research

Control of a DC motor using algebraic derivative estimation with real time experiments

Abstract

This paper presents an experimental control scheme for DC motors which combines an overlapping implementation of the algebraic derivative estimation method and a disturbance estimator based on the aforementioned algebraic derivative method. The methodology only requires the measurement of the angular position of the motor and the voltage input to the motor. The main advantages of the proposed approach are: it is independent of the motor’s initial conditions, the methodology is robust to Coulomb friction effects, it does not require any statistical knowledge of the noises that corrupt the data, the derivative estimation process does not require initial conditions or dependence between the system input and output, and the algorithm is computed on-line and in real time. The effectiveness of the proposed controller has been verified by means of computer simulations and it has also been experimentally implemented on a laboratory prototype with excellent results in both, stabilization and trajectory tracking tasks

    Similar works

    Full text

    thumbnail-image

    Available Versions