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ANT COLONY OPTIMIZATION FOR SURVIVABLE VIRTUAL TOPOLOGY
MAPPING IN OPTICAL WDM NETWORKS

SUMMARY

As the Internet use increases signi�cantly in everyday life, the need for bandwidth
increases accordingly. The most e�ective technology to meet this high bandwidth
need is the optical networking technology. The �ber used in optical networks
has the highest bandwidth capacity (50 Tb/s) amongst all other physical
layer technologies. This high capacity, using wavelength division multiplexing
technology, can be divided into hundreds of di�erent transmission channels,
which can transmit simultaneously. Each of these channels work on di�erent
wavelengths and each channel can be associated with a di�erent data transmission
rate. Wavelength division multiplexing o�ers an attractive solution to increasing
local area network bandwidth without disturbing the existing embedded �ber and
continue to be the main choice for the near future.

End-to-end optical connections that the packet layer (IP, Ethernet, etc.) uses
are called lightpaths. Since the �bers on the physical topology allow tra�c �ow
on di�erent wavelengths, more than one lightpath, each operating on di�erent
wavelengths, can be routed on a single �ber. All the lightpaths set up on the
network form the virtual topology. Physical topology is the physical structure
of the network that gives information about how the workstations are connected
to the network through the actual cables that transmit data whereas the virtual
topology is the way that the data passes through the network from one device to
the next without regard to the physical connection of the devices. Edges of the
virtual topology represent the lightpaths that need to be routed on the physical
topology. When a lightpath from one node to another is de�ned on a physical
topology, that means data passes between these nodes and an edge is created on
virtual topology to indicate this data transfer.

Any damage to a physical link (�ber) on the network causes all the lightpaths
routed through this link to be broken. Since huge data transmission (40 Gb/s)
over each of these lightpaths is possible, such a damage results in a serious amount
of data loss. Two di�erent approaches can be used in order to avoid this situation:

1. Survivability on the physical layer

2. Survivability on the virtual layer

The �rst approach is the problem of designing a backup link/path for each
link/path of the optical layer. The second approach is the problem of designing
the optical layer such that the optical layer remains connected in the event of a
single or multiple link failure. While the �rst approach provides faster protection
for time-critical applications (such as, IP phone, telemedicine) by reserving more
resources, the second approach, i.e. the survivable virtual topology design, which

xvii



has attracted a lot of attention in recent years, aims to protect connections using
less resources. The problem that will be studied in this thesis is to develop
methods for survivable virtual topology design, that enables e�ective usage of
the resources. Given the physical parameters of the network (physical topology,
optical transceivers on the nodes, wavelength numbers on the �bers, etc.) and the
mean tra�c rates between nodes, the problem of designing the lightpaths to be
set up on the physical topology is known as the virtual topology design problem.

The virtual topology design problem can be divided into four di�erent
subproblems:

1. Designing a proper virtual topology according to the mean packet tra�c rates
between nodes,

2. Routing the lightpaths of the virtual topology on the physical topology,

3. Assigning wavelengths to the lightpaths,

4. Routing packet tra�c over the virtual topology.

Since any solution to these subproblems a�ects the solution of other subproblems,
the result obtained by solving the subproblems one-by-one and iteratively, may
not be the optimum. The pure virtual topology design problem is proved to
be NP-complete. This problem, when the survivability constraints are added,
gets harder. Because of its complexity, it is not possible to solve the problem
optimally in an acceptable amount of time, for real-life sized networks. The main
concern of this study is the second subproblem called virtual topology mapping
problem. Virtual topology mapping is the problem of routing lightpaths on
physical topology in a way that the capacity constraints of �bers in physical
topology are not violated. Survivable virtual topology mapping has another
constraint stating that in case of a physical link failure, the virtual topology
is not disconnected when all the lightpaths routed through this link are deleted
from the virtual topology.

Since the problem is NP-complete, it is appropriate to use heuristics to obtain
the solutions. There are several studies on this topic. However, in several of
these studies, only the second subproblem of virtual topology design problem
is considered, without the survivability constraint. According to our literature
survey, the only nature inspired heuristics used to solve the routing problem under
the survivability constraint are Tabu Search and Simulated Annealing. Nature
inspired heuristics are used successfully to solve a great deal of NP-complete
problems.

In this thesis, six ant colony optimization algorithms are implemented to solve the
virtual topology mapping problem. Ant system has been the basis for many ACO
variants which have become the state-of-the-art for many applications. These
variants include elitist ant system, rank-based ant system, MAX-MIN ant system,
ant colony system, best-worst ant system, the approximate nondeterministic
tree search, and the hyper-cube framework. Elitist ant system, rank-based ant
system, MAX-MIN ant system, ant colony system and best-worst ant system can
be considered as direct variants of ant system since they all use the basic AS
framework. The main di�erences between ant system and these variants are the
pheromone update procedures and some additional details in the management
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of the pheromone trails. In this study, we implemented ant system, elitist ant
system, rank-based ant system, MAX-MIN ant system, ant colony system and
best-worst ant system for the VT mapping problem since these direct variants of
ant system have been successfully applied to many similar problems in literature.

The way ant colony algorithms are applied to the virtual topology mapping
problem is described below: The physical topology is used as a graph on which
ants travel and construct their solutions. Ants simultaneously try to route
lightpaths on the graph one-by-one. Each starts to route a random lightpath. The
shortest paths between the end points of the lightpaths are provided to ants at
the very beginning of the algorithm. Ants decide their move on the construction
graph based on heuristic and pheromone information. Pheromone is modelled
as a 2D array which accumulates the information learned by the ants. There
are two di�erent pheromones utilized in our problem, one for choosing the next
lightpath called "lightpath pheromone", the other is for selecting the shortest
path of the chosen lightpath called "shortest path pheromone". The lightpath
pheromone has lightpaths in its columns and rows and tells the information
which lightpath is more valuable to move from the current lightpath, whereas the
shortest path pheromone has lightpaths in its rows and corresponding shortest
paths in its columns and tells the information about which shortest path gives
the best result when selected for the current lightpath. These pheromones are
initialized in the beginning of the algorithm with the same value for each possible
choice of the ant. The di�erence is created by heuristic information that is
inversely proportional to the length of the shortest paths. The ants uses lightpath
pheromone to decide the next lightpath and shortest path pheromone together
with heuristic information to decide the shortest path for the selected lightpath.
The pheromones are updated after solutions are constructed. The amount of the
accumulated pheromone is proportional to the solution quality. An iteration is
the process in which each ant constructs a complete solution. The algorithm
stops when both maximum number of iterations are retrieved and the maximum
allowed time is completed.

To compare the performance of ant colony optimization algorithms, we perform
a series of experiments to calculate resource usage based on both hop-count and
link-cost on 100 di�erent instances each, for 3, 4, 5 connected virtual topologies.
Link-cost calculation method considers the actual lengths of the physical links
whereas hop-count method counts the number of physical links used. For each
algorithm and node degree, 3 di�erent numbers of alternative shortest paths for
lightpaths are examined. We tried 5, 10, and 15 shortest path cases. Algorithms
are run 20 times for each virtual topology and each run is allowed to continue for
15 seconds.

The performance of the ant colony optimization variants are shown quantitatively,
both according to the speed, success rates and the e�ective usage of network
resources. As a summary of the experiments, we recommend ant colony
optimization algorithms for the survivable VT mapping problem due to their
decision policy at each step. They �nd feasible solutions after each iteration.
Based on the results, even though all ant colony optimization algorithms perform
well, we can recommend MAX-MIN ant system with hop-count calculation
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method due to its overall success and better reaction to the increasing search
space.
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OPTİK AĞLARDA KARINCA KOLONİ ALGORİTMALARI KULLANARAK
SANAL TOPOLOJİ ÜZERİNDEKİ IŞIK YOLLARININ HATAYA BAĞIŞIK
OLARAK YÖNLENDİRİLMESİ

ÖZET

�nternet kullan�m�n�n günlük hayata her geçen gün daha fazla girmesiyle bant
geni³li§i ihtiyac� giderek artmaktad�r. Bu yüksek bant geni³li§i ihtiyac�n�
kar³�layabilecek en etkili teknoloji ise optik a§lard�r. Optik a§larda kullan�lan
�ber kablolar di§er tüm �ziksel katman teknolojilerinden çok daha büyük bant
geni³li§ine sahiptir (50 Tb/s). Bu kapasite, WDM (dalga boyu bölmeli ço§ullama
- wavelength division multiplexing) tekni§i kullan�larak, her biri farkl� bir
dalgaboyunda çal�³an yüzlerce farkl� iletim kanal�na bölünebilir ve bu kanallar
e³zamanl� çal�³t�r�larak kullan�labilir. Bu kanallar�n her biri farkl� dalga boyunda
çal�³�r ve her bir kanal�n veri aktar�m h�z� istenildi§i gibi seçilebilir. Dalga boyu
bölmeli ço§ullama tekni§i, sürekli artan yerel a§ bant geni³li§ine, �berin varolan
�ziksel yap�s�n� bozmadan dikkat çekici bir çözüm sunmakta ve yak�n gelecekte
bu konuda ilk akla gelen adres olmaya devam etmektedir.

Paket katman�n (IP, Eternet, vs.) kullanaca§� uçtan uca kurulan optik
ba§lant�lara �³�kyolu (lightpath) denir. Fiziksel topolojideki �ber kablolar
farkl� dalgaboylar�nda tra�k ak�³�na izin verdi§inden, bir �ber üzerinde farkl�
dalgaboylar�nda olmak kayd�yla birden fazla �³�kyolu yönlendirilebilir. A§da
kurulan tüm �³�kyollar� a§�n sanal topolojisini (virtual topology) olu³turur.
Fiziksel topoloji, a§�n �ziksel yap�s�d�r ve a§da bulunan bilgisayarlar�n bilgi
iletimini sa§layan gerçek kablolarla, a§a nas�l ba§land�§� hakk�nda bilgi verir.
Di§er yandan sanal topoloji, aralar�nda �ziksel bir ba§lant�n�n varl�§�na dikkat
etmeden, bir birimden di§erine bilgi geçi³inin olup olmad�§� hakk�nda bilgi verir.
Sanal topolojinin kenarlar�, �ziksel topoloji üzerinde yönlendirilmesi gereken �³�k
yollar�n� gösterir. Fiziksel topoloji üzerinde bir dü§ümden di§erine bir �³�kyolu
tan�mlanmas�, bu dü§ümler aras�nda veri ak�³�n�n olaca§� anlam�na gelmektedir
ve bu veri ak�³�n� anlatmak üzere sanal topolojiye bir kenar eklenir.

A§ üzerindeki bir �ziksel ba§lant�n�n (�ber) herhangi bir ³ekilde hasara
u§ramas�, bu ba§lant� üzerinden geçen tüm �³�kyollar�n�n kopmas�na neden
olur. I³�kyollar�n�n herbiri üzerinden çok büyük miktarlarda veri ak�³�
sa§lanabildi§inden (40 Gb/s) böyle bir hasar durumunda a§da çok ciddi veri kayb�
meydana gelir. Bu durumdan korunmak için iki farkl� yakla³�m kullan�lmaktad�r:

1. Fiziksel katmanda hataya ba§�³�kl�k

2. Sanal katmanda hataya ba§�³�kl�k

Birinci yöntem, optik katmandaki herhangi bir yol/ba§lant� için yedek
yol/ba§lant� tasarlama problemidir. �kinci yöntem ise, �ziksel katmanda bir
ya da daha fazla ba§lant� koptu§unda sanal topolojinin hala ba§l� olabilmesini
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sa§layacak ³ekilde tasar�m yapmakt�r. Birinci yöntem daha fazla kayna§�
rezerve ederek, zamana ba§l� kritik uygulamalarda (IP telefon, telet�p gibi) daha
h�zl� koruma sa§larken; son y�llarda dikkat çeken ikinci yöntem, yani hataya
ba§�³�k sanal topoloji tasar�m� daha az miktarda kaynak kullanarak ba§lant�lar�n
korunmas�n� amaçlamaktad�r. Bu projede üzerinde çal�³�lacak problem de a§
kaynaklar�n� etkin kullanan bir hataya ba§�³�k sanal topoloji tasar�m yönteminin
geli³tirilmesidir. A§�n �ziksel parametreleri (�ber topolojisi, dü§ümlerdeki optik
al�c� ve verici say�lar� (optical transceiver), �ber kablolardaki dalgaboyu say�s�,...)
ve dü§ümler aras�ndaki ortalama tra�k de§erleri verildi§inde, bu kaynaklar�
optimum düzeyde kullanarak �ziksel topoloji üzerine kurulacak �³�kyollar�n�
tasarlama problemine "sanal topoloji tasar�m�" denmektedir.

Sanal topoloji tasar�m� problemi dört farkl� alt problem ³eklinde ele al�nabilir:

1. Dü§ümler aras�ndaki paket tra�§i yo§unluklar� gözönüne al�narak uygun sanal
topoloji belirlenmesi,

2. Sanal topolojideki �³�kyollar�n�n �ziksel topolojideki ba§lant�lar üzerinde
yönlendirilmesi,

3. I³�kyollar�na dalgaboyu atanmas�,

4. Paket tra�§inin sanal topoloji üzerinde yönlendirilmesi.

Bu alt problemlerden herbirinin çözümü di§erlerini etkiledi§inden, ayr� ayr� ve
s�rayla çözüldüklerinde ortaya ç�kan sonuç en iyi çözüm olmayabilmektedir. Salt
sanal topoloji tasar�m� probleminin NP-karma³�k oldu§u kan�tlanm�³t�r. Bu
problem, hataya ba§�³�kl�k ko³ulu da eklendi§inde, daha da zorla³maktad�r.
Problemin karma³�kl�§� nedeniyle, gerçek uygulamalardaki boyutlarda h�zl� bir
³ekilde ve optimum olarak çözülmesi mümkün olmamaktad�r. Bu çal�³man�n
esas konusu, yukar�daki alt problemlerden ikincisi olan �³�kyollar�n�n sanal a§
üzerinde yönlendirilmesi problemidir. Sanal topolojinin yönlendirilmesi problemi,
�³�kyollar�n�n sanal topoloji üzerinde �ziksel topolojide bulunan �berlerin kapasite
k�s�tlar�n� a³madan yönlendirilmesidir. Hataya ba§�³�k olarak sanal topolojinin
yönlendirilmesi problemi bir k�s�ta daha sahiptir, bu k�s�ta göre, a§ üzerindeki
bir �ziksel ba§lant�n�n (�ber) herhangi bir ³ekilde hasara u§ramas� sonucu,
bu ba§lant� üzerinden geçen tüm �³�kyollar�n�n sanal topolojiden silinmesi
durumunda sanal topolojinin hala ba§l� bir graf olmas� gerekir.

Yukar�da bahsetti§imiz problem NP-karma³�k oldu§undan çözümü için sezgisel
yakla³�mlar kullan�lmas� uygundur. Bu konuda yap�lm�³ birçok çal�³ma vard�r.
Ancak bu çal�³malar�n ço§unda sanal topoloji tasar�m� probleminin sadece
ikinci alt problemi, hataya ba§�³�kl�k k�s�t� göz önünde bulundurulmadan ele
al�nm�³t�r. Yapt�§�m�z ara³t�rmalar sonucunda hataya ba§�³�kl�k k�s�t� alt�nda
yönlendirme problemi için sadece Tabu Arama (Tabu Search) ve Tavlama
Benzetimi (Simulated Annealing) gibi do§a esinli algoritmalar�n kullan�lm�³
oldu§unu gördük. Do§a esinli algoritmalar birçok NP-karma³�k problemin
çözümünde ba³ar�l� olarak kullan�lmaktad�r.

Bu tez kapsam�nda, sanal topoloji üzerindeki �³�k yollar�n�n yönlendirilmesi
problemine alt� farkl� kar�nca koloni optimizasyon algoritmas� gerçeklenmi³tir.
Ant system, pek çok problemin literatürde en geli³mi³ yöntemi olan çe³itli
kar�nca koloni optimizasyon algoritmalar�n�n temelini olu³turmaktad�r. Kar�nca
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koloni optimizasyon algoritmalar�n�n türevleri elitist ant system, rank-based
ant system, MAX-MIN ant system, ant colony system, best-worst ant system,
approximate nondeterministic tree search ve hyper-cube framework olarak
listelenebilir. Bu algoritmalar içinde ant system algoritmas�n�n direk türevi
olan algoritmalar elitist ant system, rank-based ant system, MAX-MIN ant
system, ant colony system ve best-worst ant system algoritmalar�d�r, çünkü bu
algoritmalar ant system algoritmas�n�n ana çat�s�n� kullanmaktad�r. Ant system
ve türevleri aras�ndaki en belirgin farkl�l�klar hormon güncelleme yöntemleri ve
hormonun pe³inden gitme stratejileri aras�ndaki de§i³ikliklerdir. Bu çal�³mada,
literatürde benzer problemler üzerindeki ba³ar�lar� nedeniyle, ant system,
elitist ant system, rank-based ant system, MAX-MIN ant system, ant colony
system ve best-worst ant system algoritmalar� sanal a§ üzerinde �³�kyollar�n�n
yönlendirilmesi problemini çözmek amac�yla gerçeklenmi³tir.

Kar�nca koloni optimizasyon algoritmalar�n�n, sanal a§ üzerinde �³�kyollar�n�n
yönlendirilmesi problemine uygulanmas� ³öyle olmu³tur: Fiziksel topoloji,
kar�ncalar�n üzerinde dola³t�§� ve çözüm üretti§i bir graf olarak kullan�lm�³t�r.
Kar�ncalar e³ zamanl� olarak, �³�kyollar�n� graf üzerinde birer birer
yönlendirmektedir. Herbiri rasgele bir �³�kyolunu yönlendirmekle i³e ba³lar.
Algoritman�n en ba³�nda, kar�ncalara bütün �³�kyollar�n�n uçlar� aras�ndaki
en k�sa yollar�n bilgisi verilmektedir. Kar�ncalar çözüm ürettikleri graf
üzerindeki hareketlerine hormon ve sezgisel bilgilerini kullanarak karar verirler.
Hormon kar�ncalar�n ö§renilmi³ bilgilerini tutan iki boyutlu bir dizi olarak
modellenmi³tir. Problemimizde iki tane hormon bilgisi kullan�lmaktad�r, birisi
sonraki �³�k yolunu bulmak amac�yla kullan�lan "�³�kyolu hormonu", di§eri ise
seçilen �³�kyolu için en k�sa yolun bulunmas� için kullan�lan "en k�sa yol hormonu"
'dur. I³�kyolu hormonunun sat�r ve sütunlar�nda �³�kyollar� bulunmaktad�r ve
yönlendirilmesi bitmi³ olan ³imdiki �³�kyolundan sonra hangi �³�kyolunun
seçilmesinin daha faydal� olaca§�na dair bilgi verir. En k�sa yol hormonunun
ise sat�rlar�nda �³�kyollar�, sütunlar�nda bu �³�kyollar�na kar³�l�k gelen en k�sa
yollar bulunmaktad�r ve seçilen �³�kyolu hangi en k�sa yoldan yönlendirilse
daha iyi sonuç elde edilece§i hakk�nda bilgi verir. Bu hormon matrisleri,
algoritman�n en ba³�nda kar�ncan�n yapabilece§i her seçim için ayn� de§er ile
ilklendirilir. Farkl�l�k sezgisel bilgi ile yarat�l�r, öyle ki, bu bilgi en k�sa yollar�n
uzunluklar� ile ters orant�l�d�r. Kar�ncalar sonraki �³�kyoluna karar verirken
�³�kyolu hormonunu, seçilen �³�kyolunun hangi yolla yönlendirilece§ine karar
verirken �³�k yolu hormonunu sezgisel bilgi ile beraber kullan�rlar. Kar�ncalar�n
her biri çözümüretti§inde hormon bilgileri güncellenir. Hormon bilgisine eklenen
yeni hormon de§erleri çözüm kalitesi ile do§ru orant�l�d�r. Bütün kar�ncalar�n
bir çözüm üretmesi için geçen süreye iterasyon denir. Algoritma, daha önceden
tan�mlanan maksimum iterasyon say�s� tamamland�§�nda ve kendisine verilen
maksimum süre doldu§unda sonlan�r.

Kar�nca koloni algoritmalar�n�n performanslar�n� kar³�la³t�rmak amac�yla bir dizi
testler yap�lm�³t�r. 3, 4 ve 5 ba§l� 100'er farkl� sanal topoloji kullan�lm�³ ve
bulunan çözümlerin a§ kullan�m� de§erleri �berler üzerinden geçi³ say�s� ve
geçilen �berlerin maliyetleri gözönüne al�narak hesaplanm�³t�r. Maliyet dikkate
al�nd�§�nda kullan�lan �berlerin kilometre olarak uzunluklar� hesaba al�n�rken,
geçi³ say�s� dikkate al�nd�§�nda sadece kullan�lan �berlerin say�s� hesaplanm�³t�r.
Her algoritmaya kaç ba§l� sanal topoloji oldu§una dikkat edilmeksizin 3 farkl�
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say�da en k�sa yollar�n bilgisi sa§lanm�³t�r. Testlerimizde s�ras�yla 5, 10 ve 15 tane
en k�sa yol kullan�lm�³t�r. Algoritmalar, her sanal topoloji için 20 kez çal�³t�r�lm�³
ve her ko³umun 15 saniye sürmesine izin verilmi³tir.

Geli³tirilen yöntemlerin performans� hem h�z, hem ba³ar�m hem de a§
kaynaklar�n�n etkin kullan�m� aç�s�ndan nitel olarak ortaya koyulmu³tur. Yap�lan
testlerin sonucu olarak, kar�nca koloni algoritmalar� her ad�mda k�s�tlar� gözönüne
alarak karar verme stratejileri sayesinde, hataya ba§�³�k olarak �³�kyollar�n�n
sanal topoloji üzerinde yönlendirilmesi problemine uygulanabilir. Kar�nca
koloni algoritmalar� her iterasyon sonunda k�s�tlar� a³mayan uygun çözüm
üretebilmi³lerdir. Sonuçlar� inceledi§imizde, her kar�nca koloni algoritmas� iyi
sonuç üretmi³ olsa da, MAX-MIN ant system algoritmas�n�n gerek ba³ar�s� gerekse
artan arama uzay�na tolerans�ndan dolay� geçi³ say�s� hesaplama yöntemi ile
birlikte kullan�lmas�n� öneririz.
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1. INTRODUCTION

Today, optical networking [1] is the most e�ective technology to meet the

high bandwidth network demand. The high capacity of �ber used in optical

networks, can be divided into hundreds of di�erent transmission channels, using

the wavelength division multiplexing (WDM) technology. Each of these channels

work on di�erent wavelengths and each channel can be associated with a di�erent

optical connection.

Any damage to a physical link (�ber) on the network causes all the channels on

this link to be broken. Huge amount of data (40 Gb/s) can be transmitted over

each of these channels, so a �ber damage may result in a serious amount of data

loss. To avoid data loss, these channels can be designed in a way that in the

event of a single or multiple link failures, all workstations on the network can still

accomplish data transfer. In this study, our aim is to route data tra�c through

these channels while considering single link failures and the capacity of the �bers.

The communication between nodes in the physical topology is mapped on a graph

called virtual topology (VT). Lightpaths are the edges of the VT representing

communication channels to be routed on the physical topology. VT mapping is

the problem of routing lightpaths on the physical topology in such a way that the

capacity constraints of �bers in the physical topology are not violated. Survivable

VT mapping has another constraint stating that in case of a physical link failure,

the VT is not disconnected when all the lightpaths routed through this link are

deleted from the VT.

The VT mapping problem is known to be NP-complete [2]. Because of its

complexity, for real-life sized networks, it is not possible to solve the problem

optimally in an acceptable amount of time using classical optimization techniques.

Therefore, heuristic approaches should be used. In this study, we chose ant

colony algorithms (ACO) because of their successful applications on NP-complete
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problems. We used ACO to �nd a survivable mapping of a given VT while

minimizing the resource usage. We implemented six di�erent ACO algorithms

and compared their performance to determine which algorithm is more suitable

for this problem and we investigated possible reasons.

The rest of the thesis is organized as follows. In Section 2, a brief introduction

to optical networks and WDM is given. The de�nition of the problem together

with its mathematical formulation is given in Section 3, followed by the related

literature. In Section 4, the details of the implemented six ACO algorithms are

given. Section 5 interprets the way ACO algorithms are applied to the survivable

VT mapping problem. In Section 6, the experimental results are given and these

results are discussed thoroughly. Finally, in Section 7, conclusion and future work

are given.

2



2. OPTICAL NETWORKS

A revolution in telecommunications networks evolved in the early 1980s and

became widespread by the use of a relatively unassuming technology: �ber optic

cable. Since then, optical networks have been commonly used due to increased

network quality and the tremendous cost savings. The bene�ts of optical networks

have been increased by the advances in the technologies required for optical

networks.

There are many factors driving the need for optical networks. A few of the most

important reasons for migrating to the optical layer can be listed as �ber capacity,

restoration capability, reduced cost and wavelength services [3].

Fiber Capacity

Optical networks were �rst implemented on �ber-limited routes. However, a

few years later, the capacity of �bers became inadequate to meet the increased

demand. More capacity is needed between two sites. As higher bit rates were not

available in a �ber, there remains no other options except installing more �ber or

placing more time division multiplexed (TDM) signals on the same �ber. The �rst

choice is expensive and labor-intensive. Using WDM technology, many "virtual"

�bers are provided on a single physical �ber. Network providers managed to send

many signals on one �ber by transmitting each signal at a di�erent frequency.

Restoration Capability

A failure in a �ber can result in enormous consequences because of the increased

capacity. Each network element performs its own restoration in current electrical

architectures. Whereas, in a WDM system with many channels on a single �ber,

a �ber cut would cause multiple failures to happen, causing many independent

systems to fail. Optical networks can perform protection switching faster and

more economically when restoration is performed in the optical layer instead of

the electrical layer. Moreover, networks that currently do not have a protection
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scheme can also be restored using the optical layer. As a result of this technology,

providers are able to add restoration capabilities to embedded asynchronous

systems without �rst upgrading to an electrical protection scheme.

Reduced Cost

In optical networks, the high cost of electronic cross-connects is avoided by

providing space and wavelength for routing of tra�c and network management

is simpli�ed.

In WDM technology, each optical switch that demultiplexes signals will utilize

an electrical network element for each channel, without regard to the existence of

tra�c routed through that node. By implementing an optical network, only those

wavelengths that add or drop tra�c at a site need corresponding electrical nodes.

Other channels can simply pass through optically. That provides enormous cost

savings in network and equipment management.

Wavelength Services

One of the great advantage of optical networks is the ability to resell bandwidth

instead of �ber. Service providers can improve revenue by selling wavelengths by

maximizing capacity available on a �ber, without regard to the data rate required.

Customers think this service provides the same bandwidth as a dedicated �ber.

2.1 Fiber Optic Communication

An optical �ber (or �bre) is a plastic or glass �ber that is used for carrying light

along its length. Fiber optics is arised from the common studies of applied science

and engineering on the design and application of optical �bers.

Optical �bers are widely used in �ber-optic communications, that permits

data transmission over longer distances and at higher bandwidths than other

communications systems. Metal wires are replaced by �bers because signals

�ow through them with less loss, and they are not a�ected by electromagnetic

interference. Fibers can be used to carry and brighten images. They can also be

designed specially to be used for a variety of other applications, such as sensors

and �ber lasers.

4



Fiber-optic communication systems were �rst developed in the 1970s and

revolutionized the telecommunications industry [4]. They have a signi�cant

contribution to the advent of the Information Age. In the developed world,

optical �bers have been largely used instead of the copper wire communications

in core networks due to their bene�ts of electrical transmission.

Fiber-optic communication is a method that sends pulses of light through an

optical �ber to transmit data from one place to another. The light behaves as an

electromagnetic carrier wave that is responsible for carrying data.

The procedure of �ber-optic communication involves the following basic steps:

Creating the optical signal via a transmitter, �owing the signal through the �ber,

verifying that the signal is not too deformed or weak, receiving the optical signal,

and converting it into an electrical signal.

Until the late 1980s, optical �ber communications was mainly restricted to

transmitting data using a single optical channel that is required periodic

maintenance because signals in a �ber get weaker after a time period. This

maintenance includes detection, electronic processing, and optical retransmission

that causes a high-speed optoelectronic tra�c delay and can handle only a single

wavelength [5]. The development of the new generation ampli�ers enabled us to

accomplish high-speed repeaterless single-channel transmission.

2.2 Wavelength Division Multiplexing

WDM is the method of dividing the wavelength capacity of an optical �ber into

multiple channels to send more than one signal using the same �ber [6]. This

requires a wavelength division multiplexer in the transmitting equipment and

a wavelength division demultiplexer in the receiving equipment. Using WDM

technology now commercially available, the bandwidth of a �ber can be divided

into as many as 80 channels to support a bit rate combination into the range

of terabits per second. That is why WDM in optical �ber networks has been

rapidly gaining acceptance as a means to meet the increasing bandwidth demands

of network users [1]. To illustrate the WDM technology, we can assume the

highway as a optical �ber. The single high-speed lane in this highway is thought
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Figure 2.1: Multiwavelength optical transmission as represented by a multiple-lane highway.

of a single channel that has a capacity around Gbps. The cars are packets of

optical data. However, the 25 THz optical �ber can accommodate much more

bandwidth than the tra�c from a single lane. To increase the system capacity

Figure 2.2: WDM network with lightpath connections.

we can fully utilize this huge �ber bandwidth by transmitting several di�erent

independent wavelengths simultaneously through this �ber. Therefore, the intent

was to develop a multiple-lane highway, with each lane representing data traveling

on a di�erent wavelength. Thus, a WDM system enables the �ber to carry

more amount of data. By using wavelength-selective devices, independent signal
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routing can also be accomplished. The highway principle illustrated in Figure 2.1

is taken from [7].

In a wavelength-routed WDM network, the communication between end users is

provided via all-optical WDM channels, which are referred to as lightpaths [8]. A

lightpath is used to provide a connection in a wavelength-routed WDM network,

and it may spread over multiple �ber links.

When there are not any wavelength converters, a lightpath must hold the same

wavelength on all the �ber links through which it crosses. Figure 2.2 illustrates

a wavelength-routed network in which lightpaths have been set up between pairs

of access nodes on di�erent wavelengths.
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3. SURVIVABLE VIRTUAL TOPOLOGY MAPPING PROBLEM

Optical WDM networks use a technology which multiplexes multiple optical

signals on a single optical �ber by using di�erent wavelengths (colours) of laser

light to carry di�erent signals. Any damage to a physical link (�ber) on the

network causes all the signals carried by this link to be broken. Huge amount of

data (40 Gb/s) can be transmitted over each of these channels, so a �ber damage

may result in a serious amount of data loss. Two di�erent approaches can be

used to avoid data loss [9]:

1. Survivable design of the physical layer

2. Survivable design of the virtual layer

The �rst approach is the problem of designing a backup link/path for each

link/path of the virtual layer. The main concern of this topology design is to

protect or restore the link at the logical layer. A backup lightpath can always be

found in the physical layer in any of the considered failure scenarios if the logical

topology is designed as described [10]. This consideration assumes that either

adequately high capacities are available or enough tra�c can be dropped in case

of a failure.

The second approach is the problem of designing the virtual layer such that it

remains connected in the event of a single or multiple link failures. While the

�rst approach provides faster recovery for time-critical applications (such as, IP

phone, telemedicine) by reserving more resources; the second approach, i.e. the

survivable VT design, which has attracted a lot of attention in recent years, aims

to protect data communication using less resources. In this study, our main aim is

to compare the performance of six di�erent ACO algorithms to �nd a survivable

mapping of a given VT while minimizing the resource usage.

VT design problem is de�ned as modelling the lightpaths to be set up on the

physical topology when the physical parameters of the network (physical topology,
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optical transceivers on the nodes, wavelength numbers on the �bers, etc.) and

the mean tra�c rates between nodes are provided as an input. VT mapping

problem, which is a subproblem of VT design, is to �nd a proper route for each

lightpath of the given VT and to assign wavelengths to these lightpaths.

The VT design problem can be divided into four di�erent subproblems:

1. Designing a proper VT according to the mean packet tra�c rates between

nodes,

2. Routing the lightpaths of the VT on the physical topology,

3. Assigning wavelengths to the lightpaths,

4. Routing packet tra�c over the VT.

The main concern of this study is the second one. Given the physical and the

virtual network topologies, our aim is to �nd a survivable mapping of the VT.

Physical topology is the physical structure of the network that gives information

about how the workstations are connected to the network through the actual

cables that transmit data. VT is the way that the data passes through the

network from one device to the next without regard to the physical connection

of the devices. Edges of the VT represent the lightpaths that need to be routed

on the physical topology.

Figure 3.1: The difference between the physical and the logical topologies.

Figure 3.1 interprets the di�erence between the physical and the logical topologies.

The nodes 3 and 5 are connected with actual cables in the physical topology but

according to the VT, there is no lightpath between 3 and 5, so data transfer is

not needed between these two nodes.
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VT mapping is the problem of routing lightpaths on the physical topology in

such a way that the capacity constraints of �bers in the physical topology are not

violated. Survivable VT mapping has another constraint stating that in case of

a physical link failure, the VT is not disconnected when all the lightpaths routed

through this link are deleted from the VT.

Figure 3.2: Illustration of the survivable VT mapping problem.

To illustrate the survivable VT mapping problem, assume that we have a physical

network topology as in Figure 3.2.a and a virtual network topology representing

lightpaths to be routed on this physical topology as in Figure 3.2.b. Figures 3.2.c

and 3.2.d show the way the lightpaths are routed, e.g., the lightpath c in

�gure 3.2.b is routed through the nodes 1, 2 and 4 in both �gures 3.2.c and 3.2.d

while the lightpath b is routed through the nodes 1, 3 and 5 in �gure 3.2.c, 1, 3,

4 and 5 in �gure 3.2.d. If we route these lightpaths as in Figure 3.2.c we obtain

a survivable mapping, that is, a failure on any physical link does not disconnect

the VT. However, if the routing of only one lightpath is changed, e.g., as in

Figure 3.2.d, we end up with an unsurvivable mapping. In this case, if a failure

occurs on the physical link between nodes 4 and 5, the nodes connected with

lightpaths b and g will not be able to �nd an alternative path to communicate.

If we remove the lightpaths b and g from the VT, node 5 will be disconnected to

the other nodes, so the VT will be unsurvivable.
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3.1 Formal Problem Definition

The physical topology is composed of a set of nodes N = {1..N} and a set of edges

E where (i, j) is in E if i& j exist in N and there is a link between nodes i and j.

Each link has a capacity of W wavelengths. The VT, on the other hand, has a

set of virtual nodes NL, which is a subset of N, and virtual edges (lightpaths) EL,

where an edge (s, t) exists in EL if both node s and node t are in NL and there is

a lightpath between them.

An Integer Linear Program (ILP) formulation of survivable lightpath routing

of a VT on top of a given physical topology is given in [2]. Based on this

formulation, a number of di�erent objective functions can be considered for the

problem of survivable mapping. The simplest objective is to minimize the number

of physical links used. Another objective is minimizing the total number of

wavelength-links used in the whole physical topology. A wavelength-link is de�ned

as a wavelength used on a physical link. To illustrate the di�erence between link

and wavelength-link, assume that we have a VT routing as in �gure 3.2.c. Here the

number of physical links used is 7, whereas the total number of wavelength-links

is 9. Our choice as the objective is the latter one, since it gives a better idea of

the actual resource usage.

The optimal survivable routing problem that minimizes total number of

wavelengths used can be expressed using the following ILP [2].

Minimize ∑
(i, j) ∈ E
(s, t) ∈ EL

f st
i j (3.1)

Let f st
i j = 1 if lightpath (s, t) is routed on physical link (i, j) and 0, otherwise.

Clearly f st
i j > 0 means that there exists a physical link between nodes i and j.

The ILP formulation of the constraints are given as the following equations:

a. Capacity Constraint

∀(i, j) ∈ E, ∑
(s,t)∈EL

f st
i j ≤W (3.2)

If the number of wavelengths on a �ber is limited to W , a capacity constraint can

be imposed as in Eq. (3.2).
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b. Survivability Constraint

∀(i, j) ∈ E
∀S⊂ NL

, ∑
(s,t)∈CS(S,NL−S)

f st
i j + f st

ji <|CS(S,NL−S) | (3.3)

where CS(S,NL−S) is the set of cuts of the VT that divides the VT into two node

sets S and N− S. Each cut de�nes a set of edges consisting of edges in E with

one endpoint in S and the other endpoint in N−S. Removal of these edges from

the VT seperates the VT into two parts. |CS(S,NL−S) | in Eq. (3.3) means the

number of edges in the cut-set. This equation means that to route all the edges

(s, t) in a cut of the VT, the �ber between nodes i and j should not be used more

than the number of edges in the cut. As another explanation, the survivability

constraint states that for all proper cuts of the VT, all edges(lightpaths) in this

proper cut should not be routed through the same physical link.

c. Connectivity Constraint

For each pair (s,t) in EL:

∑
(i, j) ∈ E

f st
i j − ∑

( j, i) ∈ E
f st

ji =


1 if s = i
−1 if t = i
0 otherwise

(3.4)

Eq. (3.4) means that while routing the lightpath (s, t), the same amount of

�ow enters and leaves each node that is not the source or destination of (s, t).

Moreover, node s has an outer input of one more unit of tra�c that has to �nd

its way to node t. There are many possible combinations that can satisfy the

constraint of Eq. (3.4).

d. Integer Flow Constraint

f st
i j ∈ {0,1}

The integer �ow constraint ensures that the information whether the lightpath

(s, t) is routed on physical link (i, j) can take values only either true or false.

The aim of lightpath routing is to �nd a set of physical links that connect the

nodes of the lightpaths. Since our objective is to minimize the total number

of wavelength-links used in the whole physical topology, we can formulate the
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objective as in Eq. (3.5):

Minimize ∑
(i, j) ∈ E
(s, t) ∈ EL

f st
i j ∗ cost(i, j) (3.5)

where cost(i, j) is considered to be equal to 1 when hop-count method is used

as an objective. On the other hand, when the link-cost method is used as an

objective, cost(i, j) is considered to be equal to the actual length of the physical

path in kilometers.

The survivable VT mapping problem implemented in this study has two

constraints: survivability constraint and capacity constraint. The mathematical

formulations are the same as Eq. (3.3) and Eq. (3.2) respectively.

a) Survivability constraint:

The survivability constraint means that all the lightpaths of a cut-set cannot be

routed using the same physical link. The cut-set of a graph G is the subgraph Gx

of G consisting of the set of edges satisfying the following properties:

- The removal of Gx from G reduces the rank of G exactly by one.

- No proper subgraph of Gx has this propery.

- If G is connected then the �rst property in the above de�nition can be replaced

by the following phrase: The removal of Gx from G separates the given connected

graph G into exactly two connected subgraphs.

Figure 3.3: The cut-set of a graph.

Consider the graph in Figure 3.3. The edges e4,e6,e7 are the cut-set of the graph

because these edges divide graph G into exactly two connected subgraphs. The
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edges e1,e2 are also a cut-set. But e2,e3,e4,e8 is not a cut-set, because the

removal of these edges from G results in three connected subgraphs.

b) Capacity constraints:

The capacity constraint ensures that the number of wavelengths on a physical

link is no more than its capacity W .

3.2 Related Literature

The survivable VT mapping problem was �rst addressed as Design Protection [11]

in the literature. In this �rst study, tabu search was used to �nd the minimum

number of source-destination pairs that become disconnected in the event of

a physical link failure. Their aim is to �nd a systematic plan to protect a

WDM optical network against component or link failures that may cause the

simultaneous failure of several optical channels. To address this, they introduce

the concept of Design Protection, which aims at making such failure propagations

impossible. They present the Disjoint Alternate Path (DAP) algorithm which

places optical channels in order to maximise design protection. The capacity

constraint is the same as our problem but unlike ours, survivability is treated

as objective in their study. The number of source-destination pairs that become

disconnected in the event of a physical link failure must be zero in our study for

a feasible solution while their aim is to minimise that number.

Nucci et. al. also used tabu search to solve the survivable VT design problem

[12]. Their design methodology relies on the dynamic capabilities of IP routing

to re-route IP datagrams. They �rst consider the resilience properties of the

topology during the logical topology optimization process, so the optimization of

the network resilience performance can be extended also on the logical topology

space. The constraints in this study include transmitter and receiver constraints

as well as wavelength capacity constraints.

Modiano and Narula-Tam used ILP to solve the VT mapping problem [2]. They

added the survivability constraint in the problem formulation, such that, no

physical link is shared by all virtual links belonging to a cut-set of the VT graph.

However, they did not consider the capacity constraint. Their objective was
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to minimize the number of wavelengths used. For the cases when ILP cannot

�nd an optimum solution in a reasonable amount of time due to the problem

size, Modiano et. al. proposed two relaxations to ILP, which consider only

small-sized cut-sets. These relaxations reduce the problem size; however, they

may lead to suboptimal solutions. In order to overcome the long execution time

problem in ILP formulation, Todimala and Ramamurthy proposed a new ILP

formulation for computing the survivable routing of a virtual topology. As ILP is

not scalable when the network size extends to a few tens of nodes, in their work,

they present sub-graphs which more accurately model an actual network and for

which a survivable routing can be easily computed using an ILP. They solved the

problem for networks of up to 24 nodes [13]. In [13], besides the physical network

and the virtual network topologies, the shared risk link groups should be known

in advance. In their study, Todimala and Ramamurthy considered both capacity

and survivability constraints.

A heuristic approach to VT mapping is developed by Ducatelle et. al. [14].

They consider the survivability constraint in this study. They consider a routing

as survivable, if the connectivity of the logical network is guaranteed in case

of a failure in the physical network. They introduce a local search algorithm

which can provide survivable routing in case of not only physical link failures but

also node failures and multiple simultaneous link failures. Unlike our problem,

they considered survivability as an objective. Their aim is to minimise the total

number of node pairs that make VT unsurvivable in case of a physical link failure.

Kurant and Thiran [15] used an algorithm that divides the survivable mapping

problem into subproblems. Heuristic algorithms usually start with some initial

mapping and then try to improve it. This involves the evaluation of the entire

topology at each iteration, which is costly for large topologies. To overcome that

cost, they propose a di�erent approach that breaks down the current problem into

subproblems. The combination of solutions of these subproblems is a survivable

mapping.

There are a few studies on VT mapping [16] and design [17] using evolutionary

algorithms (EA), however, the survivability is not considered in any of them

except [18]. Ergin et. al. proposed the only EA based approach for survivable
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VT mapping problem. Their objective is to minimize the resource usage without

violating the capacity constraint. They experiment with di�erent EA components

to develop an e�cient EA for this problem.

Swarm intelligence algorithms are used in a few studies for Routing and

Wavelength Assignment (RWA) problem. Ant colony optimization(ACO) is

applied to the static [19] and dynamic [20, 21] RWA problem without the

survivability constraint. The only study using ACO considering back-up paths

on physical layer is [22]. Particle swarm optimization is applied to RWA problem

in only a single study [23], in which no survivability constraint is considered.

In [19], the objective is to minimize the wavelength used in the given network.

They use a simple greedy heuristic for wavelength assignment. According to this

approach, ants select their routes according to the weight of attraction of each

physical link. Ants use a tabu list of previously visited nodes in order to avoid

loops and backtracking. They use di�erent methods for pheromone updating.

Garlick et. al. [20] is the �rst group that used ACO on dynamic RWA problem.

In this approach, whenever a new connection request arrives, some of ants are

launched from source to destination. While deciding which path to use, ants use

the length of the path and the number of available wavelengths along the path.

Ngo et. al. also proposed an approach for the dynamic RWA problem. They

designed a new routing table structure to solve this problem [21]. They use ants

to observe the state changes in the network and to update these tables regularly.

The results show that this algorithm outperforms the other alternate methods

in terms of blocking probability. In a further study [22], Ngo et. al. handled

the RWA problem considering the back-up paths on the physical layer, and used

ACO to solve this problem.

The work that use particle swarm optimization for RWA problem in WDM

networks use a hybrid algorithm inspired from ant systems [23]. For the routing

part of the problem, particles are used to determine the path together with the

ant system (AS). For the wavelength assignment part, a �rst-�t algorithm is used.
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4. ANT COLONY OPTIMIZATION ALGORITHMS

ACO is one of the most commonly used swarm intelligence techniques and is

based on the behavior of real ants. ACO has been applied successfully to many

combinatorial optimization problems such as routing problems [24], assignment

problems [25], scheduling and sequencing problems [26] and subset problems [27].

One of the �rst successful implementations of ACO is the Ant System (AS)

developed by Dorigo [28], in 1992. AS has been the basis for many ACO variants

which have become the state-of-the-art for many applications. These variants

include elitist AS (EAS), rank-based AS (RAS), MAX-MIN AS (MMAS), ant

colony system (ACS), best-worst AS (BWAS), the approximate nondeterministic

tree search (ANTS), and the hyper-cube framework. AS, ACS, EAS, RAS, MMAS

and BWAS can be considered as direct variants of AS since they all use the basic

AS framework. The main di�erences between AS and these variants are the

pheromone update procedures and some additional details in the management

of the pheromone trails. In this study, we implemented AS, ACS, EAS, RAS,

MMAS and BWAS for the VT mapping problem since it can be seen in [28]

that these direct variants of AS have been successfully applied to many similar

problems in literature [27].

ACO algorithms are inspired from the social behavior of ants that provide food

to the colony. Ants deposit a substance called pheromone on the way they search,

�nd food and return to the nest. Pheromone trails guide the colony during the

food search process. Ants are able to smell the pheromone and remember the

way they had used to reach food. When an ant is positioned at a location, it

makes a decision about the next path to take based on a probability de�ned by

the amount of pheromone existing in each trail. When a path betweeen the nest

and the food is constructed, the ants stops depositing pheromone. The length of

the path is reduced step by step because of the progressive action of the ants in

the colony. The pheromone concentration becomes higher on the shortest paths
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because they are visited more frequently. On the contrary, the longest paths are

less visited and the associated pheromone trails are evaporated.

The algorithmic �ow of the basic ACO algorithm is given in Algorithm 1. An

iteration consists of the solution construction and pheromone update stages.

Iterations are �nished when stopping criteria are met, which may be the time

when both max solutions are generated and the allowed time is completed.

Algorithm 1 Basic ACO outline
1: set ACO parameters
2: initialize pheromone levels
3: while stopping criteria not met do
4: for each ant k do
5: select random initial node
6: repeat
7: select next node based on decision policy
8: until complete solution achieved
9: end for

10: update pheromone levels
11: end while

In each iteration, each ant in the colony constructs a complete solution. Ants start

from random nodes and move on the construction graph by visiting neighboring

nodes at each step. For each node, the next node to visit is determined through

a stochastic local decision policy based on the current pheromone levels and

heuristic information between the current node and its neighbors. Heuristic

information is proportional to the knowledge that makes the solution optimum.

Better solutions have higher heuristic levels, i.e., for travelling salesman problem

(TSP), heuristic information is usually set as 1/di j where di j is the distance

between cities i and j.

An ant k determines its next move from i to j with a probability pk
i j as calculated

in Eq. (4.1),

pk
i j =


τα

i j . η
β

i j

∑l∈Nk
i

τα
il . η

β

il

if j ∈ Nk
i

0 otherwise
(4.1)

where τi j and ηi j are the pheromone level and heuristic information between nodes

i and j respectively, α and β are the parameters used to determine the e�ect of
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the pheromone level and heuristics information respectively, Nk
i is the allowed

neighborhood of ant k when it is at node i. The probabilistic action choice in

Eq. (4.1) is called random proportional rule. The e�ect of α and β on heuristic

and pheromone information is the following: if α = 0, the neighbor node that has

the biggest heuristic information is selected, if β = 0, heuristic information is not

used while deciding the next move, only pheromone is used.

Pheromone trails are modi�ed when all ants have constructed a solution. First

the pheromone values are lowered (evaporated) by a constant factor on all edges.

Then pheromone values are increased on the edges the ants have visited during

their solution construction. Pheromone evaporation and pheromone update by

the ants are implemented as given in Eq. (4.2) and Eq. (4.3) respectively,

τi j← (1−ρ)τi j (4.2)

τi j← τi j +
m

∑
k=1

∆τ
k
i j (4.3)

where 0 < ρ ≤ 1 is the pheromone evaporation rate, m is the number of ants

and ∆τk
i j is the amount of pheromone ant k deposits on the arcs it has visited.

Evaporation prevents adding unlimited pheromone trails so that ants can forget

bad decisions they had taken previously. ∆τk
i j is de�ned as given in Eq. (4.4),

where Ck is the cost of the solution Tk built by the k-th ant.

Based on the equation Eq. (4.4), ants that construct better solutions, deposit

more pheromone on the edges they have traversed. So the edges that lead to

minimum costs and used by many ants receive more pheromone, so they are

more likely to be selected in future iterations.

∆τ
k
i j =

{
1/Ck if edge(i, j) ∈ Tk
0 otherwise

(4.4)

4.1 Ant System

The AS algorithm [29] implements the basic ACO procedure detailed above in

this section. The following sections explain the di�erences between the other

ACO variants used in the experiments in this thesis and the AS algorithm.
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4.2 Elitist Ant System

The main idea of EAS [28] is to provide additional reinforcement to the edge pairs

which belong to Tbs, the best solution found since the start of the algorithm. This

additional reinforcement of solution Tbs is achieved by adding a quantity e/Cbs to

its edges, where e de�nes the weight given to the best-so-far solution Tbs, and Cbs

is its cost. The new equation for the pheromone deposit is given in Eq. (4.5).

τi j← τi j +∑
m
k=1 ∆τk

i j + e∆τbs
i j

where ∆τbs
i j =

{
1/Cbs if edge(i, j) ∈ Tbs
0 otherwise

(4.5)

where ∆τk
i j is calculated as in Eq. (4.4). The pheromone evaporation of EAS is

the same as it is in AS.

4.3 Rank-Based Ant System

The main idea of RAS [28] is to allow each ant to deposit an amount of

pheromone which decreases with its solution rank. The ants are sorted in

decreasing order according to the quality of the solutions they constructed.

The amount of pheromone an ant deposits is weighted according to its rank

r. In each iteration only the (w− 1) best-ranked ants and the ant which has

constructed the best-so-far solution are allowed to deposit pheromones. The

best-so-far solution has the largest weight w, while the r-th best ant of the current

iteration contributes pheromones with a weight given by max {0,w− r}. The new

pheromone deposit rule is given in Eq. (4.6) where Cr denotes the solution cost

of r-th best ant.

τi j← τi j +∑
w−1
r=1 (w− r).∆τr

i j +w.∆τbs
i j

where ∆τr
i j =

{
1/Cr if edge(i, j) ∈ Tr
0 otherwise

(4.6)

4.4 MAX-MIN Ant System

The MMAS has four major di�erences from AS [30].
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• Only either the ant which found the best solution in the current iteration,

or the best-so-far ant is allowed to deposit pheromones.

• Allowed range of pheromone trail values is limited to the interval

[τmin,τmax]. This modi�cation is implemented in MMAS because allowing

only best-so-far or iteration-best ant to deposit pheromone may lead to

a stagnation situation that is all ants construct the same solution so

keeping pheromone trails between boundaries will prevent the excessive

accumulation of pheromone trails of suboptimal solutions.

• Pheromone trail values are initialized to the upper limit to increase

exploration in the beginning.

• Pheromone trails are initialized when diversity is lost or when no

improvement occurs for a given number of consecutive iterations.

Pheromones are deposited on the edges according to Eq. (4.3) and Eq. (4.4)

as in the AS, but the ant which is allowed to add pheromone may be either the

best-so-far or the iteration-best. Commonly in MMAS implementations, both the

iteration-best and the best-so-far update rules are used alternatively.

Pheromone update is managed as follows: in the beginning pheromone trails

are initialized with the upper bound of pheromone limits (τmax) so that initial

search space is very explorative, when an ant constructs the complete solution,

pheromone trails are evaporated by a small evaporation rate so the unvisited edges

have bigger pheromone levels. This procedure makes the search space explorative.

To increase the probability of selecting unsearched edges, pheromone trails are

initialized when algorithm approaches to a stagnation situation or solution is not

improved for a number of iterations [30].

4.5 Ant Colony System

ACS di�ers from AS in three main points [31].

• It has a modi�ed action selection rule.
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• Pheromone evaporation and pheromone deposit take place only on the edges

belonging to the best-so-far solution.

• Each time an ant uses an edge (i, j) it removes some pheromone from the

edge.

In ACS, with a probability q0, an ant makes the best possible move based on the

pheromone trails and the heuristic information, and with probability (1−q0) it

performs a biased exploration of the edges. This method is called pseudo-random

proportional action choice rule (see Algorithm 2). The parameter q0 modulates

the degree of exploration performed by the ants.

Algorithm 2 Choosing next solution component
1: if random(0-1) < q0 then
2: choose best next
3: else
4: choose next according to pseudo-random proportional action choice rule
5: end if

At the end of each iteration in ACS, the pheromone trails are updated according

to Eq. (4.7). The pheromone trail update, both evaporation and new pheromone

deposit, are implemented only for the edges belonging to the best-so-far solution.

τi j← (1−ρ)τi j +ρ∆τ
bs
i j , ∀(i, j) ∈ Tbs (4.7)

Here ∆τbs
i j = 1/Cbs and ρ represents pheromone evaporation. In addition to the

global pheromone update performed at the end of each iteration, in ACS, the ants

also use the local pheromone update rule given in Eq. (4.8). They apply local

pheromone update immediately after having used an edge (i, j) during solution

construction.

τi j← (1−ξ )τi j +ξ τ0 (4.8)

Here ξ (0 < ξ < 1), and τ0 are two parameters. The value for τ0 is set to be the

same as the initial value for the pheromone trails. Experimentally, a good value

for τ0 was found to be 1/nCmin, where n is the number of nodes and Cmin is the

cost of the trivial solution [31]. Cmin is determined using the shortest path of each

lightpath.
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4.6 Best-Worst Ant System

BWAS di�ers from AS in three main points [32].

• While only the best-so-far ant is allowed to deposit pheromones, the worst

ant of the current iteration subtracts pheromones on the arcs it does not

have in common with the best-so-far solution

• Search diversi�cation is achieved through frequently reinitializing the

pheromone trails

• To further increase diversity, pheromone mutation is used [28].

The pheromone trail update rule of BWAS is based on the consideration that

the best-so-far solution can perform a positive contribution of trails. Whereas

the worst ant of the current solution is penalized to decrease the desirability of

selecting the same nodes in the construction graph.

τi j← τi j +∆τ
bs
i j , ∀(i, j) ∈ Tbs (4.9)

τi j← (1−ρ)τws
i j , ∀(i, j) ∈ Tws and (i, j) /∈ Tws (4.10)

The deposition of pheromone rule for the best-so-far ant is given in Eq. (4.9).

The evaporation of pheromones on the edges visited by the worst-ant that are

not common with the best-so-far is given in Eq. (4.10) where Tws is the worst

solution found since the start of the algorithm.

The pheromone trail mutation is used in BWAS to introduce diversity in the

search space. Each row of the pheromone matrix is mutated with a probability

of Pm by depositing or evaporating the same amount of pheromone based on the

current iteration [32]. The pheromone mutation is given in Eq. (4.11).

τ
′
i j =

{
τi j +mut(it,τthreshold) if a = 0
τi j−mut(it,τthreshold) if a = 1 (4.11)

where a is a random variable in 0,1 and it is the current iteration, τthreshold is the

average pheromone trail on the edges visited by the best-so-far ant and mut(.) is

given in Eq. (4.12).

mut(it,τthreshold) =
it− τthreshold

Nit− itr
. σ . τthreshold (4.12)
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with Nit being the maximum number of iterations and itr being the last iteration

when a restart was performed. The parameters τthreshold and σ specify the

maximum power of the mutation.
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5. APPLICATION OF ACO TO THE VT MAPPING PROBLEM

ACO can be applied to the survivable VT mapping problem in a straightforward

way. The VT mapping problem can be seen as a search for the best routing of

lightpaths through physical links. Therefore, we use a solution encoding inspired

from [16]. For this encoding, �rst, the shortest k paths between the end points

of each lightpath are determined. Then, a solution candidate is represented as

an integer string of length l, where l is the number of lightpaths in the VT.

Each integer gives the index of the shortest path for the corresponding lightpath.

These integers can take values between [1..k] where k is the prede�ned number

of shortest paths for the lightpaths.

The Figure 5.1 interprets the encoding used during solution construction.

According to this encoding, the fourth shortest path is selected for the sixth

lightpath. Similarly the third shortest path is chosen for the �rst lightpath. As the

algorithm may lead to di�erent solutions, ants route the lightpaths in a random

order. For example, an ant may route the �fth lightpath and then the second

lightpath and so on. The �exibility of selecting lightpaths in a random order may

increase the number of feasible solutions because for a survivable solution if a

lightpath can only be routed using a few shortest paths, routing this lightpath

earlier may result in better solutions.

The following sections introduce ACO steps implemented in this thesis.

5.1 Construction Graph

Figure 5.1: Solution encoding to survivable VT mapping.
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The construction graph is identical to the physical topology. The physical

topology is used as a graph on which ants travel and construct their solutions.

Ants simultaneously try to route lightpaths on the graph one-by-one. Each starts

to route a random lightpath. The shortest paths between the end points of the

lightpaths are provided to ants at the very beginning of the algorithm. Ants

determine one of the shortest paths of the selected lightpath while visiting the

nodes of the shortest paths on the construction graph and checking if the chosen

shortest path violates the constraints or not. If the solution becomes infeasible

for a shortest path selected for the lightpath, another shortest path is examined.

If none of the shortest paths leads to a feasible solution, this ant is removed from

the colony.

5.2 Constraints

Survivable VT mapping problem has two constraints:

1) The number of wavelengths on a physical link should not exceed its capacity

2) All the lightpaths of a cut-set cannot be routed using the same physical link

The �rst limitation explains the capacity constraint while the second one

introduces survivability constraint. To illustrate the second constraint assume

that we have a logical topology as in Figure 5.2. According to this �gure, the

lightpaths 10, 8 and 3 cannot be routed using the same link in the physical

topology because they are the cut-set of the virtual topology graph. Similarly,

6, 7, 2 and 10 cannot be routed through the same physical link.

Figure 5.2: Example virtual topology.
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5.3 Pheromone Trails and Heuristic Information

Ants decide their move on the construction graph based on heuristic and

pheromone information. Two pheromone trails are implemented in the survivable

VT mapping problem: the lightpath pheromone trails τ l
i j refer to the desirability

of choosing lightpath j directly after i for mapping, the shortest path pheromone

trails τs
i j show the desirability of selecting jth shortest path of lightpath i.

Pheromone is modelled as a 2D array which accumulates the information learned

by the ants. The lightpath pheromone has lightpaths in its columns and rows

and gives the information which lightpath is more valuable to choose after the

current lightpath, whereas the shortest path pheromone has lightpaths in its

rows and corresponding shortest paths in its columns and gives the information

about which shortest path leads to the better result when selected for the current

lightpath. These pheromones are initialized in the beginning of the algorithm

with the same value for each possible choice of the ant. The di�erence is created

by heuristic information ηi j that is inversely proportional to the length of the jth

shortest path of lightpath i i.e. ηi j = 1/di j. The ants use the lightpath pheromone

to decide the next lightpath. The heuristic information is used together with the

shortest path pheromone trails while deciding the proper shortest path of the

chosen lightpath. A combined pheromone called total pheromone is used which

is computed as τα
i j . η

β

i j for this responsibility. The pheromones are updated

after solutions are constructed. The amount of the accumulated pheromone is

proportional to the solution quality.

Algorithm 3 Global Pheromone Update
1: for each ant k do
2: for each lightpath i chosen jth shortest path do
3: τs

i j+
1

resource usage -> τs
i j

4: end for
5: for each lightpath i chosen before lightpath t do
6: τ l

it+
1

resource usage -> τ l
it

7: end for
8: end for

There are three di�erent pheromone update procedures: local pheromone update,

global pheromone update and global pheromone update weighted. In global
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pheromone update (see Algorithm 3), after each ant constructed its solution,

both shortest path and lightpath pheromones are updated on the edges the ants

visited. The pheromones are updated according to the solution quality. In this

thesis, 1
resource usage is accumulated on pheromones where resource usage is the

number of wavelength-links used by the corresponding ant.

The weighted global pheromone update (see Algorithm 4) di�ers from global

update in the amount that is added pheromones. The pheromones are increased

with the amount weight
resource usage where weight is used to deposit more or less

pheromone for the selected ants.

Algorithm 4 Global Pheromone Update Weighted
1: for each ant k do
2: for each lightpath i chosen jth shortest path do
3: τs

i j+
weight

resource usage -> τs
i j

4: end for
5: for each lightpath i chosen before lightpath t do
6: τ l

it+
weight

resource usage -> τ l
it

7: end for
8: end for

The local pheromone update algorithm that is used by ACS can be found in

Algorithm 5. Every ant without regard to the solution quality updates pheromone

using the parameters ξ and τ0 where 0 ≤ ξ ≤ 1 and τ0 is the initial pheromone

value. As ants perform pheromone update after each move when the whole

solution is not created, unlike other �ve ACO algorithms, both feasible and

infeasible solutions are allowed to update pheromone trails.

Algorithm 5 Local Pheromone Update
1: for each ant k do
2: for each lightpath i chosen jth shortest path do
3: τs

i j∗(1−ξ )+ξ ∗ τ0 -> τs
i j

4: end for
5: for each lightpath i chosen before lightpath t do
6: τ l

it∗(1−ξ )+ξ ∗ τ0 -> τ l
it

7: end for
8: end for

There are di�erences in pheromone update stages of ACO algorithms.
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5.3.1 The pheromone update of AS

The pheromone update of AS is shown in Algorithm 6. In AS, every ant uses

global update pheromone procedure [29].

Algorithm 6 AS Pheromone Update
1: for each ant do
2: Global Pheromone Update
3: end for

5.3.2 The pheromone update of EAS

In pheromone update procedure of EAS (see Algorithm 7) in addition to AS,

global pheromone update weighted procedure is used for the best-so-far ant. The

weight is determined with the parameter e.

Algorithm 7 EAS Pheromone Update
1: for each ant do
2: Global Pheromone Update
3: end for
4: for best-so-far ant do
5: Global Pheromone Update Weighted
6: end for

5.3.3 The pheromone update of RAS

The pheromone update of RAS is shown in Algorithm 8. In RAS, weighted global

update pheromone procedure is used with increasing weight for better solutions.

The ant that constructs the best solution uses the weight w, the second best

solution uses the weight w− 1 and this update continues for the �rst w ranked

ants.

Algorithm 8 RAS Pheromone Update
1: for each ant k that has rank ≤ w do
2: Global Pheromone Update Weighted
3: end for

5.3.4 The pheromone update of EAS

In pheromone update procedure of ACS (see Algorithm 9) only best-so-far ant

is allowed to deposit pheromone. Evaporation is implemented at the same time
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of accumulation. Apart from this, every ant uses local pheromone update after

each move as in Algorithm 5.

Algorithm 9 ACS Pheromone Update
1: for best-so-far ant do
2: for each lightpath i chosen jth shortest path do
3: τs

i j∗(1−ρ)+ ρ

resource usage -> τs
i j

4: end for
5: for each lightpath i chosen before lightpath t do
6: τ l

it∗(1−ρ)+ ρ

resource usage -> τ l
it

7: end for
8: end for

5.3.5 The pheromone update of MMAS

The pheromone update of MMAS is shown in Algorithm 10. MMAS alternatively

allows iteration-best ant, best-so-far ant or restart-best ant to deposit pheromone.

Iteration-best ant is the ant that constructs the best solution in the current

iteration. Best-so-far ant constructs the best solution since the start of the

algorithm, that is the best of all iterations. MMAS initializes the pheromone

trails when diversity is lost or when no improvement occurs for a given number

of consecutive iterations. Restart-best-ant is the best solution constructed after

this initialization. u_gb in Algorithm 10 is set as 2 to give the same chance to

these three ants.

Algorithm 10 MMAS Pheromone Update
1: if iteration % u_gb then
2: Global Pheromone Update for iteration-best ant
3: else
4: Global Pheromone Update for best-so-far ant or restart-best ant
5: end if

5.3.6 The pheromone update of BWAS

The pheromone update of BWAS is shown in Algorithm 11. Global pheromone

update is used by only best-so-far ant and the worst ant of the current iteration

subtracts pheromones on the arcs it does not have in common with the best-so-far

solution. When there are a few di�erences between the solutions of the best-so-far

and iteration-worst-ant ants, the pheromone trails are reinitialized to increase
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search diversi�cation. To further increase diversity, pheromone mutation is used

as explained in [28].

Algorithm 11 BWAS Pheromone Update
1: for best-so-far ant do
2: Global Pheromone Update
3: end for
4: for iteration-worst-ant do
5: for each lightpath i chosen jth shortest path do
6: if this pair is not used by best-so-far ant then
7: τs

i j∗(1−ρ) -> τs
i j

8: end if
9: end for

10: for each lightpath i chosen before lightpath t do
11: if this pair is not used by best-so-far ant then
12: τ l

it∗(1−ρ) -> τ l
it

13: end if
14: end for
15: end for
16: Find distance between best-so-far ant and iteration-worst-ant
17: if distance < 5 % then
18: restart the search by initializing pheromones and restart-best-ant
19: else
20: mutate pheromones
21: end if

The algorithm �ow of pheromone trail update is shown in Algorithm 12. Each

ant, after constructing a solution, �rst evaporates pheromone trails on the visited

edges and then calls the pheromone update procedure associated with the selected

ACO algorithm. If MMAS is used, pheromone trail limits are checked and put

in the bounds. Last, without regard to the selected algorithm, total pheromone

trails are updates as τα
i j . η

β

i j .

Algorithm 12 Pheromone Trail Update
1: for each algorithm do
2: evaporate pheromones except ACS
3: call associated pheromone update procedure
4: end for
5: if MMAS then
6: check pheromone trail limits
7: end if
8: for each algorithm do
9: compute total pheromone as τα

i j . η
β

i j
10: end for
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5.4 Solution Construction

Each ant is initially placed on a randomly chosen start lightpath and one of its

shortest paths is selected. At each step, the ant iteratively adds an unvisited

lightpath to its partial solution and decides the shortest path of the selected

lightpath. The solution construction terminates once all lightpaths have been

visited.

Algorithm 13 Solution Construction
1: for each ant do
2: place ant on randomly selected lightpath
3: choose random shortest path for the selected lightpath
4: end for
5: while step < n−1 do
6: step ++
7: for each ant do
8: move to next step
9: if ACS then

10: local acs pheromone update
11: end if
12: end for
13: end while
14: for each ant do
15: Pheromone Trail Update
16: end for

Solutions are constructed by applying the following simple constructive procedure

to each ant:

(1) choose a start lightpath and one of its shortest paths,

(2) use lightpath pheromone information to select the next lightpath to route,

(3) use shortest path pheromone information together with the heuristic values

to probabilistically determine the path between the nodes of the corresponding

lightpath, until all lightpaths have been visited. If the ant cannot select a shortest

path that makes the solution feasible, this ant is removed from the current

iteration.

The algorithm �ow of solution construction is shown in Algorithm 13.

34



Moving next step is implemented using pseudo-random proportional action choice

rule. According to this rule, each lightpath is assigned a probability proportional

to the lightpath pheromone. Cumulative probability is calculated and a random

point is selected in this probability array. The corresponding lightpath is selected.

The shortest path for the selected lightpath is chosen using the same way but

total pheromone is used instead of lightpath pheromone. Algorithm 14 shows the

pseudo-random proportional action choice rule.

Algorithm 14 Pseudo-random proportional action choice rule
1: sum_prob = 0
2: for each lightpath i do
3: if visited then
4: prop_ptr[i]=0
5: else
6: prop_ptr[i]= lightpath_pheromone[current lightpath][i]
7: sum_prob += prop_ptr[i]
8: end if
9: select randomly a point in sum_prob

10: calculate the associated lightpath l
11: end for
12: sum_prob = 0
13: for each shortest paths i of lightpath l do
14: if not feasible then
15: prop_ptr[i]=0
16: else
17: prop_ptr[i]= total_pheromone[l][i]
18: sum_prob += prop_ptr[i]
19: end if
20: if sum_prob = 0 then
21: remove ant from colony
22: else
23: select randomly a point in sum_prob
24: calculate the associated shortest path
25: end if
26: end for

The following example can be used to summarize and illustrate the problem that

is the main concern of this thesis.

Our objective is to minimize the total cost of resources used throughout the

network. This cost is evaluated in two di�erent ways: (1) by considering the

actual lengths of the physical links (link-cost), and (2) by counting the number

of physical links used (hop-count).

35



Table 5.1: Four different shortest paths for the lightpaths of the example virtual topology given in
Figure 3.2.

hop-count link-cost
lightpath sp1 sp2 sp3 sp4 sp1 sp2 sp3 sp4
1-2 (a) 1-2 1-3-2 1-3-4-2 1-3-5-4-2 1-3-2 1-2 1-3-4-2 1-3-5-4-2
1-5 (b) 1-3-5 1-2-4-5 1-2-3-5 1-3-4-5 1-3-5 1-3-4-5 1-3-2-4-5 1-2-4-5
1-4 (c) 1-2-4 1-3-4 1-3-2-4 1-3-5-4 1-3-4 1-3-5-4 1-3-2-4 1-2-4
2-3 (d) 2-3 2-1-3 2-4-3 2-4-5-3 2-3 2-4-3 2-1-3 2-4-5-3
2-4 (e) 2-4 2-3-4 2-1-3-4 2-3-5-4 2-4 2-3-4 2-3-5-4 2-1-3-4
3-4 (f) 3-4 3-2-4 3-5-4 3-1-2-4 3-4 3-5-4 3-2-4 3-1-2-4
4-5 (g) 4-5 4-3-5 4-2-3-5 4-2-1-3-5 4-5 4-3-5 4-2-3-5 4-2-1-3-5

The constraints for the problem, i.e. the survivability and the capacity

constraints, are explained in section 3.1. In order to determine if the solution

is survivable or not, each physical link is deleted from the physical network one

by one. If the VT graph becomes disconnected in the event of a broken physical

link, the solution is considered as unsurvivable.

The following example illustrates the �tness evaluation techniques.

Consider the physical and virtual topologies given in Figure 3.2. The �rst 4

shortest paths calculated based on hop-counts and based on link-costs can be seen

in Table 5.1. Here, the �rst column shows the lightpaths as source-destination

node pairs. Four shortest paths found using hop-counts are given in the next four

columns, and 4 shortest paths found using link-costs are given in the last four

columns.

Assume we have an individual encoded as [1 2 1 3 1 1 2]. This encoding means

that the �rst lightpath uses the 1st shortest path (1-2), the second one uses the

2nd shortest path (1-2-4-5), and the third one uses the 1st shortest path (1-2-4),

etc. If we sum up the number of wavelength-links used in this solution, we have

a total of 12 wavelength-links for hop-count evaluation, and 2250 kilometers for

link-cost evaluation.
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6. EXPERIMENTAL STUDY

To compare the performance of ACO algorithms, we perform a series of

experiments to calculate resource usage based on both hop-count and link-cost

on 100 di�erent instances each, for 3, 4, 5 connected virtual topologies. In these

experiments, we used four metrics for performance evaluation, namely success

rate, �rst hit iteration, �rst hit time and the resource usage. Success rate is

de�ned as the percentage of program runs in which a survivable mapping that

does not violate the capacity constraint is found. First hit iteration is the �rst

iteration during which the best-so-far solution is encountered. First hit time

is similarly, the �rst time when the best-so-far solution is encountered. When

calculating shortest paths based on hop-count, each wavelength-link is considered

to have a length of 1 for each physical link. On the other hand, when calculating

the shortest paths based on the link-cost, each wavelength-link is considered to

have a length equal to the actual length of the physical path in kilometers.

6.1 Experimental Setup

ACO algorithm speci�c parameters are determined after a series of tests. A

sample of 20 VTs is selected between 100 VTs and MMAS algorithm is selected

due to its better results among ACO algorithms for TSP in [28].

First, 15 shortest paths are provided to the algorithm and 5 connected VTs are

used as data set for the problem to investigate the e�ect of maximum allowed

time on resource usage. The largest search space is selected because maximum

allowed time should be determined according to the problem that require the

longest time. The results in Figure 6.1 shows the e�ect of maximum allowed

time on resource usage when the shortest path calculation method is based on

hop-count. We used hop-count method in our parameter tuning tests because

unlike link-cost method, it gives the exact number of used physical links so when
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Figure 6.1: Effect of maximum allowed time on resource usage.

we compare two solutions based on hop-count we can easily calculate how much

better one solution is than the other but in link-cost one solution may give a

higher resource usage value by using just one more physical link. According to

the Figure 6.1, algorithm does not need to be run more than 15 seconds because

no valuable contribution is provided after 15 seconds.

Other parameters are determined using a data set of 4 connected 20 VTs

and 10 shortest paths are provided. MMAS algorithm is used except the

algorithm speci�c parameters. The e�ect of total number of ants used for

solution construction is investigated using this sample data set. According to the

Figure 6.2 increasing number of ants negatively a�ect resouce usage after 5 ants.

Until maximum number of solutions are generated, ants use pheromone matrices

to construct solutions. Pheromones are updated according to the solution quality

after each ant completed their solution. When the maximum number of solutions

is selected as 100 and 100 ants are used to construct the solutions, each ant will

generate only one solution. They cannot use pheromone matrices as they will

have updated the pheromones but will not use it because termination condition

will be met. So when the number of ants decrease, the use of pheromone increases.

We set the number of ants to 10 because it is a mid value and there is no distinct

di�erence between 5 and 10 ants.
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Figure 6.2: Effect of number of ants on resource usage.

The parameters α and β represent the weight of heuristic and pheromone values

on total pheromone matrix. As it is explained in section 4, if α = 0, the

neighbor node that has the biggest heuristic information is selected, if β = 0,

heuristic information is not used while deciding the next move, only pheromone

is used. The e�ect of these two parameters when they are greater than 0 is

also investigated. Table 6.1 shows the e�ect of α and β on resource usage. The

parameters do not contribute much on resource usage after the values of 2. α does

not seem to have much e�ect on resource usage. As pheromones are initialized

with small values between 0 and 1, the increasing power of pheromones may not

change the value signi�cantly. Tests are done until the β values of 4 and α values

of 3. The parameters are set when the best solutions are retrieved as α = 3 and

β = 4.

Table 6.1: Effect of β and α on resource usage

β

0 1 2 3 4

α

0 221.67 ∓ 0.36 149.84 ∓ 0.35 148.79 ∓ 0.35 148.05 ∓ 0.34 147.44 ∓ 0.35
1 203.52 ∓ 0.41 149.10 ∓ 0.34 147.86 ∓ 0.34 147.18 ∓ 0.34 147.01 ∓ 0.34
2 203.56 ∓ 0.44 148.61 ∓ 0.35 147.40 ∓ 0.34 146.96 ∓ 0.34 146.63 ∓ 0.34
3 203.76 ∓ 0.42 149.15 ∓ 0.36 147.05 ∓ 0.34 146.60 ∓ 0.34 146.48 ∓ 0.34
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Figure 6.3: Effect of q0 on resource usage.

The e�ect of q0 is also investigated for the sample data set. q0 is the parameter

that is used to determine the next step of the ant. With q0 probability ants

select the best pheromone as a next step, while with 1− q0 probability ants

use the pseudo random proportional choice rule. Details can be found in

section 4.5. According to the Figure 6.3, higher q0 values lead better solutions.

This parameter is set as 0.8 because random selection should not be ignored as

it may lead to di�erent solutions and increase diversity.

Figure 6.4: Effect of ρ0 on resource usage.
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ρ0 is determined according to the Figure 6.4. ρ0 is the parameter used while

updating pheromone values. ρ0 is selected as 0.1 where the best solutions are

retrieved.

The e�ect of w is also investigated for the sample data set using RAS algorithm.

w is determined according to the results in Figure 6.5. w is the maximum rank

of ants that will deposit pheromone in RAS algorithm. w is selected as 5 where

the best solutions are retrieved.

Figure 6.5: Effect of w on resource usage in RAS.

In MMAS, the branching factor for a lightpath i is de�ned as follows: if τ i
max is

the maximum and τ i
max is the minimum pheromone trail value on edges incident

to lightpath i; the branching factor is given by the number of edges incident to

lightpath i that have a pheromone trail value τi j ≥ τ i
min + α(τ i

max− τ i
min). The

value of α ranges over the interval [0,1], while the values of the branching factors

range over the interval [2, n-1], where n is the number of lighpath in the VT. The

average branching factor is the average of the branching factors of all lightpaths

and gives an indication of the size of the search space efectively being explored

by the ants. If, for example the average branching factor is vey close to 5%,

on average 5% of the lightpaths have a high probability of being chosen. In

MMAS, when average branching factor reaches the lower limit, pheromone trails

are initialized to increase diversity. Table 6.2 shows the e�ect of lower limit
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of branching factor on resource usage. The columns except the �rst one, show

the time passed since the start of the algorithm. The rows represent the resource

usage after each 5 seconds when the lower limit is selected as the �rst column. The

lower limit of average branching factor is selected as 10% because the algortihm

converges to better solutions earlier when the lower limit selected as 10%.

Table 6.2: Effect of lower limit of average branching factor on resource usage in MMAS

5 10 15 20 25 30 35 40 45 50
0 % 146.81 146.27 146.24 146.22 146.21 146.2 146.19 146.18 146.17 146.16

10 % 146.78 146.25 146.20 146.20 146.19 146.19 146.18 146.15 146.14 146.13
20 % 146.80 146.29 146.25 146.23 146.22 146.21 146.20 146.17 146.15 146.15
30 % 146.82 146.27 146.25 146.24 146.24 146.22 146.19 146.16 146.14 146.14
40 % 146.85 146.3 146.27 146.26 146.25 146.24 146.22 146.18 146.15 146.15
50 % 146.86 146.29 146.25 146.24 146.23 146.22 146.21 146.16 146.15 146.14
60 % 146.83 146.27 146.23 146.22 146.22 146.21 146.19 146.16 146.15 146.14
70 % 146.82 146.28 146.24 146.23 146.23 146.22 146.21 146.18 146.16 146.16
80 % 146.81 146.27 146.23 146.21 146.20 146.2 146.18 146.16 146.15 146.14
90 % 146.77 146.30 146.25 146.22 146.21 146.21 146.20 146.16 146.15 146.14
100 % 146.79 146.28 146.25 146.24 146.23 146.22 146.21 146.18 146.17 146.16

The e�ect of e is determined according to the Figure 6.6. e is the weight of

pheromone deposited for the best-so-far solution in EAS algorithm. e is selected

as 3 where the best solutions are retrieved. In the local pheromone trail update

Figure 6.6: Effect of e on resource usage in EAS.

in ACS ξ = 0.1 and τ0 is set as the default settings in [33] shown in Table 6.3.
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Table 6.3: The settings of τ0 per ACO algorithm

AS-RAS-EAS ACS-BWAS MMAS
τ0 1/ρCmin 1/nCmin 1/2nρCmin

For the experiments, we use a physical topology with 24 nodes and 43 links (see

Figure 6.7). We created 100 random VTs with average connectivity degrees of 3,

4, and 5 to map onto this physical topology. We assumed that each physical link

has a capacity of 10 wavelengths.

Figure 6.7: US wide 24-node 43-link physical topology.

In ACO performance tests, for all elements in the problem set, we run each

algorithm 20 times. Each run is allowed to continue for 15 seconds.

6.2 Experimental Results

We present the results of the experiments in Tables 6.4, 6.5, 6.6, and 6.7. Table 6.4

shows the success rates of all ACO algorithms for randomly generated 100 VTs.

We have 3 di�erent sets of topologies where the average node degrees are 3, 4,

and 5. For each algorithm and node degree, 3 di�erent numbers of alternative

shortest paths for lightpaths are examined. We tried 5, 10, and 15 shortest path

cases. Both hop-count and link-cost results for each case are given in the table.
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The success probability numbers are averaged over 2000 runs (20 runs per VT

instance).

Table 6.4: Success rates for 24-node network

5 shortest 10 shortest 15 shortest
paths paths paths

hop link hop link hop link
count cost count cost count cost

as
3 0.946 0.857 0.988 1 1 1
4 0.963 0.915 0.98 1 1 1
5 0.992 0.795 0.998 0.979 1 0.984

ras
3 0.988 0.881 0.998 1 0.999 1
4 0.975 0.955 0.999 1 1 1
5 0.996 0.851 1 0.992 1 0.997

eas
3 0.979 0.882 0.997 1 0.999 1
4 0.982 0.942 0.999 1 1 1
5 0.998 0.824 1 0.995 1 0.996

mmas
3 0.974 0.915 0.999 1 1 1
4 0.987 0.977 0.996 1 1 1
5 0.999 0.862 1 0.971 1 0.986

bwas
3 0.976 0.889 0.998 1 1 1
4 0.987 0.941 0.998 1 1 1
5 0.999 0.852 1 0.994 1 0.996

acs
3 0.854 0.704 0.979 0.997 0.999 0.999
4 0.939 0.871 0.979 1 1 1
5 0.986 0.709 0.998 0.977 1 0.984

Table 6.4 shows that ACO algorithms can successfully be used for the survivable

VT mapping problem. Success rates are mostly greater than 99% when more

than 5 shortest paths are provided to the algorithms. Although algorithms have

relatively the same performance, MMAS is the best of all when 5 shortest paths

are utilized. It is followed by BWAS, RAS, and EAS. They have relatively the

same performance. ACS is the worst of all, and AS has slightly better performance

than ACS.

From Table 6.4, we can see that success rates are increasing with the number

of shortest paths because the probability of �nding feasible potential mappings

increases with the number of alternative shortest paths. When ants can use 15

shortest paths, each algorithm �nds feasible solutions with success rates of almost

100%. Hop-count based calculation results in better success rates when 5 shortest
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paths are provided to each ACO algorithm. For 10 shortest path cases, when the

virtual topology has an average node degree of 3 and 4, link-cost calculation is

more successful than hop-count. For average node degrees of 5, hop-count success

rates are greater than link-cost.

Table 6.5: Lower and upper bounds of resource usage in terms of link-cost with 95% confidence interval

5 shortest paths 10 shortest paths 15 shortest paths
lower - upper lower - upper lower - upper

as
3 110314 - 110940 110403 - 110973 110504 - 111072
4 142246 - 142908 142393 - 143007 142426 - 143038
5 180846 - 181750 182193 - 183007 182409 - 183231

ras
3 110008 - 110614 110831 - 111407 111071 - 111651
4 142641 - 143273 143162 - 143794 143226 - 143860
5 181913 - 182793 183835 - 184693 184105 - 184973

eas
3 110263 - 110869 110731 - 111305 110792 - 111370
4 142644 - 143290 142744 - 143368 142718 - 143344
5 181131 - 181983 183151 - 183997 183153 - 183995

mmas
3 109860 - 110442 110215 - 110781 110255 - 110821
4 142071 - 142681 142248 - 142858 142485 - 143099
5 180654 - 181496 182101 - 182915 183051 - 183887

bwas
3 109743 - 110337 110750 - 111318 111471 - 112043
4 142289 - 142919 143801 - 144439 144445 - 145093
5 181897 - 182773 184970 - 185844 185988 - 186882

acs
3 109738 - 110436 111136 - 111728 111532 - 112122
4 143778 - 144518 144012 - 144654 144578 - 145222
5 182790 - 183816 185675 - 186587 186473 - 187381

Table 6.5 and Table 6.6 show resource usage of all ACO algorithms for link-cost

and hop-count respectively. Here 3, 4, and 5 on the second column, represent the

average node degrees for randomly generated VTs, whereas 5, 10, and 15 are the

number of shortest paths provided to ACO algorithms. Both tables show lower

and upper bounds of resource usage for the proposed solutions to the VTs when

the con�dence interval is 95%.

When we analyse Table 6.5 and Table 6.6, we conclude that for each algorithm,

resource usage does not increase in the same proportion as the number of

shortest paths. For perturbative search algorithms, such as EAs, the search space

increases exponentially when the number of alternative shortest paths increases.

The problem becomes harder for these algorithms and their success rates drop.
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However for ACO algorithms, the increase in search space size is linear. Therefore

ACO algorithms are not a�ected signi�cantly by the increased search space. Both

Tables 6.5 and 6.6 show that when 5 or 10 shortest paths are provided to ACO

algorithms, MMAS has the best performance whereas when 15 shortest paths

are provided to ACO algorithms AS is the best of all. In 5 shortest path cases,

BWAS is comparable to MMAS. As RAS, MMAS, AS and EAS do not decrease

in performance, we can conclude that they can better react to the increase in the

search space size.

Table 6.6: Lower and upper bounds of resource usage in terms of hop-count with 95% confidence
interval

5 shortest paths 10 shortest paths 15 shortest paths
lower - upper lower - upper lower - upper

as
3 110.03 - 110.57 110.30 - 110.83 110.37 - 110.88
4 143.53 - 144.12 143.56 - 144.14 143.58 - 144.16
5 181.39 - 182.10 181.29 - 181.99 181.32 - 182.01

ras
3 109.90 - 110.47 110.35 - 110.87 110.67 - 111.19
4 143.49 - 144.08 143.90 - 144.49 144.10 - 144.69
5 181.53 - 182.23 182.13 - 182.84 182.09 - 182.81

eas
3 110.07 - 110.59 110.32 - 110.84 110.49 - 111.01
4 143.46 - 144.04 143.68 - 144.27 143.77 - 144.36
5 181.37 - 182.07 181.59 - 182.29 181.57 - 182.27

mmas
3 109.73 - 110.25 109.98 - 110.49 109.97 - 110.48
4 143.33 - 143.92 143.35 - 143.93 143.48 - 144.06
5 181.06 - 181.75 181.21 - 181.91 181.65 - 182.35

bwas
3 109.92 - 110.44 110.38 - 110.90 111.22 - 111.73
4 143.46 - 144.04 144.26 - 144.85 145.01 - 145.61
5 181.55 - 182.25 182.74 - 183.46 183.62 - 184.36

acs
3 110.28 - 110.86 111.21 - 111.78 111.42 - 111.94
4 144.86 - 145.52 145.48 - 146.13 145.70 - 146.32
5 183.20 - 183.99 184.37 - 185.16 184.62 - 185.37

As can be seen in Tables 6.5 and 6.6 the performance of ACS is the worst of all as

resource usage is relatively higher than the other algorithms. The main di�erence

between ACS and the other algorithms is the local pheromone update where each

ant decreases the pheromone trail in each step when a lightpath and the shortest

path is chosen. Local pheromone update helps ants explore new solutions, but

it does not work well in VT mapping problem. For the cases in which the ξ

parameter used in local pheromone update is chosen as ξ ≥ 0.1, the evaporation
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Table 6.7: Average first hit iterations

5 shortest paths 10 shortest paths 15 shortest paths
hop-count link-cost hop-count link-cost hop-count link-cost

as
3 24.15 42.65 12.83 15.76 7.75 13.14
4 15.22 24.57 8.09 10.86 5.52 8.94
5 9.36 22.09 6.07 9.98 5.06 8.22

ras
3 19.20 51.75 16.22 29.81 11.92 20.54
4 10.78 30.24 8.37 16.10 6.56 11.17
5 7.97 22.24 6.14 11.98 5.04 8.91

eas
3 8.50 20.48 6.96 13.13 6.36 10.28
4 5.26 13.44 4.54 8.31 4.28 6.88
5 4.05 10.97 4.19 7.12 4.10 6.48

mmas
3 14.56 30.91 10.60 17.07 9.52 14.40
4 9.41 19.89 9.40 12.94 8.76 10.87
5 7.84 18.04 8.92 10.68 7.52 8.61

bwas
3 22.97 46.16 25.33 39.96 21.55 29.65
4 19.19 36.28 16.56 18.12 11.24 12.78
5 16.42 30.63 12.55 13.84 7.94 9.17

acs
3 28.28 46.65 19.05 24.01 12.31 16.47
4 18.69 29.68 11.50 13.73 7.23 9.43
5 11.71 20.15 7.47 9.60 5.24 7.41

of pheromones after each step, may make ants forget the heuristic information.

The e�ect of ξ parameter should also be investigated to increase the performance

of ACS algorithm.

From Table 6.6, we can conclude that although MMAS has the smallest resource

usage values, all algorithms have relatively the same performance. There is

no signi�cant di�erence between the resource usage values of the implemented

algorihtms for 4 connected VTs. Table 6.7 shows the �rst hit iterations in which

the best solutions are retrieved. Average of the �rst hit iterations are given based

on both hop-count and link-cost. When we compare the results for link-cost and

hop-count we can see that best solutions are found in earlier iterations when the

hop-count calculation method is used. Hop-count calculation method also results

in better success rates not only for 5 connected virtual topologies, but also in 5

shortest path cases (see Table 6.4). We can see from Table 6.7 that EAS �nds its

best solution in earlier iterations than the other algorithms. From Table 6.7, we

can conclude that BWAS �nds its best solution in the latest iteration. The reason

may be the pheromone mutation procedure. When BWAS cannot �nd a better
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solution after a prede�ned number of iterations, the pheromones are updated and

di�erent solutions are explored. The best solution may be found after this stage.

Table 6.8: Average and standard error of first hit times

5 shortest paths 10 shortest paths 15 shortest paths
hop count link cost hop count link cost hop count link cost

acs

3
a 7.00 11.10 8.01 11.54 8.08 11.12
e 0.12 0.11 0.10 0.08 0.10 0.08

4
a 7.32 12.35 8.43 11.53 8.09 10.97
e 0.12 0.08 0.11 0.08 0.11 0.09

5
a 8.07 12.81 8.62 11.98 8.94 12.86
e 0.11 0.09 0.11 0.09 0.12 0.11

as

3
a 2.22 4.33 2.86 4.92 3.18 5.89
e 0.07 0.09 0.07 0.08 0.06 0.09

4
a 2.38 5.46 3.02 6.15 4.03 7.09
e 0.07 0.10 0.06 0.09 0.06 0.08

5
a 2.57 7.00 3.97 8.35 5.72 9.74
e 0.06 0.11 0.05 0.09 0.06 0.08

bwas

3
a 3.78 7.55 6.83 10.98 8.07 11.21
e 0.08 0.09 0.10 0.08 0.10 0.08

4
a 4.36 8.93 6.46 8.29 6.66 8.23
e 0.09 0.08 0.09 0.08 0.09 0.08

5
a 5.67 10.50 7.30 9.51 7.18 8.77
e 0.10 0.08 0.10 0.08 0.09 0.08

eas

3
a 2.24 5.73 3.15 6.44 4.21 6.97
e 0.06 0.10 0.07 0.09 0.08 0.09

4
a 2.32 6.60 3.38 7.04 4.79 8.06
e 0.06 0.10 0.06 0.09 0.06 0.08

5
a 2.81 7.81 4.87 9.10 7.05 11.47
e 0.06 0.10 0.06 0.09 0.07 0.09

mmas

3
a 2.79 6.86 4.00 8.09 6.08 9.65
e 0.07 0.10 0.06 0.08 0.07 0.07

4
a 2.60 7.65 5.95 10.77 9.67 12.70
e 0.05 0.09 0.06 0.07 0.08 0.06

5
a 4.07 9.80 9.70 13.19 12.69 14.94
e 0.05 0.09 0.07 0.06 0.09 0.07

ras

3
a 3.11 8.54 4.30 8.21 4.44 7.79
e 0.09 0.11 0.10 0.10 0.09 0.10

4
a 2.96 8.60 3.72 7.62 4.12 7.25
e 0.09 0.10 0.09 0.10 0.08 0.09

5
a 3.34 9.10 4.09 8.53 4.81 8.68
e 0.09 0.10 0.08 0.09 0.08 0.09

Table 6.8 shows the �rst hit times in which the best solutions are retrieved. The

time unit is shown as seconds. Average (a) and the standart error(e) of the �rst hit
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times are given based on both hop-count and link-cost. Similar to the Table 6.7,

the best solutions are found earlier when the hop-count calculation method is

used. We can see from Table 6.8 that AS �nds its best solution earlier than the

other algorithms. It is not suprising because AS has the basic procedures. As

the quality of the solutions found by AS is as good as the solutions found by

the other algorithms (see Tables 6.5 and 6.6), in time critical systems, AS can

be used to gather good solutions in a short time. MMAS, ACS and BWAS �nds

their best solutions later than the other algorithms. EAS and RAS do not need

much time to retrieve their best solutions. As their qualities are comparable to

the other algorithms, they can be used in time critical systems con�dently.

6.3 Discussion

As a summary of the experiments, we recommend ACO algorithms for the

survivable VT mapping problem due to their decision policy at each step. They

�nd feasible solutions after each iteration. To increase the performance and the

success rates, as many shortest paths as necessary should be used. Based on the

results, even though all ACO algorithms perform well, we can recommend MMAS

with hop-count calculation method due to its overall success and better reaction

to the increasing search space. MMAS �nds its best solutions later than the other

algorithms when 15 shortest paths are provided. In time critical systems, AS can

be used because it converges to its best solutions earlier than the other algorithms

but from Table 6.4, we can conclude that success rates of AS is not as good as

the other algorithms so in 15 shortest path cases, to decrease time utilized by

MMAS, EAS and RAS can be used reliably to retrieve best solutions in a short

time with high success rates.

We also performed a series of experiments to compare the performance of the

EA and ACO for the survivable VT mapping problem. In these experiments,

we used two metrics for performance comparisons: success rate, and resource

usage. For the experiments, we used the same physical topology as we did to

compare the ACO variants(see Figure 6.7). We created 50 random VTs with

average connectivity degrees of 3, 4, and 5. We assumed capacity of physical link

as 10 wavelengths.
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Table 6.9: Success rates retrieved by ACO and EA

5 shortest 10 shortest 15 shortest

paths paths paths

EA ACO EA ACO EA ACO

hop count
3 0.26 0.72 0.55 0.92 0.59 0.97

4 0.87 0.94 0.95 1 0.97 1

5 0.97 0.98 1 1 1 1

link cost
3 0.19 0.60 0.53 0.93 0.60 0.98

4 0.84 0.88 0.94 0.96 0.97 1

5 0.98 0.83 1 1 1 1

Here, we used the EA approach and the parameter set with the best performance

from [18]. In the EA performance tests, we considered a mutation probability

of 1/l, where l is the number of lightpaths, a crossover probability of 1.0 and a

population size of 100. A penalty factor of 200 is used in the tests using hop

count for shortest path calculation, and 300 in the tests using link cost.

The termination criterion for both algortihms is to create a prede�ned number

of points in the solution space. We applied separate tests to each algorithm and

determined this number as the iteration count after which there is no improvement

in solution quality. As a result, we decided this number to be 5000 for the EA,

and 100 for the ACO. We should note that each run of the programs take less

than a minute on the average. We performed 20 runs for each experiment.

The results of the experiments are given in Tables 6.9, and 6.10. Table 6.9 shows

the success rates of both heuristics averaged over 1000 runs (20 runs per VT

instance). For each algorithm and VT connectivity degree, we examined three

di�erent numbers of alternative shortest paths for each lightpath. We used 5, 10,

and 15 shortest paths calculated according to hop count and link cost. Table 6.10

shows the lower (l) and upper (u) bounds for the resource usage of both algorithms

with 95% con�dence interval calculated using only the results of the successful

runs.

A quick observation of Table 6.9 shows that success rates for both algorithms are

very high. Generally ACO achieves higher success rates. The experiments using

hop count calculation method performs better in terms of success rate for both

heuristics. In Table 6.9, we can see that success rates increase with the increase
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Table 6.10: Lower and upper bounds of resource usage with 95% confidence interval for ACO and EA

5 shortest 10 shortest 15 shortest

paths paths paths

EA ACO EA ACO EA ACO

hop count

3
l 113.24 111.53 115.15 115.88 117.48 116.99

u 114.86 112.48 116.39 116.80 118.84 117.91

4
l 146.8 146.54 150.84 154.51 153.9 156.82

u 147.64 147.31 151.7 155.41 154.78 157.78

5
l 185.64 187.01 192.32 197.18 197.86 201.55

u 186.8 188.19 193.53 198.42 199.17 202.85

link cost

3
l 115775 111175 115733 116329 118524 117838

u 117751 112507 117104 117391 119954 118934

4
l 147272 147319 151183 154017 154928 156137

u 148379 148317 152166 155061 156528 157223

5
l 200687 189479 199330 199969 203287 204412

u 209674 191047 204847 201535 207230 205966

in the number of alternative shortest paths. In EA tests; for 3 connected VTs,

success rates for 10 shortest paths are more than twice the success rates for 5

shortest paths, however, the increase of success rate from 10 shortest paths to 15

shortest paths is not that high. This is because of the exponential growth of the

search space.

The probability of random candidate solutions being survivable increases with

the connectivity degree of the VT. Therefore, for higher connectivity degrees of

VTs, both algorithms have higher success rates. However, the EA has a much

smaller success rate than ACO for 3 connected VTs.

Table 6.10 shows that the resource usage increases slightly with the increase in

the number of alternative shortest paths. This is an expected result, since, the

probability of getting stuck at local optima is higher in larger search spaces and

both algorithms are allowed to run up to a prede�ned maximum time. If the run

times are increased, the resource usage results for di�erent number of shortest

paths will converge. Even though success rates in Table 6.9 are higher for ACO

on 4 and 5 connected VTs, Table 6.10 shows that the solution quality of EA is

better.

High success rates show that both heuristics are promising for the survivable VT

mapping problem. ACO performs better for sparse VTs both according to success
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rate and resource usage. However, for dense VTs, ACO gives better success rates

whereas EA gives better quality results. Since the time needed to �nd a feasible

solution is less than a minute, these heuristics can easily be applied to real world

applications.
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7. CONCLUSION

The aim of this thesis is to route lightpaths on a physical topology in such a way

that the capacity constraints of the links are not violated and in case of a physical

link failure, the VT is not disconnected when all the lightpaths routed through

this link are deleted from the VT. Survivable VT mapping is an optimization

problem with the objective of minimizing the resource usage that is the number

of wavelength used in the whole physical topology.

VT mapping problem has been the area of interest to many studies. However

most of them did not consider the survivability constraint. Their objective is to

minimize the number of wavelength used without violating capacity constraints.

The studies that take survivability constraint into account mostly did not consider

capacity constraints and retrieved solutions in a long time. In this study, we have

implemented six ACO algorithms and considered not only survivability constraint

but also capacity constraints of the links in the physical topology. Another

important contribution of this study is that remarkable solutions are retrieved

in quarter of a minute. Unlike other algorithms, the user does not need to wait

for a long time to obtain good solutions. Moreover, the implemented algorithms

does not decrease in performance when the search space is getting bigger.

Our results show that ACO algorithms can be successfully used for the survivable

virtual topology mapping problem. When we compare our results with EAs

implemented in [18], we see that if we run the algorithms for the same amount

of time, we obtain lower resource usage with higher success rates using ACO.

Overall, the results are promising and promote further study to improve the

ACO performance.

As future work, we will examine the e�ect of other ACO speci�c parameters

such as σ , τ0, Pm and the number of shortest paths on the performance of the
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algorithms. We will also use classical optimization algorithms to compute lower

bounds of the solutions to better asses the quality of our results.

The future work includes also testing the algorithms on di�erent data. Moreover,

the graph structures of the data sets can be examined and a relation between the

graph structure and best variation to route the lightpaths can be set up.
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