741 research outputs found

    Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques

    Get PDF
    A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contaminated or faulty seal area, only relevant bands are selected using data fusion. These techniques greatly improve the computation time while maintaining a high classification ratio, showing that the fused image contains enough information for checking a food tray sealing state (faulty or normal), avoiding feeding a large image datacube to the DL algorithms. Additionally, the proposed DL algorithms do not require any prior handcraft approach, i.e., no manual tuning of the parameters in the algorithms are required since the training process adjusts the algorithm. The experimental results, validated using an industrial dataset for food trays, along with different deep learning methods, demonstrate the effectiveness of the proposed approach. In the studied dataset, an accuracy of 88.7%, 88.3%, 89.3%, and 90.1% was achieved for Deep Belief Network (DBN), Extreme Learning Machine (ELM), Stacked Auto Encoder (SAE), and Convolutional Neural Network (CNN), respectively

    Monitoring the waste to energy plant using the latest AI methods and tools

    Get PDF
    Solid wastes for instance, municipal and industrial wastes present great environmental concerns and challenges all over the world. This has led to development of innovative waste-to-energy process technologies capable of handling different waste materials in a more sustainable and energy efficient manner. However, like in many other complex industrial process operations, waste-to-energy plants would require sophisticated process monitoring systems in order to realize very high overall plant efficiencies. Conventional data-driven statistical methods which include principal component analysis, partial least squares, multivariable linear regression and so forth, are normally applied in process monitoring. But recently, latest artificial intelligence (AI) methods in particular deep learning algorithms have demostrated remarkable performances in several important areas such as machine vision, natural language processing and pattern recognition. The new AI algorithms have gained increasing attention from the process industrial applications for instance in areas such as predictive product quality control and machine health monitoring. Moreover, the availability of big-data processing tools and cloud computing technologies further support the use of deep learning based algorithms for process monitoring. In this work, a process monitoring scheme based on the state-of-the-art artificial intelligence methods and cloud computing platforms is proposed for a waste-to-energy industrial use case. The monitoring scheme supports use of latest AI methods, laveraging big-data processing tools and taking advantage of available cloud computing platforms. Deep learning algorithms are able to describe non-linear, dynamic and high demensionality systems better than most conventional data-based process monitoring methods. Moreover, deep learning based methods are best suited for big-data analytics unlike traditional statistical machine learning methods which are less efficient. Furthermore, the proposed monitoring scheme emphasizes real-time process monitoring in addition to offline data analysis. To achieve this the monitoring scheme proposes use of big-data analytics software frameworks and tools such as Microsoft Azure stream analytics, Apache storm, Apache Spark, Hadoop and many others. The availability of open source in addition to proprietary cloud computing platforms, AI and big-data software tools, all support the realization of the proposed monitoring scheme

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    Deep learning : enhancing the security of software-defined networks

    Get PDF
    Software-defined networking (SDN) is a communication paradigm that promotes network flexibility and programmability by separating the control plane from the data plane. SDN consolidates the logic of network devices into a single entity known as the controller. SDN raises significant security challenges related to its architecture and associated characteristics such as programmability and centralisation. Notably, security flaws pose a risk to controller integrity, confidentiality and availability. The SDN model introduces separation of the forwarding and control planes. It detaches the control logic from switching and routing devices, forming a central plane or network controller that facilitates communications between applications and devices. The architecture enhances network resilience, simplifies management procedures and supports network policy enforcement. However, it is vulnerable to new attack vectors that can target the controller. Current security solutions rely on traditional measures such as firewalls or intrusion detection systems (IDS). An IDS can use two different approaches: signature-based or anomaly-based detection. The signature-based approach is incapable of detecting zero-day attacks, while anomaly-based detection has high false-positive and false-negative alarm rates. Inaccuracies related to false-positive attacks may have significant consequences, specifically from threats that target the controller. Thus, improving the accuracy of the IDS will enhance controller security and, subsequently, SDN security. A centralised network entity that controls the entire network is a primary target for intruders. The controller is located at a central point between the applications and the data plane and has two interfaces for plane communications, known as northbound and southbound, respectively. Communications between the controller, the application and data planes are prone to various types of attacks, such as eavesdropping and tampering. The controller software is vulnerable to attacks such as buffer and stack overflow, which enable remote code execution that can result in attackers taking control of the entire network. Additionally, traditional network attacks are more destructive. This thesis introduces a threat detection approach aimed at improving the accuracy and efficiency of the IDS, which is essential for controller security. To evaluate the effectiveness of the proposed framework, an empirical study of SDN controller security was conducted to identify, formalise and quantify security concerns related to SDN architecture. The study explored the threats related to SDN architecture, specifically threats originating from the existence of the control plane. The framework comprises two stages, involving the use of deep learning (DL) algorithms and clustering algorithms, respectively. DL algorithms were used to reduce the dimensionality of inputs, which were forwarded to clustering algorithms in the second stage. Features were compressed to a single value, simplifying and improving the performance of the clustering algorithm. Rather than using the output of the neural network, the framework presented a unique technique for dimensionality reduction that used a single value—reconstruction error—for the entire input record. The use of a DL algorithm in the pre-training stage contributed to solving the problem of dimensionality related to k-means clustering. Using unsupervised algorithms facilitated the discovery of new attacks. Further, this study compares generative energy-based models (restricted Boltzmann machines) with non-probabilistic models (autoencoders). The study implements TensorFlow in four scenarios. Simulation results were statistically analysed using a confusion matrix, which was evaluated and compared with similar related works. The proposed framework, which was adapted from existing similar approaches, resulted in promising outcomes and may provide a robust prospect for deployment in modern threat detection systems in SDN. The framework was implemented using TensorFlow and was benchmarked to the KDD99 dataset. Simulation results showed that the use of the DL algorithm to reduce dimensionality significantly improved detection accuracy and reduced false-positive and false-negative alarm rates. Extensive simulation studies on benchmark tasks demonstrated that the proposed framework consistently outperforms all competing approaches. This improvement is a further step towards the development of a reliable IDS to enhance the security of SDN controllers

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector

    Get PDF
    The increasing availability of data, gathered by sensors and intelligent machines, is chang-ing the way decisions are made in the manufacturing sector. In particular, based on predictive approach and facilitated by the nowadays growing capabilities of hardware, cloud-based solutions, and new learning approaches, maintenance can be scheduled—over cell engagement and resource monitoring—when required, for minimizing (or managing) unexpected equipment failures, improving uptime through less aggressive maintenance schedules, shortening unplanned downtime, reducing excess (direct and indirect) cost, reducing long-term damage to machines and processes, and improve safety plans. With access to increased levels of data (and over learning mechanisms), companies have the capability to conduct statistical tests using machine learning algorithms, in order to uncover root causes of problems previously unknown. This study analyses the maturity level and contributions of machine learning methods for predictive maintenance. An upward trend in publications for predictive maintenance using machine learning techniques was identified with the USA and China leading. A mapping study—steady set until early 2019 data—was employed as a formal and well-structured method to synthesize material and to report on pervasive areas of research. Type of equipment, sensors, and data are mapped to properly assist new researchers in positioning new research activities in the domain of smart maintenance. Hence, in this paper, we focus on data-driven methods for predictive maintenance (PdM) with a comprehensive survey on applications and methods until, for the sake of commenting on stable proposal, 2019 (early included). An equal repartition between evaluation and validation studies was identified, this being a symptom of an immature but growing research area. In addition, the type of contribution is mainly in the form of models and methodologies. Vibrational signal was marked as the most used data set for diagnosis in manufacturing machinery monitoring; furthermore, supervised learning is reported as the most used predictive approach (ensemble learning is growing fast). Neural networks, followed by random forests and support vector machines, were identified as the most applied methods encompassing 40% of publications, of which 67% related to deep neural network with long short-term memory predominance. Notwithstanding, there is no robust approach (no one reported optimal performance over different case tests) that works best for every problem. We finally conclude the research in this area is moving fast to gather a separate focused analysis over the last two years (whenever stable implementations will appear)

    Unsupervised Machine Learning for Networking:Techniques, Applications and Research Challenges

    Get PDF
    While machine learning and artificial intelligence have long been applied in networking research, the bulk of such works has focused on supervised learning. Recently there has been a rising trend of employing unsupervised machine learning using unstructured raw network data to improve network performance and provide services such as traffic engineering, anomaly detection, Internet traffic classification, and quality of service optimization. The interest in applying unsupervised learning techniques in networking emerges from their great success in other fields such as computer vision, natural language processing, speech recognition, and optimal control (e.g., for developing autonomous self-driving cars). Unsupervised learning is interesting since it can unconstrain us from the need of labeled data and manual handcrafted feature engineering thereby facilitating flexible, general, and automated methods of machine learning. The focus of this survey paper is to provide an overview of the applications of unsupervised learning in the domain of networking. We provide a comprehensive survey highlighting the recent advancements in unsupervised learning techniques and describe their applications for various learning tasks in the context of networking. We also provide a discussion on future directions and open research issues, while also identifying potential pitfalls. While a few survey papers focusing on the applications of machine learning in networking have previously been published, a survey of similar scope and breadth is missing in literature. Through this paper, we advance the state of knowledge by carefully synthesizing the insights from these survey papers while also providing contemporary coverage of recent advances
    • …
    corecore