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Abstract

This thesis presents privacy enhanced cryptographic constructions, consisting of formal defini-

tions, algorithms and motivating applications. The contributions are a step towards the devel-

opment of cryptosystems which, from the design phase, incorporate privacy as a primary goal.

Privacy offers a form of protection over personal and other sensitive data to individuals, and has

been the subject of much study in recent years.

Our constructions are based on a special type of algebraic group called bilinear groups. We

present existing cryptographic constructions which use bilinear pairings, namely Identity-Based

Encryption (IBE). We define a desirable property of digital signatures, blindness, and present new

IBE constructions which incorporate this property.

Blindness is a desirable feature from a privacy perspective as it allows an individual to obscure

elements such as personal details in the data it presents to a third party. In IBE, blinding focuses on

obscuring elements of the identity string which an individual presents to the key generation centre.

This protects an individual’s privacy in a direct manner by allowing her to blind sensitive elements

of the identity string and also prevents a key generation centre from subsequently producing de-

cryption keys using her full identity string. Using blinding techniques, the key generation centre

does not learn the full identity string.

In this thesis, we study selected provably-secure cryptographic constructions. Our contribution

is to reconsider the design of such constructions with a view to incorporating privacy. We present

the new, privacy-enhanced cryptographic protocols using these constructions as primitives. We

refine useful existing security notions and present feasible security definitions and proofs for these

constructions.
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Chapter 1

Introduction

Electronic information technologies make the collection, storage and sharing of data a simpler

task than previous paper based systems. It is feasible to store a myriad of information digitally,

including photographs, certificates, signatures (both hand-written and digital) and other potentially

sensitive data. Using electronic communications, collecting information is reduced to choosing

what data to store. As the cost of storing data continues to drop, it is possible to store all collected

data, and address the issue of processing that data at a later stage. Data stored electronically can

be easily disseminated.

In practice, this means that it is possible to automate the collection, storage and sharing of all

forms of electronic data. Certain data is more valuable than others. It can be used to profile a user,

identify personal interests or leanings, identify financial status or for a host of other purposes. An

individuals’ right to have their privacy and private life respected emanates from many sources of

law. While not explicitly enumerated in the Constitution of Ireland, the Supreme Court considers

it a fundamental right:

‘The right to privacy is one of the fundamental personal rights of the citizen which

flow from the Christian and democratic nature of the State.... The nature of the right

to privacy is such that it must ensure the dignity and freedom of the individual in a

democratic society. This can not be insured if his private communications, whether

written or telephonic, are deliberately and unjustifiably interfered with’ [Gea87]

Article 8 of the European Convention on Human Rights [JWO75] specifies “Everyone has the

right to respect for his private and family life, his home and his correspondence”. The right is

similarly espoused in Article 12 of the United Nations Declaration of Human Rights [Nat08], and
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in many other sources of law internationally.

Additionally, organisations must be able to retain the trust of the individuals whose data they

store and process by employing best-practice techniques when handling such data.

Privacy preserving technologies aim to protect a user’s privacy preferences when they commu-

nicate their data electronically to third parties. Such technologies should facilitate the third party

collecting and storing the data in a responsible and safe manner, while allowing them to access

pertinent information on the user. If it is necessary for the third party to distribute the data, a pri-

vacy preserving technology should ensure this is done in accordance with the individual’s stated

privacy preferences and rights.

Cryptography has numerous aims in relation to information security, including confidentiality,

data integrity, entity and data authentication and secret communication over an insecure channel.

In the case of secret communication, the two communicating parties want to exchange messages,

while preventing a listening third party from learning anything about the content of the messages.

An encryption scheme, viewed at its most simplistic, is a triple of algorithms that facilitates se-

cret communication. The first algorithm, key generation, produces a pair of encryption/decryption

keys. The second algorithm, encryption, is applied by the sender to the message to create a cipher-

text. The third algorithm, decryption, is applied by the recipient to the ciphertext to retrieve the

message. In private-key (symmetric) cryptography, the encryption key is the same as the decryp-

tion key, which means the encryption key must be kept secret. Hereafter, we consider public-key

(asymmetric) encryption schemes where the encryption algorithm is executed using a public-key

and the decryption algorithm is executed using the corresponding private-key. In public-key cryp-

tography, only the private key must be kept secret.

Cryptographic primitives have four basic goals [MVOV97]:

Confidentiality hides information from unauthorised users.

Integrity ensures any tampering with a message in transit is detected. Prevention of tampering is

not generally possible, but it should always be detected.

Authentication ensures a message has originated from the entity it appears to have originated

from and entity authentication ensures that an entity is who they claim to be.

Non-repudiation ensures an entity cannot deny his actions at a later stage.

Cryptographic primitives can also be used towards other objectives such as digital cash [Cha82]
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and searchable encryption [ABC+08, BDCOP04, WBDS04]. We synthesise concepts from exist-

ing cryptographic primitives with identity-based encryption schemes to form new schemes that

contribute to our goal of privacy. In identity-based encryption schemes, we focus on the key gen-

eration centre, and the level of trust that is required in it. By working towards the introduction of

privacy from the key generation centre, our aim is to reduce the level of trust required in it by the

key requesting user.

1.1 Motivation

Prior to the introduction of public-key (asymmetric-key) cryptography [DH76], sharing a com-

mon key for encryption and decryption (symmetric-key cryptography) was standard. Alice and

Bob were required to agree upon a common key, perhaps by meeting in person, to protect their

communications. This practice changed when Diffe and Hellman [DH76] proposed using key

pairs consisting of a public key and a private key.

A public key is issued for Alice, who receives the corresponding private key. The public key is

circulated, and Bob uses it to encrypt a message to Alice. Bob sends Alice the resultant ciphertext.

Alice uses her private key to decrypt the ciphertext and retrieve the message. For this to work,

the keys must be related in some way. It must also be infeasible to compute the private key from

the corresponding public key. Examples of commonly used public-key cryptosystems include

RSA [RSA78], ElGamal [Elg85] and Paillier [Pai99].

Public-key cryptography has many advantages over symmetric-key cryptography [MVOV97].

The most obvious advantage is that only the private key is required to be kept secret. The public

key is made freely available, meaning Bob no longer needs to have an established relationship

with Alice to send her encrypted messages. The public keys must be guaranteed authentic; that

is, it should not be possible for an adversary to publish a public key and claim that it is Alice’s

key. This is necessary to prevent the adversary from being able to intercept and decrypt messages

that Bob believes he has encrypted to Alice. Without any form of public key authentication, an

adversary can claim to be Alice, trick Bob into encrypting messages for her using the impostor

public key and use the corresponding private key to decrypt.

Public-key infrastructures (PKI) evolved to counter such attacks. In PKI, public keys are ad-

ministered by a trusted third party, more commonly known as the certificate authority (CA). The

CA is responsible for certifying a key-pair. A user is bound to the key-pair. This binding is carried
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out by a registration authority (RA). A user is tied in an unforgeable manner to her identity, val-

idated attributes, the associated public key, and other conditions by a public-key certificate. This

infrastructure allows users who have had no prior contact to be authenticated to one another. How-

ever, PKI systems have practical limitations. These include the variability of the CA’s conditions

for certificate issuing, the propagation of certificate revocation and the complexities of the X.509

standard [HPFS02]. A major disadvantage of PKI schemes is the difficulty of finding the correct

certificate corresponding to an individual.

Shamir [Sha85] proposed identity-based encryption (IBE) as an alternative to traditional public-

key cryptography schemes. An identity-based scheme allows the public key of a receiver to be a

known identity string. Identity strings can take the form of an e-mail address, a phone number or

any set of terms or conditions such as a privacy policy or biometric data [SW05, BM05, BDMN06,

SK08]. Identity-based schemes avoid the PKI issue of finding and authenticating a public key. The

public key can be any known and available string. The need for an infrastructure to authenticate

the public keys and provide assurances on their validity is thereby removed. Key revocation can

be handled by including a validity period in the identity string. Administering user credentials is

straightforward. Credentials such as security clearance, role or contract length can be added to the

identity string. Only a receiver with the appropriate credentials can retrieve the private key and

thus decrypt a ciphertext to retrieve the message.

Despite the advantages of identity-based schemes over PKI outlined above, they have not

been embraced as the de facto choice for encryption. This can be attributed in part to the private

key generation process. A user that wants to retrieve her private key presents her identity string

to the key generating centre. This key generation centre has to be trusted by the user. Once a

key generation centre knows an identity string, it is trivial for it to generate additional private

keys. These extra keys may be held by the centre, or maliciously distributed to other parties, and

subsequently used to decrypt ciphertexts intended for the user.

There are other contributing factors in the non adoption of identity-based schemes. The area

of key revocation can require revoking a person’s identity. It is not always possible or convenient

to revoke an identifier, for example if biometric data has been used or an email address. Ensuring

the authenticity of a claim to a particular identity is also a challenge.
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Identity-Based Encryption Schemes

In an IBE scheme, the sender encrypts a message for the receiver using the identity string id and

public parameters params. A trusted third party, the key generation centre (KGC), generates

the user’s secret key skid. An IBE system consists of four polynomial time algorithms: Setup,

Extract, Encrypt and Decrypt (see Figure 1.1).

Setup: Given as input a security parameter k, returns the public system parameters params and

a master secret msk .

Extract: Given as input params, msk and an identity id , returns the private key sk id for id . The

public key is the identity string id and the corresponding private key is sk id .

Encrypt: Given as input params, id and a message m , returns a ciphertext ct .

Decrypt: Given as input params, ct and sk id , returns m under the correctness condition for

encryption that the decryption of an encryption under the correct key returns the message

encrypted.

Figure 1.1: Identity-Based Encryption

IBE schemes can also be used to create digital signature schemes.
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Signature Schemes

A digital signature scheme provides a method for verifying that a message has been approved by

a specified party. Verification of the signature can be performed by anyone with access to the

resulting digital signature, the public key of the signer and the message. Digital signatures aim

to provide a digital equivalent of a hand-written signature. Practical digital signature schemes

must make signatures efficient to generate, efficient to verify and make it infeasible to forge the

signature of another user. A digital signature scheme consists of three algorithms: KeyGen, Sign

and Verify.

KeyGen: Given as input a security parameter k, returns the private key sk used by an individual

for signing messages and the public key pk used by others to verify the resulting signatures.

Sign: Given as input a message to be signed m and the private key sk of the signer, returns σ, the

signature of m . Typically, this algorithm is deterministic.

Verify: Given as input the public key of the signer, the message m and the signature σ,

Verifysk (σ,m) = 1 under the correctness condition for signatures that the verification of a

signature under the correct key returns true.

Identity-Based Encryption implies Signatures

In Boneh and Franklin [BF01], the authors communicate Naor’s observation that an IBE scheme

can be converted into a public key signature scheme. In the resulting signature scheme, the private

key sk is the master secret key msk for the IBE scheme, the public key pk is the global system

parameters params of the IBE scheme and the message m to be signed is the identity string id .

The signature σ on the message m is the IBE private key corresponding to the identity string

sk id . To verify a signature, choose a random m ′ and encrypt m ′ using the public key of the IBE

scheme id . Then attempt to decrypt using the signature σ. If the decryption occurs correctly, the

signature is valid. Otherwise, reject the signature. This approach provides a randomised signature

verification algorithm, which is unlike most signature schemes.

1.2 Summary and Main Contributions

In this thesis, we focus on identity-based encryption and examine incorporating privacy preserving

properties. We distil privacy preserving properties of cryptographic primitives and protocols, and
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combine them to present novel schemes.

The text of this thesis is subdivided into two main parts. The first part focuses on the con-

struction of identity-based encryption schemes. We provide constructions that have the privacy

enhancing property of blindness. These schemes are accompanied by relevant security definitions

and proofs. The second part of this work treats the resulting blinded identity-based encryption

schemes as cryptographic primitives and motivates application scenarios.

The results on constructing blind identity-based encryption schemes are joint work with Ca-

menisch, Kohlweiss and Rial [CKRS09], and with Gray [SG09]. The results on applications of the

schemes are joint work with Camenisch, Kohlweiss and Rial [CKRS09], and with Gray [SG09].

1.2.1 Blind Identity-Based Encryption Schemes and Extensions

The concept. Identity-based encryption schemes are limited by the level of trust required in

the key generation centre. The key generation centre has the ability to decrypt or sign a mes-

sage without authorisation if it learns the relevant identity string. Traditional schemes necessitate

the requesting user presenting the key generation centre with the identity string. Thus, the key

generation centre can create an identity list of all requested identity strings.

In Chapter 3, we propose reducing the level of trust required in the key generation entity by

limiting the identity strings it is privy to. The approach taken is to merge the established property of

blindness with existing identity-based encryption schemes to achieve a privacy enhanced identity-

based encryption scheme.

Our contribution. The first blind identity-based encryption scheme is by Green and Hohen-

berger [GH07]. This scheme is selective-identity, chosen-plaintext secure in the standard model,

meaning an adversary has to commit to the identity ahead of time and has access to encryptions, but

is not anonymous. We present a blind identity-based encryption scheme that is adaptive-identity,

chosen-ciphertext secure in the standard model, meaning an adversary can adaptively choose their

identity and has conditional access to decryptions, as well as being anonymous in Section 3.4. An

anonymous identity-based encryption scheme has the desirable property that the ciphertext does

not leak any information about the identity used to create the ciphertext. Relevant definitions, as

well as security proofs, are provided.

We extend the use of the blinding property to construct the first partially-blind construction of

an identity-based encryption scheme in Section 3.5. Partially-blind IBE allows some elements of
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the identity string be visible to the key generation centre, while the keeping the remaining elements

obscured. We introduce the novel concept of double-blind key extraction in Section 3.6. Double-

blind IBE allows some elements of the identity string be visible to the key generation centre,

some to remain obscured from the key generation centre, and allows the key generation centre to

introduce some elements to the identity string that remain obscured from the user. We construct an

identity-based encryption scheme with this property. We provide security definitions and proofs

for both schemes [SG09]. Finally, we present a transformation for our partially-blind and double-

blind key extraction protocols that allows them to be used with our anonymous identity-based

encryption scheme in Section 3.7.

1.2.2 Resulting Privacy Enhanced Protocols

The concept. We examine applications of blind signatures and identity-based encryption schemes

to ascertain whether they can be improved using blind identity-based encryption. A scheme is con-

sidered improved if it affords a user a greater level of privacy over her identity string than was the

case previously. By preventing her full or partial identity string being leaked to the key generation

entity, the risk to the user of profiling, impersonation and other malicious behaviour by the key

generation entity is reduced.

Our contributions. We present a variant of public-key encryption with keyword search in Sec-

tion 4.3. This allows a user to provide a keyword and obtain a search result with the novel prop-

erty that the keyword is not revealed. We call this public-key encryption with oblivious keyword

search. We then proceed to construct an architecture for anonymous key issuing in Section 4.4,

employing an integral property of blind identity-based encryption. It provides assurances to the

key generation entity that the user is requesting an authorised and valid key. Finally, we describe

a unique receipt issuing protocol that can be used to build online lotteries in Section 4.5.

1.3 Overview

The remainder of this thesis is structured as follows. We begin Chapter 2 with the requisite nota-

tion. We then provide an overview of cryptographic preliminaries, incorporating bilinear pairings,

computational assumptions and cryptographic primitives. We explain relevant concepts of prov-

able security. We describe identity-based encryption and present relevant related schemes.
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Chapter 3 introduces the property of blinding, and its application to identity-based encryption

schemes. Our results on the construction of a variety of such schemes are presented, along with

the necessary security definitions and proofs.

Our applications of blind identity-based encryption are presented in Chapter 4. We examine

some existing cryptosystems in detail, namely public-key encrypted keyword search and anony-

mous key issuing. We present new constructions of each using the novel blind identity-based

encryption schemes detailed in Chapter 3. We conclude with a simple motivating application for

double-blind identity-based encryption.

Chapter 5 concludes the thesis by providing a brief summary of our contributions. We also

discuss directions for future work.
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Chapter 2

Preliminaries

This chapter provides an overview of the foundations required for the remainder of this work and

an introduction to the area of identity-based encryption. We begin with technical preliminaries,

including the mathematical preliminaries and computational assumptions used in our construc-

tions. We do not provide a comprehensive discussion of the foundations of cryptography, which

can be found in detail in the Handbook of Applied Cryptography [MVOV97] and The Foundations

of Cryptography [Gol01].

Section 2.1 begins with the relevant notation. Section 2.2 presents an overview of pairings.

Section 2.3 introduces the requisite complexity assumptions and the foundations for the crypto-

graphic constructs presented. Section 2.4 provides a brief discussion of cryptographic primitives.

Section 2.5 details the security notions associated with encryption schemes. Finally, Section 2.6

surveys identity-based encryption schemes, and presents schemes relevant to our contribution.

2.1 Notation

Let {0, 1} be the set of individual bits, where {0, 1}∗ denotes the space of finite binary strings

and {0, 1}∞ denotes the space of infinite binary strings. Let k ∈ N. 1k is the bit string of k ones

and {0, 1}k is the set of bit strings of length k, Strings are finite unless stated otherwise. The

concatenation of strings a and b is denoted by a|b , or ab. The length of string a is given by |a|.

The empty string is the string of length 0 and is denoted by [].

A linear time algorithm is one in which the measure of computation m(n), for example, exe-

cution time or memory space, is bounded by a linear function of the problem size n, i.e., m(n) is

O(n). A polynomial time algorithm is one in which the measure of computation m(n) is bounded
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by a polynomial function of the problem size n, i.e., m(n) is O(nk) for some k. An exponential

time algorithm is one in which the measure of computation m(n) is bounded by an exponential

function of the problem size n, i.e., m(n) is O(cn) where c > 1.

A function ν is negligible if, for every integer c there exists an integer K such that for all

k > K, |ν(k)| < 1/kc. A function is said to be non-negligible if it is not negligible. A problem

is said to be hard (or intractable) if there exists no algorithm whose running time is polynomial in

the size of the input. Assigning a value a to a variable x is given by x ← a. For a non empty set

A , x← A denotes x is a variable which has been chosen uniformly from A.

We write P (A(a),B(b)) → (c, d) to indicate that P is a protocol between parties A and B,

where a is A’s input, b is B’s input, c is A’s output and d is B’s output.

An efficient computation is polynomial-time in the security parameter. The polynomial bound-

ing the running time is fixed, explicit and usually small. A feasible computation is also polynomial-

time, but the polynomial is not specified a-priori. Thus, this polynomial is considered as arbitrarily

large. An infeasible computation is anything beyond the class of polynomial time computations.

An event that occurs with noticeable probability will almost surely (i.e., except with negligible

probability) occur if the experiment is repeated a polynomial number of times.

2.2 Bilinear Pairings

Elliptic curve cryptosystems (ECC) have the advantage of shorter key size than their public-key

counterparts [Oka06b]. In elliptic curve cryptography, bilinear pairings are functions that map

a pair of elliptic curve points to an element of the multiplicative group of a finite field [Bla05].

Bilinear pairings have limitations that should be taken into account when designing cryptographic

systems using pairings [GPS08]. For example, it is not possible to hash efficiently onto all groups,

and a given pairing may not be efficiently computable.

Let G1 and G2 be two finite multiplicative abelian groups groups of prime order q. A bilinear

map is called symmetric if G1 = G2, and asymmetric otherwise. G3 is a cyclic group of order q.

A pairing is a function

e : G1 ×G2 → G3

satisfying the following properties:

Bilinearity: Given groups of prime order q and two generators g ∈ G1 and h ∈ G2, e(ga, hb) =
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e(g, h)ab.

Non-degeneracy: ∀g ∈ G1, g 6= 1, and h ∈ G2, h 6= 1, e(g, h) 6= 1.

Efficiency: e should be easily computable. This property is required to ensure the map can be

used to construct cryptographic schemes.

2.2.1 Construction of Bilinear Pairings

Bilinear maps are computed using either the Weil or Tate pairing over particular types of ellip-

tic curves using Miller’s algorithm. Miller’s unpublished manuscript of 1986, which was later

published in 2004 [Mil04], describes the efficient implementation of the Weil pairing using a

double-and-add algorithm. In pairing-based cryptosystems, the computation of the Weil or Tate

pairing is generally the most computationally intensive aspect of the system. Thus, it is has been

the focus of a large volume of research in recent years.

In work with Stephen D. Galbraith and Colm Ó hÉigeartaigh [GÓhS07], we present one at-

tempt to reduce the computational complexity of Miller’s algorithm for the Tate pairing. By using

a distortion map to include vertical line functions, it is possible to compute the Tate pairing with-

out a final exponentiation step. This result does not improve the efficiency of the algorithm, but

nevertheless is the first construction which avoids a final exponentiation for the Tate pairing.

Without the final exponentiation for specific curves, the pairing computation is simplified.

This causes one to question whether the difficulty of the pairing inversion problem is affected for

such curves.

Definition 1 (Generalized Pairing Inversion (GPI) Problem [Sat07]) For given z ∈ G3 , find

a ∈ G1 and b ∈ G2 such that e(a, b) = z .

This work [GÓhS07] further supports the belief that the pairing inversion problem is a hard

computational problem as it presents several potential attacks on the pairing inversion problem,

none of which lead to a practical attack.

2.2.2 Application of Pairings to Tripartite Key Agreement

It is important to note that bilinear pairings have been used to construct non-identity based crypto-

graphic schemes. The “Tripartite Key Agreement” protocol proposed by Joux [Jou00] shows that

it is possible to achieve key agreement between three parties in one round using bilinear pairings.
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This is a marked improvement on the Diffe-Hellman [DH76] protocol that achieves key agreement

between three participants in two rounds. It answers the outstanding question as to whether it is

possible to achieve key agreement between three parties in only one round.

Suppose that Alice, Bob and Carol want to agree a key, and have public/private pairs (ga, a), (gb, b)

and (gc, c) respectively where a, b, c ∈ Z∗q are chosen at random and g is a generator of G1, thus

ga, gb, gc ∈ G1. To achieve key agreement in one round, Alice, Bob and Carol compute the pair-

ings e(gb, gc)a, e(ga, gc)b and e(gb, gc)a. It is easily observable that e(gb, gc)a = e(ga, gc)b =

e(ga, gb)c = e(g, g)abc.

This protocol is only resistant to passive attacks, that is, attacks in which the adversary cannot

interact with any of the involved parties and is dependent solely on observed data. As with the

basic Diffie-Hellman protocol, Joux’s protocol does not authenticate the three communicating

parties and is susceptible to the man-in-the-middle attack. It is possible to make it resistant to

active attacks, that is, attacks in which the adversary attempts to add, delete, or otherwise alter

the communication. Al-Riyami and Paterson [ARP03] presented several protocols which assure

authenticity through use of certificates issued by a Certificate Authority (CA).

2.3 Computational Assumptions

Let G1, G3 be two groups of prime order q. Let e : G1 × G1 → G3 be an admissible bilinear

map, and let g be a generator of G1. We present several computational assumptions on bilinear

pairings. These computational assumptions underlie many pairing-based cryptosystems.

Bilinear Diffie-Hellman Assumption (BDH)

Given a tuple g, ga, gb, gc ∈ G1 as input, output = e(g, g)abc ∈ G3. The advantage of adversary

A in solving the BDH problem is

P
[
A(g, ga, gb, gc) = e(g, g)abc

]
.

Similarly, the advantage of adversary A for the Decisional BDH (DBDH) problem is

P
[
A(g, ga, gb, gc, e(g, g)abc) = 0

]
− P

[
A(g, ga, gb, gc, T ) = 0

]
where T is randomly selected from G3.

Assumption 1 The (Decisional) BDH assumption is said to hold in G1 if any probabilistic poly-

nomial time adversary has negligible advantage for the (Decisional) BDH problem.
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Decisional Linear (D-Linear)

Given a tuple g, ga, gb, gac, gbd ∈ G1, h, ha, hb ∈ G3 and Z ∈ G3 for random exponents a, b, c ∈

Zq as input, decide whether Z = gc+d or a random element in G3.

Assumption 2 The Decisional Linear assumption is said to hold if any probabilistic polynomial

time adversary has negligible advantage for the Decisional Linear problem.

Computational Diffie-Hellman Assumption (CDH)

Given a tuple g, ga, gb ∈ G1, compute Z = gab. The CDH problem in G1 can be hard under

certain mappings e : G1 × G1 → G3 even though the DDH in G1 is easy and it may be easy in

G3.

Assumption 3 The CDH assumption is said to hold if any probabilistic polynomial time adver-

sary has negligible advantage for the CDH problem.

Bilinear Diffie-Hellman Inversion Assumption (BDHI)

Given the (q + 1)-tuple (g, gx, gx
2
, . . . , gx

q
) ∈ Gq+1

1 as input, compute e(g, g)
1
x ∈ G3. An

adversary A has advantage in solving q-BDHI of

P
[
A(g, gx, . . . , gx

q
) = e(g, g)

1
x

]
.

Similarly, an adversary A for the Decisional q-BDHI (q-DBDHI) problem has advantage in solv-

ing q-DBDHI of

P
[
A(g, gx, . . . , gx

q
, e(g, g)

1
x ) = 0

]
− P

[
(g, gx, . . . , gx

q
, T ) = 0

]
where T is randomly selected from G3.

Assumption 4 The BDHI assumption holds if any probabilistic polynomial time adversary has

negligible advantage in solving the q−BDHI problem.

Strong Diffie-Hellman Assumption (SDH)

Given the q + 1-tuple (g, gx, gx
2
, . . . , gx

q
) ∈ Gq+1

1 as input, compute (g
a

(x+c) , c) ∈ G1 × N. The

advantage of an adversary A for q-SDH is

P
[
A(g, gx, gx

2
, . . . , gx

q
) = (g

1
(x+c) , c)

]
.
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Assumption 5 The q-SDH assumption holds if any probabilistic polynomial time adversary has

negligible advantage for the q-SDH problem.

Power Decision Diffie-Hellman Assumption (PDDH)

Assumption 6 The PDDH problem is said to be (t, ε, `)-hard if no algorithm running in time

t can, given input tuple (g, gx, gx
2
, . . . , gx

`
, H) where g, gx, gx

2
, . . . , gx

` ∈ G1 and H ∈ G3,

distinguish T = (Hx, Hx2
, . . . ,Hx`) from a random vector in G`

3 with probability greater than

1
2 + ε

2 .

Decisional q-Bilinear Diffie-Hellman Exponent Problem (q-BDHE)

Given (q + 2) elements of G1 (g′, g, gα, . . . , gα
q
), and one G3 element t̂, output ‘yes’ if t̂ =

e(gα
q+1
, g′) and ‘no’ otherwise.

Assumption 7 The q-BDHE assumption holds if any probabilistic polynomial time adversary has

negligible advantage for the q-BDHE problem.

Augmented Diffie-Hellman Exponent Assumption (q-ABDHE)

The q-ABDHE problem is given a vector of 2q+2 elements (g′, g′α
q+1
, g, gα, gα

q
, gα

q+2
, . . . , gα

2q
) ∈

G2q+2
1 , output e(g, g′)α

q+1 ∈ G3.

In the truncated q-ABDHE problem, the terms (gα
q+2
, . . . , gα

2q
) are omitted from the input

vector. An algorithm A has advantage ε in solving the truncated q-ABDHE problem if

Pr[A(g′, g′q+2, g, gα, gα
2
, . . . , gα

q
) = e(gq+1, g′)] > ε.

Assumption 8 The q-ABDHE assumption holds if any probabilistic polynomial time adversary

has negligible advantage for the q-ABDHE problem.

2.4 Cryptographic Primitives

2.4.1 One-way Functions

One-way functions play a significant role in cryptography. A function f : {0, 1}∗ → {0, 1}∗ is

called one-way if, on input x, there is an efficient algorithm that outputs f(x) but it is infeasible

to invert f(x) to retrieve x. That is, any feasible algorithm that tries to find x given f(x) may

succeed with only negligible probability.

15



Definition 2 (one-way functions [Gol01]) A function f : {0, 1}∗ → {0, 1}∗ is one-way if the

following two conditions hold:

easy to evaluate there exists a polynomial-time algorithm A such that A(x) = f(x) for every

x ∈ {0, 1}∗.

hard to invert for every probabilistic polynomial-time algorithm A′, every polynomial p and all

sufficiently large n

P
[
A′(f(x), 1n) ∈ f−1(f(x))

]
<

1
p(n)

where the probability is taken uniformly over all the possible choices of x ∈ {0, 1}n and all

the possible outcomes of the internal coin tosses of algorithm A′.

One way functions are often based on the presumed intractability of computational problems

in number theory. Consider the problem of factoring a large integer. A function that takes as input

two large, equal length primes and outputs their product is generally believed to be a one-way

function. It is conjectured to be infeasible to find the factors of a large composite integer.

The definition given above requires that any feasible algorithm that succeeds in inverting the

function does so with negligible probability. This can be weakened to a notion of weakly inverting

which requires that any feasible algorithm fails to invert the function with noticeable probability.

2.4.2 Hash Functions

A cryptographic hash function produces a compact representation (digital fingerprint or message

digest or hash) of the input string. Hash values are often used in place of or in addition to the

actual message, for example in digital signatures and for data integrity.

Definition 3 (hash function [MVOV97]) A hash function is a function h which has, as a mini-

mum, the following two properties:

compression h maps an input x of arbitrary finite bit-length, to an output h(x) of fixed bit-length

n.

ease of computation given h and an input x, h(x) is easy to compute.
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Hash functions can be split into two classes: unkeyed hash functions that have a single input

parameter, a message; and keyed hash functions that have two input parameters, a message and a

secret key. The definition above implies an unkeyed hash function with a single input parameter.

Practical unkeyed hash functions require three properties, in addition to compression and ease

of computation. For an unkeyed hash function h with inputs x, x′ and corresponding outputs y, y′

[MVOV97]:

one-way (preimage resistance) for essentially all pre-specified outputs, is it computationally in-

feasible to find any input which hashes to that output, i.e., to find any preimage x′ such that

h(x′) = y when given any y for which a corresponding input is not known.

weak collision resistance (2nd-preimage resistance) it is computationally infeasible to find any

second input which has the same output as any specified input, i.e., given x, to find a second

preimage x′ 6= x such that h(x) = h(x′).

strong collision resistance it is computationally infeasible to find any two distinct inputs x, x′

which hash to the same output, i.e., such that h(x) = h(x′).

Definition 4 (collision resistant hash function [MVOV97]) A collision resistant hash function

(CRHF) is a hash function h as per Definition 3 with the properties of one-wayness, weak collision

resistance and strong collision resistance. Note that collision resistance implies weak collision

resistance.

2.4.3 Zero-Knowledge

A proof of knowledge is, generally speaking, an interactive protocol between two parties, a prover

and a verifier. The prover wants to convince the verifier of the validity of an assertion, while

revealing no information beyond the assertion itself. Such a proof requires two properties: com-

pleteness and soundness. Completeness dictates that a proof should allow a prover to convince the

verifier of the validity of any true statement. Soundness dictates that a proof should not allow a

prover to convince the verifier of the validity of any false statement.

Definition 5 (completeness property [MVOV97]) An interactive proof (protocol) is complete if,

given an honest prover and an honest verifier, the protocol succeeds with overwhelming probability

(i.e., the verifier accepts the prover’s claim). The definition of overwhelming depends on the

application, but generally implies that the probability of failure is not of practical significance.
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Definition 6 (soundness property [MVOV97]) An interactive proof (protocol) is sound if there

exists an expected polynomial-time algorithmM with the following property: if a dishonest prover

(impersonating honest prover A) can with non-negligble probability successfully execute the pro-

tocol with honest verifier B, then M can be used to extract from this prover knowledge essentially

equivalent to A’s secret which with overwhelming probability allows successful subsequent proto-

col executions.

Zero-knowledge proofs, as introduced by Goldwasser et al. [GMR85], provide a means to

prove the validity of an assertion without revealing anything else to the verifier. The verifier

learns nothing from the zero-knowledge proof that she does not already learn from the assertion.

Such proofs require the properties of completeness and soundness, in addition to the property of

zero knowledge. Informally, an interactive proof system is zero-knowledge if whatever can be

efficiently computed after interacting with the prover on input x can also be efficiently computed

from x without any interaction. It is a property that captures a prover’s robustness against attempts

by a verifier to gain knowledge by interacting with it. Definitions of the zero-knowledge property

have varying levels of rigor. We present computational zero-knowledge, as it is considered the

most practicable [Gol01].

Definition 7 (Computational Zero-Knowledge [Gol01]) An interactive protocol is computational

zero-knowledge if for every probabilistic polynomial time verifier there exists a probabilistic

polynomial-time simulator such that the following are computationally indistinguishable:

• The output of the verifier interacting with the prover on common input x

• The output of the simulator on input x

2.4.4 Commitment Schemes

A commitment scheme allows a party to commit to a value while keeping the value secret. It

is a two phase protocol, consisting of a commit phase and a reveal phase. The two parties in

a commitment scheme are a sender, who commits to a value, and a receiver, who receives the

commitment but cannot open it to reveal the value until the sender agrees.

A commitment scheme is required to have two properties [Gol01]:

concealing at the end of the first phase, the receiver does not gain any knowledge of the sender’s

value. This requirement has to be satisfied even if the receiver tries to cheat.
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Input The public parameters are a cyclic group Gq of prime order q and two gener-
ators g, h of Gq such that logg(h) is unknown by any party except the sender.

Commit Sender commits to message α ∈ Zq by choosing β ∈ Zq and generating
the commitment

Commit(params, α, β) = gαhβ.

Reveal The commitment is shown by Sender upon revealing α and β.

Figure 2.1: Pedersen’s Commitment Scheme

binding given the transcript of the interaction in the first phase, there exists at most one value that

the receiver can later (in the second phase) accept as a legal opening, or revealing, of the

commitment.

In the commit phase, no information should be revealed to the receiver while at the same time

binding the sender to a unique value. In the reveal phase, the commitment is opened in a manner

which can return only the unique value committed to.

Pedersen’s Commitment Scheme

Pedersen’s scheme is based on the security of the discrete logarithm problem [Ped91]. The public

parameters are a cyclic group Gq of prime order q and two generators g, h of Gq such that logg(h)

is unknown by any party except the sender.

The scheme is presented in Figure 2.1.

2.5 Security Notions

Intuitively, in public-key cryptography it is necessary to keep the private-key a secret. Retrieving

the private-key from the public-key of an asymmetric cryptosystem is prevented by an underlying

computationally difficult problem, or hard problem, encapsulated by one-way functions. Tradi-

tionally, the security of cryptosystems is evaluated by rigorous examination of such problems.

One-way functions allow the construction of systems which are easy to use but hard to break. This

gap between ease of use and difficulty to break is known as a complexity gap [Gol01]. Complexity

gaps are believed to exist in hard problems such as those outlined in Section 2.3.

This reliance on complexity gaps to evaluate security is limited by a failure to consider other

possible attacks. The underlying hard problem is used to build a protocol, and the construction
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of such protocols may have weaknesses that can be exploited. Breaking a cryptosystem is not

necessarily equivalent to solving the underlying mathematical hard problem on which the protocol

is based. The Merkle-Hellman knapsack cryptosystem [MH78] is subject to such a break [Sha84].

For example, an adversary often attempts to manipulate the execution of a protocol. An adver-

sary can be described as passive or active, in reference to whether the adversary has taken active

steps to disrupt the execution of the protocol. Looking at a cryptographic scheme, one can identify

goals of the scheme, as well as potential attack models.

The aim of security proofs for cryptographic algorithms and protocols (cryptosystems) is to

provide security guarantees by modelling subversive behaviour [Den06].

Reductionist security claims are based on the premise that a party that can reveal messages from

the ciphertext without the private key must be able to solve the underlying problem [KM07]. The

‘reduction’ comes from the strategy in such proofs that if one can show the hardness of one prob-

lem implies hardness of another problem, then there exists a reduction to a known hard problem,

on which the security can be based.

Practice-oriented provable security investigates the details of the reduction presented in the se-

curity proof, which facilitates thinking about protocols and primitives in a systematic way. All

security proofs are limited by the range of attacks considered in the model. Side channel attacks

such as timing analysis, differential power and differential fault attacks are not usually encom-

passed by security arguments.

2.5.1 Random Oracle and Standard Model

Cryptographic schemes are proven secure to the required level using either random oracles or the

standard model. Security proofs using random oracles were introduced [BR93] to address the gap

between theory and practice. A random oracle is used in an idealised security game that captures

the properties that real primitives appear to have. Random oracles are used to model cryptographic

hash functions. All parties are given access to a (public) random oracle, and the protocol is proven

correct in this model (ideal game). The random oracle is then replaced with a hash function (real

game), providing an implementation of the protocol. The two models should be indistinguishable.

Proof of security using the random oracles does not imply security in the real world. It is important

to note that Canetti et al. [CGH04] have shown that some schemes proven secure in the random

oracle are insecure when the random oracle is substituted with a function from a certain small

20



family of efficiently computable functions.

In contrast, the standard model models the situation whereby the adversary is only limited by

the amount of time and computational power available. It is the difficulty of constructing a proof

in the standard model that motivates proofs in the random oracle model.

2.5.2 Security Goals and Attack Models

We introduce the standard notions of security for public-key encryption schemes used to model

provable security. Using this approach, a system designer first describes what is understood by the

security of a scheme. This is followed by a proof that shows the scheme can be broken by either

attacking an insecure cryptographic component of the scheme or by achieving a mathematical

breakthrough.

Semantic security (SS)

Given the encryption of two messages of equal length, it is infeasible for an adversary with access

to the encryption key to distinguish the encryption of one message from the other. The adversary is

unable to obtain any information about the plaintext message that was encrypted to the ciphertext,

other that its bitlength, even with access to a decryption oracle for any other ciphertexts. Semantic

security is used when confidentiality is the desired end goal.

Indistinguishability (IND)

An adversary chooses two messages. One of the messages is chosen at random and encrypted.

Given the resulting ciphertext the adversary cannot guess which message was encrypted with

probability greater than 1
2 . This is a technical goal, which aims to capture a strong form of privacy

and be easier to reason about than semantic security. Indistinguishability is used when the encryp-

tion is used as part of a cryptographic protocol, and is closely related to the notion of semantic

security.

Non-malleability (NM)

It is computationally infeasible for an adversary given a ciphertext to generate a different cipher-

text such that the respective plaintexts are related in a known manner. Non-malleabilty can be
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considered as a form of indistinguishability.

Active attacks have been modeled into three modes, which are used in the analysis of cryp-

tosystems [Mao03].

Chosen-plaintext attacks (CPA)

An adversary given access to the public key of a scheme can choose arbitrary plaintexts to encrypt

and obtain the corresponding ciphertexts. A scheme is CPA-secure if it prevents an adversary from

choosing a message and constructing the corresponding ciphertext in such a way as to leak any

useful information.

Chosen-ciphertext attacks (CCA)

An adversary given access to the public key of a scheme can choose arbitrary plaintexts to encrypt

and obtain the corresponding ciphertexts. Additionally, the adversary receives access to a decryp-

tion oracle, to which it can submit any ciphertext to be decrypted, except the challenge ciphertext.

A scheme is CCA-secure if it prevents an adversary from constructing a ciphertext and obtaining

the decryption in such a way as to leak any useful information after it no longer has access to a

decryption oracle.

Adaptive chosen-ciphertext attacks (CCA2)

An adversary given access to the public key of a scheme can choose arbitrary plaintexts to en-

crypt and obtain the corresponding ciphertexts. Additionally, the adversary receives access to a

decryption oracle, to which it adaptively submits ciphertexts chosen using the results of previous

decryptions, to be decrypted, excluding the challenge ciphertext. A scheme is CCA2-secure if

it prevents an adversary from adaptively constructing ciphertexts and obtaining the decryptions

in such a way as to leak any useful information. The adversary can access a decryption oracle

forever, with the restriction that the target ciphertext may never be queried.

2.5.3 Security Notions for Identity-Based Schemes

Security notions for identity-based schemes build upon existing public-key cryptography security

notions. It is also necessary to elucidate the capabilities of an adversary. An adversary is given
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access to an extraction oracle which, upon input of a public key id , outputs the corresponding

private key sk id . The attacker is capable of choosing the challenge id in two ways. Additionally,

in some IBE schemes, it is possible to check if a given identity was used to create the ciphertext,

using only the public parameters and ciphertext. Depending upon the application scenario, this

can be an undesirable property.

Selective-identity (sID) An adversary commits to a chosen identity id ahead of time. That is,

before the interactive security game is run.

Adaptive-identity (ID) An adversary may adaptively chose their id , depending upon information

garnered thus far in the security game.

Recipient anonymity (ANON) An adversary is unable to distinguish the public key id used to

generate a ciphertext ct given the ciphertext and the public parameters of the system params.

Security notions are combined to describe the level of security a scheme has. For example, a

scheme may be described as IND-ID-CPA secure.

Chosen-Plaintext Attack

In IBE, security means privacy and it can be formalized in several ways, e.g., indistinguishabil-

ity under chosen-plaintext attack (IBE-IND-CPA) (also semantic security) or indistinguishability

under chosen-ciphertext attack (IBE-IND-CCA). We can describe IBE-IND-CPA by means of a

game [BF01]:

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives the

adversary the resulting system parameters params, and keeps the master secret key msk to

itself.

Phase 1: The adversary makes adaptive queries to OracleExtract(id) and gets back the secret

keys for these identities.

Challenge: The adversary outputs two equal length plaintexts m0,m1 ∈ m(k) and an iden-

tity id that has not been queried before. The challenger chooses a random bit b and runs

Encrypt(params, id ,mb) to obtain a ciphertext C for message mb under identity id . C is

passed to the adversary.

Phase 2: The adversary continues making adaptive queries to OracleExtract(id). Note that this

oracle rejects answering if the identity is the one output by the adversary in the Challenge
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step.

Guess: The adversary outputs a bit b′ in order to guess which message was used to build the

ciphertext.

The advantage of the adversary A has in the scheme E is a function of the security parameter

k, and is given by:

AdvE,k(A) = |Pr[b = b′]− 1/2|.

Definition 8 An IBE system E is semantically secure against an adaptive chose plaintext attack if

for any polynomial time IND-ID-CPA adversary A the function AdvE,A(k) is negligible.

Chosen Ciphertext Attack

In IBE-IND-CCA, the adversary can also make queries to an oracle OracleDecrypt(id , C) and re-

ceive a decryption using the secret key corresponding to a given id i for a ciphertextC. OracleDecrypt

does not answer queries answering on the challenge identity / ciphertext pair (id , ct). The IBE

scheme is said to be IBE-IND-CCA secure when the advantage of the adversary in the game is

negligible.

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives the

adversary the resulting system parameters params, and keeps the master secret key msk to

itself.

Phase 1: The adversary issues queries q1, . . . , qm, where qi is one of:

• Extraction query 〈id i〉. The challenger responds by running algorithm Extract to gen-

erate the private key sk id i corresponding to the public key id i. It then sends sk id i to

the adversary.

• Decryption query〈id i, cti〉. The challenger responds by running algorithm Extract to

generate the private key sk id i corresponding to the id i. It then runs algorithm Decrypt

to decrypt the ciphertext cti using the private key sk id i . It sends the resulting plaintext

to the adversary.

Challenge: The adversary decides when Phase 1 is complete, and outputs two plaintexts

m0,m1 ∈M and an identity id on which it wishes to be challenged. The only constraint is
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that id was not previously queried in Phase 1. The challenger picks a random bit b ∈ {0, 1}

and sets ct = Encrypt(params, id , mb).

Phase 2: The adversary issues more queries, qm+1, . . . , qn where query qi is one of:

• Extraction query 〈id i〉 where id i 6= id . Challenger responds as in Phase 1.

• Decryption query 〈id i, cti〉 6= 〈id , ct〉. Challenger responds as in Phase 1.

Guess: Finally the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

Such an adversary A is referred to as an IND-ID-CCA adversary.

The advantage A has in the scheme E is a function of the security parameter k, and is given by:

AdvE,A(k) =
∣∣P[b = b′]− 1

2

∣∣.
Definition 9 An IBE system E is semantically secure against an adaptive chose ciphertext attack

if for any polynomial time IND-ID-CCA adversary A the function AdvE,A(k) is negligible.

Recipient Anonymity

Abdalla et al. [ABC+08] define anonymity through a security game in which the adversary re-

ceives a ciphertext encrypted with an identity that is randomly picked from two identities of his

choosing. The adversary has to guess the identity used to encrypt the ciphertext. As outlined by

Gentry [Gen06], this game can be combined with either the standard chosen plaintext security

game or the chosen ciphertext attack game for IBE. An IBE scheme can be proven anonymous by

incorporating anonymity into the CCA or CPA security game as with the following modifications.

Setup: As per required CCA / CPA security game.

Phase 1: As per required CCA / CPA security game.

Challenge: The adversary outputs two identities id0 and id1 not queried in Phase 1 and two

messages m0 and m1. The challenger picks two random bits b, c ∈ {0, 1}, uses id b to

encrypt mc, and sends the resulting ciphertext ct to the adversary.

Phase 2: As per phase one, with the restriction that the adversary cannot request a private key

for id0 or id1, or the decryption of ct under either identity.

Guess: Finally the adversary outputs a guess for each of b′, c′ ∈ {0, 1} and wins the game if

b = b′ and c′ = c.
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The advantage A has in the scheme E is a function of the security parameter k, and is given by:

AdvE,A(k) =
∣∣∣∣P[b = b′ ∧ c = c′]− 1

4

∣∣∣∣ .
Definition 10 ( [Gen06]) An IBE scheme E is (t, qid , dct , ε) ANON-IND-ID-CCA secure if all t-

time adversaries making at most qid private key queries and at most qct chosen ciphertext queries

have advantage of at most ε in the modified game. ANON-IND-ID-CPA security is defined simi-

larly.

2.6 Identity-Based Encryption Schemes

2.6.1 The Boneh-Franklin Identity-Based Encryption Scheme

Sakai et al. [SOK00] proposed using bilinear pairings to efficiently construct an identity-based,

non-interactive key agreement scheme. Following this work, in 2001 Boneh and Franklin [BF01]

further explored the application of pairings to cryptography and presented an identity-based en-

cryption (IBE) scheme, along with a formalisation of the security, addressing a question that had

beem open since 1984 when Shamir proposed the concept. Alternative approaches to identity-

based schemes have been proposed [Coc01, TI89]; however, none are practical due to the condi-

tions imposed on their application, including tamper-freeness and restrictions on users’ colluding.

The scheme

The seminal scheme proposed by Boneh and Franklin [BF01] is described by the following four

algorithms. The identity is represented as a bit-string.

Setup: Given input of security parameter k, generate a prime q, two groups G1, G3 of prime

order q and an admissible bilinear map e : G1 × G1 → G3. Choose a random generator

g ∈ G1, a random s ∈ Z∗q and set gpub = gs. Choose cryptographic hash functions H1 :

{0, 1}∗ → G∗1 and H2 : G3 → {0, 1}n for some value of n, H3 : {0, 1}n × {0, 1}n → Z∗q

and H4 : {0, 1}n → {0, 1}n.

Extract: Given input of identity string id ∈ {0, 1}∗, compute Qid = H1(id) ∈ G∗1 and set the

private key sk id as sk id = Qsid where s is the master secret key.
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Encrypt: Given input of message m ∈ {0, 1}n and public key id , compute Qid = H1(id) ∈ G∗1,

choose a random σ ∈ {0, 1}n , set r = H3(σ,m) and set the ciphertext ct to be

ct = 〈gr, σ ⊕H2(grid ),m ⊕H4(σ)〉 where gid = e(Qid , gpub) ∈ G3.

Decrypt: Let ct = 〈U, V,W 〉 be a ciphertext encrypted with id as its public key. If U /∈ G∗1,

then reject the ciphertext. Otherwise decrypt the ciphertext using the private key sk id by

computing v ⊕H2(e(sk id , U)) = σ, W ⊕H4(σ) = m . Set r = H3(σ,m) and reject the

ciphertext if U 6= gr. Output m , the decryption of ct .

Security of the scheme

The Boneh-Franklin scheme is adaptive-identity chosen ciphertext secure (IND-ID-CCA) using

random oracles. It works with any efficiently-computable pairing e : G1×G1 → G3 between two

groups under the Bilinear Diffe-Hellman (BDH, Section 2.3) assumption. Suitable pairings can be

derived using both the Weil and the Tate pairings. The construction of a chosen ciphertext secure

system in the standard model remained an open problem at that time.

2.6.2 The Boneh-Boyen Efficient Selective Identity Identity-Based Encryption Scheme

without Random Oracles

In response to the open problem at the time of an IBE construction secure in the standard model,

Boneh-Boyen [BB04a] presented two IBE schemes which are secure in the standard model.

The Efficient Selective Identity IBE scheme

This first scheme extends to Hierarchical IBE (HIBE), as introduced by Horwitz and Lynn [HL02].

HIBE allows a root key generator (RKG) to generate the private key of any users in their hierarchy.

Such a scheme is useful in large organisations to remove the dependence on a single key generator.

The RKG can generate the private keys of the managers of the organisation, who in turn can

generate the private keys for employees on their team, etc. To generate keys using the Boneh-

Boyen method, a HIBE scheme must have a maximum depth of l. An identity is represented as a

vector ID = (id1, . . . , id l), where id j represents the identity at level j ∈ {1, 2, . . . , l}.
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The scheme

Setup: Given input of maximum depth l, select a random generator g ∈ G∗1, a random α ∈ Zq

and set g1 = gα. Choose random elements h1, . . . , hl ∈ G1 and a random element g2 ∈ G1.

The public parameters params are g, g1, g2, h1, . . . , hl and the master secret msk is gα2 . For

j = 1, . . . , l, define a function Fj : Zq → G1 as Fj(x) = gx1hj .

Extract: Given input of ID = (id1, . . . , id j) ∈ Zjq of depth j ≤ l, choose random r1, . . . , rj ∈

Zq and output

dID =
(
gα2 ·

j∏
k=1

Fk(idk)rk , gr1 , . . . , grj
)
.

Encrypt: Given input of message m and public key ID = (id1, . . . , id j) ∈ Zjq, choose a random

s ∈ Zq and output the ciphertext

ct =
(
e(g1, g2)s ·m, gs, F1(id1)s, . . . , Fj(id j)s

)
.

Decrypt: Let ct = (A,B,C1, . . . , Cj). Using the private key dID = (d0, d1, . . . , dj), output

A ·
∏j
k=1 e(Ck, dk)
e(B, d0)

= m.

Security of the scheme

The security of the HIBE scheme [HL02] extends chosen-ciphertext security, based on the as-

sumption that an attacker can obtain private keys at any level excluding the master secret. The

security game is as outlined for chosen-ciphertext above, except the adversary’s queries in Phase

1 can use any prefix to a given identity at level l it chooses. The challenge identity N which the

adversary wants to be queried on has the restriction that no prefix of N has been queried in Phase

1. Finally, in Phase 2 of the security game, neither the challenge ciphertext nor any prefix of N

may be queried.

This scheme is secure in the selective-ID model, which is weaker than the adaptive-ID model.

It requires that the adversary commits to an identity ahead of time and may only challenge us-

ing this identity. However, it is secure under the Decisional Bilinear Diffe-Hellman assumption

(Decisional-BDH, Section 2.3) in the standard model.
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The More Efficient Selective Identity IBE scheme

A second scheme has the advantage of a more efficient decryption algorithm. This advantage is

based on the use of only one pairing computation in the decryption algorithm, while the encryption

efficiency and the ciphertext size remain the same as in the first scheme. The pairing computation

e(g, g) required for the encryption can be pre-computed, meaning the encryption does not require

any pairing computations.

The scheme

Setup: Select a random generator g ∈ G∗1, random elements x, y ∈ Z∗q and set X = gx and

Y = gy. The public parameters params are (g,X, Y ) and the master secret msk is (x, y).

Extract: Given input of public key id ∈ Z∗q , choose random r ∈ Zq and computeK = g
1

(id+x+ry) ∈

G1 and output the private key sk id = (r,K).

Encrypt: Given input of a message m and a public key id , choose at random s ∈ Z∗q and output

the ciphertext

ct = (gs·idXs, Y s, e(g, g)s ·m).

Decrypt: Given input of ct and sk id , let ct = (A,B,C). Using the private key sk id , output

C
e(A·Br,K) = e( C

gs(id+x+ry) ,
1

gid+x+ry ) = C
e(g,g)s = m.

Security of the scheme

This scheme is IND-sID-CPA secure under the B-DHI assumption. As with the first scheme, it

can be converted to a chosen ciphertext secure scheme using Canetti et al.’s transform [CHK07].

It is worth noting that this does not provide an efficient scheme, as the conversion relies on the use

of non-interactive zero-knowledge constructions.

Furthermore, Boneh-Boyen [BB04a] shows that any selective-ID secure scheme is also an

adaptive-ID secure scheme. The reduction they provide depends on having a sufficiently large

identity space. This reduction is inefficient.
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2.6.3 The Boneh-Boyen Secure Identity-Based Encryption Scheme without Ran-

dom Oracles

This scheme [BB04b] is an adaptation of the first of the two Boneh-Boyen schemes [BB04a]

presented above. The resulting scheme is impractical, but provides a proof of concept that a

secure, adaptive-ID chosen-ciphertext scheme with a polynomial security reduction can exist in

the standard model.

The scheme

Let G1 be a bilinear group of prime order q and e : G1×G1 → G3. Σ = {1, . . . , s} is an alphabet

of size s and let {Hk : {0, 1}w → Σn}k∈K be a family of hash functions where K ∈ Σ(n,m) is a

vector with n ≥ m > 0. A public key id is an element of {0, 1}w.

Setup: Choose a random generator g ∈ G∗1, a random α ∈ Zq and set g1 = gα. Choose a random

element g2 ∈ G1 and construct a random n× s matrix U = (ui,j) ∈ Gn×s
1 where each ui,j

is uniform in G1. Finally choose a random k ∈ K as a hash function key. The system

parameters params are (g, g1, g2, U, k) and the master secret msk is gα2 .

Extract: Given input of identity id ∈ {0, 1}w, let ~a = Hk(id) = a1, . . . , an ∈ Σn and pick

random r1, . . . , rn ∈ Zq. The private key is

sk id = (gα2 ·
n∏
i=1

urii,ai , g
r1 , . . . , grn).

Encrypt: Given input of message m and public key identity id , set ~a = Hk(id) = a1, . . . , an ∈

Σn, pick a random t ∈ Zq and output the ciphertext

ct = (e(g1, g2)t ·m, gt, ut1,a1
, . . . , utn,an).

Decrypt: Let ct = (A,B,C1, . . . , Cn), using the private key sk id = (d0, d1, . . . , dn), output

A ·
∏n
j=1 e(Cj , dj)
e(B, d0)

= m.

Security of the scheme

The proof of security is in the standard model and is based on the Decisional-BDH assumption.

This scheme is IND-ID-CPA provably secure. Adaptive-id security is achieved using the reduction

in Section 7 of [BB04b] which requires hashing identities using a collision resistant function and

introduces a 2n factor in the security parameters.
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2.6.4 The Waters Efficient Identity-Based Encryption Scheme without Random

Oracles

The scheme proposed by Waters [Wat05] presents the first efficient IBE scheme provably secure

in the standard model. It is based on the algebraic method used by Boneh-Boyen in the preceding

scheme presented in Section 2.6.2. In the Boneh-Boyen scheme, the identity v is represented as

gv1hj . At level one hierarchy, and given h1 and u′ are random elements, the identity v can be

evaluated as u′gv. The Waters’ scheme evaluates v as u′
∏
i∈V ui where V ⊆ {1, . . . , n} is the set

of all i for which vi = 1. It is this small modification that makes the scheme efficient and adaptively

secure in the standard model.

The scheme

Let G1 be a group of prime order q, g be a random generator of G1 and e be a bilinear map from

G1 to G3. Identities v are represented as bit-strings of length n.

Setup: Choose a secret random value α ∈ Zq. Set g1 = gα and choose g2 at random in G1.

Choose a random u′ ∈ G1 and a vector U = (ui), where each ui ∈ G1. The public

parameters are g, g1, g2, u
′ and U . The master secret of the KGC is α.

Extract: Given as input an identity v, choose random value r ∈ Zq. Let V ⊆ {1, . . . , n} be the

set of all i for which vi = 1. The private key dv = (d1, d2) corresponding to identity v is

constructed as

dv =
(
gα2 (u′

∏
i∈V

ui)r, gr
)
.

Encrypt: A message m is encrypted for an identity string v. Choose a random value t ∈ Zq and

construct the ciphertext ct = (c1, c2, c3) as

ct =
(
e(g1, g2)t ·m, gt,

(
u′
∏
i∈V

ui
)t)
.
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Decrypt: A ciphertext that is the encryption of m under v can be decrypted using dv as

c1
e(d2, c3)
e(c2, d1)

= e(g1, g2)t ·m ·
e(gr, (u′

∏
i∈V ui)

t)
e(gt, gα2 (u′

∏
i∈V ui)r)

= e(g1, g2)t ·m ·
e(g, (u′

∏
i∈V u

vi
i )rt)

e(g1, g2)te(g, (u′
∏
i∈V ui)rt)

=
e(g1, g2)t

e(g1, g2)t
·m ·

e(g, (u′
∏
i∈V u

vi
i )rt)

e(g, (u′
∏
i∈V ui)rt)

= m.

Security of the scheme

The security of this scheme is based on the Decisional-BDH (D-BDH) assumption, and is IND-ID-

CPA secure in the standard model. The scheme as presented is limited to chosen-plaintext security;

that is, it only guarantees security against adversaries that are prevented from choosing a message

and constructing the corresponding ciphertext in such a way as to leak any useful information.

Waters presents a modification to achieve CCA security.

2.6.5 The Naccache Secure and Practical Identity-Based Encryption Scheme

The Waters IBE scheme [Wat05] was the first practical and efficient IBE to have been proposed

with its security assumptions in the standard model. The efficiency it achieves is a result of the

need for fewer exponential and bilinear map computations. A remaining open problem at the time

was to produce a scheme that did not have the very large public parameters of Waters’ scheme.

Naccache [Nac07] provides a solution to this problem with a scheme that is a variant of Waters’

scheme with a smaller public-key size, resulting in the first practical and secure IBE scheme that

is semantically secure against passive adversaries in the standard model.

The Chatterjee-Sarkar Scheme In concurrent independent work, Chatterjee and Sarkar [CS06]

proposed a similar scheme. Their work contributes a concrete security analysis, in addition to the

scheme and security proof. They provide a rigorous examination of the tightness of the security

reduction. Additionally, they provide results on required group sizes for 80-bit security for identity

lengths of 160 and 256, split into vectors of length l, where various values for l are considered.
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The scheme

Let G1 be a group of prime order q, g be a random generator of G1 and e be a bilinear map from

G1 to G2. Identities v are represented as n dimensional vectors v = (v1, . . . , vn) where each vi is

of length l.

Setup: Choose a secret α at random from Zq. Set g1 = gα and chose g2 at random in G1. Choose

a random u′ ∈ G1 and a vector U = (ui), where each ui ∈ G1. The public parameters are

g, g1, g2, u
′ and U . The master secret of the KGC is α.

Extract: Let v = (v1, . . . , vn) ∈ ({0, 1}l)n be an identity and choose a random value r ∈ Zq.

The private key dv = (d1, d2) corresponding to identity v is constructed as

dv =
(
gα2
(
u′

n∏
i=1

uvii
)r
, gr
)
.

Encrypt: A message m is encrypted for an identity string v. Choose a random value t ∈ Zq and

construct the ciphertext ct = (c1, c2, c3) as

ct =
(
e(g1, g2)t ·m, gt,

(
u′

n∏
i=1

uvii
)t)
.

Decrypt: A ciphertext that is the encryption of m under v can be decrypted using dv as

c1
e(d2, c3)
e(c2, d1)

= e(g1, g2)t ·m ·
e(gr, (u′

∏n
i=1 u

vi
i )t)

e(gt, gα2 (u′
∏n
i=1 u

vi
i )r)

= e(g1, g2)t ·m ·
e(g, (u′

∏n
i=1 u

vi
i )rt)

e(g1, g2)te(g, (u′
∏n
i=1 u

vi
i )rt)

= m.

The security of the scheme

The scheme is IND-ID-CPA secure in the standard model under the Decisional-BDH assumption.

Chatterjee and Sarkar [CS06] show that the conversion of security degradation into a trade-off

between time and space is the most important feature of the generalisation of Waters scheme.

2.6.6 The Boyen-Waters Anonymous Identity-Based Encryption Scheme

This scheme is one of few schemes that achieve the anonymity property [BW06]. The first is that

of Boneh and Franklin [BF01], although they did not explicitly state it. Their scheme is secure in

33



the random oracle model. Thus the Boyen-Waters scheme is the first anonymous scheme proven

secure in the standard model.

The scheme

Setup: Given a group G1, choose a random generator g ∈ G1, random elements g0, g1 ∈ G1

and random exponents α, t1, t2, t3, t4 ∈ Zq. The msk consists of the random exponents

α, t1, t2, t3, t4 and the system parameters params are published as

params =
[
ω = e(g, g)t1t2α, g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4

]
.

Extract: Given input of msk and id , the KGC chooses two random exponents r1, r2 ∈ Zq and

computes the secret key sk id = [d0, d1, d2, d3, d4] as

sk id =
[
gr1t1t2+r2t3t4 , g−αt2(g0g

id
1 )−r1t1 , g−αt2(g0g

id
1 )−r1t1 , (g0g

id
1 )−r2t4 , (g0g

id
1 )−r2t3

]
.

Encrypt: Given input of params, id and message m ∈ G2, to encrypt m for identity id ∈ Zq\{0}

choose random exponents s, s1, s2 ∈ Zq and create ciphertext as

ct = [C ′, C0, C1, C2, C3, C4] =
[
ωsm, (g0g

id
1 )s, vs−s11 , vs12 , v

s−s2
3 , vs24 ].

Decrypt: Given input of sk id , ct , decrypt by computing

C ′ · e(C0, d0) · e(C1, d1) · e(C2, d2) · e(C3, d2) · e(C3, d3) · e(C4, d4) = m.

Security of the scheme

The scheme by Boyen-Waters is an anonymous scheme that is IND-sID-CPA secure in the stan-

dard model. It is selective-identity secure scheme under the Decisional BDH assumption, which

is weaker than previous adaptive-identity secure schemes. Boyen and Waters [BW06] detailed

transformations to achieve adaptive-ID and CCA security.

2.6.7 Gentry’s Practical Identity-Based Encryption Scheme without Random Ora-

cles

Gentry provides an efficient IBE scheme with the anonymity property [Gen06]. The scheme has

short public parameters. Although this scheme is anonymous, the KGC is required to keep a list

of the random value τid ,i associated with each id , and reuse it should further keys for the id be

requested.
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The scheme

Setup: TheKGC selects g, h1, h2, h3 randomly from G1, chooses a random exponent α ∈ Zq, sets

g1 = gα ∈ G1, and chooses a hash function H : {0, 1} → Zq from a family of universal

one-way hash functions. The public parameters are params = (g, g1, h1, h2, h3, H) and the

master secret key is msk = α.

Extract: Given input of params and an identity id , the KGC chooses a random value τid ,i ∈ Zq

and computes hid ,i = (hig−τid,i)
1

α−id for i ∈ {1, 2, 3}. KGC outputs

sk id = {τid ,i, hid ,i}i∈{1,2,3}.

Encrypt: Given input of message m and identity id , choose random r ∈ Zq and generate cipher-

text

ct = (u, v, w, y) =
(
(g1g

−id )r, e(g, g)r,
m

e(g, h1)r
, e(g, h2)re(g, h3)r·H(u,v,w)

)
.

Decrypt: Given input of sk id , ct , first check the validity of ct by testing if y = e(u, hid ,2

hβid ,3)vτid,2+τid,3β where β = H(u, v, w). If this does not hold, output ⊥, else return

m = w · e(u, hid ,1)vτid,1 .

Security of the scheme

The scheme is IND-ID-CCA secure in the standard model and achieves the anonymity property.

The security reduction is to the strong truncated q-ABDHE complexity assumption.

2.7 Conclusion

In this chapter, the requisite background for the remainder of this work has been described. Suf-

ficient mathematical foundations and computational assumptions have been presented. Identity-

based encryption has been introduced, along with some notable constructions. In particular, we

presented seminal constructions, along with those which will be used as a basis for later work.
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Chapter 3

Identity-Based Schemes and the

Blinding Property

3.1 Introduction

Privacy is the claim of owners, groups or organisations to autonomy, encompassing the right to

control information about themselves and the right to limit access to that information [DL99]. It

is a beneficial property that allows owners to exert control over their personal information and

data [Bra00]. Privacy is also a design consideration for many systems, particularly in electronic

communications where data is subject to contemporary concerns such as profiling of an owner

or unauthorised disclosure of personal information [Can04]. One should assume that whatever

personal data is collected by a third party will be stored indefinitely. Once such data is stored, it

can be used for a myriad of purposes the owner may not have considered or consented to outside

the original stated use. It is trivial to link data from a host of sources using common identifiers

such as name, social security number, date of birth, student identification number. Linkability is

an identified problem that results in a loss of privacy for the owner [Bra00]. The capacity to link

an owner’s actions and disclosures can culminate in profiling of the owner. The claim to privacy

is supported by legislation, as detailed previously.

Identity-based encryption and trust in the KGC

The need to trust theKGC is considered a drawback of IBE. Known as the key escrow problem, the

KGC in traditional IBE schemes learns the users identity when generating their private key. Thus,
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a KGC can subsequently generate a private key corresponding to an identity and use it to decrypt

ciphertexts for that identity. It is also possible for a KGC to generate keys for identity strings in

advance of a user request. Many countermeasures to address the level of trust required in the KGC

have been proposed, some of which are outlined below.

Distributed KGCs Boneh and Franklin [BF01] proposed distributing the master secret key of

the KGC to multiple KGC entities, using Shamir’s secret sharing technique [Sha79]. A user gen-

erates her key by interacting with at least k out of n of the possible KGC entities, presenting each

with her identity. In turn, she receives a share of her private key. The user can check the validity

of her key share, thus ensuring a misbehaving KGC can be detected. The user combines k of these

key shares to retrieve her private key. This method imposes heavy loads on users, who have to

authenticate themselves to multiple entities.

Accountable IBE Accountable IBE (A-IBE) schemes, introduced by Goyal [Goy07], aim to

reduce the level of trust required by the user in the KGC. In such schemes, if the KGC maliciously

generates and distributes or uses a decryption key for an identity, then it may be caught using a

trace algorithm. Should two keys for one identity be generated by the KGC, this algorithm can

identify which key was generated for the owner that requested it, and which was generated for

potentially malicious use by the KGC. Further to this, Goyal et al. [GSW08] provide a black-box

A-IBE system. This scheme can be modified and used in conjunction with an IND-ID-CPA secure

IBE scheme by splitting the message to be encrypted. Both schemes share the message using

secret sharing methods [Sha79] and run as normal. Most recently, Libert and Vegnaud [LV09]

proposed an efficient black-box A-IBE scheme.

Anonymous private key issuing Anonymous key issuing (AKI) [SCH+05, Cho09] aims to

prevent the identity of a user being leaked to the KGC, while also facilitating an authenticated

user retrieving the correct private key. In this system, the Setup algorithm is split into two parts.

A trusted initialiser chooses the group and public elements, and passes them to the KGC who

generates the msk . This prevents the KGC from maliciously choosing the system parameters.

A user authenticates to an identity-certifying authority that issues the user a certificate on the

authenticated identity. The user then presents this certificate to the KGC, and they engage in an

interactive protocol from which the user receives a private key as output and the KGC receives

37



nothing.

Contribution

In all IBE schemes, except those with a distributed approach, once an identity string is revealed

to the KGC it can trivially generate a corresponding private key. To create IBE schemes which

afford an owner some form of privacy from the KGC, we focus on the identity string and how it is

disclosed to the KGC.

Our contribution is to present novel constructions of blind IBE cryptosystems. Blind IBE

schemes prevent the KGC from learning the identity string of a user during the key extraction

protocol. We begin by constructing an anonymous IBE scheme. As anonymity prevents the ci-

phertext from leaking the identity string, it is a beneficial property to have in conjunction with

blindness. We present the associated blind extraction protocol for this scheme, resulting in the

first construction of a blind, anonymous IBE scheme.

We then consider extensions to blind IBE. A natural extension is partially-blind IBE, which

allows some of the identity string to be visible to the KGC. We propose a new property, double-

blindness. Constructions for both partially-blind and double-blind IBE schemes are presented.

We also provide a transformation of these protocols for use with an underlying anonymous IBE.

Security definitions and arguments are provided.

3.2 The Blinding Property

The blinding property was introduced by Chaum [Cha82]. Applying the blinding property to

digital signatures, he proposed blind signatures. Blind signatures enable a receiver to obtain a

signed message from a signer in such a manner that the message to be signed is not revealed to

the signer. Chaum identified privacy as an important feature of any e-cash system, primarily to

prevent an owner’s spending habits from being observed. By blinding the message to be signed,

the signer cannot link the message to the recipient. In terms of e-cash, this prevents a bank from

linking an instance of e-cash to an honest owner and identifying how she spends her cash.

Chaum’s carbon-envelope analogy provides an intuitive introduction to the concept of blind

signatures [Cha83]. The sender wants to have a message signed to prove its validity to third parties.

Following Chaum’s untraceable payments scenario, the signer is a bank of which the sender is a

customer. The objective is for the sender to receive a slip of paper (cash token) with a validating
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Figure 3.1: Blind signatures using carbon-lined envelopes

signature on it provided by the bank, that cannot be linked back to the sender.

The sender constructs her message and places it in a carbon lined envelope, as per step 1 of

Figure 3.1. This message could be an invoice the sender needs to pay or a cash token. She then

passes the sealed envelope to the signer, as per step 2. At this point, the signer may want some

assurance that the message contained in the envelope is valid. The signer authenticates herself as

a customer with the bank and requests to withdraw a certain amount. Once convinced, the bank

deducts the amount from her account, signs the carbon-lined envelope and returns it to the sender,

as per step 3. Upon receipt of the envelope, the sender opens it and takes out the signed message,

as per step 4. The envelope is then cast aside and the sender can use the enclosed signed message

as untraceable payment.

Partially blind signature schemes were proposed by Abe and Fujisaki [AF96]. Using these

schemes, it is possible for the signer to see part of the message to be signed. Taking the untraceable

payments scenario once again, this visible element could be some information such as the date or

cash amount.

The sender constructs her message and places it in a carbon lined envelope, as per step 1 of

Figure 3.2. This envelope has a window, through which some part of the message is visible. She

then passes the sealed envelope to the signer, as per step 2. At this point, the signer may want some

assurance that the message contained in the envelope is valid. The signer authenticates herself as

a customer with the bank and requests to withdraw a certain amount, which is deducted from her
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Figure 3.2: Partially-blind signatures using carbon-lined envelopes

account. In partially-blind schemes, the information visible through the window may also act to

convince the signer of the validity of the message contained within. Once convinced, the bank

signs the carbon-lined envelope for the appropriate amount and returns it to the sender, as per step

3. Upon receipt of the envelope, the sender opens it and takes out the signed message, as per

step 4. The envelope is then cast aside and the sender can use the enclosed signed message as

untraceable payment.

3.2.1 Blind Signatures

Digital signatures provide authentication, integrity and non-repudiation to communications, and

as such are one of the most fundamental and widely applicable concepts in cryptography. Because

digital signatures are so practicable in scenarios including e-cash, e-voting or e-auctions, they have

been adapted to provide specific solutions to these applications. The original digital signature

concept has been expanded to incorporate many additional properties, such as blind signatures,

verifiably encrypted signatures and aggregated signatures [GHK06].

A basic blinding protocol, used to achieve the blind signature scheme outlined in Figure 3.1,

is provided by Chaum. Let n = pq be the product of two large random primes. A message m
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is chosen as 0 ≤ m ≤ n − 1. In the case a larger message space is required, the message m is

hashed using a suitable a hash function H and the resulting H(m) is used as input to the signature

scheme.

To begin, the bank publishes some public value b such that gcd(n, b) = 1. Alice creates

her message m and chooses a random value r, which correspond to the message and envelope

respectively in the analogy outlined above. The bank’s published value b can correspond to the

value “worth x euro”, or the relevant stamp as in Figure 3.1. Alice constructs the blind message

to be signed as m · rb mod n, and passes it to the Bank. The bank signs the message using the

private value b̄ corresponding to b such that b̄ · b = 1.

Blind signature generation

Sender→ Signer : m ′ = m · rb mod n

Signer→ Sender : σ′ = (m ′)b̄ mod n

Sender unblinds to retrieve : σ = σ′ · r−1 mod n

The signature needs to be verified to assure validity before a third party, for example a shop,

will accept it. The verifier uses the public value b to verify a sender’s claim that it has a signature

m b̄ on a message m .

Blind signature verification

Signature is correct σ = σ′ · r−1 = (m ′)b̄r−1

= m b̄rbb̄r−1 = mb̄ mod n

Verifier checks that σb = m mod n

Blind signature scheme Formally, a blind signature scheme BS consists of three algorithms,

BS = (KeyGen, Sign, Verify).

KeyGen: Given as input a security parameter k, returns a public / private key-pair (pk, sk).

Sign: Given as Sender input (m , pk) where m is the message to be signed and Signer input of

the corresponding secret key sk, returns a signature on m , σ(m) to Sender and nothing to

Signer .

Verify: Given as input pk, m , σ(m), outputs accept/reject to indicate if a valid signature has

been presented.
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Security of Blind Signatures

A blind signature scheme is secure if it satisfies two properties: blindness and unforgeabilibity.

Formal definitions of blind signatures were given by Juels et al. [JLO97].

Blindness

The blinding property captures the notion of a signer attempting to obtain some information

about the messages she is signing when these messages are obscured, or blinded, from her view

[GHK06]. Blindness ensures the signer cannot learn the content of the message.

A blind digital signature scheme is considered as a four-tuple consisting of two Turing ma-

chines (Signer, Sender) and two algorithms (KeyGen, Verify), with KeyGen output of a public

/ private key pair (pk, sk). The polynomially-bounded probabilistic interactive Turing machines

Signer(pk, sk) and Sender(pk,m) have the following tapes: read-only input tape, write-only

output tape, a read/write work tape, a read-only random tape, and two communication tapes, one

read-only and one write-only. The Signer machine is given input of the public and private keys

pk, sk on it’s input tape and the Sender machine is given input of the public key and a message

pk,m on it’s input tape. The Signer and Sender engage in the interactive blind signing protocol,

at the end of which Signer outputs complete or not-complete and the Sender outputs either fail

or σ(m). The adversary may interact either sequentially or in parallel during attacks; parallel at-

tacks are considered stronger, as an adversary can initiate new interactions prior to the completion

of previous ones [PS96].

Blindness security game Let b ∈ {0, 1} be a random bit and (pk, sk) be a key pair generated

using KeyGen. An adversary A controls the Signer machine, but not the Sender, and executes

the following steps:

1. A produces two messages {m0,m1} which are polynomial in security parameter k and are

by convention lexicographically ordered.

2. Denote the two messages {m0,m1} as {mb,mb−1}, ordered according to the value of bit

b which is kept secret from A. A then engages in two parallel interactive protocols with

Sender(pk,mb) and Sender(pk,mb−1).

3. If neither of the Sender protocols output fail, then their output is put on their private tapes,
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σ(mb) and σ(mb−1) respectively. A is given as input {σ(mb), σ(mb−1)}, ordered according

to the corresponding (m0,m1) order.

4. A outputs guess b′. A wins if b′ = b.

Definition 11 (Blindness) A signature scheme is blind if, for all probabilistic polynomial-time

adversaries A, A has advantage of at most 1
2 + 1

kc in the blind security game for a sufficiently

large security parameter k and some constant c. The probability is taken over coin flips of KeyGen,

Sender , Signer and A.

Unforgeability

The unforgeability property captures the notion that a sender may only obtain a valid signature

from a signer if they execute the interactive blind signature protocol together [GHK06]. Any

digital signature scheme allows one to sign documents or data in such a way that the signature can

be universally verified, but no signatures can be forged on messages that have not been signed.

Unforgeability security game Let (pk, sk) be a key pair generated using KeyGen. An adversary

A controls the Sender machine, but not the Signer, and tries to get “one-more” signature. That

is, given l valid signatures, A tries to forge more signatures using them. She succeeds if she holds

l + 1 valid signatures after n iterations of the protocol.

1. A engages in polynomially many (in security parameter k) adaptive, parallel interactive

protocols with polynomially many copies of Signer(pk, sk). Let l be the number of execu-

tions, with A deciding adaptively when to stop, and outputting completed when done.

2. A outputs a collection of messages and their corresponding signatures

{(m1, σ(m1)), . . . , (mj , σ(mj))}, subject to the constraint that all (mi, σ(mi)) for all 1 ≤

i ≤ j are accepted by Verify(pk,mi, σ(mi)).

The probability that j > l is at most 1
kc where k is the security parameter and c is a con-

stant [JLO97].

Definition 12 (Unforgeability) A blind signature scheme is unforgeable if for any probabilistic

polynomial-time algorithm A that plays the unforgeabililty security game, the probability that the

output of A satisfies Verify(pk,mi, σi) for 1 ≤ i ≤ l + 1 is at most 1
kc for a sufficiently large

security parameter k and some constant c.
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3.2.2 Partially-blind Signatures

Partially-blind signature schemes, proposed by Abe and Fujisaki [AF96], are an extension to blind

signatures. They allow a signer to produce a valid signature on a message for a recipient, and

include in the message some pre-agreed, observable information while the rest of the message

remains obscured. The motivation for partially blind signatures is to provide a signer with some

control over the message to be signed by allowing her to explicitly choose or view part of the

message.

The unblinded part of the message is subject to two constraints. Firstly, it should not allow a

sender to cheat in any manner. An adversary should not be able to induce an failure in the scheme

for example. Secondly, it should contain sufficiently generic information that the signer cannot

then use it to distinguish the transaction at a later point.

Further work by Abe and Okamoto [AO00] formalised the concept of partially-blind signature

schemes. A partially-blind signature scheme PBS consists of three algorithms: PBS = (KeyGen,

Sign, Verify).

KeyGen: takes as input a security parameter k and returns a public / private key-pair (pk, sk).

Sign: is an interactive protocol between the sender Sender and the signer Signer who has a public

key pk, with Sender input of (m , pk) where m is the message to be signed containing some

commonly agreed upon information info, the input of Signer is the corresponding secret

key sk. The output is a signature on m , σ(m).

Verify: takes input pk, m , σ(m) and outputs accept/reject.

Partial-blindness security game [AO00] Let b ∈ {0, 1} be a random bit and (pk, sk) be a key

pair generated using KeyGen. Let Sender0 and Sender1 be two honest senders following a blind

signature issuing protocol. An adversary A controls the signer in the game.

On input 1k, where k is a security parameter and secret key sk, A produces m0,m1, infoSender0
,

infoSender1
.

The input tapes of Sender0,Sender1 are set up by selecting b ∈ {0, 1} and putting mb and mb−1

on the private input tapes of Sender0 and Sender1 respectively. The values info0 and info1

are put on the public input tapes of Sender0 and Sender1 respectively, along with pk. The

contents of the private random tapes are randomly selected.
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A engages in the signature issuing protocol with Sender0 and Sender1.

If Sender0 and Sender1 output (info0,m0, σb) and (info1,m1, σb−1) respectively on their pri-

vate tapes, and info0 = info1 holds, then the outputs are returned to A. Otherwise ⊥ is

returned to A.

A outputs guess b′ ∈ {0, 1}. A wins if b′ = b.

Definition 13 (Partial Blindness) A signature scheme is partially blind if, for all probabilistic

polynomial-time adversariesA,A has advantage of at most 1
2 + 1

kc in the partial-blindness security

game for a sufficiently large security parameter k and some constant c. The probability is taken

over coin flips of KeyGen, Sender0,Sender1 and A.

Unforgeability

As with blind signature schemes, the unforgeability property captures the notion that a sender may

only obtain a valid signature from a signer if they execute the interactive partially-blind signature

protocol.

3.3 Blind Identity-Based Encryption

There exists an innate relationship between IBE schemes and digital signatures, as detailed in

Section 1.1, and so it is natural to consider the applicability of signature scheme extensions to IBE

schemes.

Blind-IBE schemes are the result of merging traditional IBE schemes with a desirable prop-

erty of digital signatures: blindness. In standard IBE, the KGC executes the key extraction algo-

rithm Extract that returns the secret key corresponding to input identity id . Green and Hohen-

berger [GH07] propose extracting the secret key in a blinded manner, thus keeping the identity

completely obscured from the KGC. The BlindExtract(U (params, id ), KGC(msk )) → (sk id ,

nothing) protocol has user U input of system parameters and the identity string, and KGC input of

the system master secret; it returns output of the private key to U and output of nothing or an error

message to the KGC. Two efficient BlindExtract protocols are proposed [GH07].

BlindExtract(U(params, id),KGC(msk)→ (sk id , nothing))

generates the secret decryption key sk id for U’s identity id in an interactive key issuing
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protocol between U and the KGC. U’s output is a decryption key sk id or an error message,

and the output of the KGC is empty or an error message.

Green and Hohenberger also formalise the blind execution of the Extract protocol. The KGC

does not learn anything about the identity, nor can she cause any failures in the protocol that are

dependent on the identity. The user requesting the key learns nothing more than she would if the

standard Extract protocol were used. The resulting blind-IBE scheme is used to build an efficient

oblivious transfer protocol.

3.3.1 Security Notions for Blind Identity-Based Encryption

A definition of security for blind IBE is given by Green and Hohenberger [GH07]. It focuses on

defining secure blindness for the BlindExtract protocol. Informally, given an IBE scheme with

a BlindExtract protocol, secure blindness is achieved by satisfying two properties: leak-freeness

and selective-failure blindness.

Leak-freeness requires that BlindExtract be a secure two-party computation that does not leak

any more information to U than Extract.

Selective-failure blindness requires that a potentially malicious authority does not learn any-

thing about the user’s identity during the BlindExtract protocol. Also, the authority cannot

cause the algorithm BlindExtract to selectively fail depending on the user’s choice of iden-

tity.

A BlindExtract protocol is a blind signature scheme, when one considers sk id as a signature

by the KGC on a message id .

Definition 14 (Leak Freeness [GH07] )

A BlindExtract protocol of an IBE scheme is leak free if, for all efficient adversariesA, there exists

an efficient simulator S such that no efficient distinguisher D can determine whether it is playing

Game Real or Game Ideal with non-negligible advantage, where

Game Real: Run Setup. As many times as D wants he picks A’s input state . A executes

BlindExtract with the KGC. A returns the resulting view to D.

Game Ideal: Run Setup. As many times as D wants he picks A’s initial input state . S obtains

(params, state) and may choose id to query an oracleOExtract that knows msk . The oracle
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returns key sk id ← Extract(msk , id); otherwise it returns ⊥. S returns a simulated view

to D.

Definition 15 (Selective-failure Blindness [CNS07] )

A BlindExtract protocol is said to be selective-failure blind if every adversary A has a negligible

advantage in the following game: A outputs params and a pair of identities id0, id1. A ran-

dom bit b ∈ {0, 1} is chosen, and A is given black-box access to two oracles: O(params, id b)

and O(params, id1−b). The O algorithms produce local output sk b, sk1−b respectively. If both

sk b 6=⊥, A receives (sk0, sk1); if only sk1−b =⊥, A receives (ε,⊥); if only sk b =⊥, A receives

(⊥, ε); and if skb = sk1−b =⊥,A receives (⊥,⊥). Finally,A outputs its guess b′. The advantage

of A in this game is |Pr[b′ = b]− 1
2 |.

3.3.2 The BlindExtract Protocol for an IND-sID-CPA secure scheme

The first scheme by Green and Hohenberger [GH07] is based on the IND-sID-CPA secure scheme

by Boneh-Boyen [BB04a]. The IND-sID-CPA security definition is presented in Section 2.5.3.

The underlying Boneh-Boyen IBE scheme is presented in Section 2.6.2. The Setup, Encrypt

and Decrypt algorithms remain as in the original scheme. In this scheme, the identity set I ⊆ Zq

and the function F : I → G1 is defined as F (id) = h · gid1 . The secret key for an identity id is of

the form

sk id = (d0, d1) = (gα2 · F (id)r, gr) = (gα2 · (h · gid1 )r, gr)

where r ∈ Zq is a random value.

The protocol BlindExtract is detailed in Figure 3.3. The security of the protocol is defined as

follows, with security proofs provided in appendix A of [GH07].

Definition 16 Under the DBDH assumption, the blind IBE Π = (Setup,BlindExtract,Encrypt,

Decrypt) is IND-sID-CPA secure if and only if: (1) Π is IND-sID-CPA secure and (2) BlindExtract

is leak-free and selective-failure blind.

3.3.3 The BlindExtract Protocol for an IND-ID-CPA secure scheme

The second scheme Green and Hohenberger [GH07] present is based on the IND-ID-CPA secure

Naccache scheme [Nac07], a generalised version of Waters’ scheme [Wat05]. The underlying

IBE scheme is presented in Section 2.6.5. The Setup, Encrypt and Decrypt algorithms remain
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KGC(params,msk) U(params, id)
1. Choose a random value y ← Zq.
2. Compute h′ = gygid1 and send h′ to the KGC.
3. Execute PoK{(y, id) : h′ = gygid1 }.

4. If the proof fails to verify, abort,
5. Choose a random value r ∈ Zq.
6. Compute d′0 = gα2 · (h′h)r.
7. Compute d1 = gr.
8. Send (d′0, d

′
1) to U .

9. Check that e(g1, g2) · e(d′1, h′h) = e(d′0, g).
10. If the check passes, choose random value z ← Zq;

otherwise, output ⊥ and abort.
11. Compute d0 = (d′0/(d

′
1)y) · F (id)z

and d1 = d′1 · gz .
12. Output sk id = (d0, d1).

Figure 3.3: BlindExtract protocol for Boneh-Boyen’s IND-sID-CPA IBE

as in the original scheme. In this scheme, I is the set of bit strings of length N , where N is

polynomial in κ, represented as n blocks of length l. The function F : {0, 1}N → G1 is defined

as F (id) = h · Πn
i=1u

ai
i where each ui ∈ G1 is randomly selected by the KGC and each ai is an

l-bit segment of id . The secret key for an identity id is of the form:

sk id = (d0, d1) = (gα2 · F (id)r, gr) = (gα2 · (h ·Πn
i=1u

ai
i )r, gr).

where r ∈ Zq is a random value.

KGC(params,msk) U(params, id)
1. Choose a random value y ← Zq.
2. Parse identity as id = (a1, . . . , an), |ai| = l.

Compute h′ = gy ·Πn
i=1u

ai
i and send h′ to KGC.

3. Execute PoK{(y, a1, . . . , an) :
h′ = gy ·Πn

i=1u
ai
i ∧ 0 ≤ ai < 2l}.

4. If the proof fails to verify, abort.
5. Choose a random value r ∈ Zq.
6. Compute d′0 = gα2 · (h′h)r.
7. Compute d1 = gr.
8. Send (d′0, d

′
1) to U .

9. Check that e(g1, g2) · e(d′1, h · h) = e(d′0, g).
10. If the check passes, choose random value z ← Zq;

otherwise, output ⊥ and abort.
11. Compute d0 = (d′0/(d

′
1)y) · F (id)z

and d1 = d′1 · gz .
12. Output sk id = (d0, d1).

Figure 3.4: BlindExtract protocol for Naccache’s IND-ID-CPA IBE
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The protocol BlindExtract is detailed in Figure 3.4. The security of the protocol is defined as

follows, with security proofs provided in appendix A of [GH07].

Definition 17 Under the DBDH assumption, the blind IBE scheme Π = (Setup,BlindExtract,

Encrypt,Decrypt) is IND-ID-CPA secure if and only if: (1) Π is IND-ID-CPA secure and (2)

BlindExtract is leak-free and selective-failure blind.

3.4 Anonymous Blind Identity-Based Encryption

An IBE scheme is recipient-anonymous [ABC+08, Gen06] if it is not possible to check if an iden-

tity has been used to encrypt a message, given a ciphertext and corresponding public parameters,

unless the identity string is stored with the ciphertext. In the context of public key encryption this

is also known as key privacy [BBDP01]. Recent work [IP08] strengthens this notion of recipient-

anonymity to those schemes which retain the anonymity property even if the adversary has access

to the master secret key. This does not address the issue of a KGC generating keys maliciously;

rather, it means that a KGC presented with a ciphertext does not have the advantage of learning

the encrypting identity using the master secret.

In work with Camenisch et al. [CKRS09], we extend Green and Hohenberger’s scheme [GH07]

by proposing a blind anonymous IBE scheme. We construct a committed blind anonymous IBE

scheme, consisting of the algorithms of a novel construction of an anonymous IBE scheme (la-

belled Π hereafter), a secure commitment scheme Commit and the protocol BlindExtract. This

construction of an ANON-IND-ID-CCA scheme is motivated by the ibe-2-peks transform pre-

sented by abdalla [ABC+08], which we use in our application scenario detailed in Section 4.3.

We identified blindness as a desirable feature for this transform as it facilitates searchable encryp-

tion without revealing the search terms chosen by the user.

3.4.1 The Underlying Anonymous IBE Scheme

Several anonymous IBE schemes have been proposed [BW06, BF01, Gen06]. Our scheme is based

on the anonymous selective identity secure IBE scheme presented by Boyen-Waters [BW06]. A

transformation due to Naccache [Nac07], a variant of that of Waters [Wat05], is employed to

achieve the desirable property of adaptive identity security. The use of such a transformation to

achieve anonymous adaptive identity IBE secure schemes was proposed by Boyen-Waters.
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The Anonymous Adaptive-ID IBE Scheme

This scheme supports asymmetric bilinear pairings, allowing for the use of a wider range of po-

tentially more efficient implementations using different pairing types [GPS08].

Let identity id ∈ {0, 1}`×n and let id1| . . . |idn = id be the separation of id into n ` bit inte-

gers id i, and e : G1 ×G2 → GT be a bilinear pairing. Let H1 (id) = g0
∏n
i=1 g

idi
i and H2 (id) =

h0
∏n
i=1 h

idi
i where g ∈ G1 and h ∈ G2 are random generators and g1, . . . gn ∈ G1, h1, . . . , hn ∈

G2 are random group elements. The anonymous IBE scheme Π = (Setup,Extract,Encrypt,

Decrypt) consists of the following algorithms :

Setup(1k) : Run Setup(1k) to obtain a bilinear map setup (p,G1,G2,GT , e, g, h). Choose values

α, z0, z1, . . . , zn, t1, t2, t3, t4 ← Z∗q and keep msk = (α, t1, t2, t3, t4) as the master key.

Compute the system parameters as

params =
(

Ω = e(g, h)t1t2α, g, h, g0 = gz0 , . . . , gn = gzn , v1 = gt1 , . . . , v4 = gt4 ,

h0 = hz0 , . . . , hn = hzn
)
.

Extract(params,msk , id) : Choose two random values r̃1, r̃2 ← Z∗q and compute the key

sk id =
(
hr̃1t1t2+r̃2t3t4 , h−αt2H2 (id)−r̃1t2 , h−αt1H2 (id)−r̃1t1 ,H2 (id)−r̃2t4 ,

H2 (id)−r̃2t3
)
.

Encrypt(params, id ,m) : To encrypt a message m ∈ GT , choose s, s1, s2 ← Zq, and generate

the ciphertext

ct =
(

Ωs ·m,H1 (id)s, vs−s11 , vs12 , v
s−s2
3 , vs24

)
.

Decrypt(params, sk id , ct) : Parse sk id as (d0, d1, d2, d3, d4) and ct as (c′, c0, c1, c2, c3, c4) and

return

m = c′ · e(c0, d0) · e(c1, d1) · e(c2, d2) · e(c3, d3) · e(c4, d4).

Theorem 1 The scheme Π is a secure anonymous IBE under the DBDH and D-Linear assump-
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tions.

Proof. The proof of security uses hybrid games. Let ct = (cti ′, cti0, cti1, cti2, cti3, cti4) be the

challenge ciphertext given to the adversary during a real attack. Let R be a random element of

GT and R′, R′′ be random elements of G1. The following games differ as to which challenge

ciphertext is given by the challenger to the adversary in the security game:

Game 1. The challenge is ct = (cti ′, cti0, cti1, cti2, cti3, cti4).

Game 2. The challenge is ct = (R, cti0, cti1, cti2, cti3, cti4).

Game 3. The challenge is ct = (R, cti0, R
′, cti2, cti3, cti4).

Game 4. The challenge is ct = (R, cti0, R
′, cti2, R

′′, cti4).

Note that the ciphertext in Game 2 leaks no information about the message. Indistinguishabil-

ity between Game 1 and 2 thus corresponds to chosen plaintext attack security. Similarly, Game

4 leaks no information about the identity since it is composed of six random group elements. We

show that the transition from Game 1 to Game 2 (Lemma 1) and from Game 2 to Game 3 and Game

3 to Game 4 (Lemma 2 and Lemma 3 respectively) are all computationally indistinguishable.

An adversary playing the recipient anonymity game in Section 2.5.3 reacts the same upon

receiving real challenge ciphertexts or random ciphertexts. The probability of this not occurring

is negligible (otherwise he could act as a distinguisher which would contradict the above results

about Games 1 to 4). For random ciphertexts his success probability is 1
4 , consequently in the real

game his success probability is at most 1
4 + ν(k).

�

Lemma 1 (semantic security) Under the DBDH assumption, no p.p.t. adversary can distinguish

Games 1 and 2 with non-negligible advantage.

Proof. Begin by assuming that such an adversary A exists. We construct a reduction B that solves

the DBDH problem with non-negligible advantage. Let q be a security parameter. Algorithm B

receives a DBDH challenge (ĝ , Ã = ĝa, B̃ = ĝb, C = ĝc, ĥ, A = ĥa, B = ĥb, z) as input and

outputs a guess β′ as to whether z = e(ĝ , ĥ)abc, return guess β′ = 1, or z is a random element in

GT , return guess β′ = 0. We first describe a simulator that does not quite work, and then modify

it so that it does work, an approach that has been used previously [Nac07, Wat05].
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Setup: The simulator sets an integer m = 2q and chooses a random integer k ∈ {0, . . . , n},

a random n-length vector ~x = (x1, . . . , xn), where xi ∈ {0, . . . ,m − 1} and an integer x′ ∈

{1, . . . ,m − 1}. Let X∗ denote the pair (x′, ~x). The simulator also chooses a random y′ ← Zq

and an n-length vector ~y = (yi), where yi ← Zq. Let Y ∗ denote the pair (y′, ~y).

For a given identity id = (id1, . . . , idn), define three functions for ease of analysis:

F (id) = x′ +
n∑
i=1

idixi − km ,

J(id) = y′ +
n∑
i=1

idiyi ,

K(id) =


0 if x′ +

∑n
i=1 idixi ≡ 0 (mod m)

1 otherwise
.

The simulator then generates the public parameters h = ĥ , h0 = Bx′−mkhy
′
and hi = Bxihyi ,

as well as g = ĝ , g0 = B̃x′−mkgy
′

and gi = B̃xigyi , where 1 ≤ i ≤ n. It also chooses random

t1, . . . , t4 ← Zq and publishes the parameters (Ω = e(Ã, B)t1t2 , g, h, g0, . . . gn, h0, . . . hn, g
t1 ,

. . . , gt4), where the distribution is identical to the real construction and the master secret is (α, t1, t2,

t3, t4). Note that α is implicitly set to ab.

Phase 1: The simulator must answer the private key queries of A, who issues a query for an iden-

tity id . If K(id) = 0, the simulator aborts and randomly chooses its guess β′ of the challenger’s

value β.

Otherwise the simulator chooses random values r1, r2 ∈ Z∗q and constructs the private key d

as d =
(
d0, d1, d2, d3, d4

)
where

d0 = (A
−1
F (id)hr1)t1t2hr2t3t4 ,

d1 = (A
−J(id)
F (id) (h0

n∏
i=1

hidii )r1)−t2 ,

d2 = (A
−J(id)
F (id) (h0

n∏
i=1

hidii )r1)−t1 ,

d3 = (h0

n∏
i=1

hidii )−r2t4 ,

d4 = (h0

n∏
i=1

hidii )−r2t3 .
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Let r̃1 = r1 − a
F (id) and r̃2 = r2. Then

d0 = (A
−1
F (id)hr1)−t1t2hr2t3t4

= (h
−a
F (id)hr1)t1t2hr2t3t4

= hr̃1t1t2+r̃2t3t4 .

Using the fact that (g0
∏n
i=1 g

idi
i ) = B̃F (id)ĥJ(id) and (g0

∏n
i=1 g

idi
i )a/F (id) = BaAJ(id)/F (id)

we obtain

d1 = (A
−J(id)
F (id) (h0

n∏
i=1

hidii )r1)−t2

= (A
−J(id)
F (id) (BF (id)hJ(id))r1)−t2

= (Bs1(BF (id)hJ(id))
−a
F (id) (BF (id)hJ(id))r1)−t2

= (Ba(h0

n∏
i=1

hidii )r1−
a

F (id) )−t2

= h−αt2(h0

n∏
i=1

hidii )−r̃1t2 .

Similarly,

d2 = (A
−J(id)
F (id) (h0

n∏
i=1

hidii )r1)−t1 = h−αt1(h0

n∏
i=1

hidii )−r̃1t1

As r̃2 = r2, d3 and d4 are easily seen to be correct. The reduction is feasible as F (id) 6= 0

(mod p) is implied by K(id) 6= 0.

Challenge: AdversaryA submits a message m and identity id = id1| . . . |idn. If x′+
∑n

i=1 idixi 6=

km the simulator aborts and answers with a random guess. Otherwise, the simulator constructs

the ciphertext

ct =
(
zt1t2m, CJ(id), Ct1g−s1t1 , gs1t2 , Ct3g−s2t3 , gs2t4

)
.

If z = e(g, h)abc, then for α = ab and s = c, the above is a correctly formed ciphertext for an

identity id = id1| . . . |idn that fulfills the equation x′ +
∑n

i=1 idixi = km.

(
c′, c0, c1, c2, c3, c4

)
=
(
zt1t2m, CJ(id), Ct1g−s1t1 , gs1t2 , Ct3g−s2t3 , gs2t4

)
=
(
e(g, h)αt1t2sm,H1 (id)s, gt1(s−s1), gt2s1 , gt3(s−s2), gt4s2

)
.
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If z is a random element, then c′ is also a random element in GT .

Phase 2: The simulator repeats Phase 1.

Guess: The adversary outputs a bit γ to guess which hybrid game it is playing. The reduction

forwards γ as its educated guess for the solution to the DBDH problem.

Artificial Aborts As in [Nac07, Wat05], this simulation has an issue. That is, it aborts with

a probability that is a function of the identities id and id∗. A solution is to artificially abort the

simulator at the end of the guess phase. The idea is to make the overall probability of the simulator

aborting consistent.

Using the probabilistic analysis of Naccache [Nac07], we have the following. Beginning at

the challenge phase, fix the random variables that are visible to the adversary, fix the DBDH tuple

and the public parameters. Also fix the random values r̃1, r̃2 in phase one. These fixed parameters

are remembered by B. This fixes the queried identities id j , 1 ≤ j ≤ q and the challenge identity

id∗. The adversary can now be seen as a deterministic algorithm.

Using the random variables x′ and xi, the list of private key queries ~ID = (id1, . . . , idq) and

~X = (x′, x1, . . . , xn), define the function

τ( ~X, ~id, id∗, k) =

 0, if F (id∗) = 0 and F (idj) 6= 0 mod m for all 1 ≤ j ≤ q

1, otherwise .

The reduction does not abort iff τ( ~X, ~id, id∗, k) = 0. The lower bound for the probability that B

does not abort is

Pr ~X,k[τ( ~X, ~id, id∗, k) = 0] ≥ λ =
1

4 · q · 2l · n
.

The simulator is modified so that it will always abort with probability approaching λ. In the guess

phase, the new simulator B′ samples an estimate η′ of the probability Pr ~X,k[τ( ~X, ~id, id∗, k) =

0], which is a function of id and id∗. Following from the analysis of Naccache [Nac07], the

probability of breaking the IBE scheme is less than q · 2l+4 · n times the probability of solving the

DBDH problem. For the analysis of an optimum value for l, the reader is referred to [Nac07].

�

Lemma 2 (Anonymity part 1) Under the Decision Linear assumption, no p.p.t adversary can

distinguish between the Games 2 and 3 with non-negligible probability.
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Proof. Suppose the existence of an adversary A that distinguishes between the two games, Game

2 and Game 3, with advantage ε. We construct a simulator that wins the Decisional Linear game

as follows.

The simulator takes in a D-Linear instance (g, ga, gb, gac, gbd, Z, h, ha, hb) where Z is either

gc+d or random in G1 with equal probability. For convenience, we rewrite this as [g, ga, gb, gac,

Y, gs, h, ha, hb] for s such that gs = Z (that is, s is either c + d or random). Consider the task of

deciding if Y = gb(s−c). The simulator plays the following game:

Setup: The simulator first chooses random exponents α, t3, t4. It lets g and h in the simulation

be as in the instance and sets v1 = gb, v2 = ga. If we posit that t1 = b and t2 = a, we note

that the parameters are distributed as in the real scheme. The simulator sets an integer m = 2q

and chooses a random integer k ∈ {0, . . . , n}, a random n-length vector ~x = (x1, . . . , xn), where

xi ∈ {0, . . . ,m} and x′ ∈ {1, . . . ,m − 1}. Let X∗ denote the pair (x′, ~x). The simulator also

chooses a random y′ ← Zp and an n-length vector ~y = (yi), where yi ← Zp. Let Y ∗ denote

the pair (y′, ~y). For a given identity id = (id1, . . . , idn), define three functions F (id), J(id) and

K(id) as above for ease of analysis.

The simulator generates the public parameters h0 = hb(x
′−mk)hy

′
and hi = hbxihyi , as well

as g0 = gb(x
′−mk)gy

′
and gi = gbxigyi , where 1 ≤ i ≤ n. The public parameters are published as

(
Ω = e(ga, hb)α,g, h, g0, . . . , gn, h0, . . . , hn, v1 = gb, v2 = ga, v3 = gt3 , v4 = gt4

)
.

Phase 1: To answer a private key extraction query for identity id = id1| . . . |idn the simulator

chooses random exponents r1, r2 ∈ Zp and outputs a private key d = (d0, d1, d2, d3, d4) where

d0 = har1hr2t3t4 ,

d1 = (hb)−α−F (id)r1 ,

d2 = (ha)−α−F (id)r1 ,

d3 = (ha)−
r1J(id)
t3 H2(id)−r2t4 ,

d4 = (ha)−
r1J(id)
t4 H2(id)−r2t3 .
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This is a well formed private key sk id for

sk id =
(
hr̃1t1t2+r̃2t3t4 , h−αt2H2 (id)−r̃1t2 , h−αt1H2 (id)−r̃1t1 , H2 (id)−r̃2t4 ,H2 (id)−r̃2t3

)
,

with r̃1 = r1F (id)
F (id)b+J(id) , and r̃2 = r2 + J(id)ar1

(t3t4)(F (id)b+J(id)) .

Challenge: The simulator gets from the adversary a messagemwhich it can discard, and responds

with a challenge ciphertext for the identity id∗. Posit that s1 = c. To proceed, the simulator picks

a random exponent s2 ∈ Zp and a random element R ∈ GT , and outputs the ciphertext as:

ct = (R, (gs)J(id), Y, (gac), (gs)t3g−s2t3 , gs2t4) .

If Y = gb(s−c), i.e. gs = Z = gc+d then cti1 = vs−s11 and cti2 = vs12 . All elements of the

challenge but cti ′ are thus well formed and the simulator behaved as in Game 2. If instead Y is

independent of a, b, s, s1, s2, which happens when Z is random, then the simulator responds as in

Game 3.

Phase 2: The simulator answers the queries as in Phase 1.

Output: The adversary outputs a bit γ to guess which hybrid game the simulator has been playing.

To conclude, the simulator forwards γ as its own answer in the Decision-Linear game.

Artificial Aborts are handled analogously to Lemma 1.

�

Lemma 3 (Anonymity part 2) Under the Decision Linear assumption, no p.p.t. adversary can

distinguish between the Games 3 and 4 with non-negligible advantage.

Proof. Proof follows from that of anonymity part 1, except the simulation is done over the param-

eters v3 and v4 in place of v1 and v2. �

3.4.2 The Committed BlindExtract Protocol for the Anonymous IBE scheme

The underlying anonymous adaptive identity IBE scheme is presented in Section 3.4.1. The Setup,

Encrypt and Decrypt algorithms remain as detailed. We present the protocol using commitments

which are required for the application presented in Section 4.3.
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Intuition behind the construction Generating a randomly distributed secret key in the BlindExtract

protocol requires the values r̃1, r̃2 to be jointly chosen by the user and the key issuer in a manner

which prohibits either party from learning anything about the other’s randomness. This prevents a

user that learns the issuer’s randomness from potentially decrypting messages of other users and

an issuer that learns a user’s randomness from potentially breaking the blindness of the key issued.

The key issuer,KGC, chooses random values r̂1, r̂2 ← Z∗q , and the user U picks random values

r′1, r
′
2 ← Z∗q . The key generation protocol may be implemented using standard secure two-party

computation techniques [Yao82], as a protocol in which the user inputs r′1, r
′
2 and the KGC inputs

α, t1, t2, t3, t4, r̂1, r̂2. The user’s output in the protocol is a secret key

sk id = (hr̃1t1t2+r̃2t3t4 , h−αt2H2 (id)−r̃1t2 , h−αt1H2 (id)−r̃1t1 ,H2 (id)−r̃2t4 ,H2 (id)−r̃2t3) ,

with r̃1 = r̂1r
′
1 mod p and r̃2 = r̂2r

′
2 mod p. The KGC learns nothing further, and outputs

nothing. By decomposing this protocol into sub-protocols whose results only require simple arith-

metic operations (addition and multiplication), we achieve an efficient protocol.

Recall that H1 (id) = g0
∏n
i=1 g

idi
i and H2 (id) = h0

∏n
i=1 h

idi
i . The committed blind anony-

mous IBE scheme consists of the algorithms Π of the underlying IBE scheme, the Pedersen com-

mitment scheme Commit presented in Figure 2.1, and the following BlindExtract protocol pre-

sented in Figure 3.5.
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BlindExtract(U(params, id , open id )↔ KGC(params,msk ,Cid)).

1. The KGC chooses at random r̂1, r̂2 ← Z∗q , and the user U chooses at random
u0, u1, u2 ← Zq and u3, r

′
1, r
′
2 ← Z∗q . Implicitly, r̃1 = r̂1r

′
1 and r̃2 = r̂2r

′
2.

KGC and U are required to run a two-party computation protocol for simple
arithmetic computations. The input of U is r′1, r

′
2 and the blinding values

u0, u1, u2, u3 and the input of KGC is α, t1, t2, t3, t4, r̂1, r̂2.

Additionally, U provides a commitment Cu3 to u3, and KGC provides com-
mitments Cr̂1 and Cr̂2 to r̂1, r̂2 respectively. They prove that their in-
put corresponds to the committed values. KGC additionally proves that
α, t1, t2, t3, t4 corresponds to the master secret key.

KGC obtains

x0 = (r̂1r
′
1t1t2 + r̂2r

′
2t3t4) + u0 (mod p) ,

x1 = −(u3/r
′
1 · αt2) + u1 (mod p) ,

x2 = −(u3/r
′
1 · αt1) + u2 (mod p).

Provided that KGC does not abort at that moment, U obtains commitments
Cx0 ,Cx1 and Cx2 to these values. Otherwise, both parties output ⊥. In
Section 3.4.3 we show how to efficiently realise such a protocol.

2. U computes ID′ = H2 (id)u3 using the blinding value u3. U executes a
proof of knowledge with KGC to show that ID′ is correctly constructed and
that the identity id in ID′ corresponds to the id committed to in C . Details
about this proof of knowledge can be found in Section 3.4.3.

3. KGC returns ⊥ if the proof fails, otherwise it computes

sk id
′ =(d′0, d

′
1, d
′
2, d
′
3, d
′
4)

(hx0 , hx1ID ′−r̂1t2 , hx2ID ′−r̂1t1 , ID ′−r̂2t4 , ID ′−r̂2t3).

4. KGC sends the blinded key sk id
′ to U , and engages in a proof of knowledge

that it is correctly constructed. Details about this proof of knowledge can be
found in Section 3.4.3.

5. If the proof fails, U returns ⊥. Otherwise, she computes

sk id = (d0, d1, d2, d3, d4) = (d′0h
−u0 , (d′1h

−u1)r
′
1/u3 , (d′2h

−u2)r
′
1/u3 , d′3

r′2/u3 , d′4
r′2/u3) .

Figure 3.5: BlindExtract protocol for Committed Anonymous IBE
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Security

Theorem 2 Under the DBDH and D-Linear assumptions, the blind IBE scheme Π is secure. That

is, the interactive BlindExtract protocol provides a leak-free and selective-failure blind committed

blind extraction protocol for the adapted anonymous IBE scheme Π.

Proof. Leak freeness: Note that the simulator S can rewind an instance of the adversary A that he

runs internally. He simulates the communication between the distinguisher D and A by passing

D’s input to A and A’s output to D .

In the two party protocol S can provide random input. Using rewinding techniques, S extracts

adversary A’s input r′1, r′2, and u0, u1, u2, u3 to the two party computation protocol. In the next

step of the blind issuing protocolAmust send ID ′ = H2 (id)u3 together with a proof of knowledge

of a correct representation of ID ′ and Cid . S uses its rewinding access toA in order to also extract

id , and open id .

Next S submits id , open id to OExtract to obtain a valid secret key sk id = (d0, d1, d2, d3, d4).

S returns (d0 · hu0 , d
u3/r′1
1 hu1 , d

u3/r′1
2 hu2 , d

u3/r′2
3 , d

u3/r′2
4 ) to A. These values are distributed in the

same way as in BlindExtract.

Selective-failure blindness: The adversary A provides params and two identities id0, id1. The

game chooses a random bit b A has blackbox access to two oracles U (params, id1−b) and

U (params, id b).

Note that once an oracle U is activated, A can run a two-party protocol with the oracle, the

result of which are three randomly distributed values in Zq (x0, x1, x2). In the next step, the oracle

provides a randomly distributed value ID ′ ∈ G2 toA. Then the oracle performs a zero-knowledge

proof with A.

Suppose that A runs one or both of the oracles up to this point. Up to now the distributions of

the two oracles are computationally indistinguishable. (Otherwise we could break the security of

the two party computation, the hiding property of the commitment scheme or the witness indistin-

guishability of the zero-knowledge proof. The latter is implied by the zero-knowledge property of

the proof system.)

A must provide values (d′0, d
′
1, d
′
2, d
′
3, d
′
4) and a proof that these values were correctly com-

puted. We can assume that A chooses these values using an arbitrary complex strategy. We show

that any adversary A can predict the output ski of U without further interaction with the oracles:
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1. A does the proof of Step 4 internally with itself. If the proof fails, it records sk0 = ⊥.

Otherwise, the adversary temporarily records sk0 = Extract(params,msk , id0).

2. In turn, A generates different (d′0, d
′
1, d
′
2, d
′
3, d
′
4) and executes a second proof of knowledge

(again internally), now for the second oracle. It performs the same checks and recordings

for sk1 and id1.

3. Finally the adversaryA predicts (sk0, sk1) if both sk0 6=⊥ and sk1 6=⊥. A predicts (ε,⊥)if

only sk1 =⊥. A predicts (⊥, ε) if only sk0 =⊥. Finally, A predicts (⊥,⊥), if sk0 =

sk1 =⊥.

These predictions result in the same distributions as that returned by the oracle, as the same checks

are performed. Moreover, note that for the case that keys are returned by the game they are in both

cases uniformly distributed random keys because of the random values r′1 and r′2 contributed by

the oracles. �

3.4.3 Subprotocols for Blind Key Derivation

Figure 3.5 outlines the need for subprotocols in the construction of the blind key derivation proto-

col presented therein. Here, we outline the protocols required for each step sequentially, beginning

with the two-party protocols required for Step 1 and then detailing the proofs of knowledge re-

quired to be run in Step 2 and Step 4.

Two-Party Protocol for Simple Arithmetics The two-party protocols required use an additive

homomorphic encryption scheme. Such a scheme has encryption and decryption functions Enc

and Dec such that Enc(x) ⊗ y = Enc(xy) and Enc(x) ⊕ Enc(y) = Enc(x + y). A key pair

is generated by KGC and is made available to U . We provide two protocols, one to compute x1,

shown in Figure 3.6 and a second to compute x2, shown in Figure 3.7. To compute x3, follow the

protocol for x2 using u3 and t2 in place of u2 and t1.

Proofs of Knowledge of Correct Key Derivation

Proof for Step 2 TheKGC has commitment Cu3 to u3, and Cid to the user’s choice of id . In Step

2 of the BlindExtract protocol the user executes the following proof of knowledge to convince the
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User(r′1, r
′
2, u1, v1, . . . , v4, Cr̂1 , Cr̂2) KGC(r̂1, r̂2, t1, t2, t3, t4)

e1 = Enc(r̂1t1t2)
e1, e2� e2 = Enc(r̂2t3t4)
PoK1� -

ex1 = (e1 ⊗ r′
1) ⊕ (e2 ⊗ r′

2)⊕ Enc(u1) ex1-
PoK2� -

x1 = Dec(ex1) =
r̂1r

′
1t1t2 + r̂2r

′
2t3t4 + u1

openx1 ← Zp

Cx1� Cx1 = hx1
0 h

openx1
1

PoK3� -

PoK1 = PoK{(ρ1, ρ2, τ1, τ2, τ3, τ3) :
v1 = gτ1 ∧ v2 = gτ2 ∧ v3 = gτ3 ∧ v4 = gτ4∧
Cr̂1 = Commit(ρ1, openρ1) ∧ Cr̂2 = Commit(ρ2, openρ2)∧
e1 = Enc(ρ1τ1τ2) ∧ e2 = Enc(ρ2τ3τ4)}

PoK2 = PoK{(ρ′1, ρ′2, µ1) : ex1 = (e1 ⊗ ρ′1)⊕ (e2 ⊗ ρ′2)⊕ µ1}
PoK3 = PoK{(χ, openχ) : ex1 = Enc(χ) ∧ Cx1 = hχ0h

openχ
1 }

Figure 3.6: Protocol for deriving x1 in Step 1

User(r′1, u0, u2, v1, v2,Ω) KGC(ω, t1, t2)
e� e = Enc(ωt2)

PoK1� -

ex2 = ((e⊗ u0/r
′
1) ⊕ Enc(u2))⊗−1 ex2-

PoK2� -

x2 = Dec(ex2) =
−((u0/r

′
1)ωt2 + u2)

openx2 ← Zp

Cx2� Cx2 = hx2
0 h

openx2
1

PoK3� -

PoK1 = PoK{(ω′, τ1, τ2) :
v1 = gτ1 ∧ v2 = gτ2 ∧ Ω = e(g, h)t1t2ω

′ ∧ e = Enc(ω′t2)}
PoK2 = PoK{(ρ′1, µ0, µ2) : ex2 = −((µ0/ρ

′
1 ⊗ e)⊕ µ2)}

PoK3 = PoK{(χ, openχ) : ex2 = Enc(χ) ∧ Cx2 = hχ0h
openχ
1 }

Figure 3.7: Protocol for deriving x2 in Step 1
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KGC that her message ID ′ is well formed:

PoK{(id1, . . . , idn, u3, id1 · u3, . . . , idn · u3, openid, openu3 , openid · u3) :

Cid = (
n∏
i=1

(h2l(i−1)

0 )idi)hopenid1 ∧
n∧
i=1

0 ≤ idi < 2l ∧ Cu3 = hu3
0 h

openu3
1 ∧ 1

=C u3
id (

n∏
i=1

((1/h0)2l(i−1)
)idi·u3)(1/h1)openid·u3 ∧ ID′ = hu3

0

n∏
i=1

hidi·u3
i } .

The user proves that id is correctly encoded in ID ′. This is the step during which U proves that

the identity that she submits to KGC is the identity that is contained in the commitment.

Proof for Step 4 The user has commitments Cr̂1 ,Cr̂2 and Cx0 , Cx1 , and Cx2 . In Step 4 of the

BlindExtract protocol, the KGC performs the following proof of knowledge to convince the user

that the blinded key (d′0, d
′
1, d
′
2, d
′
3, d
′
4) it returns is well formed:

PoK{(r̂1, r̂2, openr̂1 , openr̂2 , t1, t2, t3, t4, x0, x1, x2, openx0 ,

openx1 , openx2 ,−r̂1t1,−r̂1t2,−r̂2t3,−r̂2t4) :

Cr̂1 = hr̂10 h
openr̂1
1 ∧ Cr̂2 = hr̂20 h

openr̂2
1 ∧ v1 = gt1∧

v2 = gt2 ∧ v3 = gt3 ∧ v4 = gt4 ∧ Cx0 = hx0
0 h

openx0
1 ∧

Cx1 = hx1
0 h

openx1
1 ∧ Cx2 = hx2

0 h
openx2
1 ∧

1 = (1/v1)r̂1(1/g)−r̂1t1 ∧ 1 = (1/v2)r̂1(1/g)−r̂1t2∧

1 = (1/v3)r̂2(1/g)−r̂2t3 ∧ 1 = (1/v4)r̂2(1/g)−r̂2t4∧

d′0 = hx0 ∧ d′1 = hx1ID ′−r̂1t2 ∧ d′2 = hx2ID ′−r̂1t1∧

d′3 = ID ′−r̂2t4 ∧ d′4 = ID ′−r̂2t3} .

By means of this proof the KGC demonstrates to the user that it uses the correct values for

x0, x1, x2, t1, t2, t3, t4, r̂1, r̂2 when it computes (d′0, d
′
1, d
′
2, d
′
3, d
′
4). The proof involves proving

the multiplicative relations −r̂1t1,−r̂1t2,−r̂2t3,−r̂2t4 between t1, t2, t3, t4, r̂1, r̂2.

3.5 Partially-Blind Identity-Based Encryption

We extend blind IBE to incorporate the property of partial-blindness. In a partially-blind IBE

scheme, elements of the identity string are visible to the KGC. Such elements could include va-
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lidity date, security clearance and other generic data that proves adherence to a set of regulations

without either revealing personally identifying information about the user or incurring the over-

head of proofs of knowledge.

In work with Gray [SG09], we construct a partially-blind IBE scheme consisting of an IBE

scheme Π where the Extract algorithm is replaced with an interactive protocol PartialBlindExtract.

A partially-blind IBE scheme is a generalisation of blind IBE; that is a fully blind IBE scheme is

merely an instance of a partially blind IBE scheme where the set of non-blinded elements is empty.

A fully blind scheme occurs when all identity string elements are not disclosed to the KGC, a par-

tially blind scheme occurs when some of the identity string elements are not disclosed to theKGC,

and a standard IBE scheme occurs when all of the identity string elements are disclosed to the

KGC.

PartialBlindExtract(U(params, id , info),KGC(params,msk))→ (sk id , info) returns a private

decryption key sk id to U corresponding to identity string id and the commonly agreed pub-

lic information info to KGC. The identity string consists of a partially blinded identity set

containing blinded id and non blinded info elements, in an interactive key issuing protocol

between U and the KGC.

3.5.1 The PartialBlindExtract Protocol for Waters’ IBE Scheme

This scheme is a modification of Naccache’s scheme [Nac07] to produce a partially-blind IBE

scheme. As with fully blind-IBE, the Extract stage of the IBE scheme is altered from a poly-

nomial algorithm to an interactive protocol - the Setup, Encrypt and Decrypt algorithms remain

unchanged. To produce a partially-blind scheme, the KGC must be able to generate a private key

dv for a given public key v such that some or all of the vi remain unknown to it.

The scheme

A user U wants to retrieve a well formed key from KGC without KGC being able to associate the

full identity v = (v1, · · · , vn) with the extraction instance. Two random values are introduced by

U which preventKGC matching the value it generated with a particular instance of the extract pro-

tocol. This is achieved by KGC producing a blinded version of the key required, and U retrieving

the actual key by unblinding.

Begin by assuming the user U knows the full identity v = (v1, . . . , vn) for which she requires
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a private key, a necessary condition for leak-freeness. U wants to retrieve a well formed private

key fromKGC withoutKGC being able to associate the full identity v with the extraction instance.

The PartialBlindExtract protocol is presented in Figure 3.8.

The security of the scheme

The private key resulting from PartialBlindExtract has the same form as the private key generated

by Extract in the original scheme; as such, the Encrypt and Decrypt algorithms remain correct.

U is in possession of a private key dv corresponding to v, and KGC has learnt nothing other than

the non-blinded elements v̂ of v. As with the Naccache scheme [Nac07], multiple decryption keys

corresponding to the identity v can be generated. Naccache’s scheme is proven semantically secure

against passive adversaries (IND-ID-CPA) in the standard model under the DBDH assumption; our

scheme holds the same security as the key is of the same form.

The definition of leak-freeness, Definition 14, is applicable to partially-blind IBE. However,

the definition of selective-failure blindness, Definition 15, requires that an authority learn nothing

about an identity; in partially-blind IBE theKGC does learn something about the identity. To allow

for partial-blindness, construct the pair of identities id0, id1 to include the non blinded information

info, but restrict the non-blinded information in each identity id0, id1 to be precisely info. An

adversary viewing id0, id1 should be unable to distinguish them, as his view will consist of (info,

random) for both identities. To incorporate this requirement, the following definition is proposed

for partial-blindness.

Definition 18 (Selective-failure Partial-Blindness )

A PartialBlindExtract protocol is said to be selective-failure blind if every adversary A has a

negligible advantage in the following game: A outputs params, info and a pair of identities

id0, id1 which both contain info visible to A. A random bit b ∈ {0, 1} is chosen, and A is given

black-box access to two oracles: U (params, id b) and U (params, id1−b). The U algorithms

produce sk b, sk1−b respectively. If both sk b 6=⊥, A receives (sk0, sk1); if only sk1−b =⊥, A

receives (ε,⊥); if only sk b =⊥, A receives (⊥, ε); and if skb = sk1−b =⊥, A receives (⊥,⊥).

Finally, A outputs its guess b′. The advantage of A in this game is |P[b′ = b]− 1/2|.

Definition 19 (Secure Partially-Blinded IBE )

An IBE scheme Π is secure if and only if: (1) the underlying Π is a secure IBE scheme and (2)

PartialBlindExtract is leak-free and selective-failure partially-blind.
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PartialBlindExtract

1. Assume U knows the identity v = (v1, . . . , vn) and a vector
γ = (γ1, . . . , γn) ∈ ({0, 1})n such that if γi = 1 then vi is to be blinded.
Define v̂ = (v̂i) where v̂i = vi if γi = 0 and ⊥ otherwise. Also define
v = (vi) where vi = vi if γi = 1 and ⊥ otherwise. Note that v = v̂|v,
where | represents the merger of the non-⊥ components of v̂ and v. U
chooses random values β, y ∈ Zq and computes ~v = (~v1, . . . , ~vn) where

~vi =
{

(uβi , vi) if γi = 0
⊥ if γi = 1

U computes X ← (gβyu′β
∏n
i=1,γi=1 u

βvi
i ) and sends (X,~v, gβ, u′β) to

KGC. U can prove to KGC that it knows y, β, vi where γi = 1 using
zero-knowledge proofs as outlined in [Oka06a].

2. KGC chooses random r ∈ Zq and constructs d′v = (d′0, d
′
1) as

d′v =
(
gα2 (u′β

n∏
i=1,γi 6=1

uβvii )rXr, gβr
)

=
(
gα2 (u′β

n∏
i=1,γi 6=1

uβvii )r(gβyu′β
n∏

i=1,γi=1

uβvii )r, gβr
)

=
(
gα2 g

βyr(u′
n∏
i=1

uvii )βr, gβr
)

and passes d′v to U .

U then tests that e(g1, g2) · e(d′1, gy
Qn
i=1 u

vi
i ) = e(g, d′1).

3. If the test passes, U chooses random z ∈ Zq and computes

dv =
(
d′0/(d

′
1)y · (u′β

n∏
i=1

uβvii )z, d′1 · gz
)

=
(
gα2 (u′

n∏
i=1

uvii )βr+z, gβr+z
)
.

If the test fails, U outputs ⊥ and aborts. Note that KGC does not know d0 or
d1.

Figure 3.8: PartialBlindExtract protocol for Waters’ IBE
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Lemma 4 The scheme Π is leak-free.

Proof. The proof follows the same form as that presented in [GH07]. In the Real Game an

adversary A interacts with an honest KGC executing the PartialBlindExtract protocol.

Construct a simulator S such that no efficient distinguisher D can distinguish the Real Game

from the Ideal Game. In the ideal game, an adversary S given access to a trusted party executing

Extract is described as:

1. On input params from the KGC, S passes params to a copy of A that it runs internally.

2. Each time A engages S in a PartialBlindExtract protocol, S behaves in a predetermined

manner. In the first message of the protocol A must send S a value of the form (X,~v).

v = (v1, . . . , vn) is an identity and γ = (γ1, . . . , γn) ∈ ({0, 1})n is a vector such that if

γi = 1, vi is to be blinded. Blinded values are sent as X = (u′β
∏n
i=1,γi=1 u

viβ
i ); non-

blinded values are sent as the vector ~v = (uβi , vi) . A constructs proofs of knowledge of the

values β, vi for γi = 1. If the proof fails to verify, S aborts. Otherwise, using extraction

techniques, S can extract v = (v1, . . . , vn), β and y.

3. Next, S submits identity v to the KGC, who returns the valid private key

dv = (gα2 · (u′
∏n
i=1 u

v′i
i )r, gr), where r = r′β.

4. S computes d′v = (d′1, d
′
2) using the blinding value β, y, and returns these values to A.

The responses of S are always well formed, which A can easily verify, and are drawn from the

same distribution as those of the KGC. Thus the games Real and Ideal are indistinguishable to A

and D. �

Lemma 5 The PartialBlindExtract protocol is selective-failure partially-blind.

Proof. The proof follows the same form that presented in [GH07].

Adversary A outputs params, info and two identities id0, id1, both of which contain info. A

random bit b is chosen, andA is given black-box access to two oracles U (params, idb, info) and

U (params, id b−1, info). The U algorithms produce local output skb and skb−1 respectively. If

skb 6= ⊥ and sk b−1 6= ⊥ then A receives sk0, sk1; if skb = ⊥ and sk b−1 6= ⊥, A receives (⊥, ε);

if skb 6= ⊥ and sk b−1 = ⊥, A receives (ε,⊥); if skb = ⊥ and sk b−1 = ⊥, A receives (⊥,⊥). A

then tries to predict b, and he is able to do so only with a negligible advantage over guessing.
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In the PartialBlindExtract protocol, both parties agree in advance some info which is con-

tained in the identities id0, id1. U then constructs the value X = (u′
∏n
i=1(uvii )bi)β , which is the

blinded remainder of the idb identity string. U performs a proof of knowledge PoK(u′, ui, vi, β) :

X . U also passes (u′β, (uβi , vi)) to A, who can then construct (u′
∏n
i=1(uvii ))β , where bi = 0 for

the non blinded info values.

Suppose thatA runs one or both of his oracles up to this point. A must respond to U , and thus

far his views are computationally indistinguishable. A must now return two values d′1, d
′
2 to the

first oracle. A chooses this pair in any manner he wants, and once he chooses d′1, d
′
2 he is able to

predict the output sk id of the oracle U (params, idi, info) as follows:

1. A checks that (d′1, d
′
2) are correctly constructed, i.e., of the form (gα2 (u′

∏n
i=1(uvii )βr, gβr)).

If they are not, record sk0 = ⊥. If they are, A temporarily records sk0 =

PartialBlindExtract(msk , id0, info).

2. A chooses any two values (d′0, d
′
1) for the second oracle, performs the same check and

records for sk1, id1.

3. Finally, if both tests failed or both tests succeeded, output (sk0, sk1). If sk0 = ⊥ and

sk1 6= ⊥ output (ε,⊥).

The prediction is correct, because A is performing the same check as the honest U , and when

both succeed A outputs a valid secret key from PartialBlindExtract(msk , id , info), as does U .

Note that if A is able to predict the final output of its oracles, then its advantage in distinguishing

U (params, id0, info) and U (params, id1, info) is the same without the output from the predic-

tions. Thus, all of A’s advantage must come from distinguishing the earlier output of the oracles.

We know from the underlying proof of security that the actions the oracles undertake mean their

output is indistinguishable to A.

�

3.6 Double-Blind Identity-Based Encryption

We propose the novel concept of double blinding [SG09] to allow a KGC to add elements of its

choosing to an identity string without revealing them to the user U . The resulting identity string

comprises three types elements; those disclosed to both parties, those not disclosed by U to KGC

and those not disclosed by KGC to U .
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A double-blind IBE scheme consists of an IBE scheme Π, where the Extract algorithm is

replaced with an interactive protocol DoubleBlindExtract. A double-blind IBE scheme is also a

generalisation of blind IBE; that is, a fully blind IBE scheme is an instance of a double-blind IBE

scheme where the set of non-blinded elements is empty. In DoubleBlindExtract the identity string

id consists of non-blinded elements îd known to both U and KGC, blinded elements id known

only to U , and double-blind elements id known only to the KGC, such that id = îd |id |id .

The interactive key issuing protocol between U and KGC is described as follows:

DoubleBlindExtract(U(params, îd |id),KGC(params,msk , id)) → (sk
îd |id |id , îd) returns a pri-

vate key sk
îd |id |id to U that corresponds to the identity string îd |id |id provided; the non-

blinded elements îd of the identity are returned to KGC.

3.6.1 The DoubleBlindExtract Protocol for Waters’ IBE Scheme

To construct a double-blind IBE scheme, we use the approach of existing blind IBE extraction

protocols and alter the Extract stage of the IBE scheme. A double-blind scheme does not follow

the standard assumption that U knows the full identity v = (v1, . . . , vn) for which she requires a

private key. Instead, assume an identity v = (v1, . . . , vn) such that both parties know elements

v̂ = vi where i ∈ {1,m} and γi = 0, only U knows elements v = vi where i ∈ {1,m} and

γi = 1, and only KGC knows elements v = (vm+1, . . . , vn). The DoubleBlindExtract protocol is

presented in Figure 3.9.

As with the PartialBlindExtract scheme, the resulting private key has the same form as the

private key generated by Extract in the Naccache scheme [Nac07], so the Encrypt and Decrypt

algorithms remain correct.
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DoubleBlindExtract(U(params, îd |id),KGC(params,msk , id))

1. Given a vector γ = (γ1, . . . , γn) ∈ ({0, 1})n, if γi = 1 then vi is to be
blinded by U . We define a vector −→v of length n such that

−→v =


(uβi , vi) if i ∈ {0,m} ∧ γi = 0
⊥ if i ∈ {0,m} ∧ γi = 1
uβi if m < i < n

U computes X ← (gβyu′β
∏m
i=1,γi=1 u

βvi
i ) and sends (X,−→v , gβ, u′β) to

KGC. U can prove to KGC that it knows y, β and vi where γi = 1 using
zero-knowledge proofs as outlined in [Oka06a].

2. KGC chooses random r ∈ Zq and constructs d′v = (d′1, d
′
2) as

d′v =
(
gα2 (

m∏
i=1,γi 6=1

uβvii )rXr(
n∏

i=m+1

uβvii )r, gβr
)

=
(
gα2 g

βyr(u′
n∏
i=1

uvii )βr, gβr
)

computes f = (
∏n
i=m+1 u

vi
i )r and passes d′v, f to U . This f value is

required to allow U check that the key is correctly constructed. In order to
prevent f from potentially leaking values vi where i = m+ 1, . . . , n, KGC
blinds it using r.

U then tests that

e(g1, g2) · e(d′2, gyu′
m∏
i=1

uvii ) · e(gβ, (
n∏

i=m+1

uvii )r) = e(g, d′1).

3. If the test passes, U chooses random z ∈ Zq and computes

dv =
(
d′1/(d

′
2)y · (u′

n∏
i=1

uvii )z, d′1 · gz
)

=
(
gα2 (u′

n∏
i=1

uvii )βr+z, gβr+z
)
.

If the test fails, U outputs ⊥ and aborts. Note that the KGC does not know
d1 or d2, where dv = (d1, d2).

Figure 3.9: DoubleBlindExtract protocol for Waters’ IBE
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U checks key correctness in step 2. This check reduces to e(g1, g2) · e(d′2, gyu′
∏n
i=1 u

vi
i ) =

e(g, d′1), the check for previous schemes by:

e(g1, g2) · e(d′2, gyu′
m∏
i=1

uvii ) · e(gβ, (
n∏

i=m+1

uvii )r) = e(g, d′1)

e(g1, g2) · e(d′2, gyu′
m∏
i=1

uvii ) · e(gβ
r
r , (

n∏
i=m+1

uvii )r) = e(g, d′1)

e(g1, g2) · e(d′2, gyu′
m∏
i=1

uvii ) · e(gβr, (
n∏

i=m+1

uvii )
r
r ) = e(g, d′1)

e(g1, g2) · e(gβr, gyu′
m∏
i=1

uvii ) · e(gβr, (
n∏

i=m+1

uvii )) = e(g, d′1)

e(g1, g2) · e(d′2, gyu′
n∏
i=1

uvii ) = e(g, d′1).

The blinding of the f value byKGC in this manner means that all communications can be observed

in this protocol by a third party, as it is not possible for it to perform an exhaustive search for the

vi values contained therein.

The security of the scheme

It is possible for U to perform an exhaustive search for vm+1, . . . , vn by constructing a ciphertext

and then checking if her dv decrypts it correctly. To prevent this, it is necessary for KGC to set a

minimum required level of bit security. For example, if 128-bit security is required, then KGC is

required to add n−m+ 1 = 128
l double blinded vi values.

Unusually, double-blind IBE schemes require that the user applying for a private key does not

know the full corresponding public key id = îd |id |id . We capture this requirement by introducing

the concept of Ciphertext Awareness (CTA). Informally, CTA is a requirement that a decrypting

entity can only produce a valid plaintext by applying the decryption algorithm to his private key

and a ciphertext encrypted using the corresponding public key. This concept mirrors that of Plain-

text Awareness (PA) [BDPR98, BR95, BD08, TO08], which models an adversary’s inability to

produce a ciphertext without knowledge of the underlying plaintext. That is, if a scheme is PA,

then the only way an adversary can produce a valid ciphertext is to apply the encryption algorithm

to the public key. Similarly, CTA models an adversary’s inability to produce a plaintext / ciphertext

pair x, y without knowing the ciphertext y.

Consider an adversary A for ciphertext awareness, given the secret key sk and access to an
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Real Game Ideal Game

(pk, sk)← KeyGen(params,msk , pk)
xReal ← AEncrypt(pk,·),Decrypt(sk,C(·))(sk)

(pk, sk)← KeyGen(params,msk , pk)
xIdeal ← AA

∗(Encrypt(pk,·,R,Olist),Decrypt(sk,C(·))(sk)

Figure 3.10: Security game for Ciphertext Awareness

encryption oracle O. A is also given access to a second oracle DOsk . This second oracle is used to

model the ability of an oracle to access valid plaintexts without the corresponding ciphertexts that

it would get using queries to O, where such plaintexts are denoted R[A]. By querying O, A has

access to a decryption oracle that will, on input ciphertext C, extract the corresponding plaintext

P , add P and C to a list of queried plaintexts Olist and return P .

In the real game, A can query an encryption oracle on any plaintext P /∈ Olist, and the oracle

will return Encrypt(pk, P ). In the ideal game, A can query an encryption oracle on any plaintext

P /∈ Olist and the oracle will execute the ideal simulation A∗(pk, P,R[A],Olist) and return the

result. The two games are summarised in Figure 3.10.

Definition 20 (Ciphertext Awareness) A double-blind IBE scheme Π = (KeyGen,Encrypt,Decrypt)

is ciphertext aware if for all polynomial-time plaintext extractorsA, there exists a polynomial-time

ciphertext creatorA∗ such that for an efficient distinguisher D , the advantage

AdvA,A∗,C,Encrypt = |Pr[D(xReal)]− Pr[D(xIdeal)]|

is negligible.

The definitions of security for blind and partial-blind IBE can be extended to double-blinded

IBE schemes by constructing the pair of identities îd|id0|id , îd |id1|id . It is necessary to restrict

the non-blinded information for each identity to be a common value for îd and the double-blind

information to be a common value id also. Thus, as with partially-blind IBE, the elements visible

to KGC are identical in both identity strings.

Definition 21 (Secure Double-Blinded IBE)

An IBE scheme Π is secure if and only if: (1) the underlying Π is a secure IBE scheme, (2)

DoubleBlindExtract is leak-free and selective-failure double-blind and (3) the resulting scheme is

ciphertext aware.
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The private key resulting from the DoubleBlindExtract protocol has the same form as the

private key generated by the Extract algorithm in the original scheme. As such, the Encrypt and

Decrypt algorithms remain correct. Security arguments pertaining to leak-freeness and selective

failure for double-blindness follow from those outlined previously for partial-blindness and thus

are not provided. For leak-freeness, an additional restriction on the identities id0 = id0|id0|id0

id1 = id1|id1|id1 such that id0 = id1 and id0 = id1 is required.

Lemma 6 The scheme Π = Setup,DoubleBlindExtract,Encrypt,Decrypt is ciphertext aware.

Proof. Consider the two games outlined in Figure 3.10, the Real game and the Ideal game that

the adversary A interacts with, and receives output xReal , xIdeal. The intuition for the ciphertext

awareness of the scheme can be described as follows. The underlying IBE scheme Π is IND-CPA

secure. Given two messages, their resulting ciphertexts are indistinguishable.

To prove ciphertext awareness, begin with the contradiction that there exists a polynomial dis-

tinguisher D which can computationally distinguish the output from game Ideal and game Real.

This is a contradiction as constructing such a D that can distinguish pairs {(mb, ctb), (m1−b, ct1−b)}

with non-negligible probability is not possible as it would mean that D can be used to construct

an IND-CPA adversary against the scheme. Thus, distinguishing the distributions of xReal, xIdeal

with a non-neglible advantage is not possible.

�

3.7 Transformation for Anonymous Partially-Blind and Double-Blind

Identity-Based Encryption

Above, we present the first blind extract protocol for an anonymous IBE scheme (Section 3.4).

Anonymity is a desirable feature for IBE schemes, as it prevents a ciphertext from being associated

with the identity used to encrypt it. We adapt the extract algorithm of the anonymous IBE scheme

for use with our partially and fully blind extraction protocols. The output of the extract protocol

of the anonymous scheme is required to be of the form

sk id =
(
hr̃1t1t2+r̃2t3t4 , h−αt2H2 (id)−r̃1t2 , h−αt1H2 (id)−r̃1t1 ,H2 (id)−r̃2t4 ,H2 (id)−r̃2t3

)
.

Using step 1 of the PartialBlindExtract and DoubleBlindExtract protocols outlined above, the

KGC obtains the hash of the identity. We modify these protocols using the parameters of the
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anonymous IBE scheme, taking v = (v1, . . . , vn) as the identity, to show they are suitable for use

with the scheme to achieve partially-blind and double-blind anonymous IBE schemes.

In our extract protocols, U sends the tuple (X,−→v , hβ, hβ0 ) required to compute this hash. We

modify this tuple to be suitable for use with the anon-IBE scheme. U chooses random values

u0, u1, u2 ∈ Zq and β, r′1, r
′
2 ∈ Z∗q and constructs the following, where −→v is determined by the

use of either PartialBlindExtract or DoubleBlindExtract:

X = hβ0

n∏
i=1,γ=1

hβvii

−→v =


(uβi , vi) if i ∈ {0,m} ∧ γi = 0

⊥ if i ∈ {0,m} ∧ γi = 1

uβi if i > m

hβ0 ;hr
′
1 ;hr

′
2 ;hu0 ;hu1 ;hu2 ;h−β/r

′
1

The tuple U sends to KGC is (X,−→v , hβ0 ;hr
′
1 ;hr

′
2 ;hu0 ;hu1 ;hu2 ;h−β/r

′
1) . The KGC chooses

random values r̂1, r̂2 ∈ Z∗q and sends hr̂1 , hr̂2 to U . Implicitly, r̃1 = r′1r̂1, r̃2 = r′2r̂2. The KGC

constructs the key as (d′v = d′0, d
′
1, d
′
2, d
′
3, d
′
4) where ID ′ = hβ0

∏n
i=1 h

βvi
i .

d′0 = (hr
′
1)r̂1t1t2(hr

′
2)r̂2t3t4(hu0)

= hr̃1t1t2+r̃2t3t4+u0 = hx0

d′1 = (h−β/r
′
1)αt2(hu1)(ID ′)r̂1t2

= h−β/r
′
1αt2+u1ID ′−r̂1t2 = hx1ID′−r̂1t2

d′2 = (h−β/r
′
1)αt1(hu2)(ID ′)r̂1t1

= h−β/r
′
1αt1+u2ID ′r̂1t1 = hx2ID ′−r̂1t1

d′3 = ID ′−r̂2t4

d′4 = ID ′−r̂2t3

73



The key d′v is sent to U , who unblinds it to retrieve her secret key,

sk id = (d0, d1, d2, d3, d4)

= (d′0h
−u0 , (d′1h

−u1)r
′
1/β, (d′2h

−u2)r
′
1/β, d

′r′2
3 , d

′r′2/β
4 )

=
(
hr̃1t1t2+r̃2t3t4 , h−αt2H2 (id)−r̃1t2 , h−αt1H2 (id)−r̃1t1 ,H2 (id)−r̃2t4 ,H2 (id)−r̃2t3

)
.

The resulting key is in the correct form, which U can check by testing

e(g1, g2) · e(d′2, gyu′
n∏
i=1

uvii ) = e(g, d′1).

3.8 Conclusion

In this chapter, we have motivated the amalgamation of the blinding property of digital signa-

tures and identity-based encryption. We have presented constructions for new blind identity-based

encryption schemes. We first extended the scope of blind identity-based encryption schemes to in-

corporate the property of anonymity by constructing a suitable underlying anonymous IBE scheme

and providing the BlindExtract protocol in work with Camenisch et al. [CKRS09]. Security defi-

nitions and arguments were provided.

We then presented novel extensions to the area of identity-based encryption: partially-blind

and double-blind key extraction protocols. These constructions are the result of work with

Gray [SG09]. We presented constructions of each, together with the requisite security definitions

and proofs. We showed these protocols to be applicable to anonymous identity-based encryp-

tion by providing a transformation for the novel blinding protocols of PartialBlindExtract and

DoubleBlindExtract to achieve this desirable property.
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Chapter 4

Constructions using Blind

Identity-Based Encryption

4.1 Introduction

In Chapter 3, we introduced the concept of blind identity-based encryption, along with construc-

tions and extensions in the form of partially-blind and double-blind identity-based encryption. In

this chapter, applications of all forms of blind identity-based encryption are presented, illustrating

how they can be used as a primitive in cryptographic protocols.

The first application of blind identity-based encryption presented is simulatable oblivious

transfer by Green and Hohenberger [GH07]. The use of blind IBE provides advantages in that

the complexity problem required is less restrictive than that of equivalent schemes, while main-

taining the efficiency and properties of recent adaptive oblivious transfer schemes.

The second application of blind identity-based encryption is public key encryption with obliv-

ious keyword search, which is the result of work with Camenisch et al. [CKRS09]. We begin by

motivating the construction of a public-key encryption scheme with oblivious keyword search. We

identify the requirements on a blind identity-based encryption scheme necessary to realise such a

construction. Our contribution is to construct such a scheme.

The third application is anonymous key issuing, which is the result of work with Gray [SG09].

Anonymous key issuing has the objective of preventing a KGC from learning anything about the

identity used to request a private key. We present a framework using blind identity-based en-

cryption to do so. We show that this framework is also suitable for use with partially-blind and
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double-blind identity-based encryption.

Finally, we present a unique receipt issuing scheme, with an application scenario. We use

the double-blind IBE scheme as a primitive in an online lottery protocol. This lottery generates

a unique type of ticket, with input from both the ticket seller and the ticket buyer. It provides a

challenge-reponse ticket validation protocol, which ensures only a valid ticket can be used to claim

a prize.

4.2 Simulatable Oblivious Transfer using Blind Identity-Based En-

cryption

The first construction of blind IBE, outlined in Section 3.3, was motivated by the challenge of

constructing a simulatable oblivious transfer with standard complexity assumptions. We begin by

explaining what is required of such a scheme.

4.2.1 Oblivious Transfer

Oblivious Transfer (OT) is a generalisation of the secret sharing protocol introduced by Rabin

[Rab81]. Rabin describes oblivious transfer as the transferral of information where the sender

does not know if the recipient actually received the information. OT is a cryptographic primitive

that allows a receiver to choose one message from a set of messages sent by a sender without

revealing to the sender which message was chosen by the receiver. Additionally, the sender is

guaranteed that the receiver does not learn anything about the rest of the messages in the set. In

this manner, it protects the privacy of the receiver by not revealing the message chosen, and the

privacy of the sender, by not revealing any of the other data sent [NP99, NP01]. It is a method for

private information retrieval (PIR). PIR allows a user to retrieve an item without revealing which

item she is retrieving

Rabin’s exchange of secrets by oblivious transfer. In Rabin’s protocol [Rab81], Alice and Bob

wish to exchange secret values, SA, SB respectively. The values of SA, SB could be sensitive data

such as passwords. The challenge is to exchange the data without using a trusted third party or

a secure simultaneous exchange mechanism. In order to prevent either party cheating by sending

invalid messages, each party generates a commitment to the validity of their Si. This gives Alice

recourse to prove that Bob has cheated should he send a value SB′ 6= SB , i.e., in the case that he
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sends an invalid password.

This does not address the exchange of secrets, however, as Alice can still send an invalid

password to Bob, while receiving a valid one. While she may be forced to send the valid one at a

later stage, she still has the advantage of accessing Bob’s message first. To address this problem,

Rabin constructed a protocol such that given the fact that Bob has learnt SA, Alice learns SB . The

exchange of secrets protocol is based on the hardness of the factoring problem. It involves the first

use of oblivious transfers. It is limited in that it only works for honest parties.

Forms of oblivious transfer. In a 1-out-of-2 oblivious transfer scheme, denoted as OT2
1, the

receiver chooses one message from the two constructed by the sender. It follows that a 1-out-of-N

oblivious transfer is represented as OTN1 , where the receiver chooses one message from the N

constructed by the sender, and a k-out-of-N is represented as OTNk , where the receiver chooses k

messages from the N constructed by the sender. Finally, adaptive k-out-of-N oblivious transfer

is represented as OTNk×1, where the receiver chooses k messages from the N constructed by the

sender.

OTNk involves a Commit phase and a Transfer phase. In the Commit phase, the sender com-

mits to N messages, and sends the commitments to the receiver. The Transfer phase is interactive

between the sender and receiver. It allows the receiver to obtain k messages of her choice by

using the commitments. In non-adaptive OTNk , at the beginning of the Transfer phase the receiver

states the messages she wishes to obtain. In adaptive OTNk×1 the receiver may choose messages in

the transfer subphase i ∈ {1, . . . , k} after i − 1 subphases, where her choice may depend on the

messages obtained previously.

Applications of oblivious transfer. Oblivious transfer can be used to construct oblivious circuit

evaluation, priced oblivious transfer and interactive zero knowledge proof systems [AIR01, Kil88].

In priced oblivious transfer, for example, a buyer may purchase goods without revealing what she

is buying, or even when she buys it, on the condition her pre-payment (credit) balance is sufficient

to cover the cost of the item she wishes to purchase. OT can be used as a building block for other

protocols.

Definition 22 (k-out-of-N Oblivious Transfer (OTNk×1,OTNk ) [CNS07]) We generalise an OT

scheme as a tuple of algorithms (SI, RI, ST, RT). These algorithms are used in matched pairs.

During the initialisation phase the sender runs SI(m1, . . . ,mN ) to obtain state value S0, and the
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receiver runs RI() to obtain state value R0. The sender and receiver execute ST, RT k times as

described below.

Non-adaptive OT In the non-adaptive OTNk case the parties execute the protocol as above;

however, for round i < k the algorithm RT(Ri−1, σi) does not output a message. At

the end of the kth transfer RT(Rk−1, σk) outputs the messages (m ′σ1
, . . . ,m ′σk) where for

j = 1, . . . , N each m ′σj is mσj or ⊥. (Note that in a non-adaptive scheme, the initialisa-

tion and k transfers do not necessarily require a corresponding number of communication

rounds.)

Adaptive OT In the adaptive OTNk×1 case, for 1 ≤ u ≤ k, the ith transfer proceeds as follows:

the sender runs ST(Si−1) to obtain state value Si, and the receiver runs RT(Ri−1, σi) where

1 ≤ σi ≤ N is the index of the message to be received. This produces state information Ri

and the message mσi or ⊥ indicating failure.

This definition requires for correctness that at the end of an honest, successful execution of the

protocol, the receiver should obtain Mσi .

4.2.2 Security of Oblivious Transfer Protocols

The notion of security in OT has evolved from an honest-but-curious-model, to a half-simulation

model, and most recently to a full-simulation model.

Intuitively, the honest-but-curious model has all parties behaving honestly while running the

protocol but examining the transcript of the protocol after it has run. This security model guaran-

tees that nothing further can be learnt from examining the transcript than is already known from

running the protocol.

The half-simulatation model [NP05] views the security of senders and receivers separately.

The security requirement of the receiver is indistinguishability. It implies that the sender should be

unable to distinguish from its views of the protocol the iteration in which the receiver retrievedMσ

from the iteration in which M ′σ was retrieved. The security of the sender is based on a comparison

with the ideal-world model. An ideal-world counterpart for every real-world malicious receiver

is constructed such that an adversary in the real world gains no more information than in an ideal

world implemented by a trusted third party. The half-simulation model is vulnerable to selective-

failure attacks. A sender may cause a transfer to fail by sending invalid messages during the
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initialisation phase. In such an attack, the sender learns nothing but the receiver cannot complain

about the message received without loss of privacy.

This flaw motivates the full-simulation model [CNS07], in which both sender and receiver

security follow the ideal-world / real-world model. In the real-world, both parties are active in the

protocol. In the ideal-world, the sender’s role is implemented by a trusted third party. This model

further requires that the combined outputs of the sender and receiver are indistinguishable.

Security for the simultable, adaptive OTNk×1 scheme can be defined as follows:

Definition 23 (Security for OTNk×1 [CNS07].) The security of OTNk×1 is described by the follow-

ing real world/ideal world game:

Real experiment. The experiment is for arbitrary sender and receiver algorithms Ŝ and R̂. The

experiment RealŜ,R̂(N, k,m1, . . . ,mN ,Σ) proceeds as follows. Ŝ is given messages (m1,

. . . ,mN ) as input and interacts with R̂(Σ), where Σ is an adaptive selection algorithm that,

on input messages (mσ1 , . . . ,mσN ), outputs the index σi of the next message to be queried.

In their first run, Ŝ and R̂ produce initial states S0 and R0 respectively. Next, the sender

and receiver engage in k interactions. In the ith interaction for 1 ≤ i ≤ k the sender

and receiver interact by running Si ← Ŝ(Si−1) and (Ri,m∗i ) ← R̂(Ri−1), and update

their states to Si and Ri respectively. Note that m∗i may be different from mσi when either

participant cheats. At the end of the kth interaction, sender and receiver output strings Sk

and Rk respectively. The output of the RealŜ,R̂ experiment is the tuple (Sk, Rk).

For an OTNk×1 scheme (SI, ST, RI, RT), define the honest sender Sn algorithm as the one

which runs SI(m1, . . . ,mN ) in the initialisation phase, runs ST in all following interac-

tions and always outputs Sk = ε as its final output. Define the honest receiver Rn as the

algorithm which runs RI in the initialisation phase, runs RT(Ri−1, σi), where in the ith

interaction, Σ is used to generate the index σi, and returns the list of received messages

Rk = (mσ1 , . . . ,mσN ) as its final output.

Ideal experiment. In the experiment IdealŜ′,R̂′(N, k,m1, . . . ,mN ,Σ) the (possibly cheating)

sender algorithm Ŝ′(m1, . . . ,mN ) generates messages m∗1 , . . . ,m
∗
N and hands these to the

trusted party T. In each of the k transfer phases, T receives a bit bi from the sender Ŝ′ and

an index σ∗i from the (possibly cheating) receiver R̂′(Σ). If bi = 1 and σ∗ ∈ {1, . . . , N}

then T hands m∗σ∗i to the receiver; otherwise, it hands ⊥ to the receiver. At the end of the
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kth transfer, Ŝ′ and R̂′ output a string Sk and Rk; the output of the experiment is the pair

(Sk, Rk).

Note that the sender’s bit b models its ability to make the current transfer fail. However, the

sender’s decision to do so is independent of the index σi that is being queried by the receiver.

This captures the strongest notion of coherence and excludes schemes that allow a sender to

cause selective failure. As above, the ideal sender Sn′(m1, . . . ,mN ) is defined as sending

messages m1, . . . ,mN to the trusted party in the initialisation phase, sending bi = 1 in all

transfer phases, and using Sk = ε as its final output. Define the honest ideal receiver Rn′

as the algorithm which generates its selection indices σi through Σ and submits these to the

trusted party. Its final output consists of all the messages it received Rk = (mσi , . . . ,mσN ).

Sender Security. OTNk×1 is said to be (t, t′, tD, ε)-sender-secure if for any real-world cheating

receiver R̂ running in time t, there exists an ideal-world receiver R̂′ running in time t′

such that for any N ∈ [1, t], any messages m1, . . . ,mN , and any selection algorithm Σ, a

distinguisher D running in time tD does not have probability of success greater than ε in

distinguishing the distributions

RealSn,R̂(N, k,m1, . . . ,mN ,Σ) and IdealSn′,R̂′(N, k,m1, . . . ,mN ,Σ).

Receiver Security. OTNk×1 is said to be (t, t′, tD, ε)-receiver-secure if for any real-world cheating

sender Ŝ running in time t, there exists an ideal-world sender Ŝ′ running in time t′ such that

for anyN ∈ N, any k ∈ [0, N ], any messages m1, . . . ,mN , and any selection strategy Σ, no

distinguisher D running in time tD has success probability greater than ε in distinguishing

the distributions

RealŜ,Rn(N, k,m1, . . . ,mN ,Σ) and IdealŜ′,Rn′(N, k,m1, . . . ,mN ,Σ).

4.2.3 Simulatable Oblivious Transfer

Green and Hohenberger [GH07] build on the simulatable oblivious transfer presented by Camenish

et al. [CNS07], focusing on adaptive and non-adaptive OT protocols. Both the adaptive and non

adaptive schemes presented in [GH07] are given formal definitions, which are consistent with Def-

inition 23. The schemes are realised under the IBE-to-OT transformation Green and Hohenberger

provide, which we outline in Figure 4.1. We present their work here as it represents the the first

application of blind IBE.
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The non-adaptive construction. A non-adaptive OTNk construction without random oracles can

be instantiated using the blind IBE schemes presented in Section 3.3 and the transform in Figure

4.1. It relies on the existence of a blind IBE scheme Π = (Setup,BlindExtract,Encrypt,Decrypt)

where Setup is a system parameter generating algorithm, BlindExtract is an interactive blind key

extraction protocol, Encrypt is an encryption algorithm and Decrypt is a decryption algorithm.

The sender executes Setup, and sends params to the receiver. The sender constructs encryp-

tions of N messages Mi under identity id i and sends the resulting ciphertexts to the receiver. In

order to retrieve k messages, the receiver runs the BlindExtract protocol for k identities of his

choice. The receiver uses the resulting k decryption keys to decrypt and recover messages of his

choosing. The blinding property ensures that a cheating receiver gains no information about the

messages corresponding to secret keys he did not extract, while ensuring that a cheating sender

does not learn the identities extracted.

It is fully-simulatable under the following modifications. The sender must prove, using zero

knowledge, knowledge of the value msk . Instead of transmitting the ciphertext, the sender trans-

mits only a commitment to a collision-resistant hash of the ciphertext vector. The actual ciphertexts

are sent at the end of the kth round, along with a proof that the commitment to the hash of the

ciphertexts can be opened.

The adaptive construction. An adaptive OTNk×1 protocol can be instantiated using the blind

IBE schemes presented in Section 3.3 and the transform in Figure 4.2. It is fully-simulatable and

is efficient in terms of communication cost and round-efficency. However, it is only secure in the

random oracle model. The main advantage of this scheme is that the use of the blind IBE scheme

means the complexity assumption on which the protocols are based is the DBDH assumption,

whereas the scheme of Camenisch et al. [CNS07] requires interactive complexity assumptions.

This is due to the requirement for unique blind signatures in their construction, of which there

are currently only two constructions [Cha82, Bol03].The scheme presented in Figure 4.2 can be

combined with the scheme of Camenisch et al. to achieve a standard model variant. However, this

protocol relies on strong assumptions, which require larger than normal security parameters.

The constructions presented in Figure 4.1 and Figure 4.2 require the IsValid(params, id , ct)

ciphertext correctness test. Firstly, this check verifies the group parameters are valid and for

ct = (X,Y, Z), all the values are in the correct groups and that the following relation holds:

e(Y, F (id)) = e(Z, g).
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Initialisation Phase The sender and receiver begin by agreeing on parameters for
a commitment scheme, such as Pedersen’s commitment scheme, and a col-
lision resistant hash function H . During the initialisation phase, the sender
runs SI(M1, . . . ,MN ) and the receiver runs RI().

1. The sender runs Setup(1κ), which outputs systems parameters params
and the master secret msk .

2. For j = 1, . . . , n, the sender computes Cj ← Encrypt(params,
j,Mj), and (C,D)← Commit(H(C1, . . . , CN )).

3. The sender sends (params, C) to receiver.

4. The sender executes the proof of knowledge PoK{(msk) :
(params,msk) ∈ Setup(1κ)}. If the proof does not verify, the re-
ceiver aborts.

Transfer phase During the transfer phase the sender runs ST() and the receiver
runs RT(σi).

1. Sender sends (C1, . . . , CN ) to the receiver.

2. The sender executes the proof of knowledge PoK{(D) :
Decommit(H(C1, . . . , CN ), C,D) = 1}

3. If the proof does not verify, or if for any i, IsValid(params, i, Ci) 6= 1,
the receiver aborts.

4. During the ith transfer, the sender and receiver execute BlindExtract
for identity σi. Set M ′σi ← ⊥ if BlindExtract fails, else set M ′σi ←
Decrypt(params, σi, skσi , Cσi).

5. The sender output is (msk ,D) and the receiver output is
(params, C,M ′σ1

, . . . ,M ′σN ).

Figure 4.1: Transformation IBE-to-OTNk
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Initialisation Phase During the initialisation phase, the sender runs
SI(M1, . . . ,MN ) and the receiver runs RI().

1. The sender runs Setup(1κ), which outputs systems parameters
params, msk , and chooses a collision-resistant hash function H :
M→ {0, 1}n.

2. The sender selects random W1, . . . ,WN ∈ M and for j = 1, . . . , n,
computes Aj → Encrypt(params, j,Wj), Bj → H(Wj) ⊕Mj and
Cj = (Aj , Bj).

3. The sender executes the proof of knowledge PoK{msk :
(params,msk) ∈ Setup(1κ)}.

4. Sender sends (params,C1, . . . , CN ) to the receiver.

5. If the proof of knowledge fails, or if IsValid(params, i, Ci) 6=
1, the receiver aborts the transfer. Otherwise the sender out-
puts S0 = (params,msk) and the receiver outputs R0 =
(params,C1, . . . , CN ).

Transfer phase During the transfer phase the sender runs ST(Si−1) and the re-
ceiver runs RT(Ri−1, σi).

1. During the ith transfer, the sender and receiver execute BlindExtract
for identity σi.

2. The receiver computes M ′σi → Bσi ⊕ H(Decrypt(params, σi, skσi ,
Aσi)) or ⊥ if BlindExtract fails.

3. The sender output is Si = Si−1 and the receiver output is Ri =
(Ri−1,M

′
σi).

Figure 4.2: Transformation IBE-to-OTNk×1

83



4.3 Public-Key Encryption with Oblivious Keyword Search using Blind

Identity-Based Encryption

Searchable encryption schemes provide an important mechanism to protect data while keeping it

available to be searched and accessed. In a common approach for their construction, the encrypting

entity chooses one or several keywords that describe the content of each encrypted record of data.

To perform a search, a user obtains a trapdoor for a keyword of her choosing and uses this trapdoor

to find all the data described by this keyword.

In joint work with Camenisch et al. [CKRS09], we present a searchable encryption scheme

that allows users to perform adaptive, oblivious searches by keywords on encrypted data in a

public key setting and decrypt the search results. The novel contribution of our scheme is that it

does not require a user to reveal their search term in order to obtain the corresponding trapdoor.

The resulting scheme is called public key encryption with oblivious keyword search (PEOKS).

PEOKS is an extension of public key encryption with keyword search (PEKS) in which users

obtain trapdoors from the secret key holder without revealing the keywords. Our PEOKS scheme is

constructed by using the committed blind anonymous IBE we constructed, as presented in Section

3.4.1.

4.3.1 Oblivious Keyword Search

Oblivious keyword search (OKS) [OK04] generalises oblivious transfer by associating a keyword

with messages, rather than a σ index as used in oblivious transfer. As such, oblivious transfer can

be seen as a particular case of oblivious keyword search, where the unique keyword associated

with a record is the index value σi.

Oblivious keyword search involves a sender and a receiver. The sender generates a set of

message-keyword pairs, M = {(MW1 ,W1), . . . , (MWN
,WN )}, where the keywords belong to a

keyword space Wsp. The receiver chooses a keyword Ŵi to obtain the message MŴi
. Assume,

without loss of generality, that each keyword is linked to at most one message. To retrieve all

data associated with keyword Ŵi, it is possible to construct a message MŴi
to include all the

relevant information . Using oblivious keyword search, the privacy properties of oblivious transfer

are maintained. The receiver obtains a message MŴi
in such a way that the sender learns noth-

ing about Ŵi, and the receiver does not learn anything about the other messages. Additionally,

oblivious keyword search may be adaptive.
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Definition 24 (OKSNk×1 [OK04].) An OKSNk×1 scheme is a tuple of algorithms (SI , RI , ST , RT )

which are run in matched pairs. In the initialization phase, the sender runs SI((MW1 ,W1),

. . . , (MWN
,WN )), where each Wj ∈Wsp, 1 ≤ j ≤ N , is a keyword, and obtains state value S0.

The receiver runs RI() and obtains state value R0. During the transfer phase sender and receiver

execute (ST , RT ) k times. During the ith transfer, 1 ≤ i ≤ k, the sender runs ST (Si−1) to obtain

Si, and the receiver runs RT (Ri−1, Ŵi), for Ŵi ∈Wsp, to obtain state value Ri and the message

M ′
Ŵi

(or ⊥ indicating failure), where M ′
Ŵi

is used to indicate message MŴi
has been received.

4.3.2 Public-key Encryption with Keyword Search

Public key encryption with keyword search (PEKS) addresses the problem of searching data that

has been encrypted using a public key. The capacity to search encrypted text for particular key-

words is delegated by a central authority. This allows a third party, an entity such as an email

gateway, to test if the encrypted text contains a keyword. The email recipient, Alice, does not want

to allow the gateway decrypt all of her messages, merely to determine if the keyword is present in

the encrypted text. Using PEKS, as described by Boneh et al. [BDCOP04], Alice can generate a

key which will allow the third party to identify the relevant encrypted messages containing a given

keyword. PEKS is also possible using IBE systems, known as identity-based PEKS.

Definition 25 (Non-interactive PEKS.) A non-interactive PEKS scheme consists of the follow-

ing polynomial time randomised algorithms:

KeyGen(k): given as input a security parameter k, generates a public/private key pairApub, Apriv.

PEKS(Apub,W ): given as input a public key Apub, and a keyword W , produces a searchable

encryption of W .

Trapdoor(Apriv,W ): given as input Alice’s private key and a keyword W , produces a trapdoor

TW .

Test(Apub, S, TW ): given as input Alice’s public key, a searchable encryption S = PEKS(Apub,W ),

outputs yes if W = W ′ and no otherwise.

PEKS is reliant on both the sender, Bob, and the recipient, Alice, adhering to the scheme. Bob,

when sending a message, generates the ciphertext using a standard public key system. When the
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ciphertext is generated, he appends the PEKS of each keyword to the message. That is, to send

message m with keywords W1, . . . ,Wm, Bob constructs

EApub(m)|PEKS(Apub,W1)| · · · |PEKS(Apub,Wm)

where Apub is Alice’s public key, EApub(m) is the encryption of the message m under the public

key and PEKS is an algorithm. Alice generates a trapdoor TWi corresponding to eachWi and gives

the keywords Wi to the third party. These trapdoors allow the holder to test if W = W ′, given

access to the protocol Test(Apub, S, TW ′) and TW . If W 6= W ′, the third party learns nothing

about W ′.

A PEKS scheme implies IBE [BDCOP04]. To capture the security of PEKS schemes, indistin-

guishability under chosen-plaintext attack (IND-CPA) is usually used. Under IND-CPA for PEKS,

an adversary cannot distinguish between two searchable encryptions for keywords of his choice,

even with access to an oracle providing trapdoors for any non-challenge keywords. Addition-

ally, we require that the searchable encryptions do not leak any information about the information

contained within.

Definition 26 (PEKS-IND-CPA) A PEKS scheme is said to be PEKS-IND-CPA secure if there

exists a negligible function ν(k) such that:

Pr[WSet ← ∅; (sk, params)← SetupPEKS(1k);

(W0,W1,M0,M1, state)← A↔OracleTrapdoor(·)(params)

∧W0,W1 /∈WSet ; b← {0, 1}; c← {0, 1};

SWb,Mc ← PEKS(params,Wb,Mc);

(b′, c′)← A↔OracleTrapdoor(·)(params, SWb,Mc , state) :

b = b′ ∧ c = c′] < 1/4 + ν(k).

Using OracleTrapdoor(W ), if W ∈ WSet then it returns ⊥; otherwise it adds W to the set

WSet ←WSet ∪ {W} and it returns TW ← Trapdoor(params, sk,W ).

Consistency in PEKS can be divided into two parts [ABC+08]. The first requires that, given a

valid searchable encryption, trapdoor pair computed using the same keyword, Test never outputs
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⊥. More formally, given W ∈ {0, 1}∗ and m ∈ {0, 1}∗:

Pr[(sk, params)← Setup(1k);SW,M ← PEKS(params,W,M);

TW ← Trapdoor(params,msk ,W );

M ′ ← Test(params, SW,M , TW ) : M ′ = M ] = 1

The second condition focuses on consistency and states that when a searchable encryption /

trapdoor pair were computed using different keywords, then algorithm Test should output ⊥. No

known PEKS scheme fulfills this perfect consistency property. Abdalla et al. [ABC+08] consid-

ered two relaxations for consistency, statistical and computational:

Definition 27 (Consistency for PEKS) Consider a PEKS scheme

(SetupPEKS, PEKS, Trapdoor, Test) and the following probability Pr:

Pr[(sk, params)← Setup(1k); (W,W ′,M)← A(params);

SW,M ← PEKS(params,W,M);TW ′ ← Trapdoor(params,msk ,W ′);

M ′ ← Test(params, SW,M , TW ′) : M ′ 6= ⊥]

The PEKS scheme is said to be:

perfectly consistent if, for all computationally unbounded adversaries, P = 0.

statistically consistent if, for all computationally unbounded adversaries, there exists a negligible

function ν(k) such that P ≤ ν(k).

computationally consistent if, for all probabilistic polynomial time adversaries, there exists a

negligible function ν(k) such that P ≤ ν(k).

4.3.3 Construction of the PEOKS Scheme

In joint work with Camenisch et al. [CKRS09], we construct a PEOKS scheme, using the suitable

anonymous IBE scheme presented in Section 3.4.1 and the generic transformation by Abdalla et

al. [ABC+08] from IBE to PEKS. The transformation is presented in Figure 4.3.

This generic transformation takes as input the algorithms Π of a secure IBE scheme and returns

a PEKS scheme Υ = (KeyGen,PEKS,Trapdoor,Test).
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Given an IBE scheme with algorithms (Setup,Extract,Encrypt,Decrypt) the
PEKS scheme is as follows:

Setup(1k): On input a security parameter k, run Setup(1k) to obtain the secret key
msk and params, the parameters of the scheme.

PEKS(params,W,M ): On input a keyword W and a message M , it picks a ran-
dom value C2 ∈ {0, 1}k and computes C1 = Encrypt(params,W,C2||M).
It outputs the tuple SW,M = (C1, C2).

Trapdoor(params,msk ,W ): The trapdoor TW associated with the keywordW is
the secret key skW associated with this keyword (acting as an identity), so it
can be obtained by running TW = Extract(params,msk ,W ).

Test(params, SW,M , TW ′): On input the searchable encryption SW,M and the
trapdoor TW ′ , it outputs M if C2||M = Decrypt(TW ′ , C1) and ⊥ other-
wise.

Figure 4.3: Transformation IBE-to-PEKS

Transformation to PEOKS We begin by extending the definition of PEKS. Definition 28 of

PEKS extends that of Definition 25 by encoding a secret m into the PEKS element SW generated

by the PEKS algorithm. This secret m is returned by Test when a match occurs.

Definition 28 ( PEKS.) A PEKS scheme consists of the following algorithms:

KeyGen(1k): given as input a security parameter k, generates a public/private key pairApub, Apriv.

PEKS(Apub,W,m): given as input a public key Apub, a keyword W and a message m , produces

a searchable encryption SW of m under W .

Trapdoor(Apub, Apriv,W ): given as input Alice’s public and private keys, and a keyword W ,

produces a trapdoor TW that allows searches for the keyword W .

Test(Apub, SW , T ′W ): given as input Alice’s public key, a searchable encryption SW , and a trap-

door T ′W , outputs the message m encoded in SW if W = W ′ and ⊥ otherwise.

We construct a PEOKS scheme consisting of the algorithms Υ of such a PEKS scheme, a

secure commitment scheme Commit used to commit to keywords and a BlindTrapdoor protocol,

which we use in place of the standard Trapdoor algorithm. The transformation is presented in

Figure 4.4.

Using the BlindTrapdoor protocol achieves the oblivious property of our PEOKS scheme.

With this protocol, the user obtains trapdoors from the T GC without revealing the keywords. By
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using commitments in conjunction with the blind anonymous IBE scheme presented in Section

3.4, the user can assure the T GC that she is authorised to perform searches using this keyword.

The BlindTrapdoor protocol is as follows:

BlindTrapdoor(U(Apub,W, openW ), T GC(Apub, Apriv,C )) generates a trapdoor TW for a key-

word W by running an interactive blind key extraction protocol between U and T GC,

BlindExtract(U(Apub,W, openW ),KGC(Apub, Apriv, C)). If C = Commit(W, openW ),

U’s output is the trapdoor TW and the output of T GC is empty. Otherwise both parties

output ⊥.

The properties of leak freeness and selective-failure blindness follow from the BlindExtract

protocol in the underlying blind IBE scheme.

Definition 29 (PEOKS) A PEOKS scheme (Υ,BlindTrapdoor,Commit) is secure if and only if:

(1) the underlying Υ is a secure PEKS scheme, (2) Commit is a secure commitment scheme and (3)

BlindTrapdoor is instantiated using a BlindExtract protocol that is leak-free and selective-failure

blind.

Theorem 3 Given a PEKS scheme (Setup,PEKS,Trapdoor,Test) and a protocol BlindTrapdoor,

if the PEKS scheme is PEKS-IND-CPA secure and protocol BlindTrapdoor is instantiated using

a BlindExtract protocol that is leak free (with commitment), then the PEOKS scheme (Setup,

PEOKS, BlindTrapdoor, Test) is PEOKS-IND-CPA secure.

Proof. We begin by showing that if an adversary has non-negligible advantage in winning the

PEOKS-IND-CPA game when the BlindExtract protocol underlying the BlindTrapdoor protocol

is leak free, then we can build an algorithm A that has non-negligible advantage in winning the

PEKS-IND-CPA game.

Let E be a probabilistic polynomial time adversary that has non-negligible advantage in win-

ning the PEOKS-IND-CPA game with the protocol BlindExtract being leak free. We can build a

polynomial time algorithm A that has non-negligible advantage in winning the PEKS-IND-CPA

game as follows. First, A hands to E the parameters of the scheme. At every stage, A answers

the oracle queries of E by acting as the T GC in the BlindExtract protocol. This is possible as

the leak freeness property ensures that the protocol can be simulated. A uses rewinding capabil-

ities to extract the keyword that is being queried and passes it to OracleExtract and receives the

corresponding trapdoor, which allows A to simulate the protocol.

89



Given an anonymous committed blind IBE scheme with algorithms
(Setup,BlindExtract,Encrypt,Decrypt) the PEOKS scheme is as follows:

KeyGen(1k): On input a security parameter k, runs IBE algorithm Setup(1k)
and returns the key pair (Apub, Apriv) and the secret key and parameters
(msk , params) of the IBE scheme.

PEOKS(Apub,W,M ): On input public key Apub, message M and a keyword W ,
it computes a searchable encryption SW,M for keyword W as follows:

1. Generate a random value C2 ∈ {0, 1}k.
2. Compute C1 = Encrypt(Apub,W,m|C2).

3. Output the tuple SW = (C1, C2).

BlindTrapdoor(T GC(Apub, Apriv, C),U(Apub,W, openW )): The input of T GC is
the key pair Apub, Apriv) and a commitment C = Commit(W ′, openW ′) to
a keyword, and the input of U is the public key of the key pair, keyword W
and a value openW . Generate the trapdoor TW for W by running the pro-
tocol BlindExtract(T GC(Apub, Apriv, C),U(Apub,W, openW )). The output
of the user is the trapdoor TW or ⊥ if the protocol fails and the output of the
TGC is nothing or ⊥.

Test(Apub, SW , TW ′): On input the public key Apub, a searchable encryp-
tion SW parsed as (C1, C2) and a trapdoor TW ′ , compute M =
Decrypt(Apub, TW ′ , C1). If M = m|C2, outputs the message m encoded
in SW ; if there is no match, outputs ⊥.

Figure 4.4: Transformation IBE-to-PEOKS
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When E outputs the challenge keywords W0,W1 and the challenge messages M0,M1, A uses

them as its own challenges. Given the ciphertext SWb,Mc , A passes it to E. Finally, E outputs

bits b′ and c′, and A outputs these bits. Since E has non-negligible advantage in winning the

PEOKS-IND-CPA game even when the protocol BlindTrapdoor is leak free and it is clear that

in this case E does not get any knowledge from the protocol, then A wins the PEKS-IND-CPA

game with non-negligible advantage by outputting b′ and c′.

We assume the PEKS-IND-CPA security of the underlying PEKS scheme and the commitment

scheme Commit is binding. From this, we can say it is not possible to construct a distinguisher

D that has non-neglibilble advantage in distinguishing between Game Real and Game Ideal of

the PEOKS scheme. It is also not possible to construct an adversary A that has non-negligible

advantage in breaking the binding value of the commitment scheme Commit. �

Definition 30 (Consistency and security for PEOKS) A PEOKS scheme (Setup, PEOKS,

BlindTrapdoor, Test) is secure if an only if it is PEOKS-IND-CPA secure and protocol BlindExtract

underlying the BlindTrapdoor protocol is selective-failure blind. It is consistent if the underlying

PEKS scheme (Setup, PEKS, Trapdoor, Test) is consistent.

PEOKS allows a user to perform a search on an encrypted database without revealing the

search keyword. This property of hiding the search terms from the trusted third party affords the

user a greater level of privacy than in previous schemes. It also prevents the trusted third party

from learning what sort of information is encrypted. Keywords such as ‘USA’, ‘bomb’ can be used

to identify messages of interest. Such keywords must be chosen carefully to avoid false positives.

Consider the message Alice sends Bob after her holidays: ‘Just back from USA - the flights cost

a bomb!’. This message will be returned as a false positive, which represents an invasion of Alice

and Bob’s privacy.

4.3.4 Application of Public-Key Encryption with Oblivious Keyword Search

Authorised Private Searches on Public-key Encrypted Data

We apply PEOKS to the setting of public key encrypted databases to enable oblivious searches.

The construction is similar to the audit log presented above. Each data record is encrypted using a

fresh random symmetric key and associated with several searchable encryptions. Each searchable

encryption is generated using input of a keyword that describes the content of the record, and
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a secret message that contains the symmetric key. Once an investigator obtains a trapdoor that

matches a searchable encryption (i.e., both were computed on input the same keyword), she is

returned the symmetric key that allows her to decrypt the record.

In constructing authorised oblivious private searches, we aim to ensure that neither the key-

words of interest for the investigator nor the search results are revealed. To achieve the first

property, the PEOKS scheme is employed. The investigator runs protocol BlindTrapdoor with

the trapdoor generation entity (T GC) in order to retrieve a trapdoor for a committed keyword in a

blind manner. The committed blind extraction allows the T GC to construct policies detailing the

restrictions on the data that a particular investigator can obtain. To enforce these restrictions, the

T GC requires the investigator to prove in zero-knowledge that the keyword used to compute the

commitment belongs to a certain language. Also consider a party (such as a judge) charged with

deciding which keywords can be utilized by the investigator, and describe how the investigator

obtains a search warrant from the judge and shows it to the T GC. The judge and the T GC are only

required to be involved in providing search warrants and trapdoors respectively, and can remain

off-line when not required to perform these tasks.

To obscure the search results, a data structure is described that allows the use of a private

information retrieval (PIR scheme) and that integrates concepts from [CGKO06] to improve the

efficiency of the searches1. Since the PIR queries are made on encrypted data, a further require-

ment is that the investigator does not learn anything about data for which she is not authorised to

retrieve a trapdoor. Due to the public key setting, the database only stores the public key of the

PEOKS scheme.

Details on data storage. We consider a data structure in which only one searchable encryption

per keyword is computed, which allows each data record to be described by several keywords.

Once the investigator finds the searchable encryption that matches her trapdoor, she receives the

information needed to decrypt all the data records described by the corresponding keyword. This

mechanism of data storage allows for an efficient search (not all the searchable encryptions need

to be tested) and is privacy enhancing in so far as it hides the number of keywords that describe a

record from the investigator.

Using encrypted linked lists, store the encrypted nodes at random positions in the PIR database.
1The amount of PIR queries may give some indication about the number of records retrieved. This information can

be hidden through dummy transactions up to an upper limit on the number of matching records.
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We do this in order to hide the node corresponding to a given linked list [CGKO06], and construct

one linked list per keyword. Each node in the linked list contains the information required to re-

trieve and decrypt one record associated with the keyword. A node contains a PIR query index PR

for the data record and the key KR used to encrypt the record. It also stores a PIR query index to

the next node on the list, and the key used to encrypt it. To encrypt the nodes and the records of

data, we employ a symmetric encryption algorithm Encrypt.

The data holder adds a keyword W for which no searchable encryption has previously been

computed. To generate a searchable encryption for the keyword, she chooses a symmetric key

KN1 , and runs algorithm PEKS(Apub,W,KN1 ||PN1) to compute the searchable encryption. PN1

is the PIR query index to the first node of the list and KN1 is the symmetric key used to encrypt

this node. She then builds the node N1 = (PR,KR, PN2 ,KN2), computes Encrypt(KN1 , N1),

and stores the node in the position given by PN1 . Finally, she deletes PN1 and KN1 from memory

but keeps values PN2 and KN2 . PN2 and KN2 are the PIR query index and the key for the next

node in the list. In position PN2 is stored a flag to indicate the end of the list.

When the data holde chooses this keyword to describe another recordR′, she builds the second

node N2 = (PR′ ,KR′ , PN3 ,KN3), runs Encrypt(KN2 , N2), and stores the encrypted node in the

position given by PN2 . She deletes PN2 and KN2 from memory but keeps PN3 and KN3 to

facilitate adding another node to the list. She also stores the flag in PN3 . This iterative procedure

is applied as many times as required.

Authorizing and performing private searches. An investigator that wants to search the en-

crypted database uses the following procedure:

1. The investigator requests authorisation from the judge to search a given database for a partic-

ular keyword W . Assuming the investigator holds the relevant credentials, the judge grants

a warrant. In practice, the investigator runs an interactive protocol with the judge, which

returns to the investigator a credential cred with attribute W from the judge.

2. The investigator requests a trapdoor from the T GC. This is a three step process:

(a) The investigator creates a commitment C = Commit(W, openW ) to the keyword W

for which she wants to receive a trapdoor, and sends C to the T GC.

(b) The investigator and the T GC run the interactive protocol to verify the validity of the

credential presented by the investigator and the claim that the keyword used to compute the
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commitment is the same as the keyword contained in the credential’s attributes.

(c) The investigator and the T GC execute the BlindTrapdoor protocol, with investigator

inputApub,W, openW and T GC inputApub, Apriv,C . The protocol returns no output to the

T GC, and a trapdoor TW to the investigator.

3. The investigator downloads the list of PEKS elements for all the keywords.

4. If an investigator performs a successful Test for a PEKS element (using the correct trap-

door), the algorithm returns the key and PIR query index pair that correspond to the first

node of the list. The investigator uses the PIR scheme to retrieve the node and the first

record. As above, each node returns sufficient information to link to the next node, until all

data related to the keyword have been returned.

4.4 Anonymous Key Issuing

In anonymous key issuing (AKI), there are two seemingly conflicting requirements: a user’s iden-

tity must not be leaked to the KGC, yet once authenticated, the user must be able to retrieve her

private key. This objective is to enhance a user’s privacy by preventing the KGC from learning the

identity associated with a key request.

We present three schemes. The first, by Sui et al. [SCH+05], uses the blinding property

discussed in Section 3.2 with signatures. The second, by Chow [Cho09], has the user present

a signed certificate of her identity to prevent the KGC from viewing the identity requested. An

identity certifying authority (ICA) signs this certificate, which is similar to the KGC issuing a

blind signature on the identity. Lastly, in joint work with Gray [SG09], we present a framework to

achieve the same goals using blind IBE schemes. Our scheme allows a KGC to issue a private key

to an authenticated user without learning either the identity requested or the requesting user.

4.4.1 Separable and Anonymous Key Issuing

A standard approach to authentication in IBE schemes is to have a separate registration authority

RA that is responsible for authenticating users and their credentials. This authentication is similar

in practice to the PKI registration authority. Sui et al. [SCH+05] propose a separable and anony-

mous key issuing scheme. The scheme involves a separation of duties between the RA and KGC.

This facilitates theKGC generating the private key for a user in such a way that only the legitimate
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requesting user, as authenticated by the RA, can retrieve it. It aims to prevent both the KGC and

an eavesdropper from learning the identity of the user.

The scheme uses blinding techniques, as described in Section 3.2. Their scheme is motivated

by privacy concerns, as well as maintaining the property of IBE schemes that a user is not required

to pre-register. The following short blind signature scheme is required.

KeyGen: Given as input P ∈ Gp is a point of prime order p and hash function H : {0, 1}∗ → Gp

where Gp is an abelian group, choose s ∈ Z∗q as the secret key sksigner. Return public

parameters of Gp, p, P,H and the public key pksign = P s where P is a point on an elliptic

curve and Gp = 〈P 〉.

Sign: The sender chooses a random r ∈ Z∗q , computes m = H(m)r and sends m to the signer.

The signer computes σ = X(ms), whereX(·) is the x co-ordinate of the element, and sends

it to the sender. To retrieve the signature, the sender computes σ = σr
−1

.

Verify: Given as input pksigner, m , σ(m), find y,∈ Fq such that S = (σ, y) is a point of order p

in E(Fq). Test if either e(S, P ) = e(H(m), pksigner) or e(S, P )−1 = e(H(m), pksigner).

The protocol describe in Figure 4.5 achieves separable key issuing. The user is required to

have registered their identity id and a corresponding access password password in advance with

an RA. This requirement of the system loses one of the advantageous features of IBE schemes.

Two KGC entities are required in this protocol, both with access to databases containing the tuple

(id , password). The hashes of these values may be pre-computed and stored in the database held

by each KGC.

The key requests are conducted in a manner that prevents the KGC from learning the request

directly. However, the presence of the tuple id and password in the databases held by each KGC,

along with their hash, means that a KGC can link the key request to the identity using the hash of

the tuple. As anonymity is usually described as having the property of unlinkability [PH05], the

scheme described in Figure 4.5 can not be deemed anonymous with respect to the KGC.

Additionally, the need for the user to pre-register their (id , password ) tuple prior to the key

extraction phase means that the the IBE scheme no longer has the property of spontaneity. In a

spontaneous scheme, there is no requirement on the user to have performed an action before the

key generation.
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Given KGC1 and KGC2, their (jointly generated) public key is pkKGC = P s1s2

where pkKGC1 = P s1 and pkKGC2 = P s2 and s1, s2 ∈ Z∗q . Suppose KGC1, KGC2

have access to databases as described above. The user U executes the following
interactive key extraction protocol with each KGC.

1. U chooses a random r1, computesQ1 = H(id)r1 , T1 = H(password)r1 and
sends T1, Q1 to KGC1.

2. KGC1 tests the validity of the id , password tuple by checking that
e(Q1, T1) = e(H(id), H(password)) holds for a tuple in the database. If
it does, KGC1 computes S1 = Qs11 , σ

′
1 = T s11 and sends (S1, σ

′
1) to U .

3. U verifies the blinded partial private key by checking e(S1, P ) =
e(Q1, pkKGC1). U verifies the signature by checking e(σ′1, P ) =
e(T1, pkKGC1). If both hold, U unblinds to obtain the partial private key
H(id)s1 and signature σ1 = H(password)s1 .

4. U selects a random r2, computes Q2 = H(id)s1r2 , T2 = H(password)
1
r2

and sends Q2, T2 to KGC2.

5. KGC2 checks the validity of the request by testing e(Q2, T2) = e(H(id), σ1)
holds, and the validity of the signature by checking e(σ1, P ) =
e(H(password), pkKGC1). If they hold, KGC2 computes S2 = Qs22 and
sends S2 to U .

6. U verifies the blinded private key by checking e(S2, P ) = e(Q2, pkKGC2).

If this holds, she obtains the private key by unblinding sk id = S
1
r2
2 =

H(id)s1s2 .

Figure 4.5: Separable and Anonymous Key Issuing without Key Escrow

4.4.2 Anonymous Private Key Issuing

Chow [Cho09] presents an anonymous private key issuing protocol that consists of the Setup and

KeyGen protocols of an IBE scheme, as well as the following four polynomial algorithms.

IKeyGen: The ICA generates a public/private key pair for certification, pkcert, skcert.

SigCert: Given as input identity id , skcert, the ICA outputs a certificate cert for id and some

auxiliary information aux to U .

IssueKey / ObtainKey: Given as input the master public key mpk , id and cert , U receives the

secret key sk id as output. Given as input msk and cert , theKGC receives nothing as output.

Chow presents the new security notion of KGC anonymous ciphertext indistinguishability

(ACI-KGC). It protects against adversaries who hold msk but not the identity list.
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Definition 31 An IBE scheme is (t, qE , ε) ACI-KGC secure if all t-time adversaries making at

most qE embedded-identity encryption oracle queries have advantage at most ε in winning the

following game:

Experiment Expaci−kgcIBE,A (λ)

params← Setup(1λ); id∗ ← {0, 1}n;

(mpk , st)← A(KeyGen, params); if mpk 6∈ params then return 0;

(m∗0,m
∗
1, st)← AEncO(mpk ,id∗)(·)(′find ′,mpk , st)

If {m∗0,m∗1} 6⊆ MsgSp(λ)or|m∗0| 6= |m∗1| then return 0;

b← {0, 1}; ct ← Encrypt(mpk , id∗,m∗b); b
′ ← AEncOmpk ,id∗(·)(′guess′, ct , st);

If b 6= b′, then return 0 else return 1.

Chow’s protocol uses a modified variant of Gentry’s anonymous IBE scheme [Gen06], as

presented in Section 2.6.7. This modification is used to achieve the property of ACI-KGC. The

architecture presented requires a non-colluding ICA. The modification consists of separating the

master key generation from the Setup phase, as shown in Figure 4.6.

4.4.3 Anonymous Key Issuing using Blind Identity-Based Encryption

The anonymous key issuing protocol we contribute [SG09] focuses on the Setup and Extract

phases of IBE, the Encrypt and Decrypt are as outlined in Naccache’s scheme presented in Section

2.6.5. As in Chow’s scheme, master key generation is separated from the Setup stage, reducing

further the level of trust required in the KGC. The KGC remains the only entity holding the master

secret key, but it is prevented by this design from maliciously choosing system parameters. This

scheme requires only one authenticated connection with the user, and the KGC does not interact

directly with the key-requesting user at any point.

We present a framework for the partial-blind IBE, along with the adaptations required to

achieve partial-blind and double-blind IBE. The data flow outlined below centres on the inter-

active PartialBlindExtract protocol, presented in Section 3.5. The KGC holds the msk , and thus

is the only entity involved that can generate keys. The objective is to prevent it from holding an

identity list.

An Authentication Authority (AA) in introduced, and is responsible for authenticating the
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1. Setup: The trusted initialiser chooses group G according to the security pa-
rameter, and selects g, h1, h2, h3 randomly from G. It also chooses a hash
function H : {0, 1}n → Zq from a family of universal one-way hash func-
tions. The public parameter params is g, h1, h2, h3, H).

2. MKeyGen: TheKGC chooses a random exponent α ∈ Zq and sets g1 = gα ∈
G. The master public/private key pair is given by (mpk = g1,msk = g).

3. IKeyGen: The ICA generates a key pair (pkcert, skcert) for the signature
scheme.

4. SigCert: For id ∈ {0, 1}n, the ICA creates the certificate cert =
(σ,com ,aux ) by randomly picking aux from the decommitment-string space
and generating a signature σ = Commit(id , aux ) by running the signing al-
gorithm.

5. ObtainKey(mpk , id , cert , aux )↔ IssueKey(msk , cert):

(a) U and KGC engage in a secure two-party computational protocol with
U input random r ∈ Zq, id , aux and KGC input of α. KGC receives
private output of x = (α− id)r if com = Commit(id , aux ) or x = ⊥
otherwise.

(b) If x 6= ⊥, KGC randomly picks τid ,1 ∈ Zq and computes usk′cert =
(usk′1 = (h1g

−τid,1)
1
x , usk′2 = τid ,1).

(c) U outputs (usk1, usk2)) = (usk′r1 , usk
′
2) = ((h1g

−τid,1)
1

(α−id) , usk′2).

Figure 4.6: Chow’s Anonymous Private Key Issuing

user’s credentials. The user passes her identity, along with blinding elements and any necessary

credentials to the AA. If the user’s credentials are valid, the AA constructs the required blinding

(full or partial) of the identity, and passes it to the KGC. The AA must be trusted not to imper-

sonate users, and not to collude with the KGC by revealing individual identities or the identity list.

Should theAA construct a blinding of an identity dishonestly, it will be detected by the user when

the private key is returned.

It is possible to achieve anonymous key issuing in the absence of the AA using blind IBE.

However, the advantages of using this third party are twofold. Firstly, the user U never authen-

ticates to the KGC. This prevents the KGC from learning who has requested keys. Secondly,

the credentials that U presents can be trivially checked by the AA. An architectural view of the

scheme is shown in Figure 4.7.

1. AA runs Setup(1λ) and outputs the system parameters params for security parameter λ ∈

N, with message space MsgSp.
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Figure 4.7: Anonymous Key Issuing using Blind Identity-Based Encryption

2. KGC receives params and runs MKeyGen(params) to output the master secret msk and

public key params conforming to params.

Note that this change does not affect the original security guarantees of Nacchache’s IBE scheme.

The first step of the protocol is for the user to generate her randomly generated blinding values

β, y as per step 1 of the PartialBlindExtract protocol (Section 3.5), choose her identity and gather

the necessary credentials for the identity. The blinding values are kept private from AA. U

passes to AA her identity v = (vi), relevant credentials cred and sufficient blinding information

uβi , g
βy, u′β to allow AA to construct the blinding of the identity.

If U convinces AA that she is entitled to the identity requested, AA constructs the blind iden-

tity hash X . This prevents the KGC from learning any elements of the identity. KGC constructs

the blinded private key d′v, which is returned toAA in step three. AA is unable to unblind d′v as it

does not have the required blinding values, and returns d′v to U .

U tests that d′v is correctly constructed. At this point, ifAA orKGC have behaved maliciously,

U will not receive a correctly formed key for her identity and this test will fail, causing her to reject

d′v. If the test is passed, she uses her blinded values to retrieve her private key.
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AKI data flow

1. U → AA : vi, u
β
i , g

βy, u′β, cred

2. AA → KGC : X = (gβyu′β
∏n
i=1 u

βvi
i )

3. KGC → AA : d′v = (d′1, d
′
2)

4. AA → U : d′v = (d′1, d
′
2)

5. U tests key : e(g1, g2) · e(d′2, u′
∏n
i=1 u

vi
i ) = e(g, d′1)

U unblinds : choose z ∈ Zq and compute

dv =
(
d′1/(d

′
2)y · (u′

∏n
i=1 u

vi
i )z, d′2 · gz

)
.

Note that neither the KGC nor the AA know d1 or d2, where dv = (d1, d2).

Partial-blind Adaptation In the partial-blind variant of the scheme, KGC can insist on certain

elements being present in the identity string and is assured of their presence as they are unblinded.

KGC could insist on a certain expiration date or some similar generic element of the identity string.

Such elements can be visible to KGC. This requires changing step 2 in the data flow to contain a

partial-blinding of the identity.

Partial-blind IBE AKI data flow

2. AA → KGC : X = (gβyu′β
∏n
i=1,γi=1 u

βvi
i ),

(uβi , vi) where γi = 0 and gβ, u′β.

Double-blind Adaptation In the double-blind variant of the scheme, KGC can insist on certain

elements being present in the identity string as above, which are unblinded. KGC can also insert

elements into the identity string which remain unknown to U , which therefore are double blinded.

The identity string in this case consists of the partially-blinded elements presented to AA by the

user and the double-blinded elements inserted by KGC.

This requires changing step 2 in the data flow to contain a double-blinding of the identity.

Double-blind AKI IBE data flow

2. AA → KGC : X = (gβyu′β
∏m
i=1,γi=1 u

βvi
i ),

(uβi , vi) where γi = 0 and gβ, u′β for i ∈ {1,m}

uβi for i ∈ {m+ 1, n}.
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4.5 Unique Receipt Issuing using Double-blind IBE

A natural requirement of IBE schemes is for the user to know the identity corresponding to her pri-

vate key, so double-blind IBE may seem unintuitive. We motivate its usefulness with a unique re-

ceipt issuing protocol [SG09]. Blind signatures are used in a host of schemes from e-cash [Cha82]

to online lotteries [LC09].

Lotteries are a common way for charities to raise money, and are characterised by a large

number of off-line participants. In traditional lotteries, users can buy tickets over a relatively long

period in advance. Lotteries must be fair and publicly verifiable. We propose using the double-

blind IBE scheme to construct a receipt issuing scheme, and apply it to online lotteries.

The Scheme

The following is a simple protocol that allows a user to anonymously purchase a lottery ticket

electronically. The scheme is anonymous, unless the participant makes a claim on the lottery, in

which case she reveals her name.

Purchase The participant constructs her purchase request as the identity string numbers|name,

where numbers contains the k numbers of her choosing for the forthcoming draw from n

numbers and name contains her name, blinded. The partially-blinded identity string is sent

to the Lottery Agent (LA). It is trivial to include other details in the identity string, such as

the date of the draw. The LA executes the interactive DoubleBlindExtract protocol with the

participant, generating the private key corresponding to the participant’s identity string.

The LA adds some private validation information, lottoid, to the identity string. This string

is used to hold unique draws and ensure tickets are one-time use only. The resulting pri-

vate key corresponds to the participant’s lottery ticket. The LA places the blinded identity,

corresponding to X in the DoubleBlindExtract protocol, and the chosen numbers numbers

onto a public bulletin board. This board is not made public until ticket sales are closed, but

is available prior to numbers being drawn.

The lottery occurs, and numbers are drawn and announced. The fairness and random generation

properties can be achieved using traditional methods such as weighing the lottery balls.

Claim A participant who wants to make a claim on the lottery draw sends the identity string

numbers|name to the LA. The LA encrypts some nonceN using numbers|name|lottoid
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as the identity string. The ciphertext ct = {N}numbers|name|lottoid is passed as a challenge

to the participant . If the participant can decrypt the challenge and retrieve the nonce, she has

proved ownership of the ticket (private key) corresponding to the numbers. A valid claim

by the participant should allow him to send the decrypted nonce to the LA and for her claim

to be upheld. Failure to decrypt the nonce correctly is identified as a false claim.

The protocol is shown in Figure 4.8.

Figure 4.8: Online Lottery Protocol

Discussion

Online lotteries have a variety of requirements with are necessary to achieve a fair and unbiased

scheme.

Security A participant attempting to forge a wining ticket should not succeed

Proof. The lottery ticket is the private key corresponding to the string numbers|name|lottoid.

In order for a cheating participant to forge such a key, she is required to learn both the master

secret msk of the IBE scheme as well as the private lottery validity information lottoid for

the specific draw to generate a forgery.

�

Correctness Participants must receive the ticket corresponding to numbers of their choosing. Her

choices cannot be falsified.

Proof. The LA is prevented from falsifying the participant’s choice of numbers by the key

correctness test. If they are excluded from the identity string, the hash of the string used by

the participant to verify the key will not correspond to the elements of the identity string she
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has chosen. Similarly, an eavesdropper cannot manipulate the identity string to falsify the

participant’s choice of numbers without being caught in the same manner.

�

Anonymity / Privacy Given a ticket, it should not be possible to link the identity of a participant

with her choices. Only owner of the winning ticket should be identified.

Proof. This is property is achieved in two ways. Firstly, the LA is unable to link a key

request with the resulting unblinded key. Secondly, the participant identity is blinded in the

identity string presented to the lottery agent. It is only necessary to reveal this identity in

the case of a claim on the lottery. �

Publicly verifiable Participants and observers can observe the lottery and verify the winning re-

sult.

Proof. The presence of each lottery choice on the bulletin board along with the participant’s

blinded element of the identity string affords individual and universal verifiability. Individ-

uals can check that their ticket has been correctly recorded and observers can check that a

winning ticket was recorded on the bulletin board before the lottery draw occurred. �

Pre-registration not required Participants are not required to pre-register in order to buy tickets.

Proof. One of the features of identity-based encryption schemes is there is no pre-registration

step required. Our scheme retains this property. �

k-out-of-n choice Participants choose k values out of a possible n in the lottery.

Proof. Participants are restricted to k elements in the non-blinded part of the identity string.

Any attempt to include additional values in the blinded part is easily detected if the partici-

pant claims a prize. �

4.6 Conclusion

In this chapter, we have revisited the concept of blind identity-based encryption. We have provided

some insight into the uses it has in practical applications, and sketched the resulting applications.

We began with an application of blind identity based encryption to oblivious transfer, the scenario

which motivated its original design. We then presented an adapted public key encryption with
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keyword search, which uses blind identity based encryption to obscure the keywords from the

key extraction entity. We showed that blind identity based encryption provides a natural solution

to anonymous keyword search. Finally, we presented a unique receipt issuing protocol, and its

application to online lotteries.

104



Chapter 5

Conclusion

5.1 Review

In this thesis we have demonstrated that blind identity-based encryption schemes can be used to

address the level of trust required in the key generation centres. Commonly known as the key

escrow problem, the ability of a key generation centre to produce multiple keys, or multiple copies

of a single key, for a given identity is an issue that has received considerable attention in the

literature.

We addressed this problem by focusing on the identity string. If a key generation centre does

not learn the identity string belonging to a user during the extraction phase, its ability to interfere

with the user’s communications is reduced. It no longer holds an identity list consisting of all the

identities for which a key has been requested. While a key generation centre can still generate a

private key for any given identity, it no longer has the advantage of this identity list. It is no longer

privy to them during the extraction phase, and is reduced to trial and error guessing of relevant

identity strings.

We investigated beneficial features of the blinding property and of existing identity-based en-

cryption schemes. We presented the first construction of anonymous blind identity-based en-

cryption. Using the underlying anonymous identity-based encryption scheme we constructed, we

generated the corresponding blind extraction protocol. Anonymity is a desirable feature for use in

conjunction with the blindness property, as it prevents a ciphertext from leaking the identity string.

We have extended the scope of blind extraction protocols to incorporate the existing property

of partial-blindness. Partial-blindness allows the key generation centre to place restrictions on the

content of the identity string without the need for proof systems. We proposed the novel property

105



of double-blindness. Double-blindness represents the first such construction that allows a key

generation centre to embed elements into an identity string without the user learning them. As

with all our schemes, we have contributed security definitions and arguments to accompany each

construction.

We have demonstrated that constructions that blind the identity string have useful applications.

Our public-key encryption with oblivious keyword search advances existing search schemes by ob-

scuring the search term. The data holder does not learn anything about the encrypted data it holds.

Furthermore, the trapdoor generation entity does not learn anything about the requested search

terms. This is a valuable advancement as such terms can reveal information on the encrypted data.

In our anonymous key issuing application, we proposed a protocol that not only prevents a key

generation centre from learning the identity string but also prevents it from learning the identities

of the requesting users. By removing the need for users to authenticate to the key generation centre

directly, the identity of the users as well as their chosen identity strings remain unknown. This

represented the first such scheme in which the key generation centre does not learn the identity

string or the identity of the requesting user and cannot link the key issuing protocol to either.

We proposed an online lotto system as a motivating application for double-blind identity-based

encryption. We provided simple security arguments in support of the scheme.

5.2 Open Questions

Anonymity of identity-based encryption schemes does not account for the situation where a key

generation centre, holding the master secret, tests the ciphertext to see if it has been encrypted

using a particular identity string. Recent work [IP08] defines the concept of Key Anonymity with

respect to the Authority. This work focuses on key-encapsulation methods. The construction of a

blind identity-based encryption scheme that provides this form of security to the user would be a

positive development.

The concept of double-blinding requires further study. It represents a paradoxical problem in

that a user does not learn her full public-key. In our schemes, we use it as a signature scheme.

An open problem is to distil its properties into a strong motivating application using double-blind

identity based encryption as an encryption scheme. Such paradoxical problems are often the most

interesting in cryptography.

The key generation centre is always required to be the entity holding the master secret. The
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holy grail of identity-based systems is to somehow construct a key that prevents a key generation

centre from reproducing it and from generating it independently of the authentic requesting user.

Our work has confirmed that the level of trust in the key generation centre can be reduced. This

provides further support that the continued questioning of the level of trust required in the key

generation centre is a valid pursuit.
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