80 research outputs found

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Performance Comparison for Ballistocardiogram Peak Detection Methods

    Get PDF
    Citation: Suliman, A., Carlson, C., Ade, C. J., Warren, S., & Thompson, D. E. (2019). Performance Comparison for Ballistocardiogram Peak Detection Methods. IEEE Access, 7, 53945–53955. https://doi.org/10.1109/ACCESS.2019.2912650A number of research groups have proposed methods for ballistocardiogram (BCG) peak detection toward the identification of individual cardiac cycles. However, objective comparisons of these proposed methods are lacking. This paper, therefore, conducts a systematic and objective performance evaluation and comparison of several of these approaches. Five peak-detection methods (three replicated from the literature and two adapted from code provided by the methods' authors) are compared using data from 30 volunteers. A basic cross-correlation approach was also included as a sixth method. Two high-performing methods were identified: the method proposed by Sadek et al. and the method proposed by Brüser et al. The first achieved the highest average peak-detection rate of 94%, the lowest average false alarm rate of 0.0552 false alarms per second, and a relatively small mean absolute error between the real and detected peaks: 0.0175 seconds. The second method achieved the lowest mean absolute error of 0.0088 seconds between the real and detected peaks, an average peak-detection success rate of 89%, and 0.0766 false alarms per second. All metrics are averaged across participants

    Enhanced multi-source data analysis for personalized sleep-wake pattern recognition and sleep parameter extraction

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Sleep behavior is traditionally monitored with polysomnography, and sleep stage patterns are a key marker for sleep quality used to detect anomalies and diagnose diseases. With the growing demand for personalized healthcare and the prevalence of the Internet of Things, there is a trend to use everyday technologies for sleep behavior analysis at home, having the potential to eliminate expensive in-hospital monitoring. In this paper, we conceived a multi-source data mining approach to personalized sleep-wake pattern recog-nition which uses physiological data and personal information to facilitate fine-grained detection. Physiological data includes actigraphy and heart rate variability and personal data makes use of gender, health status and race infor-mation which are known influence factors. Moreover, we developed a personal-ized sleep parameter extraction technique fused with the sleep-wake approach, achieving personalized instead of static thresholds for decision-making. Results show that the proposed approach improves the accuracy of sleep and wake stage recognition, therefore, offers a new solution for personalized sleep-based health monitoring

    Development of a Portable Seat Cushion for the Estimation of Heart Rate Using Ballistocardiography

    Get PDF
    Cardiovascular diseases are a leading contributor of health problems all over the world and are the second leading cause of death. They are also the cause of significant economic burden, costing billions of dollars in healthcare every year. With an aging population, the strain on the healthcare system, both in terms of costs and care provision, is expected to worsen. Frequent cardiac assessment can provide essential information towards diagnosis, monitoring, and treatment, which can mitigate symptoms and improve health outcomes for people with conditions such as heart failure. This has led to increasing interest in cardiac assessment at home. Additionally, for some populations like people with limited mobility and older adults, long term vitals monitoring at a clinical setting is not feasible, making at-home monitoring more viable and economical. Most devices available for cardiac monitoring at home are wearables. While wearable technology can be accurate, it requires compliance and maintenance, which is not an ideal solution for all populations. For example, people who are not comfortable using wearables or people with a cognitive impairment may not want or be able to use wearables, which could exclude these user types from at home monitoring. Keeping these factors under consideration, the past decade has seen an increased interest in the development of technologies for Ambient Assisted Living (i.e., smart technologies integrated into a user's environment). These technologies have the potential for ongoing health monitoring in an unobtrusive manner. This thesis presents research into the development of a smart seat cushion for heart rate monitoring. The cushion is able to calculate the heart rate of a person seated on it by acquiring their Ballistocardiogram (BCG). BCG is a cardiovascular signal corresponding to the displacement of the body in response to the heart pumping blood at every heartbeat. The prototype seat cushion has load cells embedded inside it that sense the micromovements of the body and translate it to an electrical signal. An analog signal conditioning circuit amplifies and filters this signal to enhance the components corresponding to BCG before it is converted to digital form. A pilot study was conducted with twenty participants to acquire BCG in real-world scenarios: 1) sitting still, 2) reading, 3) using a computer, 4) watching TV, and 5) having a conversation. Heart rate was calculated using a novel algorithm based on Continuous Wavelet Transform by detecting the largest peaks (referred to as the J-peaks) in the BCG. Excluding three outliers, the algorithm is able to achieve an overall accuracy of 94.6% compared to gold standard Electrocardiography (ECG). This accuracy is observed to be as good as or better than those of existing wearable heart rate monitors. The seat cushion developed in this thesis research can serve as a portable solution for cardiac monitoring and can integrate into an ambient health monitoring system, offering continued monitoring of heart rate while requiring no perceived effort to operate it. Future work includes exploring different sensor configurations, machine learning based approaches for improving J-peaks detection, and real-time monitoring of heart rate

    Physiological Information Analysis Using Unobtrusive Sensors: BCG from Load-Cell Based Infants' Bed and ECG from Patch Electrode

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 바이오엔지니어링전공, 2016. 8. 박광석.The aging population, chronic diseases, and infectious diseases are major challenges for our current healthcare system. To address these unmet healthcare needs, especially for the early prediction and treatment of major diseases, acquiring physiological information of different types has emerged as a promising interdisciplinary research area. Unobtrusive sensing techniques are instrumental in constructing a routine health management system, because they can be incorporated in daily life without confining individuals or causing any discomfort. This dissertation is dedicated to summarizing our research on monitoring of cardiorespiratory activities by means of unobtrusive sensing methods. Ballistocardiography and electrocardiography, which record the activity of the cardiorespiratory system with respect to mechanical or electrical characteristics, are both being actively investigated as important physiological signal measurement that provide the information required to monitor human health states. This research was carried out to evaluate the feasibility of new application methods of unobtrusive sensing that not been investigated significantly in previous investigations. We also tried to incorporate improvement essential for bringing these technologies to practical use. Our first device is a non-confining system for monitoring the physiological information of infants using ballistocardiography technology. Techniques to observe continuous biological signals without confinement may be even more important for infants since they could be used effectively to detect respiratory distress and cardiac abnormalities. We also expect to find extensive applications in the field of sleep research for analyzing sleep efficiency and sleep patterns of infants. Specifically, the sleep of infants is closely related to their health, growth, and development. Children who experience abnormal sleep and activity rhythms during their early infantile period are more prone to developing sleep-related disorders in late childhood, which are also more difficult to overcome. Therefore, studying their sleep characteristics is extremely important. Although ballistocardiography technology seems to represent a possible solution to overcome the limitations of conventional physiological signal monitoring, most studies investigating the application of these methods have focused on adults, and few have been focused on infants. To verify the usefulness of ballistocardiogram (BCG)-based physiological measurement in infants, we describe a load-cell based signal monitoring bed and assess an algorithm to estimate heartbeat and respiratory information. Four infants participated in 13 experiments. As a reference signal, electrocardiogram (ECG) and respiration signals were simultaneously measured using a commercial device. The proposed automatic algorithm then selected the optimal sensor from which to estimate the heartbeat and respiratory information. The results from the load-cell sensor signals were compared with those of the reference signals, and the heartbeat and respiratory information were found to have average performance errors of 2.55% and 2.66%, respectively. We believe that our experimental results verify the feasibility of BCG-based measurements in infants. Next, we developed a small, light, ECG monitoring device with enhanced portability and wearability, with software that contains a peak detection algorithm for analyzing heart rate variability (HRV). A mobile ECG monitoring system, which can assess an individuals condition efficiently during daily life activities, could be beneficial for management of their health care. A portable ECG monitoring patch with a minimized electrode array pad, easily attached to a persons chest, was developed. To validate the devices performance and efficacy, signal quality analysis in terms of robustness under motion, and HRV results obtained under stressful conditions were assessed by comparing the developed device with a commercially available ECG device. The R-peak detection results obtained with the device exhibited a sensitivity of 99.29%, a positive predictive value of 100.00%, and an error of 0.71%. The device also exhibited less motional noise than conventional ECG recording, being stable up to a walking speed of 5 km/h. When applied to mental stress analysis, the device evaluated the variation in HRV parameters in the same way as a reference ECG signal, with very little difference. Thus, our portable ECG device with its integrated minimized electrode patch carries promise as a form of ECG measurement technology that can be used for daily health monitoring. There is currently an increased demand for continuous health monitoring systems with unobtrusive sensors. All of the experimental results in this dissertation verify the feasibility of our unobtrusive cardiorespiratory activity monitoring system. We believe that the proposed device and algorithm presented here are essential prerequisites toward substantiating the utility of unobtrusive physiological measurements. We also expect this system can help users better understand their state of health and provide physicians with more reliable data for objective diagnosis.Chapter 1. Introduction 1 1.1. Cardiorespiratory signal and its related physiological information 2 1.1.1. Electrocardiogram 2 1.1.2. Ballistocardiogram 3 1.1.3. Respiration 4 1.1.4. Heart rate and breathing rate 5 1.1.5. Variability analysis of heart and respiratory rate 5 1.2. Unobtrusive sensing methods for continuous physiological monitoring 6 1.3. Outline of the dissertation 9 Chapter 2. Development of sensor device for unobtrusive physiological signal measurement 13 2.1. Unobtrusive BCG measurement device for infants health monitoring 13 2.1.1. Specifications of the device 17 2.1.2. Signal processing in hardware 18 2.1.3. Performance of the device 21 2.2. Unobtrusive ECG measurement device for health monitoring in daily life 25 2.2.1. Specifications of the device 26 2.2.2. Signal processing in hardware 28 2.2.3. Performance of the device 30 Chapter 3. Development of algorithm for physiological information analysis from unobtrusively measured signal 35 3.1. Algorithm for automatically analyzing unobtrusively measured BCG signal 35 3.1.1. Process flow of the algorithm 36 3.1.2. Performance evaluation 47 3.2. Algorithm for automatically analyzing unobtrusively measured ECG signal 57 3.2.1. Process flow of the algorithm 57 3.2.2. Performance evaluation 60 3.3. HRV analysis for processing unobtrusively measured signals 63 3.3.1. Optimum HRV algorithm selection in data missing simulation 64 3.3.2. Stress assessment using HRV parameters 67 Chapter 4. Discussion 71 Chapter 5. Conclusion 79 Reference 81 Abstract in Korean 89 Appendix 93Docto

    Strategies for neural networks in ballistocardiography with a view towards hardware implementation

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy at the University of LutonThe work described in this thesis is based on the results of a clinical trial conducted by the research team at the Medical Informatics Unit of the University of Cambridge, which show that the Ballistocardiogram (BCG) has prognostic value in detecting impaired left ventricular function before it becomes clinically overt as myocardial infarction leading to sudden death. The objective of this study is to develop and demonstrate a framework for realising an on-line BCG signal classification model in a portable device that would have the potential to find pathological signs as early as possible for home health care. Two new on-line automatic BeG classification models for time domain BeG classification are proposed. Both systems are based on a two stage process: input feature extraction followed by a neural classifier. One system uses a principal component analysis neural network, and the other a discrete wavelet transform, to reduce the input dimensionality. Results of the classification, dimensionality reduction, and comparison are presented. It is indicated that the combined wavelet transform and MLP system has a more reliable performance than the combined neural networks system, in situations where the data available to determine the network parameters is limited. Moreover, the wavelet transfonn requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced. Overall, a methodology for realising an automatic BeG classification system for a portable instrument is presented. A fully paralJel neural network design for a low cost platform using field programmable gate arrays (Xilinx's XC4000 series) is explored. This addresses the potential speed requirements in the biomedical signal processing field. It also demonstrates a flexible hardware design approach so that an instrument's parameters can be updated as data expands with time. To reduce the hardware design complexity and to increase the system performance, a hybrid learning algorithm using random optimisation and the backpropagation rule is developed to achieve an efficient weight update mechanism in low weight precision learning. The simulation results show that the hybrid learning algorithm is effective in solving the network paralysis problem and the convergence is much faster than by the standard backpropagation rule. The hidden and output layer nodes have been mapped on Xilinx FPGAs with automatic placement and routing tools. The static time analysis results suggests that the proposed network implementation could generate 2.7 billion connections per second performance
    corecore