against single points of failure. The Internet, Wireless Sensor Networks, the Internet of Things, critical infrastructures, the human body, etc., can all be broadly categorised as SoS, as they encompass a wide range of differing systems that collaborate to fulfil objectives that the distinct systems could not fulfil on their own. ICT constructed SoS face the same dangers, limitations, and challenges as those of traditional cyber based networks, and while monitoring the security of small networks can be difficult, the dynamic nature, size, and complexity of SoS makes securing these infrastructures more taxing. Solutions that attempt to identify risks, vulnerabilities, and model the topologies of SoS have failed to evolve at the same pace as SoS adoption. This has resulted in attacks against these infrastructures gaining prevalence, as unidentified vulnerabilities and exploits provide unguarded opportunities for attackers to exploit. In addition, the new collaborative relations introduce new cyber interdependencies, unforeseen cascading failures, and increase complexity. This thesis presents an innovative approach to identifying, mitigating risks, and securing SoS environments. Our security framework incorporates a number of novel techniques, which allows us to calculate the security level of the entire SoS infrastructure using vulnerability analysis, node property aspects, topology data, and other factors, and to improve and mitigate risks without adding additional resources into the SoS infrastructure. Other risk factors we examine include risks associated with different properties, and the likelihood of violating access control requirements. Extending the principals of the framework, we also apply the approach to multi-level SoS, in order to improve both SoS security and the overall robustness of the network. In addition, the identified risks, vulnerabilities, and interdependent links are modelled by extending network modelling and attack graph generation methods. The proposed SeCurity Risk Analysis and Mitigation Framework and principal techniques have been researched, developed, implemented, and then evaluated via numerous experiments and case studies. The subsequent results accomplished ascertain that the framework can successfully observe SoS and produce an accurate security level for the entire SoS in all instances, visualising identified vulnerabilities, interdependencies, high risk nodes, data access violations, and security grades in a series of reports and undirected graphs. The framework’s evolutionary approach to mitigating risks and the robustness function which can determine the appropriateness of the SoS, revealed promising results, with the framework and principal techniques identifying SoS topologies, and quantifying their associated security levels. Distinguishing SoS that are either optimally structured (in terms of communication security), or cannot be evolved as the applied processes would negatively impede the security and robustness of the SoS. Likewise, the framework is capable via evolvement methods of identifying SoS communication configurations that improve communication security and assure data as it traverses across an unsecure and unencrypted SoS. Reporting enhanced SoS configurations that mitigate risks in a series of undirected graphs and reports that visualise and detail the SoS topology and its vulnerabilities. These reported candidates and optimal solutions improve the security and SoS robustness, and will support the maintenance of acceptable and tolerable low centrality factors, should these recommended configurations be applied to the evaluated SoS infrastructure
    corecore