950 research outputs found

    Submicron Systems Architecture Project : Semiannual Technical Report

    Get PDF
    The Mosaic C is an experimental fine-grain multicomputer based on single-chip nodes. The Mosaic C chip includes 64KB of fast dynamic RAM, processor, packet interface, ROM for bootstrap and self-test, and a two-dimensional selftimed router. The chip architecture provides low-overhead and low-latency handling of message packets, and high memory and network bandwidth. Sixty-four Mosaic chips are packaged by tape-automated bonding (TAB) in an 8 x 8 array on circuit boards that can, in turn, be arrayed in two dimensions to build arbitrarily large machines. These 8 x 8 boards are now in prototype production under a subcontract with Hewlett-Packard. We are planning to construct a 16K-node Mosaic C system from 256 of these boards. The suite of Mosaic C hardware also includes host-interface boards and high-speed communication cables. The hardware developments and activities of the past eight months are described in section 2.1. The programming system that we are developing for the Mosaic C is based on the same message-passing, reactive-process, computational model that we have used with earlier multicomputers, but the model is implemented for the Mosaic in a way that supports finegrain concurrency. A process executes only in response to receiving a message, and may in execution send messages, create new processes, and modify its persistent variables before it either exits or becomes dormant in preparation for receiving another message. These computations are expressed in an object-oriented programming notation, a derivative of C++ called C+-. The computational model and the C+- programming notation are described in section 2.2. The Mosaic C runtime system, which is written in C+-, provides automatic process placement and highly distributed management of system resources. The Mosaic C runtime system is described in section 2.3

    Dataflow development of medium-grained parallel software

    Get PDF
    PhD ThesisIn the 1980s, multiple-processor computers (multiprocessors) based on conven- tional processing elements emerged as a popular solution to the continuing demand for ever-greater computing power. These machines offer a general-purpose parallel processing platform on which the size of program units which can be efficiently executed in parallel - the "grain size" - is smaller than that offered by distributed computing environments, though greater than that of some more specialised architectures. However, programming to exploit this medium-grained parallelism remains difficult. Concurrent execution is inherently complex, yet there is a lack of programming tools to support parallel programming activities such as program design, implementation, debugging, performance tuning and so on. In helping to manage complexity in sequential programming, visual tools have often been used to great effect, which suggests one approach towards the goal of making parallel programming less difficult. This thesis examines the possibilities which the dataflow paradigm has to offer as the basis for a set of visual parallel programming tools, and presents a dataflow notation designed as a framework for medium-grained parallel programming. The implementation of this notation as a programming language is discussed, and its suitability for the medium-grained level is examinedScience and Engineering Research Council of Great Britain EC ERASMUS schem

    Acta Cybernetica : Volume 15. Number 2.

    Get PDF

    Die Herausforderungen nichtlinearer Parameter und Variablen in automatischer Schleifenparallelisierung

    Get PDF
    With the rise of manycore processors, parallelism is becoming a mainstream necessity. Unfortunately, parallel programming is inherently more difficult than sequential programming; therefore, techniques for automatic parallelisation will become indispensable. We aim at extending the well-known polyhedron model, which promises this automation, beyond some of its current restrictions. Up to now, loop bounds and array subscripts in the modelled codes must be expressions linear in both the variables and the parameters. We lift this restriction and allow certain polynomial expressions instead of linear ones. With our extensions, we are able to handle more programs in all phases of the parallelisation process (dependence analysis, transformation of the program model, code generation). We extend Banerjee's classical dependence analysis to handle one non-linear parameter p, i.e., we are able to determine precisely the solutions of the system of conflict equalities for input programs with non-linear array accesses like A[p*i] in dependence of the residue class of p. We make contributions to three transformations desirable in automatic parallelisation. First, we show that using a generalised Simplex algorithm, which we have developed, schedules with non-linear parameters like theta(i)=floor(i/n) can be computed. In addition, such schedules can be expressed easily as a quantifier elimination problem but this approach turns out to be computationally less efficient with the available implementation. As a second transformation, we study parametric tiling which is used to adapt a parallelised program to the number of available processors at run time. Third, we present a localisation technique to exploit scratchpad memories on architectures on which data caching has to be handled by software. We transform a given code such that it keeps values which are reused in successive iterations of a sequential loop in the scratchpad. An access to a value written in an earlier iteration is served from the scratchpad to accelerate the access. In general, this transformation introduces non-linear loop bounds in the transformed model. Finally, we present an algorithm for generating code for arbitrary semi-algebraic iteration sets, i.e., for iteration sets described by polynomial inequalities in the variables and parameters. This is a vast generalisation of existing polyhedral code generation techniques. Although our algorithm is less efficient than polyhedral code generators, this paves the way for a code generator that can handle arbitrary parametric tilings and other transformations which introduce non-linear parameters (like non-linear schedules and the localisation we present) or even non-linear variables

    Performance analysis and tuning in multicore environments

    Get PDF
    Performance analysis is the task of monitor the behavior of a program execution. The main goal is to find out the possible adjustments that might be done in order improve the performance. To be able to get that improvement it is necessary to find the different causes of overhead. Nowadays we are already in the multicore era, but there is a gap between the level of development of the two main divisions of multicore technology (hardware and software). When we talk about multicore we are also speaking of shared memory systems, on this master thesis we talk about the issues involved on the performance analysis and tuning of applications running specifically in a shared Memory system. We move one step ahead to take the performance analysis to another level by analyzing the applications structure and patterns. We also present some tools specifically addressed to the performance analysis of OpenMP multithread application. At the end we present the results of some experiments performed with a set of OpenMP scientific application.Análisis de rendimiento es el área de estudio encargada de monitorizar el comportamiento de la ejecución de programas informáticos. El principal objetivo es encontrar los posibles ajustes que serán necesarios para mejorar el rendimiento. Para poder obtener esa mejora es necesario encontrar las principales causas de overhead. Actualmente estamos sumergidos en la era multicore, pero existe una brecha entre el nivel de desarrollo de sus dos principales divisiones (hardware y software). Cuando hablamos de multicore también estamos hablando de sistemas de memoria compartida. Nosotros damos un paso más al abordar el análisis de rendimiento a otro nivel por medio del estudio de la estructura de las aplicaciones y sus patrones. También presentamos herramientas de análisis de aplicaciones que son específicas para el análisis de rendimiento de aplicaciones paralelas desarrolladas con OpenMP. Al final presentamos los resultados de algunos experimentos realizados con un grupo de aplicaciones científicas desarrolladas bajo este modelo de programación.L'Anàlisi de rendiment és l'àrea d'estudi encarregada de monitorar el comportament de l'execució de programes informàtics. El principal objectiu és trobar els possibles ajustaments que seran necessaris per a millorar el rendiment. Per a poder obtenir aquesta millora és necessari trobar les principals causes de l'overhead (excessos de computació no productiva). Actualment estem immersos en l'era multicore, però existeix una rasa entre el nivell de desenvolupament de les seves dues principals divisions (maquinari i programari). Quan parlam de multicore, també estem parlant de sistemes de memòria compartida. Nosaltres donem un pas més per a abordar l'anàlisi de rendiment en un altre nivell per mitjà de l'estudi de l'estructura de les aplicacions i els seus patrons. També presentem eines d'anàlisis d'aplicacions que són específiques per a l'anàlisi de rendiment d'aplicacions paral·leles desenvolupades amb OpenMP. Al final, presentem els resultats d'alguns experiments realitzats amb un grup d'aplicacions científiques desenvolupades sota aquest model de programació

    Just In Time Assembly (JITA) - A Run Time Interpretation Approach for Achieving Productivity of Creating Custom Accelerators in FPGAs

    Get PDF
    The reconfigurable computing community has yet to be successful in allowing programmers to access FPGAs through traditional software development flows. Existing barriers that prevent programmers from using FPGAs include: 1) knowledge of hardware programming models, 2) the need to work within the vendor specific CAD tools and hardware synthesis. This thesis presents a series of published papers that explore different aspects of a new approach being developed to remove the barriers and enable programmers to compile accelerators on next generation reconfigurable manycore architectures. The approach is entitled Just In Time Assembly (JITA) of hardware accelerators. The approach has been defined to allow hardware accelerators to be built and run through software compilation and run time interpretation outside of CAD tools and without requiring each new accelerator to be synthesized. The approach advocates the use of libraries of pre-synthesized components that can be referenced through symbolic links in a similar fashion to dynamically linked software libraries. Synthesis still must occur but is moved out of the application programmers software flow and into the initial coding process that occurs when programming patterns that define a Domain Specific Language (DSL) are first coded. Programmers see no difference between creating software or hardware functionality when using the DSL. A new run time interpreter is introduced to assemble the individual pre-synthesized hardware accelerators that comprise the accelerator functionality within a configurable tile array of partially reconfigurable slots at run time. Quantitative results are presented that compares utilization, performance, and productivity of the approach to what would be achieved by full custom accelerators created through traditional CAD flows using hardware programming models and passing through synthesis

    Media gateway utilizando um GPU

    Get PDF
    Mestrado em Engenharia de Computadores e Telemátic

    Cost and benefits design optimization model for fault tolerant flight control systems

    Get PDF
    Requirements and specifications for a method of optimizing the design of fault-tolerant flight control systems are provided. Algorithms that could be used for developing new and modifying existing computer programs are also provided, with recommendations for follow-on work
    • …
    corecore