36 research outputs found

    Dependency structure matrix, genetic algorithms, and effective recombination

    Get PDF
    In many different fields, researchers are often confronted by problems arising from complex systems. Simple heuristics or even enumeration works quite well on small and easy problems; however, to efficiently solve large and difficult problems, proper decomposition is the key. In this paper, investigating and analyzing interactions between components of complex systems shed some light on problem decomposition. By recognizing three bare-bones interactions-modularity, hierarchy, and overlap, facet-wise models arc developed to dissect and inspect problem decomposition in the context of genetic algorithms. The proposed genetic algorithm design utilizes a matrix representation of an interaction graph to analyze and explicitly decompose the problem. The results from this paper should benefit research both technically and scientifically. Technically, this paper develops an automated dependency structure matrix clustering technique and utilizes it to design a model-building genetic algorithm that learns and delivers the problem structure. Scientifically, the explicit interaction model describes the problem structure very well and helps researchers gain important insights through the explicitness of the procedure.This work was sponsored by Taiwan National Science Council under grant NSC97- 2218-E-002-020-MY3, U.S. Air Force Office of Scientific Research, Air Force Material Command, USAF, under grants FA9550-06-1-0370 and FA9550-06-1-0096, U.S. National Science Foundation under CAREER grant ECS-0547013, ITR grant DMR-03-25939 at Materials Computation Center, grant ISS-02-09199 at US National Center for Supercomputing Applications, UIUC, and the Portuguese Foundation for Science and Technology under grants SFRH/BD/16980/2004 and PTDC/EIA/67776/2006

    An Approach to Pattern Recognition by Evolutionary Computation

    Get PDF
    Evolutionary Computation has been inspired by the natural phenomena of evolution. It provides a quite general heuristic, exploiting few basic concepts: reproduction of individuals, variation phenomena that affect the likelihood of survival of individuals, inheritance of parents features by offspring. EC has been widely used in the last years to effectively solve hard, non linear and very complex problems. Among the others, EC–based algorithms have also been used to tackle classification problems. Classification is a process according to which an object is attributed to one of a finite set of classes or, in other words, it is recognized as belonging to a set of equal or similar entities, identified by a label. Most likely, the main aspect of classification concerns the generation of prototypes to be used to recognize unknown patterns. The role of prototypes is that of representing patterns belonging to the different classes defined within a given problem. For most of the problems of practical interest, the generation of such prototypes is a very hard problem, since a prototype must be able to represent patterns belonging to the same class, which may be significantly dissimilar each other. They must also be able to discriminate patterns belonging to classes different from the one that they represent. Moreover, a prototype should contain the minimum amount of information required to satisfy the requirements just mentioned. The research presented in this thesis, has led to the definition of an EC–based framework to be used for prototype generation. The defined framework does not provide for the use of any particular kind of prototypes. In fact, it can generate any kind of prototype once an encoding scheme for the used prototypes has been defined. The generality of the framework can be exploited to develop many applications. The framework has been employed to implement two specific applications for prototype generation. The developed applications have been tested on several data sets and the results compared with those obtained by other approaches previously presented in the literature

    Front Matter - Soft Computing for Data Mining Applications

    Get PDF
    Efficient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the capability of computers to search huge amounts of data in a fast and effective manner. However, the data to be analyzed is imprecise and afflicted with uncertainty. In the case of heterogeneous data sources such as text, audio and video, the data might moreover be ambiguous and partly conflicting. Besides, patterns and relationships of interest are usually vague and approximate. Thus, in order to make the information mining process more robust or say, human-like methods for searching and learning it requires tolerance towards imprecision, uncertainty and exceptions. Thus, they have approximate reasoning capabilities and are capable of handling partial truth. Properties of the aforementioned kind are typical soft computing. Soft computing techniques like Genetic

    Towards an Information Theoretic Framework for Evolutionary Learning

    Get PDF
    The vital essence of evolutionary learning consists of information flows between the environment and the entities differentially surviving and reproducing therein. Gain or loss of information in individuals and populations due to evolutionary steps should be considered in evolutionary algorithm theory and practice. Information theory has rarely been applied to evolutionary computation - a lacuna that this dissertation addresses, with an emphasis on objectively and explicitly evaluating the ensemble models implicit in evolutionary learning. Information theoretic functionals can provide objective, justifiable, general, computable, commensurate measures of fitness and diversity. We identify information transmission channels implicit in evolutionary learning. We define information distance metrics and indices for ensembles. We extend Price\u27s Theorem to non-random mating, give it an effective fitness interpretation and decompose it to show the key factors influencing heritability and evolvability. We argue that heritability and evolvability of our information theoretic indicators are high. We illustrate use of our indices for reproductive and survival selection. We develop algorithms to estimate information theoretic quantities on mixed continuous and discrete data via the empirical copula and information dimension. We extend statistical resampling. We present experimental and real world application results: chaotic time series prediction; parity; complex continuous functions; industrial process control; and small sample social science data. We formalize conjectures regarding evolutionary learning and information geometry

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    New approaches to optimization in aerospace conceptual design

    Get PDF
    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks

    Stepwise Evolutionary Training Strategies for Hardware Neural Networks

    Get PDF
    Analog and mixed-signal implementations of artificial neural networks usually lack an exact numerical model due to the unavoidable device variations introduced during manufacturing and the temporal fluctuations in the internal analog signals. Evolutionary algorithms are particularly well suited for the training of such networks since they do not require detailed knowledge of the system to be optimized. In order to make best use of the high network speed, fast and simple training approaches are required. Within the scope of this thesis, a stepwise training approach has been devised that allows for the use of simple evolutionary algorithms to efficiently optimize the synaptic weights of a fast mixed-signal neural network chip. The training strategy is tested on a set of nine well-known classification benchmarks: the breast cancer, diabetes, heart disease, liver disorder, iris plant, wine, glass, E.coli, and yeast data sets. The obtained classification accuracies are shown to be more than competitive to those achieved by software-implemented neural networks and are comparable to the best reported results of other classification algorithms that could be found in literature for these benchmarks. The presented training method is readily suited for a parallel implementation and is fit for use in conjunction with a specialized coprocessor architecture that speeds up evolutionary algorithms by performing the time-consuming genetic operations within a configurable logic. This way, the proposed strategy can fully benefit from the speed of the neural hardware and thus provides efficient means for the training of large networks on the used mixed-signal chip for demanding real-world classification tasks

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Evolutionary design of deep neural networks

    Get PDF
    Mención Internacional en el título de doctorFor three decades, neuroevolution has applied evolutionary computation to the optimization of the topology of artificial neural networks, with most works focusing on very simple architectures. However, times have changed, and nowadays convolutional neural networks are the industry and academia standard for solving a variety of problems, many of which remained unsolved before the discovery of this kind of networks. Convolutional neural networks involve complex topologies, and the manual design of these topologies for solving a problem at hand is expensive and inefficient. In this thesis, our aim is to use neuroevolution in order to evolve the architecture of convolutional neural networks. To do so, we have decided to try two different techniques: genetic algorithms and grammatical evolution. We have implemented a niching scheme for preserving the genetic diversity, in order to ease the construction of ensembles of neural networks. These techniques have been validated against the MNIST database for handwritten digit recognition, achieving a test error rate of 0.28%, and the OPPORTUNITY data set for human activity recognition, attaining an F1 score of 0.9275. Both results have proven very competitive when compared with the state of the art. Also, in all cases, ensembles have proven to perform better than individual models. Later, the topologies learned for MNIST were tested on EMNIST, a database recently introduced in 2017, which includes more samples and a set of letters for character recognition. Results have shown that the topologies optimized for MNIST perform well on EMNIST, proving that architectures can be reused across domains with similar characteristics. In summary, neuroevolution is an effective approach for automatically designing topologies for convolutional neural networks. However, it still remains as an unexplored field due to hardware limitations. Current advances, however, should constitute the fuel that empowers the emergence of this field, and further research should start as of today.This Ph.D. dissertation has been partially supported by the Spanish Ministry of Education, Culture and Sports under FPU fellowship with identifier FPU13/03917. This research stay has been partially co-funded by the Spanish Ministry of Education, Culture and Sports under FPU short stay grant with identifier EST15/00260.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: María Araceli Sanchís de Miguel.- Secretario: Francisco Javier Segovia Pérez.- Vocal: Simon Luca
    corecore