
The Challenges of Non-linear

Parameters and Variables in

Automatic Loop Parallelisation

Armin Größlinger

2009-07

Eingereicht an der Fakultät für Informatik und Mathematik

der Universität Passau als Dissertation zur Erlangung des

Grades eines Doktors der Naturwissenschaften

Submitted to the Department of Informatics and Mathematics

of the University of Passau in Partial Fulfilment of Obtaining

the Degree of a Doctor in the Domain of Science

Betreuer / Advisor:
Prof. Christian Lengauer, Ph.D.

Universität Passau

Zweitgutachter / External Examiner:
Prof. Albert Cohen

INRIA Saclay–Île-de-France
Parc Club Orsay Université

Abstract

With the rise of manycore processors, parallelism is becoming a mainstream necessity.
Unfortunately, parallel programming is inherently more difficult than sequential program-
ming; therefore, techniques for automatic parallelisation will become indispensable. We
aim at extending the well-known polyhedron model, which promises this automation, be-
yond some of its current restrictions. Up to now, loop bounds and array subscripts in the
modelled codes must be expressions linear in both the variables and the parameters. We
lift this restriction and allow certain polynomial expressions instead of linear ones. With
our extensions, we are able to handle more programs in all phases of the parallelisation
process (dependence analysis, transformation of the program model, code generation).

We extend Banerjee’s classical dependence analysis to handle one non-linear parameter
p, i.e., we are able to determine precisely the solutions of the system of conflict equalities
for input programs with non-linear array accesses like A[p · i] in dependence of the residue
class of p.

We make contributions to three transformations desirable in automatic parallelisation.
First, we show that using a generalised Simplex algorithm, which we have developed,
schedules with non-linear parameters like θ(i) = ⌊ i

n
⌋ can be computed. In addition, such

schedules can be expressed easily as a quantifier elimination problem but this approach
turns out to be computationally less efficient with the available implementation. As a
second transformation, we study parametric tiling which is used to adapt a parallelised
program to the number of available processors at run time. Third, we present a localisation
technique to exploit scratchpad memories on architectures on which data caching has to
be handled by software. We transform a given code such that it keeps values which are
reused in successive iterations of a sequential loop in the scratchpad. An access to a value
written in an earlier iteration is served from the scratchpad to accelerate the access. In
general, this transformation introduces non-linear loop bounds in the transformed model.

Finally, we present an algorithm for generating code for arbitrary semi-algebraic it-
eration sets, i.e., for iteration sets described by polynomial inequalities in the variables
and parameters. This is a vast generalisation of existing polyhedral code generation tech-
niques. Although our algorithm is less efficient than polyhedral code generators, this
paves the way for a code generator that can handle arbitrary parametric tilings and other
transformations which introduce non-linear parameters (like non-linear schedules and the
localisation we present) or even non-linear variables.

Technically, our extensions rely on results from algebra (multivariate polynomials and
univariate quasi-polynomials) and logic (quantifier elimination in the reals). We prove
that solutions of systems of linear Diophantine equalities with one non-linear parameter
can be computed by a generalisation of a well-known algorithm for the non-parametric
case to coefficients which are univariate quasi-polynomials in the parameter. Computing
schedules and other transformations are directly related to quantifier elimination or can be
performed by a generalisation of an algorithm for the linear case by the help of quantifier
elimination. Cylindrical algebraic decomposition (originally developed as a method for
quantifier elimination) is the key to generating code for iteration sets with polynomial
bounds. To generate code, a suitable partitioning of the index sets is required. We
observe that such partitionings are cylindrical and, based on this observation, present a
code generation algorithm based on cylindrical algebraic decomposition for iteration sets
with arbitrary polynomial bounds.

i

ii

Acknowledgements

This thesis has only been made possible through the support of many people.
First of all, I have to thank my adviser Prof. Christian Lengauer, Ph.D. for
enabling me to explore the field of polynomial parameters and variables in the
polyhedron model. I am grateful to him for the many discussions, the support
and the many valuable suggestions on the structure and the contents of this
thesis and for the many improvements of my use of the English language.

Dr. Martin Griebl has always been a valuable dialogue partner. The discussions
with him gave the initial impetus to explore some of the aspects dealt with in
this thesis. He offered his insights and comments on some of the topics while
they came into existence.

I enjoyed the work with Stefan Schuster while he was doing his Diploma thesis
about the foundations for a more general dependence analysis. The LooPo
team in Passau has been a source of constant, fruitful discussion about the
topics of this thesis.

I have to thank Dr.-Ing. Sven Apel, Eva Reichhart and my other friends in
Passau for keeping me going with the work on this thesis.

Additional thanks go to the ALCHEMY group for the discussions and sug-
gestions while finishing this thesis. I am indebted to Prof. Albert Cohen for
providing me with a supportive environment to finish this work.

Last but not least, I have to thank my partner Thomas for his understanding
and his continuous support throughout my work on this thesis.

iii

iv

Contents

1 Introduction 1

1.1 Dependence Analysis . 2

1.2 Computing Schedules . 2

1.3 Tiling . 3

1.4 Array Localisation . 3

1.5 Code Generation . 3

2 Prerequisites 5

2.1 Mathematical Prerequisites . 5

2.1.1 Notation . 5

2.1.2 Rings . 5

2.1.3 Polynomials and Logical Formulas 7

2.1.4 Polyhedra . 9

2.1.5 Periodic Numbers . 10

2.1.6 Univariate Quasi-Polynomials . 11

2.1.7 Multivariate Quasi-Polynomials and Counting Z-Polyhedra 13

2.1.8 Algebraic Numbers and Cylindrical Algebraic Decomposition . . . 14

2.1.9 Quantifier Elimination . 16

2.2 Parallel Programming . 17

2.2.1 The Polyhedron Model . 17

2.2.2 Parallel Computing Hardware . 21

3 Related Work 25

3.1 Dependence Analysis . 25

3.2 Computing Schedules . 26

3.3 Tiling . 26

3.4 Array Localisation . 27

3.5 Code Generation . 27

4 Algorithms for Non-linearities 29

4.1 The Generalised Model . 29

4.2 Solving Systems of Linear Diophantine Equalities 31

4.2.1 Solving Systems of Linear Equalities 31

4.2.2 Pointwise Solutions . 32

v

4.2.3 Solving Systems of Linear Diophantine Equalities with One Non-

linear Parameter . 33

4.2.4 Extended Greatest Common Divisor Computation 33

4.2.5 Pointwise Echelon Form . 36

4.2.6 Forward Substitution . 37

4.2.7 Examples . 38

4.2.8 Floor and Modulo Operations . 40

4.2.9 Beyond a Single Parameter . 40

4.3 Using Quantifier Elimination to Solve Problems in the Generalised Model 40

4.3.1 Equivalent Formulas . 41

4.3.2 Quantifier Elimination with Answer 44

4.4 Obtaining Generalised Algorithms via Program Transformation 45

4.4.1 New Algorithms by Program Transformation 45

4.4.2 Fourier-Motzkin Elimination and Simplex 46

4.4.3 Fourier-Motzkin Special Case . 49

5 Application of Algorithms for Non-linearities to the Polyhedron Model 53

5.1 Dependence Analysis . 53

5.1.1 Generalisation to One Non-linear Parameter 54

5.1.2 Using Weak Quantifier Elimination in the Integers 54

5.1.3 Example . 55

5.2 Computing Schedules . 57

5.2.1 Schedule by Simplex . 57

5.2.2 Schedule by Quantifier Elimination 59

5.2.3 Code Generation Considerations 60

5.3 Tiling . 60

5.3.1 Tiling with Parallelepiped Tiles . 61

5.3.2 Intermezzo: Triangular Index Space 63

5.3.3 Computing the Tiling . 64

5.3.4 Generated Code . 65

5.4 Array Localisation . 68

5.4.1 Prerequisites . 70

5.4.2 Locality Transformation . 70

5.4.3 The New Location of Array Elements 71

5.4.4 Localisation Based on Access Instances 71

5.4.5 Localisation Based on Dependences 73

5.4.6 Ordering the Reorganisation . 75

5.4.7 Adjusting the Granularity of the Localisation 77

5.4.8 Code Generation Considerations 77

5.4.9 Examples . 78

5.5 Code Generation . 81

5.5.1 Introduction to Code Generation 81

5.5.2 Non-linearity and Non-convexity 85

5.5.3 Definition of the Code Generation Problem 87

vi

5.5.4 Code Generation by Cylindrical Algebraic Decomposition 87

5.5.5 Code Generation as Cylindrical Decomposition 87

5.5.6 The Efficiency of a Solution . 88

5.5.7 Code Generation for Semi-algebraic Sets 89

5.5.8 Improving the Code . 90

5.5.9 Examples . 93

5.5.10 Combining Polyhedral Code Generation with CAD 99

5.5.11 Generalising a Polyhedral Code Generator to Non-linear Parameters 104

5.5.12 Code Generation as a Formula Simplification Problem 106

5.5.13 Improvements of the Basic Algorithm 106

6 Conclusions 107

6.1 Summary . 107

6.1.1 Dependence Analysis . 107

6.1.2 Computing Schedules . 107

6.1.3 Tiling . 108

6.1.4 Array Localisation . 108

6.1.5 Code Generation . 109

6.2 Future Directions . 109

6.2.1 Dependence Analysis . 109

6.2.2 Transformations . 110

6.2.3 Code Generation . 110

vii

viii

List of Figures

2.1 Sections and sectors . 15

2.2 Overview over the automatic transformation process in the polyhedron model 18

2.3 Example loop program with array access in statement S 19

2.4 GPU architecture (image from [NVI09]) 23

2.5 GPU architecture (image from [NVI09]) 23

4.1 A tiled iteration domain . 47

5.1 Example loop program with array access in statement S 53

5.2 Example program and its data dependences for m = 5 55

5.3 Example program for non-linear schedule 57

5.4 1d-SOR: Index space with dependences 62

5.5 1d-SOR: Space-time mapped index space with rectangular and parallelo-

gram tiles . 62

5.6 Skewing: Tiles which can be executed in parallel (highlighted) in successive

time steps . 62

5.7 Backward substitution: Index space after space-time mapping with rectan-

gular tiles . 63

5.8 Cyclic parallel execution: Highlighted tiles are executed in parallel, bor-

dered tiles are completed in preceding time steps. 64

5.9 1d-SOR: generated target code for parallelepiped 2250 × 1500 tiling . . . 66

5.10 1d-SOR: generated target code for parametric parallelepiped w × h tiling 66

5.11 Tiling overhead in 1-dim SOR for n = 106,m = 9, 000 (x-axis non-linear) . 67

5.12 Locality-improving transformation on a simple parallel program 69

5.13 Program to be transformed with one outer sequential time loop 70

5.14 Preliminary localised code based on access instances with two local storages 72

5.15 Deadlock situation for synchronisations introduced by different dependences 74

5.16 1d-SOR: sequential codes . 79

5.17 1d-SOR: parallel version . 79

5.18 One-dimensional successive overrelaxation: fully localised parallel code with

reorganisation (localisation based on access instances) 82

5.19 Gauss-Seidel: original code . 83

5.20 Gauss-Seidel: localised parallel code (localisation based on access instances) 83

5.21 Three possible codes for D1 = {x | 2 ≤ x ≤ 8} and D2 = {x | 2 ≤ x ≤ p} . 84

5.22 Non-convex domain {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y − 4)2 + 12 − 3x ≥ 0} 85

ix

5.23 Integer points in 0 ≤ x ∧ 0 ≤ y ≤ √
x . 86

5.24 Code for domain {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y − 4)2 + 12 − 3x ≥ 0}
according to Algorithm 5.1 . 92

5.25 Example: domain D = {(x, y) | y ≥ 1, y ≤ x, y ≤ −x+ p} 94

5.26 Example from [QRW00] (under the assumption m,n ≥ 4) 95

5.27 Example 2.2 from [AZ00] with schedule θ(x, y) = (n− 3) · x+ y 96

5.28 Code generated by CAD for Example 2.2 from [AZ00] with schedule θ2(x, y) =
1
2x

2 − 5
2x+ y − 4 . 97

5.29 Example program for non-linear schedule 97

5.30 Example: computing the number of 2-factorisations 98

5.31 Example for combined polyhedral/CAD code generation 101

5.32 Code generated for input shown in Figure 5.31 102

5.33 A domain which needs an additional split 103

5.34 Example code for a problem with non-linear scattering i = p · x for S2 . . 105

x

Chapter 1

Introduction

Until recently, parallel programming has been a niche phenomenon. Only when the de-
mand for processing power or memory size in some special applications exceeded the re-
sources of a single processor, a cluster of workstations, i.e., processors connected through
a local area network, was used. But, in recent years, parallel computing has become
increasingly main-stream. CPU power is not increasing as fast as before and the recent
trend in both the desktop and the server CPU market has been towards multicore chips
with several instances of the same processor or different, special-purpose processors on a
single die. Processing power is increased by adding more cores, not by making a single
core faster. Exploiting this processing power clearly requires parallel programming tech-
niques. Another instance of this emerging parallelism on the small scale is general-purpose
graphics processing unit (GPGPU) computing. Initially, graphics processors were special-
purpose, but some modifications to the design allow them to be used as a general-purpose
parallel computing hardware (cf. Section 2.2.2).

On the large scale, world-wide interconnection of computing systems has given rise to
Grid computing. With the Internet becoming faster, the delay and bandwidth limitation
present between sites is becoming less of a problem and enable parallel computing appli-
cations to run across the Internet. But, even with fast networks, it is necessary to exploit
data locality, i.e., to arrange computations in a way such that as much data as possible
is supplied to computations by local sources, e.g., by reusing data computed in preceding
steps of the computation.

The peculiarities of parallel programming make it inherently more difficult than se-
quential programming and it has remained somewhat of a black art. To unburden
the programmer from dealing with the subtleties of parallel programming like interpro-
cess/interprocessor communication, synchronisation, deadlock avoidance, arranging com-
putations for efficiency, etc. automatic methods are needed that perform a parallelisation
in a provably correct fashion and are only guided by hints from the programmer or a
parallelism expert. Of course, full automation is only achievable for restricted classes of
problems due to the undecidability of most nontrivial properties of arbitrary programs.
One such class of programs which has been subjected successfully to an automatic par-
allelisation is the class which satisfies the restrictions of the so-called polyhedron model.
This model places several restrictions on the programs it can handle, most notably the re-
quirement that they be for-loops with loop bounds linear in the variables (and structural
parameters) and with statements in the body consisting of array accesses with affine array
subscripts. The struggle to increase the model’s applicability and to repeat the success
the model has had in its original domain in a broader setting, is the driving force behind
several recent developments in this field (see the chapter on related work, Chapter 3).

The main point of our work has been to explore how the polyhedron model can be
extended in a certain direction to handle a richer class of programs. The extension we
have been pursuing allows non-linearities; the classical model allows only linear (or affine)
loop bounds and array subscripts. When we will speak of “non-linear” constructs, we

1

2 1. Introduction

will always mean polynomial expressions in the variables and parameters, i.e., we do
not consider array subscripts like A[B[i]] or expressions like 2i which are clearly beyond
linearity as well. To achieve this extension, several techniques from different areas of
algebra and logic are required. In the following sections, we give a brief, example-driven
overview of the extensions we make. These sections mirror the sections of the main part
of this work, Chapter 5, where we elaborate on the extensions we pursue. Chapter 2
introduces the mathematical background needed to formulate the algorithms presented in
Chapter 4, which are the basis for the generalisation presented in our main chapter.

The presentation in the following sections is intended for readers familiar with auto-
matic parallelisation to gain a quick overview of our work and its applicability. Dependence
analysis (Sections 1.1 and 5.1) and code generation (Sections 1.5 and 5.5) relate to the well-
known first and third step in the polyhedron model (cf. Section 2.2.1). In these sections,
we describe how to do dependence analysis in the presence of one non-linear parameter
and how to perform code generation for arbitrary non-linear iteration set bounds. The
computation of schedules, tiling and array localisation (Sections 1.2 to 1.4 and 5.2 to 5.4)
are examples of viable transformations (the second phase of the model) which introduce
non-linearities into a previously linear program. This motivates the desire for non-linear
transformations and the necessity of code generation for non-linear iteration sets.

1.1 Dependence Analysis

The main challenge in dependence analysis is to determine whether there are values for the
loop variables such that two array accesses actually write to or read from the same memory
cell. Since loop iterations are discrete and, therefore, loop variables usually are integers,
generalising dependence analysis to non-linearities is difficult because of the undecidability
of the theory of the integers with addition and multiplication [Dav73]. But, in the case
that only one parameter is allowed to occur non-linearly, we can precisely determine the
solutions of the conflict equality system in dependence of the parameter.

One common case in which non-linear parameters are used is in a library which offers
functions with a stride argument. For example, many functions in the well-known BLAS
linear algebra library have a stride parameter to access every pth element of a vector
argument. This can be used to access a row (with p = 1) or a column (with p equal to
the row length of the matrix) of a matrix stored in row-major order. Such codes perform
the strided access with array subscripts like A[p*i]. With the technique we present,
the corresponding conflict equality system can be analysed exactly. As another example
consider the following code (assuming p ≥ 1):

for (i=0; i<=m; i++)

for (j=0; j<=m; j++)

A[p*i+2*j] = i+j;

Here, the structure of the dependence from the write access to itself depends on whether
p is even or odd. This can be deduced from the fact that 2 · j is always even. Therefore,
if p is even, too, an increment of i can be “compensated” for by lowering j by p

2 , i.e., the
output dependence is from iteration (i, j) to (i + 1, j − p

2). On the other hand, if p is
odd, then i must be increased by two such that the increase can be compensated for by
lowering j by p; the dependence is from (i, j) to (i+2, j−p), then. Our algorithm derives
this case distinction and the solutions mechanically.

1.2 Computing Schedules

Depending on the dependence structure of a program, a linearly parametric schedule
may not be sufficient to express the potential parallelism. Therefore, we present two
approaches (quantifier elimination and a generalised Simplex) to computing non-linear

1.3. Tiling 3

schedules. With these techniques, we can compute, for example, the schedule θ(i) = ⌊ i
n
⌋

for the following code with a dependence from iteration i to i+n caused by the statement
in its body:

for (i=0; i<=m; i++)

A[i+n] = f(A[i]);

Our code generation techniques then enables us to generate the following parallel code:

for (t=⌈ 1−n
n

⌉; t<=⌊m
n
⌋; i++)

parfor (i=max(n*t,0); i<=min(n*t+n-1,m); i++)

A[i+n] = f(A[i]);

1.3 Tiling

Tiling is used to coarsen the grain of parallelism after a parallelising transformation (or
it can be used as an optimising transformation in its own right). A coarsening aggre-
gates several operations to one “big” operation. This may be necessary to distribute the
otherwise too many operations of a parallel execution step across the available physical
processors. To achieve this adaptation to a number of physical processors which is un-
known at compile time, the tiling transformation has to refer to non-linear parameters,
cf. Section 5.3. Tiling has been studied extensively in the non-parametric case and there
are approaches to solving special cases with parameters. Our code generation procedure
(Section 5.5) demonstrates the feasibility in the general case. In addition, our discussion
of tiling reveals that the rather complex loop bounds introduced by both parametric and
non-parametric tiling need not lead to increased overhead in the loop code.

1.4 Array Localisation

Under this heading, we present a method for exploiting so-called scratchpad memories,
memory areas which are fast like data caches but which have to be addressed explicitly like
ordinary memory. Data caching has to be organised in software, i.e., one has to generate
code which moves data between the main memory and the scratchpad memory. The
transformation we present requires, for an efficient use of the scratchpad, to generate loops
with non-linear bounds. This is another example that a transformation which introduces
non-linearities into the model is desirable.

1.5 Code Generation

Polyhedral code generation is limited to the case that the inequalities describing the iter-
ation sets are affine expressions in the variables and parameters. Several transformations
(we demonstrate non-linear schedules, parametric tiling and array localisation) introduce
products between variables and parameters or we may want to deal with code which has
products between variables and/or parameters. A few such codes are presented in Sec-
tion 5.5. In all these cases, to be precise, in all cases in which the bounds of the iteration
sets are (multivariate) polynomial expressions in the variables and parameters, we are able
to generate loops to enumerate the iteration sets. The loops generated are efficient in the
sense that there are no conditions (if-statements) inside the loops.

4 1. Introduction

Chapter 2

Prerequisites

In our discussion of automatic parallelisation in the polyhedron model and in the ex-
tensions and applications we present, we require several concepts from different areas
of mathematics which we introduce in Section 2.1. In Section 2.2, we give an overview
of the polyhedron model and describe parallel computing hardware with a focus on the
special-purpose hardware (graphics processors for parallel computing) which some of the
techniques presented in our main chapter (Chapter 5) target. The reader is invited to
skip the mathematical prerequisites if she is not interested in the foundations of all the
algorithms and methods we present in Chapters 4 and 5.

2.1 Mathematical Prerequisites

2.1.1 Notation

As usual, we denote the set of natural numbers by N, where, by convention, 0 ∈ N. The
set of positive natural numbers is denoted by N+ := N − {0}.

We will frequently encounter vectors and the lexicographic ordering on the components
of the vector.

Definition 2.1. Let n ∈ N and a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Rn. The relation
vector a is lexicographically less than or equal to vector b, written a � b, is recursively
defined by:

() � ()

(a1, . . . , an) � (b1, . . . , an) ⇔ a1 < b1 ∨
(
a1 = b1 ∧ (a2, . . . , an) � (b2, . . . , bn)

)
for n ≥ 1

A vector c is said to precede lexicographically a vector d, written c ≺ d, if c � d∧ c 6= d

for c,d ∈ Rn.

Definition 2.2. We write frac(q) for the fractional part of a rational number q ∈ Q, i.e.,
we define frac(q) := q − ⌊q⌋.

We use the notation a ≡l b for a, b ∈ Z, l ∈ N+ to denote that a and b are equivalent
modulo l, i.e., l | (a− b).

2.1.2 Rings

Throughout this work, we will encounter the concepts of a ring, domain and field from
commutative algebra. We assume that the reader is familiar with these concepts, but
review the most important properties.

5

6 Chapter 2. Prerequisites

Definition 2.3. A structureD = (D,+,−, ·, 0, 1) is called a ring, if + and · are associative
and commutative, · distributes over +, 0 is neutral w.r.t. +, − is the inverse operation
w.r.t. +, 1 is neutral w.r.t. · and 0 6= 1.1

Structure D is called a domain, if it is a ring and it has no zero-divisors, that is,
(∀x, y : x, y ∈ D : x · y = 0 ⇒ x = 0 ∨ y = 0) holds.

Structure D is called a field, if it is a domain and has multiplicative inverses except
for zero, i.e.,

(
∀x : x ∈ D − {0} (∃y : y ∈ D : x · y = 1)

)
.

To simplify the language we use, we will write“a ringD”to mean an algebraic structure
over the set D with operators +, −, · and constants 0 and 1; likewise for “domain” and
“field”.

Definition 2.4. Let D be a ring and a, b ∈ D. a is said to divide b, written a|b, if and
only if there exists c ∈ D − {0} such that a · c = b; a is called a unit if a divides 1; a is
called a zero-divisor if it divides 0. If there exists a unit u ∈ D such that a · u = b, then
a and b are called associated, written a ∼ b.

Definition 2.5. Let D be a ring and a, b, g ∈ D. Then g is called a greatest common
divisor (GCD) of a and b if and only if g divides a and b and any other h ∈ D which
divides both a and b also divides g.

Definition 2.6. Let D be a ring and a, b ∈ D such that any two greatest common divisors
g ∈ D and g′ ∈ D of a and b are associated, i.e., g ∼ g′. Then, we write g ∼ gcd(a, b) to
denote that g is a greatest common divisor of a and b. If the greatest common divisors
of any a, b ∈ D are associated, we say that greatest common divisors are unique in D
(modulo multiplication with units).

Definition 2.7. Let D be a ring with unique GCDs. If, for any a, b, g ∈ D such that
g ∼ gcd(a, b), there exist e, f ∈ D such that g = e · a + f · b, then D is called a Bézout
ring.

Let us now recall a well-known general, abstract way to compute greatest common
divisors in rings which allow a kind of division with remainder. The sequence of remainders
describes a unimodular matrix (i.e., a matrix whose determinant is associated to 1) which
shows how to compute the GCD from the given elements. The following lemma states
implicitly that any ring, in which we can compute such remainder sequences for any
two elements, is a Bézout ring. The “remainder” computation is quite abstract, i.e., the
lemma does not assume that the remainder is “less than” the divisor in any sense. The
only requirement is that the remainder sequence has to be finite.

Lemma 2.8. Let D be a ring, n ∈ N+, and g0, . . . , gn+1 ∈ D, q1, . . . , qn ∈ D such that
gi−1 = qi · gi + gi+1 for 1 ≤ i ≤ n and gn+1 = 0. Then gn is a GCD of g0 and g1. In
addition, there exists a unimodular matrix U ∈ D2×2 such that

(
gn

0

)
= U ·

(
g0
g1

)
.

Proof. Let n and g0, . . . , gn+1 be as stated. First, we show that gn divides every gi with
0 ≤ i ≤ n by a downward induction.

i = n : Obviously, gn|gn.

i = n− 1 : Since gn−1 = qn · gn + 0 by hypothesis, gn|gn−1.

i, i− 1 → i− 2 for 2 ≤ i ≤ n : Assume gn|gi and gn|gi−1. Since gi−2 = qi−1 · gi−1 + gi, it
follows that gn divides gi−2, too.

1Some authors call this a domain (and their definition of ring allows 0 = 1; what we call a domain is
then called an integral domain. Since we never deal with degenerate rings where 0 = 1, we allow ourselves
to use the simpler terminology.

2.1. Mathematical Prerequisites 7

Hence, gn divides g0 and g1. Second, we show that any d that divides g0 and g1 also
divides gn. We prove by induction that d divides every gi for 0 ≤ i ≤ n.

i = 0 and i = 1 : True by assumption.

i, i+ 1 → i+ 2 for 0 ≤ i ≤ n− 2 : Assume d|gi and d|gi+1. Since gi+2 = gi − qi+1 · gi+1,
this implies d|gi+2.

Hence, d divides gn. Both properties together imply that gn is a greatest common divisor
of g0 and g1.

A unimodular matrix U with the stated properties can be constructed by observing
that

Ui :=

(
0 1
1 −qi

)

for 1 ≤ i ≤ n has the two properties

(
gi

gi+1

)
= Ui ·

(
gi−1

gi

)
, detUi = −1

and, hence, U := Un · . . . · U1 has the stated property.

Note that the lemma does not state that taking remainders is possible in D or that any
remainder sequence one constructs terminates (i.e., there is no guarantee that one reaches
a remainder in the sequence which is 0). This has to be proved for a given procedure
which determines qi and gi+1 from gi−1 and gi in a given ring D for the lemma to be
applicable.

2.1.3 Polynomials and Logical Formulas

Definition 2.9. Let D be a ring, X a formal unknown, n ∈ N and a0, . . . , an ∈ D.
Expressions of the form

∑n
i=0 aiX

i are called univariate polynomials in X over D. The
set of all univariate polynomials over D in the unknown X is denoted by D[X]. Let
f =

∑n
i=0 aiX

i be a polynomial with an 6= 0. Then, we call

HC(f) := an the highest coefficient of f ,

HT(f) := anX
n the highest term of f , and

deg(f) := n the degree of f .

For several unknowns X1, . . . ,Xk, the set of multivariate polynomials over D is defined
by:

D[] := D

D[X1, . . . ,Xi,Xi+1] := (D[X1, . . . ,Xi])[Xi+1] for i ≥ 0

The set of rational functions in the unknowns X1, . . . ,Xk over D is defined by:

D(X1, . . . ,Xk) := {f
g
| f, g ∈ D[X1, . . . ,Xk], g 6= 0}

The polyhedron model (cf. Section 2.2.1) is based on linear and affine expressions. In
the following, V is used to denote the set of variable names.

Definition 2.10. Let D be a ring, n ∈ N, a0, a1, . . . , an ∈ D and v1, . . . , vn ∈ V. An
expression of the form a0 +

∑n
i=1 aivi is called affine. The set of all affine expressions over

D in the variables v1, . . . , vn is denoted by AffExprD(v1, . . . , vn). A linear expression is
an affine expression with a0 = 0.

8 Chapter 2. Prerequisites

Definition 2.11. Let n ∈ N, v1, . . . , vn be variables, f ∈ Z[v1, . . . , vn] a polynomial with
integral coefficients and ρ ∈ {=, 6=, <,≤,≥, >}. Then, f ρ 0 is called an atomic formula;
in addition, the formulas true and false are considered atomic formulas, too. The set of
all atomic formulas in the variables V = {v1, . . . , vn} is denoted by At(V).2

Atomic formulas are defined with coefficients from Z independently of the structure
they will be evaluated in later. But, since every structure in which we will evaluate
formulas is a ring, there is always a homomorphism from z ∈ Z to a ring element, since z
is either zero or a (possibly negated) sum of 1s.

Definition 2.12. The set of quantifier-free formulas in the variables V, denoted by Qf (V),
is inductively defined by:

• At(V) ⊆ Qf (V),

• if ϕ ∈ Qf (V), then (¬ϕ) ∈ Qf (V),

• if ϕ,ψ ∈ Qf (V), then (ϕν ψ) ∈ Qf (V) for ν ∈ {∧,∨,→,↔}.
A quantifier-free formula is positive, if it contains only the logical connectors ∧ and ∨ and
its atomic formulas do not use the relation 6=. A quantifier-free formula is in disjunctive
normal form, if it is of the form

∨m
i=1

∧li
k=1 αi,k where m, l1, . . . , lm ∈ N+ and all αi,k

are atomic formulas. We call a formula ϕ affine (written ϕ ∈ Aff (V)), if the formula is
positive and all the expressions in the formula are affine.

We will omit parentheses by applying the usual precedence rules, i.e., ∧ binds stronger
than ∨ and ∨ binds stronger than →,↔.

Definition 2.13. The set of first-order formulas Fo(V) in the variables V is inductively
defined by:

• Qf (V) ⊆ Fo(V),

• if ϕ ∈ Fo(V) and x ∈ V, then (∃x ϕ), (∀x ϕ) ∈ Fo(V).

The set of free variables of a formula ϕ ∈ Fo(V) is denoted by fv(ϕ).

In the following, we will denote implication and equivalence by → and ↔, respectively,
when they occur within a logical formula, i.e., → and ↔ are part of formal objects. To
denote a semantical implication or equivalence (when stating a lemma, for example), we
will use ⇒ and ⇔, respectively. Similarly, the notation for a quantified formula as a formal
object is given in Definition 2.13. When we need to quantify variables semantically, we use
the Dijkstra notation for quantifiers. For example, we will write (∃n : n ∈ N : f(n) > 0)
to denote the domain of the quantifier variable (n ∈ N in this example).

Definition 2.14. For any atomic formula ϕ ∈ At(V), we define the formulas ϕ+ and
(¬ϕ)+ by:

(f 6= 0)+ := f < 0 ∨ f > 0

(f ρ 0)+ := f ρ 0 for ρ ∈ {<,≤,=,≥, >}
(
¬(f = 0)

)+
:= f < 0 ∨ f > 0

(
¬(f 6= 0)

)+
:= f = 0

(
¬(f < 0)

)+
:= f ≥ 0

(
¬(f ≤ 0)

)+
:= f > 0

(
¬(f ≥ 0)

)+
:= f < 0

(
¬(f > 0)

)+
:= f ≤ 0

2Note that we only use one signature, namely the operations +,−, ·, 0, 1 and the relations =, 6=, <,≤

,≥, > throughout this thesis and, hence, omit the signature in the denotation of formulas.

2.1. Mathematical Prerequisites 9

For any quantifier-free formula ϕ ∈ Qf (V), we define the formula ϕ+ by the following
recursive procedure:

(ϕ ρ ψ)+ := ϕ+ ρ ψ+ for ρ ∈ {∧,∨}
(ϕ→ ψ)+ := (¬ϕ)+ ∨ ψ+

(ϕ↔ ψ)+ := (ϕ+ ∧ ψ+) ∨
(
(¬ϕ)+ ∨ (¬ψ)+

)

(
¬(ϕ ∨ ψ)

)+
:= (¬ϕ)+ ∧ (¬ψ)+

(
¬(ϕ ∧ ψ)

)+
:= (¬ϕ)+ ∨ (¬ψ)+

(
¬(ϕ→ ψ)

)+
:= ϕ+ ∧ (¬ψ)+

(
¬(ϕ↔ ψ)

)+
:=

(
(¬ϕ)+ ∧ ψ+

)
∨

(
ϕ+ ∧ (¬ψ)+

)

Note that ϕ+ contains no negations, neither in the form of the logical connective ¬,
nor “hidden” as the relation 6= or in the connectives → or ↔.

Lemma 2.15. For any ϕ ∈ Qf (V), ϕ+ ↔ ϕ holds in R and ϕ+ is a positive formula.

Proof. Obvious from the well-known laws for negation (e.g., de-Morgan’s law) and the
properties of the ordering relations.

Definition 2.16. For any positive formula ϕ ∈ Qf (V), we define the formula ϕ∨ by the
following recursive procedure:

α∨ := α for α ∈ At(V)

(ϕ ∨ ψ)∨ := ϕ∨ ∨ ψ∨

(ϕ ∧ ψ)∨ :=
∨

1≤i≤n,1≤j≤m

(βi ∧ γj) where ϕ∨ =
n∨

i=1

βi and ψ∨ =
m∨

j=1

γj

Lemma 2.17. For any positive formula ϕ ∈ Qf (V), ϕ∨ ↔ ϕ holds in R and ϕ∨ is a
positive formula in disjunctive normal form.

Proof. Obvious from the definition and because ∧ distributes over ∨.

Corollary 2.18. Let ϕ ∈ Qf (V). Then ϕ+∨ := (ϕ+)∨ is a positive formula in disjunctive
normal form and ϕ+∨ ↔ ϕ holds in R.

Proof. Follows directly from the two preceding lemmas.

2.1.4 Polyhedra

Definition 2.19. Let n,m ∈ N, v = (v1, . . . , vn) and f1, . . . , fm ∈ AffExpr(v). Then the
set P defined by

P := {x ∈ Rn | f1(x) ≥ 0 ∧ · · · ∧ fm(x) ≥ 0}

is called a polyhedron. A polyhedron P which is bounded, i.e., which satisfies the condition(
∃d : d ∈ R : (∀x : x ∈ P : |x| ≤ d)

)
, is called a polytope.

Most of the time, the polyhedra and related objects dealt with in the polyhedron
model depend on so-called structure parameters p = (p1, . . . , pk) for k ∈ N, i.e., run-
time constants which are unknown at compile time/parallelisation time. Therefore, we
introduce the concept of parametric polyhedra.

Definition 2.20. Let k, n,m ∈ N, p = (p1, . . . , pk), v = (v1, . . . , vn), C ⊆ Zk and
f1, . . . , fm ∈ AffExpr(v,p). Then the family of sets P (p) defined by

P (p) := {x ∈ Rn | f1(x,p) ≥ 0 ∧ · · · ∧ fm(x,p) ≥ 0}

for p ∈ C is called a parametric polyhedron. C is called the context.

10 Chapter 2. Prerequisites

Note that P (p) is a non-parametric polyhedron for every choice of p ∈ Zk. The defi-
nition of parametric polyhedra is a generalisation of the definition of ordinary polyhedra,
because the case k = 0 coincides with the definition of non-parametric polyhedra: in this
case, the family of polyhedra defined by f1, . . . , fm consists of only one polyhedron.

Definition 2.21. We write i|d to denote the projection of a vector i ∈ Dn to outer d
dimensions (d, n ∈ N, d ≤ n).

Definition 2.22. A parametric Z-polyhedron Z(p) ⊆ Zm is the image of the integral
points of a parametric polyhedron P (p) ⊆ Rn under a parametric integral affine mapping
f : Zn+k → Zm, i.e., Z(p) = {f(x,p) |x ∈ P (p) ∩ Zn}.

For example, the Z-polyhedron containing the even numbers can be defined by P = R
and f(x) = 2x.

The following lemma says that a finite union of polyhedra ϕ ∨ . . . ∨ ϕm, which forms
another polyhedron ϕ, can be described by bounds found in the given polyhedra, i.e., no
other bounds than those provided by ϕ1, . . . , ϕm are needed to describe ϕ by a conjunction
of atomic formulas.

Lemma 2.23. Let ϕ1, . . . , ϕm ∈ Aff ({v1, . . . , vn}) such that ϕ := ϕ1 ∨ · · · ∨ ϕm is equiv-
alent to some ψ ∈ Aff ({v1, . . . , vn}). Then

β :=
∧

{α | α is an atomic formula of ϕ,∀v1 · · · ∀vn(ϕ→ α) holds in R}

is equivalent to ϕ (and ψ) in R.

The proof can be found in the literature [BFT01, Theorem 3].

2.1.5 Periodic Numbers

Definition 2.24. A one-dimensional periodic number is a function c : Z → Q with a
period l ∈ N+, i.e.,

(
∀p : p ∈ Z : c(p) = c(p + l)

)
. The set of all periodic numbers is

denoted by P:

P :=
{
c : Z → Q |

(
∃l : l ∈ N :

(
∀p : p ∈ Z : c(p) = c(p+ l)

))}

If l ∈ N+ is a minimal period of c ∈ P, then l is called the least period of c, written lp(c).
To specify a one-dimensional periodic number with period l, we write [v0, . . . , vl−1] for
v0, . . . , vl−1 ∈ Q meaning that the periodic number is defined as:

[v0, . . . , vl−1](p) :=






v0 if p ≡l 0
...

vl−1 if p ≡l l − 1

For example, c = [1, 1
2] denotes the periodic number which evaluates to c(p) = 1 for

p ≡2 0 and c(p) = 1
2 for p ≡2 1. Obviously, if l ∈ N+ is a period of c ∈ P, then

every integral multiple of l is a period of c, too. (P,+,−, ·, 0, 1), where +, − and ·
are defined by pointwise operations, forms a commutative ring with zero-divisors. For
example, [1, 0] · [0, 1] = 0.

Lemma 2.25. c ∈ P is a zero-divisor in (P,+,−, ·) if and only if there exists z ∈ Z such
that c(z) = 0.

Proof. Let c ∈ P and z ∈ Z such that c(z) = 0. Let l ∈ N+ be a period of c. Let d : Z → Q
be defined by:

d(p) =

{
1 if p ≡l z

0 otherwise

Then d ∈ P, d 6= 0 and c ·d = 0 by construction. Conversely, if c ·d = 0 for c, d ∈ P −{0},
then there exists z ∈ Z such that d(z) 6= 0 and, hence, c(z) = 0 follows.

2.1. Mathematical Prerequisites 11

Definition 2.26. An n-dimensional periodic number c with periods (l1, . . . , ln) ∈ Nn
+

is a function c : Zn → Q such that either n = 1 and c is a one-dimensional periodic
number with period l1, or n ≥ 2,

(
∀p1 : p1 ∈ Z : c(p1, p2, . . . , pn) = c(p1 + l1, p2, . . . , pn)

)

and for every p1 ∈ Z the function d defined by d(p2, . . . , pn) := c(p1, p2, . . . , pn) is an
(n− 1)-dimensional periodic number with periods (l2, . . . , ln).

The set of all n-dimensional periodic numbers is denoted by Pn.

Again, (Pn,+,−, ·, 0, 1) with pointwise operations is a ring with zero-divisors.
Due to currying (i.e., the equivalence of functions on n tuples and higher-order func-

tions with n arguments), an n-dimensional periodic number can be regarded as a one-
dimensional periodic number that evaluates to (n − 1)-dimensional periodic numbers in-
stead of rationals. For example,

c =
[
[1, 2], [3, 4, 5]

]

is a two-dimensional periodic number as c(p1) = [1, 2] for p1 ≡2 0 and c(p1) = [3, 4, 5]
for p1 ≡2 1. The least period of c is (2, 6) since the least common period of the second
dimension is 6.

2.1.6 Univariate Quasi-Polynomials

Since the n-dimensional periodic numbers form a ring, we can form polynomial rings over
them. We start with the polynomials over the one-dimensional periodic numbers.

Definition 2.27. The polynomial ring P[X] over the one-dimensional periodic numbers
is called the ring of univariate quasi-polynomials. For f =

∑u
i=0 ciX

i ∈ P[X] (u ∈ N), we
define its evaluation f(p) at a point p ∈ Z by

f(p) :=

u∑

i=0

ci(p) · pi.

Any common period of c0, . . . , cu is called a period of f . The least common period of
c0, . . . , cu is called the least period of f , written lp(f).

Note that in the evaluation the value substituted for the formal unknown X is also
used to evaluate the coefficients, which are periodic numbers. Hence, the coefficients may
assume different values depending on the residue class of the substituted value modulo the
periods of the coefficients. We extend the notation for evaluation to objects which contain
quasi-polynomials. For example, for vectors v ∈ P[X]m and matrices A ∈ P[X]m×l, we
write v(p) and A(p), respectively, to denote that every entry of the vector or matrix shall
be evaluated at p ∈ Z to obtain a vector or matrix, respectively, with all the evaluated
polynomials as entries.

Since the coefficients are periodic numbers, a quasi-polynomial f can be described
equivalently by a list of l polynomials where l is a common period of the coefficients of f .
Each polynomial describes the function values of f for a certain residue class modulo l.

Definition 2.28. Let l, k ∈ N+ and f =
∑u

i=0 ciX
i ∈ P[X]. We define conl(f, k) ∈ P[X]

by

conl(f, k) :=

u∑

i=0

ci(k)(lX + k)i.

If l is a common period of c0, . . . , cu, then we call conl(f, k) for 0 ≤ k < l the constituents
of f .

For example, for f = [3, 1
2] ·X + [1, 1

2], we have con2(f, 0) = 3(2 ·X) + 1 = 6X + 1 and
con2(f, 1) = 1

2 (2 ·X + 1) + 1
2 = X + 1. Note that the coefficients of the constituents differ

from the coefficients of f , because the function values of f at p = 2 · p′ + k are mapped
to the values of the kth constituent at p′, i.e., f(p) = conl(f, k)(p

′). This observation is
formalised in the following lemma.

12 Chapter 2. Prerequisites

Lemma 2.29. Let f ∈ P[X] and l ∈ N+. Then f(p) = conl(f, k)(p
′) if p = l · p′ + k.

Proof. The proposition follows directly from Definition 2.28.

To form a quasi-polynomial from given constituents, we introduce the following nota-
tion which is the reverse of the con operation.

Definition 2.30. Let l ∈ N+ and f0, . . . , fl−1 ∈ Q[X]. Then comb(f0, . . . , fl−1) denotes
the quasi-polynomial f ∈ P[X] defined by:

f(p) :=






f0(p
′) if p = lp′ + 0

f1(p
′) if p = lp′ + 1

...

fl−1(p
′) if p = lp′ + (l − 1)

Operation comb can be extended to constituents which are themselves quasi-polynomials.

Definition 2.31. Let l ∈ N+, f0, . . . , fl−1 ∈ P[X] and let l′ ∈ N+ be a common period
of f0, . . . , fl−1. Then, we define:

comb(f1, . . . , fl−1) := comb(conl′(f0, 0), . . . , conl′(fl−1, 0),

conl′(f0, 1), . . . , conl′(fl−1, 1),

...

conl′(f0, l
′ − 1), . . . , conl′(fl−1, l

′ − 1)

)

The quasi-polynomial created by comb(f0, . . . , fl−1) iterates through the first con-
stituent of f0, . . . , fl−1, then through the second constituent of f0, . . . , fl−1 and so one.
Since polynomials from Q[X] are quasi-polynomials with period 1, comb defined in Defi-
nition 2.31 is a generalisation of the previous definition (Definition 2.30).

Since integrality plays such an important role in loop parallelisation, we will deal
only with quasi-polynomials which evaluate to integral function values. To this end, we
introduce the class of integer-valued univariate quasi-polynomials.

Definition 2.32. The sub-ring EQP :=
{
f ∈ P[X] |

(
∀p : p ∈ Z : f(p) ∈ Z

)}
of P[X] is

called the ring of univariate entire quasi-polynomials.

In fact, (EQP ,+,−, ·, 0, 1) is a ring since the sum, difference and product of integral
values are again integral. The polynomial f = [3, 1

2]·X+[1, 1
2] is an entire quasi-polynomial

because, for p ≡2 0, we have f(p) = 3p+1 ∈ Z and, for p ≡2 1, we have f(p) = 1
2p+ 1

2 ∈ Z.
From the above definitions it is clear that entire quasi-polynomials are exactly those

quasi-polynomials whose constituents are polynomials over the integers.

Lemma 2.33. Let f ∈ P[X] and l ∈ N+ be a period of f . Then f ∈ EQP if and only if
conl(f, k) ∈ Z[X] for 0 ≤ k < l.

Proof. Clear from the definition of conl and the fact that l is a period of f .

The ring EQP has zero-divisors, since, e.g., [1, 0] · [0, 1] = 0. The polynomials in EQP
can have zeros for two different reasons. First, the coefficients of a quasi-polynomial may
vanish periodically and, hence, the zero is periodic, too. This means that a constituent
of the quasi-polynomial is the zero polynomial. Second, a non-zero constituent can have
non-periodic roots. For example, with f = [1, 0] · X, we have f(p) = 0 for every odd p,
because con2(f, 1) = 0. In addition, f vanishes also for p = 0 due to the root p = 0 of
con2(f, 0) = 2X. This observation is formalised in the following lemma.

2.1. Mathematical Prerequisites 13

Lemma 2.34. Let f ∈ EQP and R(f) := {p ∈ Z | f(p) = 0}. Then there exists some
finite set M ⊂ Z, some l ∈ N+ and k ∈ {0, . . . , l} different integers 0 ≤ n1 < · · · < nk < l
such that

R(f) = M ∪ (lZ + n1) ∪ · · · ∪ (lZ + nk).

Proof. Every constituent conl(f, i) for 0 ≤ i < l is either the zero polynomial and, hence,
f(p) = 0 for all p ∈ lZ + i, or conl(f, i) is not the zero polynomial and, hence, has finitely
many zeros.

Lemma 2.35. Let f, g, h ∈ EQP with common period l ∈ N+. Then the following
equivalence holds:

f = g · h ⇐⇒
(
∀i : 0 ≤ i < l : conl(f, i) = conl(g, i) · conl(h, i)

)
.

Proof. Let f, g, h, l be as stated. Assume f = g · h and let i ∈ {0, . . . , l − 1}. Then, for
any p ∈ Z, conl(f, i)(p) = f(lp+ i) = g(lp+ i) · h(lp+ i) = conl(g, i)(p) · conl(h, i)(p).
Conversely, assume

(
∀i : 0 ≤ i < l : conl(f, i) = con(g, i) · conl(h, i)

)
and let p, p′, i ∈ Z

such that p = lp′ + i. Then f(p) = f(lp′ + i) = conl(f, i) = conl(g, i) · conl(h, i) =
g(lp′ + i) · h(lp′ + i) = g(p) · h(p).

2.1.7 Multivariate Quasi-Polynomials and Counting Z-Polyhedra

We now introduce multivariate quasi-polynomials as a generalisation of univariate quasi-
polynomials.

Definition 2.36. Let n ∈ N+ and X = X1, . . . ,Xn. The multivariate polynomial ring
Pn[X] over the n-dimensional periodic numbers is called the ring of n-variate quasi-
polynomials. Let E ⊂ Nn be finite and f =

∑
e∈E ceX

e ∈ Pn[X] with n-dimensional
periodic numbers ce for e ∈ E. We define the evaluation of f at p ∈ Zn, written as f(p),
by

f(p) :=
∑

e∈E

cep
e

where pe is componentwise exponentiation (i.e., (p1, . . . , pn)(e1,...,en) := (pe1

1 , . . . , p
en
n)).

In this thesis, we encounter multivariate quasi-polynomials when counting the number
of integral points in a parametric Z-polyhedron. The following lemma is a well-known
consequence of Ehrhart theory (for Ehrhart theory, see, e.g., [BR07, Chapter 3]).

Lemma 2.37. Let Z(p) ⊂ Zn be a Z-polyhedron which depends on the (linear) parameters
p ∈ Zk. Then the number of integral points in Z(p) is a piecewise multivariate quasi-
polynomial, i.e., there exist c1, . . . , cl ∈ Aff (p) and ρ1, . . . , ρl ∈ Pk[X1, . . . ,Xk] such that

|Z(p)| =






ρ1(p) if c1(p) holds
...

ρl(p) if cl(p) holds

0 otherwise

There are algorithms [VSB+07] which compute, from the description of a Z-polyhedron
Z(p), a set of condition/quasi-polynomial pairs (ci, ρi) such that the value ρi(p) of the
quasi-polynomial ρi gives the number of integral points in Z(p) if ci(p) holds.

Example 2.38. The number of integral points |Z(p, q)| in the parametric Z-polyhedron
defined by Z(p, q) = {2 · i | 0 ≤ i ≤ min(p

2 , q) ∧ i ∈ Z} is given by:

|Z(p, q)| =






p
2 + [1, 1

2]p if 0 ≤ p ≤ 2q

q + 1 if p ≥ 2q ≥ 0

0 otherwise

14 Chapter 2. Prerequisites

Counting the integral points in a union of Z-polyhedra is possible, too, by computing a
disjoint union of the Z-polyhedra first with one of the available libraries for Z-polyhedra.

2.1.8 Algebraic Numbers and Cylindrical Algebraic Decomposi-

tion

Code generation for non-linearly bounded index sets (cf. Section 5.5) requires to solve
polynomial equalities with integral or rational coefficients. As not every solution is a
rational number, we have to go beyond the rationals. But we need not go as far as to the
reals, because we are not interested in transcendental numbers like π. An intermediate
class of numbers is the set of algebraic numbers – exactly the numbers that can occur as
real zeros of polynomials over the integers.

Definition 2.39. The set A := {x ∈ R | f ∈ Z[X], f 6= 0, f(x) = 0} is called the set of
algebraic numbers.

Obviously, Q $ A $ R, because any rational number a
b
∈ Q is a zero of b · x − a,√

2 ∈ A, since
√

2 is a root of x2 − 2 and π /∈ A. The algebraic numbers are closed under
addition, multiplication and division (except by 0, of course) and, in fact, they form a
field. Algorithms for the arithmetic operations in A can be found in the literature [Loo83].

One way to represent an algebraic number α ∈ A is by a triple (f, a, b) where f ∈ Z[X]
is a square-free polynomial3 with f(α) = 0 and two rational numbers a, b ∈ Q such that
a < α < b and

(
∀x : a ≤ x ≤ b : f(x) = 0 → x = α

)
, i.e., α is the only root of f in [a, b].

Algorithms for computing f , a and b can be found in the literature [Loo83]. Note that,
by interval bisection, on can make b − a arbitrarily small. Since α is the only root of f
in [a, b] and f is square-free, the signs of f(a) and f(b) must be different and, hence, the
sign of f(a+b

2) tells whether α = a+b
2 , α ∈]a, a+b

2 [, or α ∈]a+b
2 , b[.

To describe the root of a polynomial, i.e., an algebraic number, in dependence of some
parameters (outer dimensions), we need the concept of a root expression.

Definition 2.40. A root expression is a triple (f, x, i) where f is a polynomial in the
variable x and possibly other variables and i ∈ N+. The parametric algebraic number
denoted by the root expression is the ith root of f in the variable x.

Note that the number of roots a polynomial f has in a variable x usually depends
on the values of the other variables. Therefore, one has to be careful when dealing with
root expressions. For example, cylindrical algebraic decomposition makes sure that the
number of roots and their relative ordering are the same for the possible values of the outer
variables for which the root expression is used. When the values of the outer variables
are known (at run time), the value of the ith root can be approximated by root isolation.
Since the isolation interval can be made arbitrarily small, it can be determined precisely
(i.e., without using floating point arithmetic or the like) what ⌊r⌋ and ⌈r⌉ of a root r are.

We continue by giving the definition of cylindrical decomposition.

Definition 2.41. A non-empty connected subset of Rn (n ∈ N) is called a region. For a
region R, we define the cylinder over R, written as Z(R), as R× R.

The cylinder over R0 = {()} is R0 × R = R.

Definition 2.42. Let R be a region of Rn. An f-section of Z(R) is the set
{(
a, f(a)

) ∣∣ a ∈ R
}

for a continuous function f : R→ R. An (f1, f2)-sector of Z(R) is the set
{(
a, b

) ∣∣ a ∈ R, b ∈ R, f1(a) < b < f2(a)
}

3Square-free means that, for every z ∈ R with f(z) = 0, (x − z) divides f in R[X], but (x − z)2 does
not. This implies that the sign of f changes at z.

2.1. Mathematical Prerequisites 15

where f1 = −∞ or f1 : R → R is continuous, and f2 = ∞ or f2 : R → R is continuous,
and f1(x) < f2(x) for every x ∈ R.

sectors

sections

(a) 1-dimensional
x1

x2

sections sectors

(b) 2-dimensional

Figure 2.1: Sections and sectors

Obviously, sections and sectors are regions. Figure 2.1 shows some sections and sectors
of R1 in (a), and some sections and sectors of a cylinder over an interval in R2 in (b).
The sections and sectors shown in Figure 2.1 also form stacks, as defined by the following
definition.

Definition 2.43. Let X ⊆ Rn. A decomposition of X is a finite collection of pairwise
disjoint regions whose union is X. Let R be a region, r ∈ N, and f1, . . . , fr : R → R be
continuous functions with f1(x) < f2(x) < · · · < fr(x) for every x ∈ R. Then (f1, . . . , fr)
defines a decomposition of Z(R) consisting of the regions

• fi-sections of Z(R) for 1 ≤ i ≤ r,

• (fi, fi+1)-sectors of Z(R) for 1 ≤ i < r,

• the (−∞, f1)-sector of Z(R),

• the (fr,∞)-sector of Z(R).

Such a decomposition is called a stack over R defined by (f1, . . . , fr). In the case of r = 0,
the decomposition consists only of the (−∞,∞)-sector of Z(R), i.e., the stack consists of
the single region Z(R).

If the decomposition into stacks is made at every level, i.e., also for inner dimensions,
the decomposition obtained is called cylindrical.

Definition 2.44. A decomposition D of Rn is called cylindrical, if either

(1) n = 1 and D is a stack over R0, or

(2) n > 1 and there is a cylindrical decomposition D′ of Rn−1 such that, for each region
R of D′, D contains a stack over R.

Definition 2.45. A set S ⊆ Rn is called semi-algebraic, if it can be defined by a quantifier-
free formula of polynomial equalities and inequalities.

A decomposition of Rn is called algebraic if each of its regions is a semi-algebraic set.
A cylindrical algebraic decomposition (CAD) is a decomposition which is both cylindrical
and algebraic.

Since the regions in a cylindrical algebraic decomposition can be defined by (in)equalities
over polynomial expressions, the sectors are defined by root expressions (cf. Definition 2.40).
A cylindrical algebraic decomposition is interesting when it exposes some properties w.r.t.
a given formula ϕ. There exists a well-known family of algorithms to compute a cylindrical
algebraic decomposition [ACM98] which is sign-invariant w.r.t. the polynomials ψi in ϕ
(if every atomic formula is written in the form ψi ρ 0 where ρ ∈ {=,≥, >,≤, <, 6=}). That

16 Chapter 2. Prerequisites

is, on every region of the decomposition a given ψi has constant sign. This implies that
the decomposition is also truth-invariant w.r.t. ϕ, i.e., the truth value of ϕ is constant
on every region of the decomposition. This class of algorithms consists of 3 phases. Let
x1, . . . , xn be the variables and Ψ be the set of all polynomials in ϕ.

(1) Project the set Ψn := Ψ of all polynomials to lower dimensions yielding Ψn−1, . . . ,Ψ1

such that in every Ψi the highest variable is xi.

(2) The roots of the univariate polynomials in Ψ1 are the sections of a CAD of R. The
intervals between the roots (and to the left of the least root and to the right of the
greatest root) form the sectors.

(3) Successively lift the CAD of Ri−1 to Ri (for 2 ≤ i ≤ n) until a CAD of Rn is reached.
The sections of the CAD of Ri are defined by roots of polynomials in Ψi solved for
xi in dependence of x1, . . . , xi−1.

The concrete algorithms [ACM98, Hon98, Bro01a] differ basically in how they perform the
projections in the first step. Steps (1) and (2) are rather fast; most time is consumed in
the lifting phase (3). The speed of the lifting depends heavily on the projections computed
in (1).

In addition to the cylindrical decomposition itself, this procedure allows to compute
so-called test points tS ∈ An such that tS ∈ S for every region S of the decomposition.
By substituting tS into ϕ one can test whether ϕ holds in S or not.

2.1.9 Quantifier Elimination

Quantifier elimination is a form of formula manipulation, namely computing a quantifier-
free formula which is equivalent (in some structure) to a given formula with quantifiers.

Definition 2.46. Let ϕ ∈ Fo(V) and ψ ∈ Qf (fv(ϕ)) andD a ring. ψ is called a quantifier-
free equivalent of ϕ in D if (ϕ↔ ψ) holds in D.

An algorithm which computes quantifier-free equivalents for arbitrary formulas in a
given structure is called a quantifier elimination procedure.

Note that the free variables in the quantifier-free equivalent ψ must also be free in ϕ,
i.e., quantifier elimination must not introduce new variables.

Theorem 2.47. There exists a quantifier-elimination procedure in the ring R. There
exists no quantifier-elimination procedure for the rings Q and Z.

Proof. The positive result for R was found by Tarski [Tar51]. The negative result for Q
and Z follows from the unsolvability of Hilbert’s tenth problem [Dav73].

Today, efficient algorithms for quantifier elimination in the reals are known. Here,
“efficient” means that the algorithm’s complexity matches the known asymptotic lower
bounds [DH88], i.e., they are doubly exponential in the number of quantifiers at worst.
Cylindrical algebraic decomposition as introduced in Section 2.1.8 can be used to com-
pute quantifier-free equivalents. The idea is that, for a given variable, one has to verify
whether at least one region (if x is existentially quantified) or all regions (if x is universally
quantified) satisfy the formula by checking the test points of the regions in the respective
stack.

Another efficient method which is applicable to formulas of low degree is based on
virtual substitution [Wei88, LW93, Wei97]. We use mainly two tools to perform quantifier
elimination: Redlog4 [DS97], which is a package for the Reduce5 [Hea68] computer
algebra system, and Qepcad6 [Bro03]. In addition, we use the formula simplifier SLFQ7,

4Available at http://redlog.dolzmann.de/, last visited 2009-05-29.
5Available at http://www.reduce-algebra.com/, last visited 2009-05-29.
6Available at http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html, last visited 2009-05-29.
7Available at http://www.usna.edu/Users/cs/qepcad/SLFQ/Home.html, last visited 2009-05-29.

2.2. Parallel Programming 17

which is based on Qepcad and [Bro01b], and our own implementation of cylindrical
algebraic decomposition if we need access to the sections defining the cells (instead of a
solution formula delivered by the quantifier elimination tools).

2.2 Parallel Programming

In this section, we introduce the polyhedron model, the model which we extend to allow
some non-linearities in Chapter 5. Then, we give a short overview of one specific hardware
architecture, graphics processors, which are nowadays being used to execute code which
can be handled in the (extended) model.

2.2.1 The Polyhedron Model

Since parallel programming is inherently more difficult than sequential programming,
methods to reduce the burden of parallelism in writing software have to be developed.
Infusing parallelism automatically by applying a transformation to a given sequential
program is one such approach. Earlier attempts of an automatic or semi-automatic par-
allelisation were text-based, i.e., the transformation was guided by textual characteristics
of the source program. A more powerful approach is to use model-based transformation.
Model-based automatic parallelisation relies on the ability to represent the operations
performed by a given sequential code in an abstract representation. Parallelism or other
desired properties like increased cache usage can be infused into the model of the program
on the abstract level.

The polyhedron model (earlier called the polytope model) can represent loop nests
with linear bounds and array accesses with linear subscripts in the body. Programs that
can be modelled in it have been studied for several decades [KMW67, Lam74, Len93]. As
the name suggests, polyhedra are used to describe the operations (i.e., loop iterations)
of a given code. In addition, affine functions are used to model the data dependences
between operations, i.e., the ordering of the operations which must be preserved during
the transformation to retain the correctness of the program. Figure 2.2 gives an overview
of the transformation process. In the first step, an abstract model of a given code is
extracted. The model must retain all the properties of the code which are required for a
correct execution, for example, its data dependences. In the second step, an optimising
search for the best transformation which introduces the desired property into the code is
performed. In the case of automatic parallelisation, this comprises computing two pieces
of information, namely when (at what time) and where (on which processor) to execute
each operation. The last step of the process is to generate code from the transformed
model which can execute on the target platform. To facilitate the steps of the whole
process, mainly computing dependences, performing an optimising search for the best
transformation and generating target code, the class of programs which are manipulated
must be constrained such that each of these tasks can be performed computationally.
The main restriction in the polyhedron model is that the program must consist of for-
loops with statements with array accesses inside. Both the bounds of the loops and
the subscripts of the arrays must be affine functions in the surrounding loop indices and
structure parameters. This ensures that the index sets (cf. the next section) are polyhedra
and the dependences can be described by affine expressions.

Let us now discuss the three phases of the transformation process in a bit more detail.

Dependence Analysis

The main purpose of a dependence analysis is to make the ordering on the operations of the
program which is required to guarantee correct execution explicit. That is, dependence
analysis determines, given two operations a and b of a program, whether a or b must
be executed first, or that it does not matter which operation is performed first. Different

18 Chapter 2. Prerequisites

for i := 0 to n do

for j := 0 to i+2 do

A(i, j) = A(i−1, j) + A(i, j−1);

od

od

for t := 0 to 2n+2 do

forall p := max(0, t−n) to min(t, ⌊t/2⌋+1) do

A(t−p, p) = A(t−p−1, p) + A(t−p, p−1);

od

od

i

j
p

t

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������������

������������������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

��������������������������

����������������������������

��������������

��������������

��������������

��������������

��������������

����������������������������

��������������

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

Figure 2.2: Overview over the automatic transformation process in the polyhedron model

granularities of the analysis are possible by choosing what is considered an“operation”. In
the context of the polyhedron model, we deal with loop programs and different iterations
of a loop are considered different operations. To be precise, every execution of a statement
in the body of the loop is an individual operation.

Definition 2.48. In a loop program, every statement S is surrounded by depth(S) ∈ N
loops. depth(S) is called the nesting depth (or level) of S. A statement S is said to
textually precede a statement T , written S≺tT , if S occurs before T in the program text.

For two statements S and T , we denote the number of loops which surround both S
and T by surr(S, T).

To capture the notion of operations, we introduce the concept of index sets.

Definition 2.49. Let p ∈ Zk be the structure parameters and S a program statement.
The parametric set DS(p) ⊆ Zdepth(S) of all values of the loop indices for which S is
executed is called the index set of S. An operation is the execution of S for a value
i ∈ DS(p), written 〈i, S〉. i is called the iteration vector of the respective operation.

In the polyhedron model, index sets of statements are described by affine inequalities.
This implies that they are parametric polyhedra (in fact, parametric polytopes), or, more
generally, parametric Z-polyhedra.

Next, we define a total ordering on operations which corresponds to the order of
execution in the program.

Definition 2.50. Let 〈i, S〉 and 〈j, T 〉 be two operations of a program. We say that
〈i, S〉 precedes 〈j, T 〉, written 〈i, S〉 ≺ 〈j, T 〉, if i|d ≺ j|d or (i|d = j|d and S≺tT) where
d = surr(S, T).

Sometimes, we need to discern the individual memory read and write operations of an
operation. These individual memory operations are called accesses.

Definition 2.51. Let S be a statement and 〈i, S〉 an operation. Each construct a which
accesses memory in S is called an access. An access is called a write access or a read
access, if it writes to or reads from memory, respectively. A particular execution 〈i, a〉 of
a for an iteration vector i is called an instance of the access. The memory cell referred to
by 〈i, a〉 is denoted by accelem(〈i, a〉).

2.2. Parallel Programming 19

for (i=0; i<=1; i++)

for (j=0; j<=3; j++)

S: A[4*i+2*j] = A[2*j];

Figure 2.3: Example loop program with array access in statement S

Let us now discuss what it means that an operation p depends on an operation q.
Since “depends” shall mean that q must be executed after p, there must be some effect of
p which must be observed by q, or there must be an effect in q which must not be observed
by p. The observable effects in programs are writes to memory cells.8 This gives rise to
the definition of the three classical types of dependence, in which at least one of the two
operations performs a write access. In addition, we can also define one “dependence” type
in which both operations only read from the memory cell.

Definition 2.52. Let p and q be operations of a program. p is said to depend on q, if
p ≺ q and both operations access at least one common memory cell c. The dependence is
called

• a true dependence, if a writes to c and b reads from c,

• a anti dependence, if a reads from c and b writes to c,

• an output dependence, if both a and b write to c,

• an input dependence, if both a and b read from c.

We write a → b to denote that b depends on a. If we want to specify the type of the

dependence, we superset the type over the arrow as in a
true−−−→ b.

We can extend the definition of a dependence to the access level by using access
instances instead of operations.

Definition 2.53. Let a and b be access instances which access the same memory cell and
let a and b be part of operations p and q, respectively. b is said to depend on a, written
a → b, if p ≺ q or p = q and a is executed before b in p. The type of dependence (true,
anti, output, input) is defined as for dependences between operations (cf. Definition 2.52)

and we write, e.g., a
true−−−→ b to denote a dependence of a certain type.

Note that, by the definitions given, an operation can never depend on itself, but there
can be a dependence between different access instances of the same operation. Depending
on the application, we require dependence information based on operations or on access
instances.

Example 2.54. In the program shown in Figure 2.3, there is an output dependence from
operation 〈(0, 3), S〉 to 〈(1, 1), S〉, as both operations write to A[6]. In addition, there is
an anti dependence from access instances 〈(0, 3), A[2j]〉 to 〈(0, 3), A[4i+ 2j]〉 (anti because
the read happens before the write), but there is no dependence from operation 〈(0, 3), S〉
to itself.

Since programs usually depend on structure parameters, one cannot simply enumerate
every dependent pair of operations or access instances. Instead, a general description
of the dependences must be computed. In the polyhedron model, the subscripts of array
accesses are restricted to affine expressions. A dependence between two accesses A[f(i,p)]

8On some hardware components, read accesses may have observable side effects like destroying the
contents of a hardware register, but we only consider side effects of write accesses, here.

20 Chapter 2. Prerequisites

and A[g(i,p)], where f and g are (possibly multi-dimensional) affine functions in the
variables i and parameters p, can only exist, if the equality system

f(i,p) = g(i′,p)

holds for some values of i, i′, p. Note that both accesses get a different set of variables
(i vs. i′), because the accesses to the same memory cell may be performed in different
iterations. Since f and g are affine functions, the solutions for i and i′ are affine functions
(in the appropriate number of degrees of freedom), too. Section 5.1 describes dependence
analysis in more details by means of the classical Banerjee method.

Transformation

In the transformation phase, the model of the given program whose dependences have been
analysed is transformed such that desired properties are satisfied. Properties commonly
desired are parallelism, efficient cache behaviour or low energy consumption (especially in
embedded systems). The dependence information restricts the search space, because any
legal transformation must respect the dependences. For example, when infusing paral-
lelism, a dependence a→ b for operations a, b means that, in the parallel program, a has
to be executed before b, too, i.e., there must not be parallelism (or reversal of execution
order) between a and b.

The most basic transformation in automatic parallelisation is to compute at what time
to execute an operation and on which processor. These pieces of information are called
schedule and placement.

Definition 2.55. A schedule for statements S1, . . . , Sr with index sets D1(p), . . . ,Dr(p)
is a set of functions θa : Da(p) → Zτ , 1 ≤ a ≤ r, τ ∈ N+ such that for any two dependent
operations 〈i, Sa〉 and 〈i′, Sb〉 (1 ≤ a, b ≤ r) the following condition holds: θa(i) ≺ θb(i

′).

θa assigns to every operation of 〈i, Sa〉 fromDa(p) a point in time θa(i) at which it shall
execute. The condition on the schedule functions of dependent operations ensures that
the source of a dependence is executed before its target. We allow schedules to be multi-
dimensional with lexicographic order (like hours, minutes, seconds on a clock) since it is
often desirable to have more than one sequential dimension, e.g., to reduce the parallelism
to fewer than all but one dimension. The schedule, as defined here, maps to integral
points in time. We may also allow mappings to the rationals (or even reals) at first if we
are careful to require a distance of at least 1 between dependent instances, i.e., the first
non-zero entry in the vector θb(i

′)−θa(i) is at least 1. This allows to derive a schedule that
maps to the integers by taking the componentwise floor θ′a(i) = ⌊θa(i)⌋, θ′b(i) = ⌊θa(i′)⌋
of the rational schedules. Then, θ′a(i) and θ′b(i) are integral and satisfy θ′a(i) ≺ θ′b(i

′) (cf.
[Fea92a, Theorem 6]). We exploit this relation, for example, in Section 5.2.2.

Parallelism is introduced into the model by the placement.

Definition 2.56. A placement (also called allocation) for statements S1, . . . , Sr with
index sets D1(p), . . . ,Dr(p) is a set of functions πa : Da(p) → Zρ, 1 ≤ a ≤ r, ρ ∈ N+.

The placement determines the processor on which an operation executes. Note that
this definition does not restrict placements in any respect. Any placement is valid, for
example, taking πa(i) = 0 for all statements Sa is allowed. Of course, this all-zero place-
ment does not exhibit any parallelism, since only one processor (namely processor 0) is
used.

Schedule and placement together define a new coordinate system in which the trans-
formed program executes in a parallel fashion. But before executable code is generated,
one may want to apply other transformations that modify the coordinate system further.
For example, tiling (cf. Section 5.3) is a technique to aggregate several operations, i.e., to
coarsen the grain of the execution in order to improve the computation-to-communication
ratio.

2.2. Parallel Programming 21

Code Generation

After the transformation phase, we have a model description of a program which gives,
for every statement to be executed, the times and places of its intended execution in
a multi-dimensional coordinate system. The target coordinate system is shared by all
statements, i.e., the transformation phase equalises the dimensionality of all iteration
domains through the transformation. To be able to execute the transformed program,
executable code has to be constructed from the model. To this end, we have to create a
loop nest which enumerates the points in the transformed domains in lexicographic order.
For parallel dimensions, the order of enumeration is not important; usually, parallel loops
(i.e., loops corresponding to a parallel dimension) will be marked to execute in parallel
using constructs like the OMP pragma #pragma omp parallel for, or the parallel loop
is really written as a conditional in the generated code which checks whether the thread
reaching the respective location in the code is supposed to execute the inner dimensions.
We present code generation in the polyhedral case and our method to perform an analogous
operation in the non-linear case in Section 5.5.

2.2.2 Parallel Computing Hardware

In recent years, two developments in computing hardware have been exerting a seminal
influence on parallel computing. On the one hand, clock frequencies of CPUs have not
been increasing any further but have remained at approximately 3 GHz. Instead, chip
manufacturers have been putting several cores, instead of one, onto a chip, starting the age
of multicore computing with two to eight cores on a single chip, and the age of manycore
computing with more than eight cores per chip. The other, related development has been
the use of graphics processors for general-purpose computing. The computational power
and increased flexibility (compared to earlier graphics processors) make such a use feasible.
Both multicore/manycore CPUs and GPU computing pose their specific challenges. We
introduce both concepts and discuss their peculiarities below.

Both developments, which make parallel computing increasingly mainstream, change
the demands for parallel programs. Most notably, as almost every system will be a parallel
system in the near future, programs must be flexible enough to use a statically not known
number of processors/cores at run time. In the context of the polyhedron model, this
requires a new parameter of the number of parallel threads, which more often than not
leads to non-linearities in the model (cf. Section 5.3).

Multicore CPUs

From the programmer’s point of view, multicore processors look very much like traditional
SMP (symmetric multiprocessing) systems. But there are subtle differences. The cores
of a physical processor unit share a single connection to main memory, i.e., if n cores try
to access main memory at the same time, the effective bandwidth per core is 1

n
of the

total bandwidth. In addition, cores may share a second- or third-level cache, reducing the
effective cache size of each core (if more than one core is actively using the cache). For
both reasons, it is even more imperative—compared to multiprocessor systems—to reduce
memory transfers and keep the memory footprint (i.e., the active cache size) small.

GPU Computing: NVIDIA Compute-Unified Device Architecture

A new hardware platform for parallel computing is GPGPU (general-purpose graphics
processing unit) computing. GPGPU computing employs powerful graphics processors
and makes their computing power available for general-purpose applications instead of
rendering graphics (their traditional function). When writing software for GPGPU com-
puting, one has to account for the peculiar design of GPU processors owing to their
graphics heritage. Two aspects of their design are of particular importance for achieving

22 Chapter 2. Prerequisites

good performance. For one, graphics operations are often the same for many pixels; there-
fore, parallelism in GPU processors is only achieved when the same operation is applied to
several operands. Secondly, graphics processors do not have a data cache. Instead, they
offer a so-called scratchpad memory, i.e., an explicitly addressable fast memory which is
used as a replacement for the data cache. The main difference to a hardware-managed
data cache is that scratchpad memory must be managed by software. We now present
the SIMT programming model for GPGPU computing. This model is used by NVIDIA’s
Compute-Unified Device Architecture (CUDA) [NVI09], which we have used for our ex-
periments.

The SIMT Programming Model The architecture of GPUs is derived from the clas-
sical single instruction multiple data (SIMD) architecture. In SIMD, there is one thread
of execution per processor, but a processor has several arithmetic-logic units, i.e., a com-
putational instruction can operate on several operands at the same time (as opposed to
instructions dealing with control flow). For example, Intel’s Streaming SIMD Extensions
(SSE) [Int99] augments the x86 instruction set architecture with vector instructions for
simultaneous operation on four single-precision floating point operands (among others).
The control flow of a SIMD program remains single-threaded because only some arithmetic
instructions deal with multiple operands in parallel.

The also classical single program multiple data (SPMD) programming model makes
parallelism (e.g., multithreading) explicit for the programmer. There are several threads
of execution in the program and each thread is free to take a different control path.
This model is used by the well-known Message Passing Interface (MPI) library [Mes08]
and the Open Multi-Processing (OpenMP) standard [Ope08]. SPMD is popular with
distributed-memory parallel systems (using MPI) and SMP/multicore CPU systems (using
MPI and/or OpenMP).

NVIDIA’s single instruction multiple threads (SIMT) programming model is a combi-
nation of SIMD and SPMD which provides the programmer with an SPMD view of the
parallelism, but has the SIMD restrictions for describing parallelism. There are several
threads, each with its individual identifier and control flow. Different threads are allowed
to follow different control flows. The difference to SPMD is that, when threads take dif-
ferent control paths, parallelism is lost and the processor alternates between the different
control flow paths, i.e., the performance is essentially that of a sequential program. To
achieve a parallel execution, threads must take the same path through the program and,
hence, the execution is similar to SIMD, because the same instruction is applied to several
data items at a time. Fortunately, not all threads are obliged to have the same control
flow. In fact, only the threads in a so-called warp are subject to this restriction. The
reason is the hardware architecture of GPUs, cf. Figure 2.4. A GPU device consists of
several so-called multiprocessors. Each multiprocessor has several processors which exe-
cute instructions. Every processor has arithmetic and logic units but there is only one
control unit per multiprocessor for instruction decoding and branching. Hence, the pro-
cessors of a multiprocessor can only work on several data items at a time if they execute
the same instruction. With current NVIDIA hardware, a multiprocessor consists of eight
processors. In four clock cycles, the multiprocessor handles the instruction of 32 threads,
provided that they all execute the same instruction. Accordingly, the warp size is 32, i.e.,
all threads with identifiers i such that ⌊ i

32⌋ has the same value must execute the same
instruction or, otherwise, divergence occurs and the multiprocessor cannot execute all 32
threads of the warp simultaneously.

The code executing on a GPU, the so-called kernel, has to obey several restrictions.
Most importantly, there is no run-time allocation, neither in the heap nor on the stack.
This implies that GPU code cannot use recursion. The invocation of a kernel is organised
in blocks (Figure 2.5). That is, the ID of a thread is given by a pair (b, t) where b is a one- or
two-dimensional index of the thread’s block and t a one-, two- or three-dimensional index
within a block. Blocks execute independently, e.g., the run-time system may schedule the

2.2. Parallel Programming 23

Figure 2.4: GPU architecture (image from [NVI09])

Figure 2.5: GPU architecture (image from [NVI09])

24 Chapter 2. Prerequisites

blocks among the multiprocessors of a GPU device. A single block always executes on
a single multiprocessor. Therefore, the threads of a block have access to the scratchpad
memory of the respective multiprocessor. We discuss scratchpad memory in the next
paragraph.

Scratchpad Memory The main memory of the GPU (“device memory” in NVIDIA
documents) is not fast enough to handle concurrent memory access requests by all the
threads running on a multiprocessor; the latency may be several hundred clock cycles. The
thread scheduler of a multiprocessor attempts to hide these latencies by scheduling some
threads while others are waiting for data from memory, but this is not sufficient to exploit
the full computing power of the device. One has to use the scratchpad memory of the
multiprocessor (called “shared memory” in NVIDIA documents), a much faster, but also
much smaller, memory local to the multiprocessor which allows concurrent access without
delay if certain alignment restrictions are being obeyed. The details of the restrictions
depend on the hardware generation of the GPU; newer hardware lifts some of the con-
straints imposed by earlier generations. The basic restriction is as follows. The first and
second half of a warp are each called a half-warp. Suppose L, declared as int L[], refers
to the scratchpad memory (i.e., L points to the beginning of the memory). Then the 16
threads of a half-warp can access L[f(i)] (with i being the thread ID) simultaneously if

• ⌊ f(i)
16 ⌋ is the same on all threads of the half-warp, i.e., all threads of the half-warp

access the same 64 byte memory bank (since sizeof(int) is 4 in CUDA), and

• the expressions f(i) mod 16 either evaluate equally in all threads, or they evaluate
mutually differently.

These requirements imply that there are two access patterns which can be served in one
clock cycle. Either all 16 threads have to access the same memory cell, or every thread
must access a different 4-byte unit (e.g., an int or a float) at a different offset (aligned
on a 4 byte boundary), but all 16 accesses must address the same 64-byte (= 16 units of
4 bytes) bank.

Due to this alignment restriction, it is desirable to organise simultaneous access to
scratchpad memory such that adjacent threads access adjacent memory cells.

Chapter 3

Related Work

3.1 Dependence Analysis

Dependence analysis for static control loop programs with affine bounds and affine array
subscripts has been solved for quite some time [Fea91, PW92]. Subsequently, research has
been focusing on more efficient algorithms and wider applicability. The aim of our work
is clearly to achieve greater applicability. Extending the analysis to a bigger class of pro-
grams and maintaining its precision is difficult as it requires more powerful mathematical
methods and faces undecidability problems. One way around this problem is to sacrifice
precision of the analysis and handle “extended” constructs by heuristics or ask the user
to state whether a condition arising during the analysis holds [PW92]. Our work clearly
relates to work which uses more powerful mathematical tools.

Uninterpreted Function Symbols Uninterpreted function symbols for constructs
which cannot be analysed were introduced by Pugh et al. [PW95]. By doing so, arbitrary
non-linear (and non-polynomial) conditions can be handled, but the exact dependence
information is only available at run time when the non-linear conditions can be evaluated.
One strength of this approach is that the symbolic manipulation of the conditions remains
possible.

Barthou’s Approaches For exact dependence analysis, Barthou [Bar98] presents a
modified Fourier-Motzkin elimination which handles equalities exactly by keeping track
of the modulo conditions imposed by them. For example, when eliminating the variable
j from a system with the equality i + n · j = k by substituting j := k−i

n
in the system,

the condition k − i ≡n 0 must be satisfied since, otherwise, j is not integral. Barthou’s
algorithm can handle such non-linear parameters in some situations.

To handle a broader spectrum of non-linear (including non-polynomial) constraints,
Barthou suggests to use resolution to derive linear conditions as consequences from the
non-linear ones.

Interval Arithmetic Recently, data dependence tests based on integer interval arith-
metic have been proposed. The central concept of integer interval arithmetic is the inte-
ger interval equality, f(x) = [L(x), U(x)], i.e., the question of whether x ∈ R (for some
R ⊆ Zn) exists such that L(x) ≤ f(x) ≤ U(x). To test for a dependence between two
accesses A[f(i)] and A[g(i′)], the conflict equality f(i) = g(i′) is written as the integer
interval equality

f(i) − g(i′) = [0, 0]

and is solved subject to the constraints

i ∈ D1, i′ ∈ D2

25

26 Chapter 3. Related Work

whereD1 andD2 are the iteration sets of the array accesses. Zhou and Zeng [ZZ08] present
a method, called the polynomial variable interval (PVI) test, for detecting dependences
when array subscripts are sums of powers of loop variables, like in 2 · i + i2 − 5 · j3.
Kyriakopoulos and Psarris [KP09] give an algorithm, called the non-linear variable interval
(NLVI) test, to check for dependences in the presence of non-linearities and parameters.
This algorithm also computes direction vector information. Both methods do not apply
to arbitrary systems as so-called accuracy conditions have to be checked when a variable
is eliminated. Only if the accuracy conditions hold, exact conditions for the feasibility
of the conflict equalities are derived. Coupled array subscripts (i.e., systems of conflict
equalities with equalities involving a common variable) cannot always be handled exactly.
Our generalisation of Banerjee’s dependence analysis is complementary as it handles one
specific case (one non-linear parameter) of a system of conflict equalities with coupled
equalities exactly.

Bernstein Expansion Clauss and Tchoupaeva [CT04] propose to use Bernstein expan-
sion for approximating polynomial functions. Bernstein polynomials form a basis for the
ring of multivariate polynomials: any polynomial f can be written as a linear combination
of Bernstein polynomials. The coefficients of the linear combination provide lower and
upper bounds on the value of f on the box [0, 1]n and, by suitable substitutions, on any
box, even parametric ones. The bounds are often exact; therefore, Bernstein expansion
allows to perform range tests more accurately than with interval methods. Clauss and
Tchoupaeva demonstrate that it can be used to disprove dependences in the presence of
non-linear array subscripts, among other applications.

Chain of Recurrences In the work by van Engelen et al. [vEBS+04], symbolic expres-
sions are represented as chains of recurrences (CR). By applying CR algebra, this allows
to handle some non-linear cases and perform the GCD test, the value range test and the
extreme value test for detecting dependences, then.

3.2 Computing Schedules

Several methods for computing schedules have been suggested. Earlier methods relied
on finding a hyperplane with a suitable orientation towards the uniform dependences of
a program or recurrence equality(s) [KMW67, Lam74]. Darte and Robert [DR95] pro-
posed asymptotically optimal solutions for parametric domains by considering a “limit
problem”and the strongly connected cycles in the statement dependence graph. Feautrier
presented a solution of the affine schedule problem using piecewise affine schedules for
one-dimensional time [Fea92a] and also an extension to multidimensional time [Fea92b].
Feautrier’s methods use integer linear programming for computing the schedule. An
overview of scheduling techniques can be found in the book by Darte et al. [DRV00].

There has, by far, not been as much work with respect to non-linear schedules, pre-
sumably because no code generation method was available. Achtziger et al. [AZ00] used
nonsmooth optimisation to compute linear and quadratic schedules and also discussed the
synthesis of array processors from quadratic schedules.

3.3 Tiling

Tiling is a well-established technique of coarsening the grain of parallelism and increas-
ing data locality in loop programs [XH97, Xue97b, GFL04]. The iteration space of the
program is covered with (usually congruent) tiles, and the enumeration of the iteration
points is changed so as to enumerate the tiles in the outer loops (i.e., dimensions) and the
points in each tile in the inner loops.

3.4. Array Localisation 27

To minimise communication startups and the volume of the data communicated, the
shape and size of the tiles is usually chosen in dependence of the dependence vectors
[Xue97a, ABRY01, GFL04], especially in the context of distributed-memory architec-
tures. For shared-memory systems, the number of startups and the volume are less of a
concern, as long as the transfer time of the data between cores stays small compared to
the computation time for each tile. However, tiling remains an important technique for
load balancing: tile shapes and sizes which distribute an equal amount of work across the
cores must be chosen.

The foundations of tiling for supercomputers were described by Irigoin and Triolet
[IT88]. Tiling as an optimising transformation to infuse parallelism, increase locality or
reduce communications has been proposed as a partitioning-based approach [LL98] or,
as presented here, as a transformation following space-time mapping [DV97, Gri04]. A
novel approach, which derives the tiling and parallelism in an integrated fashion, has
recently been proposed [BBK+08b]. All these approaches consider the dependences of the
analysed program, which determine the legality of a tiling. Our analysis focuses on the
parallel execution of tiled code, the necessary load balancing and the role of the index
space bounds. Sequential execution efficiency (and code generation efficiency, which we
have not studied) for parametrised tiles has been investigated recently [RKRS07].

3.4 Array Localisation

Improving data locality by transforming a loop nest to obtain temporal or spatial locality
by reordering the loop iterations and/or changing the data layout has long been a subject
of study [WL91, KRC97, BF03, BBK+08b].

Earlier work relies on partitioning program data [PDN97]. Loop transformations have
been used to simplify the reuse pattern [KRI+01, KC02] in order to store the reused data
compactly in scratchpad memory if such a transformation is permitted by the depen-
dences. Later work [IBMD04] improves the situation by partitioning according to the
coefficients of the array index expressions, thus, reducing the size of the blocks stored in
scratchpad memory considerably. Chen et. al [CK08] present a method for minimising
off-chip memory accesses by restructuring parallel code according to data tiles to create
temporal locality across processors.

Ehrhart quasi-polynomials have been used to store compactly only the elements of an
array used by the code after applying a transformation [CM00, LMC02] or to compute
the number of accessed memory elements, cache misses, etc. [VSB+04].

For our technique to be effective, locality improving transformations described in the
previous work cited are desirable. Loechner et al. [LMC02] describe loop transformations
which optimise data locality. They use Ehrhart quasi-polynomials for the precise and
compact addressing of the array elements accessed by a loop nest. They focus on spatial
and temporal reuse to enhance cache performance and TLB (translation lookaside buffer)
effectiveness.

Baskaran et al. [BBK+08a] execute tiled loop code on a graphics card with scratchpad
memory. They approximate the local data of a tile by a rectangular superset, load the
respective data into scratchpad memory before executing a tile and store it to global
memory afterwards, but they do not compute the used data set precisely nor do they try
to retain reused data in the scratchpad between tiles.

3.5 Code Generation

The problem of generating code from polyhedral descriptions has been studied for about
two decades. Early work concentrated on code generation for a single statement [Iri88].
After seminal steps in this area [AI91], solutions were developed successively for the case

28 Chapter 3. Related Work

with several statements and unions of polyhedra as iteration sets [CF93, Wet95, KPR95,
QRW00, Bas04].

Code generation for a single statement has been solved for more general cases. In our
own previous work [GGL04], we have shown that code can be generated for a polyhedral
iteration set which may depend on non-linear parameters (i.e., the inequalities describing
the index set may contain products between a variable and a polynomial in the parameters)
using quantifier elimination in the reals.

Recently, an efficient method for generating code for a tiled index set of one state-
ment with parametric parallelepiped tiles has been presented by Renganarayanan et al.
[RKRS07]. They compute an approximation of the set of all tile origins (the so-called
outset) to enumerate all non-empty tiles and, in a second step, generate code for the inner
loops enumerating the points within the tiles. The method is efficient because computing
the outset is linear in the number of constraints.

Chapter 4

Algorithms for Non-linearities

Efforts to extend the polyhedron model with non-linearities immediately lead to the ques-
tion of whether the algorithms used frequently in the model can be modified to handle
non-linear cases. The mathematical tools needed to do so are nontrivial (otherwise, the
extensions would be part of the model already). In this chapter, we discuss three areas of
non-linear mathematics, namely solving systems of equalities with one non-linear param-
eter, generalising Fourier-Motzkin elimination and the Simplex algorithm to an arbitrary
number of non-linear parameters, and using quantifier elimination in the reals to solve
some non-linear problems. Chapter 5 applies the techniques and generalised algorithms
described here to problems in the model-based transformation process built upon the poly-
hedron model. We are aware that the section on linear Diophantine equality systems with
one non-linear parameter (Section 4.2) may be more challenging to the some of the paral-
lel programming audience. The algorithms presented here are meant to be implemented
in a suitable library and used by parallelisation systems without the need to understand
the details of the algorithms. Readers less interested in these details may want to go to
the examples (Section 4.2.7) directly and skip the rest of Section 4.2 (we have to assume
the reader has a basic familiarity with periodic numbers and quasi-polynomials in the
examples, though).

4.1 The Generalised Model

In the classical polyhedron model for loop parallelisation, we deal with systems of equalities
or inequalities with variables x1, . . . , xn and parameters p1, . . . , pk of the form

n∑

i=1

cixi +

k∑

i=1

dipi + e ≥ 0

or

n∑

i=1

cixi +
k∑

i=1

dipi + e = 0,

respectively, where c1, . . . , cn, p1, . . . , pk, e ∈ Q, i.e., the (in)equalities are given by affine
expressions (cf. Definition 2.10). The more general model which we aim at allows non-
linearities. We distinguish two flavours of the non-linearity we allow.

1. A generalisation to allow non-linear parameters, i.e., the expressions are linear in the
variables and the coefficients can be expressions in the parameters. The (in)equalities
now take the form

n∑

i=1

cixi + d ≥ 0

29

30 Chapter 4. Algorithms for Non-linearities

or

n∑

i=1

cixi + d = 0,

respectively, where c1, . . . , cn, d ∈ D and D is a ring contains expressions in the
parameters. Depending on the application, we will choose the polynomials over
the rationals (i.e., Q[p1, . . . , pk]), rational functions from Q(p1, . . . , pk) or univariate
quasi-polynomials (cf. Definition 2.27) for D.

2. A generalisation with non-linear variables where we allow arbitrary polynomials in
the variables and parameters as right-hand side, i.e.,

f ≥ 0 or f = 0,

where f ∈ Q[x1, . . . , xn, p1 . . . , pk] or f ∈ Q(x1, . . . , xn, p1 . . . , pk) if we need to
represent fractions.

The second case encompasses the first case, except when D is a ring of quasi-polynomials.
Nonetheless, we distinguish the first case from the second as it exposes more structure
(the equalities and inequalities are linear in the variables).

The polyhedron model has the appealing property that some algorithms produce re-
sults without case distinctions (e.g., Fourier-Motzkin elimination) on the parameters. This
is due to the fact that the coefficients of the variables are constants. In our generalisation,
this is no longer true and the corresponding computations must return results with case
distinctions. The example p · x − 1 ≥ 0 illustrates this fact. If we assume nothing about
parameter p, solving p · x− 1 ≥ 0 for x ∈ Q yields three different solutions:

• x ≥ 1
p

if p > 0,

• false if p = 0,

• x ≤ 1
p

if p < 0.

Therefore, algorithms for the model with non-linearities must produce results with case
distinctions which are not necessary in the classical polyhedral case. We represent such
case distinction as a decision tree. A leaf node of the tree carries a result for a specific case,
and an inner node n represents some conditional. Each of the subtrees of n is applicable
under a certain condition. We use the following definition for the decision tree data type,
given as a prototypical Haskell data type:

data Tree α = Leaf α
| Cond Condition (Tree α) (Tree α)

The node types are:

• Leaf x represents a result with value x ,

• Cond ϕ t⊤ t⊥ represents a case distinction with an arbitrary quantifier-free
logical formula ϕ as condition. t⊤ applies if ϕ holds, and t⊥ applies if ϕ does not
hold.

The result of solving p · x− 1 ≥ 0 for x can be represented as follows:

Cond p 6= 0
(
Cond p < 0 (Leaf x ≤ 1

p
) (Leaf x ≥ 1

p
)
)

(Leaf false)

4.2. Solving Systems of Linear Diophantine Equalities 31

4.2 Solving Systems of Linear Diophantine Equalities

Solving linear equality systems in the integers is the basis of dependence analysis (cf.
Section 5.1). We start here by describing a basic technique to solve such systems and,
then, discuss its extension to one non-linear parameter. Generalising this technique to
a non-linear parameter has been the subject of a diploma thesis [Sch07] which laid the
ground work and discovered the periodic behaviour of pointwise GCDs (cf. Lemma 4.3)
and the possibility to use GCDs to test pointwise divisibility (cf. Theorem 4.13) in an
ad-hoc formalism. In this work, we present the later reformulation and more precise
rendering of the results [GS08] using quasi-polynomials together with the missing pieces
(e.g., strong Echelon form, Theorem 4.12) and a new proof for Lemma 4.3 which shows
that GCDs can be computed by a pseudo-division.

4.2.1 Solving Systems of Linear Equalities

Let us look at the method to solve linear Diophantine equality systems used by Banerjee
in his book on data dependence analysis [Ban93]. Given x ·A = b with A ∈ Zm×n, b ∈ Zn,
the system can be solved for x ∈ Zm by a well-known two-step procedure:

• First, U ∈ Zm×m and S ∈ Zm×n are computed such that U is unimodular, S is an
Echelon matrix and U ·A = S.

• Second, t · S = b is solved for t ∈ Zm by computing a matrix T ∈ Zv×m (where
v ∈ N is the number of degrees of freedom) and a vector t0 ∈ Zm such that the set
of all solutions to t · S = b is given by {e · T + t0 | e ∈ Zv}, provided that t · S = b
has solutions at all.

If t · S = b is feasible, the solutions of x ·A = b are then given by

x ·A = b ⇔ x ∈ {(e · T + t0) · U | e ∈ Zv}.

Example 4.1. Consider the following loop program:

for (i=0; i<=m; i++)

for (j=0; j<=m; j++)

S: A[3*i+2*j] = i+j;

To determine for which iterations there exists a dependence from 〈(i, j), S〉 to 〈(i′, j′), S〉,
we have to solve the equality system

3i+ 2j = 3i′ + 2j′, i.e.,
(
i j i′ j′

)
·





3
2

−3
−2



 = 0.

To bring the coefficient matrix into Echelon form, we subtract the second row from the
first, i.e.,

U1 ·





3
2

−3
−2



 =





1
2

−3
−2



 with U1 =





1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1





and then subtract the new first row from the other rows in suitable multiples to make
them vanish:

U2 ·





1
2

−3
−2



 =





1
0
0
0



 with U2 =





1 0 0 0
−2 1 0 0

3 0 1 0
2 0 0 1





32 Chapter 4. Algorithms for Non-linearities

Hence, the matrices S and U = U2 · U1 are:

S =





1
0
0
0



 , U =





1 −1 0 0
−2 3 0 0

3 −3 1 0
2 −2 0 1





Solving
(
t1 t2 t3 t4

)
· S = b = 0 yields t1 = 0, t2, t3, t4 ∈ Z. The overall solution is

given by

(
i j i′ j′

)
= t · U =

(
0 t2 t3 t4

)
·





1 −1 0 0
−2 3 0 0

3 −3 1 0
2 −2 0 1





=
(
−2t2 + 3t3 + 2t4 3t2 − 3t3 − 2t4 t3 t4

)

From this we can see that the distance between the source and the target of a dependence
(
i− i′

j − j′

)
=

(
−2t2 + 3t3 + 2t4 − t3

3t2 − 3t3 − 2t4 − t4

)
= (−t2 + t3 + t4)

(
2

−3

)

is always a multiple of the vector (2,−3).

It is well-known that the first step of the algorithm (computing U , S such that UA = S,
U unimodular) is equivalent to computing extended greatest common divisors. A pivot is
the GCD of the entries in the corresponding column and the cofactors needed to compute
the pivot (i.e., the GCD) are exactly the cofactors of the extended GCD computation. In
other words, this computation can be performed for A ∈ Dm×n where D is a Bézout ring
(cf. Definition 2.7). But there is a catch with the required Echelon form here; we discuss
this problem and its solution for our application in Section 4.2.5.

The second step requires divisibility tests in the course of the forward substitution
performed to solve t · S = b. The question whether a divides b can also be answered by
computing a GCD.

4.2.2 Pointwise Solutions

A natural way of modelling a generalisation of Banerjee’s method by allowing one non-
linear parameter is to take the entries of A and b not from Z, but from Z[X] (or Q[X])
with X playing the role of the parameter. Solving x · A = b now seems like solving for
polynomials x ∈ Z[X]m (or x ∈ Q[X]m) which satisfy the given equality. But it turns out
that the polynomial solution of x · A = b is not what we need to describe the solution of
the equality system. Consider the following system:

(
i j

) (
X
2

)
= 1

For i, j ∈ Z[X], the system is infeasible because the constant term in the linear combina-
tion i ·X + j · 2 is necessarily even and, hence, never equals 1. For i, j ∈ Q[X], there are
infinitely many solutions, namely i ∈ Q[X], j = 1

2 (1 − j ·X), but this does not represent
the fact that p · i + 2 · j = 1 has solutions if and only if p is odd. Rather than in such
polynomial solutions of the equality system, we are interested in pointwise solutions, i.e.,
we need to know for which p ∈ Z the system x ·A(p) = b(p) is feasible and, for the feasible
cases, which x ∈ Z solve the system (where x depends on p, of course). In the example,
the solution is:

(
i j

) (
p
2

)
= 1 ⇐⇒ (i, j) ∈

{
∅ if p ≡2 0{(

1 − 2t, 1
2 (1 − p− 2pt)

)
| t ∈ Z

}
if p ≡2 1

4.2. Solving Systems of Linear Diophantine Equalities 33

To capture the pointwise solutions, we have to compute a pointwise Echelon form of
matrix A, i.e., a matrix S such that S(p) is the Echelon form of A(p) for every (but
finitely many) p ∈ Z. Similarly, we have to perform pointwise forward substitution in
t · S(p) = b(p). We state our main result in its general form where the coefficients are
allow to be not only polynomials from Z[X] but entire quasi-polynomials from EQP in the
following section. Then, we discuss computing extended GCDs in Section 4.2.4, followed
by pointwise Echelon form (Section 4.2.5) and forward substitution in Section 4.2.6.

4.2.3 Solving Systems of Linear Diophantine Equalities with One

Non-linear Parameter

The solutions for x in x · A = b are functions in the unknown p of a certain structure, as
the following theorem, our main theorem, states.

Theorem 4.2. Let A ∈ EQPm×n and b ∈ EQPm. Then one can compute some finite set
M ⊂ Z, l ∈ N and k ∈ {0, . . . , l} different integers n1, . . . , nk with 0 ≤ n1 < · · · < nk < l
such that x ·A(p) = b(p) is feasible if, and only if, p ∈ L with:

L = M ∪ L′

L′ = (lZ + n1) ∪ · · · ∪ (lZ + nk)

Furthermore, one can compute U ∈ EQPm×m and, for i ∈ {1, . . . , k}, Ti ∈ EQPvi×m,
ti ∈ EQPm and vi ≤ m such that for every p ≡l ni, p /∈M

x ·A(p) = b(p) ⇔ x ∈
{(
e · Ti(p) + ti(p)

)
· U | e ∈ Zvi

}

holds.

The theorem follows from the algorithms we give for the two phases of the solution
procedure: Theorem 4.12, which states how to compute a pointwise Echelon form S for A
with S = U ·A, U unimodular, and Theorem 4.13, which states the feasibility of forward
substitution in t · S = b.

M represents special cases for p, i.e., the cases which deviate from the general, periodic
behaviour of the solutions for p ∈ L′. The complete set of solutions for x · A = b in
dependence of p is given by a case distinction which lists first the cases for p ∈ M ,
followed by the cases where p ≡l ni. For each p ∈ M , the solutions are computed by
solving the parameter-free system x ·A(p) = b(p). The description of the solutions for the
periodic cases is given in the theorem.

Our algorithms for computing M , U , l, k, the ni, Ti, and ti, stated as constructive
proofs of the propositions made, are presented in the following. First, we look at the
computation of the pointwise extended GCD. Second, we extend the GCD computation
to compute a pointwise Echelon form of a given matrix. Third, we look at forward
substitution within the Echelon matrix by divisibility tests.

4.2.4 Extended Greatest Common Divisor Computation

The aim of this section is to show that the pointwise GCD of two polynomials is always
an entire quasi-polynomial. For example, the pointwise GCD of f = X and g = 2 is
the entire quasi-polynomial [2, 1], as gcd

(
f(p), g(p)

)
is 2 for even p and 1 for odd p. In

addition, one can always find entire quasi-polynomials v and w such that the Bézout
identity gcd

(
f(p), g(p)

)
∼ v(p) · f(p) + w(p) · g(p) holds. In the following lemma, this

is stated formally (using the formulation with a unimodular matrix U for the Bézout
identity) and the proof gives a procedure to compute the GCD and U .

34 Chapter 4. Algorithms for Non-linearities

Lemma 4.3. Let f, g ∈ Z[X]. Then one can compute d ∈ EQP and U ∈ EQP2×2 such
that

d ∼ gcdEQP (f, g)

d(p) ∼ gcdZ

(
f(p), g(p)

)

det
(
U(p)

)
∼ 1

(
d
0

)
= U ·

(
f
g

)

for all p ∈ Z.

In our own previous work, we have shown that the GCD and the unimodular matrix U
can be computed by an ad-hoc introduction of a certain number of case distinctions and
appropriate substitutions for X for each case [GS08]. Here, we give another proof based
on a pseudo-division.

Lemma 4.4. Let f ∈ Q[X] and l ∈ N+ such that l · f ∈ Z[X]. Then the quasi-polynomial
denoted by ⌊f⌋ and defined by

⌊f⌋ := f −
[
frac

(
f(0)

)
, . . . , frac

(
f(l − 1)

)]
,

has the following properties:

⌊f⌋ ∈ EQP ,
(
∀p : p ∈ Z : ⌊f⌋(p) = ⌊f(p)⌋

)
.

Proof. For any monomial m = aXn with n ≥ 1 of f , the have the following equality:
m(lp+ i) = a

∑n
j=0

(
n
j

)
(lp)jin−j = ain + al

∑n
j=1

(
n
j

)
lj−1pjin−j . Since al ∈ Z by hypoth-

esis, frac
(
m(lp + i)

)
= frac(ain), i.e., the fractional part of any monomial depends only

on i (and not p or l); hence, frac(f) has a period of l (l need not be minimal).

We can deduce from the proof that the condition on l can be relaxed such that l need
not be a multiple of the denominator of every coefficient (i.e., l ·f ∈ Z[X]), because l need
not be a multiple of the denominator of the constant coefficient, since the fractional part
of the constant coefficient is constant anyway.

Definition 4.5. Let f, g, q̃, r̃ ∈ Q[X], g 6= 0 and f = q̃·g+r̃ with deg(r̃) < deg(g). We then
call pquot(f, g) := ⌊q̃⌋ ∈ EQP the pseudo-quotient of f divided by g and prem(f, g) :=
f − pquot(f, g) · g ∈ P[X] the pseudo-remainder of f modulo g.

pquot is well-defined, since there is only one choice for q̃, r̃ ∈ Q[X] with the stated
properties; this is a well-known fact from the properties of polynomial division in Q[X].
Note that pquot(f, g) ∈ EQP , but prem(f, g) ∈ P[X] in the general case. But for two
polynomials f, g ∈ Z[X], the remainder is integer-valued, too.

Lemma 4.6. Let f, g ∈ Z[X], g 6= 0. Then prem(f, g) ∈ EQP.

Proof. Obvious from Definition 4.5.

Lemma 4.7. Let f, g ∈ Z[X] − {0} with deg(f) = deg(g) and let r := prem(f, g).
Then pquot(f, g) ∈ Z, r ∈ Z[X] and deg(r) ≤ deg(g) holds. If deg(r) = deg(g), then
|HC(r)| < |HC(g)|.

Proof. Let f , g be as stated. Then q̃ (from Definition 4.5) is from Q; hence, ⌊q̃⌋ ∈ Z.
This implies prem(f, g) ∈ Z[X] and deg(r) ≤ deg(g). If deg(r) = deg(g), then HC(r) =
(q̃ − ⌊q̃⌋) · HC(g), and since |q̃ − ⌊q̃⌋| < 1, it follows that |HC(r)| < |HC(g)|.

Lemma 4.8. Let f, g ∈ Q[X], g 6= 0, q = pquot(f, g), r = prem(f, g). Then f = q · g+ r
and deg(r) ≤ deg(g).

4.2. Solving Systems of Linear Diophantine Equalities 35

Proof. Let f, g, p, q as stated and q̃, r̃ as in Definition 4.5. f = q · g + r is obvious from
the definition (Definition 4.5). Since q and q̃ only differ in the constant coefficient (cf.
Lemma 4.4), r and r̃ differ only in terms with degree less than or equal to deg(g). Hence,
deg(r) ≤ deg(g) follows from deg(r̃) < deg(g).

The stated properties allow to compute a pointwise GCD of f, g ∈ Z[X] in EQP by
repeated remainder operations. The reason is that, by taking remainders repeatedly, in
each step either the degree is reduced (if deg(f) > deg(g) or deg(f) = deg(g) and HC(g)
divides HC(f)) or the absolute value of the leading coefficient (if deg(f) = deg(g) and
HC(g) does not divide HC(f)), ensuring progress in the computation.

Note that we could define remainders differently as they are not uniquely determined.
For example, for f = 4X and g = 3X, our choice is a quotient of 1 and a remainder of
X, but we could also use a quotient of 2 and a remainder of −2X. This is due to the
fact that, instead of the “floor” of the quotient in Q[X], one could also choose the “ceiling”
for pquot(f, g). In the example, 1 = ⌊ 4

3⌋ and 2 = ⌈ 4
3⌉. As stated in Definition 4.5, we

decide to use the floor variant; the following algorithms work equally well with the ceiling
variant.

Proof of Lemma 4.3. Let f, g ∈ Z[X]. Assume w.l.o.g. that deg(f) ≥ deg(g). We show
that one can construct a finite remainder chain for f and g. If g = 0, then f is the only
element in the remainder chain. Otherwise, let r := prem(f, g), q := pquot(f, g).

1. If deg(f) = deg(g), the computation continues with (g, r).

2. If deg(f) > deg(g), then we compute l := lp(r) remainder sequences for (g, ri) for
0 ≤ i < l and ri := conl(r, i). These sequences can be combined into one chain
for f and g by combining the components again. The sequences can have different
lengths, but they can be made equal by enlarging the shorter sequences by replacing
the last division

gn−1 = qn · gn

by

gn−1 = (qn − 1) · gn + gn

gn = 0 · gn + gn

. . .

gn = 1 · gn

to replicate the last remainder as often as needed. Hence, the sequences can be
combined into one sequence.

The termination follows due to Lemma 4.7 and Lemma 4.8. In the second recursive case,
deg(g) decreases in the recursion. In the first recursive case, deg(g) may decrease (if
HC(g) divides HC(f)) or stay the same, but, then, |HC(g)| (which is a natural number)
decreases. By Lemma 2.8, the existence of a terminating remainder chain implies that the
last remainder is a GCD in EQP of f and g. And a matrix U can be extracted from the
remainder chain with the properties stated in the lemma. This completes the proof of the
existence of GCDs in EQP .

To prove the uniqueness of GCDs in EQP (and to justify the notation d ∼ gcdEQP (f, g)),
assume that d, d′ ∈ EQP are both GCDs of f, g ∈ EQP . This implies that there exist
u, v ∈ EQP such that d = u · d′ and d′ = v · d and, hence, d = u · v · d. In the pointwise
view, this means that, for every p ∈ Z, d(p) = u(p) ·v(p) ·d(p). This implies u(p) ·v(p) = 1
and u(p), v(p) ∈ {−1, 1}. Therefore, u and v are units in EQP and d ∼ d′.

In addition, since f = q · g + r implies f(p) = q(p) · g(p) + r(p) for every p ∈ Z, we
have a remainder chains in Z, for the function values, too, and d ∼ gcdEQP (f, g) implies

d(p) ∼ gcdZ

(
f(p), g(p)

)
.

36 Chapter 4. Algorithms for Non-linearities

This proof, especially the argumentation that d(p) ∼ gcdZ

(
f(p), g(p)

)
is implied by

d ∼ gcdEQP (f, g), may raise the question of why the same line of argumentation cannot be
used in Z[X] or Q[X]. Obviously, in Z[X] we cannot compute remainder chains, because
the equality f = q · g+ r cannot be satisfied for, e.g., f = X2, g = 2X. In Q[X], the same
arguments apply, but then d ∼ gcdQ[X](f, g) implies d(p) ∼ gcdQ

(
f(p), g(p)

)
, i.e., d is a

pointwise GCD in Q. But since Q is a field, all element except zero are associated, i.e.,
for all a, b, c ∈ Q−{0}, we have gcdQ(a, b) ∼ c, i.e., the consequence is a trivial statement.
Only in EQP , the consequence for pointwise GCDs is nontrivial.

A corollary to Lemma 4.3 is that the proposition remains valid when f and g are
allowed to be chosen from EQP instead of Z[X].

Corollary 4.9. Lemma 4.3 holds even for f, g ∈ EQP.

Proof. Let l ∈ N+ be a common period of all coefficients of f and g. Then the polynomials
fi := conl(f, i) and gi := conl(g, i) for 0 ≤ i < l are elements of Z[X] by Lemma 2.29. We
can compute remainder chains for (fi, gi) as in the proof of Lemma 4.3. By componentwise
combination of these remainder chains (as in the second case in the proof of Lemma 4.3),
we obtain a remainder chain for (f, g) and, hence, the proposition follows due to the same
reasons as Lemma 4.3.

Another way of expressing that EQP allows to compute pointwise GCDs is to say that
evaluation is a homomorphism w.r.t. computing GCDs.

Corollary 4.10. Substitution of an element p ∈ Z for the unknown X, i.e., the function
σp : EQP → Z defined by σp(f) = f(p) is a homomorphism from (EQP , gcdEQP) to
(Z, gcdZ).

Proof. Follows directly from the preceding corollary.

Since we are able to compute pointwise GCDs and unimodular matrices which describe
the row operations of the GCD computation, we can, in the well-known manner described
by Banerjee for the non-parametric case, extend this computation of GCDs to computation
of Echelon forms of matrices.

Corollary 4.11. Let A ∈ EQPm×n. Then one can compute matrices U ∈ EQPm×m and
S ∈ EQPm×n such that S is Echelon, S = U ·A and det(U) ∼ 1.

4.2.5 Pointwise Echelon Form

It is important to observe that, for S computed by repeated GCD computations, S is in
Echelon form, but S(p) is not necessarily in Echelon form for every p ∈ Z. For example,

S =

(
[1, 0] ·X 1

0 1

)

is clearly Echelon, but S(p) is not Echelon for p = 0 and every odd p, since the upper left
entry vanishes at these points. We need a stronger, pointwise Echelon form. A pointwise
Echelon form for the example is the matrix

S′ =

(
[1, 0] ·X 1

0 [1, 0]

)

which is obtained from S by one additional row operation, namely subtracting [0, 1] mul-
tiplied by the first row from the second row. Note that this leaves the zero in the lower left
corner intact. Now S′(p) is Echelon for all p 6= 0. There is no way to compute an S′ from
S (by row operations) which is Echelon for all p. But, as the following theorem shows,
the set of exceptions (the values of p for which the computed matrix is not Echelon) can
always be kept finite.

4.2. Solving Systems of Linear Diophantine Equalities 37

Theorem 4.12. Let A ∈ EQPm×n. Then one can compute matrices U ∈ EQPm×m and
S ∈ EQPm×n and a finite set M ⊂ Z such that S is Echelon, S = U ·A, det(U) ∼ 1 and
S(p) is Echelon for every p ∈ Z −M .

Proof. Compute S0 and U0 from A as by Corollary 4.11. Let us describe a procedure which
recursively transforms S0 to pointwise Echelon form. The idea is that, if a pivot vanishes
periodically because some constituents are zero, we apply some additional elementary row
operations to matrix S0 in the respective constituents to obtain a pointwise Echelon form
in these constituents (as in the simple example above). Note that this does not change
the constituents in which the pivot does not vanish periodically.

If there is no pivot in S0, we are finished. Else, let d ∈ EQP be the pivot element of
the first row of S0 and W be the submatrix of S0 consisting of the columns to the right
of this pivot, i.e.,

S0 =




0





d
0
...
0




W




.

Compute the zeros of d, i.e., by Lemma 2.34, the set M0 of non-periodic roots, and
l, k, n1, . . . , nk as in the lemma. For each i ∈ {1, . . . , k}, let Wi := conl(W,ni). Note
that, in general, Wi ∈ EQP as l need not be a period of W . Compute, by applying this
procedure recursively to the Wi, the matrices W̄i which are in strong Echelon form, sets
Mi such that W̄i(p) is only non-Echelon if p ∈Mi and matrices Ui which describe the row
operations performed on Wi to obtain W̄i. Let M ′ := M0 ∪ (lM1 + n1)∪ · · · ∪ (lMk + nk)
and let S̄ be the matrix obtained by replacing every constituent ni of W in S0 by the
entries of W̄i for every i ∈ {1, . . . , k}. The handling of the pivot d is now finished, but
the procedure must be applied to any further pivots. Let S′ be the submatrix of S̄ to
the right and below the pivot d (not including the pivot row and column). By applying
this procedure recursively to S′, we get S′′, U ′′ and M ′′. Obtain the final matrix S by
replacing S′ in S̄ by S′′ and set M := M ′ ∪M ′′. Compute the final matrix U from the
matrices U0, the Ui, and U ′′:

U :=

(
1 0
0 U ′′

)
· V · U0

where V describes the additional pivoting steps made in W described by the matrices Ui,
i.e.,

V := comb(V0, . . . , Vl−1) with Vj :=

{
Uj if j ∈ {n1, . . . , nk}
Im otherwise

for 0 ≤ j < l.

The columns in which the pivots for the different cases on p are found can be computed,
together with the computation of the pointwise Echelon form, as the zeros of the (possible)
pivots indicate where the respective matrix entry is not a pivot in the pointwise Echelon
form.

4.2.6 Forward Substitution

After computing a pointwise Echelon form S of A, the next step of solving x ·A = b is to
perform forward substitution in the system t·S = b. This is done by testing the divisibility
of the entries in b by corresponding pivot elements of S and solving (by substitution) for
the entries of t. In the parametric case, care has to be taken as to where to find the pivots.
As noted in the previous section, in pointwise Echelon form, the pivots of S(p) are not

38 Chapter 4. Algorithms for Non-linearities

necessarily found at the same positions as in S. By applying the procedure given in the
proof of Theorem 4.12, one finds, for each case (= a congruence class of p modulo l), the
correct location of the pivot.

What remains to be done to obtain a complete solution algorithm is to give an algo-
rithmic divisibility test (which also computes the quotient in the case of divisibility). This
last step is formalised in the following theorem.

Theorem 4.13. Let f, g ∈ EQP and let D(f | g) ⊆ Z denote the set of integers p with
f(p) | g(p). Then one can compute some l ∈ N, some finite set M ⊂ Z and k ∈ {0, . . . , l}
different integers 0 ≤ n1 < · · · < nk < l such that

D(f | g) = M ∪ (lZ + n1) ∪ · · · ∪ (lZ + nk).

Moreover, we can compute q ∈ EQP such that q(p) = g(p)
f(p) for all p ∈ D(f | g) −M ,

f(p) 6= 0.

Proof. Let h ∈ EQP be a pointwise GCD of f and g. Since f(p) | g(p) iff gcdZ

(
f(p), g(p)

)
∼

f(p), we have D(f | g) = R(h − f) ∪ R(h + f) and this proves the claimed struc-
ture of D(f | g) and gives an algorithm for computing M , l, and n1, . . . , nk due to
Lemma 2.34 and Corollary 4.9. q is then computed as an entire quasi-polynomial with
conl′(q, i)·conl′(f, i) = conl′(g, i) for a common period l′ := lcm

(
lp(f), lp(g), l

)
and all 0 ≤

i < l′ with i ≡l nj , 1 ≤ j ≤ k by polynomial division for each i and with arbitrary other
components. Note that conl′(f, i), conl′(g, i) ∈ Z[X] and that conl′(f, i)(p) | conl′(g, i)(p)
for all p ∈ Z and i ≡l nj .

Putting the location of the pivots, the divisibility test just described and the gen-
eral forward substitution method together, we can algorithmically determine the cases
for which t · S(p) = b(p) has a solution and obtain the matrices Ti and vectors ti (cf.
Theorem 4.2) for each case; the technical details are straight-forward.

4.2.7 Examples

Let us now present a few examples for the solutions of linear Diophantine equality system
with one non-linear parameter. We start with the initial mini-example and consider the
system p · i + 2j = 1. From the coefficients p and 2 it is clear that the system is feasible
if, and only if, p is odd. The polynomial formulation (with X for p) is:

(
i j

)
·
(
X
2

)
= 1

To solve the system, we perform echelon reduction on the coefficient matrix as the first
step. Reducing the column is equivalent to finding the GCD of X and 2. Since the pseudo-
quotient pquot(X, 2) is 1

2X+[0,− 1
2] and, hence, the pseudo-remainder prem(X, 2) is [0, 1],

i.e., the equality

X = 2 · (1

2
X + [0,−1

2
]) + [0, 1]

holds. Since the remainder [0, 1] vanishes in the first constituent (i.e., for p ≡2 0), we
continue only for the second constituent and divide 2 by 1 with a remainder of 0. By
looking at the modified remainder chain (note that we added [−1, 0] to pquot(X, 2) to
make the lengths equal, see also the proof of Lemma 4.3)

X = 2 · (1

2
X + [−1,−1

2
]) + [2, 1]

2 = [2, 1] · [1, 2] + 0

4.2. Solving Systems of Linear Diophantine Equalities 39

we find that the GCD is [2, 1] because it is the last non-zero remainder in the modi-
fied sequence. A matrix U describing the GCD computation can be extracted from the
remainder sequence according to Lemma 2.8:

U =

(
0 1
1 −[1, 2]

)
·
(

0 1
1 −(1

2X + [−1,− 1
2])

)
=

(
1 − 1

2X + [1, 1
2]

−[1, 2] [12 , 1]X

)

The matrix S (the Echelon form of the original coefficient matrix) is given by:

S = U ·
(
X
2

)
=

(
[2, 1]

0

)

The next step in solving the equality system is to solve (t1 t2) · S = 1 for t1, t2 ∈ Z.
Obviously,

(
t1 t2

)
·
(

[2, 1]
0

)
= 1

is only feasible for p ≡2 1 because 2 does not divide 1:

(t1, t2) ∈
{

∅ if p ≡2 0

{(1, t) | t ∈ Z} if p ≡2 1

Transforming back the solutions to the original problem by computing (t1 t2) ·U we obtain
the solutions for the original problem:

(
i j

)
·
(
p
2

)
= 1 ⇐⇒ (i, j) ∈

{
∅ if p ≡2 0{(

1 − 2t, 1
2 (1 − p− 2pt)

)
| t ∈ Z

}
if p ≡2 1

As an example which shows that the degrees of freedom in the solution can depend on
the residue class of p, let us consider the system x ·A(p) = b(p) with

A =

(
[0, 1, 2]X X
[0, 1, 1]X X

)
, b =

(
X X

)
.

Note that the first column of A vanishes for p ≡3 0 and for p ≡3 1 the columns are linearly
dependent. A weak Echelon form for A (as computed by our implementation) is

Sw =

(
[−1,−1, 0]X [−1,−1, 1]X

0 [−1, 0, 1]X

)
.

The upper left entry vanishes for p = 0 and if p ≡3 2. For p ≡3 2, Sw(p) is clearly not
Echelon. The strong Echelon form computed by our implementation (and the respective
matrix U) is

S =

(
[−1,−1, 0]X −X

0 [−1, 0, 0]X

)
, U =

(
0 −1
1 [−2,−1,−1]

)

which is obtained from Sw by subtracting the first row from the second row in the third
component (note that this leaves the zero in the lower left column intact) and a not strictly
necessary multiplication of the third component with −1; our implementation computes
Echelon forms such that the determinant of the matrix U is always +1. In addition to
S itself, our implementation computes that the pivots of S(p) are in the first and second
column if p ≡3 0, in the first column only if p ≡3 1, in the second column only if p ≡3 2 and
that p = 0 is an exceptional case (it deviates from the other p ≡3 0 cases). The equality
system is then solved by solving the exceptional case separately (the system x·A(0) = b(0)
is parameter-free and can be solved by the well-known method) and performing forward
substitution for the three cases of (t1 t2) · Si = (con3(X, i) con3(X, i)) where Si for

40 Chapter 4. Algorithms for Non-linearities

i ∈ {0, 1, 2} is the restriction of S to the respective constituents. For example, in the case
i = 2 we have to solve

(
t1 t2

) (
0 −3X
0 0

)
=

(
3X 3X

)
.

Since −3p′ divides 3p′ for every p′ ∈ Z, we get t1 = 1, t2 ∈ Z for every p′ ∈ Z (and
p = 3p′ + 2). Multiplying (t1 t2) with U yields the solutions for x. The complete solution
of x ·A(p) = b(p) for all cases of p is computed as:

x ∈






{(t1, t2) | t1, t2 ∈ Z} if p = 0

{(0, 1) if p ≡3 0, p 6= 0

{(t2, 1−t2) | t2 ∈ Z} if p ≡3 1

∅ if p ≡3 2

4.2.8 Floor and Modulo Operations

Let us briefly note that the technique can be applied to input systems with floor and
modulo operations. To the automatic parallelisation community, these operations may
be of more interest than quasi-polynomials themselves. The floor expression ⌊p

d
⌋ for a

parameter p and d ∈ N+ can be expressed by a quasi-polynomial (cf. Lemma 4.4)

⌊p
d

⌋
=

1

d
p− [0,

1

d
, . . . ,

d− 1

d
]

and the modulo expression p mod d can be trivially written as [0, 1, . . . , d− 1]. Therefore,
the operations floor, ceiling and modulo on parameters can be expressed in a way that
make our techniques applicable.

4.2.9 Beyond a Single Parameter

The techniques presented in Section 4.2.3 cannot be generalised to systems with more than
one non-linear parameter. This follows from the fact that the number of operations (with
+, −, ·, ⌊ ·

·⌋, and mod as elementary operations) for computing gcd(p1, p2) in dependence
of p1, p2 ∈ Z is unbounded; more precisely, for infinitely many p1, p2 ∈ Z, the number of
operations is in Ω(p1 + p2) [vdD03]. Although there is no hope for the general case with
the techniques presented, special cases can be solved. To perform Echelon reduction it is
sufficient for the entries whose GCD is to be computed (i.e., a lower part of a column) to be
uni-parametric. Therefore, if it is possible to make the respective entries uni-parameteric
by permuting columns and/or rows, Echelon reduction can be performed.

The result of forward substitution can be represented by a finite case distinction be-
cause only finitely many divisibility tests are required in any case. In other words, forward
substitution can be performed in much more general settings than presented here because
representing all cases in the result is only an overhead in both space and run-time re-
quirements since all the conditionals have to be stored and evaluated at run time. Our
method of performing forward substitution for the single parameter case (cf. Section 4.2.6)
computes explicit results for the different residue classes modulo p and, therefore, greatly
reduces the number of cases, although this is not strictly necessary for a complete proce-
dure.

4.3 Using Quantifier Elimination to Solve Problems in

the Generalised Model

In the previous section, the main obstacle was that integral solutions of the examined
equality systems were required. In some cases, integrality is not required for correctness,

4.3. Using Quantifier Elimination to Solve Problems in the Generalised Model 41

i.e., we can apply algorithms which compute solutions in the real numbers and the real
solutions are sufficient to achieve the desired transformation. We encounter this situation
when computing schedules (cf. Section 5.2), performing tiling (cf. Section 5.3) and at
generating code (cf. Section 5.5).

Quantifier elimination can be used to do two things:

• compute a quantifier-free formula which is equivalent to a given formula with quan-
tifiers,

• compute solutions (i.e., values) for the quantified variables that validates the given
formula by quantifier elimination with answer.

Both can be used to solve problems in the generalised model.
To be able to apply quantifier elimination to a problem, we have to express the problem

as a first-order logical formula with the operators +, −, ·, and the usual equality and
ordering relations of the real numbers. A given polyhedron (which may depend on possibly
non-linear parameters) can be described by a finite set of inequalities S in the variables
x1, . . . , xn. We assume that the inequalities in S are denominator-free (this can always be
achieved by multiplying every inequality with the square of the common denominator of
its coefficients) because the logical language has no division symbol (cf. Definition 2.19).

4.3.1 Equivalent Formulas

As an example where computing an equivalent formula is useful, let us consider one
typical operation on polyhedra: projecting out one dimension. This is usually performed
with methods like Fourier-Motzkin elimination or dual description methods. Consider the
following formula describing a two-dimensional polyhedron in the dimensions x and y with
a non-linear parameter n:

ϕ = (0 ≤ x ≤ n ∧ x ≤ n · y ≤ 2 · x)

Since the formula has the term n · y, it can only be treated in the generalised model.
Projecting onto the x-dimension is simple in this case, yielding

ϕx = (0 ≤ x ≤ n),

but the projection onto y is not obvious. Both projections can be described using quan-
tifiers, since the projection results ϕx and ϕy are equivalent to formulas with existential
quantifiers:

ϕx ↔ ∃y (ϕ)

ϕy ↔ ∃x (ϕ)

Computing the quantifier-free equivalent ϕx with Qepcad yields, in effect, the formula
0 ≤ x ≤ n shown above. Unfortunately, using Reduce yields

ϕx =
(
(n · x ≥ 0 ∧ n 6= 0 ∧ x ≥ 0) ∨ (n− x ≥ 0 ∧ x = 0 ∧ x = 0)

)
,

which has the same logical meaning, but is less suitable for further processing as it does
not exhibit the fact that ϕx can be written as a single conjunction. For ϕy, the situation
is even worse. Qepcad computes

ϕy =
(
n ≥ 0 ∧

(
n = 0 ∨ (y ≥ 0 ∧ y ≤ 2)

))

and Reduce’s answer is

ϕy =
(
(n · y − n ≤ 0 ∧ n · y ≥ 0) ∨ (n · y − n ≥ 0 ∧ n · y − 2 · n ≤ 0 ∧ n ≥ 0)

)
.

42 Chapter 4. Algorithms for Non-linearities

From Qepcad’s answer we learn that there is a difference between n = 0 and n > 0, as
the projection is y ∈ R for n = 0 and 0 ≤ y ≤ 2 for n > 0. The formula we desire for ϕy is

ϕy =
(
n = 0 ∨̇ (n > 0 ∧ 0 ≤ y ≤ 2)

)
,

(where ∨̇ denotes exclusive or) which exhibits the fact that n = 0 and n > 0 are disjoint
cases. Such a formula can be represented as a decision tree. Let us discuss how we can
obtain a representation of a projection result as a decision tree with finitely many cases
and a conjunctive formula at each leaf. The following theorem about Algorithm 4.1 and
its proof show how to compute a suitable case distinction on the parameters. The formula
simplification in the algorithm makes sure that we do not output superfluous bounds and,
if the simplifier detects infeasible formulas, that no infeasible cases are reported in the
result (which would be harmless but is usually undesirable).

Theorem 4.14. Let ϕ ∈ Qf ({v1, . . . , vn} ∪ {p1, . . . , pk}) a quantifier-free formula linear
in v1, . . . , vn such that ϕ(·,p) is equivalent to a conjunction for any value of the parameters
p. Then one can compute l ∈ N, conjunctions ϕ1, . . . , ϕl ∈ Qf ({v1, . . . , vn}∪{p1, . . . , pk})
linear in v1, . . . , vn and ψ1, . . . , ψl ∈ Qf ({p1, . . . , pk}) such that

ϕ↔
l∨

i=1

(ψi ∧ ϕi)

ψi → ∃v1 · · · ∃vn(ϕi) for 1 ≤ i ≤ l

¬(ψi ∧ ψj) for 1 ≤ i < j ≤ l

hold in R according to Algorithm 4.1.

Proof. Let ϕ be as stated. The algorithm checks for which p each atomic formula αi in
ϕ+ forms a bound of the polyhedron described by ϕ. αi is a bound of the polyhedron if,
and only if, κi holds (this follows from Lemma 2.23 because, by assumption, ϕ describes a
polyhedron for every choice of the parameters, i.e., all relevant bounds are weak inequal-
ities of the form f ≥ 0 or f ≤ 0). The formulas κ′A describe all possible combinations in
the parameters w.r.t. the κi, i.e., if κA(p) holds for a given assignment of the parameters,
then the bounds of the polyhedron are given by exactly the αi with i ∈ A. Hence, the
polyhedron is defined by ρ′A if κA(p) holds. To make sure that we output only non-empty
polyhedra, the formulas ηA check whether ρ′A is satisfiable in the variables for a given p.
The final case distinction on the parameters is given by the simplifications of all feasi-
ble κ′A ∧ ηA (as κA) and the respective formula defining the polyhedron ρA, which is a
simplification of ρ′A under κA.

The algorithm has, as shown, a complexity exponential in the number m of atomic
formulas in ϕ because all subsets of M = {1, . . . ,m} are considered. In an implementa-
tion, care should be taken to save computations by exploiting the fact that, if

∧
i∈A κ

′
i is

infeasible, then κ′A′ for any A′ ⊇ A is infeasible, too.
An immediate consequence of Theorem 4.14 is that we can handle projections of non-

linearly parametrised polyhedra, since the projection ∃vn(ϕ) is, for every assignment of
the parameters, equivalent to a polyhedron.

Corollary 4.15. Let ϕ ∈ Qf ({v1, . . . , vn} ∪ {p1, . . . , pk}) be a conjunction of atomic
formulas linear in the variables v1, . . . , vn. Then, one can compute l ∈ N, conjunc-
tions ϕ1, . . . , ϕl ∈ Qf ({v1, . . . , vn} ∪ {p1, . . . , pk}) linear in the variables v1, . . . , vn and
ψ1, . . . , ψl ∈ Qf ({p1, . . . , pk}) such that the following formulas hold in R:

∃vn(ϕ) ↔
l∨

i=1

(ψi ∧ ϕi)

ψi → ∃v1 · · · ∃vn−1(ϕi) for 1 ≤ i ≤ l

¬(ψi ∧ ψj) for 1 ≤ i < j ≤ l

4.3. Using Quantifier Elimination to Solve Problems in the Generalised Model 43

Input: ϕ is a positive quantifier-free formula linear in the variables v1, . . . , vn but not
necessarily linear in the parameters p; ϕ(·,p) is equivalent to a polyhedron for any as-
signment of the parameters p.
Output: {(ψ1, ϕ1), . . . , (ψl, ϕl)} such that ψ1, . . . , ψl are formulas in the parameters only,

ϕ1, . . . , ϕl are conjunctions linear in the variables, ϕ↔ ∨l
i=1(ψi∧ϕi), ψi → ∃v1 · · · ∃vn(ϕi)

for 1 ≤ i ≤ l and ¬(ψi ∧ ψj) for 1 ≤ i < j ≤ l.

a) Let, for some suitable m ∈ N, α1, . . . , αm ∈ At({v1, . . . , vn} ∪ {p1, . . . , pk}) be the
atomic formulas in ϕ+.

b) Let κi be a quantifier-free equivalent of ∀v1 · · · ∀vn(ϕ→ αi) for 1 ≤ i ≤ m.

c) Let M = {1, . . . ,m}. For every ∅ * A ⊆M , construct:

κ′A :=
∧

i∈A

κi ∧
∧

i∈M−A

¬κi

ρ′A :=
∧

i∈A

αi

d) Let ηA be a quantifier-free equivalent of ∃v1 · · · ∃vn(ρ′A).

e) Let κA be the result of simplifying κ′a ∧ ηA.

f) Let ρA be the result of simplifying ρ′A under κA.

g) The final result is given by all (κA, ρA)-pairs which describe feasible conditions on
the parameters and a feasible polyhedron, respectively:

R := {(κA, ρA) | ∅ * A ⊆M,ρA 6= false, κA 6= false}

h) return R.

Algorithm 4.1: Computing an explicit representation for a non-linearly parametrised
polyhedron by quantifier elimination

44 Chapter 4. Algorithms for Non-linearities

To continue the previous example, Reduce’s answer to the quantifier elimination
question ∃x(ϕ) with ϕ = (0 ≤ x ≤ n ∧ x ≤ n · y ≤ 2 · x) is

ϕy =
(
(n · y − n ≤ 0 ∧ n · y ≥ 0) ∨ (n · y − n ≥ 0 ∧ n · y − 2 · n ≤ 0 ∧ n ≥ 0)

)
.

The atomic formulas of this disjunctive normal form are:

α1 = (n · y − n ≤ 0)

α2 = (n · y ≥ 0)

α3 = (n · y − n ≥ 0)

α4 = (n · y − 2 · n ≤ 0)

α5 = (n ≥ 0)

This yields the following κi formulas (quantifier-free equivalents of ∀y(ϕy → αi)):

κ1 = κ3 = (n ≤ 0), κ2 = κ4 = κ5 = (true)

The formulas κ′A which are not equivalent to false and the respective formulas ρ′A and ηA

are given by:

κ′{2,4,5} = (n > 0)

ρ′{2,4,5} = (n · y ≥ 0 ∧ n · y − 2 · n ≤ 0 ∧ n ≥ 0)

η{2,4,5} = (n ≥ 0)

κ′{1,2,3,4,5} = (n ≤ 0)

ρ′{1,2,3,4,5} = (n · y − n ≤ 0 ∧ n · y ≥ 0 ∧ n · y − n ≥ 0 ∧ n · y − 2 · n ≤ 0 ∧ n ≥ 0)

η{1,2,3,4,5} = (n ≥ 0)

Simplifying κ′A ∧ ηA (obtaining κA) and simplifying ρ′A w.r.t. κA (obtaining ρA) using
SLFQ yields:

κ{2,4,5} = (n > 0), ρ{2,4,5} = (0 ≤ y ≤ 2)

κ{1,2,3,4,5} = (n = 0), ρ{1,2,3,4,5} = (true)

This represents the final result {(n = 0, true), (n > 0, 0 ≤ y ≤ 2)}, the projection of the
original formula onto y with a case distinction on n and a conjunctive formula for each of
the two cases.

4.3.2 Quantifier Elimination with Answer

As an example of a question which can be expressed by quantifier elimination with answer,
we consider the lexicographic minimum of a polyhedron. Since the logical language used
does not contain a notion of lexicographic ordering, we have to define the lexicographic
“less-than or equal to” relation � based on the standard ordering < on the real numbers,
see Definition 2.1. To find a formula describing the lexicographic minimality of a finite
point (x1, . . . , xn), we translate the following property L into a logical formula:

The point (x1, . . . , xn) is the lexicographic minimum of the given polyhedron
if it lies inside the polyhedron and it is lexicographically less than or equal to
every other point (y1, . . . , yn) which also lies inside the polyhedron.

To express this property, we define ϕ :=
∧
S and ψ := ϕ[x1 := y1, . . . , xn := yn] for some

new variables y1, . . . , yn (i.e., ψ is the same as ϕ with yi instead of xi). Then property L
can be expressed by the formula µ:

µ := ϕ ∧ ∀y1 . . . ∀yn

(
ψ → (x1, . . . , xn) � (y1, . . . , yn)

)

4.4. Obtaining Generalised Algorithms via Program Transformation 45

The existence of a lexicographic minimum (x1, . . . , xn) is expressed by the formula:

∃x1 · · · ∃xn (µ)

Some quantifier elimination tools can “solve” this problem by finding conditions under
which values for x1, . . . , xn exist such that µ becomes true, and calculating such values for
the variables x1, . . . , xn. That is, the answer given by the quantifier elimination procedure
is a set

{(γi, [x1 := ti,1, . . . , xn := ti,n]) | 1 ≤ i ≤ l} (4.1)

for some l ∈ N, where γi is a quantifier-free logical formula in the parameters and
ti,1, . . . , ti,n are expressions in the parameters describing the lexicographic minimum under
the condition γi. This procedure is called “quantifier elimination with answer.”

Example 4.16. Consider the system

q ≤ x2 ≤ p · x1

in the variables x1, x2 and the parameters p, q. The formula µ for this system is:

µ := (q ≤ x2 ∧ x2 ≤ p · x1) ∧
∀y1∀y2

(
q ≤ y2 ∧ y2 ≤ p · y1 → x1 < y1 ∨ (x1 = y1 ∧ x2 ≤ y2)

)

The Redlog’s answer to the question ∃x1∃x2 (µ) is:

{(p > 0, [x1 :=
q

p
, x2 := q])}

This means that, in the case of p > 0, there is a finite lexicographic minimum, namely
at (q

p
, q). Otherwise (i.e., for p ≤ 0) there is no finite lexicographic minimum, since the

polyhedron is either empty or unbounded.

4.4 Obtaining Generalised Algorithms via Program

Transformation

In this section, we explore ways to derive algorithms for the generalised polyhedron model
from existing algorithms for the classical polyhedron model. We give an informal descrip-
tion of program transformation rules which generalise an existing algorithm. Then, we
look at Fourier-Motzkin elimination and the Simplex algorithm. This is a summary of
our previous work [Grö03, GGL04]. Finally, we present a special case for Fourier-Motzkin
elimination in which decision tree simplification can be avoided.

4.4.1 New Algorithms by Program Transformation

Some algorithms (e.g., Fourier-Motzkin elimination and the Simplex algorithm) contain
case distinctions on the signs of intermediate values (computed from the input values, i.e.,
the coefficients of the input inequalities). The general structure of such a case distinction
is

if f ≥ 0 then

t+
else

t−

where f is an expression derived from the input values of the algorithm by arithmetic
operations. If the input inequalities contain non-linear parameters, f is not a rational

46 Chapter 4. Algorithms for Non-linearities

number but an expression in the parameters, e.g., f = f1

f2

for f1, f2 ∈ Q[p1, . . . , pm],

f2 6= 0. It is generally impossible to decide which sign f has (since it depends on the
values of the parameters, in general), so we modify the algorithm such that the above case
distinction in the algorithm’s code is replaced by a case distinction in the resulting data
structure. We rewrite the above code to

Cond (f ≥ 0) t+ t−

In addition to this transformation of case distinctions, we have to make some other
changes in the algorithm:

• We have to replace an expression e which constructs a final result by Leaf e.

• If some function f :: α→ β is applied to an expression e which changes its type
from α to Tree α during the generalisation, we have to map f over the whole tree
e, i.e., apply f to every leaf of e, by using some suitable combinator. The choice of
the combinator depends on whether f has to be generalised to have the new type
α→ Tree β, or not [Grö03].

We do not formally apply this informally defined set of transformation rules to existing
implementations of algorithms. Implementing the transformation system seems more dif-
ficult than implementing generalised versions of existing algorithms following the ideas of
this transformation system. In addition, it may be desirable to deviate from strictly ap-
plying the transformation rules. In Fourier-Motzkin elimination, for example, we optimise
the sets of lower and upper bounds by checking whether, for two bounds b1 and b2, one of
the relations b1 ≤ b2 or b1 ≥ b2 holds and remove the irrelevant bound. In the generalised
Fourier-Motzkin elimination, this may depend on parameters, so the transformation sys-
tem would generate a case distinction. But usually we do not want a case distinction in
this case since, if neither b1 ≤ b2 nor b1 ≥ b2 holds, we simply keep both bounds b1 and
b2 in the set of lower or upper bounds.

Tree Simplification

The main challenge arising from the transformation system just given is to simplify the
decision trees constructed by generalised algorithms. We use a top-down simplification
procedure. The simplification starts at the root node of the decision tree with a context
C which contains all the assumptions on the parameters, e.g., C = {p1 ≥ 0, p2 > 4}.
We illustrate the simplification procedure by looking at the node n =Cond (f ≥ 0) t+ t−.
When the simplifier reaches this node, it checks whether the context implies one of the
conditions f ≥ 0 or f < 0. If so, node n is replaced by the respective subtree of n and the
simplification continues on that subtree. If not, the node n is retained and the simplifier
is applied recursively to the two subtrees t+ and t−. For each of the subtrees, the context
is modified to contain the condition which makes the respective subtree applicable, for t+,
the new context is C ∪ {f ≥ 0} and for t− the simplification continues with C ∪ {f < 0}.
The full simplification procedure we use [Grö03] is more sophisticated and handles a richer
decision tree data type which can represent other case distinctions than the discussed Cond
constructor.

Checking whether context C implies a certain condition is done by deciding, for ex-
ample, the logical formula ∀p1 · · · ∀pk (

∧
C → f < 0).

4.4.2 Fourier-Motzkin Elimination and Simplex

Two algorithms which occur frequently in the context of the polyhedron model are Fourier-
Motzkin elimination and the Simplex algorithm. Both algorithms operate in the real
domain, i.e., they do not give any guarantees on the integrality of their results. In some
situations, e.g., when generating code using Fourier-Motzkin elimination or estimating
communication volumes, this is sufficient, because a slight “overestimate” of the domains

4.4. Obtaining Generalised Algorithms via Program Transformation 47

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3t=

i=
o= 0 1 2 0 1 2 0 1 2 0 1

Figure 4.1: A tiled iteration domain

in the reals does not hurt. In other situations, like dependence analyses, integrality is
required and we must use generalised algorithms which guarantee the integrality of the
solutions computed.

Let us present an introductory example of the need for parametric Fourier-Motzkin
elimination, which uses a parametric tiling, i.e., a tiling whose tile size is not fixed at
compile time. To describe such a parametric tiling (and other problems which require pa-
rameters as coefficients of variables), we have to use a generalised version of the polyhedron
model in which the coefficients of variables may depend on parameters.

A Parametric Tiling Example

As an example of a problem expressed in the generalised model, take a very simple one-
dimensional tiling. Consider the index set defined by the following inequality system in
the variable i for n ≥ 0:

0 ≤ i ≤ n (4.2)

We desire a tiling of this index set into tiles of size p (for p ≥ 1), i.e., p adjacent points of
the index set shall be contained in the same tile. This can be described by the following
inequality system:

0 ≤ o ≤ p− 1

i = p · t+ o
(4.3)

where variable t denotes the number of a tile and variable o is the offset of a point within
its tile (in this case, from the left end of the tile). Figure 4.1 illustrates the tiled index
set for n = 10 and p = 3. Obviously, p is a non-linear parameter in the inequality system
formed by systems (4.2) and (4.3) since it appears as coefficient of variable t. To obtain
an enumeration (using Fourier-Motzkin) of the tiled index space with a loop for the tile
numbers t, and inside that loop another loop for the coordinate i, we have to eliminate
the variables in the order o, i, t. We first solve i = p · t + o for o and eliminate o by
substituting into the two inequalities. Then, we solve the system for i:

0 ≤ i

p · t ≤ i

i ≤ n

i ≤ p · t+ p− 1

We eliminate i from this system by comparing lower bounds against upper bounds. This
yields (after dropping two superfluous inequalities to simplify the calculation):

1 − p ≤ p · t
p · t ≤ n

To solve the system for t, we have to divide by coefficient p. In general, this would require
a case distinction on the sign of p, since for p < 0 the relation symbols must be changed
when dividing by p, and if p = 0 we cannot solve for t at all. A näıve implementation

48 Chapter 4. Algorithms for Non-linearities

of Fourier-Motzkin would produce the following two-fold case distinction (since there are
two inequalities with p as coefficient of t):

•
p<0

oooooooooooooo

p=0
p>0

OOOOOOOOOOOOOO

•
p<0

��
��

��
�

p=0

p>0

77
77

77
7 •

p<0

��
��

��
�

p=0

p>0

77
77

77
7 •

p<0

��
��

��
�

p=0

p>0

77
77

77
7

An implementation of an algorithm for the generalised polyhedron model should avoid
such superfluous cases. Quantifier elimination allows to check whether ∀p (p ≥ 1 → p > 0)
holds. The formula p ≥ 1 is the precondition on p stated above and p > 0 is one of the
possible cases in the above case distinction. Here, quantifier elimination establishes that
the formula is true. Therefore, we arrive at the following projection of the original system
onto t and i:

1

p
− 1 ≤ t ≤ n

p

max(0, p · t) ≤ i ≤ min(n, p · t+ p− 1)

In our own previous work [Grö03], we have shown that Fourier-Motzkin elimination in
the reals can be performed in the presence of arbitrary many non-linear parameters, since
the number of case distinctions required is bounded by the number of inequalities and
variables, i.e., it does not depend on the values of the parameters. Quantifier elimination
in the reals is used to reduce the number of case distinctions. In Section 4.4.3, we illustrate
a special case, related to code generation for tiled program models, which does not require
quantifier elimination.

We now discuss generalising the Simplex algorithm for non-linear parameters. In
contrast to Fourier-Motzkin elimination, the Simplex algorithm does not guarantee, at
first, that the number of case distinctions made at maximum is independent of the values
of the coefficients. So, termination, i.e., the finiteness of the constructed decision tree, has
to be shown explicitly, as there are algorithms which produce infinite decision trees even
with the best possible top-down tree simplification.

Example 4.17 (An algorithm that cannot be generalised syntactically). Applying the
generalisation by program transformation to the following function

pos : Q → Q

pos(x) =

{
x if x ≥ 0

pos(x+ 1) if x < 0

yields the following generalised version:

posg : Q[p1, . . . , pk] → Tree Q[p1, . . . , pk]

posg(f) = Cond (f ≥ 0) (Leaf f)
(
posg(f + 1)

)

This generalised function produces, for some input f , an infinite decision tree:

4.4. Obtaining Generalised Algorithms via Program Transformation 49

f

≥0

}}
}}

}}
}}

}
<0

DD
DD

DD
DD

D

f f+1

≥0

zz
zz

zz
zz <0

DD
DD

DD
DD

f+1 f+2

≥0

||
||

||
||

|
<0

AA
AA

AA
AA

f+2 .. .
Unfortunately, the conditions on every finite prefix of the infinite branch are consistent.
So algorithm pos cannot be generalised by a purely syntactic program transformation,
even with tree simplification.

Termination (i.e., the construction of a finite decision tree) is guaranteed if every infi-
nite branch has a finite prefix which is inconsistent. This condition ensures that searching
top-down for contradictions and cutting off branches with infeasible conditions eliminates
the infinite branch. Note that it does not suffice to use, for any given values of the pa-
rameters, only a finite prefix of the tree. In posg, this is the case, yet the tree cannot be
made finite. The following lemma states that a generalised Simplex always terminates if
one adheres to a certain rule to choose the pivots.

Lemma 4.18. The standard Simplex algorithm together with Bland’s minimal index rule
[Bla77], which always chooses a pivot column with minimal index and a pivot row with
minimal index in the pivot column, produces only decision trees which can be reduced to
finite trees by a top-down decision tree simplification procedure which detects inconsistent
conditions on the constructed branches.

Proof. Let S be an inequality system of k inequalities in n variables. Each pivoting step
requires n + k case distinctions to find the pivoting column in the tableau, and at most
1
2 (k+ 1)k case distinctions to find the pivoting row. Therefore, a single pivoting step can
only give rise to a finite number of case distinctions (at most 1

2 (n + k)(k + 1)k). If the
context (the conditions in the decision tree above the current position) implies that all
the coefficients of the objective function are non-positive, the optimum has been found
and the tree construction stops. If, on the other hand, this is not the case, then there
exist parameter values which satisfy the context and do not make the coefficients of the
objective function all non-positive; the computation (and tree construction) continues for
that case with an appropriate pivoting step.

Assume that this procedure returns a decision tree which contains an infinite branch.
The branch must describe a computation with infinitely many pivoting operations. Since
Simplex can only make

(
n+k

k

)
pivoting steps before it finds the optimum, and non-

termination is only possible by cycling (c.f. [Chv83, Theorem 3.1]), the branch must
describe a sequence of pivoting steps which cycle. On the other hand, the selection of the
pivots follows Bland’s rule by premise, which guarantees that no cycling can occur. This
is a contradiction and, hence, the assumption that an infinite branch exists after top-down
simplifying the decision tree is false.

4.4.3 Fourier-Motzkin Special Case

Quantifier elimination can be the dominating factor of the overall computation time when
applying a generalised algorithm. Therefore, it is desirable to find special cases in which no
need for quantifier elimination arises. Although some elimination algorithms take advan-
tage of some properties of the formula, like the linearity of the formula in the variable to
be eliminated [Wei88], we are not aware of a procedure which exploits stronger structural
guarantees, like that the handled domain is a polyhedron.

50 Chapter 4. Algorithms for Non-linearities

We present here briefly one special case of Fourier-Motzkin elimination which can be
exploited when generating loop nests which describe the tiling of an index space. In the
case that the coefficient matrix of the system can be written as the product of a matrix
with constant entries and a (parametric) lower triangular matrix with non-negative entries
on the diagonal, case distinctions are never required.

Lemma 4.19. Let A · x + a ≥ 0 with A ∈ Q(p1, . . . , pk)m×n, a ∈ Q(p1, . . . , pk)n be an
inequality system in the variables x = (x1, . . . , xn) and the parameters p1, . . . , pk. When
the coefficient matrix A can be written as a product A = K · L, where K ∈ Qm×n is a
constant matrix and L ∈ Q(p1, . . . , pk)n×n is a lower triangular matrix (possibly containing
parameters) such that the assumptions on the parameters imply that the diagonal entries
of L are positive, then Fourier-Motzkin elimination of A · x + a ≥ 0 does not lead to any
case distinctions.

Proof. Let A,K,L,a be as stated. For the following, we need a convention how a result of
Fourier-Motzkin elimination is represented in matrix notation. Given E · x + e ≥ 0 with
x = (x1, . . . , xn), we assume that variables are eliminated in the order xn, . . . , x1 and the
result is F ·x+ f ≥ 0 such that every row (r1, . . . , rn) of F describes a bound for a variable
xj where j = (max i : 1 ≤ i ≤ n : ri 6= 0) and rj ∈ {−1, 1}.

We can now state a procedure that performs Fourier-Motzkin elimination on the system
A ·x+a ≥ 0 and yields a system T ·x+t ≥ 0 representing the result in the representation
just introduced:

(1) Perform Fourier-Motzkin elimination on K · y + a ≥ 0, yielding S · y + s ≥ 0 as the
result.

(2) For every inequality in S ·L·x+s ≥ 0 do: if xi is the leftmost variable with a non-zero
coefficient, divide the inequality by the entry at (i, i) in L (this is the absolute value
of the leftmost non-zero coefficient). This yields the equivalent system T ·x+ t ≥ 0.

We claim that T · x + t ≥ 0 is one of the possible results of Fourier-Motzkin elimination
on A ·x+ a ≥ 0. The correctness of this procedure follows from the fact that L is a lower
triangular matrix with positive entries. For every row r = (r1, . . . , rj , 0, . . . , 0) with rj 6= 0
of S, r ·L is a row (l1, . . . , ln) such that lj+1 = . . . = ln = 0 and lj is ± the diagonal entry
of L at (j, j) (because rj = ±1), so the entry corresponding to lj in T is ±1.

Let j ∈ {1, . . . , n} and w ∈ Rj such that (S ·L)j ·w+sj ≥ 0 holds. The matrix (S ·L)j

and the vector sj are obtained from S · L and s by removing all rows and columns from
the system (S · L) · x + s ≥ 0 that describe bounds on xi with i > j. Then, z := Lj · w
(with Lj being the submatrix of L consisting of the first j rows and columns) satisfies
Sj · z + sj ≥ 0 because L is lower triangular with positive entries on the diagonal. Hence,
there exists y ∈ Rn such that S · y + s ≥ 0 and y|j = z since S is obtained from K by
Fourier-Motzkin elimination. Because L is non-singular and lower triangular, this implies
that x ∈ Rn exists such that (S · L) · x + s ≥ 0 and x|j = w.

This proves that the system (S ·L) · x + s ≥ 0 contains descriptions of the projections
to lower dimensionality (because for every point w that satisfies the constraints in “outer”
variables, there exists a point x with full dimensionality which satisfies all constraints).
In addition, (S ·L) · x + s ≥ 0 (and, hence, T · x + s ≥ 0) is equivalent to A · x + a ≥ 0 by
construction.

The system T · x + s ≥ 0 can be computed without case distinctions because case
distinctions are necessary neither in (1), since K is a constant matrix, nor in (2), since all
the division operations are by positive entries of L.

The challenge Lemma 4.19 poses is how to find suitable K, L for a given A, if such K
and L exist at all. We do not solve this problem here, but note that one case (constants
and products of parameters as coefficients) can be handled easily. We make use of the
following corollary, which states this case formally, when generating tiled code for a single
statement (because this can be done by Fourier-Motzkin elimination, cf. Section 5.3).

4.4. Obtaining Generalised Algorithms via Program Transformation 51

Corollary 4.20. If p1, . . . , pk > 0 is assumed and A is of the form

A =
(
v1q1 · · · vnqn

)

where v1, . . . ,vn ∈ Qm, qi =
∏k

j=1 p
ei,j

j for 1 ≤ i ≤ n and ei,j ∈ Z for 0 ≤ i ≤ n,
1 ≤ j ≤ k, then Fourier-Motzkin elimination can be applied to A · x + a ≥ 0 without
making case distinctions.

Using the following matrices K and L, the corollary follows from Lemma 4.19:

K =
(
v1 · · · vn

)
, L =





q1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 qn





K is a constant matrix, L is a lower triangular matrix with positive entries on the diagonal
since p1, . . . , pk > 0 implies q1, . . . , qn > 0, and A = K · L.

52 Chapter 4. Algorithms for Non-linearities

Chapter 5

Application of Algorithms for

Non-linearities to the

Polyhedron Model

5.1 Dependence Analysis

As a first algorithm which we generalise to non-linear input, let us look at data dependence
analysis according to Banerjee [Ban93]. We first present the basics of Banerjee’s algorithm
before we describe our generalisation (using the algorithms presented in Chapter 4) and,
for comparison, quantifier elimination with answer in the integers.

Banerjee’s Algorithm

For two accesses in a loop program

S1 : . . .A[f(i1)] . . .
S2 : . . .A[g(i2)] . . .

a necessary condition for the existence of a dependence between the operations 〈i1, S1〉
and 〈i2, S2〉 (due to the accesses to A) is that the equality system

f(i1) = g(i2)

has a solution in Z (cf. Section 2.2.1). In Banerjee’s terminology, this is called the conflict
equality system. In the example program in Figure 5.1, the equality describing the conflict
between 〈(i1, j1), S1〉 and 〈(i2, j2), S2〉 is

p · i1 + 2 · j1 = p · i2 + 2 · j2

Note that both operations have different index vectors ((i1, j1) and (i2, j2), respectively)
since the accesses to the same memory cell may happen in different iterations of the loops.
The conflict equality system describes the set of all possible shared memory accesses. But
not all of the solutions correspond to operations in the program. The index vectors have

for (i=0; i<=m; i++)

for (j=0; j<=m; j++)

S: A[p*i+2*j] = i+j;

Figure 5.1: Example loop program with array access in statement S

53

54 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

to be restricted to the iteration space of the respective statements, i.e., in the example,
the conditions 0 ≤ i1, j1, i2, j2 ≤ m (derived from the loop bounds) have to hold. These
restrictions are called the existence inequalities.

A third group of restrictions is the set of equalities and inequalities describing the
order of the execution. To express that 〈(i1, j1), S〉 is executed before 〈(i2, j2), S〉, we
have to add the constraint i2 > i1 ∨ (i2 = i1 ∧ j2 ≥ j1), i.e., the index vectors are ordered
lexicographically.

Banerjee’s data dependence analysis takes a two phase approach:

1. In the first phase, the conflict equality system is solved in Z.

2. In the second phase, the solution of the conflict equality system is combined with
the existence inequalities and the order constraints. Fourier-Motzkin elimination (in
the reals) is used to project the system to the index variables. This elimination has
to be performed for every disjunct in the order constraint, since Fourier-Motzkin
cannot handle disjunctions (only conjunctions) of constraints.

Due to the use of Fourier-Motzkin elimination, Banerjee’s analysis is not exact in the
general case: the feasibility of the existence inequalities and the order constraints in the
integers (to be precise: in the lattice described by the conflict equality system) is not
tested. For practical program analysis, this is a minor problem since it occurs only for
very “narrow” iteration spaces. Hence, solving the conflict equality system exactly is the
central part of the analysis. Even the infeasibility of this equality system is a very valuable
information: no dependences can exist and there is, for example, a maximal degree of
parallelism possible. Solving the conflict equalities in the reals (using Groebner bases
etc.) is not a viable option, because systems infeasible in the integers may be feasible in
the reals and far too many solutions (all the non-integral solutions) would not correspond
to operations in the program and describe false dependences which limit the amount of
potential parallelism.

5.1.1 Generalisation to One Non-linear Parameter

Generalising Banerjee’s analysis to one non-linear parameter is straight forward. The
first phase, solving the conflict equality system, can be performed using the generalised
solution procedure for linear Diophantine equality systems, which we have presented in
Section 4.2. For the second phase, we have our generalised Fourier-Motzkin procedure of
Section 4.3 which can handle one or several non-linear parameters.

5.1.2 Using Weak Quantifier Elimination in the Integers

Our technique for computing the solutions of linear equality systems with one non-linear
parameter can be viewed as a special case of weak quantifier elimination in the integers.
Therefore, one can also try to compute dependence information by expressing the de-
pendence relation as a formula. For two given array accesses A[f(i)] in a statement S
and A[f(j)] in a statement T , there exists a dependence from 〈i, S〉 to 〈j, T 〉 (assuming S
precedes T textually) if, and only if, the formula ∃i ∃j(δ) holds, where

δ =
(
i ∈ DS ∧ j ∈ DT ∧ i � j ∧ f(i) = g(j)

)

holds, whereDS andDT are the iteration domains of the statements S and T , respectively.
If S does not textually precede T , one has to replace i � j by i ≺ j. Eliminating ∃i ∃j(δ)
yields the condition (in the parameters) for which dependences exist. To yield a description
of the dependences itself, we have to perform quantifier elimination with answer, but we
have to ask a question which has only one answer (or none if it cannot be solved) as
quantifier elimination with answer gives us only one example of all possible answers. For

5.1. Dependence Analysis 55

for (i=0; i<=m; i++)

for (j=0; j<=m; j++)

S: A[p*i+2*j] = i+j;

(a) dependences for p = 3 (b) dependences for p = 4

Figure 5.2: Example program and its data dependences for m = 5

dependences, it is most useful to ask for the lexicographically greatest (i.e., in the execution
latest) source of a given target. To obtain this information, we eliminate the formula

∃i
(
δ ∧ ∀i′

(
δ[i := i′] → i′ � i

))

which expresses that i is the lexicographically greatest vector that satisfies δ. Quantifier
elimination with answer yields a case distinction with solutions for i in dependence of j

and the parameters.

5.1.3 Example

We have implemented our procedure for solving linear Diophantine equality systems in
one non-linear parameter in the LooPo loop restructuring system [GL97]. Let us now
analyse the data dependences for the example program from Figure 5.1.

The program and its dependences for p = 3 and p = 4 are depicted in Figure 5.2. This
example is a prototype of program codes that use strided access to arrays. For example,
to enable the use of a row, a column, or a diagonal of a matrix as an argument to a
function which expects a vector, some linear algebra libraries take, for every vector V , an
additional stride argument p. By accessing every pth element, i.e., like in V [p · i], matrix
rows, columns, and diagonals can be selected by using the respective distance between
neighbouring elements as stride (e.g., 1, the width of the matrix, and the width of the
matrix plus 1, respectively, for arrays stored in row-major order).

To establish which iterations (i1, j1) and (i2, j2) in the example program write to the
same memory location, we have to consider the conflict equality

p · i1 + 2j1 = p · i2 + 2j2.

To find the integral solutions for (i1, j1, i2, j2) in dependence of p, we apply the algorithm
given in Section 4.2, i.e., we replace p by X and solve the system (i1 j1 i2 j2) ·A = 0 with

A =





X
2

−X
−2



 .

56 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

The Echelon reduction on A starts by computing the pointwise GCD of f = X and
g = 2. This computation, which yields [2, 1], and the computation of a suitable matrix
U have been presented in Section 4.2.7 already. The third and fourth row do not add
any further constraints on the GCD, so the GCD of all four rows is [2, 1] and we omit
these computations. The overall result are matrices S and U such that S = U · A. Our
implementation computes the following values for S and U :

S =





[2, 1]
0
0
0



 , U =





0 0 [0,−1] [0, 1
2]X + [−1,− 1

2]
[1,−1] 0 [0,−1]X [0, 1

2]X2 + [12 ,− 1
2]X

0 [1,−1] [0,−2] [0, 1]X + [1,−1]
0 0 [1, 2] [− 1

2 ,−1]X





Since the pivot element [2, 1] of S is not a zero-divisor in EQP , S is in pointwise Echelon
form, i.e., S(p) is Echelon for all but finitely many p ∈ Z. Since the quasi-polynomial
[2, 1] has no zeros at all, S(p) is Echelon for all p ∈ Z. Performing forward substitution in
(t1 t2 t3 t4) ·S = 0 yields t1 = 0, t2, t3, t4 ∈ Z; in this example, there is no case distinction
on p necessary to represent the solutions of t. The solutions for i1, j1, i2, j2 are then given
by t · U = (0 t2 t3 t4) · U and this yields for p ≡2 0:

i1 = t2

j1 = t3

i2 = t4

j2 = 1
2p · t2 + t3 − 1

2p · t4

(5.1)

and for p ≡2 1:

i1 = −t2
j1 = −t3
i2 = −p · t2 − 2 · t3 + 2 · t4
j2 = (1

2p
2 − 1

2p) · t2 + (p− 1) · t3 − p · t4

(5.2)

These solutions to the conflict equality system reveal the difference in the dependence
structure of the program for even versus odd p when we take the order of execution
into account (cf. Figure 5.2). For 〈(i1, j1), S〉 to precede 〈(i2, j2), S〉, either i1 < i2 or
i1 = i2 ∧ j1 < j2 must hold. In both cases for p, i1 = i2 implies j1 = j2 and, hence,
there is no dependence with i1 = i2. If we assume i1 < i2, it is easy to see that, for
p ≡2 0, the minimal i2 which solves the system is i2 = i1 + 1, which implies j2 = j1 − 1

2p.
On the other hand, for p ≡2 1, i2 − i1 = (1 − p)t2 − 2t3 + 2t4 must be even since p is
odd; therefore, the minimal solution for i2 is i2 = i1 + 2 and j2 = j1 − p. From this, the
conditions on m for dependences to exist can be computed using the existence inequalities
0 ≤ i1, j1, i2, j2 ≤ m. This completes the dependence analysis of the program (the set of
all dependences is the transitive closure of the given dependences):

〈(i, j), S〉 → 〈(i+ 1, j − p
2), S〉 if

{
p ≡2 0,m ≥ 1,−2m ≤ p ≤ 2m, 0 ≤ i ≤ m−1,

max(0, p
2) ≤ j ≤ min(m,m+ p

2)

〈(i, j), S〉 → 〈(i+ 2, j − p), S〉 if

{
p ≡2 1,m ≥ 2,−m ≤ p ≤ m, 0 ≤ i ≤ m−2,

max(0, p) ≤ j ≤ min(m,m+p)

Using Redlog

As an alternative to our generalisation of the classical Banerjee analysis, we have also
tried to compute the dependences using weak quantifier elimination in the integers. The
existence, conflict and ordering restrictions can be expressed by the formula δ:

δ =
(
0 ≤ i1, j1, i2, j2 ≤ m ∧ p · i1 + 2j1 = p · i2 + 2j2 ∧

(
i1 < i2 ∨ (i1 = i2 ∧ j1 < j2)

))

5.2. Computing Schedules 57

for (i=0; i<=m; i++)

S: A[i+n] = f(A[i]);
(a) Original program

for (i=0; i<=⌊m
n
⌋; i++)

parfor (j=0; j<=min(n-1,m-n*i); j++)

S: A[n*i+j+n] = f(A[n*i+j]);
(b) Parallel version after modulo transformation

Figure 5.3: Example program for non-linear schedule

We compute first the quantifier-free equivalent µ of

∀i3∀j3
(
δ[i1 := i3, j1 := j3] → i3 < i1 ∨ (i3 = i1 ∧ j3 ≤ j1)

)
,

which expresses that (i1, j1) is the lexicographically maximal source of the dependence.
Then, we ask for solutions of i1, j1 in

∃i1∃j1(δ ∧ µ)

by quantifier elimination with answer. The computation takes about 55 seconds on an
Intel Core2 6600 processor with 2.4 GHz with Redlog (using one core). The result is a
case distinction with solutions for each case that is about 200,000 lines long (in Reduce’s
standard output format) and contains many bounded quantifiers and congruences, some
of them modulo the parameter. All in all, this result seems rather unsuitable for further
processing.

5.2 Computing Schedules

As a simple example of finding a non-linear schedule which is superior to linear schedules,
let us look at the code shown in Figure 5.3(a). Obviously, n successive iterations of the
loop on i can be executed in parallel as the only dependence is 〈i, S〉 → 〈i+n, S〉. But this
cannot be expressed by a linear schedule of the form t(i) = a · i+ b for a, b ∈ Q. The only
way in which a linear schedule can express this is by applying a modulo transformation
first, i.e., transforming to a two-dimensional iteration domain where the inner loop (on a
new loop variable j) enumerates the n successive operations (except, possibly, in the last
iteration of the loop on i). But this transformation introduces non-linearities in the loop
bounds: 0

n
and m

n
in the loop on i and n·i in the loop on j and, additionally, n·i in the body

of the loop (cf. Figure 5.3(b)). So this transformation is outside the classical polyhedron
model and generates non-linearities to be handled in the code generation phase.

We present two methods to compute non-linear schedules. The first is a direct gener-
alisation of the classical Feautrier method, the second an application of quantifier elimi-
nation with answer. A resulting parallel version of the code, which is similar to the result
of modulo transformation, is given in Section 5.2.3.

5.2.1 Schedule by Simplex

Minimising a target function over a polyhedron or computing the lexicographic minimum
of a polyhedron has been used as the foundation for computing schedules [Fea92a]. With
a generalised Simplex available, we can extend the basic algorithms to the case with non-
linear parameters. We only discuss one-dimensional scheduling here; the extension to
multidimensional schedules is analogous to the classical case [Fea92b]. A prototype of a
one-dimensional schedule for a statement S is the function

θS(i) = aS · i + bS

where aS ∈ Q(p1, . . . , pk)n, bS ∈ Q(p1, . . . , pk) (n, k ∈ N) are the coefficients of the
schedule to be determined in the parameters p = (p1, . . . , pk) and i ∈ Zn denotes an

58 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

iteration vector. A usual requirement on the schedule is that it never assigns negative
execution times, i.e.,

θS(i) ≥ 0 ⇔ aSi + bS ≥ 0 for i ∈ DS(p)

where DS(p) is the (parametric) iteration domain of S. A schedule is valid w.r.t. to a
dependence between statements S and T

〈si + s0, S〉 −→ 〈tj + t0, T 〉 for (i, j) ∈ D(p)

where s ∈ Q(p)n, t ∈ Q(p)m, s0, t0 ∈ Q(p) and D(p) ⊆ Zn+m (m ∈ N), if

(
∀i, j : (i, j) ∈ D(p) : θT (tj + t0) − θS(si + s0) ≥ 1

)
.

This condition together with the non-negativity constraint for the schedules yields the
system to solve:

aT (tj + t0) + bT − aS(si + s0) − bS − 1 ≥ 0 ∀(i, j) ∈ D(p)

aSi + bS ≥ 0 ∀i ∈ DS(p)

aT i + bT ≥ 0 ∀i ∈ DT (p)

This is not a linear system in the schedule coefficients aT and aS as they occur in products
with the loop indices i and j. But we can apply Farkas’ lemma as is done in the linearly
parametric case. By equating coefficients, the system is transformed into one which is
linear in aS and aT and can be solved for these coefficients.

If the dependence is, in fact, a uniform dependence (i.e., the distance between the
source and the target of the dependence is constant), the computation is simplified since
the ordering condition does not give rise to products between unknowns (since aT = aS)
as illustrated by example in Figure 5.3(a). The dependences are given by i → i + n for
0 ≤ i ≤ m− n, i.e., s = t = 1, s0 = 0, t0 = n. Since there is only one statement, we have
S = T and, hence, only one schedule prototype as aT = aS , bT = bS :

θS(i) = aS · i+ bS

This yields the following ordering condition according to the above formula:

aT (ti+ t0) + bT − aS(si+ s0) − bS − 1 ≥ 0

⇔ aS · n− 1 ≥ 0

From this, the minimal solution aS = 1
n

is obvious. For examples with more than one
loop index, we still have to perform the full procedure as for two variables, there is no
guarantee that the solutions for aS are bounded. Therefore, the non-negativity of the
schedule can easily be violated.

Example 5.1 (Example 2.2 in [AZ00]). Let us consider the following iteration domain
D:

2 ≤ x ≤ n

4 ≤ y ≤ n

n− x ≤ y

and dependences:

(x− 1, x) → (x, y)

(x, y − 1) → (x, y)

5.2. Computing Schedules 59

To find a legal schedule θ(x, y) = ax+ by + c with a, b, c ∈ Q(n), the following conditions
must hold:

(
∀x, y : (x, y) ∈ D : θ(x, y) ≥ 0

)
(
∀x, y : (x, y) ∈ D ∧ x ≥ 3 : θ(x, y) − θ(x− 1, x) ≥ 1

)
(
∀x, y : (x, y) ∈ D ∧ y ≥ 5 : θ(x, y) − θ(x, y − 1) ≥ 1

)

The additional restrictions y ≥ 5 and x ≥ 3 constrain the conditions to those (x, y) where
the respective dependence exists. Substituting θ(x, y) by its definition yields:

(
∀x, y : (x, y) ∈ D : ax+ by + c ≥ 0

)
(
∀x, y : (x, y) ∈ D ∧ x ≥ 3 : −bx+ by + a− 1 ≥ 0

)
(
∀x, y : (x, y) ∈ D ∧ y ≥ 5 : b− 1 ≥ 0

)

The second condition (b − 1 ≥ 0) needs no further processing (it does not mention the
iteration set variables because it is derived from a uniform dependence). The other two
conditions are transformed using Farkas’ Lemma:

ax+ by + c = δ1(x− 2) + δ2(n− x) + δ3(y − 4) + δ4(x+ y − n) + δ5(n− y) + δ0

−bx+ by + a− 1 = λ1(x− 3) + λ2(n− x) + λ3(y − 4) + λ4(x+ y − n) + λ5(n− y) + λ0

δ0, . . . , δ5, λ0, . . . , λ5 ≥ 0

b− 1 ≥ 0

The δi and λi are multiplied with the affine expressions defining the respective domain.
By equating coefficients in the equalities, we obtain the final system:

a = δ1 − δ2 + δ4

b = δ3 + δ4 − δ5

c = − 2δ1 + nδ2 − 4δ3 − nδ4 + nδ5 + δ0

−b = λ1 − λ2 + λ4

b = λ3 + λ4 − λ5

a− 1 = − 3λ1 + nλ2 − 4λ3 − nλ4 + nλ5 + λ0

δ0, . . . , δ5, λ0, . . . , λ5 ≥ 0

b− 1 ≥ 0

Our generalised Simplex implementation computes a = n − 3, b = 1, c = −n as the
lexicographic minimum for (a, b, c) in about 4.8 seconds on a 2.4 GHz Intel Core2 6600
processor. The schedule obtained θ(x, y) = (n − 3) · x + y − n is in accordance with the
optimal schedule linear in x and y computed by Achtziger et al. [AZ00].

5.2.2 Schedule by Quantifier Elimination

The existence of a schedule can be expressed as a logical formula; hence, one can try
to use quantifier elimination to find the coefficients of a suitable schedule. A schedule
θ(i) = a · i + b is valid if it respects the dependences. For the example in Figure 5.3(a),
this is expressed by the formulas ν(t) and τ(t):

ν(θ) = ∀i
(
0 ≤ i ≤ m→ θ(i) ≥ 0

)
,

τ(θ) = ∀i1, i2
(
0 ≤ i1, i2 ≤ m ∧ i1 + n = i2 → θ(i1) ≥ 0 ∧ θ(i1) + 1 ≤ θ(i2)

)
.

ν(θ) requires θ(i) ≥ 0 to allow only schedules with non-negative time steps. To find a
schedule, we could try to ask for solutions of a and b in ∃a∃b

(
ν(θ)∧ τ(θ)

)
. Unfortunately,

this allows an answer (and, in fact, Redlog delivers this answer) of
(
true, [a := +∞1, b := +∞2]

)

60 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

(under the assumption that n > 0), because the fact that sufficiently large a and b exist
to make the formula true (expressed by a = +∞1 and b = +∞2) is a proof of its validity.
We must further constrain the possible choices for the coefficients of the schedule. What
can be expressed easily is the requirement for the schedule to assign the least execution
time among all schedules of the same form, i.e., for every other schedule θ′(i) of the form
a′i+ b′, θ′(i) ≥ θ(i), for all i from the iteration domain, holds:

σ(θ) := ν(θ) ∧ τ(θ)∧
∀a′, b′

(
ν(a′i+ b′) ∧ τ(a′i+ b′) → ∀i(0 ≤ i ≤ m→ θ(i) ≤ a′i+ b′)

)
.

Asking Redlog for a and b in ∃a∃b
(
σ(a · i+ b)

)
under the assumption m,n > 0 yields1

{(
m < n, [a := 0, b := 0]

)
,
(
m ≥ n, [a :=

1

n
, b := 0]

)}

after about 2.7 seconds of computation on a 2.4 GHz Intel Core2 6600 processor. By
flooring the resulting rational schedule, we obtain the desired integral schedule θ(i) = ⌊ i

n
⌋

for m ≥ n. It the case m < n, the solution is θ(i) = 0, since all iterations of the loop
on i can be executed in parallel. We also tried Example 2.2 from [AZ00], for which we
computed a linear schedule in Example 5.1 using our generalised Simplex, but we did not
succeed in getting an answer from Redlog in a reasonable time (several hours).

5.2.3 Code Generation Considerations

A non-linear, fractional, floored schedule like θ(i) = ⌊ i
n
⌋ raises the question how we can

generate code which executes according to such a schedule. In Section 5.5, we present a
procedure to generate code for iteration sets which are bounded by arbitrary polynomials.
It is possible to express the given schedule by polynomial bounds. Let t be the time coor-
dinate, i.e., the loop iterator to enumerate θ(i). Then, we can write t = θ(i) equivalently
using polynomials only by the system

n · t+ r = i

0 ≤ r ≤ n− 1

which exploits the fact that i mod n must be between 0 and n − 1 (bounds included),
assuming n ≥ 1. Together with the iteration set bounds of the original program

0 ≤ i ≤ m

we can generate code and obtain

for (t=⌈ 1−n
n

⌉; t<=⌊m
n
⌋; i++) {

parfor (i=max(n*t,0); i<=min(n*t+n-1,m); i++) {

r = i-n*t;

A[i+n] = f(A[i]);

}

}

as parallel code (cf. Section 5.5.9).

5.3 Tiling

The main objective in tiling is to coarsen the grain of the execution, i.e., to group several
operations together and treat them as a unit of work. In automatic parallelism, tiling is

1Actually, Redlog computes the condition m · n > 0 ∧ m − n ≥ 0 for the second case; obviously,
Redlog’s simplifier does not derive that m · n is positive from the context m, n > 0.

5.3. Tiling 61

applied to reduce the number of communications, i.e., data exchange and synchronisation
is only performed once per tile instead of after every operation or time step, respectively.
In this section, we show that the bounds of tiles need not be parallel to bounds of the
index space and that the code generated by tiling, although it has complex loop bounds,
can be executed efficiently because, with optimising compilers, the innermost loop will
still consist of only a few instructions. In addition, tiling with parametric tile sizes (which
leads to non-linearities) generates only slightly more complicated code, and the execution
times and cache behaviour are almost indistinguishable from code for fixed tilings.

5.3.1 Tiling with Parallelepiped Tiles

Tiling is simplest when opposite bounds of the index space are geometrically parallel. As
an example, let us consider a popular iterative matrix algorithm from scientific computing:
one-dimensional successive over-relaxation (1d-SOR). Here is the sequential loop nest:

for (k=1; k<=m; k++)

for (i=2; i<=n-1; i++)

A[i] = (A[i-1] + A[i+1]) * 0.5;

Parameter n refers to the size of the array being processed, and m is the number of
sweeps across the array. A valid space-time mapping has to satisfy the criterion that, in the
transformed program, the dependences must point forward in time (i.e., every computation
depends only on computations in the past). Additionally, since we apply tiling after space-
time mapping, we must ensure that it does not generate cyclic communication dependences
(which can happen when several communications are being aggregated); this is achieved
by requiring that communications are directed to processors with the same or a higher
than the sender’s number [GFG05].

Our polyhedral loop paralleliser LooPo performs an optimising search over affine space-
time mappings, i.e., it chooses an affine time coordinate θ(k, i) and an affine space coor-
dinate π(k, i) which satisfy the given constraints, minimise the number of required time
steps and do not waste virtual processors. The details of the theory can be found else-
where [Gri04]. In the case of the SOR example, LooPo chooses the space-time mapping
which maps loop step (k, i) to the execution time θ(k, i) = 2 · k + i− 4 and to the virtual
processor π(k, i) = k + i − 3. Figure 5.4 shows the index space of SOR before and after
space-time mapping.

Next, the space-time mapped model is being tiled. A tiling leads to a doubling of
the number of dimensions. Each index point is described by a coordinate in the space
of tiles, and an offset within the tile. The usual choice of tile shape in the space-time
mapping community is rectangular since, intuitively, time and space are orthogonal after
space-time mapping. But, since the bounds of the index space are geometrically parallel,
an obvious choice of tile shape is a parallelogram which has two bounds parallel to the
bounds of the index space. Figure 5.5 shows a part of the space-time mapped index space
with rectangular and parallelogram tiles.

Care has to be taken as to which tiles can be executed in parallel. Before tiling, all index
points (k, i) with the same time coordinate θ(k, i) are executed in parallel. Afterwards,
tiles with the same time coordinate in the tile space must not be executed in parallel, since
the tiles span, in general, more than one time coordinate of the index space and, hence,
dependences between tiles can exist. A so-called skewing [GFL04] has to be performed and
tiles whose time coordinate tT and processor coordinate pT have a common sum tT +pT

can be executed in parallel. This applies equally to rectangular and parallelogram tiles.
The result for rectangular tiles is depicted in Figure 5.6.

Due to the skewing, the number of tiles which can be executed in parallel is not
determined by the height of the tiles, but by their width (in the case of the parallelogram
tiles) or their width and height together (in the case of rectangular tiles). To achieve a
balanced load of the processors, the size of the tiles depends on the number NC of available

62 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

(a) Before space-time mapping (b) After space-time mapping

Figure 5.4: 1d-SOR: Index space with dependences

Figure 5.5: 1d-SOR: Space-time mapped index space with rectangular and parallelogram
tiles

Figure 5.6: Skewing: Tiles which can be executed in parallel (highlighted) in successive
time steps

5.3. Tiling 63

Figure 5.7: Backward substitution: Index space after space-time mapping with rectangular
tiles

cores. The relations of height and width are given by

width =
m

f · NC
, height ≥ 1 (parallelograms)

width =
m

f · NC
− height, 1 ≤ height <

m

f · NC
(rectangles)

where f ≥ 1 is an arbitrary integral factor denoting the number of tiles to be assigned to
one core. It may seem that a rectangular tiling cannot lead to a balanced load because
there are incomplete tiles along the borders of the index space. But, by closer inspection
(cf. Figure 5.6), it becomes clear that, with the given choice of the tile width and height,
there are either NC complete tiles in parallel, or NC + 1 tiles of which the first and the
last (the tiles crossing the borders of the index space) are partially empty and which
together form one complete tile (regarding the number of computations). Therefore, if we
distribute one such diagonal of tiles cyclically across the cores, each core will execute one
complete tile (in terms of the number of operations performed).

5.3.2 Intermezzo: Triangular Index Space

A slightly more complicated case than an index space with parallel bounds is an index
space of triangular shape. An example is the backward substitution phase of Gaussian
elimination:

for (i=1; i<=n-1; i++)

for (k=0; k<=i-1; k++)

B[i] = B[i] - A[i][k]*B[k];

The index space after space-time mapping with θ(i, k) = k and π(i, k) = i− 1 is shown in
Figure 5.7. To achieve load balancing, one would have to choose “growing” tiles, but this
is illegal because it would generate tiles with cyclic dependences. Due to the dependences,
which are of the form (t, p) 7→ (t + 1, p + a) for a ≥ 0, only a rectangular tiling2 is legal
and easy to describe.

A rectangular tiling poses two problems. Only on one border, the covering tiles are
incomplete, such that they cannot match with another tile to form a complete tile, and
the number of parallel tiles is not constant in time. The space-time mapping suggests that

2Or another parallelepiped tiling with an angle of at least π

2
between the spanning vectors, but this

does not improve the situation.

64 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

Figure 5.8: Cyclic parallel execution: Highlighted tiles are executed in parallel, bordered
tiles are completed in preceding time steps.

the program can start with a high degree of parallelism which shrinks progressively. But,
due to the skewing required by tiling, the parallelism has a growing phase first, followed
by the shrinking phase. To address the problem of incomplete tiles, we would have to use
a tiling with two different tile shapes, namely two triangles, one with the same orientation
as the index space and the other such that both triangles together form a rectangle. With
suitably chosen tile sizes, the first triangles will line up with the diagonal border of the
index space and no point inside the tiles will be wasted. This approach leads to complex
target code, and we have not pursued it any further.

To handle the varying number of parallel tiles, we suggest to use an inter-diagonal
mapping of tiles to cores. Figures 5.8 shows the aspired distribution of tiles for a part of
the execution. Executing tiles on different diagonals in parallel, as shown in the figure,
is legal for diagonals with at least NC tiles, since there are no data dependences between
the tiles executed in parallel. In the beginning and the end of the execution, the number
of parallel tiles is less than NC and we cannot utilise all cores, but the biggest part of the
index space (provided that NC is small compared to the number of tiles) can be executed
using all cores.

A simple model for estimating the performance of this inter-diagonal tiling and com-
paring it with the standard execution, is to count the number of index points within each
tile (as an estimate for its execution time) and computing the execution time of the whole
program from this, taking delays imposed by synchronisation into account. This simple
model predicts the following speed-ups:

NC 2 4 8
speed-up standard 1.83 3.08 4.62

speed-up inter-diagonal 1.83 3.41 5.22

Due to the incomplete tiles along one of the borders and the smaller degree of parallelism in
the beginning and the end, the expected speed-ups are sub-linear and, for two cores, almost
identical. Only with four or more cores a noticeable difference is predicted. Currently,
there is no tool support to generate code for the inter-diagonal time mapping. We have
performed a few experiments with hand-written code; unfortunately, it turns out that
managing the inter-diagonal mapping requires more overhead to manage the execution of
the tiles and, hence, the overall execution time is almost the same as for the standard
time mapping. At the moment, we are not pursuing this approach any further.

5.3.3 Computing the Tiling

To describe the tiling of an index space, we need the following information [AI91]:

• an index space described by an inequality system S · (x1 · · ·xn)T + s ≥ 0 in the
variables x1, . . . , xn,

• a tile shape described by an inequality system T · (o1 · · · on)T + t ≥ 0 in the variables
o1, . . . , on, and

• vectors l1, . . . , ln which describe the translation between the base tile and other tiles;
the matrix A = (l1 · · · ln) is called the lattice.

5.3. Tiling 65

The tiling is described by the following system:

S ·




x1

...
xn



 + s ≥ 0, T ·




o1
...

on



 + t ≥ 0,




x1

...
xn



 = A ·




t1
...
tn



 +




o1
...

on



 (5.3)

where (t1, . . . , tn) are the coordinates of a tile in the tile space. In the classical polyhedron
model, the lattice cannot contain parameters, since these would appear non-linearly in
system (5.3). In our generalised model, this is no problem. To obtain a tiling whose tiles
are parallelepipeds (i.e., opposite sides are parallel) whose size depends on parameters, we
choose linearly independent vectors v1, . . . , vn ∈ Qn which span the (unscaled) tile and
use a lattice defined by

A = K ·




p1

...
pn



 (5.4)

where K = (v1 · · · vn). The tile shape is defined by:

K−1 ·




o1
...

on



 ≥ 0, −K−1 ·




o1
...

on



 +K−1




p1 − 1

...
pn − 1



 ≥ 0 (5.5)

Looking at the definition of A in equation (5.4), it is easy to see that A satisfies the
preconditions of Lemma 4.19. From that, one can deduce that tiling with parallelepiped
tiles never leads to case distinctions and, hence, the loops generated for the parametrically
tiled iteration domain (by applying our generalised Fourier-Motzkin elimination) will not
be much more complicated than the code generated for a fixed tiling. Of course, the
parametric tiling gives rise to a few more bounds; see the next section for a comparison.

5.3.4 Generated Code

The program transformation and code generation are fully automatic. We use the tools
of LooPo [GL97] for dependence analysis, computing and applying space-time mappings,
and tiling in the model. CLooG [Bas04] generates sequential loops in the fixed tiling case
and our generalised Fourier-Motzkin is used for the parametric tiling. A postprocessing
phase (developed by LooPo team members) annotates the generated loops with OpenMP
pragmas and inserts the transformed loop bodies into the rest of the code. The only
manual part in the whole process is to select spanning vectors of the tiles, by which the
tile shape and (in the case of a fixed tiling) size are determined.

For the SOR example, the generated code for a 2250×1500 parallelogram tiling is
shown in Figure 5.9, and Figure 5.10 shows the code for a parametric w × h tiling with
parameters w and h. Note that there are four for loops: the outer two enumerating the
tiles, the inner two enumerating the points within the respective tile. The second loop is
marked omp parallel for, since it enumerates the parallel tiles. The body of the loop
has become more complex compared to the original program, because the original loop
indices i and k, in which the statement is expressed, have to be reconstructed from the
new indices. Note that the parametric version has some more loop bounds than the fixed
tiling version.

A fast execution of the program may seem unlikely due to the complex bounds of the
loops and the necessary reconstruction of the original indices in the body. But it turns
out that i is an induction variable even after the transformation and, hence, the addresses
of A[i − 1], A[i], A[i + 1] are computed by simple additions. GCC 4.2.1 generates the
following x86 assembly code for the body of the innermost loop (in both versions):

66 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

#define S1(i, k) { A[i]=(A[i-1]+A[i+1])*0.5; }

int upperBound1 = floord(5*m+3*n-14,1500);
for (glT1=-1; glT1 <= upperBound1; glT1++) {

int lowerBound2 = max(ceild(375*glT1-1499,1875),
max(ceild(750*glT1-m-1498,2250),max(ceild(750*glT1-2*m-n+5,750),0)));

int upperBound2 = min(floord(1500*glT1+2*n+1493,7500),
min(floord(m+n-4,1500),min(floord(1500*glT1+1499,4500),floord(1500*glT1+1499,1500))));

#pragma omp parallel for schedule(static,1) private(vT1,vP1)
for (rp1=lowerBound2; rp1 <= upperBound2; rp1++) {
int upperBound3 = min(floord(1500*glT11500*rp1+1499,2), min(3000*rp1+2998,

min(1500*rp1+m+1498,2*m+n-5)));
for (vT1=max(750*glT1-750*rp1,max(3000*rp1-n+3,max(1500*rp1,0))); vT1 <= upperBound3; vT1++) {

int upperBound4 = min(1500*rp1+1499,min(floord(vT1+n-3,2),vT1));
for (vP1=max(1500*rp1,max(ceild(vT1,2),vT1-m+1)); vP1 <= upperBound4; vP1++) {

S1(vT1-vP1+1, -vT1+2*vP1+2);
}

}
}

}

Figure 5.9: 1d-SOR: generated target code for parallelepiped 2250 × 1500 tiling

#define S1(i, k) { A[i]=(A[i-1]+A[i+1])*0.5; }

int upperBound1 = floord(w*n+(w+h)*m-4*w-h,h*w)
for (glT1=ceild((-2*h+1)*w+h,h*w); glT1<=upperBound1; glT1++) {

int lowerBound2 = max(max(max(max(ceild(-w+1,w),ceild(h*glT1-n-m+4,h)),ceild(h*glT1-n-w+4,w+h)),
ceild(h*glT1-n-2*w+5,2*w+h)),ceild(-h*glT1+n+2*m-5,w-h));

int upperBound2 = min(min(min(min(floord(m-1,w),floord(h*glT1+h-1,h)),floord(-h*glT1-w-h+2,w-h)),
floord(h*glT1+h-1,w+h)),floord(h*glT1+m+h-2,2*w+h));

for (rp1=lowerBound2; rp1<=upperBound2; rp1++) {
int lowerBound3 = max(max(max(max(0,2*w*rp1),2*h*glT1-2*h*rp1-n+3),h*glT1-h*rp1),h*glT1+(w-h)*rp1);
int upperBound3 = min(min(min(min(2*h*glT1-2*h*rp1+2*h-2,n+2*m-5),h*glT1-h*rp1+m+h-2),2*w*rp1+n+2*w-5),

h*glT1+(w-h)*rp1+w+h-2);
for (vT1=lowerBound2; vT1<=upperBonud3; vT1++) {

int lowerBound4 = max(max(max(ceild(vT1,2),vT1-m+1),h*glT1-h*rp1),-w*rp1+vT1-w+1);
int upperBound4 = min(min(min(floord(vT1+n-3,2),vT1),h*glT1-h*rp1+h-1),-w*rp1+vT1);
for (vP1=lowerBound4; vP1<=upperBound4; vP1++) {

S1(vT1-vP1+1, -vT1+2*vP1+2);
}

}
}

}

Figure 5.10: 1d-SOR: generated target code for parametric parallelepiped w × h tiling

5.3. Tiling 67

Figure 5.11: Tiling overhead in 1-dim SOR for n = 106,m = 9, 000 (x-axis non-linear)

.L87:

fldl (%eax)

addl $1, %edx

faddl -16(%eax)

fmul %st(1), %st

fstpl -8(%eax)

addl $16, %eax

cmpl %edx, %ecx

jge .L87

The computation A[i] = (A[i+1]+A[i−1])∗0.5 is performed by the four floating-point
instructions (fldl, faddl, fmul, fstpl) and the other four instructions deal with the loop
counter and update %eax, which holds the address of A[i+ 1]. This implies that the loop
bounds are only computed rarely compared to the execution of the body, provided that
the innermost loop has a sufficient number of iterations.

We ran our experiments on a machine with four cores, consisting of two Dualcore AMD
Opteron processors with 2.2 GHz and 2 GB of RAM. Since this is a NUMA (non-uniform
memory access) architecture, we have to take care not to spoil the benchmarks with local
vs. remote memory effects. As it turns out, memory locality does not play a significant
role in the one-dimensional SOR because of its cache behaviour; see below.

The complex loop bounds and the reconstruction of the original loop indices still permit
the innermost loop to be small. Let us now discuss the question of how many iterations
the innermost loop must have to make the effort of computing the complex loop bounds
negligible. Figure 5.11 shows the execution times for n = 106, m = 9000 and varying
tile heights (the innermost loop enumerates the height dimension of the tile) for fixed
tilings. The tile width has been chosen according to the formulas presented above with
f = 1. The execution time converges towards about 12.38 seconds. We observe that the
parallelogram tiling has a slightly higher overhead (the loop bounds are more complex).
With the rectangular tiling, the tile height can only be increased up to about 2000, since
the tile width has to be set to m

NC − height, i.e., 2250 − height in our case. Therefore,
the tiles become very narrow for heights greater than 2000 and, accordingly, the second
innermost loop has only a few iterations which causes noticeable overhead for heights
greater than 2000. The parallelogram tiling does not suffer from such a restriction; the

68 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

Reads Writes

Instructions Total Misses Total Misses

18k 16k 2 for glT1=

102k 88k for rp1=

42,235k 21,099k 18k for vT1=

36,056,066k 14,035k for vP1=

35,999,928k 17,999,964k 3,973k 8,999,982k 0 A[i]=...

Table 5.1: 1d-SOR: cache misses (L1 and L2 combined) for rectangular tiling with tile
size 1500×750

Rectangular Tiling Parallelogram Tiling

Cores 1 2 4 1 2 4

Width=850, Height=1400

Time in secs 12.38 6.33 3.23

Speed-up 1.00 1.95 3.82

Efficiency 99.76% 97.55% 95.59%

Width=650, Height=1600 Width=2250, Height=3000

Time in secs 12.35 6.32 3.26 12.38 6.28 3.17

Speed-up 1.00 1.95 3.79 1.00 1.97 3.90

Efficiency 100.00% 97.71% 94.71% 99.76% 98.33% 97.40%

Table 5.2: 1d-SOR: speed-ups (efficiency relative to best execution)

height can be increased arbitrarily, since the width is fixed, in this example, to 2250.
On the other hand, we have to note that the run-time evaluation of the loop bounds
can suffer integer overflows, e.g., the program does not execute correctly for tile heights
of 2400 and 2600 (which are missing in the diagram for this reason). We do not provide
separate run-time measurements for the parametric tiling, since the run times we observed
for the parametric version were at most 1% worse than the run time of the corresponding
fixed version code. This underlines that run-time efficiency correlates strongly with the
non-overhead of executing the body of the innermost loop.

The one-dimensional SOR example also demonstrates that space-time mapping and
tiling can reduce the execution time by enhancing the cache behaviour. Compared to the
original execution, the tiled program is a vast improvement. The original program takes
75.4 seconds to execute. With space-time mapping, but without tiling, the execution time
is still 23.6 seconds. Only after tiling, the time reduces to about 12.4 seconds. Analysis
using the Cachegrind tool of the Valgrind suite [NS07] shows that almost no cache misses
occur (Table 5.1). For the backward substitution example, Cachegrind reports a cache
miss rate of about 8.5% for both the standard parallel and the inter-diagonal parallel
execution.

As mentioned, the SOR example has an original execution time of 75.4 seconds, which
is reduced to 23.6 seconds by space-time mapping. Table 5.2 shows the rectangular tiling
with the best execution time on one and on four cores, respectively, and the best par-
allelogram tiling (on one and on four cores). The parallelogram tiling shows a slightly
better scaling behaviour, so it overtakes the rectangular tiling which has a slightly better
execution time on one core.

5.4 Array Localisation

The success of parallelising an algorithm depends on two factors. First, the computa-
tions must be arranged suitably to exploit the available computational power efficiently.
Second, data transport between the computing entities must not spoil the efficiency of

5.4. Array Localisation 69

for (t=0; t<=n; t++)

parfor (p=0; p<=n; p++)

A[t+p+1] = f(A[t+p+1]);

(a) original program

for (x=0; x<=n-1; x++)

L[x] = A[x+1];

for (t=0; t<=n; t++) {

L[n] = A[t+n+1];

parfor (p=0; p<=n; p++)

L[p] = f(L[p]);

A[t+1] = L[0];

syncparfor (x=1; x<=n; x++)

L[x-1] = L[x];

}

parfor (x=0; x<=n-1; x++)

A[n+x+2] = L[x];
(b) localised version

Figure 5.12: Locality-improving transformation on a simple parallel program

the execution by consuming a considerable amount of the total execution time. With
current architectures, several levels of data storage are available: registers, caches, CPU-
local main memory, main memory of remote CPUs, remote network storage. Due to the
dramatic difference in their performance, which is, for technical and economic reasons,
reflected in the smaller sizes of faster storage, the data accessed often must be kept in
the fastest memory. Program transformations which increase locality have been stud-
ied widely (cf. Section 3). On special-purpose architectures, like embedded systems and
graphics processors, fast cache memory is not managed automatically by hardware but
has to be managed explicitly by software. We aim at an automatic explicit management
of so-called scratchpad memories present in such architectures.

Since we aim at full automation, the techniques are not applicable to arbitrary pro-
grams. They must be loop nests with bounds linear in the surrounding loops and struc-
ture parameters containing bodies with array accesses with affine subscripts, i.e., we are
working with programs that are being studied in the context of the polytope/polyhedron
model (cf. Section 2.2.1). Our presentation here is an extended version of our previous
work [Grö09].

As an example of the desired transformation, let us look at the example program in
Figure 5.12(a). It consists of an outer sequential time loop and an inner parallel loop.
Each iteration (t, p) updates an array element A[t+p+1]. Since every time step t accesses
array elements A[t+1], . . . , A[t+n+1], there is considerable overlap in the array elements
used in successive time steps, namely n elements. For example, the first time step t = 0
accesses the elements A[1], . . . , A[n+1], the second time step t = 1 accesses A[2], . . . , A[n+2]
and uses A[2], . . . , A[n+1] again. If the access of array A has high latency, i.e., it is not
stored in the fastest available memory, the execution of the program can be accelerated
by keeping the relevant parts of A in a faster memory. One possible way to achieve this
localisation is shown in Figure 5.12(b). Array L is assumed to be stored in fast memory.
In every iteration of the loop on t, element A[t+n+1] of A, which has not been accessed in
the previous iteration, is brought into L at L[n]. After the computation, L[0] is exported
to A[t+1], because it is not needed in the next iteration, and the elements of L are shifted
inside L to bring them into the appropriate position for the next iteration. In addition,
elements are moved to/from L before and after the loop on t, respectively. Having to
move all (but one) elements of L can be costly depending on the architecture. With
memory local to the computing cores (which may require only one cycle per memory
access) the overall positive effect of the transformation outweighs this additional cost. As
the syncparfor statements in the code shown suggest, this reorganisation can be executed
synchronously in parallel, i.e., as a simultaneous assignment.

We propose a way of computing the array elements which have to be moved into L
before each time step, exported from L and reorganised in L after each time step. The

70 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

for (t ∈ T) {

(par)for (i ∈ D(t)) { body with A[f1(i, t)], . . . , A[fn(i, t)] }

}

Figure 5.13: Program to be transformed with one outer sequential time loop

reorganisation step requires particular attention because, as can be seen in the above
example, it overwrites elements of L. Therefore, an in-situ reuse of the same L requires
an ordering of the overwriting operations that does not destroy data elements before they
have been copied.

5.4.1 Prerequisites

We require dependence information on the level of access instances which is precise, i.e.,
there must not be dependences which follow from other dependences by transitivity. This
is different from the more usual, statement-based definition. With this definition, there
are two dependences in the statement

A[i] = A[i] + A[i] ,

namely an input dependence from one of the read accesses to the other (the choice of
the direction is arbitrary) and an anti dependence from the later read access to the write
access. With the usual definition, there are no dependences inside one statement instance.
We require this finer granularity of dependences to capture that, in this example, all three
accesses in the above statement refer to the same memory cell and, hence, it is sufficient
to fetch A[i] once from global memory for both read accesses and that A[i] is immediately
overwritten again, so the fetched value must not be cached for following statements.

5.4.2 Locality Transformation

We consider codes of the form shown in Figure 5.13, i.e., there is one outer sequential
loop on t enumerating the time steps of the program and there are zero, one, or several
sequential and/or parallel loops on i inside (which need not be perfectly nested, even
though the code fragment shown in the figure is). The computation statements inside the
loops on i contain accesses A[fj(i, t)] (1≤ j≤n) to an array A. The transformation can
be applied successively for several different arrays, but we restrict our presentation to the
case of a single array.

Each array access A[fj(i, t)] is part of a statement with an index set Dj(t), which
depends on the point t in time, i.e., the access is executed for every i ∈ Dj(t) for given t.
To make our technique applicable, Dj(t) must be a (parametric) Z-polyhedron. For the
ease of notation, we omit the dependence on the parameters p of the index sets and other
sets and functions. For example, we write Dj(t) instead of the more elaborate Dj(t,p).
The aim of the proposed transformation is to achieve that some or all array elements
accessed at time t are loaded into the local memory L of the compute node before the
execution of the operations at time t. This requires answers to three questions:

1. Where (at which index) do we place elements to be stored in L?

2. Which elements are present at time t and which elements are loaded into and which
are removed from L before/during/after time t?

3. What happens to the elements in L between time t and t+1?

Answers to these questions are given in the following sections. In Section 5.4.3, we present
how we map elements from A to L, assuming that we known already which elements from
A are to be mapped to L. Sections 5.4.4 and 5.4.5 present two answers to the second
question. Finally, we discuss answers to the third question (applicable to both previous
answers to Question 2) in Section 5.4.6.

5.4. Array Localisation 71

5.4.3 The New Location of Array Elements

The local storage caches some elements of A at a given time to accelerate their access.
Let C(t) be the indices of the elements of A to be cached in L at time t, i.e., x ∈ C(t)
means that A[x] is available in L. We require C(t) to be a Z-polyhedron.

We map the elements of A, which are present in L at a given time to L such that
L[0], L[1], . . . contain the cached elements of A in ascending order, i.e., if A[x1] and A[x2]
are mapped to L[y1] and L[y2], respectively, then x1 ≺ x2 implies y1 < y2. This way, we
can determine the index of an element A[x] in L by the number of elements z ∈ C(t) which
precede x in lexicographic order. To this end, we consider the parametric set defined by

A≺(x, t) = {z | z ∈ C(t) ∧ z ≺ x} .

Note that A≺(x, t) is a union of parametric Z-polyhedra because the lexicographic order
≺ corresponds to a disjunction of affine conditions. The number of integral points in
A≺(x, t) is the number of array indices in C(t) up to, but not including, x (at time
t). Computing the number of integral points in A≺(x, t) (cf. Section 2.1.4) yields a set
{(c1, ρ1), . . . , (cq, ρq)} of conditions cj on the parameters (including x and t) and quasi-
polynomials ρj , where ρj(x, t) evaluates to the number of integral points in A≺(x, t) if
cj(x, t) holds. If we combine the cj and ρj to a conditional expression ρ, which evaluates
to ρj if cj holds, then the location of an element A[x] in the local storage at time t is given
by L[ρ(x, t)] (provided that x ∈ C(t)).

By construction, we have the ordering property stated in the following lemma.

Lemma 5.2. Let t ∈ Z and x1,x2 ∈ C(t). Then x1 ≺ x2 ⇔ ρ(x1, t) < ρ(x2, t).

The total amount of local storage needed can be computed by counting C(t) and
maximising w.r.t. to t. For each constituent of its constituents, one can maximise |C(t)|,
e.g., by quantifier elimination in the reals (cf. Section 4.3.2) or maybe Bernstein expansion
[CT04]. The overall maximum is then the maximum of the maxima of the distinct cases,
of course.

If |C(t)| exceeds the available storage for at least one value of t ∈ T , we cannot localise
w.r.t. the loop on t. We must find an inner sequential loop or create one with the right
granularity (i.e., memory footprint) by applying tiling on one of the inner dimensions to
create a suitable time loop, cf. Section 5.4.7.

5.4.4 Localisation Based on Access Instances

Localisation can be achieved without dependence information if we perform it based on
access instances only. The set of array elements accessed by A[fj(i, t)], with iteration
domain Dj(t) at time t, is given by the parametric Z-polyhedron Cj(t) = {fj(i, t) | i ∈
Dj(t)}. The set of all array elements accessed at time t is given by the union of the
Cj(t). The most obvious choice of C(t) to be stored in L is the set of exactly the elements
accessed at a given time step but, since any superset represents a correct transformation,
it is worthwhile to add another degree of freedom. Often, we encounter algorithms which
have an alternating access pattern, for example, at even time steps one part of the data
is accessed and at odd time steps a different part of the data. With the obvious choice of
C(t), we would transform the program such that the contents of L is replaced completely
at every time step. Such situations are remedied by introducing a localisation window,
i.e., by permitting the scope of elements kept in L to be larger than the current point
in time. We describe the localisation window by its width w (w ≥ 1) which denotes the
number of successive time steps considered to be part of the window. We now define C(t)
by

C(t) =

n⋃

j=1

w−1⋃

τ=0

Cj(t+ τ) .

72 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

for (t ∈ T) {

parfor (x ∈ I(t)) L1[ρ(x, t)] = A[x]; // move in

(par)for (i ∈ D(t)) { body with L1

[
ρ
(
fj(i, t), t

)]
instead of A[fj(i, t)] }

parfor (x ∈ O(t)) A[x] = L1[ρ(x, t)]; // move out

parfor (x ∈ G(t)) L2[ρ(x, t+1)] = L1[ρ(x, t)]; // reorganisation

swap(L1, L2);

}

Figure 5.14: Preliminary localised code based on access instances with two local storages

Note that w = 1 is the case in which C(t) contains only the elements accessed at the
current time t. From C(t), one can compute ρ(x, t) as described in Section 5.4.3. Let
us now address the question of data movement, i.e., which elements to move in/out and
around (within L) at a given time step. There are three parts involved:

1. a “move in” phase which loads data not present in local storage before the compu-
tation of the current time step,

2. a “move out” phase which removes data not needed at the next time step from local
storage and puts it to the global memory,

3. a “reorganisation” phase between two successive time steps, in which the data in
local storage are retained in local storage but moved to the the correct location for
the next computation.

The array elements relevant for each of these three phases are given by the following sets:

I(t) := C(t) − C(t− 1), O(t) := C(t) − C(t+ 1), G(t) := C(t) ∩ C(t+ 1) .

I(t) contains the indices of elements used at t but not at t−1, i.e., the elements to be
moved to local storage for step t; O(t) contains the indices of elements used only at t but
not at t+1, i.e., the elements to be moved out after step t; and G(t) contains the elements
used at both t and t+1, i.e., the elements which must remain in local storage and have to
be reorganised between t and t+1. Each of these three sets is a union of Z-polyhedra.

It is tempting to try to optimise the move-in and move-out sets by, for example,
moving out only the elements in O(t) that have actually been overwritten at time t. But
this “optimisation” is incorrect, since an element may have been overwritten several time
steps before it is moved out (and may only have been read in between). A correct and
exact optimisation of data move in and out requires dependence analysis techniques and
is presented in Section 5.4.5.

During the reorganisation phase, care has to be taken not to overwrite data which
must still be moved before the next time step begins. A simple way to avoid this problem
is to use a second local storage to which the reorganised data is written and swap the two
storage areas after reorganisation. Using pointer exchange for efficiency, this approach
has little run-time overhead, but uses twice as much local storage. This may be sufficient,
but the amount of local storage is often limited, e.g., in embedded devices. We present
techniques for remedying this drawback in Section 5.4.6.

A sketch of the code after the localising transformation is shown in Figure 5.14. The ar-
ray accesses A[fj(i, t)] in the body (cf. Figure 5.13) have been replaced by L1

[
ρ
(
f(i, t), t

)]
.

Local storage spaces L1 and L2 are exchanged (by swapping pointers) after reorganisation
and before the move-in phase of the next time step. Another way to look at this reorgan-
isation is to view it as a big simultaneous assignment, i.e., the elements which remain in
L move to their new locations simultaneously without overwriting each other. If there is
enough room in the register space of the parallel processor, the reorganisation can be per-
formed within a single local storage by letting every parallel thread read a certain number
of elements from L, performing a barrier synchronisation between the threads, and letting

5.4. Array Localisation 73

every thread write its elements back to L in their new position. But this requires double
the amount of space, too, since we have to have enough room in the register space of the
parallel processors. In Section 5.4.6, we show why a single area of local storage is sufficient
and why we only need a constant amount of register space.

5.4.5 Localisation Based on Dependences

The access-based localisation of memory accesses presented in Section 5.4.4 is simple in
the sense that no dependence information is required by the localising transformation. On
the other hand, this simplicity leads to overhead in the data movement, for example, by
loading elements into local storage which are never read but only written. A dependence-
based approach can remedy this situation. Provided that an exact dependence analysis of
the loop nest is available, we can mark each access as global or local. Whether to access
global or local memory depends on whether the desired value is present in local storage
or not. This way, there are no separate move-in and move-out statements which precede
and succeed the computation statements, respectively. Instead, they are integrated into
(or next to) the computations themselves.

Let R be the set of read access instances and W the set of write access instances of
the program. We write time(a) to denote the time step in which an access instance a is
executed; win(a1, a2) denotes that an access instance a2 is inside the localisation window
starting at a1: 0 ≤ time(a2) − time(a1) ≤ w, i.e., a2 happens at most w time steps after
a1. We define global writes Wg and local writes Wl as follows:

Wg = {w ∈ W | ¬
(
∃w′ : w′∈W : w

out−−→ w′ ∧ win(w,w′)
)
}

Wl = {w ∈ W |
(
∃r : r∈R : w

flow−−→ r ∧ win(w, r)
)
}

A write is global if the value is not overwritten inside the localisation window. A write is
local if the value is read later inside the localisation window. Note that, by this definition,
there can be a write that is global and local. This happens when the value is not over-
written in the localisation window and, therefore, has to be written to global memory at
some point (and we choose to do immediately), but it is read again later, so we also keep
the value in local memory. It is also possible for a write to be neither global nor local;
this means that the value will be overwritten and not read inbetween and, hence, we can
drop the write entirely.

Reads have to be partitioned into three groups. A read is local (Rl) if the value
accessed is present in local storage because it has been read or written earlier in the
localisation window. A read is global (Rg) if no prior access in the localisation window
has been made and no later read access will be made. A read is from global memory with
a successive store to local memory (Rgl) if no prior access has been made but, later in the
localisation window, the value will be read again.

Rl = {r ∈ R |
(
∃w : w∈W : w

flow−−→ r ∧ win(w, r)
)
∨

(
∃r′ : r′∈R : r′

in−→ r ∧ win(r′, r)
)
}

Rg = {r ∈ R | ¬
(
∃r′ : r′∈R : r

in−→ r′ ∧ win(r, r′)
)
} −Rl

Rgl = {r ∈ R |
(
∃r′ : r′∈R : r

in−→ r′ ∧ win(r, r′)
)
} −Rl

The elements that are present in local storage are given by

C(t) = {accelem(a) | a ∈ Rl ∪Rgl ∪Wl, t ≤ time(a) < t+ w} .

From C(t), we can again compute ρ(x, t) (cf. Section 5.4.3), which gives the location of
an element A[x] in L at a given time t. The reorganisation of L between time steps is
described by the set G(t) = C(t) ∩ C(t+ 1) as in Section 5.4.4.

There is one detail which we have to consider with this approach. Scheduling a parallel
program usually does not impose restrictions on input dependences. They allow the case

74 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

r1

��
�O
�O
�O

BB

BB
BB

BB
r2

��
�O
�O
�O

~~||
||

||
||

r3 r4

r1 → r4 and r2 → r3 are input dependences,
r1 r3 and r2 r4 denote control flow.

Figure 5.15: Deadlock situation for synchronisations introduced by different dependences

that an input dependence r1
in−→ r2 with r1 ∈ Rgl is not carried by a sequential loop and r1

and r2 reside on different processors. In this case, it is possible that the read from global
memory and the following write to the local memory cell for r1 are, in fact, executed
after r2, which is supposed to read the same value as r1 from local memory, because the
ordering of the operations between the two involved processors is not determined. To
guarantee a correct execution of the transformed programs, we have either to require that
input dependences respect the same restrictions as the other dependence types or to emit
a barrier synchronisation statement which makes sure that the write to local memory at
r1 is executed before the read from local memory at r2.

Synchronisations must not create a deadlock in the execution. Unfortunately, this
is not easy to achieve as the following example illustrates. Suppose we have four reads

r1, . . . , r4 where r1 ∈ Rgl and ri
in−→ ri+1 for 1 ≤ i ≤ 3. If r1, {r2, r3}, r4 are mapped to

three different processors (and to the same global time step t), then we must synchronise
between the write to local memory of r1 and the read in r2, but we must also synchronise
before r3 and r4 read. But we cannot issue a barrier synchronisation at all four operations,
since r2 and r3 are on the same processor, so the barrier call at r3 will be orphaned. We
have to form appropriate groups for the synchronisations.

But even if we solve this problem, there remains another one. The synchronisations
required for different input dependences may lead to a cyclic waiting relation (a “deadly
embrace”). Figure 5.15 shows one such situation. r3 is executed after r1 in the same
thread; likewise, r4 is executed after r2 by another thread. Due to the dependences

r1
in−→ r4 and r2

in−→ r3, synchronisations are required which would require a reversal of
control flow in one of the threads to complete. Hence, a deadlock is created.

Because of these difficulties, we do not consider synchronisation to order dependent
read accesses any further. If a schedule which is computed to respect flow, output and
anti dependences happens to respect the input dependences in addition, then the parallel
program can be executed as is.

Let us now present an alternative to introducing synchronisations in the case that the
schedule does not respect input dependences.

Reintroducing the Move-in Phase

Since doing without a move-in phase imposes an additional burden on either the par-
allelisation (the schedule must respect input dependences, too) or the code generation
(additional, deadlock-free synchronisation), we pursue another solution. The problems
arise from input dependences, i.e., from data which is read at least twice. To make sure
that the read-in appears before the read accesses to local memory, we reintroduce a move-
in phase which, however, only moves in elements which are read at least twice. The set
of elements to move in is now defined by

I(t) = {accelem(r) | r ∈ Rgl, time(r) = t},

i.e., we move in all the elements that are accessed by global-local reads at the beginning
of the time step in which the access occurs. The global-local read accesses themselves are
then handled like local reads: they simply read from local memory. This approach adds
a slight overhead on the number of local memory accesses. Without a move-in phase, a
global-local read has one read from global memory into a register, one write of the value

5.4. Array Localisation 75

to local memory and the computation can be performed on the value in the register. With
a move-in phase, the move-in reads from global memory, writes to local memory and the
use of the value at the global-local read performs an additional read from local memory.

But, since access to local memory is fast (on some architectures almost as fast as
access to a register), the slight overhead is likely to be outweighed by the reduction in
synchronisation costs or the ability to run the program with a better (less constrained)
schedule.

Imprecise Dependence Information

The just presented dependence-based localisation computes precisely which elements to
move into local storage and which accesses go to local or global memory, respectively,
after the transformation. The assumption that has been made is that the dependence
information is precise. Since not all programs allow a precise dependence analysis (or a
precise analysis may be computationally too expensive), we briefly address the question
what happens when the dependence information is inexact. Since the dependence infor-
mation determines whether a transformed access goes to local or global memory, it is clear
that an underapproximation of the actual dependences cannot be used. If a flow or input
dependence is missing, the target access instance may go to global memory, although the
data resides in local memory. A missing output or anti dependence may cause a write
access to go to global memory instead of local storage and the next read access may read
an out-of-date value from local storage.

Overestimating the dependences is dangerous, too. We must assume a dependence
exists only between accesses instances that actually access the same memory cell. Other-
wise, the localisation may rely on an access moving a value to local storage although the
access goes to another element. Two problems remain even with this restriction:

(1) When an access instance has several possible sources, the some sources may lie in
the localisation window, others may be outside. Then, it is unclear at the target
access instance whether the value can be found in local storage or has to be fetched
from global storage.

(2) Likewise, if there are several possible writes for value, it is unclear which write access
instance should write the value to global memory.

Problem (1) is solved by reintroducing the move-in phase. An approximation to solve
Problem (2) is to write to global memory at every possible write but that is unsuitable
for our goal of reducing the number of accesses to global memory. The other solution is
to reintroduce a move-out phase. The set of elements to move out is given by

O(t) = {accelem(r) | r ∈ Wg, time(r) = t}.
This may seem like being back at the localisation based on access instances. The difference
is that a localisation based on dependences with a move-in and a move-out phase still
takes care not to move elements to local storage which are not reused according to the
dependences.

We should note that it is important to compute the sets I(t), O(t) and C(t) precisely.
For example, to compute O(t) we have to determine precisely which access instances are
actually executed at time t. If the access is guarded by a conditional γ(t), we have to
know at compile time when (for which t) γ(t) holds. If this information is not available,
a correct localisation cannot be performed. So, although dependence information may
be an overapproximation, precise knowledge about which accesses are performed is still
required.

5.4.6 Ordering the Reorganisation

As has been outlined in Section 5.4.4, a straight-forward implementation of the reorgani-
sation phase requires two areas of local storage to avoid overwriting elements which have

76 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

not yet been moved. Let us now prove that a single storage area is sufficient, i.e., the
reorganisation can always be performed in-situ by adhering to a certain order in the intra-
storage element moves. The key observation is that, if an element L[y1] has to be moved
to L[y2] (y1 6= y2) and L[y2] has in turn to be moved to L[y3], then y2 6= y3 and L[y1] and
L[y2] move in the same direction, i.e., y1 < y2 ⇔ y2 < y3.

Definition 5.3. Let t ∈ Z and x ∈ G(t). The drift δ(x, t) of the element L[ρ(x, t)] is
defined as δ(x, t) := ρ(x, t+1)−ρ(x, t). We say that L[ρ(x, t)] moves forward, if δ(x, t) > 0,
and backward if δ(x, t) < 0.

We now present the key idea introduced above formally and prove that, if an element
moves from L[y1] to L[y2], the contents of L[y2] moves in the same direction as the contents
of L[y1] (provided that L[y2] moves at all).

Proposition 5.4. Let t ∈ Z and x1,x2 ∈ G(t) such that ρ(x1, t + 1) = ρ(x2, t). This
validates the following two implications:

δ(x1, t) > 0 ⇒ δ(x2, t) > 0

δ(x1, t) < 0 ⇒ δ(x2, t) < 0

Proof. Let t, x1,x2 be as stated and δ(x1, t) > 0, i.e., ρ(x1, t + 1) > ρ(x1, t). Since
ρ(x1, t + 1) = ρ(x2, t) and x1,x2 ∈ C(t), this implies (by Lemma 5.2) that x1 ≺ x2.
Again by Lemma 5.2 and since x1,x2 ∈ C(t + 1), this implies ρ(x1, t + 1) < ρ(x2, t + 1)
and, because of ρ(x1, t + 1) = ρ(x2, t), we get δ(x2, t) > 0. Analogous reasoning applies
to the second case with < 0 instead of > 0.

By this proposition, a way to reorganise local storage in-situ is quite obvious.

Corollary 5.5. The reordering of elements in local storage L at the end of time step t
can be achieved in-situ by a two-pass sweep over L.

The in-situ reorganisation works by scanning G(t) once in ascending lexicographic
order and once in descending lexicographic order. In the ascending pass, it is guaranteed
that, if δ(x, t) < 0 holds for an x ∈ G(t) being scanned, then its value (which corresponds
to A[x]) can safely be moved from L[ρ(x, t)] to L[ρ(x, t+ 1)], since the target entry in L
is either empty (because it contained an element from A which is not used at time step t)
or it has been moved already, because its drift is negative, too. The descending scan, in
turn, can safely move all the elements with a positive drift.

In many regular cases, in which the drift has the same sign for all moving data elements,
a single pass is sufficient. In the very regular cases that the drift is identical for all elements
in the local storage, there exists an alternative to moving the data around. We can change
the addressing of the local storage to accomplish the same effect. Accesses L[ρ(x, t)] are
replaced by L[(ρ(x, t) + o) mod S], where S is the size of the local storage and o is an
offset which is initialised to 0 and incremented by the negated drift at the end of every
time step. This round-robin addressing achieves the same effect as repeated movement.
A precise formulation is given by the following lemma.

Lemma 5.6. If
(
∀t, x1, x2 : t ∈ T,x1,x2 ∈ G(t) : δ(x1, t) = δ(x1, t)

)
holds, then one can,

instead of reorganising the local storage, replace every L[ρ(x, t)] by L[(ρ(x, t) + o) mod S]
where o is a variable initialised with 0 and incremented by −δ(x, t) (for any x ∈ G(t))
after every iteration of the loop on t, and S is the size of the local storage.

The correctness of the lemma is obvious. When modulo addressing is possible instead
of reorganising the data, it need not necessarily be the more efficient option. The cost of
reorganisation is determined by the number of elements in the scratchpad, whereas the cost
for modulo addressing is determined by the number of array accesses in the computation
statements, since every access will contain a modulo operation. When comparing the two
approaches, we have to bear in mind that, on a parallel architecture, the reorganisation
can be done in parallel, too. Often, each thread moves a low, constant number of elements,
because the size of the working set is proportional to the number of threads.

5.4. Array Localisation 77

5.4.7 Adjusting the Granularity of the Localisation

To adjust the granularity of the localisation, i.e., the amount of data localised, we have to
select an appropriate loop and a suitable localisation window w. Since localisation w.r.t.
an outer loop l encompasses all the reuse that can be obtained by localising w.r.t. an inner
loop l′ (since one iteration of l contains all iterations of l′ for this iteration of l), we simply
want to localise w.r.t. the outermost loop which permits localisation. Let Cl(t) denote
the elements to be stored in the scratchpad in iteration t of loop l; Cl(t) = ∅ if t is not
an iteration of loop l. To find the right granularity, we would like to select the outermost
sequential loop l and a maximal w ≥ 1 for which

(
max t : t ∈ Dl : sl(t, w)

)
≤ S

where Dl is the iteration domain of l, S is the size of the scratchpad and

sl(t, w) := |
w−1⋃

i=0

Cl(t+ i)|.

To solve this problem, we propose the following method. Cl(t) is a Z-polyhedron, as

we have already noted; hence, |⋃w−1
i=0 Cl(t + i)| is a quasi-polynomial. Therefore, we can

compute sl(t, w) for a given w. For each of the periodic cases of sl(t, w), we can find an
approximation of its maximum by Bernstein expansion [CT04], i.e., we can approximate
ml(w) :=

(
max t : t ∈ Dl : sl(t, w)

)
. Obviously, ml(w + 1) ≥ ml(w), so we can find a

suitable loop l and an appropriate w by looking for the outermost sequential loop l with
ml(1) ≤ S. For this loop, we look for the maximal w such that ml(w) ≤ S. If we cannot
find a loop l with ml(1) ≤ S, then the scratchpad is too small to hold the reused elements
from one iteration to another and our technique does not apply. We refer to the literature
(cf. Section 3.4) for techniques to change the data layout and the working set size of a
loop nest.

5.4.8 Code Generation Considerations

There are two non-trivial problems to solve to obtain efficient code. First, we have to take
care of the possibly complex array subscripts ρ

(
f(i, t), t

)
. Second, all iteration domains

constructed are polyhedral, except for the in-situ reorganisation. Because of the condition
δ(x, t) > 0 (or δ(x, t) < 0) in the description of the domain of the reorganisation statement,
the domain need not be a polytope.

Generating Efficient Code

Let us assume that δ(x, t) is an affine expression or that we are not using in-situ reor-
ganisation. Since the iteration domains of the computation statements and the move-
in, move-out, and reorganisation statements are Z-polyhedra, we can use a polyhedral
code generator like CLooG [Bas04] to generate the transformed code. To obtain effi-
cient code, we have to take care of the conditionals contained in the new access functions
L

[
ρ
(
fj(i, t), t

)]
(1 ≤ j ≤ m) in a statement. In general, ρ(x, t) is a case distinction on

several conditions c1(x, t), . . . , cq(x, t). To avoid evaluating the conditions at every access,
we partition the iteration domain D(t) of the statement by the conditions such that in
each of the partitions the truth values of the conditionals are constant. All in all, the
transformed statement contains the conditionals

ck
(
fj(i, t), t

)
for 1 ≤ k ≤ q, 1 ≤ j ≤ m.

This gives rise to up to qm partitions:

D(a1,...,am)(t) := D(t) ∩ {i |
m∧

j=1

caj

(
fj(i), t

)
} for all a1, . . . , am ∈ {1, . . . , q}.

78 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

In each of the partitions, there is, for every L
[
ρ
(
fj(x, t)

)]
, exactly one ck which evaluates

to true. So the index expression ρ
(
fj(x, t)

)
simplifies to a quasi-polynomial rj (without

case distinctions). Since all rj have a fixed (and finite) period, one can additionally
perform a periodic split of each partition of the domains by a common period of its rj to
obtain iteration domains in which each index expression is a polynomial and, hence, has
no conditional expressions any more.

Generating Code for In-situ Reorganisation

The“drift”δ is a quasi-polynomial. The periodicity in the quasi-polynomial can be handled
by case distinctions on the residue classes of x and t (as for the index expressions of L).
Then, for each case, δ(x, t) is polynomial. With polynomial bounds, we are outside the
polyhedron model. To generate code, we can use the techniques presented in Section 5.5
for non-linear bounds. Alternatively, we can generate code for the reorganisation phase
using our generalised Fourier-Motzkin elimination if δ(x, t) is linear in x. Because t is a
parameter of the code generation for the reorganisation statements (we generate loop for
x), Fourier-Motzkin can be applied for each of the two cases δ(x, t) > 0 and δ(x, t) < 0
to obtain the loop nests for enumerating the elements to be reorganised.

5.4.9 Examples

Let us now present some examples demonstrating the effectiveness of our transformation.
We have implemented a prototype tool for the localisation based on access instances.
We have used this prototype to compute the localisation for the parallel code examples
presented here. We have not implemented our method based on dependences because we
would require a dependence analysis based on access instances, which we did not have
available.

The parallel benchmarks have been performed on an NVIDIA graphics card with a
GTX9800 GPU, a 1944 MHz shader clock and a 1150 MHz memory clock. The pro-
gramming environment is NVIDIA’s CUDA technology [NVI09] (cf. Section 2.2.2). Each
multiprocessor has 16 KB of local memory which can be accessed within one clock cycle
simultaneously by the threads of a warp provided that some alignment restrictions are
obeyed. Access to main memory is much slower, but the thread scheduler in a multi-
processor tries to hide memory latency by overlapping computation and memory access.
Therefore, the higher latency of the main memory can be hidden partly if enough threads
are available. Our experiments use only one multiprocessor at a time since there is no
way to share scratchpad memory between multiprocessors.

Example 5.7 (1d-SOR). As an example of a scientific code, let us look at one-dimensional
successive over-relaxation (1d-SOR) which we have already studied w.r.t. tiling in Sec-
tion 5.3.1. The code of a sequential implementation is again given in Figure 5.16(a). Since
we are interested in the effect of localisation (and tiling does not improve the code for a
single multiprocessor), we use an untiled parallel code which is shown in Figure 5.17(a)
as the basis for the transformation. Notice the synchronous parallelism expressed by the
parallel loop on p inside the sequential loop on t. Before we apply our techniques to the
parallel code, we briefly note that the sequential code can be improved slightly using the
localisation transformation. We also use this example to compare the localisation based
on access instances and on dependences.

Localisation based on access instances

Considering the loop on i in the sequential code as the time loop, we obtain C(i) =
{i− 1, i, i+ 1}, i.e., at time i, the accessed elements are A[i− 1], A[i], and A[i+ 1]. This
yields ρ(x, i) = x − i + 1, i.e., A[i − 1] is mapped to L[0], A[i] to L[1], and A[i + 1] to
L[2]. Since the drift δ(x, i) = ρ(x, i + 1) − ρ(x, i) is constantly −1, we obtain the simple

5.4. Array Localisation 79

for (k=1; k<=m; k++)

for (i=1; i<=n-1; i++)

A[i] = (A[i-1]+A[i+1])*0.5;
(a) original code

for (k=1; k<=m; k++) {

l0 = A[0]; // move in

for (i=1; i<=n-1; i++) {

l2 = A[i+1]; // move in

l1 = (l0 + l2) * 0.5;

A[i-1] = l0; // move out

l0 = l1; // reorganise

}

A[n-1]=l0; A[n]=l1; // move out

}
(b) access-based localisation

for (k=1; k<=m; k++) {

for (i=1; i<=n-1; i++) {

(i==1 ? l0:l1) = A[i] =

((i==1 ? A[i-1] : l0)

+ A[i+1]) * 0.5;

if (i >= 2) l0 = l1;

}

}
(c) dependence-based localisation

for (k=1; k<=m; k++) {

l = (A[0]+A[2])*0.5;

for (i=2; i<=n-1; i++)

l = A[i] = (l+A[i+1])*0.5;

}
(d) dependence-based localisation with loop opti-
misations

Figure 5.16: 1d-SOR: sequential codes

for (t=0; t<=n+2*m-4; t++) {

parfor (p=max(0,(t-n+3)/2); p<=min(m-1,t/2); p++) {

int i = t+1-2*p;

A[i] = (A[i-1] + A[i+1]) * 0.5;

}

}
(a) parallel code

(b) iteration domain for m = 4, n = 16

Figure 5.17: 1d-SOR: parallel version

80 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

transformed code shown in Figure 5.16(b). Since the indices into L are fixed at 0, 1, 2,
the array L can be replaced by three local variables for the array elements.

Localisation based on dependences

Localisation based on dependences takes into account which elements are reused, i.e.,
are read again after having been read or written. In this example, the write to A[i] is
local, since it is reused at the next time step, and global, since it is not overwritten later.
A[i−1] is in the local read set for i ≥ 2. It is in the global read set for i = 1 since no input
dependence to A[i − 1] for i = 1 exists. Since there is no relevant input dependence, the
global-local read set Rgl is empty. Thus, we find the sets C(i) and G(i) and the function
ρ(x, i):

C(i) =






{i} if i = 1

{i− 1, i} if 2 ≤ i ≤ n− 2

{i− 1} if i = n− 1

∅ otherwise

G(i) = C(i) ∩ C(i+ 1) =

{
{i} if 1 ≤ i ≤ n− 1

∅ otherwise

ρ(x, i) =

{
x− i if i = 1

x− i+ 1 if 2 ≤ i ≤ n− 1

The code obtained (we again exploit the fact that the indices into L turn out to be
constants) is shown in Figure 5.16(c). A polyhedral code generator can unroll the first
iteration of the loop on i to avoid the conditionals i = 1 and i ≥ 2; additionally, traditional
compiler data flow analysis reveals that l0 and l1 can be stored in the same memory cell l,
thus, saving the reorganisation. The resulting code is shown in Figure 5.16(d). Running
the sequential code and the transformed code on an AMD Opteron machine yields the
run times shown in Table 5.3.

The index set (with dependences) of the parallel code is shown in Figure 5.17(b).
Note that the number of parallel threads that can be used equals the parameter m. We
use our prototype to apply localisation based on access instances. Localisation based on
access instances is not inferior to localisation based on dependences in this example as the
working set is contiguous and shifts by one element in each iteration of the loop on t.

In the parallel code, we can localise twice. First, we can perform localisation on each
thread of the inner parallel loop w.r.t. the loop on t, i.e., exploit the intra-thread reuse of
data (similarly to the localisation of the sequential code). A dependence-based localisation
reveals that the value written by A[i] in iteration t is read again by A[i−1] in the iteration
t+ 1 in the same thread.

The second localisation is again w.r.t. the loop on t for all threads, exploiting also
inter-thread data reuse. With all m threads active, 2m+1 array elements are accessed
in one iteration of the loop on t and there is an overlap of 2m − 1 elements with the
next iteration. Although this second localisation encompasses the first in principle, it is
worthwhile to apply the intra-thread localisation first, because it reveals the reuse within

m = 128 256 384 512

original 1095 2168 3111 4139
localised 723 1595 2150 2865
speed-up 1.52 1.36 1.45 1.44

Table 5.3: 1d-SOR: benchmarks for sequential code for n = 106 on AMD Opteron 2.2 GHz
with GCC 4.2

5.5. Code Generation 81

the same thread and, in this example, the one value which is reused can be put into a
register. The code resulting from both transformations together (with simplifications for
readability) is shown in Figure 5.18. Note the variable l which stores the value reused
within each thread. Table 5.4 shows the run times of the unlocalised and the localised
codes. The fully localised code (both localisations applied) performs best with speedups of
up to 3.5; explicit data moves in the reorganisation phase outperform modulo addressing.
On a GPU with slower main memory (NVIDIA Quadro NVS 135m, 800 MHz shader
clock, 600 MHz memory clock), we observed speedups of up to 4.7.

Example 5.8 (2d-Gauss-Seidel). Let us now consider a two-dimensional Gauss-Seidel
algorithm with rowwise alternating even-odd updates on an (n+1)2 matrix with m itera-
tions and p parallel threads. The sequential code is shown in Figure 5.19 and a localised
version is presented in Figure 5.20. The localised code shown has been written by hand
for readability. 3 The macros AA and LL are used to show two-dimensional accesses in-
stead of the underlying (but visually more challenging) one-dimensional addressing. The
localisation based on dependences is performed with a localisation window encompassing
the updates to both even and odd elements of a row. The localised part of the matrix
consists of two successive rows progressing row by row with the computation (i.e., with
the loop on i in the code shown). The comparison of the run times of the original and
localised codes is shown in Table 5.5.

5.5 Code Generation

5.5.1 Introduction to Code Generation

When we speak of code generation, we mean the generation of loops that enumerate index
sets and execute statements (loop bodies) for each enumerated point. For example, let
us generate code for two statements T1 and T2, where T1 is executed at every point in
D1 = {x | 2 ≤ x ≤ 8} and T2 at every point in D2 = {x | 2 ≤ x ≤ p}. Since T1 is to be
executed for x = 2, . . . , 8 and T2 for 2, . . . , p (for p ∈ Z), we have to generate loops with
the index variable x which enumerate the respective x-values and execute T1 and T2 at the
respective index points. Unfortunately, enumerating the x-values for the two statements
independently, as in the following sequence of loops:

for (x=2; x<=8; x++)

T1;

for (x=2; x<=p; x++)

T2;

is not the solution we desire, because the enumeration of the index points has to respect
the ordering on the index variable x. For example, the execution of T2 for x = 2 may

3In addition, computational complexity and correctness issues in the polyhedral library used to imple-
ment our prototype make it difficult to generate a correct localisation automatically.

m = 1 64 128 192 256 320 384 448 512

parallel code 381 709 1089 1456 1759 2135 2416 2807 3082
intra-thread localised – 545 758 964 1125 1322 1515 1766 2019
inter-thread localised – 525 539 587 652 684 784 856 1002
fully localised, moves – 504 518 559 611 647 735 800 X
fully localised, modulos – 498 534 621 710 789 905 X X

Table 5.4: 1d-SOR: benchmark for parallel codes, n = 106 on GPU, number of threads
equal to m, run times in milliseconds. “X” means code could not be executed due to too
many divergent threads or not enough registers.

82 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

p = 64 128 192 256 320 384

parallel code 0.29 0.99 2.10 3.54 5.42 8.03
fully localised parallel code 0.30 0.74 1.42 2.18 3.10 4.21
speedup 0.99 1.35 1.48 1.62 1.75 1.91

Table 5.5: 2d-Gauss-Seidel: run times in seconds for m = 1000, n = 2p+ 1 on GPU

#define RHO1(x) (x)

#define RHO2(x) ((x)-t+2*m-2)

#define LOAD1L { int i=t+1-2*self; if (i==1) l=L[0]; }

#define BODY1L { int i=t+1-2*self; L[RHO1(i)] = l = (l+L[RHO1(i+1)])*0.5f; }

#define BODY2L { int i=t+1-2*self; L[RHO2(i)] = l = (l+L[RHO2(i+1)])*0.5f; }

void sor1d_cuda_fully_localised(float *A, int m, int n) {

int self = threadIdx.x; // index number of the thread

int np = m; // number of threads

int t, x; // loop iterators

float l; // value localised to a register

for (t=0; t<=0; t++) {

for (x=0+self; x<=2; x+=np)

L[RHO1(x)] = A[x];

__syncthreads();

LOAD1L;

if (self <= t/2)

BODY1L;

__syncthreads();

}

for (t=1; t<=2*m-3; t++) {

if (self == 0)

L[RHO1(t+2)] = A[t+2];

__syncthreads();

LOAD1L;

if (self <= t/2)

BODY1L;

__syncthreads();

}

{

t=2*m-2;

LOAD1L;

}

for (t=2*m-2; t<=n-2; t++) {

if (self == 0)

L[RHO2(t+2)] = A[t+2];

__syncthreads();

BODY2L;

__syncthreads();

if (self == 0)

A[t-2*m+2] = L[RHO2(t-2*m+2)];

float reorg0 = L[1+self], reorg1 = L[1+np+self];

__syncthreads();

L[0+self] = reorg0; L[0+np+self] = reorg1;

}

for (t=n-1; t<=n+2*m-5; t++) {

if ((t-n+3)/2 <= self)

BODY2L;

__syncthreads();

if (self == m-1)

A[t-2*m+2] = L[RHO2(t-2*m+2)];

int lb = RHO2(t-2*m+3);

int ub = RHO2(n);

for (int r=0; r<=(ub-lb)/np; r++) {

x = lb + r*np + self;

if (x <= ub) v = L[x];

__syncthreads();

if (x <= ub) L[x-1] = v;

}

}

for (t=n+2*m-4; t<=n+2*m-4; t++) {

if ((t-n+3)/2 <= self)

BODY2L;

__syncthreads();

for (x=n-2+self; x<=n; x+=np)

A[x] = L[RHO2(x)];

__syncthreads();

}

}

Figure 5.18: One-dimensional successive overrelaxation: fully localised parallel code with
reorganisation (localisation based on access instances)

5.5. Code Generation 83

#define AA(ii,jj) (A[(ii)*n1+(jj)])

void rb_orig(float *A, int m, int n) {

int k, i, j;

int n1 = n + 1;

for (k=1; k<=m; k++) {

for (i=1; i<=n-1; i++) {

for (j=1; j<=n-1; j+=2)

AA(i,j) = (4.0f*AA(i,j) + AA(i-1,j) + AA(i+1,j)

+ AA(i,j-1) + AA(i,j+1)) * 0.125f;

for (j=2; j<=n-1; j+=2)

AA(i,j) = (4.0f*AA(i,j) + AA(i-1,j) + AA(i+1,j)

+ AA(i,j-1) + AA(i,j+1)) * 0.125f;

}

}

}

Figure 5.19: Gauss-Seidel: original code

#define AA(ii,jj) (A[(ii)*n1+(jj)])

#define LL(ii,jj) (L[lw*((ii)-i+1)+(jj)-1])

void redblack_cuda_localised(float *A, int m, int n) {

const int np = blockDim.x; // number of threads

const int self = threadIdx.x; // index of "this" thread

int k, i, j;

const int n1 = n + 1;

const int lw = 2*(np-1)+2;

for (k=1; k<=m; k++) {

i=1;

LL(0,2*self+1) = A[2*self+1];

LL(0,2*self+2) = A[2*self+2];

__syncthreads();

for (i=1; i<=n-1; i++) {

j = 2*self + 1;

LL(i,j) = AA(i,j);

LL(i,j+1) = AA(i,j+1);

__syncthreads();

AA(i,j) = LL(i,j) = (4.0f*LL(i,j) + LL(i-1,j) + AA(i+1,j)

+ (j==1 ? AA(i,j-1) : LL(i,j-1)) + LL(i,j+1)) * 0.125f;

__syncthreads();

j = 2*self + 2;

AA(i,j) = LL(i,j) = (4.0f * LL(i,j) + LL(i-1,j) + AA(i+1,j) + LL(i,j-1)

+ (j==n-1?AA(i,j+1):LL(i,j+1))) * 0.125f;

__syncthreads();

L[2*self] = L[lw+2*self];

L[2*self+1] = L[lw+2*self+1];

__syncthreads();

}

}

}

Figure 5.20: Gauss-Seidel: localised parallel code (localisation based on access instances)

84 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

for (x=2; x<=max(8,p); x++) {

if (2 <= x && x <= 8)

T1;

if (2 <= x && x <= p)

T2;

}
(a) simple code with conditionals

for (x=2; x<=min(8,p); x++)

{ T1; T2; }

for (x=max(p+1,2); x<=8; x++)

T1;

for (x=9; x<=p; x++)

T2;
(b) tricky loop bounds

if (p >= 9) {

for (x=2; x<=8; x++)

{ T1; T2; }

for (x=9; x<=p; x++)

T2;

} else if (p == 8) {

for (x=2; x<=8; x++)

{ T1; T2; }

} else if (p >= 2) {

for (x=2; x<=p; x++)

{ T1; T2; }

for (x=p+1; x<=8; x++)

T1;

} else {

for (x=2; x<=8; x++)

T1;

}
(c) case distinctions on p

Figure 5.21: Three possible codes for D1 = {x | 2 ≤ x ≤ 8} and D2 = {x | 2 ≤ x ≤ p}

happen before or after T1 for x = 2, but it must happen before any execution of T1 or T2

for x ≥ 3. The generation of correct code is complicated by the fact that we do not know
the value of the upper bound p at code generation time, so the emitted code must work for
all possible (integral) values of p. Figure 5.21 shows three possible codes which enumerate
the index sets correctly. The figure illustrates that there is a tradeoff between code size
and efficiency of the generated code. The code in Figure 5.21(a) specifies the evaluation
of two conditionals (in the if statements) in every iteration of the loop. The codes in
Figures 5.21(b) and 5.21(c) have no overhead for evaluating conditions inside the loops.
With the case distinctions on p, the code in Figure 5.21(c) never executes an empty loop,
i.e., when a loop is reached, the upper bound is guaranteed to be greater than or equal
to the lower bound. This property comes at the price of an increased code length. The
code in Figure 5.21(b) is shorter and there are no case distinctions in p apart from the
loop bounds, but loops may be empty, for example, the last loop is empty for p ≤ 8. The
algorithm we present subsequently produces code without conditionals inside the loops.

In general, the ordering of the operations follows the lexicographic order of the index set
points. For example, in the case of a two-dimensional index set with (x, y) coordinates,
the outer loop of the generated code enumerates the x-dimension, and an inner loop
enumerates the y-dimension in dependence of x, i.e., for given x, all values y such that
(x, y) is in the index set are enumerated. The main task of code generation is to partition
the index sets of the statements such that each partition can be scanned by a loop nest.
In the above example, a suitable disjoint union of the domains D1 ∪D2 = U1 ∪̇U2 ∪̇U3 is
given by the following three sets:

U1 = {x | 2 ≤ x ≤ min(8, p)}
U2 = {x | max(p+1, 2) ≤ x ≤ 8}
U3 = {x | 9 ≤ x ≤ p}

Note that a statement executes either at every point or not at all in Ui. T1 executes in
U1 ∪̇U2 and T2 executes in U1 ∪̇U3. In addition, the sets Ui are convex, which implies
that each set can be enumerated by a single for loop. This scheme generalises to the
case of n-dimensional polytopes as index sets, i.e., the index sets of the statements can
always be represented as a disjoint union of polytopes such that each partition is either
a subset of a given index set or disjoint from it and each partition can be enumerated

5.5. Code Generation 85

x

y

0 1 4 7

1

9

0

4

(a) depiction

for (x=1; x<=4; x++)

for (y=1; y<=9; y++)

T1(x,y);

for (x=5; x<=7; x++) {

for (y=1; y<=
⌊
4−√

3x− 12
⌋
; y++)

T1(x,y);

for (y=
⌈
4+

√
3x− 12

⌉
; y<=9; y++)

T1(x,y);

}
(b) generated code to scan the domain

Figure 5.22: Non-convex domain {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y − 4)2 + 12 − 3x ≥ 0}

by a single nest of for loops. The reason is that intersection and difference of polytopes
can, again, be represented by (a union of) polytopes, and polytopes are convex sets. In
the generalisation we are pursuing, this is not true. In general, index sets with arbitrary
multivariate polynomial bounds cannot be represented as a finite union of convex sets.

5.5.2 Non-linearity and Non-convexity

Let D = {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y − 4)2 + 12− 3x ≥ 0} be a non-convex index set.
D is depicted in Figure 5.22(a). It is non-convex due to the parabolic piece of the border.
Code generators for the polyhedron model treat non-convexities arising from differences
of polytopes by representing the domain as a finite union of convex domains, but this
is not possible here. D cannot be represented as a finite union of convex sets. Instead,
the code generation has to handle non-convexity directly in the general code generation
procedure. All loop bounds that are needed to enumerate the domain correctly are roots
of (multivariate) polynomials. For example, the roots of (y − 4)2 + 12 − 3x, namely
4 ±

√
3x− 12, are bounds of respective inner loops in the code shown in Figure 5.22(b).

Our main result (cf. Theorem 5.14) states that the needed polynomials and their roots
can be computed, if the index sets are described by polynomial inequalities.

We are aware of three frequent sources of non-linearities:

1. The source program contains non-linear loop bounds. This is the case, e.g., in the
Sieve of Eratosthenes (cf. Section 5.5.9). The outermost loop has a non-linear bound
and can be written as a for loop, in C-like languages as for (i=2; i*i<=n; i++).

2. The source program has non-constant strides. Before transformations are applied
to the program model, the loop strides are normalised to unit strides, such that
every integral point in the index set represents an execution of the loop body. For
example, the loop for (j=0; j<=n; j+=i) is normalised to for (k=0; k*i<=n; k++),
replacing j by k*i in the loop body. Normalisation is a necessary step in automatic
loop program transformation, since code generators usually generate code which
scans every integral point in the index sets (cf. the definition of the code generation
problem, Definition 5.11).

3. A non-linear transformation can be applied to the program. For example, it has
been shown that non-linear schedules can improve the performance of solving affine
recurrence equalities substantially over linear schedules. An example is presented in
Section 5.5.9.

86 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

x

y

0 1

1

0

4

94 p

(a)

(b)

(c)

Figure 5.23: Integer points in 0 ≤ x ∧ 0 ≤ y ≤ √
x

All these cases could not be handled by a general procedure so far, since no code could be
generated in the presence of non-linearities. We illustrate here the feasibility of code gen-
eration for non-linear, non-convex domains, although the efficiency of the code generation
procedure has to be improved to be applicable to bigger examples (cf. Section 5.5.9).

An objection to non-linear code generation, which is sometimes raised, is that the set of
integral points described by semi-algebraic sets can be described by a union of polyhedra.
Figure 5.23 shows the iteration domain 0 ≤ x ≤ p ∧ 0 ≤ y ≤ √

x (the bound y =
√
x is

marked with (a)) and the integer hull defined by an inscribed polytope (upper bound on
y marked with (b)) and an even tighter inscribed union of rectangles (marked with (c)).
But one can only inscribe the integer hull polytope(s) for a given value of the parameter
p. With growing p, the number of facets/polytopes increases without limit. There is no
way to describe the integer hull with a finite union of linearly parametrised polyhedra.

Lemma 5.9. The set D(p) := {(x, y) ∈ Z2 | 0 ≤ x ≤ p∧0 ≤ y ≤ √
x} cannot be described

by a finite union of parametric polyhedra, i.e., there exists no m ∈ N+ and polyhedra
P1(p), . . . , Pm(p) such that D(p) = Z2 ∩ ⋃m

i=1 Pi(p).

Proof. Assume that m ∈ N+ and polyhedra P1(p), . . . , Pm(p) exist such that D(p) =
Z2 ∩ ⋃m

i=1 Pi(p). Then, by Ehrhart theory (cf. Section 2.1.7) since D(p) is a finite union
of Z-polyhedra, card

(
D(p)

)
must be a piecewise quasi-polynomial. Since there can only

be finitely many case distinctions in the piecewise quasi-polynomials, there exists a quasi-
polynomial c ∈ P[X] such that card

(
D(p)

)
= c(p) for infinitely many p ∈ N, where p = q2

is square (and q ∈ N). Let us now compute card
(
D(q2)

)
by summing up the number of

integral points in the inscribed rectangles (marked with (c) in Figure 5.23). Observe that
the ith rectangle (i ∈ N+) starts at x = (i − 1)2 and is i integer points high. The width
of the ith rectangle (without the right-hand border which is counted through the (i+ 1)th

rectangle) is i2− (i−1)2 = 2i−1. At x = p = q2, there are additional q+1 integer points.

card
(
D(q2)

)
= q + 1 +

q∑

i=1

i(2i− 1)

= q + 1 +
1

6
(4q3 + 3q2 − q)

=
2

3
q3 +

1

2
q2 +

5

6
q + 1

=
2

3
p

3

2 +
1

2
p+

5

6

√
p+ 1

Every constituent conl(c, i) for 0 ≤ i ≤ l − 1 (with l := lp(c)) is a polynomial from
Z[X]. At least one of these finitely many polynomials would have to coincide with the
just computed expression for card

(
D(p)

)
for infinitely many p, but this is impossible as

the computed expression is not a polynomial in p (it has fractional exponents). Hence, the
assumption that D(p) can be written as a finite union of parametric polyhedra is false.

5.5. Code Generation 87

5.5.3 Definition of the Code Generation Problem

Definition 5.10. A statement T (x) is a piece of code (in a given programming language)
which depends on a number of variables x = (x1, . . . , xn) (n ∈ N).

We need not specify statements T (x) more concretely, because we are only concerned
with the generation of code for scanning the index sets of the statements, i.e., loops, and
the statements themselves have no influence on the structure of the generated loops. The
loops are determined by the index sets of the statements. We consider only bounded
index sets, because unbounded index sets cannot be enumerated by proper for loops
with a finite lower and upper bound. Our code generation algorithm works, in principle,
also for unbounded index sets; only outputting code with proper for loops is, obviously,
impossible then.

We can now define the code generation problem.

Definition 5.11. Let k, n,m ∈ N, C ⊆ Zk. Given statements T1(x), . . . , Tm(x) and
domains D1(p), . . . ,Dm(p) ⊆ Zn, the problem of code generation is to generate a program
P which, for any given p ∈ C, executes all (and no more) operations Ti(x) with x ∈ Di(p)
for 1 ≤ i ≤ m, such that Ti(x) is executed before Tj(y) if x ≺ y for 1 ≤ j ≤ m, y ∈ Dj(p).

Note that our definition of the code generation problem requires the dimensionality of
the domains to agree and does not mention so-called scattering functions (i.e., the index
sets to enumerate are given as affine images of polytopes) as are supported by CLooG
[Bas04], for example. But this is no principal restriction, because scattering functions
(even non-invertible ones) and variations in dimensionality can be encoded in the general
definition – possibly losing efficiency both in the generation of the code and in the execution
of the generated code. Improving the algorithm for such special cases is on our future
agenda.

5.5.4 Code Generation by Cylindrical Algebraic Decomposition

Having seen an introductory examples in Section 5.5.1, let us now state precisely for which
index sets we can generate code and that the generated code is efficient in the sense that
it does not enumerate an integer superset of the given domains. We start by giving the
definitions we need for our main theorem and the algorithm.

5.5.5 Code Generation as Cylindrical Decomposition

A program solving the code generation problem has to enumerate the points of the index
sets of the statements in lexicographic order. This implies that the outermost dimension
is enumerated by one or a sequence of several loops and, inside every loop, the next
dimension is enumerated in dependence of the outer dimensions, etc. The concept of a
loop nest that scans a union of index sets lexicographically is captured by the following
definition.

Definition 5.12. A loop nest is called cylindrical for (x1, . . . , xn) in context C, if n = 0
and it is the empty loop nest (i.e., it consists only of a loop body), or n ≥ 1 and it is a
sequence of r ∈ N loops in x1

for (x1 = l1(p); x1 ≤ u1(p); x1++)

P1;

...

for (x1 = lr(p); x1 ≤ ur(p); x1++)

Pr;

such that all li and ui are continuous functions in p, li(p) ≤ ui(p) for every p ∈ C,
1 ≤ i ≤ r and ui(p) < li+1(p) for every p ∈ C, 1 ≤ i ≤ r − 1 and, for every 1 ≤ i ≤ r,
Pi is cylindrical for (x2, . . . , xn) in context C × [li(p), ui(p)] (note that x1 becomes a
parameter in the subprograms P1, . . . , Pr).

88 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

We call this kind of loop nest cylindrical, because the bounds of the loops define a
cylindrical decomposition of Rn. The lower bounds l1, . . . , lr and upper bounds u1, . . . , ur

of the loops in Definition 5.12 define a stack in R (given by the sections (l1, u1, . . . , lr, ur))
and, since the requirements for the inner dimensions are the same, the loops define a
cylindrical decomposition of Rn. Note that the loops do not scan every region of the
decomposition; for example, the region between the upper bound of a loop and the lower
bound of its successor is not scanned.

The code generation problem can now be reduced to computing a cylindrical decom-
position of Rn such that every region in the decomposition is, for every index set, either a
subset of this index set or disjoint from it. The code generated by code generators for the
polyhedron model like CLooG is, in fact, cylindrical. The solution to generating code for
the more general case with non-linear index set bounds relies on an algorithm for com-
puting a cylindrical decomposition of Rn. The algorithm cannot, in general, compute a
cylindrical decomposition with a minimal set of regions, because it computes a cylindrical
algebraic decomposition which has the additional restriction that the functions fi (which
define the sections of a stack) are polynomials on root expressions. Polyhedral code gen-
erators generate loop bounds which are maxima or minima of linear expressions for the
lower or upper bound of a polytope. Since the minimum or maximum of two expressions
is, in general, not a polynomial or a root expression, the code generated by our algorithm
for polyhedral input is longer than the code generated by polyhedral techniques (for an
example, cf. Section 5.5.9).

5.5.6 The Efficiency of a Solution

The definition of code generation (Definition 5.11) does not take efficiency into account.
For example, all examples shown in Figure 5.21 are solutions to the code generation
problem stated there, but obviously the code in Figure 5.21(a) is less efficient because it
evaluates two conditionals in the if statements in every iteration of the loop. A different
source of inefficiency are inner loops which have empty iteration sets for some iterations
of the outer loops, i.e., the outer loops enumerate points (in the outer coordinates) which
do not belong to integer solutions of the index sets. Very inefficient code can be generated
for a large class of code generation problems. To obtain some solution, it is sufficient to
enumerate some arbitrarily large but finite superset of the union of all index sets

⋃
Di(p)

and to test for every enumerated point x whether x ∈ Di(p) and execute Ti(x) if this is
the case (like in Figure 5.21(a)).

To capture the notion of an efficient program, which does not enumerate integral values
from a superset of the domains, we introduce the concept of a proper scan in R and Z
for cylindrical loop nests. The idea is to call a loop nest a proper Z-scan, if, for some
values enumerated by r outer loops of a loop nest, we can be sure that there is an integral
point in the domain that matches the enumerated values and, hence, the body of the loop
nest will be executed for the choice of the outer r dimensions. A less strict property,
called a proper R-scan, is that there exists any value (maybe with real values for the inner
dimensions) that matches the outer dimensions.

Definition 5.13. Let P be a cylindrical loop nest solving the code generation problem
for some domains and statements without if statements inside its loops. P is said to
perform a proper R-scan or a proper Z-scan, respectively, of the domains if for every loop
nest

for (x1 = l1(p); x1 ≤ u1(p); x1++)

...

for (xn = ln(p, x1, . . . , xn−1); xn ≤ un(p, x1, . . . , xn−1); xn++)

Tj(x1, . . . , xn);

surrounding an occurrence of Tj in P , for every 0 ≤ r ≤ n−1, and X = R or X = Z,

5.5. Code Generation 89

respectively, the following condition holds:

p ∈ C ∧
r∧

i=1

(
xi ∈ Z ∧ li(p, x1, . . . , xi−1) ≤ xi ≤ ui(p, x1, . . . , xi−1)

)

=⇒
(
∃xr+1, . . . , xn : xr+1, . . . , xn ∈ X : (x1, . . . , xn) ∈ Dj(p)

)

Note that, since the program is cylindrical, it is impossible for two distinct parts of the
program to enumerate the same values (x1, . . . , xr) for the outer dimensions (this would
violate the cylindricality of the program).

It is desirable to have programs which perform proper Z-scans, because this guarantees
that every iteration an outer loop performs will lead to at least one execution of the
body. In contrast, the proper R-scan property only guarantees that the program does
not enumerate integer points from a superset of the domains of the statements, but outer
loops may perform superfluous iterations which have empty inner loops. For example, the
program

for (x=0; x<=p; x++)

for (y=ceil(x/(2*p)); y<=1-floor(x/(2*p)); y++)

T(x,y);

performs a proper R-scan of the domain

D(p) = {(x, y) | 0 ≤ x ≤ p, 2x ≤ 2py + x ≤ 2p}

for p ≥ 0, because for every 0 ≤ x ≤ p there exists y ∈ R such that 2x ≤ 2py + x ≤ 2p,
for example, y = 0.5. Only the iteration x = 0 has a non-empty loop on y with y ∈ {0, 1}
but, for x ≥ 1, the real y-values of D lie only in the open interval between 0 and 1.
Cases like these do occur in practise when two index variables are linked by an equality
or a system of equalities which has integer “holes” in its solution set, as in the Sieve of
Eratosthenes and related example (cf. Section 5.5.9). On the other hand, the problem
is rarely caused by inequalities, i.e., inequalities with real solutions but without integral
solutions are infrequent in practise.

5.5.7 Code Generation for Semi-algebraic Sets

Theorem 5.14. Let C and Di be as in Definition 5.11, where the Di are bounded index
sets. The code generation problem can be solved with a cylindrical loop nest which performs
a proper R-scan of the domains if the extended index sets D̂i = {(p,x) |p ∈ C,x ∈ Di(p)}
are semi-algebraic. A solution can be computed algorithmically from the defining formulas
with polynomial (in)equalities for D1(p), . . . ,Dm(p) and C from a sign-invariant cylin-

drical algebraic decomposition of Rn for the formulas defining the D̂i and Algorithm 5.1.
The generated code performs a proper R-scan of the domains.

Proof. Let Ψ be the set of all polynomials in the formulas defining the D̂i. A sign-
invariant cylindrical algebraic decomposition of Rk+n for Ψ can be computed by well-
known algorithms, cf. Section 2.1.8. This yields decompositions Pj of Rj for 1 ≤ j ≤ k+n
with two important properties:

(1) For every 1 ≤ i ≤ m and S ∈ Pk+n, either S ⊆ D̂i or S ∩ D̂i = ∅. This is due to
the sign invariance of the decomposition. All ψ ∈ Ψ have constant sign on S and,
therefore, the truth value of the formula defining D̂i is constant on S.

(2) Due to the cylindrical nature of the decomposition, there exists a total order ⊳ on
the regions of Pj such that for w ∈ Rj−1 and regions S1, S2 ∈ Pj , S1 6= S2, and

A1 := {xj ∈ R | (w, xj) ∈ S1},
A2 := {xj ∈ R | (w, xj) ∈ S2},

90 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

i.e., A1 and A2 are the xj-coordinates of points “above”w in S1 and S2, respectively,
the implication S1⊳ S2 ⇒ (∀a1, a2 : a1 ∈ A1, a2 ∈ A2 : a1 < a2) holds.

Code is generated as specified by Algorithm 5.1. It is a recursive procedure which, in
each step of the recursion, generates the loops for the next dimension. The main code
generation function is code_gen(S,t,d), where d is the number of the current dimension,
S a sector or section from the decomposition of Rd−1 and t ∈ S, a so-called test point
which is used (in the base case of the recursion) to test whether a domain D̂i is a subset
of the current region (for which loops are generated). These properties of S, d and t are
an invariant of the recursion.

Code generation starts with S = {()}, t = (), d = 1. Note that S is the only sector
of a decomposition of R0 (d − 1 = 0), and t ∈ S holds. In each step of the recur-
sion, code is generated for the fi-sections and (fi, fi+1)-sectors over S in the functions
section_code and sector_code, respectively. Note that the code is composed such that
the lexicographic ordering is respected due to property (2) of the decompositions. The
code generated is different depending on whether the current dimension d is a parameter
dimension (1 ≤ d ≤ k) or an index set variable (k + 1 ≤ d ≤ k + n). For a parameter
dimension, a conditional statement is generated that checks that the actual value of the
parameter satisfies the constraint imposed by the current section or sector. For an index
set dimension, the code generated is a loop that enumerates the integral points between
the two sections of a sector (if code for a sector is generated), or a loop with exactly one
iteration if and only if the section has an integral value (for the given values of the outer
dimensions). Note that, in the course of the recursion, a test point t ∈ S is constructed.
The function rational_between(a,b) is used to compute a rational point between a and
b (note that a, b ∈ A in general).

The base case of the recursion is d = n+k+1, in which no more loops are generated and
the loop body is written. If t ∈ D̂i for a domain D̂i, then S ⊆ D̂i; otherwise S ∩ D̂i = ∅
(due to property (1) of the decomposition). That is, the body of the loop nest generated

has to contain exactly the statements Ti for which t ∈ D̂i holds.

Note that our algorithm generates code which has exactly one lower and one upper
bound in each loop generated.

Let us illustrate the relation between the index set, a cylindrical algebraic decom-
position and the code generated for the example shown in Figure 5.24. The roots (i.e.,
sections) for x defining R1 are 1, 4, 7, i.e., we have to handle the cases x = 1, 1 < x < 4,
x = 4, 4 < x < 7, and x = 7. For 1 ≤ x < 4, the decompositions of {1} × R and]1, 4[×R
are given by the roots 1 and 9 for y. For x = 4, the roots for y are given by 1, 4, and 9.
For 4 < x < 7, the roots for y are 1, 4 −

√
3x− 12, 4 +

√
3x+ 12, and 9 and, for x = 7,

we have the roots 1, 4 +
√

3x+ 12, and 9. The sections and test points (i.e., points which
lie on each of the sections and in each of the sectors and are used to test whether the
respective region is part of a domain) for the domain are shown in Figure 5.24(b). The
roots correspond directly to the loop bounds of the code in Figure 5.24(c).

5.5.8 Improving the Code

The example in Figure 5.24 shows that the code generated by the algorithm is quite
lengthy. The key insight to reducing the code size is that the loops for neighbouring
regions (sections and sectors) in a stack often contain the same inner loops and loop
bodies. For example, the loops on x for 1 ≤ x ≤ 1 and 1 < x < 4 contain syntactically
identical code. These two loops on x could be combined straight away into one loop for
1 ≤ x < 4. Combing this loop with the loop for 4 ≤ x ≤ 4 is not possible at first, since at
x = 4, there is an additional case distinction for y = 4 (the apex of the parabolic piece of
the border). But, of course, if we combine the loops on y inside the loops on x first, the
first three loops an x only contain a loop on y for 1 ≤ y ≤ 9 in their respective bodies,
and 1 ≤ x ≤ 4 can be scanned by a single loop on x (with a single loop on y inside).

5.5. Code Generation 91

// Generate loops from a cylindrical decomposition

// n: dimensionality of the index sets

// k: number of parameters

// T1, . . . , Tm: statements

// D̂1, . . . , D̂m: extended index sets of the statements

// Parameters of code_gen:

// S: generate loops for the cylinder over this section or sector

// t: a test point from S

// d: level of the loops to be generated

code_gen(S,t,d):
code = "";

if d = n+ k + 1 then

for i:=1 to m
if t ∈ D̂i then code += "Ti(x1, ..., xn);";

end for

else

let f1, . . . , fr be the sections defining the stack over S

f0 = −∞;

for i:=1 to r − 1
code += sector_code(S,fi−1,fi,t,d);
code += section_code(S,fi,t,d);

end for

code += sector_code(S,fr,+∞,t,d);
end if

return code;

section_code(S,f,t,d):
inner = code_gen(section(S,f),(t,f(t)),d+ 1);
if inner 6= "" then

if d ≤ k then

head = "if (pd = f)";
else

head = "for (xd−k=ceil(f); xd−k ≤floor(f); xd−k++)";

end if

return (head + "{" + inner + "}");

end if

return "";

sector_code(S,f,g,t,d):
t′ = (t,rational_between(f(t),g(t)));
inner = code_gen(sector(S,f,g),t′,d+ 1);
if inner 6= "" then

if d ≤ k then

head = "if (pd > f and pd < g)";
else

if f 6= −∞ then f = ⌊f⌋+1;
if g 6= +∞ then g = ⌈g⌉-1;
head = "for (xd−k=f; xd−k ≤ g; xd−k++)";

end if

return (head + "{" + inner + "}");

end if

return "";

Algorithm 5.1: Code generation by cylindrical algebraic decomposition

92 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

x

y

0 1 4 7

1

9

0

4

(a) depiction

x

y

0 1 4 7

1

9

0

4

(b) CAD sections and test points

for (x=1; x<=1; x++) {

for (y=1; y<=1; y++) T1(x,y);

for (y=1+1; y<=9-1; y++) T1(x,y);

for (y=9; y<=9; y++) T1(x,y);

}

for (x=1+1; x<=4-1; x++) {

for (y=1; y<=1; y++) T1(x,y);

for (y=1+1; y<=9-1; y++) T1(x,y);

for (y=9; y<=9; y++) T1(x,y);

}

for (x=4; x<=4; x++) {

for (y=1; y<=1; y++) T1(x,y);

for (y=1+1; y<=4-1; y++) T1(x,y);

for (y=4; y<=4; y++) T1(x,y);

for (y=4+1; y<=9-1; y++) T1(x,y);

for (y=9; y<=9; y++) T1(x,y);

}

for (x=4+1; x<=7-1; x++) {

for (y=1; y<=1; y++)

T1(x,y);

for (y=1+1; y<=
⌈
4−√

3x−12
⌉
-1; y++)

T1(x,y);

for (y=
⌈
4−√

3x−12
⌉
; y<=

⌊
4−√

3x−12
⌋
; y++)

T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=

⌊
4+

√
3x−12

⌋
; y++)

T1(x,y);

for (y=
⌊
4+

√
3x−12

⌋
+1; y<=9-1; y++)

T1(x,y);

for (y=9; y<=9; y++)

T1(x,y);

}

for (x=7; x<=7; x++) {

for (y=1; y<=1; y++)

T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=

⌊
4+

√
3x−12

⌋
; y++)

T1(x,y);

for (y=
⌊
4+

√
3x−12

⌋
+1; y<=9-1; y++)

T1(x,y);

for (y=9; y<=9; y++)

T1(x,y);

}
(c) generated code to scan the domain

Figure 5.24: Code for domain {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y − 4)2 + 12 − 3x ≥ 0}
according to Algorithm 5.1

5.5. Code Generation 93

The situation is more complex with the two loops on x for 4 < x ≤ 7. Combining the
loops on y inside the loops on x yields the following two loop nests:

for (x=4+1; x<=7-1; x++) { for (x=7; x<=7; x++) {

for (y=1; y<=
⌊
4−√

3x−12
⌋
; y++) for (y=1; y<=1; y++)

T1(x,y); T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=9; y++) for (y=

⌈
4+

√
3x−12

⌉
; y<=9; y++)

T1(x,y); T1(x,y);

} }

The obvious problem which prevents us from combining these two loops is that the upper
bounds of the respective first loops on y are different, namely

⌊
4−√

3x−12
⌋

and 1. But the
values of the bounds are the same for x = 7, namely 1. This happens since both expressions
are roots of polynomials which define the iteration domain and an implementation of a
CAD algorithm naturally selects the root with the lower degree if two roots coincide in
a stack (here: the stack over x = 7). This problem occurs whenever roots of different
polynomials cross. We have to note that “crossing polynomials” excludes polynomials
which vanish on an entire cylinder (i.e., which are called identically zero in a term used
in the CAD literature). For example, the polynomial x− 1, whose root x = 1 crosses the
roots y = 1 and y = 7 (and which vanishes on {1} × R), does not inhibit the combining
of the loops for x = 1 and 1 < x < 4. To be able to combine loops in the general case
that several polynomials have the same root in a stack, the CAD procedure must retain
all the roots which can be used as bounds (i.e., which define the sections), and the code
generation procedure selects those which achieve a maximum of combining possibilities.
So the intermediate code (after combining the loops on y) is

for (x=4+1; x<=7-1; x++) {

for (y=1; y<=
⌊
4−√

3x−12
⌋
; y++)

T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=9; y++)

T1(x,y);

}

for (x=7; x<=7; x++) {

for (y=OneOf{1,
⌈
4−√

3x−12
⌉
}; y<=OneOf{1,

⌊
4−√

3x−12
⌋
}; y++)

T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=9; y++)

T1(x,y);

}

where OneOf means that the code output procedure is free to choose either of the given
roots. Combining loops as much as possible yields the desired simple code which has
already been shown in Figure 5.22(b).

5.5.9 Examples

In this section we give several examples of the code generated by our procedure outlined in
Section 5.5.7. We start by comparing the code generated to that generated by polyhedral
code generators for polyhedral input before we show some non-polyhedral cases.

Comparison with Polyhedral Code Generation

A Triangular Index Set As a first example, consider the triangular domain D =
{(x, y) | y ≥ 1, y ≤ x, y ≤ −x+p} depicted in Figure 5.25. Polyhedral code generators like
CLooG have no difficulty combining parts of index sets bounded by different upper (or
lower) bounds, like the bounds y ≤ x and y ≤ −x+ p in the example. CLooG implicitly
computed a cylindrical decomposition of R2 with the two sections x1 = 1 and x2 = p to

94 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

x

y

0 1

1

0

5

8
(a) depiction for p = 9

if (p == 2) {

for (x=1; x<=1; x++) {

for (y=1; y<=1; y++)

T1(x,y);

}

}

if (2+1 <= p) {

for (x=1; x<=⌊p
2⌋; x++) {

for (y=1; y<=x; y++)

T1(x,y);

}

for (x=⌊p
2⌋+1; x<=p-1; x++) {

for (y=1; y<=-x+p; y++)

T1(x,y);

}

}
(b) our code

for (x=1; x<=p-1; x++) {

for (y=1; y<=min(-x+p,x); y++)

T1(x,y);

}
(c) code generated by CLooG

Figure 5.25: Example: domain D = {(x, y) | y ≥ 1, y ≤ x, y ≤ −x+ p}

decompose R and the two sections

y1(x) = 1

and y2(x) =

{
x if 1 ≤ x ≤ p

2

−x+ p if p
2 < x ≤ p

to decompose [1, p]×R. Note that this decomposition is not algebraic (cf. Definition 2.45),
because y2 is not a root of a polynomial (due to its non-smoothness at x = p

2). Therefore,
a cylindrical algebraic decomposition must have an additional section at x3 = p

2 and the
scanning of the x-dimension in the code generated by our method is divided into two
loops for both halves of the triangle. This is a slight optimisation in terms of loop bound
evaluation costs, because the polyhedral code has to evaluates two upper bounds for y
and take their minimum for every value of x. But, since loop bounds are usually only
evaluated rarely compared to the number of executions of the loop body, the polyhedral
code is to be considered superior, because it does not duplicate the loop body.

Quilleré’s Example As a second example, we consider the problem given (and solved)
by Quilleré et al. [QRW00] with

D1(m,n) = {(x, y) | 1 ≤ x ≤ n, 1 ≤ y ≤ m}
D2(m,n) = {(x, y) |x = y, 3 ≤ x ≤ n}

shown in Figure 5.26. The codes were generated assuming that m,n ≥ 4. Again, the
polyhedral code is shorter. The reason here is that our algorithm only generates loops
which are non-empty in the reals (a proper R-scan does not guarantee non-emptiness in
the integers, though), but CLooG’s code can contain empty loops for certain parameter
constellations. For example, the last loop on x in CLooG’s code is empty for m ≥ n.

5.5. Code Generation 95

x

y

0 1

1

0

5

8

8 T

T

2

1

(a) depiction for m = 5, n = 8

for (x=1; x<=2; x++) {

for (y=1; y<=m; y++) T1(x,y);

}

for (x=3; x<=min(m-1,n); x++) {

for (y=1; y<=x-1; y++) T1(x,y);

T1(x,x); T2(x,x);

for (y=x+1; y<=m; y++) T1(x,y);

}

if (m <= n) {

for (y=1; y<=m-1; y++) T1(m,y);

T1(m,m); T2(m,m);

}

for (x=m+1; x<=n; x++) {

for (y=1; y<=m; y++) T1(x,y);

T2(x,x);

}
(b) CLooG code

if (n <= m-1) {

for (x=1; x<=3-1; x++) { for (y=1; y<=m; y++) T1(x,y); }

for (x=3; x<=n; x++) {

for (y=1; y<=x-1; y++) T1(x,y);

for (y=x; y<=x; y++) { T1(x,y); T2(x,y); }

for (y=x+1; y<=m; y++) T1(x,y); }

} else if (n == m) {

for (x=1; x<=3-1; x++) { for (y=1; y<=OneOf(m,n); y++) T1(x,y); }

for (x=3; x<=OneOf(n,m)-1; x++) {

for (y=1; y<=x-1; y++) T1(x,y);

for (y=x; y<=x; y++) { T1(x,y); T2(x,y); }

for (y=x+1; y<=OneOf(m,n); y++) T1(x,y); }

for (x=OneOf(n,m); x<=OneOf(n,m); x++) {

for (y=1; y<=OneOf(m,x,n)-1; y++) T1(x,y);

for (y=OneOf(m,x,n); y<=OneOf(m,x,n); y++) { T1(x,y); T2(x,y); } }

} else if (m+1 <= n) {

for (x=1; x<=3-1; x++) { for (y=1; y<=m; y++) T1(x,y); }

for (x=3; x<=m-1; x++) {

for (y=1; y<=x-1; y++) T1(x,y);

for (y=x; y<=x; y++) { T1(x,y); T2(x,y); }

for (y=x+1; y<=m; y++) T1(x,y); }

for (x=m; x<=m; x++) {

for (y=1; y<=OneOf(m,x)-1; y++) T1(x,y);

for (y=OneOf(m,x); y<=OneOf(m,x); y++) { T1(x,y); T2(x,y); } }

for (x=m+1; x<=n; x++) {

for (y=1; y<=m; y++) T1(x,y);

for (y=x; y<=x; y++) T2(x,y); }

}
(c) our code

Figure 5.26: Example from [QRW00] (under the assumption m,n ≥ 4)

96 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

for (t=3*n-8+1; t<=3*n-6; t++)

parfor (x=2; x<=⌊ t−n
n−4⌋; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);

for (t=3*n-6+1; t<=n*n-7*n+16; t++)

parfor (x=⌈ t−n
n−3⌉; x<=⌊ t−n

n−4⌋; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);

for (t=n*n-7*n+16+1; t<=n*n-3*n+4; t++)

parfor (x=⌈ t−n
n−3⌉; x<=⌊ t−4

n−3⌋; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);

for (t=n*n-3*n+4+1; t<=n*n-2*n; t++)

parfor (x=⌈ t−n
n−3⌉; x<=n; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);
(a) code generated by CAD for n ≥ 7

for (t=3*n-8; t<=n*n-2*n; t++)

parfor (x=max(2,⌈ t−n
n−3⌉); x<=min(min(n,⌊ t−4

n−3⌋),⌊ t−n
n−4⌋); x++)

for (y=max(max(-4,-x+n),t+(-n+3)*x); y<=min(n,t+(-n+3)*x); y++)

T1(x,y);
(b) code generated by Fourier-Motzkin elimination for n ≥ 7

Figure 5.27: Example 2.2 from [AZ00] with schedule θ(x, y) = (n− 3) · x+ y

Non-polyhedral Examples

A Quadratic Schedule It has been argued [AZ00] that non-linear schedules found
by quadratic programming can provide substantially shorter overall execution times. An
example used by Achtziger et al. [AZ00, Example 2.2], for which we presented the com-
putation of a schedule linear in the variables in Section 5.2.1, is a recurrence equality with
the index set D(n) defined by

2 ≤ x ≤ n

4 ≤ y ≤ n

n− x ≤ y

for n ≥ 7 and the following dependences:

(x− 1, x) → (x, y)

(x, y − 1) → (x, y)

Achtziger et al. compute θ1(x, y) = (n − 3) · x + y as a linear (in x and y) schedule and
θ2(x, y) = 1

2x
2 − 5

2x + y − 4 as a quadratic, nearly optimal schedule. To generate code
for a parallel execution, we use the equality defining the schedule (i.e., t = θi(x, y)) and
the original index set to define the domain of the statement and generate code for the
variable ordering (t, x, y). For θ1, we can compare the code generated by our algorithm
with code generated by applying our generalised version of Fourier-Motzkin elimination
[GGL04], since there is only one index set which is, in addition, a conjunction of formulas
linear in the variables. Both codes are shown in Figures 5.27(a) and 5.27(b). The code
generated by Fourier-Motzkin elimination is shorter because it generates several lower and
upper bounds for each loop, if required. Our CAD based code is longer, but incurs less
overhead in the loop bounds. For the quadratic θ2, the code generated by CAD is depicted
in Figure 5.28.

5.5. Code Generation 97

inline void T1(int t, int x) { int y=-x*x+5*x+2*t+4; ... }

for (t=⌈n−13
2 ⌉; t<=⌊n−13

2 ⌋; t++)

parfor (x=⌈3 −
√

2t− n+ 13⌉; x<=⌊3 −
√

2t− n+ 13⌋; x++)

T1(t,x);

for (t=⌊n−13
2 ⌋+1; t<=⌊n−12

2 ⌋; t++)

parfor (x=⌈3 −
√

2t− n+ 13⌉; x<=⌊3 +
√

2t− n+ 13⌋; x++)

T1(t,x);

for (t=⌊n−12
2 ⌋+1; t<=⌊ 4∗n−41

8 ⌋; t++)

parfor (x=2; x<=⌊3 +
√

2t− n+ 13⌋; x++)

T1(t,x);

for (t=⌊ 4n−41
8 ⌋+1; t<=⌊n−10

2 ⌋; t++) {

parfor (x=2; x<=⌊ 5−
√

8t−4n+41
2 ⌋; x++)

T1(t,x);

parfor (x=⌈ 5+
√

8t−4n+41
2 ⌉; x<=⌊3 +

√
2t− n+ 13⌋; x++)

T1(t,x);

}

for (t=⌊n−10
2 ⌋+1; t<=⌈n−4

2 ⌉-1; t++)

parfor (x=⌈ 5+
√

8t−4n+41
2 ⌉; x<=⌊3 +

√
2t− n+ 13⌋; x++)

T1(t,x);

for (t=⌊n−4
2 ⌋+1; t<=⌊n2−13n+36

2 ⌋; t++)

parfor (x=⌈ 5+
√

8t−4n+41
2 ⌉; x<=⌊3 +

√
2t− n+ 13⌋; x++)

T1(t,x);

for (t=⌊n2−13n+36
2 ⌋+1; t<=⌊n2−5n

2 ⌋; t++)

parfor (x=⌈ 5+
√

8t−4n+41
2 ⌉; x<=⌊ 5+

√
8t−4n+41

2 ⌋; x++)

T1(t,x);

for (t=⌊n2−5n
2 ⌋+1; t<=⌊n2−4n−4

2 ⌋; t++)

parfor (x=⌈ 5+
√

8t−4n+41
2 ⌉; x<=n; x++)

T1(t,x);

Figure 5.28: Code generated by CAD for Example 2.2 from [AZ00] with

schedule θ2(x, y) = 1
2x

2 − 5
2x+ y − 4

for (i=0; i<=m; i++)

A[i+n] = f(A[i]);
(a) Original program

for (t=⌈ 1−n
n

⌉; t<=⌊m
n
⌋; i++) {

parfor (i=max(n*t,0);i<=min(n*t+n-1,m);i++){

r = i-n*t;

A[i+n] = f(A[i]);

}

}
(b) Parallel code generated by Fourier-Motzkin

for (t=⌈ 1−n
n

⌉; t<=0; t++)

parfor (i=0; i<=n*t+n-1; i++)

A[i+n] = f(A[i]);

for (t=1; t<=⌊m−n+1
n

⌋; t++)

parfor (i=n*t; i<=n*t+n-1; i++)

A[i+n] = f(A[i]);

for (t=⌊m−n+1
n

⌋+1; t<=⌊m
n
⌋; t++)

parfor (i=n*t; i<=m; i++)

A[i+n] = f(A[i]);
(c) Parallel code generated by CAD

Figure 5.29: Example program for non-linear schedule

98 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

for (i=2; i*i<=n; i++) {

for (j=i*i; j<=n; j+=i)

A[j]++;

}
(a) sequential code

for (i=2; i*i<=n; i++) {

for (k=i; k*i<=n; k++) {

j=k*i;

A[j]++;

}

}
(b) normalised sequential code

parfor (j=4; j<=n; j++) {

for (i=2; i<=⌊√j⌋; i++) {

for (k=⌈ j
i
⌉; k<=⌊ j

i
⌋; k++)

A[j]++;

}

}
(c) parallel code

Figure 5.30: Example: computing the number of 2-factorisations

Schedule θ(i) = ⌊ i
n
⌋ Let us again consider an example from Section 5.2 shown again in

Figure 5.29(a). Section 5.2 computes the schedule θ(i) = ⌊ i
n
⌋ for this program and notes

that a suitable description for code generation is given by:

0 ≤ i ≤ m

n · t+ r = i

0 ≤ r ≤ n− 1

where t is the time coordinate and r is an additional iterator whose value equals i mod n.
The codes generated for m ≥ n ≥ 1 by generalised Fourier-Motzkin elimination and
CAD are shown in Figures 5.29(b) and 5.29(c), respectively. The unnecessary assignment
r=i-n*t (i.e., a loop on r with only one iteration) will be optimised away by an optimising
compiler; to reduce the size of the code shown, we omitted these statements in the code
generated by CAD entirely. The main difference between the Fourier-Motzkin and CAD
code is the reduced loop overhead achieved by increased code size.

2-Factorisations The Sieve of Eratosthenes is a well-known algorithm for computing
the prime numbers in 2, . . . , n. A related, but slightly different, problem is to compute
the number of factorisations of the numbers 2, . . . , n into two factors (excluding 1) not
considering the ordering of the factors. For example, 96 can be factored as 2 · 48, 3 · 32,
4 · 24, 6 · 16, and 8 · 12. The sequential code for computing the number of factorisations
into two factors is given in Figure 5.30(a). At the end of the program, A[j] will contain
the number of factorisations of j (assuming that A is initialised with all zeros). Obviously,
the loop on j can be executed in parallel for a given i, since different j iterations access
different elements of A. But such a parallel execution requires a synchronisation after the
loop on j for every iteration of i. It is desirable to exchange the loops on i and j in order
to make the outer loop the parallel loop. To do so, we first have to normalise the program
such that all loops have unit stride. This is achieved by applying the substitution j := k · i
on the loop on j. The resulting normalised program is shown in Figure 5.30(b). Now,
code generation for the domain defined by:

2 ≤ i∧ i2 ≤ n

i ≤ k∧ k · i ≤ n

j = k · i

with the variable ordering (j, i, k) can be applied. This yields the code shown in Fig-
ure 5.30(c). The loop on j, which is now the outermost loop, is marked as parallel. We

5.5. Code Generation 99

have to point out that the transformed code is less efficient than the original code be-
cause, by exchanging the loops on i and j, it is not guaranteed (by the construction of
the loops) that j is a multiple of i. That is why the loop on k, whose only function is to
check whether i divides j, has to be present in the code, and it has many iterations which
are empty in the integers. So a substantial number of processors is required to achieve a
speedup.

5.5.10 Combining Polyhedral Code Generation with CAD

Cylindrical algebraic decomposition is less efficient than applying a polyhedral code gen-
erator. In addition, we expect many bounds in code generation problems to be affine and
only a few to be non-linear. This motivates the desire for a combined code generation
procedure, i.e., a procedure which handles the polyhedral parts of a problem by polyhe-
dral code generation techniques and applies cylindrical algebraic decomposition only to
the non-linear parts.

In order to avoid a modification of existing polyhedral code generators, we have tried
to develop a procedure which uses a polyhedral code generator like CLooG [Bas04] as a
plug-in to handle the detected polyhedral parts. An alternative, which we have not been
pursuing further, would be to enhance a polyhedral code generation technique to take
non-linear bounds into account, e.g., when computing projections of iteration domains by
computing an appropriate cylindrical decomposition. Let us now define the concept of a
linear relaxation of a given quantifier-free formula.

Definition 5.15. Let ϕ ∈ Qf (V) be a conjunction of atomic formulas, i.e., ϕ =
∧m

i=1 αi

with atomic formulas α1, . . . , αm ∈ At(V). Then, we call ϕl defined by

ϕl :=
∧

{αi | 1 ≤ i ≤ m,αi ∈ Aff (V)}

the linear relaxation of ϕ. For an arbitrary ψ ∈ Qf (V), we define its linear relaxation ψl

by

ψl :=
r∨

i=1

βl
i with ψ+∨ =

r∨

i=1

βi,

i.e., the linear relaxation is given by the disjunction of the linear relaxations of every
disjunct in the positive disjunctive normal form ϕ+∨.

The relaxation of a conjunction removes any conjuncts which are not affine. Thus,
the feasible set of the formula can only grow, i.e., ϕ → ϕl holds in R, and that is why
we call ϕl a relaxation of ϕ. For arbitrary quantifier-free formulas, we define the linear
relaxation via a positive disjunctive normal form since, in arbitrary formulas, a removal
of subformulas can shrink the feasible set and then the test in the algorithm of whether a
non-linear bound is “sharp” would not work.

The code generation procedure is shown in Algorithm 5.2. It starts with iteration
domains ϕi and “tags” (statement identifiers) Ti (for 1 ≤ i ≤ m), the iteration variables
(x1, . . . , xn) and a context C which provides conditions on the parameters. The idea be-
hind this recursive algorithm is that, if the problem contains non-linearities, to project the
iteration domains to the outer dimensions (x1, . . . , xn−1) by eliminating xn and splitting
the projected sets according to whether the stack in the cylinder above them is defined by
linear bounds only, or not. If x = (x1, . . . , xn−1) satisfies ηi (for given values of the param-
eters), then, in the cylinder above x, the domain ϕi is defined by linear bounds, i.e., the
non-linear bounds impose weaker restrictions than the linear bounds. By recursion, code
is generated for all projections ηi∧ψi and ¬ηi∧ψi for the outer dimensions (x1, . . . , xn−1).
As soon as all bounds are linear, the problem is handed over to a polyhedral code genera-
tor. After generating code for the outer dimensions, the loops for the innermost dimension
xn are generated. Depending on whether the domain above a certain region has non-linear

100 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

Input: {(ϕ1, T1), . . . , (ϕm, Tm)}, (x1, . . . , xn), C where the ϕi are the domains of the
statements Ti, x1, . . . , xn are the loop iterators with x1 being the outermost loop and C
is the context (assumptions on the parameters).

a) Simplify all ϕi w.r.t. C.

b) If all ϕi are polyhedral, apply polyhedral code generator and problem is solved.

c) Let ψi be a quantifier-free equivalent of ∃xn(ϕi).

d) Compute ηi as a positive quantifier-free equivalent of ∀xn

(
ϕi ↔ ϕl

i) simplified under
C.

e) Generate code for the outer dimensions by calling the code generation procedure
recursively for {(ηi ∧ ψi, Ti,l) | 1 ≤ i ≤ m} ∪ {(¬ηi ∧ ψi, Ti,¬l) | 0 ≤ i ≤ m},
(x1, . . . , xn−1), C

f) In the generated code, replace every body with tags T for a region defined by κ by
the
1-dimensional code generated for {(ϕl

i, Ti) | Ti,l ∈ T} ∪ {(ϕi, Ti) | Ti,¬l ∈ T}, xn,
C ∪ {κ} according to the below subalgorithm.

g) Split the outer loops by the conditionals generated in the previous step to eliminate
these conditionals.

Subalgorithm to generate 1-dimensional code:

Input: {(ϕi, Ti) | 1 ≤ i ≤ m}, x, C

a) Simplify all ϕi w.r.t. C.

b) If all ϕi are polyhedral, call polyhedral code generation.

c) Otherwise, use CAD to generate code exploiting the context C to compute a CAD
of the relevant regions only.

Algorithm 5.2: Combined polyhedral and CAD code generation procedure

bounds or not, the innermost loop is generated either by a polyhedral code generator or
by cylindrical algebraic decomposition. By looking at whether the statement identifier is
tagged with l or ¬l, we know whether we can use ϕl

i or must use ϕi as bounds. The code
generated for the innermost dimension xn may contain case distinctions (if-statements)
on the outer dimensions x1, . . . , xn−1 and the parameters. To obtain efficient code, i.e.,
code without if-statements inside the loops, we finally split the outer loops according
to the conditions on x1, . . . , xn−1. Splitting the outer loops is easy if the conditions are
cylindrical themselves. This is guaranteed if the inner code has been generated by CAD.
If the inner code has been generated by a polyhedral code generator, all conditionals are
affine and we can apply Fourier-Motzkin elimination to them to obtain a cylindrical form.

Example 5.16. Consider the following code generation problem with two domains defined
by ϕ1 and ϕ2 for dimensions (x, y) with context C = ∅, depicted in Figure 5.31:

ϕ1 =
(
10 ≤ x ≤ 70 ∧ 10 ≤ y ≤ 90 ∧ (y − 40)2 + 1200 − 30x ≥ 0

)

ϕ2 =
(
(x− 40)2 + (y − 70)2 ≤ 102

)

Since there are non-linearities in the domains, we cannot apply a polyhedral code gener-
ation. Projecting onto the x-dimension yields the formulas:

ψ1 =
(
10 ≤ x ≤ 70), ψ2 =

(
30 ≤ x ≤ 50)

5.5. Code Generation 101

x

y

0 10 40 70

10

90

0

40

Figure 5.31: Example for combined polyhedral/CAD code generation

The linear relaxations of the original domains are:

ϕl
1 =

(
10 ≤ x ≤ 70 ∧ 10 ≤ y ≤ 90)

ϕl
2 =

(
true

)

and the formulas ηi (the quantifier-free equivalent of ∀y(ϕi ↔ ϕl
i)) are given by:

η1 =
(
10 ≤ x ≤ 40

)
, η2 =

(
false

)

So the code generation continues for x with input:

{(η1 ∧ ψ1, T1,l), (¬η1 ∧ ψ1, T1,¬l), (η2 ∧ ψ2, T2,l), (¬η2 ∧ ψ2, T2,¬l)}

which is (after simplification) equivalent to

{(1 ≤ x ≤ 40, T1,l), (41 ≤ x ≤ 70, T1,¬l), (30 ≤ x ≤ 50, T2,¬l)}.

Since the projected domains are all polyhedral, we can apply polyhedral code generation
and obtain:

for (x=10; x<=29; x++)

T1,l;

for (x=30; x<=40; x++) {

T1,l;

T2,¬l;

}

for (x=41; x<=50; x++) {

T1,¬l;

T2,¬l;

}

for (x=51; x<=70; x++)

T1,¬l;

as preliminary code for the outer dimension. Code generation continues for the inner
dimension after returning from the recursive invocation of the procedure for the outer
dimension. In this example, we have four invocations of code generation for the inner
dimension, one for each of the loops on x generated for the outer dimension. For the case

102 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

for (x=10; x<=29; x++)

for (y=10; y<=90; y++)

T1(x, y);
for (x=30; x<=40; x++) {

for (y=10; y<=⌈69 −
√

10 − (x− 40)2⌉; y++)

T1(x, y);

for (y=⌈70 −
√

10 − (x− 40)2⌉; y<=⌊70 +
√

10 − (x− 40)2⌋; y++) {

T1(x, y);
T2(x, y);

}

for (y=⌊71 +
√

10 − (x− 40)2)⌋; y<=90; y++)

T1(x, y);
}

for (x=41; x<=50; x++) {

for (y=10; y<=⌊40 −
√

30x− 1200⌋; x++)

T1(x, y);

for (y=⌈40 +
√

30x− 1200⌉; y<=⌈69 −
√

10 − (x− 40)2⌉; y++)

T1(x, y);

for (y=⌈70 −
√

10 − (x− 40)2⌉; y<=⌊70 +
√

10 − (x− 40)2⌋; y++) {

T1(x, y);
T2(x, y);

}

for (y=⌊71 +
√

10 − (x− 40)2⌋; y<=90; y++)

T1(x, y);
}

for (x=51; x<=70; x++) {

for (y=10; y<=⌊40 −
√

30x− 1200⌋; x++)

T1(x, y);
for (y=⌈40 +

√
30x− 1200⌉; y<=90; y++)

T1(x, y);
}

Figure 5.32: Code generated for input shown in Figure 5.31

10 ≤ x ≤ 29, the constraints on y are equivalent to ϕl
1 (because T1 is additionally tagged

with l) and we call a polyhedral code generator for the loops on y with the new context
C ∪ {10 ≤ x ≤ 29}. In the three cases with x ≥ 30, there are non-linear constraints
involved, so we call CAD-based code generation for each part. To reduce the number
of computations to be made, we exploit the new context (e.g., C ∪ {30 ≤ x ≤ 40}) to
compute a CAD of the relevant subset of R2 only. For example, for 30 ≤ x ≤ 40, we only
need to compute sections and test points which actually satisfy 30 ≤ x ≤ 40. Inserting
the generated codes for y, we obtain the final code which is shown in Figure 5.32.

In this example, code generation for the inner dimension (after the recursion) does not
produce a case distinction in the outer dimensions. Let us present another example to
illustrate why splitting the outer loops by conditionals created by the generation of the
inner loops is necessary in the general case.

Example 5.17. Consider the following domain, depicted in Figure 5.33:

ϕ =
(
10 ≤ x ∧ 10 ≤ y ≤ 90 ∧ (y − 40)2 + 1200 − 30x ≥ 0 ∧ (x− 70)2 + (y − 80)2 ≤ 102

)

Obviously, the formula ψ is 10 ≤ x ≤ 70 and η is 10 ≤ x ≤ 40. Therefore, the code
generation continues with:

{(10 ≤ x ≤ 40, T1,l), (41 ≤ x ≤ 70, T1,¬l)}

5.5. Code Generation 103

x

y

0 10 40 70

10

90

0

40

Figure 5.33: A domain which needs an additional split

and we obtain the following code after generating the outer loops on x and the inner
loop on y for 10 ≤ x ≤ 40 by polyhedral code generation and the inner loops on y for
41 ≤ x ≤ 70 by CAD:

for (x=10; x<=40; x++)

for (y=10; y<=90; y++)

T1(x, y);
for (x=41; x<=70; x++) {

if (x<=60) {

for (y=10; y<=⌊40 −
√

30x− 1200⌋; x++)

T1(x, y);
for (y=⌈40 +

√
30x− 1200⌉; y<=90; y++)

T1(x, y);
} else if (x>=61) {

for (y=10; y<=⌊40 −
√

30x− 1200⌋; x++)

T1(x, y);

for (y=⌈40 +
√

30x− 1200⌉; y<=⌊80 −
√

100 − (x− 70)2⌋; y++)

T1(x, y);

for (y=⌈80 +
√

100 − (x− 70)2⌉; y<=90; y++)

T1(x, y);
}

}

As we can see, the non-linear part of the iteration domain (41 ≤ x ≤ 70) needs a split
at x = 60, but the formula η does not provide this split as it only separates linear and
non-linear parts. By partitioning the loop on x by the two conditionals x ≤ 60 and x ≥ 61,
we obtain the final code:

104 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

for (x=10; x<=40; x++)

for (y=10; y<=90; y++)

T1(x, y);
for (x=41; x<=60; x++) {

for (y=10; y<=⌊40 −
√

30x− 1200⌋; x++)

T1(x, y);
for (y=⌈40 +

√
30x− 1200⌉; y<=90; y++)

T1(x, y);
}

for (x=61; x<=70; x++) {

for (y=10; y<=⌊40 −
√

30x− 1200⌋; x++)

T1(x, y);

for (y=⌈40 +
√

30x− 1200⌉; y<=⌊80 −
√

100 − (x− 70)2⌋; y++)

T1(x, y);

for (y=⌈80 +
√

100 − (x− 70)2⌉; y<=90; y++)

T1(x, y);
}

5.5.11 Generalising a Polyhedral Code Generator to Non-linear

Parameters

As a alternative to code generation based on cylindrical algebraic decomposition, it is
worthwhile to try to generalise a polyhedral code generation algorithm to non-linear pa-
rameters. Such a code generation procedure is less general than one based on cylindrical
algebraic decomposition as it cannot handle non-linear variables. But with non-linear pa-
rameters alone, the code generator can solve problems that go beyond the classical case.
For example, generating tiled loop code with parametric tile sizes for several statements
is one such problem.

We have implemented a code generator for non-linear parameters by generalising a
simple polyhedral code generator to non-linear parameters. Unfortunately, we did not
have enough time, yet, to advance this prototype far enough to present examples which
allow a comparison against the CLooG code generator.

To discuss the generalisation, let us review the operations a polyhedral code generation
relies on:

(1) Given two polyhedral iteration sets D(p) and E(p), a partitioning4 of D(p)∪E(p)
can be computed such that:

(a) each partition F (p) is a parametric polyhedron and is a subset of exactly one
of D(p) ∩E(p), D(p) − E(p) or E(p) −D(p), and

(b) the partitions can be ordered by a partial order ⊳ such that for two partitions
F (p), G(p), F (p) 6= G(p) with F (p) ⊳ G(p) the following condition holds:
(x1, . . . , xn−1, xn) ∈ F (p), (x1, . . . , xn−1, yn) ∈ G(p) =⇒ xn < yn (∗)

(2) Given a polyhedral index set D(p) ⊆ Rn, its projection to the outer n−1 dimensions
Π

(
D(p)

)
⊆ Rn−1 can be computed and Π

(
D(p)

)
is a parametric polyhedron.

To fulfil (1a) and (2), no case distinctions on the linear parameters are required. The
partitioning and the projections can be computed while treating the parameters like addi-
tional variables. Only (1b) requires to make case distinctions because the relative ordering
among the partitions can change depending on the parameters.

4Due to the requirement that each partition is polyhedral in (1a), some strict bounds (f > 0) have to
be replaced by weak bounds (f ≥ 1) when computing the partitioning. This does not change the set of
integral points (if f is denominator-free), but omits some points in the reals.

5.5. Code Generation 105

if (n >= 0 && m >= 0) {

for (i=0; i<=min(p*n,m); i++) {

S1(i);

if (i%p == 0)

S2(i/p);

}

}

if (m <= p*n-1 && n >= 0) {

for (i=max(m+1,0); i<=p*n; i++) {

if (i%p == 0)

S2(i/p);

}

}

if (m >= p*n-1 && m >= 0) {

for (i=max(p*n+1,0); i<=m; i++)

S1(i);

}

Figure 5.34: Example code for a problem with non-linear scattering i = p · x for S2

We can generalise these operations to non-linear parameters. To compute the required
disjoint union in (1a), we can use the disjoint union algorithm given in our own previ-
ous work [Grö03]. This requires no case distinctions even in the case with non-linear
parameters. The projections in (2) can be computed by our generalised Fourier-Motzkin
elimination (cf. Section 4.4) or the algorithm from Section 4.3.1 (Corollary 4.15). With
both approaches, case distinctions on the parameters become necessary. The ordering
in (1b) can be computed by quantifier elimination by asking for which condition on the
parameters property (∗) holds, i.e., computing the quantifier-free equivalent of

∀x1 · · · ∀xn∀yn

(
(x1, . . . , xn−1, xn) ∈ F (p) ∧ (x1, . . . , xn−1, yn) ∈ G(p) → xn < yn

)

or, as an alternative, this question can be answered using our generalised Simplex (cf.
Section 4.4) by minimising the target function yn − xn over the domain defined by
(x1, . . . , xn−1, xn) ∈ F (p) ∧ (x1, . . . , xn−1, yn) ∈ G(p) and checking whether the mini-
mum is positive.

From these building blocks, we can implement a code generator for non-linear param-
eters. But, to achieve an efficient generation, the same engineering effort has to be made
as has been done for code generators for the linearly parametric case. To achieve results
comparable to, for example, the CLooG code generator, many improvements have to be
made in the generator. With our prototype, we made a few observations that will have to
be examined in more detail when the prototype has matured. Our impression is that for
step (1b), quantifier elimination is faster than applying the generalised Simplex, whereas
for (2) Fourier-Motzkin (to eliminate one dimension) is faster than using quantifier elimi-
nation. In addition, the prototype for code generation with non-linear parameters seems
to outperform our prototype for code generation based on cylindrical algebraic decompo-
sition; but, since both prototypes have to be improved, the question of whether CAD can
compete or not cannot be answered at the moment.

As one example which our prototype can solve already, consider the following code
generation problem:

D1(m,n, p) = {i | 0 ≤ x ≤ m, i = x}
D2(m,n, p) = {i | 0 ≤ x ≤ n, i = p · x}

The functions i = x and i = p · x are so-called scattering functions which are used by
CLooG, for example. Our prototype handles scattering functions (this may be one reason

106 Chapter 5. Application of Algorithms for Non-linearities to the Polyhedron Model

why it outperforms our code generator based on CAD). Note that the scattering function
for D2(m,n, p) is non-linear. The code generated under the assumption p ≥ 1 is shown in
Figure 5.34. The statements are executed for each point i in their domain; the argument
of S1 and S2 is the value of x which corresponds to the enumerated i-value.

5.5.12 Code Generation as a Formula Simplification Problem

Instead of computing a cylindrical algebraic decomposition, we can also generate code if
we express the domains of the statements as logical formulas and let a formula simplifier
“simplify”or, more precisely, transform the formula with a suitable simplification objective.

To be able to partition the domains into regions of a cylindrical decomposition, the
result formula must be of a certain structure. The required structure is related to the
concept of GEOFORM formulas [Bro99], but not quite the same. We need formulas
that are of a certain syntactic structure, namely formulas which correspond directly to
cylindrical loop nests (cf. Definition 5.12). Therefore, non-adjacent cells of the CAD
induced by the bound polynomials must not be combined into one. For example, the
formula x2

1 ≥ 2 is unsuitable, because we need the information that the feasible set is
composed of the two regions

x1 ≤ −
√

2 ∨ x1 ≥
√

2.

At the moment, no formula simplifier which produces the required formulas seems to be
available. Maybe such a procedure can be implemented in a formula simplifier based on
CAD, like the Qepcad/SLFQ system.

5.5.13 Improvements of the Basic Algorithm

Our algorithm produces code which has the properties that it is a proper R-scan and that
every loop generated has exactly one lower and one upper bound. Both properties offer
room for improvement. Since the theory of integers with addition and multiplication is
undecidable, there cannot be a general improvement over proper R-scans. But there are
many special cases in practical code generation. Therefore, it is worthwhile to invest in
integral non-emptiness tests for common cases, e.g., linear formulas. If a region (section
or sector) is bounded by linear formulas only, its integral feasibility can be tested. This
improvement for linear cases is obtained “for free” in some cases if CAD based code
generation is combined with polyhedral code generation and the polyhedral code generator
is optimised in this respect (cf. Section 5.5.10).

The other direction for improvement is to reduce the code size by combining inner
loops with different upper and/or lower bounds by using minima and maxima in the
bounds. For example, in the triangular index set example (cf. Figure 5.25), the two loops
on x cannot be combined because of the different inner loops on y. But the upper bounds
of the loops on y are compatible in the sense that each bound is stricter than the other
bound in its respective x-region, i.e., because the implications

1 ≤ x ≤ p

2
⇒ x ≤ −x+ p

p

2
< x ≤ p ⇒ −x+ p ≤ x

hold, it could be detected that the loops on y can be combined into the loop nest generated
by polyhedral code generation. This is a semantic test that goes beyond the syntactic test
we perform on the roots defining the sections of two neighbouring stacks when deciding
whether the codes for the two stacks can be merged into a single code. This optimisation
may be achieved by letting a formula simplifier compute a formula representing a suitable
cylindrical decomposition (cf. Section 5.5.12).

Chapter 6

Conclusions

6.1 Summary

The polyhedron model has been used to describe transformations of programs with a
certain regular structure. To go beyond the restriction of affine expressions as loop bounds
and array indices we have studied different algorithms and approaches to extending the
model to non-linear domains. Since non-linearity implies that the coefficients of variables
need not be fixed rational (or integral) numbers, but can be expressions in the structural
parameters, dealing with case distinctions on such expressions is central to a generalisation.
How we deal with these expressions depends on the application, i.e., on the phase in the
transformation process which we want to extend to non-linearities.

6.1.1 Dependence Analysis

In dependence analysis, it is of utmost importance to compute the integral solutions of
the conflict equality system, and not a rational or real overapproximation of the solution
set. We have been able to show that one can solve the conflict equality system exactly if
there is exactly one non-linear parameter. The coefficient expressions allowed are not only
polynomials in this parameter, but encompass also floor operations and (by equivalence)
periodic case distinctions on the value of the parameter, i.e., quasi-polynomials.

The feasibility of a dependence analysis in this more general situation relies on the fact
that it is possible to generalise the computation of greatest common divisors, which lies at
the heart of solving linear Diophantine equality systems. Using entire quasi-polynomials,
we can describe the pointwise greatest common divisor of polynomials from Z[X] (i.e., a
function whose return value corresponds to the GCD of the function values of two given
polynomials) and, more generally, in the entire quasi-polynomials themselves. With this
generalised dependence analysis procedure, it is possible to analyse the data dependences
of a wider class of programs than in the polyhedron model.

6.1.2 Computing Schedules

In the transformation phase, non-linearities arise or are of use in different situations. When
computing schedules and placements, it is often sufficient to deal with real solutions of
the problem considered, since integral solutions can be obtained from a real solution (e.g.,
by rounding down a fractional schedule) and a slight deviation from the optimal solution
is negligible for practical applications.

Our main tool for achieving the generalisation here is quantifier elimination in the real
numbers. The parametric coefficients of the inequality systems studied are handled using
logical formulas in the language of rings over the reals. Since there exists a quantifier
elimination procedure for this structure, some problems, like finding a legal schedule, can
be expressed as a formula and quantifier elimination computes a solution.

107

108 Chapter 6. Conclusions

In addition, we have shown that some algorithms used in the polyhedron model can
be generalised to handle non-linear parameters by a syntactic transformation and the use
of quantifier elimination to make the arising case distinctions finite. This enables to use a
generalised Simplex algorithm to compute schedules which are linear in the variables but
probably non-linear in the parameters.

6.1.3 Tiling

Even if the source program does not contain non-linear parameters, we may want or need
to introduce non-linearities during the transformation. Tiling, which is used to control
the granularity of, e.g., the parallelism or the cache usage of a transformed program, can
only be expressed with static tile sizes in the polyhedron model. There are solutions for
special cases with parametric tile sizes.

Using non-linearities, we can express arbitrary parametric tilings. We have even shown
that, in the common case of parallelepiped tiles, no case distinctions occur when applying
Fourier-Motzkin elimination to generate code for a single statement (i.e., in this case, no
quantifier elimination tool is necessary). Although the generated loop bounds are usually
quite complex compared to the source program, the code executes efficiently without large
overhead to compute the loop bounds, since the innermost loops remain “simple” in the
sense that optimising compilers need only a few instructions to express the update on the
loop iterator from one iteration to the next by performing induction variable detection
and related optimisation techniques.

Tiling is indispensable to accommodate execution parameters, like the number of pro-
cessors, which are unknown at compile time. Two problems which often spoil performance
are load imbalance, due to a varying number of tiles in the parallel dimension, and the
presence of incomplete tiles at the borders of the index space. Load imbalance could
nominally be reduced by using smaller tiles, but this would lead to an increased overhead
of the tile enumeration. When tile sizes are chosen such that the number of tiles in the
parallel dimension is of the same order of magnitude as the number of available processor
cores, dealing with load imbalances and irregularities at the index space bounds becomes
indispensable. Both problems need to be researched further; we have offered basic ideas
of solutions and made some promising experiments.

Another factor limiting performance is memory bandwidth. With the NUMA architec-
ture becoming more common, replicating data in the local memory areas of each physical
processor unit is another topic for future research.

6.1.4 Array Localisation

Another application of non-linearities in the transformation phase is accelerating programs
by exploiting the fact that some architectures have, in addition to main memory, an
explicitly addressable fast memory area, the so-called scratchpad. By way of precise data
dependence information, we are able to compute exactly which data items to copy to fast
memory to exploit temporal locality. We determine exactly when to copy a value to fast
memory, when to copy an updated value back to main memory and when to relocate a
value in fast memory.

The transformed program will contain non-linearities, because some loops need non-
linear bounds. Since the data held in fast storage is stored in a compact fashion without
holes, the access functions can be complex (piecewise conditional quasi-polynomials), but
our experiments suggest that, by using advanced code generation techniques, the overhead
can be eliminated by partitioning the iteration domains according to the conditions in the
new access functions. In our experiments on a GPU, we observed accelerations of factors
up to 3.5 compared to parallel code which uses main memory only.

If no dependence information is available, a simpler transformation based on access
instances which may move more elements to fast storage than necessary can be applied.

6.2. Future Directions 109

6.1.5 Code Generation

The third phase of the transformation process must generate code from the index sets
of the transformed model. Cylindrical algebraic decomposition enables the generation of
target loop code for index sets with arbitrary polynomial bounds. We have presented
a basic algorithm. The algorithm relies on the computation of a cylindrical algebraic
decomposition (CAD) of Rn (for n-dimensional index sets).

The requirement of the decomposition to be algebraic causes the generated code to
be quite lengthy. But we have shown that loops can be combined by syntactic reasoning
(provided that the CAD procedure emits all polynomials whose roots coincide over a
region). Each loop generated has exactly one lower and one upper bound and, when a
loop is reached, the lower bound is less than or equal to the upper bound, i.e., the loop
is non-empty in the reals, but there is no guarantee of integral non-emptiness. Integral
non-emptiness is undecidable in the general case but may be checked for common cases
like linear bounds in a future version of the algorithm. Further reduction of the code size is
another goal which may be achieved by combining suitable loops and thereby introducing
minima and maxima of bounds in the new loop bounds.

We have also given an algorithm for a combined code generation procedure which
checks, during each projection, which parts of the problem are polyhedral and can be
offloaded to a polyhedral code generator. CAD is applied only for the parts which are
defined by some non-linear bounds. This is a first step in the direction of reducing code size
and improving generation efficiency. Another approach, for the case with linear variables
and non-linear parameters only, is to generalise the operations used in polyhedral code
generation to non-linear parameters. We have implemented a prototype for this approach,
too, but more engineering effort is required to improve it such that it becomes competitive
to code generators like CLooG.

6.2 Future Directions

We hope that the ideas and algorithms presented in this thesis are starting points for
further research. Let us now present a few directions for further research in the three
main phases of the transformation process.

6.2.1 Dependence Analysis

Being able to solve systems of linear Diophantine equalities which are non-linear in one
parameter is the basis for a generalisation of Banerjee’s dependence analysis (Section 5.1).
To be able to implement more advanced analyses, like the Feautrier dependence analysis,
we must be able to handle inequalities and perform integral linear optimisation, i.e., opti-
mise a target function w.r.t. a given polyhedron or compute the lexicographic minimum
in a polyhedron (with one non-linear parameter). This is, of course, inherently more dif-
ficult than solving a linear equality system and, at the moment, it is unclear whether this
problem is decidable and, if it is undecidable, whether interesting decidable special cases
exist.

If we think in the direction of using a generalised Simplex algorithm (to find the real
optimum) and branching (to generate subproblems with tighter bounds to find the integral
optimum eventually), we need the arithmetic operations +, −, ·, / (in the Simplex) and
⌊ ·
·⌋ (for the branching). Because of the divisions used by Simplex, the coefficients cannot

be quasi-polynomials from EQP , but must be fractions of quasi-polynomials, i.e., f
g

with

f, g ∈ EQP . It turns out that we can even describe floor operations ⌊ f
g
⌋ on such fractions.

The reason is that, by polynomial division, we can compute e, r ∈ P[X] such that:

f

g
= e+

r

g
with deg(r) < deg(g)

110 Chapter 6. Conclusions

and, therefore:

lim
p→±∞

r(p)

g(p)
→ 0

This implies that ⌊ f(p)
g(p) ⌋ is equal to ⌊e⌋(p) or ⌊e⌋(p) − 1, depending on the sign of r(p)

g(p))

for |p| ≥ b for some b ∈ N (except in the vanishing constituents of g). Therefore, ⌊ f(p)
g(p) ⌋

can be described by a sixtuple (b, e−, k, e+, l, U), where e−, e+ ∈ EQP are the floor values
for p ≤ −b and p ≥ b (either ⌊e⌋ or ⌊e⌋ − 1), respectively, k : {−b + 1, . . . , b − 1} → Z
is a tabulated function representing the values of ⌊ f(p)

g(p) ⌋ for −b < p < b, l ∈ N+ is the

period of g, and U = {i | 0 ≤ i ≤ l − 1, conl(g, i) = 0} lists the constituents in which
the fraction f

g
is undefined. The set of all such objects is closed under +, −, ·, /, ⌊ ·

·⌋.
Therefore, these objects may be a starting point for exploring the possibilities to compute
the integral optimum of a target function w.r.t. a polyhedron in the presence of one non-
linear parameter.

6.2.2 Transformations

We have presented transformations which introduce non-linearities, namely non-linear
schedules, parametric tiling and array localisation. Computing schedules and tiling is
possible for inputs which are already non-linear because quantifier elimination, which is
used to compute schedules, can handle them. Tiling is possible because it only adds some
dimensions and constraints to the iteration domains; thus, handling the non-linearities is
(only) a problem of code generation.

But other transformations are not ready to cope with non-linear input. One example is
our array localisation. It relies on counting the integral points in polytopes, which is done
using Ehrhart theory. It has to be investigated whether computing Ehrhart polynomials
(or a suitable generalisation of them) is possible in the presence of non-linear parameters.
All transformations that rely on counting are affected by this problem. In addition,
we cannot compute integral optima of a target function w.r.t. to a polyhedron in the
presence of non-linear parameters (see also Section 6.2.1). Therefore, all transformations
that require to solve an ILP problem will run into difficulties, too. Future research will
have to address the question whether we can build a rich set of viable transformations
which handles non-linear input programs.

6.2.3 Code Generation

Our code generation technique, which uses cylindrical algebraic decomposition, can only
be a first step. The efficiency is worse than that of polyhedral code generators since
computing a CAD is doubly-exponential in the number of dimensions in the worst case.
Although we have outlined a procedure which uses a polyhedral code generator as a plug-in
to offload code generation for polyhedral parts of the index space, this offloading requires
that, by projection, a cylinder is obtained with only polyhedral bounds in it. Better
applicability and a higher efficiency, we expect, can be obtained using an integrated code
generation procedure which augments a polyhedral code generator with the necessary
routines to handle non-linear bounds by computing a CAD in the respective cylinders.
Such an integrated code generator may be a next goal for research in the code generation
area. Testing integral non-emptiness (where possible) to avoid enumerating iteration sets
which are only non-empty in the reals is another aspect to consider.

Another future challenge in code generation may be the question of whether we can go
beyond polynomial bounds. For example, CAD does not enable us to generate loops with
bounds like 0 ≤ y ≤ log2 x, which can occur in tree algorithms (because of the logarithmic
tree depth).

Bibliography

[ABRY01] Rumen Andonov, Stefan Balev, Sanjay Rajopadhye, and Nicola Yanev. Op-
timal semi-oblique tiling. In Proc. 13th Ann. ACM Symp. on Parallel Al-
gorithms and Architectures (SPAA 2001), pages 153–162. ACM Press, July
2001. Extended version available as technical report: IRISA, nr. 1392, De-
cember 2001.

[ACM98] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Al-
gebraic Decompositions I: The Basic Algorithm. In Bob F. Caviness and
Jeremy R. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic
Decomposition, pages 136–151. Springer-Verlag, 1998.

[AI91] Corinne Ancourt and François Irigoin. Scanning Polyhedra with DO Loops.
Third ACM SIGPLAN Symposium on Priciples & Practice of Parallel Pro-
gramming, 26(7):39–50, July 1991.

[AZ00] Wolfgang Achtziger and Karl-Heinz Zimmermann. Finding quadratic sched-
ules for affine recurrence equations via nonsmooth optimization. J. VLSI
Signal Process. Syst., 25(3):235–260, 2000.

[Ban93] Utpal K. Banerjee. Loop Transformations for Restructuring Compilers: The
Foundations. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[Bar98] Denis Barthou. Array Dataflow Analysis in Presence of Non-affine Con-
straints. PhD thesis, Université de Versailles St-Quentin, Versailles, February
1998. http://www.prism.uvsq.fr/users/bad/Research/ps/these.pdf.

[Bas04] Cédric Bastoul. Code generation in the polyhedral model is easier than you
think. In PACT ’04: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, pages 7–16, Washington,
DC, USA, 2004. IEEE Computer Society.

[BBK+08a] Muthu M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanu-
jam, Atanas Rountev, and P. Sadayappan. Automatic data movement and
computation mapping for multi-level parallel architectures with explicitly
managed memories. In PPoPP ’08: Proc. of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 1–10, New
York, NY, USA, 2008. ACM.

[BBK+08b] Uday Bondhugula, Muthu M. Baskaran, Sriram Krishnamoorthy, J. Ramanu-
jam, Atanas Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in the
polyhedral model. In Int. Conf. on Compiler Construction (ETAPS CC),
April 2008.

[BF03] Cédric Bastoul and Paul Feautrier. Improving data locality by chunking.
In CC’12 Int. Conf. on Compiler Construction, LNCS 2622, pages 320–335,
Warsaw, April 2003.

111

112 Bibliography

[BFT01] Alberto Bemporad, Komei Fukuda, and Fabio D. Torrisi. Convexity recog-
nition of the union of polyhedra. Computational Geometry, 18(3):141–154,
2001.

[Bla77] Robert G. Bland. New finite pivoting rules for the simplex method. Mathe-
matics of Operations Research, 2:103–107, 1977.

[BR07] Matthias Beck and Sinai Robins. Computing the Continuous Discretely:
Integer-Point Enumeration in Polyhedra. Springer, July 2007.

[Bro99] Christopher W. Brown. Solution Formula Construction For Truth-Invariant
CADs. PhD thesis, University of Delaware, 1999.

[Bro01a] Christopher W. Brown. Improved projection for cylindrical algebraic decom-
position. J. Symb. Comput., 32(5):447–465, November 2001.

[Bro01b] Christopher W. Brown. Simple cad construction and its applications. J.
Symb. Comput., 31(5):521–547, 2001.

[Bro03] Christopher W. Brown. Qepcad b: a program for computing with semi-
algebraic sets using cads. SIGSAM Bull., 37(4):97–108, 2003.

[CF93] Jean-François Collard and Paul Feautrier. Automatic generation of data
parallel code. In Henk J. Sips, editor, Proc. of the Fourth International
Workshop on Compilers for Parallel Computers, pages 321–332, December
1993.

[Chv83] Vašek Chvátal. Linear Programming. W. H. Freeman and Company, 1983.

[CK08] Guangyu Chen and Mahmut T. Kandemir. Compiler-directed code restruc-
turing for improving performance of MPSoCs. IEEE Transactions on Parallel
and Distributed Systems, 19(9):1201–1214, September 2008.

[CM00] Philippe Clauss and Benôıt Meister. Automatic memory layout transforma-
tions to optimize spatial locality in parameterized loop nests. In 4th An-
nual Workshop on Interaction between Compilers and Computer Architec-
tures, INTERACT-4, Toulouse, France, January 2000.

[CT04] Philippe Clauss and Irina Tchoupaeva. A symbolic approach to bernstein
expansion for program analysis and optimization. In 13th International Con-
ference on Compiler Construction, CC 2004, pages 120–133. Springer, 2004.

[Dav73] Martin Davis. Hilbert’s tenth problem is unsolvable. American Mathematical
Monthly, 80, 1973.

[DH88] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly
exponential. Journal of Symbolic Compututation, 5(1-2):29–35, 1988.

[DR95] Alain Darte and Yves Robert. Affine-by-statement scheduling of uniform
and affine loop nests over parametric domains. J. Parallel Distrib. Comput.,
29(1):43–59, 1995.

[DRV00] Alain Darte, Yves Robert, and Frederic Vivien. Scheduling and Automatic
Parallelization. Birkhäuser, 2000.

[DS97] Andreas Dolzmann and Thomas Sturm. REDLOG: computer algebra meets
computer logic. SIGSAM Bull., 31(2):2–9, 1997.

[DV97] Alain Darte and Frédéric Vivien. Optimal fine and medium grain parallelism
detection in polyhedral reduced dependence graphs. Int. J. Parallel Program-
ming, 25(6):447–496, December 1997.

Bibliography 113

[Fea91] Paul Feautrier. Dataflow analysis of array and scalar references. Int. J.
Parallel Programming, 20(1):23–53, February 1991.

[Fea92a] Paul Feautrier. Some efficient solutions to the affine scheduling problem: I.
one-dimensional time. Int. J. Parallel Program., 21(5):313–348, 1992.

[Fea92b] Paul Feautrier. Some efficient solutions to the affine scheduling problem: II.
multidimensional time. Int. J. Parallel Program., 21(5):389–420, 1992.

[GFG05] Martin Griebl, Paul Feautrier, and Armin Größlinger. Forward communi-
cation only placements and their use for parallel program construction. In
Languages and Compilers for Parallel Computing, 15th International Work-
shop, LCPC’02. Revised Papers, Lecture Notes in Computer Science 2481,
pages 16–30. Springer-Verlag, 2005.

[GFL04] Martin Griebl, Peter Faber, and Christian Lengauer. Space-time mapping
and tiling: A helpful combination. Concurrency and Computation: Practice
and Experience, 16(3):221–246, March 2004.

[GGL04] Armin Größlinger, Martin Griebl, and Christian Lengauer. Introducing non-
linear parameters to the polyhedron model. In Michael Gerndt and Edmond
Kereku, editors, Proc. 11th Workshop on Compilers for Parallel Computers
(CPC 2004), Research Report Series, pages 1–12. LRR-TUM, Technische
Universität München, July 2004.

[GL97] Martin Griebl and Christian Lengauer. The loop parallelizer LooPo—
Announcement. In David Sehr et al., editors, Ninth Workshop on Lan-
guages and Compilers for Parallel Computing, volume 1239 of Lecture Notes
in Computer Science, pages 603–604. Springer-Verlag, 1997. More details at
http://www.infosun.fim.uni-passau.de/cl/loopo.

[Gri04] Martin Griebl. Automatic Parallelization of Loop Programs for Distributed
Memory Architectures. Fakultät für Mathematik und Informatik, Universität
Passau, 2004. Habilitation thesis.

[Grö03] Armin Größlinger. Extending the Polyhedron Model to Inequality Sys-
tems with Non-linear Parameters using Quantifier Elimination. Diploma
thesis, Universität Passau, September 2003. http://www.infosun.fim.

uni-passau.de/cl/arbeiten/groesslinger.ps.gz.

[Grö09] Armin Größlinger. Precise management of scratchpad memories for localising
array accesses in scientific codes. In O. de Moor and M. Schwartzbach, editors,
Proceedings of the International Conference on Compiler Construction (CC
2009), number 5501 in Lecture Notes in Computer Science, pages 236–250.
Springer-Verlag, 2009.

[GS08] Armin Größlinger and Stefan Schuster. On computing solutions of linear
diophantine equations with one non-linear parameter. In Proceedings of the
10th International Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC 2008), pages 69–76. IEEE Computer Society,
September 2008.

[Hea68] Anthony C. Hearn. REDUCE: A user-oriented interactive system for alge-
braic simplification. In M. Klerer and J. Reinfelds, editors, Interactive Sys-
tems for Experimental Applied Mathematics, pages 79–90. Academic Press,
New York, 1968.

114 Bibliography

[Hon98] Hoon Hong. An Improvement of the Projection Operator in Cylindrical Al-
gebraic Decomposition. In Bob F. Caviness and Jeremy R. Johnson, editors,
Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 166–
173. Springer-Verlag, 1998.

[IBMD04] Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil D. Dutt. Data reuse
analysis technique for software-controlled memory hierarchies. In DATE ’04:
Proc. of the Conf. on Design, Automation and Test in Europe, pages 202–207,
Washington, DC, USA, 2004. IEEE Computer Society.

[Int99] Intel Corporation. Instruction Set Reference, volume 2 of Intel Architec-

ture Software DeveloperâĂŹs Manual. Intel Corporation, 1999. http:

//developer.intel.com/design/pentiumii/manuals/243191.htm.

[Iri88] François Irigoin. Code generation for the hyperplane method and for loop
interchange. Technical Report ENSMP-CAI-88-E102/CAI/I, Ecole Normale
Supérieure des Mines de Paris, October 1988.

[IT88] François Irigoin and Rémi Triolet. Supernode partitioning. In Proceedings of
the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Language s, pages 319–329. ACM Press, January 1988.

[KC02] Mahmut T. Kandemir and Alok N. Choudhary. Compiler-directed scratch
pad memory hierarchy design and management. In DAC ’02: Proc. of the
39th Conf. on Design Automation, pages 628–633, New York, NY, USA, 2002.
ACM.

[KMW67] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organiza-
tion of computations for uniform recurrence equations. Journal of the ACM,
14(3):563–590, July 1967.

[KP09] Konstantinos Kyriakopoulos and Kleanthis Psarris. Nonlinear symbolic anal-
ysis for advanced program parallelization. IEEE Transactions on Parallel and
Distributed Systems, 20(5):623–640, May 2009.

[KPR95] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple
mappings. In FRONTIERS ’95: Proceedings of the Fifth Symposium on the
Frontiers of Massively Parallel Computation, pages 321–332, Washington,
DC, USA, 1995. IEEE Computer Society.

[KRC97] Mahmut T. Kandemir, J. Ramanujam, and Alok N. Choudhary. A compiler
algorithm for optimizing locality in loop nests. In Proc. of the 11th Int. Conf.
on Supercomputing (ICS), pages 269–276, July 1997.

[KRI+01] Mahmut T. Kandemir, J. Ramanujam, Mary J. Irwin, Narayanan Vijaykrish-
nan, Ismail Kadayif, and Amisha Parikh. Dynamic management of scratch-
pad memory space. In DAC ’01: Proc. of the 38th Conf. on Design Automa-
tion, pages 690–695, New York, NY, USA, 2001. ACM.

[Lam74] Leslie Lamport. The parallel execution of DO loops. Communications of the
ACM, 17(2):83–93, February 1974.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In Eike Best,
editor, CONCUR’93, LNCS 715, pages 398–416. Springer-Verlag, 1993.

[LL98] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing
synchronization with affine partitions. Parallel Computing, 24(3-4):445–475,
1998.

Bibliography 115

[LMC02] Vincent Loechner, Benôıt Meister, and Philippe Clauss. Precise data locality
optimization of nested loops. J. Supercomput., 21(1):37–76, 2002.

[Loo83] Rüdiger Loos. Computing in Algebraic Extensions. In Bruno Buchberger,
George E. Collins, and Rüdiger Loos, editors, Computer Algebra, Symbolic
and Algebraic Computation, pages 173–187. Springer-Verlag, New York, sec-
ond edition, 1983.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying Linear Quantifier Elimina-
tion. The Computer Journal, 36(5):450–462, 1993. Special issue on compu-
tational quantifier elimination.

[Mes08] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, Version 2.1. High Performance Computing Center Stuttgart (HLRS),
June 2008.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI ’07: Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and im-
plementation, pages 89–100, New York, NY, USA, 2007. ACM.

[NVI09] NVIDIA Corporation. NVIDIA CUDATM Programming Guide Version 2.2,
2009. http://www.nvidia.com/cuda.

[Ope08] OpenMP Architecture Review Board. OpenMP Application Pro-
gram Interface, Version 3.0, May 2008. http://openmp.org/wp/

openmp-specifications/.

[PDN97] Preeti R. Panda, Nikil D. Dutt, and Alexandru Nicolau. Efficient utilization
of scratch-pad memory in embedded processor applications. In EDTC ’97:
Proc. of the 1997 European Conf. on Design and Test, page 7, Washington,
DC, USA, 1997. IEEE Computer Society.

[PW92] William Pugh and David Wonnacott. Eliminating false data dependences
using the Omega test. ACM SIGPLAN Notices, 27(7):140–151, July 1992.
Proc. ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI’92).

[PW95] William Pugh and David Wonnacott. Nonlinear array dependence analy-
sis. In B. K. Szymanski and B. Sinharoy, editors, Languages, Compilers and
Run-Time Systems for Scalable Computers, pages 1–14. Kluwer Academic
Publishers, Boston, 1995.

[QRW00] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. Generation of efficient
nested loops from polyhedra. Int. J. Parallel Programming, 28(5):469–498,
October 2000.

[RKRS07] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and
Michelle Mills Strout. Parameterized tiled loops for free. In PLDI ’07: Pro-
ceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, pages 405–414, New York, NY, USA, 2007. ACM.

[Sch07] Stefan Schuster. On algorithmic and heuristic approaches to integral prob-
lems in the polyhedron model with non-linear parameters. Diploma thesis,
Universität Passau, June 2007. http://www.infosun.fim.uni-passau.de/
cl/arbeiten/schuster-d.pdf.

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
Technical report, University of Califonia Press, 2nd edition, revised, 1951.

116 Bibliography

[vdD03] Lou van den Dries. Generating the greatest common divisor, and limitations
of primitive recursive algorithms. Foundations of Computational Mathemat-
ics, 3(3):297–324, 2003.

[vEBS+04] Robert A. van Engelen, Johnnie Birch, Yixin Shou, Burt Walsh, and Kyle A.
Gallivan. A unified framework for nonlinear dependence testing and symbolic
analysis. In ICS ’04: Proceedings of the 18th annual international conference
on Supercomputing, pages 106–115, New York, NY, USA, 2004. ACM.

[VSB+04] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. Analytical computation of ehrhart polynomials: En-
abling more compiler analyses and optimizations. In M. J. Irwin, W. Zhao,
L. Lavagno, and S. Mahlke, editors, Proc. of the 2004 Int. Conf. on Com-
pilers, Architecture, and Synthesis for Embedded Systems (CASES), pages
248–258, Washington DC, USA, 9 2004. ACM.

[VSB+07] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Mau-
rice Bruynooghe. Counting integer points in parametric polytopes using
Barvinok’s rational functions. Algorithmica, 48(1):37–66, June 2007.

[Wei88] Volker Weispfenning. The Complexity of Linear Problems in Fields. J. Symb.
Comput., 5(1&2):3–27, February–April 1988.

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra—the quadratic
case and beyond. Applicable Algebra in Engineering Communication and
Computing, 8(2):85–101, February 1997.

[Wet95] Sabine Wetzel. Automatic code generation in the polyhedron model. Mas-
ter’s thesis, Fakultät für Mathematik und Informatik, Universität Passau,
November 1995. http://www.fmi.uni-passau.de/loopo/doc/wetzel-d.ps.gz.

[WL91] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.
In PLDI ’91: Proc. of the ACM SIGPLAN 1991 Conf. on Programming
Language Design and Implementation, pages 30–44, New York, NY, USA,
1991. ACM.

[XH97] Jingling Xue and Chua-Huang Huang. Reuse-driven tiling for data locality.
In Zhijuan Li, Pen-Chung Yew, Siddharta Chatterjee, Chua-Huang Huang,
P. Sadajappan, and David Sehr, editors, Languages and Compilers for Par-
allel Computing, pages 17–33. Springer, August 1997.

[Xue97a] Jingling Xue. Communication-minimal tiling of uniform dependence loops.
J. Parallel and Distributed Computing, 42(1):42–59, April 1997.

[Xue97b] Jingling Xue. On tiling as a loop transformation. Parallel Processing Letters,
7(4):409–424, 1997.

[ZZ08] Jing Zhou and Guosun Zeng. A general data dependence analysis for paral-
lelizing compilers. J. Supercomput., 45(2):236–252, 2008.

