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ANT COLONY OPTIMIZATION FOR SURVIVABLE VIRTUAL TOPOLOGY
MAPPING IN OPTICAL WDM NETWORKS

SUMMARY

As the Internet use increases significantly in everyday life, the need for bandwidth
increases accordingly. The most effective technology to meet this high bandwidth
need is the optical networking technology. The fiber used in optical networks
has the highest bandwidth capacity (50 Th/s) amongst all other physical
layer technologies. This high capacity, using wavelength division multiplexing
technology, can be divided into hundreds of different transmission channels,
which can transmit simultaneously. Each of these channels work on different
wavelengths and each channel can be associated with a different data transmission
rate. Wavelength division multiplexing offers an attractive solution to increasing
local area network bandwidth without disturbing the existing embedded fiber and
continue to be the main choice for the near future.

End-to-end optical connections that the packet layer (IP, Ethernet, etc.) uses
are called lightpaths. Since the fibers on the physical topology allow traffic flow
on different wavelengths, more than one lightpath, each operating on different
wavelengths, can be routed on a single fiber. All the lightpaths set up on the
network form the virtual topology. Physical topology is the physical structure
of the network that gives information about how the workstations are connected
to the network through the actual cables that transmit data whereas the virtual
topology is the way that the data passes through the network from one device to
the next without regard to the physical connection of the devices. Edges of the
virtual topology represent the lightpaths that need to be routed on the physical
topology. When a lightpath from one node to another is defined on a physical
topology, that means data passes between these nodes and an edge is created on
virtual topology to indicate this data transfer.

Any damage to a physical link (fiber) on the network causes all the lightpaths
routed through this link to be broken. Since huge data transmission (40 Gb/s)
over each of these lightpaths is possible, such a damage results in a serious amount
of data loss. Two different approaches can be used in order to avoid this situation:

1. Survivability on the physical layer
2. Survivability on the virtual layer

The first approach is the problem of designing a backup link/path for each
link /path of the optical layer. The second approach is the problem of designing
the optical layer such that the optical layer remains connected in the event of a
single or multiple link failure. While the first approach provides faster protection
for time-critical applications (such as, IP phone, telemedicine) by reserving more
resources, the second approach, i.e. the survivable virtual topology design, which
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has attracted a lot of attention in recent years, aims to protect connections using
less resources. The problem that will be studied in this thesis is to develop
methods for survivable virtual topology design, that enables effective usage of
the resources. Given the physical parameters of the network (physical topology,
optical transceivers on the nodes, wavelength numbers on the fibers, etc.) and the
mean traffic rates between nodes, the problem of designing the lightpaths to be
set up on the physical topology is known as the virtual topology design problem.

The virtual topology design problem can be divided into four different
subproblems:

1. Designing a proper virtual topology according to the mean packet traffic rates
between nodes,

2. Routing the lightpaths of the virtual topology on the physical topology,
3. Assigning wavelengths to the lightpaths,
4. Routing packet traffic over the virtual topology.

Since any solution to these subproblems affects the solution of other subproblems,
the result obtained by solving the subproblems one-by-one and iteratively, may
not be the optimum. The pure virtual topology design problem is proved to
be NP-complete. This problem, when the survivability constraints are added,
gets harder. Because of its complexity, it is not possible to solve the problem
optimally in an acceptable amount of time, for real-life sized networks. The main
concern of this study is the second subproblem called virtual topology mapping
problem. Virtual topology mapping is the problem of routing lightpaths on
physical topology in a way that the capacity constraints of fibers in physical
topology are not violated. Survivable virtual topology mapping has another
constraint stating that in case of a physical link failure, the virtual topology
is not disconnected when all the lightpaths routed through this link are deleted
from the virtual topology.

Since the problem is NP-complete, it is appropriate to use heuristics to obtain
the solutions. There are several studies on this topic. However, in several of
these studies, only the second subproblem of virtual topology design problem
is considered, without the survivability constraint. According to our literature
survey, the only nature inspired heuristics used to solve the routing problem under
the survivability constraint are Tabu Search and Simulated Annealing. Nature
inspired heuristics are used successfully to solve a great deal of NP-complete
problems.

In this thesis, six ant colony optimization algorithms are implemented to solve the
virtual topology mapping problem. Ant system has been the basis for many ACO
variants which have become the state-of-the-art for many applications. These
variants include elitist ant system, rank-based ant system, MAX-MIN ant system,
ant colony system, best-worst ant system, the approximate nondeterministic
tree search, and the hyper-cube framework. Elitist ant system, rank-based ant
system, MAX-MIN ant system, ant colony system and best-worst ant system can
be considered as direct variants of ant system since they all use the basic AS
framework. The main differences between ant system and these variants are the
pheromone update procedures and some additional details in the management
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of the pheromone trails. In this study, we implemented ant system, elitist ant
system, rank-based ant system, MAX-MIN ant system, ant colony system and
best-worst ant system for the VT mapping problem since these direct variants of
ant system have been successfully applied to many similar problems in literature.

The way ant colony algorithms are applied to the virtual topology mapping
problem is described below: The physical topology is used as a graph on which
ants travel and construct their solutions. Ants simultaneously try to route
lightpaths on the graph one-by-one. Each starts to route a random lightpath. The
shortest paths between the end points of the lightpaths are provided to ants at
the very beginning of the algorithm. Ants decide their move on the construction
graph based on heuristic and pheromone information. Pheromone is modelled
as a 2D array which accumulates the information learned by the ants. There
are two different pheromones utilized in our problem, one for choosing the next
lightpath called "lightpath pheromone", the other is for selecting the shortest
path of the chosen lightpath called "shortest path pheromone". The lightpath
pheromone has lightpaths in its columns and rows and tells the information
which lightpath is more valuable to move from the current lightpath, whereas the
shortest path pheromone has lightpaths in its rows and corresponding shortest
paths in its columns and tells the information about which shortest path gives
the best result when selected for the current lightpath. These pheromones are
initialized in the beginning of the algorithm with the same value for each possible
choice of the ant. The difference is created by heuristic information that is
inversely proportional to the length of the shortest paths. The ants uses lightpath
pheromone to decide the next lightpath and shortest path pheromone together
with heuristic information to decide the shortest path for the selected lightpath.
The pheromones are updated after solutions are constructed. The amount of the
accumulated pheromone is proportional to the solution quality. An iteration is
the process in which each ant constructs a complete solution. The algorithm
stops when both maximum number of iterations are retrieved and the maximum
allowed time is completed.

To compare the performance of ant colony optimization algorithms, we perform
a series of experiments to calculate resource usage based on both hop-count and
link-cost on 100 different instances each, for 3, 4, 5 connected virtual topologies.
Link-cost calculation method considers the actual lengths of the physical links
whereas hop-count method counts the number of physical links used. For each
algorithm and node degree, 3 different numbers of alternative shortest paths for
lightpaths are examined. We tried 5, 10, and 15 shortest path cases. Algorithms
are run 20 times for each virtual topology and each run is allowed to continue for
15 seconds.

The performance of the ant colony optimization variants are shown quantitatively,
both according to the speed, success rates and the effective usage of network
resources. As a summary of the experiments, we recommend ant colony
optimization algorithms for the survivable VT mapping problem due to their
decision policy at each step. They find feasible solutions after each iteration.
Based on the results, even though all ant colony optimization algorithms perform
well, we can recommend MAX-MIN ant system with hop-count calculation
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method due to its overall success and better reaction to the increasing search
space.
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OPTiK AGLARDA KARINCA KOLONI ALGORITMALARI KULLANARAK
SANAL TOPOLOJI UZERINDEKI ISIK YOLLARININ HATAYA BAGISIK

OLARAK YONLENDIRILMESI

OZET

Internet kullamiminin giinliik hayata her gecen giin daha fazla girmesiyle bant
genisligi ihtiyaci giderek artmaktadir. Bu yiiksek bant genigligi ihtiyacim
kargilayabilecek en etkili teknoloji ise optik aglardir. Optik aglarda kullanilan
fiber kablolar diger tiim fiziksel katman teknolojilerinden ¢ok daha biiyiik bant
genigligine sahiptir (50 Tbh/s). Bu kapasite, WDM (dalga boyu bélmeli ¢cogullama
- wavelength division multiplexing) teknigi kullamilarak, her biri farkli bir
dalgaboyunda calisan yiizlerce farkh iletim kanalina boéliinebilir ve bu kanallar
eszamanh caligtirilarak kullanilabilir. Bu kanallarin her biri farkli dalga boyunda
caligir ve her bir kanalin veri aktarim hiz istenildigi gibi secilebilir. Dalga boyu
bolmeli cogullama teknigi, siirekli artan yerel ag bant genigligine, fiberin varolan
fiziksel yapisin1 bozmadan dikkat ¢ekici bir ¢6ziim sunmakta ve yakin gelecekte
bu konuda ilk akla gelen adres olmaya devam etmektedir.

Paket katmanmm (IP, Eternet, vs.) kullanacagi ugtan uca kurulan optik
baglantilara 1gikyolu (lightpath) denir.  Fiziksel topolojideki fiber kablolar
farkli dalgaboylarinda trafik akigina izin verdiginden, bir fiber {izerinde farkl
dalgaboylarinda olmak kaydiyla birden fazla 1gikyolu yonlendirilebilir. Agda
kurulan tiim 1gikyollarn agin sanal topolojisini (virtual topology) olusturur.
Fiziksel topoloji, agin fiziksel yapisidir ve agda bulunan bilgisayarlarin bilgi
iletimini saglayan gercek kablolarla, aga nasil baglandigi hakkinda bilgi verir.
Diger yandan sanal topoloji, aralarinda fiziksel bir baglantinin varligina dikkat
etmeden, bir birimden digerine bilgi gecisinin olup olmadig1 hakkinda bilgi verir.
Sanal topolojinin kenarlar, fiziksel topoloji {izerinde yonlendirilmesi gereken 151k
yollarini gosterir. Fiziksel topoloji iizerinde bir diigiimden digerine bir 1sikyolu
tanimlanmasi, bu diigliimler arasinda veri akisinin olacagi anlamina gelmektedir
ve bu veri akigin1 anlatmak iizere sanal topolojiye bir kenar eklenir.

Ag dizerindeki bir fiziksel baglantinin (fiber) herhangi bir gekilde hasara
ugramasi, bu baglanti iizerinden gecen tiim igikyollarinin kopmasina neden
olur. Isikyollarinin herbiri iizerinden c¢ok biiylik miktarlarda veri akig
saglanabildiginden (40 Gb/s) boyle bir hasar durumunda agda ¢ok ciddi veri kaybi
meydana gelir. Bu durumdan korunmak i¢in iki farkh yaklagim kullanilmaktadir:

1. Fiziksel katmanda hataya bagigiklik
2. Sanal katmanda hataya bagigiklik

Birinci yontem, optik katmandaki herhangi bir yol/baglanti icin yedek
yol/baglant1 tasarlama problemidir. Ikinci yontem ise, fiziksel katmanda bir
va da daha fazla baglant1 koptugunda sanal topolojinin hala bagli olabilmesini
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saglayacak sekilde tasarim yapmaktir. Birinci yontem daha fazla kaynagi
rezerve ederek, zamana bagl kritik uygulamalarda (IP telefon, teletip gibi) daha
hizli koruma saglarken; son yillarda dikkat ceken ikinci yontem, yani hataya
bagisik sanal topoloji tasarimi daha az miktarda kaynak kullanarak baglantilarin
korunmasini amaclamaktadir. Bu projede iizerinde ¢ahisilacak problem de ag
kaynaklarimi etkin kullanan bir hataya bagisik sanal topoloji tasarim y6nteminin
geligtirilmesidir. Agin fiziksel parametreleri (fiber topolojisi, diigiimlerdeki optik
alic1 ve verici sayilar (optical transceiver), fiber kablolardaki dalgaboyu sayisi,...)
ve diiglimler arasindaki ortalama trafik degerleri verildiginde, bu kaynaklari
optimum diizeyde kullanarak fiziksel topoloji iizerine kurulacak igikyollarini
tasarlama problemine "sanal topoloji tasarimi" denmektedir.

Sanal topoloji tasarimi problemi dort farkl alt problem seklinde ele alinabilir:

1. Diigiimler arasindaki paket trafigi yogunluklari gézoniine alinarak uygun sanal
topoloji belirlenmesi,

2. Sanal topolojideki isikyollarinin fiziksel topolojideki baglantilar iizerinde
yonlendirilmesi,

3. Isikyollarina dalgaboyu atanmasi,
4. Paket trafiginin sanal topoloji {izerinde yonlendirilmesi.

Bu alt problemlerden herbirinin ¢éziimii digerlerini etkilediginden, ayri ayri ve
sirayla ¢oziildiiklerinde ortaya ¢ikan sonug en iyi ¢oziim olmayabilmektedir. Salt
sanal topoloji tasarimi probleminin NP-karmagik oldugu kamitlanmigtir. Bu
problem, hataya bagisiklik kosulu da eklendiginde, daha da zorlagmaktadir.
Problemin karmagikligi nedeniyle, gercek uygulamalardaki boyutlarda hizli bir
sekilde ve optimum olarak ¢oziilmesi miimkiin olmamaktadir. Bu c¢alismanin
esas konusu, yukaridaki alt problemlerden ikincisi olan igikyollarinin sanal ag
tizerinde yonlendirilmesi problemidir. Sanal topolojinin yénlendirilmesi problemi,
1isikyollarinin sanal topoloji lizerinde fiziksel topolojide bulunan fiberlerin kapasite
kisitlarin1 agmadan yonlendirilmesidir. Hataya bagisik olarak sanal topolojinin
yonlendirilmesi problemi bir kisita daha sahiptir, bu kisita gore, ag iizerindeki
bir fiziksel baglantinin (fiber) herhangi bir sekilde hasara ugramasi sonucu,
bu baglant1 {izerinden gegen tiim 1gikyollarinin sanal topolojiden silinmesi
durumunda sanal topolojinin hala bagh bir graf olmas: gerekir.

Yukarida bahsettigimiz problem NP-karmagik oldugundan ¢oziimii icin sezgisel
yaklagimlar kullanilmasi uygundur. Bu konuda yapilmig bir¢ok calisma vardir.
Ancak bu caligmalarin c¢ogunda sanal topoloji tasarimi probleminin sadece
ikinci alt problemi, hataya bagisiklik kisit1i géz oniinde bulundurulmadan ele
alinmigtir.  Yaptigimiz arastirmalar sonucunda hataya bagisiklik kisiti altinda
yonlendirme problemi igin sadece Tabu Arama (Tabu Search) ve Tavlama
Benzetimi (Simulated Annealing) gibi doga esinli algoritmalarin kullanilmig
oldugunu gordiik. Doga esinli algoritmalar bir¢gok NP-karmagik problemin
coziimiinde basarili olarak kullanilmaktadir.

Bu tez kapsaminda, sanal topoloji iizerindeki 1gik yollarinin yonlendirilmesi
problemine alt1 farklh karinca koloni optimizasyon algoritmasi gerceklenmigstir.
Ant system, pek cok problemin literatiirde en gelismis yontemi olan cesitli
karinca koloni optimizasyon algoritmalarinin temelini olusturmaktadir. Karinca
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koloni optimizasyon algoritmalarinin tiirevleri elitist ant system, rank-based
ant system, MAX-MIN ant system, ant colony system, best-worst ant system,
approximate nondeterministic tree search ve hyper-cube framework olarak
listelenebilir. Bu algoritmalar icinde ant system algoritmasinin direk tiirevi
olan algoritmalar elitist ant system, rank-based ant system, MAX-MIN ant
system, ant colony system ve best-worst ant system algoritmalaridir, ¢linkii bu
algoritmalar ant system algoritmasinin ana catisini kullanmaktadir. Ant system
ve tiirevleri arasindaki en belirgin farkliliklar hormon giincelleme yontemleri ve
hormonun peginden gitme stratejileri arasindaki degisikliklerdir. Bu calismada,
literatiirde benzer problemler iizerindeki basarilar1 nedeniyle, ant system,
elitist ant system, rank-based ant system, MAX-MIN ant system, ant colony
system ve best-worst ant system algoritmalari sanal ag iizerinde 1gikyollarinin
yonlendirilmesi problemini ¢6zmek amaciyla gerceklenmigtir.

Karinca koloni optimizasyon algoritmalarinin, sanal ag tizerinde igikyollarinin
yonlendirilmesi problemine uygulanmasi sdyle olmustur: Fiziksel topoloji,
karincalarin iizerinde dolagtigi ve ¢ozlim iirettigi bir graf olarak kullanilmigtir.
Karincalar es zamanli olarak, isikyollarini graf {izerinde birer birer
yonlendirmektedir. Herbiri rasgele bir igikyolunu yonlendirmekle ige baslar.
Algoritmanin en basinda, karincalara biitiin 1sikyollarinin uclar1 arasindaki
en kisa yollarin bilgisi verilmektedir. Karincalar ¢oziim iirettikleri graf
izerindeki hareketlerine hormon ve sezgisel bilgilerini kullanarak karar verirler.
Hormon karincalarin ogrenilmis bilgilerini tutan iki boyutlu bir dizi olarak
modellenmigtir. Problemimizde iki tane hormon bilgisi kullanilmaktadir, birisi
sonraki 1s1tk yolunu bulmak amaciyla kullamilan "isikyolu hormonu", digeri ise
secilen 1g1kyolu i¢in en kisa yolun bulunmasi icin kullanilan "en kisa yol hormonu"
"dur. Isikyolu hormonunun satir ve siitunlarinda isikyollart bulunmaktadir ve
yonlendirilmesi bitmis olan sgimdiki 1sikyolundan sonra hangi igikyolunun
secilmesinin daha faydal olacagina dair bilgi verir. En kisa yol hormonunun
ise satirlarinda igikyollar:, siitunlarinda bu isikyollarina karsilik gelen en kisa
yollar bulunmaktadir ve secilen 1sikyolu hangi en kisa yoldan yonlendirilse
daha iyi sonuc elde edilecegi hakkinda bilgi verir. Bu hormon matrisleri,
algoritmanin en baginda karincanin yapabilecegi her secim igin ayni deger ile
ilklendirilir. Farklilik sezgisel bilgi ile yaratilir, oyle ki, bu bilgi en kisa yollarin
uzunluklan ile ters orantilidir. Karincalar sonraki isikyoluna karar verirken
igikyolu hormonunu, secilen igikyolunun hangi yolla yonlendirilecegine karar
verirken 151k yolu hormonunu sezgisel bilgi ile beraber kullanirlar. Karincalarin
her biri ¢oziimiirettiginde hormon bilgileri giincellenir. Hormon bilgisine eklenen
yeni hormon degerleri ¢oziim kalitesi ile dogru orantilidir. Biitiin karincalarin
bir ¢6ziim iiretmesi icin gecen siireye iterasyon denir. Algoritma, daha dnceden
tanimlanan maksimum iterasyon sayisi tamamlandiginda ve kendisine verilen
maksimum siire doldugunda sonlanir.

Karinca koloni algoritmalarinin performanslarini karsilagtirmak amaciyla bir dizi
testler yapilmigtir. 3, 4 ve 5 bagh 100’er farkli sanal topoloji kullanilmig ve
bulunan c¢oziimlerin ag kullanimi degerleri fiberler iizerinden gecis sayisi ve
gecilen fiberlerin maliyetleri gozoniine alinarak hesaplanmigtir. Maliyet dikkate
alindiginda kullanilan fiberlerin kilometre olarak uzunluklar1i hesaba alinirken,
gecis sayist dikkate alindiginda sadece kullanilan fiberlerin sayis1 hesaplanmistir.
Her algoritmaya kag¢ bagl sanal topoloji olduguna dikkat edilmeksizin 3 farklh
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sayida en kisa yollarin bilgisi saglanmigtir. Testlerimizde sirasiyla 5, 10 ve 15 tane
en kisa yol kullanilmigtir. Algoritmalar, her sanal topoloji i¢in 20 kez ¢aligtirilmig
ve her kogumun 15 saniye siirmesine izin verilmigtir.

Geligtirilen yontemlerin performanst hem hiz, hem bagarim hem de ag
kaynaklarinin etkin kullanimi acisindan nitel olarak ortaya koyulmugtur. Yapilan
testlerin sonucu olarak, karinca koloni algoritmalar: her adimda kisitlar1 gézoniine
alarak karar verme stratejileri sayesinde, hataya bagisik olarak igikyollarinin
sanal topoloji iizerinde yonlendirilmesi problemine uygulanabilir.  Karinca
koloni algoritmalari her iterasyon sonunda kisitlar1 asmayan uygun c¢oziim
iretebilmiglerdir. Sonuclar1 inceledigimizde, her karinca koloni algoritmasi iyi
sonug liretmig olsa da, MAX-MIN ant system algoritmasinin gerek bagarisi gerekse
artan arama uzayina toleransindan dolay1 gecis sayisi hesaplama yontemi ile
birlikte kullanilmasini oneririz.
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1. INTRODUCTION

Today, optical networking [1] is the most effective technology to meet the
high bandwidth network demand. The high capacity of fiber used in optical
networks, can be divided into hundreds of different transmission channels, using
the wavelength division multiplexing (WDM) technology. Each of these channels
work on different wavelengths and each channel can be associated with a different

optical connection.

Any damage to a physical link (fiber) on the network causes all the channels on
this link to be broken. Huge amount of data (40 Gb/s) can be transmitted over
each of these channels, so a fiber damage may result in a serious amount of data
loss. To avoid data loss, these channels can be designed in a way that in the
event of a single or multiple link failures, all workstations on the network can still
accomplish data transfer. In this study, our aim is to route data traffic through

these channels while considering single link failures and the capacity of the fibers.

The communication between nodes in the physical topology is mapped on a graph
called virtual topology (VT). Lightpaths are the edges of the VT representing
communication channels to be routed on the physical topology. VT mapping is
the problem of routing lightpaths on the physical topology in such a way that the
capacity constraints of fibers in the physical topology are not violated. Survivable
VT mapping has another constraint stating that in case of a physical link failure,
the VT is not disconnected when all the lightpaths routed through this link are
deleted from the VT.

The VT mapping problem is known to be NP-complete [2]. Because of its
complexity, for real-life sized networks, it is not possible to solve the problem
optimally in an acceptable amount of time using classical optimization techniques.
Therefore, heuristic approaches should be used. In this study, we chose ant

colony algorithms (ACO) because of their successful applications on NP-complete



problems. We used ACO to find a survivable mapping of a given VT while
minimizing the resource usage. We implemented six different ACO algorithms
and compared their performance to determine which algorithm is more suitable

for this problem and we investigated possible reasons.

The rest of the thesis is organized as follows. In Section 2, a brief introduction
to optical networks and WDM is given. The definition of the problem together
with its mathematical formulation is given in Section 3, followed by the related
literature. In Section 4, the details of the implemented six ACO algorithms are
given. Section 5 interprets the way ACO algorithms are applied to the survivable
VT mapping problem. In Section 6, the experimental results are given and these
results are discussed thoroughly. Finally, in Section 7, conclusion and future work

are given.



2. OPTICAL NETWORKS

A revolution in telecommunications networks evolved in the early 1980s and
became widespread by the use of a relatively unassuming technology: fiber optic
cable. Since then, optical networks have been commonly used due to increased
network quality and the tremendous cost savings. The benefits of optical networks
have been increased by the advances in the technologies required for optical

networks.

There are many factors driving the need for optical networks. A few of the most
important reasons for migrating to the optical layer can be listed as fiber capacity,

restoration capability, reduced cost and wavelength services [3].
Fiber Capacity

Optical networks were first implemented on fiber-limited routes. However, a
few years later, the capacity of fibers became inadequate to meet the increased
demand. More capacity is needed between two sites. As higher bit rates were not
available in a fiber, there remains no other options except installing more fiber or
placing more time division multiplexed (TDM) signals on the same fiber. The first
choice is expensive and labor-intensive. Using WDM technology, many "virtual”
fibers are provided on a single physical fiber. Network providers managed to send

many signals on one fiber by transmitting each signal at a different frequency.
Restoration Capability

A failure in a fiber can result in enormous consequences because of the increased
capacity. Each network element performs its own restoration in current electrical
architectures. Whereas, in a WDM system with many channels on a single fiber,
a fiber cut would cause multiple failures to happen, causing many independent
systems to fail. Optical networks can perform protection switching faster and
more economically when restoration is performed in the optical layer instead of

the electrical layer. Moreover, networks that currently do not have a protection



scheme can also be restored using the optical layer. As a result of this technology,
providers are able to add restoration capabilities to embedded asynchronous

systems without first upgrading to an electrical protection scheme.
Reduced Cost

In optical networks, the high cost of electronic cross-connects is avoided by
providing space and wavelength for routing of traffic and network management

is simplified.

In WDM technology, each optical switch that demultiplexes signals will utilize
an electrical network element for each channel, without regard to the existence of
traffic routed through that node. By implementing an optical network, only those
wavelengths that add or drop traffic at a site need corresponding electrical nodes.
Other channels can simply pass through optically. That provides enormous cost

savings in network and equipment management.
Wavelength Services

One of the great advantage of optical networks is the ability to resell bandwidth
instead of fiber. Service providers can improve revenue by selling wavelengths by
maximizing capacity available on a fiber, without regard to the data rate required.

Customers think this service provides the same bandwidth as a dedicated fiber.

2.1 Fiber Optic Communication

An optical fiber (or fibre) is a plastic or glass fiber that is used for carrying light
along its length. Fiber optics is arised from the common studies of applied science

and engineering on the design and application of optical fibers.

Optical fibers are widely used in fiber-optic communications, that permits
data transmission over longer distances and at higher bandwidths than other
communications systems. Metal wires are replaced by fibers because signals
flow through them with less loss, and they are not affected by electromagnetic
interference. Fibers can be used to carry and brighten images. They can also be
designed specially to be used for a variety of other applications, such as sensors

and fiber lasers.



Fiber-optic communication systems were first developed in the 1970s and
revolutionized the telecommunications industry [4]. They have a significant
contribution to the advent of the Information Age. In the developed world,
optical fibers have been largely used instead of the copper wire communications

in core networks due to their benefits of electrical transmission.

Fiber-optic communication is a method that sends pulses of light through an
optical fiber to transmit data from one place to another. The light behaves as an

electromagnetic carrier wave that is responsible for carrying data.

The procedure of fiber-optic communication involves the following basic steps:
Creating the optical signal via a transmitter, flowing the signal through the fiber,
verifying that the signal is not too deformed or weak, receiving the optical signal,

and converting it into an electrical signal.

Until the late 1980s, optical fiber communications was mainly restricted to
transmitting data using a single optical channel that is required periodic
maintenance because signals in a fiber get weaker after a time period. This
maintenance includes detection, electronic processing, and optical retransmission
that causes a high-speed optoelectronic traffic delay and can handle only a single
wavelength [5]. The development of the new generation amplifiers enabled us to

accomplish high-speed repeaterless single-channel transmission.

2.2 Wavelength Division Multiplexing

WDM is the method of dividing the wavelength capacity of an optical fiber into
multiple channels to send more than one signal using the same fiber [6]. This
requires a wavelength division multiplexer in the transmitting equipment and
a wavelength division demultiplexer in the receiving equipment. Using WDM
technology now commercially available, the bandwidth of a fiber can be divided
into as many as 80 channels to support a bit rate combination into the range
of terabits per second. That is why WDM in optical fiber networks has been
rapidly gaining acceptance as a means to meet the increasing bandwidth demands
of network users [1]. To illustrate the WDM technology, we can assume the

highway as a optical fiber. The single high-speed lane in this highway is thought
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Figure 2.1: Multiwavelength optical transmission as represented by a multiple-lane highway.

of a single channel that has a capacity around Gbps. The cars are packets of
optical data. However, the 25 THz optical fiber can accommodate much more

bandwidth than the traffic from a single lane. To increase the system capacity

. Access node — Lightpath on wavelength }.J
|:| Orptical switch —= Lightpath on wavelength A5

Figure 2.2: WDM network with lightpath connections.

we can fully utilize this huge fiber bandwidth by transmitting several different
independent wavelengths simultaneously through this fiber. Therefore, the intent
was to develop a multiple-lane highway, with each lane representing data traveling
on a different wavelength. Thus, a WDM system enables the fiber to carry

more amount of data. By using wavelength-selective devices, independent signal



routing can also be accomplished. The highway principle illustrated in Figure 2.1

is taken from [7].

In a wavelength-routed WDM network, the communication between end users is
provided via all-optical WDM channels, which are referred to as lightpaths [8]. A
lightpath is used to provide a connection in a wavelength-routed WDM network,

and it may spread over multiple fiber links.

When there are not any wavelength converters, a lightpath must hold the same
wavelength on all the fiber links through which it crosses. Figure 2.2 illustrates
a wavelength-routed network in which lightpaths have been set up between pairs

of access nodes on different wavelengths.






3. SURVIVABLE VIRTUAL TOPOLOGY MAPPING PROBLEM

Optical WDM networks use a technology which multiplexes multiple optical
signals on a single optical fiber by using different wavelengths (colours) of laser
light to carry different signals. Any damage to a physical link (fiber) on the
network causes all the signals carried by this link to be broken. Huge amount of
data (40 Gb/s) can be transmitted over each of these channels, so a fiber damage
may result in a serious amount of data loss. Two different approaches can be

used to avoid data loss [9]:
1. Survivable design of the physical layer
2. Survivable design of the virtual layer

The first approach is the problem of designing a backup link/path for each
link /path of the virtual layer. The main concern of this topology design is to
protect or restore the link at the logical layer. A backup lightpath can always be
found in the physical layer in any of the considered failure scenarios if the logical
topology is designed as described [10]. This consideration assumes that either
adequately high capacities are available or enough traffic can be dropped in case

of a failure.

The second approach is the problem of designing the virtual layer such that it
remains connected in the event of a single or multiple link failures. While the
first approach provides faster recovery for time-critical applications (such as, IP
phone, telemedicine) by reserving more resources; the second approach, i.e. the
survivable VT design, which has attracted a lot of attention in recent years, aims
to protect data communication using less resources. In this study, our main aim is
to compare the performance of six different ACO algorithms to find a survivable

mapping of a given VT while minimizing the resource usage.

VT design problem is defined as modelling the lightpaths to be set up on the
physical topology when the physical parameters of the network (physical topology,

9



optical transceivers on the nodes, wavelength numbers on the fibers, etc.) and
the mean traffic rates between nodes are provided as an input. VT mapping
problem, which is a subproblem of VT design, is to find a proper route for each

lightpath of the given VT and to assign wavelengths to these lightpaths.
The VT design problem can be divided into four different subproblems:

1. Designing a proper VT according to the mean packet traffic rates between

nodes,

2. Routing the lightpaths of the VT on the physical topology,
3. Assigning wavelengths to the lightpaths,

4. Routing packet traffic over the VT.

The main concern of this study is the second one. Given the physical and the
virtual network topologies, our aim is to find a survivable mapping of the VT.
Physical topology is the physical structure of the network that gives information
about how the workstations are connected to the network through the actual
cables that transmit data. VT is the way that the data passes through the
network from one device to the next without regard to the physical connection
of the devices. Edges of the VT represent the lightpaths that need to be routed

on the physical topology.
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a) Physical Topology by Logical Topology

Figure 3.1: The difference between the physical and the logical topologies.

Figure 3.1 interprets the difference between the physical and the logical topologies.
The nodes 3 and 5 are connected with actual cables in the physical topology but
according to the VT, there is no lightpath between 3 and 5, so data transfer is

not needed between these two nodes.
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VT mapping is the problem of routing lightpaths on the physical topology in
such a way that the capacity constraints of fibers in the physical topology are not
violated. Survivable VT mapping has another constraint stating that in case of
a physical link failure, the VT is not disconnected when all the lightpaths routed
through this link are deleted from the VT.

) g
(a) (b) (c) (d)
Physical Topology Wirtual Topology survable Tnsurvirable
Mapping Mapping

Figure 3.2: llustration of the survivable VT mapping problem.

To illustrate the survivable VT mapping problem, assume that we have a physical
network topology as in Figure 3.2.a and a virtual network topology representing
lightpaths to be routed on this physical topology as in Figure 3.2.b. Figures 3.2.c
and 3.2.d show the way the lightpaths are routed, e.g., the lightpath ¢ in
figure 3.2.b is routed through the nodes 1, 2 and 4 in both figures 3.2.c and 3.2.d
while the lightpath b is routed through the nodes 1, 3 and 5 in figure 3.2.c, 1, 3,
4 and 5 in figure 3.2.d. If we route these lightpaths as in Figure 3.2.c we obtain
a survivable mapping, that is, a failure on any physical link does not disconnect
the VT. However, if the routing of only one lightpath is changed, e.g., as in
Figure 3.2.d, we end up with an unsurvivable mapping. In this case, if a failure
occurs on the physical link between nodes 4 and 5, the nodes connected with
lightpaths b and g will not be able to find an alternative path to communicate.
If we remove the lightpaths b and g from the VT, node 5 will be disconnected to

the other nodes, so the VT will be unsurvivable.
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3.1 Formal Problem Definition

The physical topology is composed of a set of nodes N = {1..N} and a set of edges
E where (i,j) is in E if i&j exist in N and there is a link between nodes i and j.
Each link has a capacity of W wavelengths. The VT, on the other hand, has a
set of virtual nodes Np, which is a subset of N, and virtual edges (lightpaths) Ef,
where an edge (s,t) exists in Ef if both node s and node ¢ are in Ny and there is

a lightpath between them.

An Integer Linear Program (ILP) formulation of survivable lightpath routing
of a VT on top of a given physical topology is given in [2]. Based on this
formulation, a number of different objective functions can be considered for the
problem of survivable mapping. The simplest objective is to minimize the number
of physical links used. Another objective is minimizing the total number of
wavelength-links used in the whole physical topology. A wavelength-link is defined
as a wavelength used on a physical link. To illustrate the difference between link
and wavelength-link, assume that we have a VT routing as in figure 3.2.c. Here the
number of physical links used is 7, whereas the total number of wavelength-links
is 9. Our choice as the objective is the latter one, since it gives a better idea of

the actual resource usage.

The optimal survivable routing problem that minimizes total number of

wavelengths used can be expressed using the following ILP [2].

Minimize Z isjt 3.1
(i,j) €EE
(Svt) € EL

Let l.sjt = 1 if lightpath (s,#) is routed on physical link (i,j) and 0, otherwise.
Clearly lr‘j’ > 0 means that there exists a physical link between nodes i and j.

The ILP formulation of the constraints are given as the following equations:

a. Capacity Constraint

Vi) €E, Y fi<W (3.2)
(SJ)GEL

If the number of wavelengths on a fiber is limited to W, a capacity constraint can

be imposed as in Eq. (3.2).
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b. Survivability Constraint

V(l,j> ck Z St St
, Y4 f < CS(S.NL-S)| (33)
VS CNL (s,£)ECS(S,N.—S) v

where CS(S,N —S) is the set of cuts of the VT that divides the VT into two node
sets § and N —S. Each cut defines a set of edges consisting of edges in E with
one endpoint in S and the other endpoint in N —§. Removal of these edges from
the VT seperates the VT into two parts. | CS(S,N. —S) | in Eq. (3.3) means the
number of edges in the cut-set. This equation means that to route all the edges
(s,¢) in a cut of the VT, the fiber between nodes i and j should not be used more
than the number of edges in the cut. As another explanation, the survivability
constraint states that for all proper cuts of the VT, all edges(lightpaths) in this
proper cut should not be routed through the same physical link.

c. Connectivity Constraint

For each pair (s,t) in Ep:

1 its=i
Y - Y =< -1 ifr=i (3.4)
(i,j) €E (j,i)€E 0 otherwise

Eq. (3.4) means that while routing the lightpath (s,7), the same amount of
flow enters and leaves each node that is not the source or destination of (s,r).
Moreover, node s has an outer input of one more unit of traffic that has to find
its way to node t. There are many possible combinations that can satisfy the

constraint of Eq. (3.4).

d. Integer Flow Constraint

i €{0,1}

The integer flow constraint ensures that the information whether the lightpath

(s,1) is routed on physical link (i, j) can take values only either true or false.

The aim of lightpath routing is to find a set of physical links that connect the
nodes of the lightpaths. Since our objective is to minimize the total number

of wavelength-links used in the whole physical topology, we can formulate the
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objective as in Eq. (3.5):

Minimize Z i+ cost (i, ) 3.5)
(i,j) € E
(s,) €EEL
where cost(i, j) is considered to be equal to 1 when hop-count method is used
as an objective. On the other hand, when the link-cost method is used as an
objective, cost(i, ) is considered to be equal to the actual length of the physical

path in kilometers.

The survivable VT mapping problem implemented in this study has two
constraints: survivability constraint and capacity constraint. The mathematical

formulations are the same as Eq. (3.3) and Eq. (3.2) respectively.
a) Survivability constraint:

The survivability constraint means that all the lightpaths of a cut-set cannot be
routed using the same physical link. The cut-set of a graph G is the subgraph G,
of G consisting of the set of edges satisfying the following properties:

- The removal of G, from G reduces the rank of G exactly by one.
- No proper subgraph of G, has this propery.

- If G is connected then the first property in the above definition can be replaced
by the following phrase: The removal of G, from G separates the given connected

graph G into exactly two connected subgraphs.

Figure 3.3: The cut-set of a graph.

Consider the graph in Figure 3.3. The edges e4,e6,e7 are the cut-set of the graph
because these edges divide graph G into exactly two connected subgraphs. The
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edges el,e2 are also a cut-set. But e2,e3,e4,e8 is not a cut-set, because the

removal of these edges from G results in three connected subgraphs.
b) Capacity constraints:

The capacity constraint ensures that the number of wavelengths on a physical

link is no more than its capacity W.

3.2 Related Literature

The survivable VT mapping problem was first addressed as Design Protection [11]
in the literature. In this first study, tabu search was used to find the minimum
number of source-destination pairs that become disconnected in the event of
a physical link failure. Their aim is to find a systematic plan to protect a
WDM optical network against component or link failures that may cause the
simultaneous failure of several optical channels. To address this, they introduce
the concept of Design Protection, which aims at making such failure propagations
impossible. They present the Disjoint Alternate Path (DAP) algorithm which
places optical channels in order to maximise design protection. The capacity
constraint is the same as our problem but unlike ours, survivability is treated
as objective in their study. The number of source-destination pairs that become
disconnected in the event of a physical link failure must be zero in our study for

a feasible solution while their aim is to minimise that number.

Nucci et. al. also used tabu search to solve the survivable VT design problem
[12]. Their design methodology relies on the dynamic capabilities of IP routing
to re-route IP datagrams. They first consider the resilience properties of the
topology during the logical topology optimization process, so the optimization of
the network resilience performance can be extended also on the logical topology
space. The constraints in this study include transmitter and receiver constraints

as well as wavelength capacity constraints.

Modiano and Narula-Tam used ILP to solve the VT mapping problem [2|. They
added the survivability constraint in the problem formulation, such that, no
physical link is shared by all virtual links belonging to a cut-set of the VT graph.

However, they did not consider the capacity constraint. Their objective was
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to minimize the number of wavelengths used. For the cases when ILP cannot
find an optimum solution in a reasonable amount of time due to the problem
size, Modiano et. al. proposed two relaxations to ILP, which consider only
small-sized cut-sets. These relaxations reduce the problem size; however, they
may lead to suboptimal solutions. In order to overcome the long execution time
problem in ILP formulation, Todimala and Ramamurthy proposed a new ILP
formulation for computing the survivable routing of a virtual topology. As ILP is
not scalable when the network size extends to a few tens of nodes, in their work,
they present sub-graphs which more accurately model an actual network and for
which a survivable routing can be easily computed using an ILP. They solved the
problem for networks of up to 24 nodes [13|. In [13], besides the physical network
and the virtual network topologies, the shared risk link groups should be known
in advance. In their study, Todimala and Ramamurthy considered both capacity

and survivability constraints.

A heuristic approach to VT mapping is developed by Ducatelle et. al. [14].
They consider the survivability constraint in this study. They consider a routing
as survivable, if the connectivity of the logical network is guaranteed in case
of a failure in the physical network. They introduce a local search algorithm
which can provide survivable routing in case of not only physical link failures but
also node failures and multiple simultaneous link failures. Unlike our problem,
they considered survivability as an objective. Their aim is to minimise the total

number of node pairs that make VT unsurvivable in case of a physical link failure.

Kurant and Thiran [15] used an algorithm that divides the survivable mapping
problem into subproblems. Heuristic algorithms usually start with some initial
mapping and then try to improve it. This involves the evaluation of the entire
topology at each iteration, which is costly for large topologies. To overcome that
cost, they propose a different approach that breaks down the current problem into

subproblems. The combination of solutions of these subproblems is a survivable
mapping.
There are a few studies on VT mapping [16] and design [17]| using evolutionary

algorithms (EA), however, the survivability is not considered in any of them

except [18]. Ergin et. al. proposed the only EA based approach for survivable
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VT mapping problem. Their objective is to minimize the resource usage without
violating the capacity constraint. They experiment with different EA components

to develop an efficient EA for this problem.

Swarm intelligence algorithms are used in a few studies for Routing and
Wavelength Assignment (RWA) problem. Ant colony optimization(ACO) is
applied to the static [19] and dynamic [20, 21] RWA problem without the
survivability constraint. The only study using ACO considering back-up paths
on physical layer is [22]. Particle swarm optimization is applied to RWA problem

in only a single study [23], in which no survivability constraint is considered.

In [19], the objective is to minimize the wavelength used in the given network.
They use a simple greedy heuristic for wavelength assignment. According to this
approach, ants select their routes according to the weight of attraction of each
physical link. Ants use a tabu list of previously visited nodes in order to avoid

loops and backtracking. They use different methods for pheromone updating.

Garlick et. al. [20] is the first group that used ACO on dynamic RWA problem.
In this approach, whenever a new connection request arrives, some of ants are
launched from source to destination. While deciding which path to use, ants use

the length of the path and the number of available wavelengths along the path.

Ngo et. al. also proposed an approach for the dynamic RWA problem. They
designed a new routing table structure to solve this problem [21]. They use ants
to observe the state changes in the network and to update these tables regularly.
The results show that this algorithm outperforms the other alternate methods
in terms of blocking probability. In a further study [22], Ngo et. al. handled
the RWA problem considering the back-up paths on the physical layer, and used
ACO to solve this problem.

The work that use particle swarm optimization for RWA problem in WDM
networks use a hybrid algorithm inspired from ant systems [23]. For the routing
part of the problem, particles are used to determine the path together with the

ant system (AS). For the wavelength assignment part, a first-fit algorithm is used.
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4. ANT COLONY OPTIMIZATION ALGORITHMS

ACO is one of the most commonly used swarm intelligence techniques and is
based on the behavior of real ants. ACO has been applied successfully to many
combinatorial optimization problems such as routing problems [24], assignment
problems [25], scheduling and sequencing problems [26] and subset problems [27].
One of the first successful implementations of ACO is the Ant System (AS)
developed by Dorigo [28], in 1992. AS has been the basis for many ACO variants
which have become the state-of-the-art for many applications. These variants
include elitist AS (EAS), rank-based AS (RAS), MAX-MIN AS (MMAS), ant
colony system (ACS), best-worst AS (BWAS), the approximate nondeterministic
tree search (ANTS), and the hyper-cube framework. AS, ACS, EAS, RAS, MMAS
and BWAS can be considered as direct variants of AS since they all use the basic
AS framework. The main differences between AS and these variants are the
pheromone update procedures and some additional details in the management
of the pheromone trails. In this study, we implemented AS, ACS, EAS, RAS,
MMAS and BWAS for the VT mapping problem since it can be seen in [28|
that these direct variants of AS have been successfully applied to many similar

problems in literature |27].

ACO algorithms are inspired from the social behavior of ants that provide food
to the colony. Ants deposit a substance called pheromone on the way they search,
find food and return to the nest. Pheromone trails guide the colony during the
food search process. Ants are able to smell the pheromone and remember the
way they had used to reach food. When an ant is positioned at a location, it
makes a decision about the next path to take based on a probability defined by
the amount of pheromone existing in each trail. When a path betweeen the nest
and the food is constructed, the ants stops depositing pheromone. The length of
the path is reduced step by step because of the progressive action of the ants in

the colony. The pheromone concentration becomes higher on the shortest paths
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because they are visited more frequently. On the contrary, the longest paths are

less visited and the associated pheromone trails are evaporated.

The algorithmic flow of the basic ACO algorithm is given in Algorithm 1. An
iteration consists of the solution construction and pheromone update stages.
Iterations are finished when stopping criteria are met, which may be the time

when both max solutions are generated and the allowed time is completed.

Algorithm 1 Basic ACO outline

set ACO parameters
initialize pheromone levels
while stopping criteria not met do
for each ant k do
select random initial node
repeat
select next node based on decision policy
until complete solution achieved
end for
update pheromone levels
11: end while

R A T o e

_.
e

In each iteration, each ant in the colony constructs a complete solution. Ants start
from random nodes and move on the construction graph by visiting neighboring
nodes at each step. For each node, the next node to visit is determined through
a stochastic local decision policy based on the current pheromone levels and
heuristic information between the current node and its neighbors. Heuristic
information is proportional to the knowledge that makes the solution optimum.
Better solutions have higher heuristic levels, i.e., for travelling salesman problem
(TSP), heuristic information is usually set as 1/d;; where d;; is the distance

between cities i and j.

An ant k determines its next move from i to j with a probability pfj as calculated
in Eq. (4.1),
B

iy if j € N¥
Pi’cj = Zlele T nﬁ l @.1)

0 otherwise

where 7;; and 7;; are the pheromone level and heuristic information between nodes

i and j respectively, o and B are the parameters used to determine the effect of
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the pheromone level and heuristics information respectively, Nik is the allowed
neighborhood of ant k& when it is at node i. The probabilistic action choice in
Eq. (4.1) is called random proportional rule. The effect of a and B on heuristic
and pheromone information is the following: if & =0, the neighbor node that has
the biggest heuristic information is selected, if B = 0, heuristic information is not

used while deciding the next move, only pheromone is used.

Pheromone trails are modified when all ants have constructed a solution. First
the pheromone values are lowered (evaporated) by a constant factor on all edges.
Then pheromone values are increased on the edges the ants have visited during
their solution construction. Pheromone evaporation and pheromone update by

the ants are implemented as given in Eq. (4.2) and Eq. (4.3) respectively,

5 — (1—p)t;j (4.2)
m

Tij < Tij + Z ATikj 4.3)
k=1

where 0 < p <1 is the pheromone evaporation rate, m is the number of ants
and A’L'ikj is the amount of pheromone ant k deposits on the arcs it has visited.
Evaporation prevents adding unlimited pheromone trails so that ants can forget
bad decisions they had taken previously. A‘Cikj is defined as given in Eq. (4.4),
where Cy, is the cost of the solution 7, built by the k-th ant.

Based on the equation Eq. (4.4), ants that construct better solutions, deposit
more pheromone on the edges they have traversed. So the edges that lead to
minimum costs and used by many ants receive more pheromone, so they are

more likely to be selected in future iterations.

1/C if edge(i, j) € Tj
k k gell, J k
ATj = { 0 otherwise 44)

4.1 Ant System

The AS algorithm [29] implements the basic ACO procedure detailed above in
this section. The following sections explain the differences between the other

ACQO variants used in the experiments in this thesis and the AS algorithm.
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4.2 Elitist Ant System

The main idea of EAS [28] is to provide additional reinforcement to the edge pairs
which belong to Tjy, the best solution found since the start of the algorithm. This
additional reinforcement of solution T, is achieved by adding a quantity e/Cpg to
its edges, where e defines the weight given to the best-so-far solution Tj, and Cp,

is its cost. The new equation for the pheromone deposit is given in Eq. (4.5).

Tij < Tij —+ 221:1 ATl]j —+ eATl-bjs
4.5)

1/C if edge(i,j) €T,
bs __ bs ge\bJ bs
where ATU = { 0 otherwise

where ATikj is calculated as in Eq. (4.4). The pheromone evaporation of EAS is

the same as it is in AS.

4.3 Rank-Based Ant System

The main idea of RAS [28] is to allow each ant to deposit an amount of
pheromone which decreases with its solution rank. The ants are sorted in
decreasing order according to the quality of the solutions they constructed.
The amount of pheromone an ant deposits is weighted according to its rank
r. In each iteration only the (w—1) best-ranked ants and the ant which has
constructed the best-so-far solution are allowed to deposit pheromones. The
best-so-far solution has the largest weight w, while the r-th best ant of the current
iteration contributes pheromones with a weight given by max {0,w —r}. The new
pheromone deposit rule is given in Eq. (4.6) where C, denotes the solution cost
of r-th best ant.
Tij < Tij —}—Z;";ll (w— r).ATl-’j —I-W.A”L'l-bjs
4.6)

1/C,  if edge(i,j) € T,

r o __
where Atj; = { 0 otherwise

4.4 MAX-MIN Ant System

The MMAS has four major differences from AS [30].
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e Only either the ant which found the best solution in the current iteration,

or the best-so-far ant is allowed to deposit pheromones.

e Allowed range of pheromone trail values is limited to the interval
[Tmins Tmax]- This modification is implemented in MMAS because allowing
only best-so-far or iteration-best ant to deposit pheromone may lead to
a stagnation situation that is all ants construct the same solution so
keeping pheromone trails between boundaries will prevent the excessive

accumulation of pheromone trails of suboptimal solutions.

e Pheromone trail values are initialized to the upper limit to increase

exploration in the beginning.

e Pheromone trails are initialized when diversity is lost or when no

improvement occurs for a given number of consecutive iterations.

Pheromones are deposited on the edges according to Eq. (4.3) and Eq. (4.4)
as in the AS, but the ant which is allowed to add pheromone may be either the
best-so-far or the iteration-best. Commonly in MMAS implementations, both the

iteration-best and the best-so-far update rules are used alternatively.

Pheromone update is managed as follows: in the beginning pheromone trails
are initialized with the upper bound of pheromone limits (Tuq) so that initial
search space is very explorative, when an ant constructs the complete solution,
pheromone trails are evaporated by a small evaporation rate so the unvisited edges
have bigger pheromone levels. This procedure makes the search space explorative.
To increase the probability of selecting unsearched edges, pheromone trails are
initialized when algorithm approaches to a stagnation situation or solution is not

improved for a number of iterations [30].

4.5 Ant Colony System

ACS differs from AS in three main points [31].

e It has a modified action selection rule.
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e Pheromone evaporation and pheromone deposit take place only on the edges

belonging to the best-so-far solution.

e Each time an ant uses an edge (i, j) it removes some pheromone from the

edge.

In ACS, with a probability gg, an ant makes the best possible move based on the
pheromone trails and the heuristic information, and with probability (1 —go) it
performs a biased exploration of the edges. This method is called pseudo-random
proportional action choice rule (see Algorithm 2). The parameter go modulates

the degree of exploration performed by the ants.

Algorithm 2 Choosing next solution component

1: if random(0-1) < go then
2 choose best next

3: else
4
5

choose next according to pseudo-random proportional action choice rule
: end if

At the end of each iteration in ACS, the pheromone trails are updated according
to Eq. (4.7). The pheromone trail update, both evaporation and new pheromone

deposit, are implemented only for the edges belonging to the best-so-far solution.

Tij — (1= p)Tj+ AT, V(i) € T 4.7)

Here Arf’js = 1/Cps and p represents pheromone evaporation. In addition to the
global pheromone update performed at the end of each iteration, in ACS, the ants
also use the local pheromone update rule given in Eq. (4.8). They apply local
pheromone update immediately after having used an edge (i, j) during solution

construction.

Ti—(1-8)ni+&n (4.8)

Here § (0 <& < 1), and 79 are two parameters. The value for 7y is set to be the
same as the initial value for the pheromone trails. Experimentally, a good value
for 7y was found to be 1/nCyn, where n is the number of nodes and Cy;y, is the
cost of the trivial solution [31]. Cp, is determined using the shortest path of each

lightpath.
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4.6 Best-Worst Ant System

BWAS differs from AS in three main points [32].

e While only the best-so-far ant is allowed to deposit pheromones, the worst
ant of the current iteration subtracts pheromones on the arcs it does not

have in common with the best-so-far solution

e Search diversification is achieved through frequently reinitializing the

pheromone trails

e To further increase diversity, pheromone mutation is used [28|.

The pheromone trail update rule of BWAS is based on the consideration that
the best-so-far solution can perform a positive contribution of trails. Whereas
the worst ant of the current solution is penalized to decrease the desirability of

selecting the same nodes in the construction graph.

Tij — T+ AT, V(i j) € T (4.9)
Tj— (1—=p)t°, V(i,j) €Ty and (i,j) & Tus (4.10)

The deposition of pheromone rule for the best-so-far ant is given in Eq. (4.9).
The evaporation of pheromones on the edges visited by the worst-ant that are
not common with the best-so-far is given in Eq. (4.10) where T, is the worst

solution found since the start of the algorithm.

The pheromone trail mutation is used in BWAS to introduce diversity in the
search space. Each row of the pheromone matrix is mutated with a probability
of B, by depositing or evaporating the same amount of pheromone based on the

current iteration [32]. The pheromone mutation is given in Eq. (4.11).

(4.11)

" { Tij+ mut(itv Tthreshold) ifa=0
1y

T, : '
Tij — mut(”a Tthresh()ld) ifa=1

where a is a random variable in 0,1 and it is the current iteration, T esnoiq 18 the
average pheromone trail on the edges visited by the best-so-far ant and mu(.) is

given in Eq. (4.12).

it — Tthreshold (4 12)

mut(it, Tzhreshold) = Nir —ir - O . Tthreshold
r
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with Nit being the maximum number of iterations and it, being the last iteration
when a restart was performed. The parameters Tpesnoid and o specify the

maximum power of the mutation.

26



S. APPLICATION OF ACO TO THE VT MAPPING PROBLEM

ACO can be applied to the survivable VT mapping problem in a straightforward
way. The VT mapping problem can be seen as a search for the best routing of
lightpaths through physical links. Therefore, we use a solution encoding inspired
from [16]. For this encoding, first, the shortest k paths between the end points
of each lightpath are determined. Then, a solution candidate is represented as
an integer string of length [, where [ is the number of lightpaths in the VT.
Each integer gives the index of the shortest path for the corresponding lightpath.
These integers can take values between [1..k] where k is the predefined number

of shortest paths for the lightpaths.

The Figure 5.1 interprets the encoding used during solution construction.
According to this encoding, the fourth shortest path is selected for the sixth
lightpath. Similarly the third shortest path is chosen for the first lightpath. As the
algorithm may lead to different solutions, ants route the lightpaths in a random
order. For example, an ant may route the fifth lightpath and then the second
lightpath and so on. The flexibility of selecting lightpaths in a random order may
increase the number of feasible solutions because for a survivable solution if a
lightpath can only be routed using a few shortest paths, routing this lightpath

earlier may result in better solutions.

The following sections introduce ACO steps implemented in this thesis.

5.1 Construction Graph

«— Lightpath —s
1 2 3 4 5 ] iy
(3 [4 [8 |1 24 [ [ [ [ ]

Basociated Shortest Path

Figure 5.1: Solution encoding to survivable VT mapping.
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The construction graph is identical to the physical topology. The physical
topology is used as a graph on which ants travel and construct their solutions.
Ants simultaneously try to route lightpaths on the graph one-by-one. Each starts
to route a random lightpath. The shortest paths between the end points of the
lightpaths are provided to ants at the very beginning of the algorithm. Ants
determine one of the shortest paths of the selected lightpath while visiting the
nodes of the shortest paths on the construction graph and checking if the chosen
shortest path violates the constraints or not. If the solution becomes infeasible
for a shortest path selected for the lightpath, another shortest path is examined.
If none of the shortest paths leads to a feasible solution, this ant is removed from

the colony.

5.2 Constraints

Survivable VT mapping problem has two constraints:

1) The number of wavelengths on a physical link should not exceed its capacity
2) All the lightpaths of a cut-set cannot be routed using the same physical link

The first limitation explains the capacity constraint while the second one
introduces survivability constraint. To illustrate the second constraint assume
that we have a logical topology as in Figure 5.2. According to this figure, the
lightpaths 10, 8 and 3 cannot be routed using the same link in the physical
topology because they are the cut-set of the virtual topology graph. Similarly,
6, 7, 2 and 10 cannot be routed through the same physical link.

Figure 5.2: Example virtual topology.

28



5.3 Pheromone Trails and Heuristic Information

Ants decide their move on the construction graph based on heuristic and
pheromone information. Two pheromone trails are implemented in the survivable
VT mapping problem: the lightpath pheromone trails ”L'ilj refer to the desirability
of choosing lightpath j directly after i for mapping, the shortest path pheromone
trails ‘L'fj show the desirability of selecting j** shortest path of lightpath i.

Pheromone is modelled as a 2D array which accumulates the information learned
by the ants. The lightpath pheromone has lightpaths in its columns and rows
and gives the information which lightpath is more valuable to choose after the
current lightpath, whereas the shortest path pheromone has lightpaths in its
rows and corresponding shortest paths in its columns and gives the information
about which shortest path leads to the better result when selected for the current
lightpath. These pheromones are initialized in the beginning of the algorithm
with the same value for each possible choice of the ant. The difference is created
by heuristic information 7n;; that is inversely proportional to the length of the Vi
shortest path of lightpath ii.e. ;; =1/d;;. The ants use the lightpath pheromone
to decide the next lightpath. The heuristic information is used together with the
shortest path pheromone trails while deciding the proper shortest path of the
chosen lightpath. A combined pheromone called total pheromone is used which
is computed as Tl-‘} . 775' for this responsibility. The pheromones are updated

after solutions are constructed. The amount of the accumulated pheromone is

proportional to the solution quality.

Algorithm 3 Global Pheromone Update

1: for each ant k do

2. for each lightpath i chosen j* shortest path do
s 1 S

3 Ti j+ resource usage - Ti Jj

4:  end for

5. for each lightpath i chosen before lightpath ¢ do
/ 1 o Al

6 Tit Tesource usage it

7:  end for

8: end for

There are three different pheromone update procedures: local pheromone update,

global pheromone update and global pheromone update weighted. In global
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pheromone update (see Algorithm 3), after each ant constructed its solution,
both shortest path and lightpath pheromones are updated on the edges the ants

visited. The pheromones are updated according to the solution quality. In this
1

th681s’ resource usage

is accumulated on pheromones where resource usage is the

number of wavelength-links used by the corresponding ant.

The weighted global pheromone update (see Algorithm 4) differs from global

update in the amount that is added pheromones. The pheromones are increased

weight

with the amount resource usage

where weight is used to deposit more or less

pheromone for the selected ants.

Algorithm 4 Global Pheromone Update Weighted

1: for each ant k£ do
2: for each lightpath i chosen j” shortest path do

s weight _ s
3 Tt resource usage > T j
4:  end for
5 for each lightpath i chosen before lightpath ¢ do
. 1 weight _ !
6: Tit T Tesource usage > Tit
7:  end for
8: end for

The local pheromone update algorithm that is used by ACS can be found in
Algorithm 5. Every ant without regard to the solution quality updates pheromone
using the parameters & and 7y where 0 < & <1 and 719 is the initial pheromone
value. As ants perform pheromone update after each move when the whole
solution is not created, unlike other five ACO algorithms, both feasible and

infeasible solutions are allowed to update pheromone trails.

Algorithm 5 Local Pheromone Update

1: for each ant k do

2. for each lightpath i chosen ;" shortest path do
3 (1 —=8)+E* 1 —> 1))

4 end for

5. for each lightpath i chosen before lightpath ¢ do
6 tx(1—E)+Ex19 —> 1T,

7 end for

8: end for

There are differences in pheromone update stages of ACO algorithms.
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5.3.1 The pheromone update of AS

The pheromone update of AS is shown in Algorithm 6. In AS, every ant uses
global update pheromone procedure [29].

Algorithm 6 AS Pheromone Update

1: for each ant do
2:  Global Pheromone Update
3: end for

5.3.2 The pheromone update of EAS

In pheromone update procedure of EAS (see Algorithm 7) in addition to AS,
global pheromone update weighted procedure is used for the best-so-far ant. The

weight is determined with the parameter e.

Algorithm 7 EAS Pheromone Update

: for each ant do
Global Pheromone Update
end for
: for best-so-far ant do
Global Pheromone Update Weighted
end for

SANR AN S > os

5.3.3 The pheromone update of RAS

The pheromone update of RAS is shown in Algorithm 8. In RAS, weighted global
update pheromone procedure is used with increasing weight for better solutions.
The ant that constructs the best solution uses the weight w, the second best
solution uses the weight w — 1 and this update continues for the first w ranked

ants.

Algorithm 8 RAS Pheromone Update

1: for each ant k that has rank < w do
2:  Global Pheromone Update Weighted
3: end for

5.3.4 The pheromone update of EAS

In pheromone update procedure of ACS (see Algorithm 9) only best-so-far ant

is allowed to deposit pheromone. Evaporation is implemented at the same time
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of accumulation. Apart from this, every ant uses local pheromone update after

each move as in Algorithm 5.

Algorithm 9 ACS Pheromone Update

1: for best-so-far ant do
2. for each lightpath i chosen " shortest path do

. . P X
3: Ti?j*(l —pP ) + resource usage > Tiﬁi
4:  end for
5. for each lightpath i chosen before lightpath ¢ do
[ [
6: Tit*(l - P) + resourcpe usage = T
7:  end for
8: end for

5.3.5 The pheromone update of MMAS

The pheromone update of MMAS is shown in Algorithm 10. MMAS alternatively
allows iteration-best ant, best-so-far ant or restart-best ant to deposit pheromone.
[teration-best ant is the ant that constructs the best solution in the current
iteration. Best-so-far ant constructs the best solution since the start of the
algorithm, that is the best of all iterations. MMAS initializes the pheromone
trails when diversity is lost or when no improvement occurs for a given number
of consecutive iterations. Restart-best-ant is the best solution constructed after
this initialization. u_gb in Algorithm 10 is set as 2 to give the same chance to

these three ants.

Algorithm 10 MMAS Pheromone Update

if iteration % u_gb then

Global Pheromone Update for iteration-best ant
else

Global Pheromone Update for best-so-far ant or restart-best ant
end if

AN e

5.3.6 The pheromone update of BWAS

The pheromone update of BWAS is shown in Algorithm 11. Global pheromone
update is used by only best-so-far ant and the worst ant of the current iteration
subtracts pheromones on the arcs it does not have in common with the best-so-far
solution. When there are a few differences between the solutions of the best-so-far

and iteration-worst-ant ants, the pheromone trails are reinitialized to increase
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search diversification. To further increase diversity, pheromone mutation is used

as explained in [28].

Algorithm 11 BWAS Pheromone Update

1: for best-so-far ant do

2:  Global Pheromone Update

3: end for

4: for iteration-worst-ant do

5. for each lightpath i chosen j' shortest path do

6 if this pair is not used by best-so-far ant then
7 Tx(l—p) —> 1)

8

9

end if

end for
10:  for each lightpath i chosen before lightpath 7 do
11: if this pair is not used by best-so-far ant then
12: tx(1—p) —> 1}
13: end if
14:  end for
15: end for

16: Find distance between best-so-far ant and iteration-worst-ant

17: if distance < 5 % then

18:  restart the search by initializing pheromones and restart-best-ant
19: else

20:  mutate pheromones

21: end if

The algorithm flow of pheromone trail update is shown in Algorithm 12. Fach
ant, after constructing a solution, first evaporates pheromone trails on the visited
edges and then calls the pheromone update procedure associated with the selected
ACO algorithm. If MMAS is used, pheromone trail limits are checked and put
in the bounds. Last, without regard to the selected algorithm, total pheromone

trails are updates as 77 . 775

Algorithm 12 Pheromone Trail Update

1: for each algorithm do
2:  evaporate pheromones except ACS
3:  call associated pheromone update procedure
4: end for

5: if MMAS then
6:  check pheromone trail limits

7: end if

8: for each algorithm do ;
9

:  compute total pheromone as ’Lﬁ -Mij
10: end for
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5.4 Solution Construction

Each ant is initially placed on a randomly chosen start lightpath and one of its
shortest paths is selected. At each step, the ant iteratively adds an unvisited
lightpath to its partial solution and decides the shortest path of the selected
lightpath. The solution construction terminates once all lightpaths have been

visited.

Algorithm 13 Solution Construction

1: for each ant do

2:  place ant on randomly selected lightpath
3 choose random shortest path for the selected lightpath
4: end for

5. while step <n—1do
6:  step ++

7. for each ant do

8 move to next step

9 if ACS then

10: local acs pheromone update
11: end if

12:  end for

13: end while

14: for each ant do

15 Pheromone Trail Update

16: end for

Solutions are constructed by applying the following simple constructive procedure
to each ant:

(1) choose a start lightpath and one of its shortest paths,

(2) use lightpath pheromone information to select the next lightpath to route,
(3) use shortest path pheromone information together with the heuristic values
to probabilistically determine the path between the nodes of the corresponding
lightpath, until all lightpaths have been visited. If the ant cannot select a shortest
path that makes the solution feasible, this ant is removed from the current

iteration.

The algorithm flow of solution construction is shown in Algorithm 13.
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Moving next step is implemented using pseudo-random proportional action choice
rule. According to this rule, each lightpath is assigned a probability proportional
to the lightpath pheromone. Cumulative probability is calculated and a random
point is selected in this probability array. The corresponding lightpath is selected.
The shortest path for the selected lightpath is chosen using the same way but
total pheromone is used instead of lightpath pheromone. Algorithm 14 shows the

pseudo-random proportional action choice rule.

Algorithm 14 Pseudo-random proportional action choice rule

1: sum_prob =0

2: for each lightpath i do

3:  if visited then

4 prop_ptr[i]=0

5:  else

6: prop_ptr[i]= lightpath_pheromone[current lightpath][i]
7 sum_prob += prop_ptr[i]

8: endif

9:  select randomly a point in sum_prob
10:  calculate the associated lightpath /

11: end for

12: sum_prob =0

13: for each shortest paths i of lightpath / do
14:  if not feasible then

15: prop_ptr[i]=0

16:  else

17: prop_ptr[i]= total_pheromone[/][i]
18: sum_prob += prop_ptr[i]

19:  endif

20:  if sum_prob = 0 then

21: remove ant from colony

22:  else

23: select randomly a point in sum_prob
24: calculate the associated shortest path
25:  endif

26: end for

The following example can be used to summarize and illustrate the problem that

is the main concern of this thesis.

Our objective is to minimize the total cost of resources used throughout the
network. This cost is evaluated in two different ways: (1) by considering the
actual lengths of the physical links (link-cost), and (2) by counting the number

of physical links used (hop-count).
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Table 5.1: Four different shortest paths for the lightpaths of the example virtual topology given in

Figure 3.2.

[ i hop-count i link-cost |

lightpath spi 5p2 5p3 P4 spi 5p2 5p3 P4

1-2 (a) 1-2 1-3-2 1-3-4-2 | 1-3-5-4-2 1-3-2 1-2 1-3-4-2 1-3-5-4-2
1-5 (b) 1-3-5 | 1-2-4-5 | 1-2-3-5 | 1-3-4-5 1-3-5 | 1-3-4-5 | 1-3-2-4-5 | 1-2-45
14 (0) 124 | 134 | 1324 | 1354 || 134 | 1-354 | 1324 124
2-3 (d) 2-3 2-1-3 2-4-3 2-4-5-3 2-3 2-4-3 2-1-3 2-4-5-3
2-4 (e) 2-4 2-3-4 | 2-1-3-4 | 2-3-5-4 2-4 2-3-4 2-3-5-4 2-1-3-4
3-4 (f) 3-4 3-2-4 3-5-4 3-1-2-4 3-4 3-5-4 3-2-4 3-1-2-4
4-5(g) 4-5 4-3-5 | 4-2-3-5 | 4-2-1-3-5 4-5 4-3-5 4-2-3-5 | 4-2-1-3-5

The constraints for the problem, i.e. the survivability and the capacity
constraints, are explained in section 3.1. In order to determine if the solution
is survivable or not, each physical link is deleted from the physical network one
by one. If the VT graph becomes disconnected in the event of a broken physical

link, the solution is considered as unsurvivable.
The following example illustrates the fitness evaluation techniques.

Consider the physical and virtual topologies given in Figure 3.2. The first 4
shortest paths calculated based on hop-counts and based on link-costs can be seen
in Table 5.1. Here, the first column shows the lightpaths as source-destination
node pairs. Four shortest paths found using hop-counts are given in the next four
columns, and 4 shortest paths found using link-costs are given in the last four

columns.

Assume we have an individual encoded as [1 21 3 1 1 2]. This encoding means
that the first lightpath uses the 1 shortest path (1-2), the second one uses the
2" shortest path (1-2-4-5), and the third one uses the 1* shortest path (1-2-4),
etc. If we sum up the number of wavelength-links used in this solution, we have
a total of 12 wavelength-links for hop-count evaluation, and 2250 kilometers for

link-cost evaluation.
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6. EXPERIMENTAL STUDY

To compare the performance of ACO algorithms, we perform a series of
experiments to calculate resource usage based on both hop-count and link-cost
on 100 different instances each, for 3, 4, 5 connected virtual topologies. In these
experiments, we used four metrics for performance evaluation, namely success
rate, first hit iteration, first hit time and the resource usage. Success rate is
defined as the percentage of program runs in which a survivable mapping that
does not violate the capacity constraint is found. First hit iteration is the first
iteration during which the best-so-far solution is encountered. First hit time
is similarly, the first time when the best-so-far solution is encountered. When
calculating shortest paths based on hop-count, each wavelength-link is considered
to have a length of 1 for each physical link. On the other hand, when calculating
the shortest paths based on the link-cost, each wavelength-link is considered to

have a length equal to the actual length of the physical path in kilometers.

6.1 Experimental Setup

ACO algorithm specific parameters are determined after a series of tests. A
sample of 20 VTs is selected between 100 VTs and MMAS algorithm is selected
due to its better results among ACO algorithms for TSP in [28].

First, 15 shortest paths are provided to the algorithm and 5 connected Vs are
used as data set for the problem to investigate the effect of maximum allowed
time on resource usage. The largest search space is selected because maximum
allowed time should be determined according to the problem that require the
longest time. The results in Figure 6.1 shows the effect of maximum allowed
time on resource usage when the shortest path calculation method is based on
hop-count. We used hop-count method in our parameter tuning tests because

unlike link-cost method, it gives the exact number of used physical links so when
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Figure 6.1: Effect of maximum allowed time on resource usage.

we compare two solutions based on hop-count we can easily calculate how much
better one solution is than the other but in link-cost one solution may give a
higher resource usage value by using just one more physical link. According to
the Figure 6.1, algorithm does not need to be run more than 15 seconds because

no valuable contribution is provided after 15 seconds.

Other parameters are determined using a data set of 4 connected 20 VTs
and 10 shortest paths are provided. MMAS algorithm is used except the
algorithm specific parameters. The effect of total number of ants used for
solution construction is investigated using this sample data set. According to the
Figure 6.2 increasing number of ants negatively affect resouce usage after 5 ants.
Until maximum number of solutions are generated, ants use pheromone matrices
to construct solutions. Pheromones are updated according to the solution quality
after each ant completed their solution. When the maximum number of solutions
is selected as 100 and 100 ants are used to construct the solutions, each ant will
generate only one solution. They cannot use pheromone matrices as they will
have updated the pheromones but will not use it because termination condition
will be met. So when the number of ants decrease, the use of pheromone increases.
We set the number of ants to 10 because it is a mid value and there is no distinct

difference between 5 and 10 ants.
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Figure 6.2: Effect of number of ants on resource usage.
The parameters a and B represent the weight of heuristic and pheromone values
on total pheromone matrix. As it is explained in section 4, if a = 0, the
neighbor node that has the biggest heuristic information is selected, if f =0,
heuristic information is not used while deciding the next move, only pheromone
is used. The effect of these two parameters when they are greater than 0 is
also investigated. Table 6.1 shows the effect of o and B on resource usage. The
parameters do not contribute much on resource usage after the values of 2. o does
not seem to have much effect on resource usage. As pheromones are initialized
with small values between 0 and 1, the increasing power of pheromones may not

change the value significantly. Tests are done until the B values of 4 and a values

of 3. The parameters are set when the best solutions are retrieved as o = 3 and

B =4

Table 6.1: Effect of B and & on resource usage

B
0 1 2 3 4
0| 221.67F036 149.84F0.35 148.79F 035 148.05F0.34 147.44F0.35
o | 1]203523F041 149.103+ 034 147.86 +0.34 147.18 3+ 0.34 147.01 7 0.34
2120356 F0.44 148.61 +0.35 147.40F0.34 14696 F0.34 146.63 F 0.34
3120376 042 149.15F 036 147.05F0.34 146.60 F0.34 146.48 +0.34
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The effect of g is also investigated for the sample data set. gg is the parameter
that is used to determine the next step of the ant. With g probability ants
select the best pheromone as a next step, while with 1 —¢go probability ants
use the pseudo random proportional choice rule. Details can be found in
section 4.5. According to the Figure 6.3, higher go values lead better solutions.
This parameter is set as 0.8 because random selection should not be ignored as

it may lead to different solutions and increase diversity.
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Figure 6.4: Effect of pg on resource usage.

40



po is determined according to the Figure 6.4. pg is the parameter used while
updating pheromone values. pg is selected as 0.1 where the best solutions are

retrieved.

The effect of w is also investigated for the sample data set using RAS algorithm.
w is determined according to the results in Figure 6.5. w is the maximum rank
of ants that will deposit pheromone in RAS algorithm. w is selected as 5 where

the best solutions are retrieved.
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Figure 6.5: Effect of w on resource usage in RAS.

In MMAS, the branching factor for a lightpath i is defined as follows: if 7!

max 1S
the maximum and 7.,,, is the minimum pheromone trail value on edges incident
to lightpath i; the branching factor is given by the number of edges incident to

lightpath i that have a pheromone trail value 7;; > 7', + a(t, — 7. ). The

= min
value of a ranges over the interval [0,1], while the values of the branching factors
range over the interval |2, n-1|, where n is the number of lighpath in the VT. The
average branching factor is the average of the branching factors of all lightpaths
and gives an indication of the size of the search space efectively being explored
by the ants. If, for example the average branching factor is vey close to 5%,
on average 5% of the lightpaths have a high probability of being chosen. In
MMAS, when average branching factor reaches the lower limit, pheromone trails

are initialized to increase diversity. Table 6.2 shows the effect of lower limit
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of branching factor on resource usage. The columns except the first one, show
the time passed since the start of the algorithm. The rows represent the resource
usage after each 5 seconds when the lower limit is selected as the first column. The
lower limit of average branching factor is selected as 10% because the algortihm

converges to better solutions earlier when the lower limit selected as 10%.

Table 6.2: Effect of lower limit of average branching factor on resource usage in MMAS

5 10 15 20 25 30 35 40 45 50

0 % 146.81 | 146.27 | 146.24 | 146.22 | 146.21 146.2 146.19 | 146.18 | 146.17 | 146.16
10 % 146.78 | 146.25 | 14620 | 146.20 | 146.19 | 146.19 | 146.18 | 146.15 | 146.14 | 146.13
20 % 146.80 | 146.29 | 146.25 | 146.23 | 146.22 | 146.21 | 146.20 | 146.17 | 146.15 | 146.15
30 % 146.82 | 146.27 | 146.25 | 146.24 | 146.24 | 146.22 | 146.19 | 146.16 | 146.14 | 146.14
40 % 146.85 146.3 146.27 | 146.26 | 146.25 | 146.24 | 146.22 | 146.18 | 146.15 | 146.15
50 % 146.86 | 146.29 | 146.25 | 146.24 | 146.23 | 146.22 | 146.21 | 146.16 | 146.15 | 146.14
60 % 146.83 | 146.27 | 146.23 | 146.22 | 146.22 | 146.21 | 146.19 | 146.16 | 146.15 | 146.14
70 % 146.82 | 146.28 | 146.24 | 146.23 | 146.23 | 146.22 | 146.21 | 146.18 | 146.16 | 146.16
80 % 146.81 | 146.27 | 146.23 | 146.21 | 146.20 146.2 146.18 | 146.16 | 146.15 | 146.14
90 % 146.77 | 146.30 | 146.25 | 146.22 | 146.21 | 146.21 | 146.20 | 146.16 | 146.15 | 146.14
100 % | 146.79 | 146.28 | 146.25 | 146.24 | 146.23 | 146.22 | 146.21 | 146.18 | 146.17 | 146.16

The effect of e is determined according to the Figure 6.6. e is the weight of
pheromone deposited for the best-so-far solution in EAS algorithm. e is selected

as 3 where the best solutions are retrieved. In the local pheromone trail update
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Figure 6.6: Effect of e on resource usage in EAS.

in ACS & =0.1 and 19 is set as the default settings in [33] shown in Table 6.3.
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Table 6.3: The settings of 7y per ACO algorithm

AS-RAS-EAS | ACS-BWAS MMAS
70 1/pCmm 1/ncmm 1/2nPCmm

For the experiments, we use a physical topology with 24 nodes and 43 links (see
Figure 6.7). We created 100 random VTs with average connectivity degrees of 3,
4, and 5 to map onto this physical topology. We assumed that each physical link

has a capacity of 10 wavelengths.

Figure 6.7: US wide 24-node 43-link physical topology.

In ACO performance tests, for all elements in the problem set, we run each

algorithm 20 times. Each run is allowed to continue for 15 seconds.

6.2 Experimental Results

We present the results of the experiments in Tables 6.4, 6.5, 6.6, and 6.7. Table 6.4
shows the success rates of all ACO algorithms for randomly generated 100 V'Ts.
We have 3 different sets of topologies where the average node degrees are 3, 4,
and 5. For each algorithm and node degree, 3 different numbers of alternative
shortest paths for lightpaths are examined. We tried 5, 10, and 15 shortest path

cases. Both hop-count and link-cost results for each case are given in the table.

43



The success probability numbers are averaged over 2000 runs (20 runs per VT

instance).

Table 6.4: Success rates for 24-node network

5 shortest 10 shortest 15 shortest
paths paths paths
hop link hop link hop link
count | cost || count | cost || count | cost
31 0946 0.857 || 0.988 1 1 1
as 411 0963 0915 | 0.98 1 1 1
5110992 0.795 || 0.998 0.979 1 0.984
31 0988 0.881 || 0.998 1 0.999 1
ras 411 0.975 0.955 || 0.999 1 1 1
511 0.996 0.851 1 0.992 1 0.997
31 0979 0.882 || 0.997 1 0.999 1
eas | 4| 0.982 0.942 || 0.999 1 1 1
511 0998 0.824 1 0.995 1 0.996
31 0974 0915 || 0.999 1 1 1
mmas | 4 || 0.987 0.977 || 0.996 1 1 1
51 0999 0.862 1 0.971 1 0.986
31 0976 0.889 || 0.998 1 1 1
bwas | 4 || 0.987 0.941 || 0.998 1 1 1
51 0999 0.852 1 0.994 1 0.996
31 0.854 0.704 || 0.979 0.997 || 0.999 0.999
acs | 4 0939 0.871 || 0.979 1 1 1
51 0986 0.709 || 0.998 0.977 1 0.984

Table 6.4 shows that ACO algorithms can successfully be used for the survivable
VT mapping problem. Success rates are mostly greater than 99% when more
than 5 shortest paths are provided to the algorithms. Although algorithms have
relatively the same performance, MMAS is the best of all when 5 shortest paths
are utilized. It is followed by BWAS, RAS, and EAS. They have relatively the
same performance. ACS is the worst of all, and AS has slightly better performance

than ACS.

From Table 6.4, we can see that success rates are increasing with the number
of shortest paths because the probability of finding feasible potential mappings
increases with the number of alternative shortest paths. When ants can use 15
shortest paths, each algorithm finds feasible solutions with success rates of almost

100%. Hop-count based calculation results in better success rates when 5 shortest
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paths are provided to each ACO algorithm. For 10 shortest path cases, when the
virtual topology has an average node degree of 3 and 4, link-cost calculation is
more successful than hop-count. For average node degrees of 5, hop-count success

rates are greater than link-cost.

Table 6.5: Lower and upper bounds of resource usage in terms of link-cost with 95% confidence interval

5 shortest paths

10 shortest paths

15 shortest paths

lower - upper

lower - upper

lower - upper

as

110314 - 110940

110403 - 110973

110504 - 111072

142246 - 142908

142393 - 143007

142426 - 143038

180846 - 181750

182193 - 183007

182409 - 183231

ras

110008 - 110614

110831 - 111407

111071 - 111651

142641 - 143273

143162 - 143794

143226 - 143860

181913 - 182793

183835 - 184693

184105 - 184973

c€as

110263 - 110869

110731 - 111305

110792 - 111370

142644 - 143290

142744 - 143368

142718 - 143344

181131 - 181983

183151 - 183997

183153 - 183995

mmas

109860 - 110442

110215 - 110781

110255 - 110821

142071 - 142681

142248 - 142858

142485 - 143099

180654 - 181496

182101 - 182915

183051 - 183887

bwas

109743 - 110337

110750 - 111318

111471 - 112043

142289 - 142919

143801 - 144439

144445 - 145093

181897 - 182773

184970 - 185844

185988 - 186882

acs

109738 - 110436

111136 - 111728

111532 - 112122

143778 - 144518

144012 - 144654

144578 - 145222

DN WU R ORI W ORI WO R W O R W

182790 - 183816

185675 - 186587

186473 - 187381

Table 6.5 and Table 6.6 show resource usage of all ACO algorithms for link-cost
and hop-count respectively. Here 3, 4, and 5 on the second column, represent the
average node degrees for randomly generated V'Is, whereas 5, 10, and 15 are the
number of shortest paths provided to ACO algorithms. Both tables show lower
and upper bounds of resource usage for the proposed solutions to the VTs when

the confidence interval is 95%.

When we analyse Table 6.5 and Table 6.6, we conclude that for each algorithm,
resource usage does not increase in the same proportion as the number of
shortest paths. For perturbative search algorithms, such as EAs, the search space
increases exponentially when the number of alternative shortest paths increases.

The problem becomes harder for these algorithms and their success rates drop.
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However for ACO algorithms, the increase in search space size is linear. Therefore
ACQ algorithms are not affected significantly by the increased search space. Both
Tables 6.5 and 6.6 show that when 5 or 10 shortest paths are provided to ACO
algorithms, MMAS has the best performance whereas when 15 shortest paths
are provided to ACO algorithms AS is the best of all. In 5 shortest path cases,
BWAS is comparable to MMAS. As RAS, MMAS, AS and EAS do not decrease
in performance, we can conclude that they can better react to the increase in the

search space size.

Table 6.6: Lower and upper bounds of resource usage in terms of hop-count with 95% confidence

interval

5 shortest paths || 10 shortest paths || 15 shortest paths

lower - upper lower - upper lower - upper
3 || 110.03-110.57 || 110.30-110.83 110.37 - 110.88
as 4 || 143.53-144.12 || 143.56 - 144.14 143.58 - 144.16
5 || 181.39-182.10 || 181.29 - 181.99 181.32 - 182.01
3 ]| 109.90-110.47 || 110.35-110.87 110.67 - 111.19
ras | 4 || 143.49-144.08 || 143.90 - 144.49 144.10 - 144.69
5| 181.53-182.23 || 182.13-182.84 182.09 - 182.81

3 || 110.07-110.59 || 110.32-110.84 110.49 - 111.01
eas | 4 || 143.46-144.04 || 143.68 - 144.27 143.77 - 144.36
5 || 181.37-182.07 || 181.59 - 182.29 181.57 - 182.27
3 || 109.73-110.25 || 109.98 - 110.49 109.97 - 110.48
mmas | 4 || 143.33-143.92 || 143.35-143.93 143.48 - 144.06
5 || 181.06-181.75 || 181.21 - 181.91 181.65 - 182.35
3| 109.92-110.44 || 110.38-110.90 111.22-111.73

bwas | 4 || 143.46 - 144.04 || 144.26 - 144.85 145.01 - 145.61
5 || 181.55-182.25 || 182.74 - 183.46 183.62 - 184.36
3] 110.28-110.86 || 111.21-111.78 111.42-111.94
acs | 4 || 144.86-145.52 || 145.48 - 146.13 145.70 - 146.32
5 || 183.20-183.99 || 184.37-185.16 184.62 - 185.37

As can be seen in Tables 6.5 and 6.6 the performance of ACS is the worst of all as
resource usage is relatively higher than the other algorithms. The main difference
between ACS and the other algorithms is the local pheromone update where each
ant decreases the pheromone trail in each step when a lightpath and the shortest
path is chosen. Local pheromone update helps ants explore new solutions, but
it does not work well in VT mapping problem. For the cases in which the &

parameter used in local pheromone update is chosen as & > 0.1, the evaporation

46



Table 6.7: Average first hit iterations

5 shortest paths 10 shortest paths 15 shortest paths

hop-count | link-cost || hop-count | link-cost || hop-count | link-cost
3 24.15 42.65 12.83 15.76 7.75 13.14
as 4 15.22 24.57 8.09 10.86 5.52 8.94
5 9.36 22.09 6.07 9.98 5.06 8.22
3 19.20 51.75 16.22 29.81 11.92 20.54
ras | 4 10.78 30.24 8.37 16.10 6.56 11.17
5 797 22.24 6.14 11.98 5.04 8.91
3 8.50 20.48 6.96 13.13 6.36 10.28
eas | 4 5.26 13.44 4.54 8.31 4.28 6.88
5 4.05 10.97 4.19 7.12 4.10 6.48
3 14.56 30.91 10.60 17.07 9.52 14.40
mmas | 4 9.41 19.89 9.40 12.94 8.76 10.87
5 7.84 18.04 8.92 10.68 7.52 8.61
3 22.97 46.16 25.33 39.96 21.55 29.65
bwas | 4 19.19 36.28 16.56 18.12 11.24 12.78
5 16.42 30.63 12.55 13.84 7.94 9.17
3 28.28 46.65 19.05 24.01 12.31 16.47
acs | 4 18.69 29.68 11.50 13.73 7.23 9.43
5 11.71 20.15 7.47 9.60 5.24 7.41

of pheromones after each step, may make ants forget the heuristic information.
The effect of & parameter should also be investigated to increase the performance

of ACS algorithm.

From Table 6.6, we can conclude that although MMAS has the smallest resource
usage values, all algorithms have relatively the same performance. There is
no significant difference between the resource usage values of the implemented
algorihtms for 4 connected V'Ts. Table 6.7 shows the first hit iterations in which
the best solutions are retrieved. Average of the first hit iterations are given based
on both hop-count and link-cost. When we compare the results for link-cost and
hop-count we can see that best solutions are found in earlier iterations when the
hop-count calculation method is used. Hop-count calculation method also results
in better success rates not only for 5 connected virtual topologies, but also in 5
shortest path cases (see Table 6.4). We can see from Table 6.7 that EAS finds its
best solution in earlier iterations than the other algorithms. From Table 6.7, we
can conclude that BWAS finds its best solution in the latest iteration. The reason

may be the pheromone mutation procedure. When BWAS cannot find a better
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solution after a predefined number of iterations, the pheromones are updated and

different solutions are explored. The best solution may be found after this stage.

Table 6.8: Average and standard error of first hit times

5 shortest paths 10 shortest paths 15 shortest paths
hop count ‘ link cost || hop count ‘ link cost || hop count ‘ link cost
3|2 7.00 11.10 8.01 11.54 8.08 11.12
e 0.12 0.11 0.10 0.08 0.10 0.08
acs | al? 7.32 12.35 8.43 11.53 8.09 10.97
e 0.12 0.08 0.11 0.08 0.11 0.09
5|2 8.07 12.81 8.62 11.98 8.94 12.86
e 0.11 0.09 0.11 0.09 0.12 0.11
Sk 222 4.33 2.86 4.92 3.18 5.89
e 0.07 0.09 0.07 0.08 0.06 0.09
as 412 2.38 5.46 3.02 6.15 4.03 7.09
e 0.07 0.10 0.06 0.09 0.06 0.08
5|2 2.57 7.00 3.97 8.35 5.72 9.74
e 0.06 0.11 0.05 0.09 0.06 0.08
3|2 3.78 7.55 6.83 10.98 8.07 11.21
e 0.08 0.09 0.10 0.08 0.10 0.08
bwas | 4 | 2 4.36 8.93 6.46 8.29 6.66 8.23
e 0.09 0.08 0.09 0.08 0.09 0.08
5@ 5.67 10.50 7.30 9.51 7.18 8.77
e 0.10 0.08 0.10 0.08 0.09 0.08
3|2 2.24 5.73 3.15 6.44 4.21 6.97
e 0.06 0.10 0.07 0.09 0.08 0.09
cas | 4|2 2.32 6.60 3.38 7.04 4.79 8.06
e 0.06 0.10 0.06 0.09 0.06 0.08
5| 2.81 7.81 4.87 9.10 7.05 11.47
e 0.06 0.10 0.06 0.09 0.07 0.09
Sk 2.79 6.86 4.00 8.09 6.08 9.65
e 0.07 0.10 0.06 0.08 0.07 0.07
mmas | 4 |2 2.60 7.65 5.95 10.77 9.67 12.70
e 0.05 0.09 0.06 0.07 0.08 0.06
5| 4.07 9.80 9.70 13.19 12.69 14.94
e 0.05 0.09 0.07 0.06 0.09 0.07
3|2 3.11 8.54 4.30 8.21 4.44 7.79
e 0.09 0.11 0.10 0.10 0.09 0.10
s |4 2.96 8.60 3.72 7.62 4.12 7.25
e 0.09 0.10 0.09 0.10 0.08 0.09
5|2 3.34 9.10 4.09 8.53 4.81 8.68
e 0.09 0.10 0.08 0.09 0.08 0.09

Table 6.8 shows the first hit times in which the best solutions are retrieved. The

time unit is shown as seconds. Average (a) and the standart error(e) of the first hit
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times are given based on both hop-count and link-cost. Similar to the Table 6.7,
the best solutions are found earlier when the hop-count calculation method is
used. We can see from Table 6.8 that AS finds its best solution earlier than the
other algorithms. It is not suprising because AS has the basic procedures. As
the quality of the solutions found by AS is as good as the solutions found by
the other algorithms (see Tables 6.5 and 6.6), in time critical systems, AS can
be used to gather good solutions in a short time. MMAS, ACS and BWAS finds
their best solutions later than the other algorithms. EAS and RAS do not need
much time to retrieve their best solutions. As their qualities are comparable to

the other algorithms, they can be used in time critical systems confidently.

6.3 Discussion

As a summary of the experiments, we recommend ACO algorithms for the
survivable VT mapping problem due to their decision policy at each step. They
find feasible solutions after each iteration. To increase the performance and the
success rates, as many shortest paths as necessary should be used. Based on the
results, even though all ACO algorithms perform well, we can recommend MMAS
with hop-count calculation method due to its overall success and better reaction
to the increasing search space. MMAS finds its best solutions later than the other
algorithms when 15 shortest paths are provided. In time critical systems, AS can
be used because it converges to its best solutions earlier than the other algorithms
but from Table 6.4, we can conclude that success rates of AS is not as good as
the other algorithms so in 15 shortest path cases, to decrease time utilized by
MMAS, EAS and RAS can be used reliably to retrieve best solutions in a short

time with high success rates.

We also performed a series of experiments to compare the performance of the
EA and ACO for the survivable VT mapping problem. In these experiments,
we used two metrics for performance comparisons: success rate, and resource
usage. For the experiments, we used the same physical topology as we did to
compare the ACO variants(see Figure 6.7). We created 50 random VTs with
average connectivity degrees of 3, 4, and 5. We assumed capacity of physical link

as 10 wavelengths.
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Table 6.9: Success rates retrieved by ACO and EA

5 shortest 10 shortest 15 shortest
paths paths paths
EA ACO EA ACO EA ACO

3 026 | 0.72 055 | 0.92 0.59 | 097
hop count | 4 0.87 | 0.94 0.95 1 0.97 1

5 097 | 0.98 1 1 1 1

3 0.19 | 0.60 0.53 | 093 0.60 | 0.98
link cost | 4 0.84 | 0.88 094 | 0.96 0.97 1

5 098 | 0.83 1 1 1 1

Here, we used the EA approach and the parameter set with the best performance
from [18]. In the EA performance tests, we considered a mutation probability
of 1/1, where [ is the number of lightpaths, a crossover probability of 1.0 and a
population size of 100. A penalty factor of 200 is used in the tests using hop

count for shortest path calculation, and 300 in the tests using link cost.

The termination criterion for both algortihms is to create a predefined number
of points in the solution space. We applied separate tests to each algorithm and
determined this number as the iteration count after which there is no improvement
in solution quality. As a result, we decided this number to be 5000 for the EA,
and 100 for the ACO. We should note that each run of the programs take less

than a minute on the average. We performed 20 runs for each experiment.

The results of the experiments are given in Tables 6.9, and 6.10. Table 6.9 shows
the success rates of both heuristics averaged over 1000 runs (20 runs per VT
instance). For each algorithm and VT connectivity degree, we examined three
different numbers of alternative shortest paths for each lightpath. We used 5, 10,
and 15 shortest paths calculated according to hop count and link cost. Table 6.10
shows the lower (1) and upper (#) bounds for the resource usage of both algorithms
with 95% confidence interval calculated using only the results of the successful

runs.

A quick observation of Table 6.9 shows that success rates for both algorithms are
very high. Generally ACO achieves higher success rates. The experiments using
hop count calculation method performs better in terms of success rate for both

heuristics. In Table 6.9, we can see that success rates increase with the increase
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Table 6.10: Lower and upper bounds of resource usage with 95% confidence interval for ACO and EA

5 shortest 10 shortest 15 shortest
paths paths paths
EA ACO EA ACO EA ACO
1 113.24 111.53 115.15 115.88 117.48 116.99
u 114.86 112.48 116.39 116.80 118.84 117.91
1 146.8 146.54 150.84 154.51 153.9 156.82
u 147.64 147.31 151.7 155.41 154.78 157.78
1 185.64 187.01 192.32 197.18 197.86 201.55

hop count | 4

5

u 186.8 188.19 193.53 198.42 199.17 202.85

3 1 115775 | 111175 115733 | 116329 118524 | 117838

’ u 117751 112507 117104 | 117391 119954 | 118934

. 1 147272 | 147319 151183 | 154017 154928 | 156137
link cost 4

u 148379 | 148317 152166 | 155061 156528 | 157223

5 1 200687 | 189479 199330 | 199969 203287 | 204412

209674 | 191047 204847 | 201535 207230 | 205966

(=]

in the number of alternative shortest paths. In EA tests; for 3 connected VTs,
success rates for 10 shortest paths are more than twice the success rates for 5
shortest paths, however, the increase of success rate from 10 shortest paths to 15
shortest paths is not that high. This is because of the exponential growth of the

search space.

The probability of random candidate solutions being survivable increases with
the connectivity degree of the VT. Therefore, for higher connectivity degrees of
VTs, both algorithms have higher success rates. However, the EA has a much

smaller success rate than ACO for 3 connected VTs.

Table 6.10 shows that the resource usage increases slightly with the increase in
the number of alternative shortest paths. This is an expected result, since, the
probability of getting stuck at local optima is higher in larger search spaces and
both algorithms are allowed to run up to a predefined maximum time. If the run
times are increased, the resource usage results for different number of shortest
paths will converge. Even though success rates in Table 6.9 are higher for ACO
on 4 and 5 connected VTs, Table 6.10 shows that the solution quality of EA is
better.

High success rates show that both heuristics are promising for the survivable VT

mapping problem. ACO performs better for sparse VTs both according to success
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rate and resource usage. However, for dense VTs, ACO gives better success rates
whereas EA gives better quality results. Since the time needed to find a feasible
solution is less than a minute, these heuristics can easily be applied to real world

applications.
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7. CONCLUSION

The aim of this thesis is to route lightpaths on a physical topology in such a way
that the capacity constraints of the links are not violated and in case of a physical
link failure, the VT is not disconnected when all the lightpaths routed through
this link are deleted from the VT. Survivable VT mapping is an optimization
problem with the objective of minimizing the resource usage that is the number

of wavelength used in the whole physical topology.

VT mapping problem has been the area of interest to many studies. However
most of them did not consider the survivability constraint. Their objective is to
minimize the number of wavelength used without violating capacity constraints.
The studies that take survivability constraint into account mostly did not consider
capacity constraints and retrieved solutions in a long time. In this study, we have
implemented six ACO algorithms and considered not only survivability constraint
but also capacity constraints of the links in the physical topology. Another
important contribution of this study is that remarkable solutions are retrieved
in quarter of a minute. Unlike other algorithms, the user does not need to wait
for a long time to obtain good solutions. Moreover, the implemented algorithms

does not decrease in performance when the search space is getting bigger.

Our results show that ACO algorithms can be successfully used for the survivable
virtual topology mapping problem. When we compare our results with EAs
implemented in [18], we see that if we run the algorithms for the same amount
of time, we obtain lower resource usage with higher success rates using ACO.
Overall, the results are promising and promote further study to improve the

ACO performance.

As future work, we will examine the effect of other ACO specific parameters

such as o, 1y, P, and the number of shortest paths on the performance of the
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algorithms. We will also use classical optimization algorithms to compute lower

bounds of the solutions to better asses the quality of our results.

The future work includes also testing the algorithms on different data. Moreover,
the graph structures of the data sets can be examined and a relation between the

graph structure and best variation to route the lightpaths can be set up.
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