413 research outputs found

    Biometric Cryptosystems : Authentication, Encryption and Signature for Biometric Identities

    Get PDF
    Biometrics have been used for secure identification and authentication for more than two decades since biometric data is unique, non-transferable, unforgettable, and always with us. Recently, biometrics has pervaded other aspects of security applications that can be listed under the topic of ``Biometric Cryptosystems''. Although the security of some of these systems is questionable when they are utilized alone, integration with other technologies such as digital signatures or Identity Based Encryption (IBE) schemes results in cryptographically secure applications of biometrics. It is exactly this field of biometric cryptosystems that we focused in this thesis. In particular, our goal is to design cryptographic protocols for biometrics in the framework of a realistic security model with a security reduction. Our protocols are designed for biometric based encryption, signature and remote authentication. We first analyze the recently introduced biometric remote authentication schemes designed according to the security model of Bringer et al.. In this model, we show that one can improve the database storage cost significantly by designing a new architecture, which is a two-factor authentication protocol. This construction is also secure against the new attacks we present, which disprove the claimed security of remote authentication schemes, in particular the ones requiring a secure sketch. Thus, we introduce a new notion called ``Weak-identity Privacy'' and propose a new construction by combining cancelable biometrics and distributed remote authentication in order to obtain a highly secure biometric authentication system. We continue our research on biometric remote authentication by analyzing the security issues of multi-factor biometric authentication (MFBA). We formally describe the security model for MFBA that captures simultaneous attacks against these systems and define the notion of user privacy, where the goal of the adversary is to impersonate a client to the server. We design a new protocol by combining bipartite biotokens, homomorphic encryption and zero-knowledge proofs and provide a security reduction to achieve user privacy. The main difference of this MFBA protocol is that the server-side computations are performed in the encrypted domain but without requiring a decryption key for the authentication decision of the server. Thus, leakage of the secret key of any system component does not affect the security of the scheme as opposed to the current biometric systems involving cryptographic techniques. We also show that there is a tradeoff between the security level the scheme achieves and the requirement for making the authentication decision without using any secret key. In the second part of the thesis, we delve into biometric-based signature and encryption schemes. We start by designing a new biometric IBS system that is based on the currently most efficient pairing based signature scheme in the literature. We prove the security of our new scheme in the framework of a stronger model compared to existing adversarial models for fuzzy IBS, which basically simulates the leakage of partial secret key components of the challenge identity. In accordance with the novel features of this scheme, we describe a new biometric IBE system called as BIO-IBE. BIO-IBE differs from the current fuzzy systems with its key generation method that not only allows for a larger set of encryption systems to function for biometric identities, but also provides a better accuracy/identification of the users in the system. In this context, BIO-IBE is the first scheme that allows for the use of multi-modal biometrics to avoid collision attacks. Finally, BIO-IBE outperforms the current schemes and for small-universe of attributes, it is secure in the standard model with a better efficiency compared to its counterpart. Another contribution of this thesis is the design of biometric IBE systems without using pairings. In fact, current fuzzy IBE schemes are secure under (stronger) bilinear assumptions and the decryption of each message requires pairing computations almost equal to the number of attributes defining the user. Thus, fuzzy IBE makes error-tolerant encryption possible at the expense of efficiency and security. Hence, we design a completely new construction for biometric IBE based on error-correcting codes, generic conversion schemes and weakly secure anonymous IBE schemes that encrypt a message bit by bit. The resulting scheme is anonymous, highly secure and more efficient compared to pairing-based biometric IBE, especially for the decryption phase. The security of our generic construction is reduced to the security of the anonymous IBE scheme, which is based on the Quadratic Residuosity assumption. The binding of biometric features to the user's identity is achieved similar to BIO-IBE, thus, preserving the advantages of its key generation procedure

    Practical privacy enhancing technologies for mobile systems

    Get PDF
    Mobile computers and handheld devices can be used today to connect to services available on the Internet. One of the predominant technologies in this respect for wireless Internet connection is the IEEE 802.11 family of WLAN standards. In many countries, WLAN access can be considered ubiquitous; there is a hotspot available almost anywhere. Unfortunately, the convenience provided by wireless Internet access has many privacy tradeoffs that are not obvious to mobile computer users. In this thesis, we investigate the lack of privacy of mobile computer users, and propose practical enhancements to increase the privacy of these users. We show how explicit information related to the users' identity leaks on all layers of the protocol stack. Even before an IP address is configured, the mobile computer may have already leaked their affiliation and other details to the local network as the WLAN interface openly broadcasts the networks that the user has visited. Free services that require authentication or provide personalization, such as online social networks, instant messengers, or web stores, all leak the user's identity. All this information, and much more, is available to a local passive observer using a mobile computer. In addition to a systematic analysis of privacy leaks, we have proposed four complementary privacy protection mechanisms. The main design guidelines for the mechanisms have been deployability and the introduction of minimal changes to user experience. More specifically, we mitigate privacy problems introduced by the standard WLAN access point discovery by designing a privacy-preserving access-point discovery protocol, show how a mobility management protocol can be used to protect privacy, and how leaks on all layers of the stack can be reduced by network location awareness and protocol stack virtualization. These practical technologies can be used in designing a privacy-preserving mobile system or can be retrofitted to current systems

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Privacy Enhancing Protocols using Pairing Based Cryptography

    Get PDF
    This thesis presents privacy enhanced cryptographic constructions, consisting of formal definitions, algorithms and motivating applications. The contributions are a step towards the development of cryptosystems which, from the design phase, incorporate privacy as a primary goal. Privacy offers a form of protection over personal and other sensitive data to individuals, and has been the subject of much study in recent years. Our constructions are based on a special type of algebraic group called bilinear groups. We present existing cryptographic constructions which use bilinear pairings, namely Identity-Based Encryption (IBE). We define a desirable property of digital signatures, blindness, and present new IBE constructions which incorporate this property. Blindness is a desirable feature from a privacy perspective as it allows an individual to obscure elements such as personal details in the data it presents to a third party. In IBE, blinding focuses on obscuring elements of the identity string which an individual presents to the key generation centre. This protects an individual's privacy in a direct manner by allowing her to blind sensitive elements of the identity string and also prevents a key generation centre from subsequently producing decryption keys using her full identity string. Using blinding techniques, the key generation centre does not learn the full identity string. In this thesis, we study selected provably-secure cryptographic constructions. Our contribution is to reconsider the design of such constructions with a view to incorporating privacy. We present the new, privacy-enhanced cryptographic protocols using these constructions as primitives. We refine useful existing security notions and present feasible security definitions and proofs for these constructions

    Towards an auditable cryptographic access control to high-value sensitive data

    Get PDF
    We discuss the challenge of achieving an auditable key management for cryptographic access control to high-value sensitive data. In such settings it is important to be able to audit the key management process - and in particular to be able to provide verifiable proofs of key generation. The auditable key management has several possible use cases in both civilian and military world. In particular, the new regulations for protection of sensitive personal data, such as GDPR, introduce strict requirements for handling of personal data and apply a very restrictive definition of what can be considered a personal data. Cryptographic access control for personal data has a potential to become extremely important for preserving industrial ability to innovate, while protecting subject's privacy, especially in the context of widely deployed modern monitoring, tracking and profiling capabilities, that are used by both governmental institutions and high-tech companies. However, in general, an encrypted data is still considered as personal under GDPR and therefore cannot be, e.g., stored or processed in a public cloud or distributed ledger. In our work we propose an identity-based cryptographic framework that ensures confidentiality, availability, integrity of data while potentially remaining compliant with the GDPR framework

    Cryptographic key management for the vehicles of tomorrow

    Get PDF
    The automotive industry is undergoing a major transformation process in which nearly every part of the vehicle is becoming digital and connected. Modern vehicles are often connected to the internet, feature several wireless interfaces and will soon communicate directly with surrounding vehicles and roadside infrastructure using V2X technology. However, this transformation has not yet been paralleled by the development of techniques or standards which address the cyber security challenges posed by these systems. The automotive industry has historically failed to use secure cryptography or appropriate key management techniques and there is no sign that things have improved. In this thesis, we present several new cryptographic and key management flaws in an existing automotive immobiliser system and we develop two new V2X architectures for improving the safety and privacy of tomorrow’s connected and autonomous vehicles. Specifically, we study the AUT64 automotive block cipher and its associated authentication protocol in a real-world immobiliser system. Despite having a 120~bit key, we find a number of flaws in the system which we combine to present several practical key-recovery attacks. Our first new V2X architecture, IFAL, provides a practical and secure improvement to the leading European standard for V2X. IFAL introduces a new certificate issuance mechanism that eliminates the trade-off between pseudonym duration and bandwidth. Our second architecture, VDAA, addresses the need for efficient techniques that preserve vehicle privacy despite dishonest or colluding certificate authorities

    Robust Encryption

    Get PDF
    We provide a provable-security treatment of ``robust\u27\u27 encryption. Robustness means it is hard to produce a ciphertext that is valid for two different users. Robustness makes explicit a property that has been implicitly assumed in the past. We argue that it is an essential conjunct of anonymous encryption. We show that natural anonymity-preserving ways to achieve it, such as adding recipient identification information before encrypting, fail. We provide transforms that do achieve it, efficiently and provably. We assess the robustness of specific encryption schemes in the literature, providing simple patches for some that lack the property. We discuss applications including PEKS (Public-key Encryption with Keyword Search) and auctions. Overall our work enables safer and simpler use of encryption
    corecore