659 research outputs found

    An Automated Optimal Design of a Fan Blade Using an Integrated CFD/MDO Computer Environment

    Get PDF
    The objective of the investigation is the development of more efficient design methodologies based on the applications of established design tools including Computational Fluid Dynamics (CFD) and non-linear Multidisciplinary Design Optimization (MDO) algorithms. Well known evolutionary type optimization algorithms include the Particle Swarm Optimization (PSO), Response Surface Optimization (RSO) and Genetic (GA) Algorithms. The benchmark case study is the optimal design of a low speed fan for an industrial air-conditioning application using the Response Surface Optimization (RSO) algorithm. The optimization algorithm controls the variations of parameters that describe the three-dimensional geometry of the blade while applying performance and geometrical constraints on blade shapes that are investigated. The optimal design is defined as the blade geometry which produces the maximum total efficiency subject to specified constraints on the volume flow rate (CFM) and rotational rate (RPM) of the fan

    Completeness of Randomized Kinodynamic Planners with State-based Steering

    Full text link
    Probabilistic completeness is an important property in motion planning. Although it has been established with clear assumptions for geometric planners, the panorama of completeness results for kinodynamic planners is still incomplete, as most existing proofs rely on strong assumptions that are difficult, if not impossible, to verify on practical systems. In this paper, we focus on an important class of kinodynamic planners, namely those that interpolate trajectories in the state space. We provide a proof of probabilistic completeness for these planners under assumptions that can be readily verified from the system's equations of motion and the user-defined interpolation function. Our proof relies crucially on a property of interpolated trajectories, termed second-order continuity (SOC), which we show is tightly related to the ability of a planner to benefit from denser sampling. We analyze the impact of this property in simulations on a low-torque pendulum. Our results show that a simple RRT using a second-order continuous interpolation swiftly finds solution, while it is impossible for the same planner using standard Bezier curves (which are not SOC) to find any solution.Comment: 21 pages, 5 figure

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Non regression testing for the JOREK code

    Get PDF
    Non Regression Testing (NRT) aims to check if software modifications result in undesired behaviour. Suppose the behaviour of the application previously known, this kind of test makes it possible to identify an eventual regression, a bug. Improving and tuning a parallel code can be a time-consuming and difficult task, especially whenever people from different scientific fields interact closely. The JOREK code aims at investing Magnetohydrodynamic (MHD) instabilities in a Tokamak plasma. This paper describes the NRT procedure that has been tuned for this simulation code. Automation of the NRT is one keypoint to keeping the code healthy in a source code repository.Comment: No. RR-8134 (2012

    C-CROC: Continuous and Convex Resolution of Centroidal Dynamic Trajectories for Legged Robots in Multicontact Scenarios

    Get PDF
    International audienceSynthesizing legged locomotion requires planning one or several steps ahead (literally): when and where, and with which effector shouldthe next contact(s) be created between the robot and the environment? Validating a contact candidate implies \textit{a minima} the resolution of a slow, non-linear optimizationproblem, to demonstrate that a Center Of Mass (COM) trajectory, compatible with the contact transition constraints, exists. We propose a conservative reformulation of this trajectory generation problem as a convex 3D linear program, CROC. It results from the observation that if the COM trajectory is a polynomial with only one free variable coefficient, the non-linearity of the problem disappears. This has two consequences. On the positive side, in terms of computation times CROC outperforms the state of the art by at least one order of magnitude, and allows to consider interactive applications (with a planning time roughly equal to the motion time). On the negative side, in our experiments our approach finds a majority of the feasible trajectories found by a non-linear solver, but not all of them. Still, we demonstrate that the solution space covered by CROC is large enough to achieve the automated planning of a large variety of locomotion tasks for different robots, demonstrated in simulation and on the real HRP-2 robot, several of which were rarely seen before.Another significant contribution is the introduction of a Bezier curve representation of the problem, which guarantees that the constraints of the COM trajectory are verified continuously, and not only at discrete points as traditionally done. This formulation is lossless, and results in more robust trajectories. It is not restricted to CROC, but could rather be integrated with any method from the state of the art

    Control of a DC motor using algebraic derivative estimation with real time experiments

    Full text link
    This paper presents an experimental control scheme for DC motors which combines an overlapping implementation of the algebraic derivative estimation method and a disturbance estimator based on the aforementioned algebraic derivative method. The methodology only requires the measurement of the angular position of the motor and the voltage input to the motor. The main advantages of the proposed approach are: it is independent of the motor’s initial conditions, the methodology is robust to Coulomb friction effects, it does not require any statistical knowledge of the noises that corrupt the data, the derivative estimation process does not require initial conditions or dependence between the system input and output, and the algorithm is computed on-line and in real time. The effectiveness of the proposed controller has been verified by means of computer simulations and it has also been experimentally implemented on a laboratory prototype with excellent results in both, stabilization and trajectory tracking tasks

    Weld pool shape identification by using Bezier surfaces

    Get PDF
    International audienceThis paper deals with the heat transfer analysis in a welding process: A method is developed to determine the shape of the three-dimensional (3-D) phase change front and to estimate the temperature field within the solid part of the work piece. The problem is formulated and solved as an inverse phase-change problem by using an optimization method. The direct problem is solved in the torch frame and so formulated as an Eulerian approach. The interface between the weld pool and the solid region is parameterized by Bezier surfaces. The most important feature of the presented approach is that the liquid–solid interface as well as the temperature distribution within the solid region can be obtained from additional temperature data available in the solid region, without considering heat transfer and fluid flow in a molten zone. The estimate of these thermal characteristics then allows a thermomechanical calculation of the welded joint (calculation of the deformations and residual stresses). The validity of the numerical solution of the inverse problem is checked by comparing the results with the direct solution of the problem

    Robust design optimization in aeronautics using stochastic analysis and evolutionary algorithms

    Get PDF
    Uncertainties are a daily issue to deal with in aerospace engineering and applications. Robust optimization methods commonly use a random generation of the inputs and take advantage of multi-point criteria to look for robust solutions accounting with uncertainty definition. From the computational point of view, the application to coupled problems, like computational fluid dynamics (CFD) or fluid–structure interaction (FSI), can be extremely expensive. This study presents a coupling between stochastic analysis techniques and evolutionary optimization algorithms for the definition of a stochastic robust optimization procedure. At first, a stochastic procedure is proposed to be applied into optimization problems. The proposed method has been applied to both CFD and FSI problems for the reduction of drag and flutter, respectively
    • 

    corecore