

K.R.Venugopal, K.G. Srinivasa and L.M. Patnaik

Soft Computing for Data Mining Applications

Studies in Computational Intelligence,Volume 190

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 168.Andreas Tolk and Lakhmi C. Jain (Eds.)
Complex Systems in Knowledge-based Environments: Theory,
Models and Applications, 2009
ISBN 978-3-540-88074-5

Vol. 169. Nadia Nedjah, Luiza de Macedo Mourelle and
Janusz Kacprzyk (Eds.)
Innovative Applications in Data Mining, 2009
ISBN 978-3-540-88044-8

Vol. 170. Lakhmi C. Jain and Ngoc Thanh Nguyen (Eds.)
Knowledge Processing and Decision Making in Agent-Based
Systems, 2009
ISBN 978-3-540-88048-6

Vol. 171. Chi-Keong Goh,Yew-Soon Ong and Kay Chen Tan
(Eds.)
Multi-Objective Memetic Algorithms, 2009
ISBN 978-3-540-88050-9

Vol. 172. I-Hsien Ting and Hui-Ju Wu (Eds.)
Web Mining Applications in E-Commerce and E-Services,
2009
ISBN 978-3-540-88080-6

Vol. 173. Tobias Grosche
Computational Intelligence in Integrated Airline Scheduling,
2009
ISBN 978-3-540-89886-3

Vol. 174.Ajith Abraham,Rafael Falcón and Rafael Bello (Eds.)
Rough Set Theory: A True Landmark in Data Analysis, 2009
ISBN 978-3-540-89886-3

Vol. 175. Godfrey C. Onwubolu and Donald Davendra (Eds.)
Differential Evolution: A Handbook for Global
Permutation-Based Combinatorial Optimization, 2009
ISBN 978-3-540-92150-9

Vol. 176. Beniamino Murgante, Giuseppe Borruso and
Alessandra Lapucci (Eds.)
Geocomputation and Urban Planning, 2009
ISBN 978-3-540-89929-7

Vol. 177. Dikai Liu, Lingfeng Wang and Kay Chen Tan (Eds.)
Design and Control of Intelligent Robotic Systems, 2009
ISBN 978-3-540-89932-7

Vol. 178. Swagatam Das,Ajith Abraham and Amit Konar
Metaheuristic Clustering, 2009
ISBN 978-3-540-92172-1

Vol. 179. Mircea Gh. Negoita and Sorin Hintea
Bio-Inspired Technologies for the Hardware of Adaptive
Systems, 2009
ISBN 978-3-540-76994-1

Vol. 180.Wojciech Mitkowski and Janusz Kacprzyk (Eds.)
Modelling Dynamics in Processes and Systems, 2009
ISBN 978-3-540-92202-5

Vol. 181. Georgios Miaoulis and Dimitri Plemenos (Eds.)
Intelligent Scene Modelling Information Systems, 2009
ISBN 978-3-540-92901-7

Vol. 182.Andrzej Bargiela and Witold Pedrycz (Eds.)
Human-Centric Information Processing Through Granular
Modelling, 2009
ISBN 978-3-540-92915-4

Vol. 183. Marco A.C. Pacheco and Marley M.B.R.Vellasco
(Eds.)
Intelligent Systems in Oil Field Development under
Uncertainty, 2009
ISBN 978-3-540-92999-4

Vol. 184. Ljupco Kocarev, Zbigniew Galias and Shiguo Lian
(Eds.)
Intelligent Computing Based on Chaos, 2009
ISBN 978-3-540-95971-7

Vol. 185.Anthony Brabazon and Michael O’Neill (Eds.)
Natural Computing in Computational Finance, 2009
ISBN 978-3-540-95973-1

Vol. 186. Chi-Keong Goh and Kay Chen Tan
Evolutionary Multi-objective Optimization in Uncertain
Environments, 2009
ISBN 978-3-540-95975-5

Vol. 187. Mitsuo Gen, David Green, Osamu Katai, Bob McKay,
Akira Namatame, Ruhul A. Sarker and Byoung-Tak Zhang
(Eds.)
Intelligent and Evolutionary Systems, 2009
ISBN 978-3-540-95977-9

Vol. 188.Agustín Gutiérrez and Santiago Marco (Eds.)
Biologically Inspired Signal Processing for Chemical Sensing,
2009
ISBN 978-3-642-00175-8

Vol. 189. Sally McClean, Peter Millard, Elia El-Darzi and
Chris Nugent (Eds.)
Intelligent Patient Management, 2009
ISBN 978-3-642-00178-9

Vol. 190. K.R.Venugopal, K.G. Srinivasa and L.M. Patnaik
Soft Computing for Data Mining Applications, 2009
ISBN 978-3-642-00192-5

K.R.Venugopal
K.G. Srinivasa
L.M. Patnaik

Soft Computing for Data Mining
Applications

123

Dr. K.R.Venugopal
Dean, Faculty of Engineering
University Visvesvaraya College of
Engineering
Bangalore University
Bangalore 560001
Karnataka

India

Dr. K.G. Srinivasa
Assistant Professor,
Department of Computer Science and
Engineering
M.S. Ramaiah Institute of Technology
MSRIT Post,
Bangalore 560054
Karnataka
India

Prof. L.M. Patnaik
Professor,Vice Chancellor
Defence Institute of
Advanced Technology
Deemed University
Girinagar, Pune 411025
India

ISBN 978-3-642-00192-5 e-ISBN 978-3-642-00193-2

DOI 10.1007/978-3-642-00193-2

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: 2008944107

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks.Duplicationof thispublicationorparts thereof ispermittedonlyunder theprovisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable to prosecution under
the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Tejaswi

Foreword

The authors have consolidated their research work in this volume titled Soft
Computing for Data Mining Applications. The monograph gives an insight
into the research in the fields of Data Mining in combination with Soft
Computing methodologies. In these days, the data continues to grow ex-
ponentially. Much of the data is implicitly or explicitly imprecise. Database
discovery seeks to discover noteworthy, unrecognized associations between
the data items in the existing database. The potential of discovery comes
from the realization that alternate contexts may reveal additional valuable
information. The rate at which the data is stored is growing at a phenomenal
rate. As a result, traditional ad hoc mixtures of statistical techniques and data
management tools are no longer adequate for analyzing this vast collection of
data. Several domains where large volumes of data are stored in centralized or
distributed databases includes applications like in electronic commerce, bioin-
formatics, computer security, Web intelligence, intelligent learning database
systems, finance, marketing, healthcare, telecommunications, and other fields.

Efficient tools and algorithms for knowledge discovery in large data sets
have been devised during the recent years. These methods exploit the capa-
bility of computers to search huge amounts of data in a fast and effective
manner. However, the data to be analyzed is imprecise and afflicted with un-
certainty. In the case of heterogeneous data sources such as text and video,
the data might moreover be ambiguous and partly conflicting. Besides, pat-
terns and relationships of interest are usually approximate. Thus, in order
to make the information mining process more robust it requires tolerance
toward imprecision, uncertainty and exceptions.

With the importance of soft computing applied in data mining applications
in recent years, this monograph gives a valuable research directions in the
field of specialization. As the authors are well known writers in the field
of Computer Science and Engineering, the book presents state of the art
technology in data mining. The book is very useful to researchers in the field
of data mining.

Bangalore, N.R. Shetty
November 2008 President, ISTE, India

Preface

In today’s digital age, there is huge amount of data generated everyday.
Deriving meaningful information from this data is a huge problem for hu-
mans. Therefore, techniques such as data mining whose primary objective
is to unearth hithero unknown relationship from data becomes important.
The application of such techniques varies from business areas (Stock Market
Prediction, Content Based Image Retrieval), Proteomics (Motif Discovery)
to Internet (XML Data Mining, Web Personalization). The traditional com-
putational techniques find it difficult to accomplish this task of Knowledge
Discovery in Databases (KDD). Soft computing techniques like Genetic Al-
gorithms, Artificial Neural Networks, Fuzzy Logic, Rough Sets and Support
Vector Machines when used in combination is found to be more effective.
Therefore, soft computing algorithms are used to accomplish data mining
across different applications.

Chapter one presents introduction to the book. Chapter two gives details of
self adaptive genetic algorithms. An iterative merge based genetic algorithms
for data mining applications is given in chapter three. Dynamic association
rule mining using genetic algorithms is described in chapter four. An evolu-
tionary approach for XML data mining is presented in chapter five. Chapter
six, gives a neural network based relevance feedback algorithm for content
based image retrieval. An hybrid algorithm for predicting share values is ad-
dressed in chapter seven. The usage of rough sets and genetic algorithms
for data mining based query processing is discussed in chapter eight. An ef-
fective web access sequencing algorithm using hashing techniques for better
web reorganization is presented in chapter nine. An efficient data structure for
personalizing the Google search results is mentioned in chapter ten. Classifi-
cation based clustering algorithms using naive Bayesian probabilistic models
are discussed in chapter eleven. The effective usage of simulated annealing
and genetic algorithms for mining top-k ranked webpages from Google is pre-
sented in chapter twelve. The concept of mining bioXML databases is intro-
duced in chapter thirteen. Chapter fourteen and fifteen discusses algorithms
for DNA compression. An efficient algorithm for motif discovery in protein

X Preface

sequences is presented in chapter sixteen. Finally, matching techniques for
genome sequences and genetic algorithms for motif discovery are given in
chapter seventeen and eighteen respectively.

The authors appreciate the suggestions from the readers and users of this
book. Kindly communicate the errors, if any, to the following email address:
venugopalkr@gmail.com.

Bangalore, K.R. Venugopal
November 2008 K.G. Srinivasa

L.M. Patnaik

Acknowledgements

We wish to place on record our deep debt of gratitude to Shri M C Jayadeva,
who has been a constant source of inspiration. His gentle encouragement have
been the key for the growth and success in our career. We are indebted to
Prof. K Venkatagiri Gowda for his inspiration, encouragement and guidance
throughout our lives. We thank Prof. N R Shetty, President, ISTE and For-
mer Vice Chancellor, Bangalore University, Bangalore for his foreword to this
book. We owe debt of gratitude to Sri K Narahari, Sri V Nagaraj, Prof. S Lak-
shmana Reddy, Prof. K Mallikarjuna Chetty, Prof. H N Shivashankar, Prof. P
Sreenivas Kumar, Prof. Kamala Krithivasan, Prof. C Sivarama Murthy, Prof.
T Basavaraju, Prof. M Channa Reddy, Prof. N Srinivasan, Prof. M Venkat-
achalappa for encouraging us to bring out this book in the present form. We
sincerely thank Sri K P Jayarama Reddy, T G Girikumar, P Palani, M G
Muniyappa for their support in the preparation of this book.

We are grateful to Justice M Rama Jois, Sri N Krishnappa for their en-
couragement. We express our gratitude to Sri Y K Raghavendra Rao, Sri P
R Ananda Rao, Justice T Venkataswamy, Prof. V Y Somayajulu, Sri Sreed-
har Sagar, Sri N Nagabhusan, Sri Prabhakar Bhat, Prof. K V Acharya, Prof.
Khajampadi Subramanya Bhat, Sri Dinesh Kamath, Sri D M Ravindra, Sri
Jagadeesh Karanath, Sri N Thippeswamy, Sri Sudhir, Sri V Manjunath, Sri
N Dinesh Hegde, Sri Nagendra Prasad, Sri Sripad, Sri K Thyagaraj, Smt.
Savithri Venkatagiri Gowda, Smt. Karthyayini V and Smt. Rukmini T, our
well wishers for inspiring us to write this book.

We thank Prof. K S Ramanatha, Prof. K Rajanikanth, V K Ananthashayana
and T V Suresh Kumar for their support. We thank Smt. P Deepa Shenoy,
Sri K B Raja, Sri K Suresh Babu, Smt. J Triveni, Smt. S H Manjula, Smt. D
N Sujatha, Sri Prakash G L, Smt. Vibha Lakshmikantha, Sri K Girish, Smt.
Anita Kanavalli, Smt. Alice Abraham, Smt. Shaila K, for their suggestions
and support in bringing out this book.

We are indebted to Tejaswi Venugopal, T Shivaprakash, T Krishnaprasad
and Lakshmi Priya K for their help. Special thanks to Nalini L and Hemalatha
for their invaluable time and neat desktop composition of the book.

About the Authors

K.R. Venugopal is Principal and Dean, Faculty of Engineering, University
Visvesvaraya College of Engineering, Bangalore University, Bangalore. He
obtained his Bachelor of Technology from University Visvesvaraya College
of Engineering in 1979. He received his Masters degree in Computer Science
and Automation from Indian Institute of Science Bangalore He was awarded
Ph.D. in Economics from Bangalore University and Ph.D. in Computer Sci-
ence from Indian Institute of Technology, Madras. He has a distinguished
academic career and has degrees in Electronics, Economics, Law, Business
Finance, Public Relations, Communications, Industrial Relations, Computer
Science and Journalism. He has authored and edited twenty seven books on
Computer Science and Economics, which include Petrodollar and the World
Economy, Programming with Pascal, Programming with FORTRAN, Pro-
gramming with C, Microprocessor Programming, Mastering C++ etc. He
has been serving as the Professor and Chairman, Department of Computer
Science and Engineering, UVCE. He has over two hundred research papers
in refereed International Journals and Conferences to his credit. His research
interests include computer networks, parallel and distributed systems and
database systems.

K.G. Srinivasa obtained his a Ph.D. in Computer Science and Engineering
from Bangalore University. Currently he is working as an Assistant Professor
in the Department of Computer Science and Engineering, M S Ramaiah In-
stitute of Technology, Bangalore. He received Bachelors and Masters degree
in Computer Science and Engineering from the Bangalore University in the
year 2000 and 2002 respectively. He is a member of IEEE, IETE, and ISTE.
He has authored more than fifty research papers in refereed International
Journals and Conferences. His research interests are Soft Computing, Data
Mining and Bioinformatics.

L.M. Patnaik is Vice Chancellor of Defence Institute of Advanced Stud-
ies, Pune, India. He was the Professor since 1986 with the Department of

XIV

Computer Science and Automation, Indian Institute of Science, Bangalore.
During the past 35 years of his service at the Institute. He has over 400
research publications in in refereed International Journals and Conference
Proceedings. He is a Fellow of all the four leading Science and Engineering
Academies in India; Fellow of the IEEE and the Academy of Science for the
Developing World. He has received twenty national and international awards;
notable among them is the IEEE Technical Achievement Award for his signif-
icant contributions to high performance computing and soft computing. His
areas of research interest have been parallel and distributed computing, mo-
bile computing, CAD for VLSI circuits, soft computing, and computational
neuroscience.

Contents

1 Introduction . 1
1.1 Data Mining . 4

1.1.1 Association Rule Mining (ARM) 4
1.1.2 Incremental Mining . 5
1.1.3 Distributed Data Mining . 6
1.1.4 Sequential Mining . 6
1.1.5 Clustering . 6
1.1.6 Classification . 8
1.1.7 Characterization . 8
1.1.8 Discrimination . 9
1.1.9 Deviation Mining . 9
1.1.10 Evolution Mining . 9
1.1.11 Prediction . 10
1.1.12 Web Mining . 10
1.1.13 Text Mining . 11
1.1.14 Data Warehouses . 11

1.2 Soft Computing . 13
1.2.1 Importance of Soft Computing . 13
1.2.2 Genetic Algorithms . 13
1.2.3 Neural Networks . 14
1.2.4 Support Vector Machines . 14
1.2.5 Fuzzy Logic . 15
1.2.6 Rough Sets . 16

1.3 Data Mining Applications . 16
References . 17

2 Self Adaptive Genetic Algorithms . 19
2.1 Introduction . 19
2.2 Related Work . 20
2.3 Overview . 22
2.4 Algorithm . 23

XVI Contents

2.4.1 Problem Definition . 23
2.4.2 Pseudocode . 23

2.5 Mathematical Analysis . 25
2.5.1 Convergence Analysis . 30

2.6 Experiments . 32
2.7 Performance Analysis . 40
2.8 A Heuristic Template Based Adaptive Genetic

Algorithms . 42
2.8.1 Problem Definition . 42

2.9 Example . 42
2.10 Performance Analysis of HTAGA . 44
2.11 Summary . 48
References . 49

3 Characteristic Amplification Based Genetic
Algorithms . 51
3.1 Introduction . 51
3.2 Formalizations . 52
3.3 Design Issues . 54
3.4 Algorithm . 55
3.5 Results and Performance Analysis . 58
3.6 Summary . 61
References . 61

4 Dynamic Association Rule Mining Using Genetic
Algorithms . 63
4.1 Introduction . 63

4.1.1 Inter Transaction Association Rule Mining 64
4.1.2 Genetic Algorithms . 65

4.2 Related Work . 66
4.3 Algorithms . 67
4.4 Example . 69
4.5 Performance Analysis . 74

4.5.1 Experiments on Real Data . 78
4.6 Summary . 79
References . 79

5 Evolutionary Approach for XML Data Mining 81
5.1 Semantic Search over XML Corpus . 82
5.2 The Existing Problem . 83

5.2.1 Motivation . 84
5.3 XML Data Model and Query Semantics 85
5.4 Genetic Learning of Tags . 86
5.5 Search Algorithm . 89

5.5.1 Identification Scheme . 89

Contents XVII

5.5.2 Relationship Strength . 90
5.5.3 Semantic Interconnection . 91

5.6 Performance Studies . 93
5.7 Selective Dissemination of XML Documents 99
5.8 Genetic Learning of User Interests . 101
5.9 User Model Construction . 102

5.9.1 SVM for User Model Construction 103
5.10 Selective Dissemination . 103
5.11 Performance Analysis . 105
5.12 Categorization Using SVMs . 108

5.12.1 XML Topic Categorization . 108
5.12.2 Feature Set Construction . 109

5.13 SVM for Topic Categorization . 111
5.14 Experimental Studies . 113
5.15 Summary . 116
References . 117

6 Soft Computing Based CBIR System . 119
6.1 Introduction . 119
6.2 Related Work . 120
6.3 Model . 121

6.3.1 Pre-processing . 122
6.3.2 Feature Extraction . 122
6.3.3 Feature Clustering . 126
6.3.4 Classification . 126

6.4 The STIRF System . 128
6.5 Performance Analysis . 129
6.6 Summary . 136
References . 136

7 Fuzzy Based Neuro - Genetic Algorithm for Stock
Market Prediction . 139
7.1 Introduction . 139
7.2 Related Work . 140
7.3 Model . 141
7.4 Algorithm . 146

7.4.1 Algorithm FEASOM . 146
7.4.2 Modified Kohonen Algorithm . 146
7.4.3 The Genetic Algorithm . 148
7.4.4 Fuzzy Inference System . 149
7.4.5 Backpropagation Algorithm. 149
7.4.6 Complexity . 149

7.5 Example . 150
7.6 Implementation . 152
7.7 Performance Analysis . 154

XVIII Contents

7.8 Summary . 165
References . 165

8 Data Mining Based Query Processing Using Rough
Sets and GAs . 167
8.1 Introduction . 167
8.2 Problem Definition . 169
8.3 Architecture . 170

8.3.1 Rough Sets . 171
8.3.2 Information Streaks . 174

8.4 Modeling of Continuous-Type Data . 175
8.5 Genetic Algorithms and Query Languages 180

8.5.1 Associations . 181
8.5.2 Concept Hierarchies . 182
8.5.3 Dealing with Rapidly Changing Data 185

8.6 Experimental Results . 186
8.7 Adaptive Data Mining Using Hybrid Model of Rough Sets

and Two-Phase GAs . 189
8.8 Mathematical Model of Attributes (MMA) 190
8.9 Two Phase Genetic Algorithms . 191
8.10 Summary . 194
References . 194

9 Hashing the Web for Better Reorganization 197
9.1 Introduction . 197

9.1.1 Frequent Items and Association Rules 198
9.2 Related Work . 200
9.3 Web Usage Mining and Web Reorganization Model 200
9.4 Problem Definition . 202
9.5 Algorithms . 202

9.5.1 Classification of Pages . 206
9.6 Pre-processing . 206
9.7 Example . 208
9.8 Performance Analysis . 210
9.9 Summary . 214
References . 214

10 Algorithms for Web Personalization . 217
10.1 Introduction . 217
10.2 Overview . 219
10.3 Data Structures . 219
10.4 Algorithm . 221
10.5 Performance Analysis . 223
10.6 Summary . 229
References . 229

Contents XIX

11 Classifying Clustered Webpages for Effective
Personalization . 231
11.1 Introduction . 231
11.2 Related Work . 232
11.3 Proposed System . 233
11.4 Example . 237
11.5 Algorithm II: Näıve Bayesian Probabilistic Model 239
11.6 Performance Analysis . 241
11.7 Summary . 246
References . 247

12 Mining Top - k Ranked Webpages Using SA and GA 249
12.1 Introduction . 249
12.2 Algorithm TkRSAGA . 252
12.3 Performance Analysis . 253
12.4 Summary . 258
References . 258

13 A Semantic Approach for Mining Biological
Databases . 259
13.1 Introduction . 259
13.2 Understanding the Nature of Biological Data 260
13.3 Related Work . 262
13.4 Problem Definition . 263
13.5 Identifying Indexing Technique . 263
13.6 LSI Model . 265
13.7 Search Optimization Using GAs . 266
13.8 Proposed Algorithm . 267
13.9 Performance Analysis . 268
13.10 Summary . 277
References . 277

14 Probabilistic Approach for DNA Compression 279
14.1 Introduction . 279
14.2 Probability Model . 281
14.3 Algorithm . 284
14.4 Optimization of P ′ . 285
14.5 An Example . 286
14.6 Performance Analysis . 287
14.7 Summary . 288
References . 288

XX Contents

15 Non-repetitive DNA Compression Using Memoization . . . 291
15.1 Introduction . 291
15.2 Related Work . 293
15.3 Algorithm . 294
15.4 Experimental Results . 298
15.5 Summary . 300
References . 300

16 Exploring Structurally Similar Protein Sequence
Motifs . 303
16.1 Introduction . 303
16.2 Related Work . 305
16.3 Motifs in Protein Sequences . 305
16.4 Algorithm . 307
16.5 Experimental Setup . 308
16.6 Experimental Results . 310
16.7 Summary . 317
References . 317

17 Matching Techniques in Genomic Sequences for Motif
Searching . 319
17.1 Overview . 319
17.2 Related Work . 320
17.3 Introduction . 321
17.4 Alternative Storage and Retrieval Technique 323
17.5 Experimental Setup and Results . 327
17.6 Summary . 329
References . 330

18 Merge Based Genetic Algorithm for Motif Discovery 331
18.1 Introduction . 331
18.2 Related Work . 334
18.3 Algorithm . 334
18.4 Experimental Setup . 337
18.5 Performance Analysis . 339
18.6 Summary . 340
References . 340

Acronyms

GA Genetic Algorithms
ANN Artificial Neural Networks
AI Artificial Intelligence
SVM Support Vector Machines
KDD Knowledge Discovery in Databases
OLAP On-Line Analytical Processing
MIQ Machine Intelligence Quotient
FL Fuzzy Logic
RS Rough Sets
XML eXtended Markup Language
HTML Hyper Text Markup Language
SQL Structured Query Language
PCA Principal Component Analysis
SDI Selective Dissemination of Information
SOM Self Organizing Map
CBIR Content Based Image Retrieval
WWW World Wide Web
DNA Deoxyribo Nucleic Acid
IGA Island model Genetic Algorithms
SGA Simple Genetic Algorithms
PID Pima Indian Diabetes
Wisc Wisconsin Breast Cancer Database
Hep Hepatitis Database
Ion Ionosphere Database
LVQ Learning Vector Quantization
BPNN Backpropagation Neural Network
RBF Radial Basis Function
ITI Incremental Decision Tree Induction
LMDT Linear Machine Decision Tree
DTD Document Type Definition
MFI Most Frequently used Index

XXII

LFI Less Frequently used Index
hvi Hierarchical Vector Identification
UIC User Interest Categories
KNN k Nearest Neighborhood
DMQL Data Mining Query Languages
TSP Travelling Salesman Problem
MAD Mean Absolute Deviation
SSE Sum of Squared Error
MSE Mean Squared Error
RMSE Root Mean Squared Error
MAPE Mean Absolute Percentage Error
STI Shape Texture Intensity
HIS Hue, Intensity and Saturation
DCT Discrete Cosine Transform
PWM Position Weight Matrix
PSSM Position Specific Scoring Matrix
PRDM Pairwise Relative Distance Matrix
DSSP Secondary Structure of Proteins
LSI Latent Semantic Indexing
GIS Geographical Information Systems
CAD Computer Aided Design
FS Free Search
BGA Breeder Genetic Algorithm
STIRF Shape, Texture, Intensity-distribution features with Relevance

Feedback

Chapter 1
Introduction

Database mining seeks to extract previously unrecognized information from data
stored in conventional databases. Database mining has also been called database
exploration and Knowledge Discovery in Databases(KDD). Databases have signif-
icant amount of stored data. This data continues to grow exponentially. Much of
the data is implicitly or explicitly imprecise. The data is valuable because it is col-
lected to explicitly support particular enterprise activities. There could be valuable,
undiscovered relationships in the data. A human analyst can be overwhelmed by the
glut of digital information. New technologies and their application are required to
overcome information overload. Database discovery seeks to discover noteworthy,
unrecognized associations between data items in an existing database. The potential
of discovery comes from the realization that alternate contexts may reveal additional
valuable information. A metaphor for database discovery is mining. Database min-
ing elicits knowledge that is implicit in the databases. The rate at which the data
is stored is growing at a phenomenal rate. As a result, traditional ad hoc mixtures
of statistical techniques and data management tools are no longer adequate for an-
alyzing this vast collection of data [1]. Several domains where large volumes of
data are stored in centralized or distributed databases include the following applica-
tions in electronic commerce, bioinformatics, computer security, Web intelligence,
intelligent learning database systems, finance, marketing, healthcare, telecommuni-
cations, and other fields, which can be broadly classified as,

1. Financial Investment: Stock indexes and prices, interest rates, credit card data,
fraud detection.

2. Health Care: Several diagnostic information stored by hospital management
systems.

3. Manufacturing and Production: Process optimization and trouble shooting.
4. Telecommunication Network: Calling patterns and fault management systems.
5. Scientific Domain: Astronomical observations, genomic data, biological data.
6. The World Wide Web.

The area of Data Mining encompasses techniques facilitating the extraction of
knowledge from large amount of data. These techniques include topics such as

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 1–17.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

2 1 Introduction

pattern recognition, machine learning, statistics, database tools and On-Line An-
alytical Processing (OLAP). Data mining is one part of a larger process referred
to as Knowledge Discovery in Database (KDD). The KDD process is comprised
of the following steps: (i) Data Cleaning (ii) Data Integration (iii) Data Selection
(iv) Data Transformation (v) Data Mining (vi) Pattern Evaluation (vii) Knowledge
Presentation.

The term data mining often is used in discussions to describe the whole KDD
process, when the data preparation steps leading up to data mining are typically
more involved and time consuming than the actual mining steps. Data mining can
be performed on various types of data, to include: Relational Database, Trans-
actional Database, Flat File, Data Warehouse, Images (Satellite, Medical), GIS,
CAD, Text, Documentation, Newspaper Articles, Web Sites, Video/Audio, Tempo-
ral Databases/Time Series(Stock Market Data, Global Change Data), etc. The steps
in KDD process are briefly explained below.

• Data cleaning to remove noise and inconsistent data
• Data integration which involves combining of multiple data sources
• Data selection where data relevant to analysis task is retrieved from the database
• Data transformation where consolidated data is stored to be used by mining

processes
• Data mining which is essential where intelligent methods are applied in order to

extract data patterns
• Pattern evaluation where interestingness measures of discovered patterns are

measured
• Knowledge presentation where user understandable forms of mined knowledge

is presented

Data mining also involves an integration of different techniques from multiple
disciplines such as database technology, statistics, machine learning, neural net-
works, image and signal processing, etc.. Data mining can be performed on a variety
of data such as relational databases, data warehouses, transactional databases, ob-
ject oriented databases, spatial databases, legacy databases, World Wide Web, etc..
The kind of patterns found in data mining tasks are two important ones that are
descriptive and predictive. Descriptive patterns characterize the general properties
of databases while predictive mining tasks perform inference on the current data in
order to make predictions.

Data Mining is a step in the KDD process that consists of applying data analysis
and discovery algorithms which, under acceptable computational limitations, pro-
duce a particular enumeration of patterns over data. It uses historical information
to discover regularities and improve future decisions. The overall KDD process is
outlined in Figure 1.1. It is interactive and iterative involving the following steps [3].

1. Data cleaning: which removes noise, inconsistency from data.
2. Data Integration: which combines multiple and heterogeneous data sources to

form an integrated database.
3. Data selection: where data appropriate for the mining task is taken from the

databases.

1 Introduction 3

4. Data transformation: where data is transformed or consolidated into forms ap-
propriate for mining by performing summary or aggregation operations.

5. Data mining: where the different mining methods like association rule genera-
tion, clustering or classification is applied to discover the patterns.

6. Pattern evaluation: where patterns are identified using some constraints like sup-
port, confidence.

7. Knowledge presentation: where visualization or knowledge presentation tech-
niques are used to present the knowledge.

8. The updations to the database like increment/decrement is handled if any, and
the steps from 1 to 7 is repeated.

Data mining involves fitting models to determine patterns from observed data.
The fitted models play the role of inferred knowledge. Deciding whether the model
reflects useful knowledge or not is a part of the overall KDD process. Typically, a data
mining algorithm constitutes some combination of the following three components,

• The model: The function of the model(e.g., classification, clustering) and its rep-
resentational form (e.g., linear discriminants, neural networks). A model contains
parameters that are to be determined from the data.

• The preference criterion: A basis for preference of one model or set of param-
eters over another, depending on the given data. The criterion is usually some
form of goodness-of-fit function of the model to the data, perhaps tempered by a
smoothing term to avoid overfitting, or generating a model with too many degrees
of freedom to be constrained by the given data.

• The search algorithm: The specification of an algorithm for finding particular
models and parameters, given the data, models, and a preference criterion.

Very Large

Raw Database

Preprocessed
Data

Mathematical

Model of Data

(Patterns)

Useful
Interesting

1. Data Cleaning

2. Data Condensation

3. Dimensionality
Reduction

4. Data Wrapping

Machine Learning
Soft Computing

(GA/NN/FL/RS/SVM)

Classification

Clustering

Rule Generation

Knowledge

Representation

Knowledge Extraction

Knowledge Evaluation

Visual
Knowledge

Fig. 1.1 Overall KDD Process with Soft Computing

4 1 Introduction

In general, mining operations are performed to figure out characteristics of the ex-
isting data or to figure out ways to infer from current data some prediction of the
future. Below are the main types of mining [4,5].

1. Association Rule Mining - Often used for market basket or transactional data
analysis, it involves the discovery of rules used to describe the conditions where
items occur together - are associated.

2. Classification and Prediction - involves identifying data characteristics that can
be used to generate a model for prediction of similar occurrences in future data.

3. Cluster Analysis - attempts to look for groups (clusters) of data items that have
a strong similarity to other objects in the group, but are the most dissimilar to
objects in other groups.

4. Outlier Mining - uses statistical, distance and deviation-based methods to look
for rare events (or outliers) in datasets, things that are not normal.

5. Concept/Class Description - uses data characterization and/or data discrimina-
tion to summarize and compare data with target concepts or classes. This is a
technique to provide useful knowledge in support of data warehousing.

6. Time Series Analysis - can include analysis of similarity, periodicity, sequen-
tial patterns, trends and deviations. This is useful for modeling data events that
change with time.

1.1 Data Mining

In general data mining tasks can be broadly classified into two categories: descrip-
tive data mining and predictive data mining. Descriptive data mining describes the
data in a concise and summary fashion and gives interesting general properties of
the data whereas predictive data mining attempts to predict the behavior of the data
from a set of previously built data models. A data mining system can be classi-
fied according to the type of database that has to be handled. Different kinds of
databases are, relational databases, transaction databases, object oriented databases,
deductive databases, spatial databases, mobile databases, stream databases and tem-
poral databases. Depending on the kind of knowledge discovered from the database,
mining can be classified as association rules, characteristic rules, classification rules,
clustering, discrimination rules, deviation analysis and evolution. A survey of data
mining tasks gives the following methods.

1.1.1 Association Rule Mining (ARM)

One of the strategies of data mining is association rule discovery which correlates the
occurrence of certain attributes in the database leading to the identification of large
data itemsets. It is a simple and natural class of database regularities, useful in vari-
ous analysis and prediction tasks. ARM is a undirected or unsupervised data mining
method which can handle variable length data and can produce clear, understandable
and useful results. Association rule mining is computationally and I/O intensive. The
problem of mining association rules over market basket data is referred so, due to

1.1 Data Mining 5

its origins in the study of consumer purchasing patterns in retail shops. Mining as-
sociation rules is the process of discovering expressions of the form X −→ Y . For
example, customers usually buy coke(Y) along with cheese(X). These rules provide
valuable insights to customer buying behavior, vital to business analysis.

New association rules, which reflect the changes in the customer buying pattern,
are generated by mining the updations in the database. This concept is called in-
cremental mining. This problem is very popular due to its simple statement, wide
applications in finding hidden patterns in large data and paradigmatic nature. The
process of discovering association rules can be split into two steps, first finding all
itemsets with appreciable support and next is the generation of the desired rules.

Various applications of association rule mining are super market shelf manage-
ment, Inventory management, Sequential pattern discovery, Market basket analysis
including cross marketing, Catalog design, loss-leader analysis, Product pricing and
Promotion. Association rules are also used in online sites to evaluate page views
associated in a session to improve the store layout of the site and to recommend
associated products to visitors.

Mining association rules at multiple concept levels may lead to the discovery of
more specific and concrete knowledge from data. A top down progressive deepen-
ing method is developed for mining Multiple Level Association Rules(MLAR) for
large databases. MLAR uses a hierarchy information encoded table instead of the
original transaction table. Encoding can be performed during the collection of task-
relevant data and thus there is no extra pass required for encoding. Large support
is more likely to exist at high concept level, such as milk and bread, rather than at
low concept level such as particular brand of milk and bread. To find strong associ-
ations at relatively low concept levels, the min support threshold must be reduced
substantially. One of the problems with this data mining technique is the generation
of large number of rules. As the rules generated increases, it becomes very difficult
to understand them and take appropriate decisions. Hence pruning and grouping the
rules to improve the understandability, is an important issue.

Inter-transaction association rules break the barrier of Intra-transaction associa-
tion and are mainly used for prediction. They try to relate items from the different
transactions, due to which the computations become exhaustive. Hence the concept
of sliding window is used to limit the search space. A frequent inter-transaction
itemsets must be made up of frequent intra-transaction itemsets.

Intra-transaction association rules is a special case of inter-transaction associa-
tion rules. Some of the applications are (i) to discover traffic jam association pat-
terns among different highways to predict traffic jams, (ii) from weather database to
predict flood and drought for a particular period.

1.1.2 Incremental Mining

One of the important problems of the data mining problem is to maintain the dis-
covered patterns when the database is updated regularly. In several applications
new data is added continuously over the time. Incremental mining algorithms are
proposed to handle updations of rules when increments to data base occur. It should

6 1 Introduction

be done in a manner which is cost-effective, without involving the database already
mined and permitting reuse of the knowledge mined earlier. The two major opera-
tions involved are (i) Additions: Increase in the support of appropriate itemsets and
discovery of new itemsets. (ii) Deletions: Decrease in the support of existing large
itemsets leading to the formation of new large itemsets.

1.1.3 Distributed Data Mining

The emergence of network based distributed computing environments such as the
internet, private intranet and wireless networks has created a natural demand for
scalable techniques for data mining in a distributed manner. Also, the proliferation
of data in the recent years has made it impossible to store it in a single global server.
Several data mining methods can be applied to find local patterns which can be
combined to form global knowledge. Parallel algorithms are designed for very large
databases to study the performance implications and trade-off between computation,
communication, memory usage, synchronization and the use of problem specific
information in parallel data mining.

1.1.4 Sequential Mining

A sequence is an ordered set of item-sets. All transactions of a particular customer
made at different times can be taken as a sequence. The term support is used in a
different meaning. Here the support is incremented only once, even if a customer
has bought the same item several times in different transactions. Usually the Web
and scientific data are sequential in nature. Finding patterns from such data helps to
predict future activities, interpreting recurring phenomena, extracting outstanding
comparisons for close attention, compressing data and detecting intrusion.

The incremental mining of sequential data helps in computing only the difference
by accessing the updated part of the database and datastructure. The sequential data
are text, music notes, satellite data, stock prices, DNA sequences, weather data,
histories of medical records, log files, etc.. The applications of sequential mining
are analysis of customer purchase patterns, stock market analysis, DNA sequences,
computational biology study, scientific experiments, disease treatments, Web access
patterns, telecommunications, biomedical research, prediction of natural disasters
and system performance analysis etc..

1.1.5 Clustering

Clustering is the process of grouping the data into classes so that objects within
a cluster are similar to one another, but are dissimilar to objects in other clusters.
Various distance functions are used to make quantitative determination of similarity
and an objective function is defined with respect to this distance function to measure
the quality of a partition. Clustering is an example for unsupervised learning. It can
be defined as, given n data points in a d-dimensional metric space, partition the data

1.1 Data Mining 7

points into k clusters, such that the data points within a cluster are more similar to
each other than the data points in different clusters.

Clustering has roots in data mining, biology and machine learning. Once the clus-
ters are decided, the objects are labeled with their corresponding clusters, and com-
mon features of the objects in a cluster are summarized to form the class description.
For example, a set of new diseases can be grouped into several categories based on
the similarities in their symptoms, and the common symptoms of the diseases in a
category can be used to describe that group of diseases. Clustering is a useful tech-
nique for the discovery of data distribution and patterns in the underlying database.
It has been studied in considerable detail by both statistics and database researchers
for different domains of data. As huge amounts of data are collected in databases,
cluster analysis has recently become a highly active topic in data mining research.
Various applications of this method are, data warehousing, market research, seismol-
ogy, minefield detection, astronomy, customer segmentation, computational biology
for analyzing DNA microarray data and World Wide Web.

Some of the requirements of clustering in data mining are scalability, high di-
mensionality, ability to handle noisy data, ability to handle different types of data
etc. Clustering analysis helps to construct meaningful partitioning of a large set of
objects based on a divide and conquer methodology. Given a large set of multidi-
mensional data points, the data space is usually not uniformly occupied by the data
points, hence clustering identifies the sparse and the crowded areas to discover the
overall distribution patterns of the dataset. Numerous applications involving data
warehousing, trend analysis, market research, customer segmentation and pattern
recognition are high dimensional and dynamic in nature. They provide an oppor-
tunity for performing dynamic data mining tasks such as incremental and associa-
tion rules. It is challenging to cluster high dimensional data objects, when they are
skewed and sparse. Updations are quiet common in dynamic databases and usually
they are processed in batch mode. In very large databases, it is efficient to incre-
mentally perform cluster analysis only to the updations. There are five methods of
clustering; they are (i) Partitioning method (ii) Grid based method (iii) Model based
method (iv) Density based method (v) Hierarchical method.

Partition Method: Given a database of N data points, this method tries to form, k
clusters, where k ≤ N. It attempts to improve the quality of clusters or partition by
moving the data points from one group to another. Three popular algorithms under
this category are k-means, where each cluster is represented by the mean value of
the data points in the cluster and k-medoids, where each cluster is represented by
one of the objects situated near the center of the cluster, whereas k-modes extends
the k-means to categorical attributes. The k-means and the k-modes methods can be
combined to cluster data with numerical and categorical values and this method is
called k-prototypes method. One of the disadvantage of these methods is that, they
are good in creating spherical shaped clusters in small databases.

Grid Based Method: This method treats the database as a finite number of grid
cells due to which it becomes very fast. All the operations are performed on this
grid structure.

8 1 Introduction

Model Based Method: is a robust clustering method. This method locates clusters
by constructing a density function which denotes the spatial distribution of the data
points. It finds number of clusters based on standard statistics taking outliers into
consideration.

Density Based Method: finds clusters of arbitrary shape. It grows the clusters with
as many points as possible till some threshold is met. The e-neighborhood of a point
is used to find dense regions in the database.

Hierarchical Method: In this method, the database is decomposed into several lev-
els of partitioning which are represented by a dendrogram. A dendrogram is a tree
that iteratively splits the given database into smaller subsets until each subset con-
tains only one object. Here each group of size greater than one is in turn composed
of smaller groups. This method is qualitatively effective, but practically infeasible
for large databases, since the performance is at least quadratic in the number of
database points. Consequently, random sampling is often used in order to reduce
the size of the dataset. There are two types in hierarchical clustering algorithms;
(i) Divisive methods work by recursively partitioning the set of datapoints S un-
til singleton sets are obtained. (ii) Agglomerative algorithms work by starting with
singleton sets and then merging them until S is covered. The agglomerative meth-
ods cannot be used directly, as it scales quadratically with the number of data points.
Hierarchical methods usually generate spherical clusters and not of arbitrary shapes.

The data points which do not belong to any cluster are called outliers or noise.
The detection of outlier is an important datamining issue and is called as outlier
mining. The various applications of outlier mining are in fraud detection, medical
treatment etc..

1.1.6 Classification

Classification is a process of labeling the data into a set of known classes. A set of
training data whose class label is known is given and analyzed, and a classification
model is prepared from the training set. A decision tree or a set of classification
rules is generated from the clasification model, which can be used for better under-
standing of each class in the database and for classification of data. For example,
classification rules about diseases can be extracted from known cases and used to
diagnose new patients based on their symptoms. Classification methods are widely
developed in the fields of machine learning, statistics, database, neural network,
rough sets and are an important theme in data mining. They are used in customer
segmentation, business modeling and credit analysis.

1.1.7 Characterization

Characterization is the summarization of a set of task relevant data into a relation,
called generalized relation, which can be used for extraction of characteristic rules.

1.1 Data Mining 9

The characteristic rules present characteristics of the dataset called the target class.
They can be at multiple conceptual levels and viewed from different angles. For
example, the symptoms of a specific disease can be summarized by a set of char-
acteristic rules. Methods for efficient and flexible generalization of large data sets
can be categorized into two approaches: the data cube approach and the attribute-
oriented induction approach.

In the data cube approach, a multidimensional database is constructed which con-
sists of a set of dimensions and measures. A dimension is usually defined by a set
of attributes which form a hierarchy or a lattice of structure. A data cube can store
pre-computed aggregates for all or some of its dimensions. Generalization and spe-
cialization can be performed on a multiple dimensional data cube by roll-up or drill-
down operations. A roll-up operation reduces the number of dimensions in a data
cube, or generalizes attribute values to higher level concepts. A drill-down opera-
tion does the reverse. Since many aggregate values may need to be used repeatedly
in data analysis, the storage of precomputed aggregates in a multiple dimensional
data cube will ensure fast response time and offer flexible views of data from dif-
ferent angles and at different levels of abstraction. The attribute-oriented induction
approach may handle complex types of data and perform attribute relevance analysis
in characterization.

1.1.8 Discrimination

Discrimination is the discovery of features or properties that distinguish the class
being examined(target class) from other classes(contrasting class). The method for
mining discriminant rules is similar to that of mining characteristic rules except
that mining should be performed in both target class and contrasting classes syn-
chronously to ensure that the comparison is performed at comparative levels of ab-
straction. For example, to distinguish one disease from others, a discriminant rule
summarizes the symptoms of this disease from others.

1.1.9 Deviation Mining

Deviation mining is the discovery and evaluation of the deviation patterns of the
objects in the target data in a time related databases. The expected behavior or norm
of the objects is usually given by the user or computed based on some assumptions,
such as average, linear growth etc.. For example, one may discover and evaluate set
stocks whose behavior deviates from the trend of the majority of stocks during a
certain period of time.

1.1.10 Evolution Mining

Evolution mining is the detection and evaluation of data evolution regularities for
certain objects whose behavior changes over time. This may include characteriza-
tion, association, or clustering of time related data. For example, one may find the

10 1 Introduction

general characteristics of the companies whose stock price has gone up over 20%
last year, or evaluate the trend or particular growth patterns of high-tech stocks.

1.1.11 Prediction

Prediction is the estimation or forecast of the possible values of some missing data
or the value distribution of certain attribute in a set of objects. This involves finding
the set of attributes of interest and predicting the value distribution based on a set
data similar to the selected object. For example, an employee’s potential salary can
be predicted based on the salary distribution of similar employees in the company.

1.1.12 Web Mining

Web mining is the process of mining massive collection of information, on the
world-wide web and has given rise to considerable interest in the research com-
munity. The heterogeneous, unstructured and chaotic web is not a database but it
is a set of different data sources with unstructured and interconnected artifacts that
continuously change. Web is a huge, distributed repository of global information to
service the enormous requirements of news, advertisement, consumer information,
financial management, education, government, e-commerce etc. The www contains
huge dynamic collection of hyperlink information and web page access and usage
information, providing useful sources for data mining. Web mining is applying data
mining techniques to automatically discover and extract useful information from
www documents and services. Data mining holds the key to uncover the authori-
tative links, traversal patterns and semantic structures that brings intelligence and
direction to our web interactions. Web mining is a technique that automatically re-
trieve, extract and evaluate information for knowledge discovery from web docu-
ments and services. The web page complexity far exceeds the complexity of any
traditional text document collection. Only small portion of web pages contain truly
relevant or useful information. The web mining tasks can be classified into following
(i) Web structure mining, (ii)Web content mining and (iii) Web usage mining.

The web structure mining generates structural summary about the organization
of web sites and web pages. It tries to discover the link structure of the hyperlinks
at the inter-document level. Web content mining deals with the discovery of useful
information from the web contents, web data, web documents and web services.
The contents of the web includes a very broad range of data such as audio, video,
symbolic, metadata and hyperlinked data in addition to text. Web content mining
focuses on the structure of inner-document, based on the topology of the hyperlinks,
while web structure mining categorizes the web pages and generate the information,
such as the similarity and relationship between different web sites.

Web usage mining involves data from web server access logs, proxy server logs,
browser logs, user profiles, registration files, user sessions or transactions, user
queries, book mark folders, mouse clicks and scrolls and any other data generated
by the interaction of the users and the web. Web usage mining provides the key to

1.1 Data Mining 11

understand web traffic behavior, which can inturn be used for developing policies
for web caching, network transmission, load balancing or data distribution. Web
content and structure mining utilize the real or primary data on the web, while web
usage mining takes secondary data generated by the users interaction with web.

The web usage mining basically extracts useful access information from the web
log data. The mined information can be used for analyzing the access patterns and
concluding on general trends. An intelligent analysis helps in restructuring the web.
Web log analysis can also help to build customized web services for individual users.
Since web log data provides information about specific pages popularity and the
methods used to access them, this information can be integrated with web content
and linkage structure mining to help rank web pages. They can also be used to im-
prove and optimize the structure of a site, to improve the scalability and performance
of web based recommender systems and to discover e-business intelligence for the
purpose of online marketing.

Web usage mining can also provide patterns which are useful for detecting intru-
sion, fraud, attempted break-in etc.. It provides detailed feed back on user behavior,
providing the web site designer with information to redesign the web organization.
Web log data usually consists of URL requested, the IP address from which the re-
quest originated and a timestamp. Some of the applications are; improving web site
design, building adaptive web sites, analyzing system performance, understanding
user reaction and motivation.

1.1.13 Text Mining

Text mining analyzes text document content to investigate syntactical correlation
and semantic association between terms. Key concepts and phrases are extracted to
represent the document or a section of a document. Text mining includes most of
the steps of data mining starting from data cleaning to knowledge visualization. The
dominant categories in text mining are text analysis, text interpretation, document
categorization, and document visualization.

A text search architecture usually consists of the steps (i) Storage (ii) Indexing
(iii) Search Criteria (iv) Index Building (v) Query Optimization. Business applica-
tions of text mining products are (i) Drug firms-Biomedical research (ii) Electric
utility-Customer opinion survey analysis (iii) Online News paper-searching for a
job, car or house. For example, Intelligent Miner for text from IBM has: Feature
extraction tool, Clustering tool and Categorization tool.

1.1.14 Data Warehouses

Dramatic advances in data capture, processing power, data transmission, and stor-
age capabilities are enabling organizations to integrate their various databases into
data warehouses. A data warehouse is a subject-oriented, integrated, time-variant
and non-volatile collection of data in support of management decision making pro-
cess. They are different from file systems, data repositories and relational data base

12 1 Introduction

systems. Usually a data warehouse is built around a subject like a product or sales or
customers and so on. It concentrates on the modeling and analysis of data for deci-
sion makers. It is constructed by integrating several sources like relational databases,
flat files and on-line transaction records. Data cleaning and integration techniques
are applied to obtain consistency in encoding structures and delete anamolies. For
this purpose update-driven approach can be used.

When a new information source is attached to the warehousing system or when
relevant information at a source changes, the new or modified data is propagated
to the integrator. The integrator is responsible for installing the information in the
warehouse, which may include filtering the information, summarizing it or merging
it with information from other sources. The data warehouse is time-variant because
it changes over a period of time. The historical data of about 5-10 years old is pre-
served to study the trends. The data is stored in such a way that the keys always
contain the unit of time(day, week etc.) being referred to and non- volatile because
a data warehouse is a read only database. Only data needed for decision making
is stored. A data warehouse is a dedicated database system and supports decision
support system. It helps the knowledge worker to make better and faster decision. A
typical data warehouse contains five types of data.

1. Current detail data: reflects the most recent events.
2. Older detail data: It is moved from disk to a mass-storage medium.
3. Lightly summarized data: improves the response and use of data warehouse.
4. Highly summarized data: is required by service manager and should be available

in compact and easily accessible form. Highly summarized data improves the
response time

5. Metadata: is the information about the data rather than the information provided
by the data warehouse. Administrative metadata includes all the information nec-
essary for setting up and using a warehouse. It usually consists of the warehouse
schema, derived data, dimensions, hierarchies, predefined queries and reports. It
also contains physical organization such as data partitions, data extraction, clean-
ing and transformation rules, data refresh and purging policies, user profiles, user
authorization and access control policies.

Business metadata includes business terms and definitions, ownership of data
and charging policies. Operational metadata includes information that is collected
during the operation of the warehouse. A metadata repository is used to store and
manage all the metadata associated with the warehouse.

A wide variety and number of data mining algorithms are described in the lit-
erature - from the fields of statistics, pattern recognition, machine learning and
databases. They represent a long list of seemingly unrelated and often highly specific
algorithms. Some of them include; (i) Statistical models, (ii) Probabilistic graphical
dependency models, (iv) Decision trees and rules, (v) Inductive logic programming
based models, (vi) Example based methods, lazy learning and case based reasoning,
(vii) Neural network based models, (viii) Fuzzy set theoretic models, (ix) Rough set
theory based models, (x) Genetic algorithm based models, and (xi) Hybrid and soft
computing models.

1.2 Soft Computing 13

1.2 Soft Computing

Efficient tools and algorithms for knowledge discovery in large data sets have been
devised during the recent years. These methods exploit the capability of computers
to search huge amount of data in a fast and effective manner. However, the data to
be analyzed is imprecise and afflicted with uncertainty. In the case of heterogeneous
data sources such as text and video, the data might moreover be ambiguous and
partly conflicting. Besides, patterns and relationships of interest are usually vague
and approximate. Thus, in order to make the information mining process more ro-
bust or say, human-like methods for searching and learning it requires tolerance
toward imprecision, uncertainty, and exceptions. Thus, they have approximate rea-
soning capabilities and are capable of handling partial truth. Properties of the afore-
mentioned kind are typical of soft computing.

Soft computing differs from conventional (hard) computing in that, unlike hard
computing, it is tolerant of imprecision, uncertainty, partial truth, and approxima-
tion. The guiding principle of soft computing is to exploit the tolerance for impreci-
sion, uncertainty, partial truth, and approximation to achieve tractability, robustness
and low solution cost.

The principal constituents of soft computing are fuzzy logic, neural networks,
genetic algorithms and probabilistic reasoning. These methodologies of soft com-
puting are complementary rather than competitive and they can be viewed as a foun-
dation component for the emerging field of conceptual intelligence.

1.2.1 Importance of Soft Computing

The complementarity of fuzzy logic, neural networks, genetic algorithms and prob-
abilistic reasoning has an important consequence in many cases. A problem can be
solved most effectively by using fuzzy logic, neural networks, genetic algorithms
and probabilistic reasoning in combination rather than using them exclusively. A
typical example for such combination is neurofuzzy systems. Such systems are be-
coming increasingly visible as consumer products ranging from air conditioners
and washing machines to photocopiers and camcorders. Thus the employment of
soft computing techniques leads to systems which have high MIQ (Machine Intelli-
gence Quotient).

1.2.2 Genetic Algorithms

Genetic Algorithms have found a wide gamut of applications in data mining, where
knowledge is mined from large databases. Genetic algorithms can be used to build
effective classifier systems, mining association rules and other such datamining
problems. Their robust search technique has given them a central place in the field
of data mining and machine learning [6].

GA can be viewed as an evolutionary process where at each generation, from a
set of feasible solutions, individuals or solutions are selected such that individuals

14 1 Introduction

with higher fitness have greater probability of getting chosen. At each generation,
these chosen individuals undergo crossover and mutation to produce a population of
the next generation. This concept of survival of the fittest proposed by Darwin is the
main cause for the robust performance of GAs. Crossover helps in the exchange of
discovered knowledge in the form of genes between individuals and mutation helps
in restoring lost or unexplored regions in search space.

1.2.3 Neural Networks

An Artificial Neural Network (ANN) is an information processing paradigm that is
inspired by the way biological nervous systems, such as the brain processes infor-
mation. The key element of this paradigm is the novel structure of the information
processing system. It is composed of a large number of highly interconnected pro-
cessing elements (neurons) working in union to solve specific problems. An ANN
is configured for a specific application, such as pattern recognition or data classi-
fication, through a learning process. Learning in biological systems involves ad-
justments to the synaptic connections that exist between the neurons [8]. Neural
networks, with their remarkable ability to derive meaning from complicated or im-
precise data, can be used to extract patterns and detect trends that are too complex.
The neural network can be used to provide projections given new situations of in-
terest and answer what if questions. The advantages of neural networks include:

• Adaptive learning: An ability to learn how to do tasks based on the data given for
training or initial experience.

• Self-Organization: An ANN can create its own organization or representation of
the information it receives during learning time.

• Real Time Operation: ANN computations may be carried out in parallel, and
special hardware devices are being designed and manufactured which take ad-
vantage of this capability.

• Fault Tolerance via Redundant Information Coding: Partial destruction of a net-
work leads to the corresponding degradation of performance. However, some
network capabilities may be retained even with major network damage.

An artificial neuron is a device with many inputs and one output. The neuron has
two modes of operation; the training mode and the testing mode. In the training
mode, the neuron can be trained to fire (or not), for particular input patterns. In
the testing mode, when a trained input pattern is detected at the input, its associated
output becomes the current output. If the input pattern does not belong in the trained
list of input patterns, the firing rule is used to determine whether to fire or not. The
firing rule is an important concept in neural networks and accounts for their high
flexibility.

1.2.4 Support Vector Machines

Support Vector Machines (SVMs) are a set of related supervised learning methods
used for classification and regression. They belong to a family of generalized linear

1.2 Soft Computing 15

classifiers. They can also be considered a special case of Tikhonov regularization. A
special property of SVMs is that they simultaneously minimize the empirical clas-
sification error and maximize the geometric margin and hence they are also known
as maximum margin classifiers. Two parallel hyperplanes are constructed on each
side of the hyperplane that separates the data. The hyperplane is the one that max-
imizes the distance between the two parallel hyperplanes. An assumption is made
that the larger the margin or distance between these parallel hyperplanes, the better
the generalization error of the classifier. The SVM builds a model from the training
samples which is later used on the test data. This model is built using the training
samples that are most difficult to classify (Support Vectors). The SVM is capable of
classifying both linearly separable and non-linearly separable data. The nonlinearly
separable data can be handled by mapping the input space to a high dimensional
feature space. In this high dimensional feature space, linear classification can be
performed. SVMs can exhibit good accuracy and speed even with very less training.

1.2.5 Fuzzy Logic

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approxi-
mate rather than precisely deduced from classical predicate logic. It can be thought
of as the application side of fuzzy set. Fuzzy truth represents membership in vaguely
defined sets, like likelihood of some event or condition and fuzzy sets are based on
vague definitions of sets, not randomness [10].

Since, data mining is the process of extracting nontrivial relationships in the
database, the association that are qualitative are very difficult to utilize effectively
by applying conventional rule induction algorithms. Since fuzzy logic modeling is
a probability based modeling, it has many advantages over the conventional rule
induction algorithms. The advantage is that it allows processing of very large data
sets which require efficient algorithms. Fuzzy logic-based rule induction can handle
noise and uncertainty in data values well. Most of the databases, in general, are not
designed or created for data mining. Selecting and extracting useful attributes of
target objects becomes hard. Not all of the attributes needed for successful extrac-
tion can be contained in the database. In these cases, domain knowledge and user
analysis becomes a necessity. The techniques such as neural networks tend to do
badly since the domain knowledge cannot be incorporated into the neural networks,
therefore Fuzzy logic based models utilize the domain knowledge in coming up with
rules of data selection and extraction.

It can be observed that no single technique can be defined as the optimal tech-
nique for data mining. The selection of technique used depends highly on the prob-
lem and the data set. Hambaba (1996) stressed the need of using hybrid techniques
for different problems since each intelligent technique has a particular computa-
tional property that suits them appropriately to a particular problem. The real time
applications like loan evaluation, fraud detection, financial risk assessment, finan-
cial decision making, and credit card application evaluation uses the combination of
Neural Networks and Fuzzy Logic Systems.

16 1 Introduction

1.2.6 Rough Sets

The Rough Sets theory was introduced by Zdzislaw Pawlak in the early 1980’s,
and based on this theory one can propose a formal framework for the automated
transformation of data into knowledge. Pawlak has shown that the principles for
learning by examples can be formulated on the basis of this theory. It simplifies the
search for dominating attributes leading to specific properties, or just rules pending
in the data.

The Rough Set theory is mathematically simple and has shown its fruitfulness
in a variety of data mining applications. Among these are information retrieval,
decision support, machine learning, and knowledge based systems. A wide range
of applications utilize the ideas of the theory. Medical data analysis, aircraft pilot
performance evaluation, image processing, and voice recognition are few examples.
Inevitably the database used for data mining contains imperfection, such as noise,
unknown values or errors due to inaccurate measuring equipment. The Rough Set
theory comes handy for dealing with these types of problems, as it is a tool for
handling vagueness and uncertainty inherent to decision making.

1.3 Data Mining Applications

Data mining is extensively in customer relationship management. Data clustering
can also be used to automatically discover the segments or groups within a customer
data set. Businesses employing data mining may see a return on investment, but also
they recognize that the number of predictive models can quickly become very large.
Rather than one model to predict which customers will churn, a business could build
a separate model for each region and customer type. Then instead of sending an offer
to all people that are likely to churn, it may only want to send offers to customers
likely take to the offer. And finally, it may also want to determine which customers
are going to be profitable over a window of time and only send the offers to those
that are likely to be profitable. In order to maintain this quantity of models, they
need to manage model versions and move to automated data mining[7,9].

Data mining can also be helpful to human-resources departments in identifying
the characteristics of their most successful employees. Information obtained, such
as universities attended by highly successful employees, can help HR focus recruit-
ing efforts accordingly. Additionally, Strategic Enterprise Management applications
help a company translate corporate-level goals, such as profit and margin share tar-
gets, into operational decisions, such as production plans and workforce levels.

Another example of data mining, often called the market basket analysis, re-
lates to its use in retail sales. If a clothing store records the purchases of cus-
tomers, a data-mining system could identify those customers who favour silk shirts
over cotton ones. Data mining is a highly effective tool in the catalog marketing
industry. Catalogers have a rich history of customer transactions on millions of
customers dating back several years. Data mining tools can identify patterns among
customers and help identify the most likely customers to respond to upcoming
mailing campaigns.

References 17

In recent years, data mining has been widely used in area of science and engi-
neering, such as bioinformatics, genetics, medicine, education, and electrical power
engineering. In the area of study on human genetics, the important goal is to un-
derstand the mapping relationship between the inter-individual variation in human
DNA sequences and variability in disease susceptibility. In layman terms, it is to
find out how the changes in an individual’s DNA sequence affect the risk of devel-
oping common diseases such as cancer. This is very important to help improve the
diagnosis, prevention and treatment of the diseases. The data mining technique that
is used to perform this task is known as multifactor dimensionality reduction.

In the area of electrical power engineering, data mining techniques have been
widely used for condition monitoring of high voltage electrical equipment. The pur-
pose of condition monitoring is to obtain valuable information on the insulation’s
health status of the equipment. Data clustering such as self-organizing map (SOM)
has been applied on the vibration monitoring and analysis of transformer on-load
tap-changers. Using vibration monitoring, it can be observed that each tap change
operation generates a signal that contains information about the condition of the tap
changer contacts and the drive mechanisms.

Another area of application for data mining is in science/engineering research,
where data mining has been used to study the factors leading students to choose
to engage in behaviors which reduce their learning and to understand the factors
influencing university student retention. Other examples of applying data mining
technique applications are biomedical data facilitated by domain ontologies, mining
clinical trial data, traffic analysis using SOM, etc..

References

1. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge
(2001)

2. Mehmed, K.: Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley
and Sons, Chichester (2003)

3. Han, J., Kamber, M.: Data Mining, Concepts and Techniques. Elsevier, Amsterdam
(2007)

4. Ye, N.: The Handbook of Data Mining, Human Factors and Ergonomics (2003)
5. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education,

London (2007)
6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan

Press (2004)
7. Kantardizic, M.M., Zurada, J.: Next Generation of Data Mining Applications. Wiley

Interscience, Hoboken (2005)
8. Mitchell, T.M.: Machine Learning. McGraw Hill International Editions, New York

(1997)
9. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms.

Springer, Heidelberg (2005)
10. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Pearson Educa-

tion, London (2004)

Chapter 2
Self Adaptive Genetic Algorithms

Abstract. Genetic Algorithms(GAs) are efficient and robust searching and opti-
mization methods that are used in data mining. In this chapter, we propose a Self-
Adaptive Migration Model GA (SAMGA), where parameters of population size,
the number of points of crossover and mutation rate for each population are adap-
tively fixed. Further, the migration of individuals between populations is decided
dynamically. This chapter gives a mathematical schema analysis of the method stat-
ing and showing that the algorithm exploits previously discovered knowledge for a
more focused and concentrated search of heuristically high yielding regions while
simultaneously performing a highly explorative search on the other regions of the
search space. The effective performance of the algorithm is then shown using stan-
dard testbed functions and a set of actual classification based datamining problems.
Michigan style of classifier is used to build the classifier and the system is tested with
machine learning databases of Pima Indian Diabetes database, Wisconsin Breast
Cancer database and few others.

2.1 Introduction

Data mining is a process of extracting nontrivial, valid, novel and useful informa-
tion from large databases. Hence data mining can be viewed as a kind of search
for meaningful patterns or rules from a large search space, that is the database. In
this light, Genetic algorithms are a powerful tool in data mining, as they are robust
search techniques. GAs are a set of random, yet directed search techniques. They
process a set of solutions simultaneously and hence are parallel in nature. They are
inspired by the natural phenomenon of evolution. They are superior to gradient de-
scent techniques as they are not biased towards local optima [1, 2, 3, 4]. The steps
in genetic algorithm are given in Table 2.1.

In this algorithm, the three basic operators of GA namely, selection, crossover and
mutation operators are fixed apriori. The optimum parameters for these operators
depend on problem on which the GA is applied and also on the fitness of the current
population. A new breed of GA called adaptive GAs [5, 6], fix the parameters for the

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 19–50.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

20 2 Self Adaptive Genetic Algorithms

Table 2.1 Genetic Algorithms

Genetic Algorithm()
{
Initialize population randomly;
Evaluate fitness of each individual in the population;
While stopping condition not achieved

{
Perform selection;
Perform crossover and mutation;
Evaluate fitness of each individual in the population;

}
}

GA operators dynamically to adapt to the current problem. Generally, the operators
are adapted based on the fitness of individuals in the population. Apart from the
operators themselves, even the control parameters can be adapted dynamically. In
these adaptive genetic algorithms, the GA parameters are adapted to fit the given
problem. The algorithm is shown in Table 2.2.

Table 2.2 Adaptive Genetic Algorithms

Adaptive Genetic Algorithm()
{

Initialize population randomly;
Evaluate fitness of each individual in the population;
While stopping condition not achieved
{
Perform selection;
Perform crossover and mutation;
Evaluate fitness of each individual;
Change selection, crossover and mutation operators.

}
}

The use of parallel systems in the execution of genetic algorithms has led to par-
allel genetic algorithms. The Island or Migration model of genetic algorithm [7] is
one such genetic algorithm where, instead of one population, a set of populations
is evolved. In this method, at each generation all the populations are independently
evolved and at some regular interval fixed by migration rate, few of the best individ-
uals are exchanged among populations.

2.2 Related Work

Lobo et al., have proposed an adaptive GA which works even when optimal number
of individuals is not known [8]. In this method parallel searches are conducted with

2.2 Related Work 21

different number of individuals, expecting one of the populations to have the appro-
priate number of individuals that yields good results. However, this method is not
truly adaptive in the sense that the appropriate number of individuals is not learnt
but is obtained by trial and error. This method is not feasible as it is not realistic to
perform large number of blind searches in parallel. Similarly, some of the applica-
tions of the parameter-less genetic algorithms [9] and multi-objective rule mining
using genetic algorithms are discussed in [10].

An adaptive GA which runs three GAs in parallel is proposed in [11]. Here at
each epoch fitness values of elite individuals is compared and the number of indi-
viduals are changed according to the results. For example, if GA with the largest
number of individuals provides best results, then in the next epoch all individuals
have large number of individuals. However, the optimum number of individuals re-
quired by a population depends on which region of the search space the individuals
are in and is not same for all subpopulations.

An adaptive GA where mutation rate for an individual is encoded in the gene
of an individual is proposed in [9]. The system is proposed with the hope that fi-
nally individuals with good mutation rate survive. However, only individuals with
low mutation rate survive in the later phases of the search. An adaptive GA that
determines mutation and crossover rate of an individual by its location in a two di-
mensional lattice plane is proposed in [12]. The algorithm keeps diversity of these
parameters by limiting the number of individuals in each lattice.

A meta-GA is a method of using GA to fix the right parameters for the GA.
However, in this process the number of evaluations needed is high and the process
is expensive. One such meta-GA is proposed in [13]. A GA that adapts mutation and
crossover rates in Island model of GA is proposed in [14]. Here adaptation is based
on average fitness of the population. Parameters of a population here are updated to
those of a neighboring population with high average fitness.

The breeder genetic algorithm BGA depends on a set of control parameters and
genetic operators. It is shown that strategy adaptation by competing subpopulations
makes the BGA more robust and more efficient in [15]. Each subpopulation uses a
different strategy which competes with other subpopulations. Experiments on multi-
parent reproduction in an adaptive genetic algorithm framework is performed in
[16]. An adaptive mechanism based on competing subpopulations is incorporated
into the algorithm in order to detect the best crossovers. A parallel genetic algorithm
with dynamic mutation probability is presented in [17]. This algorithm is based on
the farming model of parallel computation. The basic idea of the dynamically updat-
ing the mutation rate is presented. Similarly, an adaptive parallel genetic algorithm
for VLSI Layout Optimization is discussed in [18]. A major problem in the use
of genetic algorithms is premature convergence. An approach for dealing with this
problem is the distributed genetic algorithm model is addressed in [19]. Its basic
idea is to keep, in parallel, several subpopulations that are processed by genetic al-
gorithms, with each one being independent of the others. But all these algorithms
either consider mutation rate or crossover rate as a dynamic parameter, but not both
at the same time. The application of a breeder genetic algorithm to the problem of
parameter identification for an adaptive finite impulse filter is addressed in [20]. A

22 2 Self Adaptive Genetic Algorithms

population-based optimization method, called Free Search (FS) is also discussed
in [21].

A Self adaptive Genetic Algorithms with Simulated Binary Crossover is dis-
cussed in [22]. It talks about a single population GA for starters and it does not have
a multipoint crossover let alone adaptive multipoint crossover. The only similarity
between [22] and proposed model is that both the methods chooses adaptively the
proportion of the population for crossover. Similarly, an adaptive dynamic crossover
operators based on fuzzy connectives and adaptive real coded GAs based on fuzzy
logic controller is discussed in [23]. But it fails to prove the model analytically and
the convergence rate of our proposed model(SAMGA) is better.

The Nix and Vose Punctuated Equillibiria is given in [24]. Markov Modelling for
Genetic algorithms and their convergence rate are discussed in [25 - 29]. The aver-
age Hamming distance of individuals in the population to derive convergence rate is
used in [30]. Genetic Algorithms based on binomially distributed populations is also
proposed. In this chapter, the definition of convergence is restated and convergence
rate is derived based on expectation value of individuals.

2.3 Overview

Any heuristic search can be characterized by two concepts, exploitation and explo-
ration. These concepts are often conflicting in the sense that if exploitation of a
search is increased, then exploration decreases and vice versa. Fortunately, the par-
allel nature of GA helps in alleviating this problem slightly by simultaneously pro-
cessing a set of solutions thus providing for exploration, while at the same time sur-
vival of the fittest enforces exploitation. However, if a single population processes
a set of individuals, then the schemas in the population that give better results only
survive as generations proceed and hence search is not very explorative. Further, if
the explorative power of search is increased too much using mutation, convergence
does not occur. Thus, we need a method wherein, the explorative power of search is
increased for individuals in bad region of the state space and exploitation power of
search is increased for individuals in the high fitness region of the state space.

In this chapter, the proposed adaptive migration(island) model of GA is built such
that, given a search space, the number of individuals in the population that resides
in a relatively high fitness region of the search space increases thus improving ex-
ploitation. For these high fitness population, the mutation rate and number of points
of crossover are decreased thus making the search more focused. On the other hand,
for populations in a relatively low fitness zone of search space, the number of in-
dividuals is decreased but the mutation rates and number of points of crossover are
increased to make the search of these regions more explorative. Thus, the search
can be termed as one which exploits the heuristically promising region of search
space while exploring other regions. The search is also competitive as an increase
in fitness of one population makes the search in other populations with lower fitness
more explorative and rigorous.

2.4 Algorithm 23

2.4 Algorithm

The genetic algorithm described here is an adaptive GA where between evaluation
of individuals and applying the three operators of GA (selection, crossover and mu-
tation), the parameters used for these operators are updated based on the evaluation
of individuals.

2.4.1 Problem Definition

Let S be made up of all the 2k, k bit binary numbers representing the entire search
space. Given the objective function f which is a mapping f : S → R where R is a set
of real numbers, the problem is to find an x∗ ∈ S such that
f (x∗) ≥ f (x) ∀ x ∈ S.

2.4.2 Pseudocode

Let E = {P1,P2...Pnp} be an ecosystem with np populations in it. Populations
P1,P2...Pnp ⊂ S. Pi[j] stands for the jth individual of population Pi, clearly Pi[j] ∈ S.
Let ni be the size of population Pi and nci be the number of points of crossover
used for reproduction in population Pi. Let f̄i be the average fitness of a popula-
tion Pi. Let f (Pi), the fitness of population Pi be the fitness of the best individual
of that population. Let f̄ be the average fitness of the ecosystem. Let n̄ be the aver-
age number of individuals per population. Let pmi be the rate of mutation used for
population Pi. The rate of crossover being one. Then, the pseudo code for the Self
Adaptive Migration model Genetic Algorithms (SAMGA) can be given as shown in
Table 2.3.

The algorithm shown above is adaptive in four respects. The first parameter adap-
tively changed is the population size of each population. The population size is dy-
namically varied based on the fitness of the best individual of that population com-
pared to the mean fitness of the population. The number of individuals in population
Pi is updated as,

ni,t+1 = ni,t +
f (Pi)

f̄
− 1 (2.1)

Where t is used to represent time in generations. Using this update, the size of pop-
ulation with fitness greater than the mean population fitness grows while size of
population whose fitness is below the mean population fitness shrinks. Thus, it can
be visualized that more number of individuals are concentrated in the heuristically
better promising region of search space (exploitation).

The second parameter that is dynamically adapted is the number of points of
crossover. The update used for number of crossover points is given by,

nci,t+1 = nci,t +
n̄
ni

− 1 (2.2)

24 2 Self Adaptive Genetic Algorithms

Table 2.3 Self Adaptive Migration Model Genetic Algorithms(SAMGA)

begin
var prev = 0;
for i = 1 : np, do

(i) Set ni, the number of individuals in the population Pi to some arbitrary value n0
(ii) Initialize all individuals of population Pi to some random bit strings
(iii) Set number of crossover points used for population Pi, nci to one
(iv) Set mutation rate used for population Pi, pmi to 0.01

next
for gen = 1 : maximum generation limit, do

var nsum = 0;
var fsum = 0;
for i = 1 : np, do

(a) Evaluate fitness of all the individuals of the population Pi and
find f (Pi) the best fitness of the population
(b) nsum = nsum+ni
(c) f sum = f sum+ f (Pi)

prev = f̄
f̄ = f sum

np
n̄ = nsum

np
for i = 1 : np, do

(a) nci = nci + n̄
n −1

(b) pmi = pmi +(n̄
n −1)∗0.0001

(c) ni = ni +
f (Pi)

f̄
−1

(d) if (ni == 0)
Delete population Pi (extinction)

(e) endif
next
for i = 1 : np, do

Perform elitist selection for population Pi with the modified population size ni
Perform nc point non-uniform crossover on selected individuals of population Pi
Perform mutation on individuals of population Pi with mutation probability pmi

next
if prev == f̄

Exchange or migrate best individuals between populations.
endif

next
end

Using this update we can see that, if the number of individuals in a population is
less compared to the mean number of individuals in a population, then the number
of points of crossover is increased. In an indirect way update on the number of points
of crossover is linked to fitness of population. From update on population size, it is
clear that population size increases with fitness of population but from update of
number of points of crossover, we see that for relatively low population sizes the
number of points of crossover is increased and hence search is more explorative.

The third parameter considered is the mutation rate whose update is similar to
the update on the number of crossover points, given by,

2.5 Mathematical Analysis 25

pmi,t+1 = pmi,t +(
n̄
ni

− 1)∗ 0.0001 (2.3)

The significance of this update is similar to the update on the number of points of
crossover. Obviously, higher the mutation rate, more explorative is the search. The
factor of 0.0001 is chosen arbitrarily as it is a considerably small factor to update
probability of mutation.

The final parameter that is adaptive in the algorithm is the rate of migration.
Migration refers to copying individuals from one population to another. Migration
helps in discovering new schemas got by crossover of schemas of two populations.
In the algorithm, there is no exact parameter for migration rate. Migration occurs
when the average fitness of the populations remains unchanged between two gener-
ations. Thus, when populations have attained a steady state, migration occurs to try
and discover a new schema.

The selection scheme used in the genetic algorithm is the elitist scheme. The best
individuals of each population are copied unaltered to the next generation popula-
tion. The remaining individuals are selected based on their fitness. The use of elitist
selection guarantees that the best individual of any generation is at least as good as
the best individual of the previous generation. It helps in achieving global conver-
gence. Here, 100% of individuals are chosen from the k most fit but k is large to
prevent premature convergence.

One interesting phenomenon that can be noticed when this algorithm is used
on a complex, search space, is that just like in nature, if a population consistently
performs badly, its number finally decreases to zero and the population becomes ex-
tinct. This suggests that the total number of individuals in the ecosystem is affected
by the problem size and complexity.

2.5 Mathematical Analysis

The Holland’s schema theorem for a general case can be given as,

M(H,t + 1) ≥ ((1 − pc)M(H, t)
f (H)
favg

+pc[M(H,t)
f (H)
favg

(1 − losses)+ gains])(1 − pm)O(H)

Where M(H,t) is the number of individuals in a population with schema H are
present in the current generation, favg is average fitness of population, O(H) is order
of schema H and pc and pm are rates of crossover and mutation respectively. In our
algorithm, we consider pc to be one. Hence the Schema theorem becomes,

M(H,t + 1) ≥ [M(H,t)
f (H)
favg

(1 − losses)+ gains](1 − pm)O(H)

26 2 Self Adaptive Genetic Algorithms

In the proposed algorithm, as the population size varies each generation, the
schema lower bound for the varying population size becomes,

M(H,t + 1) ≥ [
M(H, t)

nt
nt+1

f (H)
favg

(1 − losses)

+gains](1 − pm)O(H) (2.4)

where nt is population size at generation t.
If we consider loss to be any crossover that disrupts the schema, then our calcu-

lation of gain must account for the preservance of the schema when both parents are
of the schema H. Now for an n point crossover to be non-disruptive, even number
of crossover points, only can occur between fixed bits of schema [31] as shown in
Figure 2.1. The remaining crossover points must be outside defining length. Hence
the probability of n point crossover generating only even number of crossovers be-
tween fixed bits for a schema of k order hyperplane is Pk,even. Probability of disrup-
tion Pd of n point crossover is bounded by,

Pd(n,Hk) ≤ 1 − Pk,even(n,Hk)

Figure 2.1 shows an n point crossover which is non disruptive. d1, d2 and d3

are fixed bits, L1 and L2 are distances of d3 and d2 from d1 respectively and L is
the string length. As a special case, probability of even number of crossover points
falling between fixed bits for a second order hyperplane is given by [32]

P2,even(n,L,L1) =

n
2

∑
i=0

nC2i
L1

L

2i L− L1

L

n−2i

(2.5)

d3d2d1

L1

L

L2

Fig. 2.1 Non-Disruptive n point crossover

2.5 Mathematical Analysis 27

That is, the probability is given by the product of number of ways of choosing an
even number of points from an n point crossover, the probability of placing an even
number of points between the two defining points and the probability of placing
the other points outside the defining points. L here is the string length and L1 is the
defining length.

We can extend the probability of disruption for a kth order hyperplane as

Pk,even(n,L,L1, ...,Lk−1) =

n
2

∑
i=0

nC2i
L1

L

2i L− L1

L

n−2i

Pk−1,even(n,L1,L2, ...,Lk−1) (2.6)

That is, probability that an even number of crossover points fall between k defining
bits Pk,even is given by the probability that even number of crossover points fall
between the first two defining bits and the rest of the points fall outside the defining
bits into Pk−1,even. Hence, taking bound on the probability of disruption

Pd(Hk) ≤

1 −
n
2

∑
i=0

nC2i
L1

L

2i L− L1

L

n−2i

Pk−1,even(n,L1, ...,Lk−1) (2.7)

Now, as mentioned earlier, the lower bound on the gain is given by the preser-
vance of schema when disruptive crossover occurs between two parents both fol-
lowing the same schema. Hence, gain is given by gains ≥ n ∗ Pd∗, Probability that
P1 and P2 are in schema H

After selection, the number of individuals in schema H is given by M(H,t) f (H)
favg

.
Total number of individuals in a population is n. Hence probability that given a
parent, it is in schema H is given by M(H,t)

n
f (H)
favg

. Hence the gain is obtained as,

gains ≥ nt+1Pd
M(H, t)

nt

f (H)
favg

M(H, t)
nt

f (H)
favg

(2.8)

Using this lower bound on gains in Equation (2.4) and replacing loss with disruption

M(H,t + 1) ≥ [
M(H, t)

nt
nt+1

f (H)
favg

(1 − Pd)

+nt+1Pd(
M(H,t)

nt

f (H)
favg

)2](1 − pm)O(H)

Simplifying,
M(H, t + 1) ≥

M(H,t)
nt

nt+1
f (H)
favg

[1 − Pd + Pd(
M(H, t)

nt

f (H)
favg

)](1 − pm)O(H)

28 2 Self Adaptive Genetic Algorithms

But nt favg = ∑ f for generation t. Therefore, we obtain the schema theorem as

M(H,t + 1) ≥

M(H,t)
nt

nt+1
f (H)
favg

[1 − Pd(1 − M(H,t) f (H)
∑ f

)](1 − pm)O(H) (2.9)

This is the schema theorem that deals with a single population. An ecosystem of
population where populations with better fitness have more number of individuals
than those with low fitness population is considered in our algorithm. Consider a
low fitness population in the low yielding region of the search space. Consider the
case when this population comes across a high fitness point in the search space. Let
H̄ be the schema with high fitness that comes across the low fitness population. All
other individuals in population have a low fitness compared to this high fitness point
and hence

f (H̄) = ∑ f

Applying this to Equation (2.9) we get

M(H̄, t + 1) ≥

M(H̄,t)
nt

nt+1
f (H̄)
favg

[1 − Pd(1 − M(H̄, t))](1 − pm)O(H̄)

Since we have only found a single point with high fitness, M(H̄, t) = 1. Therefore

M(H̄,t + 1) ≥ M(H̄, t)
nt

nt+1
f (H̄)
favg

(1 − pm)O(H̄)

Thus, there is no disruption. favg = ∑ f/nt and f (H̄) = ∑ f Therefore

M(H̄ ,t + 1) ≥ M(H̄ ,t)
nt

ntnt+1(1 − pm)O(H̄)

But M(H̄,t) = 1. Therefore

M(H̄,t + 1) ≥ nt+1(1 − pm)O(H̄)

Thus if a population Pi in the low fitness region comes across even one high fitness
solution, in the very next generation approximately ni,t+1(1 − pm)O(H̄) of the ni,t+1

individuals of the population in the next generation are in schema H̄. This immedi-
ate drift towards high fitness region of a low fitness population, suggests the robust
performance of the method. The assumption that the fitness of the best solution is
approximately equal to sum of fitness of all individuals in the population is used to
display the power of the algorithm when the entire population is in a very low fitness
area of search space. This analysis is a proof for the performance of the algorithm
in the worst case. In general, the drift towards high fitness region is faster when the

2.5 Mathematical Analysis 29

population lies in a low fitness region. The high fitness populations of the ecosystem
drive the low fitness populations to perform a more explorative search while the high
fitness populations perform a concentrated exploitational search in the high yielding
regions. As soon as the low fitness populations find a better region, the individuals
in the population crowd this region of the search space. This competitive nature of
populations ensures robust performance. The search conducted by the genetic algo-
rithm can thus be explained as exploitational with respect to high yielding regions of
the search space and explorative with respect to other regions. The adaptive updates
to the parameters of number of points of crossover and rate of mutation for each
population are responsible for the explorative nature of the low fitness population.
The adaptive parameter of population size helps in concentrated search in high fit-
ness region of search space. The term explorative indicates that larger area of search
space is covered by the search. There is no doubt that as mutation rate increases, the
search is more explorative.

Theorem 2.1. The total number of individuals in the ecosystem is a constant; that is,

np

∑
i=1

ni,t =
np

∑
i=1

ni,t+1 = constant

Proof. Let the initial number of individuals in the ecosystem be nsum. Therefore,

np

∑
i=1

ni,0 = nsum = constant

Now at generation t, let total number of individuals in the ecosystem be n′
sum.

Therefore,
np

∑
i=1

ni,t = n′
sum

In the next generation t + 1, apply the update given by Equation (2.1) to all the
populations, then the total number of individuals in the ecosystem in generation
t + 1 is given by,

np

∑
i=1

ni,t+1 =
np

∑
i=1

(ni,t +
f (Pi)

f̄
− 1)

np

∑
i=1

ni,t+1 =
np

∑
i=1

ni,t +
np

∑
i=1

f (Pi)
f̄

−
np

∑
i=1

1

Therefore
np

∑
i=1

ni,t+1 = n′
sum +

1
f̄

np

∑
i=1

f (Pi)− np

30 2 Self Adaptive Genetic Algorithms

But

f̄ =
∑np

i=1 f (Pi)
np

Therefore
np

∑
i=1

ni,t+1 = n′
sum + np − np = n′

sum =
np

∑
i=1

ni,t

Substituting t = 0 we get

np

∑
i=1

ni,0 =
np

∑
i=1

ni,t = n′
sum = nsum = constant

Thus, the number of individuals in the ecosystem is constant, i.e., the algorithm
just groups these individuals into different populations such that, individuals in the
same population reproduce and show co-operation while individuals in different
populations compete to perform better. Thus the algorithm displays interpopulation
competition and intra population co-operation.

2.5.1 Convergence Analysis

The convergence rate of a genetic algorithm is defined in this chapter as the rate at
which the hamming distance between the individuals of ecosystem becomes zero. In
other words, convergence occurs when all individuals of population have the same
genotype. Therefore, the convergence rate of the genetic algorithm is the rate at
which the number of copies of this individuals increases till all the individuals of
the ecosystem have same genotype (zero hamming distance). Hence we can derive
a bound on the rate of convergence by fixing rate of increase of expectation value of
individual shown in Equation 2.9.

Before deriving rate of change of expectation value consider the update to number
of individuals in a population. From Equation 2.1 we have,

ni,t = ni,t−1 +
f (Pi,t−1)

¯ft−1
− 1

Expanding the recursive equation for t generations we get,

ni,t = ni,0 +
t−1

∑
j=0

f (Pi, j)
f̄ j

− t (2.10)

Now, the use of Elitist selection guarantees the convergence of the genetic algo-
rithm. During the process of convergence under steady state, a population is either
increasing or decreasing in population size. This suggests a linear relation of the
summation term in Equation 2.10 and t. Let the coefficient of linear term be β .
Therefore,

ni,t = ni,0 + β t − t

2.5 Mathematical Analysis 31

Therefore, the population size is linearly dependent on number of generations. Thus,

ni,t = ni,0 +(β − 1)t (2.11)

where β is some constant.
Applying this in Equation 2.9 we get,

Mi(H,t) ≥ Mi(H, t)(ni,0 +(β − 1)t)

f (H)
∑ f̄ ni,t−1

[1 − Pd(1 − Mi(H,t) f (H)
∑ fi,t

)](1 − pm)O(H) (2.12)

where Mi(H,t) is the expectation value of schema H in population Pi. Let

f (H) = f̄ + c f̄

where c is some constant. That is the average fitness of schema H is above the
average fitness of the population by a factor c. Therefore,

f (H)
f̄

= constant

Now,
ni,t−1 = ni,0 +(β − 1)(t − 1)

Now to calculate a bound on convergence rate, we use the Θ notation. As ni,t and
ni,t−1 are linearly dependent on t, in the calculation of order of convergence they
cancel each other out. Mutation just induces small randomness into the search and
it does not alter the order of convergence but only the actual convergence rate.

From Equation 2.12 the order of convergence Θ(Mi(H, t)) as,

Θ(Mi(H, t)) = Θ(αMi(H, t − 1)2)

Expanding the recursion of Mi(H,t − 1) we get,

Θ(Mi(H, t)) = Θ(α3Mi(H, t − 2)4)

Further expanding the recursive relation we get,

Θ(Mi(H, t)) = Θ(α7Mi(H, t − 3)
8
)

Finally, expanding the entire recursive relation we get,

Θ(Mi(H, t)) = Θ(α1+2+4+...+2t−1
)

As the term in power is the summation of geometric series with factor two, we get,

Θ(Mi(H, t)) = Θ(α2t−1)

32 2 Self Adaptive Genetic Algorithms

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

F
itn

e
ss

Number of Generations

Predicted convergence rate
Actual convergence

Fig. 2.2 Plot of actual versus predicted convergence

Thus the rate of convergence of the algorithm is of the order,

Θ(Mi(H,t)) = Θ(α2t
)

Clearly this is the case of exponential of exponential order. This shows that the
algorithm has a much better convergence rate as compared to simple GA.

The graph in Figure 2.2 shows a plot of convergence of the proposed Genetic
Algorithm for the first De Jongs test bed function (F1) and the convergence rate
derived. From the graph, it is clear that the convergence rate of the algorithm is
close to predicted convergence rate. The actual convergence rate is compared with
the function,

C(x) = eex

Such that,
1.54078 ≥ x ≤ 0.163734

This clearly proves that the actual convergence rate of the algorithm is indeed expo-
nential of exponential as predicted from mathematical analysis.

2.6 Experiments

Each population of the ecosystem can be run in parallel on different processors
as the algorithm is a parallel genetic algorithm. However, the algorithm is imple-
mented on a single processor system. Figure 2.3 shows a view of the ecosystem

2.6 Experiments 33

Population Population
2 np

Population
1

Fig. 2.3 Implementation of Ecosystem

implemented. The ecosystem consists of a linked list of populations and variables
to hold average fitness of population and average number of individuals in a popula-
tion. The linked list structure helps in an easy implementation of the phenomenon of
extinction where, when the population becomes extinct that node is simply removed.

Each population which is a node of the linked list is a structure consisting of
the population parameters like, number of points of crossover, population size and
rate of mutation. Further, the population also contains an array of bit strings which
represent the individuals of the population. The genotype to phenotype conversion
and fitness evaluation is performed by a fitness function.

Table 2.4 Testbed functions used

F1 f (x) = ∑10
1 x2

i

−5.12 ≤ xi ≤ 5.12

F2 f (x) = 100(x2
1 −x2

2)+(1−x1)2

−2.048 ≤ xi ≤ 2.048

F3 f (x) = 200+∑10
i=1 x2

i −10cos(2πxi)
−5.12 ≤ xi ≤ 5.12

F4 f (x) = ∑10
i=1 x∗ sin(x)

−5.12 ≤ xi ≤ 5.12

34 2 Self Adaptive Genetic Algorithms

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80 90 100

F
itn

e
ss

 x
 e

 -
2

Generations

SAMGA
SGA
IGA

Fig. 2.4 Convergence for function F1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20 30 40 50 60 70 80 90 100

F
itn

e
ss

 x
 e

-3

Generations

SAMGA
SGA
IGA

Fig. 2.5 Convergence for function F2

2.6 Experiments 35

To evaluate the performance of the algorithm, it is used to find the minimal points
of complex high dimensional landscapes obtained using the testbed functions shown
in Table 2.4. Function F1, which is the De Jong’s function 1, is a unimodal func-
tion with one distinct peak. Function F2 (Rosenberg function), is a function which
is basically an almost flat valley and hence finding the minimal point becomes a
difficult problem. Function F3 (Rastragin function) is a multimodal function with
many peaks. The function is a good testbed function as any algorithm has a good
chance of getting stuck at one of the peaks which is a local minima. Function F4 is
again a multimodal function. In the experiments conducted, the IGA and SAMGA
both had 10 populations of 60 individuals each. The SGA had 600 individuals in its
population. For SGA and IGA the crossover rate chosen is 1 and mutation rate 0.01.

The plot in Figure 2.4 shows the convergence of our algorithm(SAMGA), island
model(IGA) and simple genetic algorithm(SGA) for the function F1. It is observed
that the Self - Adaptive Migration GA(SAMGA) converges much faster than the
other algorithms. The plot in Figure 2.5 shows the convergence of the three algo-
rithms for Rosenberg function. As our function is low dimensional, the fitness is
multiplied by 1000 before plotting. Similarly, the plot in Figure 2.6 shows the con-
vergence for Rastragin function. This is a multimodal function with many peaks of
almost equal heights. In both the cases, SAMGA outperforms IGA and SGA.

The plot in Figure 2.7 shows the convergence for function F4. Here SAMGA and
SGA have similar performance and both outperform IGA. The graphs in Figures
2.8 through 2.11, shows the convergence rate of all the three algorithms for varying
generations and functions. In all these cases, the performance of SAMGA is most
significant in the later generations nearer to convergence.

To test how the explorative power of the proposed algorithm helps in overcoming
GA - deception the algorithm along with simple GA and Island GA is used to solve
ugly 3 bit deceptive function. With 250 individuals in four populations, SAMGA is
able to overcome deception in 150 generations, whereas IGA overcame deception
only after 228 generations. With 1000 individuals SGA is able to overcome decep-
tion in 557 generations. This experiment proves that the explorative nature on the
lower fitness populations in SAMGA helps in overcoming GA deception better.

Example Search: Consider the landscape given by the equation

y = (x − 1)∗ cos(x − 1)

The proposed GA is used on this landscape with an initialization of three popula-
tions of four individuals each. Figure 2.12 shows the function plot along with the
initial set of individuals in the ecosystem. Figure 2.13 shows the search result after
10 generations and Figure 2.14 shows the search result after 20 generations. The
number of individuals present is not clear from the graph as in the 10th and 20th
generations, many individuals have the same bit string. However, from Lemma 1,
the total number of individuals is the same in ecosystem. From the result it can be
seen that from the initial random distribution, in the 10th generation individuals get
settled at the first and second peaks (one individual at the lower peak and eleven

36 2 Self Adaptive Genetic Algorithms

 0

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100 120 140 160 180 200

F
itn

e
ss

 x
 e

-2

Generations

SAMGA
SGA
IGA

Fig. 2.6 Convergence for function F3

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

 0 20 40 60 80 100 120 140 160

F
itn

e
ss

Generations

SAMGA
SGA
IGA

Fig. 2.7 Convergence for function F4

2.6 Experiments 37

 0

 5

 10

 15

 20

 25

 50 55 60 65 70 75 80 85 90 95 100

F
itn

e
ss

 x
 e

 -
2

Generations

SAMGA
SGA
IGA

Fig. 2.8 Convergence for function F1

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 65 70 75 80 85 90 95 100

F
itn

e
ss

 x
 e

-3

Generations

SAMGA
SGA
IGA

Fig. 2.9 Convergence for function F2

38 2 Self Adaptive Genetic Algorithms

 0

 50

 100

 150

 200

 250

 300

 350

 400

 160 165 170 175 180 185 190 195 200

F
itn

e
ss

 x
 e

-2

Generations

SAMGA
SGA
IGA

Fig. 2.10 Convergence for function F3

-60.5

-60

-59.5

-59

-58.5

-58

-57.5

-57

-56.5

-56

 80 90 100 110 120 130 140 150

F
itn

e
ss

Generations

SAMGA
SGA
IGA

Fig. 2.11 Convergence for function F4

2.6 Experiments 39

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -2 0 2 4

F
itn

e
ss

Variable Value

Fig. 2.12 Example : Initial set of Individuals

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -2 0 2 4

F
itn

e
ss

Variable Value

Fig. 2.13 Example : Individuals after 10 generations

40 2 Self Adaptive Genetic Algorithms

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -2 0 2 4

F
itn

e
ss

Variable Value

Fig. 2.14 Example : Individuals after 20 generations

at higher peak). Finally, in the 20th generation, all the individuals get settled at the
higher peak which is the maxima.

2.7 Performance Analysis

To evaluate the performance of the algorithm on real data mining applications, a
Michigan Style classifier is built (see Appendix for details on classifier system) and
the classifier is tested on Datamining applications from the UCI Machine learning
repository. The training set used is the first 40% of the data. The next 60% is used
for testing. The various data mining applications chosen for the test are

• Pima Indian Diabetes (PID) Database with 768 cases, 2 classes and 8 attributes
• Wisconsin Breast Cancer Database (Wisc) with 699 entries , 2 classes and 9

attributes
• Hepatitis Database (Hep) with 155 entries , 2 classes and 19 attributes
• Ionosphere Database (Ion) with 351 entries , 2 classes and 34 attributes

The different methods that are compared are given below. For a survey of these
methods on machine learning problems refer [33]:

• Self-Adaptive Migration GA (SAMGA) - The proposed algorithm.
• Learning Vector Quantization (LVQ) - Establishes number of codebooks to ap-

proximate various domains of input vector by quantized values.

2.7 Performance Analysis 41

SAMGA ITI LVQ LMDT Bpnn RBF

Ion

Methods
Data Set

Pima

Wisc

73.16

93.65

91.1496.28

73.51

95.74

84.59

74.6

86.8988.58

94.82

71.28

95.8 94.9

Hep 75.93

73.4 71.6

87.686.6

75.478.3 7783.4

89.4

Fig. 2.15 Accuracy of the Classification Results

• Backpropagation Neural Network (Bpnn) - A neural network that uses feedback
of errors for learning.

• Radial Basis Function neural network (RBF) - It is a Neural network
• Incremental Decision Tree Induction (ITI) - Builds decision tree incrementally

as new training instances are provided.
• Linear Machine Decision Tree (LMDT) - Uses multi-class decision trees with

multivariate tests at internal decision nodes.

The table in Figure 2.15 summarizes the performance of SAMGA and other ma-
chine learning techniques. It can be seen that SAMGA has consistently good perfor-
mance and relatively high classification rates as compared to other methods. It can
be seen that the performance of the methods vary from application to application
but SAMGA gives consistent good performance for all the applications.

Similarly, the performance of SAMGA after 10 fold cross validation of the
datasets used is given in Figure 2.16. It can be seen that SAMGA shows better
performance when compared with the other techniques even after the 10 fold cross
validation of the datasets.

ITI LVQ LMDT Bpnn RBF

Ion

Methods
Data Set

Pima

Wisc

Hep

SAMGA

73

86.2

94.1

84.7

71.6

90.40

91.45

72.32

70

93.24

85.12

74.31

72.51

93.44

85.90

83.45

72.22

93.80

84.77

74

70.16

92.49

84.76

75.70

Fig. 2.16 Accuracy of the Classification Results after 10 fold cross validation

42 2 Self Adaptive Genetic Algorithms

2.8 A Heuristic Template Based Adaptive Genetic Algorithms

In this section, the concept of heuristic templates for adaptive Genetic Algorithms is
presented. The crossover and mutation are totally random processes in the existing
genetic algorithms. Here, we use the heuristics to adapt the crossover and mutation
for better results. This increases the convergence rate. In our algorithm, as the GA
proceeds through the generations, we update a template, which is proportional to the
average individual in the population over the generations. Comparing the template
and individual to crossover, we derive the point at which, when the crossover is
done we get best results. The same is done for mutation. The proposed scheme is
useful for applications like pattern recognition and data classification. The genetic
algorithm described here is an adaptive GA where crossover and mutation for an
individual of a particular population is performed based on heuristic templates saved
for that population.

2.8.1 Problem Definition

Let S be made up of all the 2k, k bit binary numbers representing the entire search
space. Given the objective function f which is a mapping f : S → R where R is a set
of real numbers, the problem is to find an x∗ ∈ S such that f (x∗) ≥ f (x) ∀ x ∈ S.
Let E = {P1,P2...Pnp} be an ecosystem with np populations in it. Populations
P1,P2...Pnp ⊂ S. Pi, j stands for the jth individual of population Pi, clearly Pi, j ∈ S.
Pi, j[k] is the bit value of the kth bit of individual Pi, j. Let n be the size of each pop-
ulation Pi. Let pm be the rate of mutation. Let T1,T2...Tnp be the heuristic templates
of populations P1,P2...Pnp respectively. The heuristic templates is a vector of float
values with length equal to the string length of individuals. The pseudocode for the
the proposed adaptive GA is given in Table 2.5.

2.9 Example

Consider the problem of minimizing function f (x) = x2. Let us use a single popu-
lation with 4 individuals in it to solve the problem. Let the initial population consist
of individuals

P1,1 = 5 = 0101b,P1,2 = 11 = 1011b,P1,1 = 6 = 0110b,and P1,2 = 8 = 1000b

Now for first generation the template for the two population is T1 = 0,0,0,0. After
proportionate selection using elitist scheme , crossover and mutation we get,

P1,1 = 5 = 0101b,P1,2 = 13 = 1101b,P1,1 = 3 = 0011b,and P1,2 = 6 = 0110b

Now similarity template becomes T1 = −0.5,0.5,0,0.5. Hence the weights for
roulette wheel for crossover becomes pnts = 1.167,1,1.167. Thus there is a bias
towards choosing the point between first two or last two bits for crossover rather
than the middle point. Thus after selection, crossover and mutation we have

P1,1 = 3 = 0011b,P1,2 = 5 = 0101b,P1,1 = 2 = 0010b,and P1,2 = 7 = 0111b

2.9 Example 43

Table 2.5 Heuristic Template based Adaptive Genetic Algorithms(HTAGA)

begin
for i = 1 : np, do

(a) Set heuristic template vector Ti to 0 vector or origin
(b) Initialize all individuals of population Pi to some random bit strings
(c) Set mutation rate to some arbitrary small value
(d) Set migration rate to some arbitrary value

next
for gen = 1 : maximum generation limit, do

for i = 1 : np, do
for j = 1 : n, do
for k = 1 : string length of individuals, do
if Pi, j[k] == 1
Ti, j[k] = Ti, j[k]+ 1

n
else
Ti, j[k] = Ti, j[k]− 1

n
endif

next
next

Evaluate fitness of all the individuals of the population Pi and find f (Pi) the best
fitness of the population (best solution of that population for the generation).

Perform elitist selection for population Pi.
for j = 1 : string length of individuals - 1, do

pnts[j] = 0;
for k = j+1 : string length of individuals, do
pnts[j] = pnts[j]+ abs(Tk)

(k− j)
next
for k = j : 0, do
pnts[j] = pnts[j]+ abs(Tk)

(k− j)
next

next
(i) Perform crossover on selected individuals of population Pi using crossover point
selected using roulette wheel selection whose weights for each point is given by
the vector pnts.

(ii) Perform mutation on individuals of population Pi with mutation probabil-
ity

pmi and for mutation, set bit value of the position as 1 if template value is negative
at that point and set bit value 0 if template value is positive at that point.
(iii) If template value is 0 invert the bit.
next

if gen == multiple of migration rate
Exchange or migrate best individuals between populations.

endif
next

end

Now similarity template becomes T1 = −1.5,0.5,0.5,1. Hence the weights for
rolled wheel for crossover becomes pnts = 2.583,2.25,2.25. Hence after selection,
crossover and mutation we have

44 2 Self Adaptive Genetic Algorithms

P1,1 = 2 = 0010b,P1,1 = 3 = 0011b,P1,2 = 5 = 0101b,and P1,2 = 4 = 0100b

Now similarity template becomes T1 = −2.5,0.5,0,1. Hence the weights for roulette
wheel for crossover becomes pnts = 3.33,2.25,1.83. Here clearly there is a strong
bias towards crossover between first two bits and a slightly lesser bias towards
crossover between second and third bit. Hence after selection, crossover and mu-
tation we have

P1,1 = 2 = 0010b,P1,1 = 3 = 0011b,P1,2 = 5 = 0101b,and P1,2 = 0 = 0000b

Thus we see that we have reached the global minima. For a noisy and peaky search
space it can be seen that the heuristic template works even better.

2.10 Performance Analysis of HTAGA

In the experiments conducted, the IGA and HTAGA both have 10 populations of 60
individuals each. The SGA had 600 individuals in its population. For SGA and IGA
the crossover rate chosen is 1 and mutation rate 0.01.

The plot in Figure 2.17 shows the convergence of our algorithm HTAGA, IGA
and SGA for the function F1. It is observed that the HTAGA converges much faster
than the other algorithms. The plot in Figure 2.18 shows the convergence for Rastra-
gin function. Even though this is a multimodal function with many peaks of almost
equal heights, HTAGA outperforms IGA and SGA.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20 40 60 80 100 120 140 160 180 200

F
itn

e
ss

Generations

SGA
IGA

HTAGA

Fig. 2.17 Convergence for function F1

2.10 Performance Analysis of HTAGA 45

 0

 5

 10

 15

 20

 25

 20 40 60 80 100 120 140 160 180 200

F
itn

e
ss

Generations

SGA
IGA

HTAGA

Fig. 2.18 Convergence for function F3

-48.2

-48

-47.8

-47.6

-47.4

-47.2

-47

-46.8

 20 40 60 80 100 120 140 160 180 200

F
itn

e
ss

Generations

SGA
IGA

HTAGA

Fig. 2.19 Convergence for function F4

46 2 Self Adaptive Genetic Algorithms

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 100 120 140 160 180 200

F
itn

e
ss

Generations

SGA
IGA

HTAGA

Fig. 2.20 Convergence for function F1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100 120 140 160 180 200

F
itn

e
ss

Generations

SGA
IGA

HTAGA

Fig. 2.21 Convergence for function F3

2.10 Performance Analysis of HTAGA 47

-48.15

-48.14

-48.13

-48.12

-48.11

-48.1

-48.09

-48.08

 100 120 140 160 180 200

F
itn

e
ss

Generations

Fig. 2.22 Convergence for function F4

ITI LVQ LMDT Bpnn RBF

Ion

Methods
Data Set

Pima

Wisc

73.16

93.65

91.14

73.51

95.74

84.59

86.8988.58

94.82

71.28

95.8 94.9

Hep 75.93

73.4 71.6

87.686.6

75.478.3 77

87

93.12

73.7

81.2

HTAGA

Fig. 2.23 Accuracy of the Classification Results for HTAGA

The plot in Figure 2.19 shows the convergence for function F4. Here HTAGA
and SGA have similar performance and both outperform IGA. The graphs in
Figures 2.20 through 2.22, shows the convergence rate of all the three algorithms for
varying generations and functions. In all these cases, the performance of HTAGA is
most significant in the later generations nearer to convergence.

The table in Figure 2.23 summarizes the performance of HTAGA and other ma-
chine learning techniques. It can be observed that HTAGA has consistently good
performance and relatively high classification rates as compared to other methods.
It can be seen that the performance of the methods vary from application to applica-
tion but HTAGA gives consistent good performance for all the applications. From

48 2 Self Adaptive Genetic Algorithms

tables in Figure 2.16 through 2.23 it can be observed that SAMGA performs well
when compared to HTAGA.

2.11 Summary

Genetic Algorithms have proved to be a robust general purpose search technique.
They have a central place in data mining applications due to their ability to search
large search spaces efficiently. In this chapter, we have proposed a Self-Adaptive
Migration GA search techniques, have two central but competing concepts of ex-
ploitation and exploration. The proposed algorithm can be characterized by focused
and deeper exploitation of the heuristically promising regions of the search space
and wider exploration of other regions of the search space. The algorithm achieves
this by varying the number of individuals in a population which helps in better ex-
ploitation of high fitness regions of the search space by increasing the number of in-
dividuals in the region. The algorithm also helps in better exploration by increasing
the number of crossover points and the mutation rates for the low fitness population.

The chapter provides a mathematical analysis of the method using schema theo-
rem which accounts for lower bound on the gain. It has been shown that the method
proposed assures that, when a low fitness population of the ecosystem stumbles
across a high fitness solution due to its explorative nature there is an immediate drift
of that population towards the high fitness region of search space.

The proposed method has been tested on a set of testbed functions and on real
data mining problems of classification. The results show that the method achieves
faster convergence and provides better accuracies in classification. The convergence
of the method has been compared with those using single population genetic algo-
rithm and Island model GA and results prove that the proposed algorithm outper-
forms both SGA and IGA. The classifier system built using SAMGA is evaluated
against other classification systems.

Appendix

Genetic Algorithm classifiers can be divided into two classes, the Michigan Ap-
proach classifiers and the Pittsburg approach classifier based on how rules are en-
coded in the population of individuals. In the Michigan approach, each individual
of the population is a single rule of the entire rule base. In the Pittsburg approach,
each individual encodes a set of prediction rules. The classifier used in this chapter
is a Michigan approach classifier.

In the classifier system, each rule is represented by a bit string. Consider the
rule if (18≤age≤21) and (50≤weight≤70) then class = normal. Now if there are
only two classes, normal(0) and abnormal(1), then this rule can be represented in
the format given by Figure 2.24. Figure 2.25 gives the bit string representation of
the same rule. Generally for the fitness evaluation of the rule credit assignments

References 49

18 21 50 70

Age Weight Class

0

Fig. 2.24 Rule representation

Age Weight Class

000010010 00010101 00110010 01000110

Fig. 2.25 Bit string representation of the rule

are provided. For the Michigan style classifier, care should be taken to eliminate
identical individuals from the population so that the rule base is not made up of the
same highly fit rule.

References

1. Holland, J.H.: Escaping Brittleness: The Possibilities of General-Purpose Learning Al-
gorithms Applied to Parallel Rule-based Systems. In: Mitchell, T., et al. (eds.) Machine
Learning, vol. 2, pp. 593–623. Morgan Kaufmann, San Francisco (1986)

2. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Genetic Algorithms for Concept
Learning. Machine Learning 13, 161–188 (1993)

3. Mata, J., Alvarez, J.-L., Riquelme, J.-C.: Discovering numeric association rules via evo-
lutionary algorithm. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS,
vol. 2336, pp. 40–51. Springer, Heidelberg (2002)

4. Shenoy, P.D., Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: Evolutionary Approach
for Mining Association Rules on Dynamic Databases. In: Proc. of PAKDD. LNCS
(LNAI), vol. 2637, pp. 325–336. Springer, Heidelberg (2003)

5. Srinivas, M., Patnaik, L.M.: Adaptive Probabilities of Crossover and Mutation in Genetic
Algorithms. IEEE Transactions on Systems Man and Cybernetics 24(4), 17–26 (1994)

6. Back, T.: Self Adaptation in Genetic Algorithms. In: Proceedings of First European Con-
ference on Artificial Life, pp. 263–271 (1992)

7. Martin, J.H., Lienig, J., Cohoon, J.H.: Population Structures: Island(migration) Models:
Evolutionary Algorithms Based on Punctuated Equilibiria. In: Handbook of Evolution-
ary Computation, pp. C6.3:1–C6.3:16. Oxford University Press, Oxford (1997)

8. Lobo, J.H.: The Parameter-less Genetic Algorithm: Rational and Automated Parameter
Selection for Simple Genetic Algorithm Operation PhD Thesis, University of Lisbon,
Portugal (2000)

9. Lobo, F.G., Goldberg, D.E.: The Parameter-Less Genetic Algorithm in Practice. Infor-
mation Sciences 167(1-4), 217–232 (2000)

10. Ghosh, A., Nath, B.: Multi-Objective Rule Mining using Genetic Algorithms. Informa-
tion Sciences 163(1-3), 123–133 (2000)

11. Hinterding, R., Michalewicz, Z., Peachey, T.C.: Self Adaptive Genetic Algorithm for
Neumeric Functions. In: Proceedings of the 4th Conference on Parallel Problem Solving
from Nature, pp. 420–429 (1996)

12. Krink, T., Ursem, R.K.: Parameter Control Using the Agent Based Patchwork Model. In:
Proceedings of The Congress on Evolutionary Computation, pp. 77–83 (2000)

50 2 Self Adaptive Genetic Algorithms

13. Kee, E., Aiery, S., Cye, W.: An Adaptive Genetic Algorithm. In: Proceedings of The
Genetic and Evolutionary Computation Conference, pp. 391–397 (2001)

14. Tongchim, S., Chongstitvatan, P.: Parallel Genetic Algorithm with Parameter Adaptation.
Information Processing Letters 82(1), 47–54 (2002)

15. Voosen, D.S., Muhlenbein, H.: Strategy Adaptation by Competing Subpopulations. In:
Parallel Problem Solving from Nature III, pp. 199–208. Springer, Berlin (1994)

16. Eiben, A.E., Sprinkhuizen-Kuyper, I.G., Thijseen, B.A.: Competing Crossovers in an
Adaptive GA Framework. In: Proceedings of the Fifth IEEE Conference on Evolutionary
Computation, pp. 787–792. IEEE Press, Los Alamitos (1998)

17. Herrera, F., Lozano, M.: Gradual Distributed Real-Coded Genetic Algorithms. IEEE
Transactions on Evolutionary Computation 4(1), 43–62 (2000)

18. Schnecke, V., Vornberger, O.: An Adaptive Parallel Genetic Algorithm for VLSI Layout
Optimization. In: Proc. of fourth Intl. Conf. on Parallel Problem Solving from Nature,
pp. 859–868 (1996)

19. Herrera, F., Lozano, M.: Gradual Distributed Real-Coded Genetic Algorithms. IEEE
Transactions on Evolutionary Computation 4(1), 43–62 (2000)

20. Montiel, O., Castillo, O., Seplveda, R., Melin, P.: Application of a Breeder Genetic Al-
gorithm for Finite Impulse Filter Optimization. Information Sciences 161(3-4), 139–158
(2004)

21. Penev, K., Littlefair, G.: Free Search - A Comparative Analysis. Information Sci-
ences 172(1-2), 173–193 (2005)

22. Deb, K., Beyer, H.G.: Self Adaptive Genetic Algorithms with simulated Binary
Crossover. Evolutionary Computation 9(2), 197–221 (2001)

23. Herrera, F., Lozano, M.: Adaptive Genetic Algorithms based on Fuzzy Techniques. In:
Proc. of Sixth Intl. Conf. on Information Processing and Management of Uncertainity in
Knowledge Based Systems (IPMU 1996), Granada, pp. 775–780 (July 1996)

24. Vose, M.D., Liepins, G.E.: Punctuated Equilibria in Genetic Search. Complex Sys-
tems 5(1), 31–44 (1991)

25. Nix, A., Vose, M.D.: Modeling Genetic Algorithms with Markov Chains. Annals of
Mathematics and Artificial Intelligence 5, 79–88 (1992)

26. Athreya, K.B., Doss, H., Sethuraman, J.: On the Convergence of the Markov Chain Sim-
ulation Method. Annals of Statistics 24, 69–100 (1996)

27. Eiben, A.E., Aarts, E.H.L., Van Hee, K.M.: Global Convergence of Genetic Algorithm:
A Markov Chain Analysis. In: Parallel Problem Solving from Nature, pp. 4–12. Springer,
Heidelberg (1991)

28. He, J., Kang, L., Chen, Y.: Convergence of Genetic Evolution Algorithms for Optimiza-
tion. Parallel Algorithms and applications 5, 37–56 (1995)

29. Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transac-
tions on Neural Networks 5, 96–101 (1995)

30. Louis, S.J., Rawlins, G.J.E.: Syntactic Analysis of Convergence in Genetic Algorithms.
Foundations of Genetic Algorithms, 141–152 (2002)

31. De Jong, K.A.: An Analysis of the Behaviour of A Class of Genetic Adaptive Sys-
tems, PhD Thesis, Department of Computer and Communication Sciences, University
of Michigan, Ann Arbor (1975)

32. Spear, W.M., De Jong, K.: An Analysis of Multipoint Crossover. In: Foundations of
Genetic Algorithms Workshop, Bloomington, pp. 301–315 (1991)

33. Eklund, P.W.: A Performance Survey of Public Domain Supervised Machine Learning
Algorithms, Technical Report, The University of Queensland Australia (2002)

Chapter 3
Characteristic Amplification Based Genetic
Algorithms

Abstract. This chapter proposes a new approach, wherein multiple populations are
evolved on different landscapes. The problem statement is broken down, to describe
discrete characteristics. Each landscape, described by its fitness landscape is used to
optimize or amplify a certain characteristic or set of characteristics. Individuals from
each of these populations are kept geographically isolated from each other. Each
population is evolved individually. After a predetermined number of evolutions, the
system of populations is analysed against a normalized fitness function. Depending
on this score and a predefined merging scheme, the populations are merged, one at a
time, while continuing evolution. Merging continues until only one final population
remains. This population is then evolved, following which the resulting population
contains the optimal solution. The final resulting population contains individuals
which have been optimized against all characteristics as desired by the problem
statement. Each individual population is optimized for a local maxima. Thus when
populations are merged, the effect is to produce a new population which is closer to
the global maxima.

3.1 Introduction

A major issue with the genetic algorithm, is that, in a fitness landscape they tend
to converge towards the local maxima rather than the global optimum. Once this
occurs, it may be difficult for the algorithm to proceed towards the globally optimal
solution. This can cause the algorithm to fail when the gap between the local maxima
and global optima is large. The approach proposed here attempts to prevent the
algorithm from converging at the local maxima and coerces it to proceed till the
global maxima [1, 2, 3, 4, 5, 8].

The period between 1990-1992 saw a great deal of work which attempted to find a
correct sorting network [1] for n = 16. Daniel Hillis attempted to solve the problem,
using a genetic algorithm [6, 7]. In order to form pairs of numbers for comparison
and exchange, Hillis used two chromosomes. A single pair was formed by the cor-
responding numbers on each chromosome. His initial attempts gave a result of 65

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 51–62.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

52 3 Characteristic Amplification Based Genetic Algorithms

comparisons, which was far short of the 60 comparison schemes developed by other
methods. The genetic algorithm is suffering from the same problem: It converged at
the local maxima, resulting in only a moderately good solution. Hillis’ solution, is
to evolve the fitness landscape itself. As the algorithm got closer to converging, the
landscape would get steeper, forcing the algorithm to evolve further. The landscape
is a set of numbers that each candidate sorting network is tested against. Thus, as the
algorithm progressed, the “weaker” set of input test cases were eliminated and the
stronger ones retained. In biology, this is known as the phenomenon of host-parasite
co evolution. To complete the analogy, the host is the sorting network designed
while the parasite is the set of input test cases.

One attempt concentrated on optimizing the parameters of the algorithm, such as
the probability of mutation and crossover as well as number of individuals in the
population. This is done using a neural network, which “learnt” the characteristics
of the solution and could thus realize when the algorithm is slowing down. Knowing
this, the neural network could then optimally alter the parameters of the GA, causing
the fitness landscape to change dramatically. This in turn would cause the algorithm
to evolve further, towards the global optima. The overhead of this approach is some-
what large as the background infrastructure needed for a neural network is complex.

Yet another approach towards optimizing the parameters of the algorithm, is done
using another genetic algorithm. This approach, aptly named the parameterless GA,
required no parameters as input. The parameters were themselves evolved against
the solutions provided. This approach is in some ways related to the host-parasite
solution provided by Hillis. Instead of evolving the problem set, the parameters of
the GA are evolved. This approach has been widely applied, again with varying
degrees of success. [6, 7, 9].

3.2 Formalizations

Proposition: Feature set must be disjoint: Let us assume, a genetic algorithm
based solution is to be found, for a given problem. Let us further assume that the
problem requires a solution with particular characteristics. Mathematically, we de-
fine each of these characteristics as feature sets l1, l2 ... ln where

L = {l1, l2, l3...ln} (3.1)

such that
∀l1, l2 ∈ Ll1

⋂
l2 = /0 (3.2)

The design of the fitness functions for each population depends on the feature
sets. Thus, if the feature set is not disjoint, i.e., if equation 3.2 is not true for a
chosen L more than one fitness function attempts to optimize the same sub-features.
This is redundant and causes an excessively larger survey of the search space. This
only slows down the entire algorithm and causes unnecessary crossover inputs.

3.2 Formalizations 53

Notations for the genetic machine: We can mathematically define a genetic algo-
rithm for our purposes, as a machine

G = (I,F, pm, px) (3.3)

where G is the genetic machine itself, I refers to the set of individuals that it com-
prises of, F is the fitness function that is used to evaluate the fitness function of
an individual i∀i ∈ I given by F(i) pm is the probability of mutation used for the
machine and px is the probability of crossover used. Different machines may be
represented as G1 and G2, where G1 = (I1,F1, pm1, px1) and G2 = (I2,F2, pm2, px2).

The entire problem is defined as a set of genetic machines P,

P = {G1,G2...Gn} (3.4)

where each of Gi∀i ∈ [1,n] is a genetic machine of the form in equation (3.3). Each
of F is designed to converge towards the local maxima. A complementary function,
that evaluates towards the global optimum, φ(i) is also defined, to allow evaluation
of the solution to solve the problem, where i is the individual in question.

The genetic merging operator: We now define a new genetic operator, ∗, which
denotes the merging of two genetic machines. Consider two genetic machines G1

and G2. The merger of the members of G2 into G1, to form the new machine G is
denoted as:

G = G1 ∗ G2 (3.5)

The effect of the merge is as shown below: IG = IG1 + IG2

FG = FG1

pmG = pmG1
pxG = pxG1
Thus the merge only causes the individual members of G2 to be transferred to G1.

Selection for merging: The evaluation of the population of a machine G, against
the global fitness function φ , is denoted as φ(G). We initially let all the machines in
P evolve till their local maxima is reached. Then, two machines from P are selected
according to the following scheme:

N1(P) = max{φ(G1),φ(G2)...φ(Gn)} (3.6)

N2(P) = max{{φ(G1),φ(G2)...φ(Gn)}− N1(P)} (3.7)

After choosing, N1(P) and N2(P), we merge them as:

Gnew = N1(P)∗ N2(P) (3.8)

Finally, the new machine Gnew is put back into the population pool P, after removing
N1(P) and N2(P).

54 3 Characteristic Amplification Based Genetic Algorithms

P′ = P− N1(P)+ N2(P)+ Gnew (3.9)

Thus |P| is reduced by 1. The machines P are then evolved to their local maxima
and their population sizes are culled to the initial size. Thus the weakest individuals
that result from any merger are directly eliminated.

The algorithm is iterated, till |P| = 1. At this stage, only the final machine G re-
mains. This final machine is evolved against its fitness function F and then against
φ . This ensures that the solutions provided by the machine can solve both the prob-
lem at the local maxima as well as the global optimum.

Previous approaches at improving the efficiency of the genetic algorithm have
concentrated on optimizing the parameters of the GA during the execution of the
algorithm. We propose a method, where the solution assumes that a GA converges
at the local maxima. This apriori knowledge is exploited to prepare individuals that
are already at the local maxima, to evolve in a population that converges at the global
maxima. Thus neither the input, nor the parameters of the GA need to be modified
during execution.

Also, the size of the population of a genetic machine is not constant. It increases
after a merge occurs, accepting individuals from another machine. This causes a
crossover input to the existing machine. Geographic isolation, occurs when indi-
viduals are bred separately, without any influence of each other. Since the fitness
landscapes for each population are different, each set of individuals is optimized for
different characteristics. In nature, when a geographically isolated set of species is
allowed to intermingle, the environment poses a different set of challenges to each
of the species. Thus the species is forced to evolve, to avoid extinction. In this chap-
ter, the new genetic operator and the merge operator are introduced. These operators
are responsible for merging two evolved genetic machines and the individuals from
one machine are transferred to another machine.

3.3 Design Issues

We now explore some of the design issues involved in an implementation of our
algorithm. These issues concern the design of the genetic machines, their fitness
functions, the probabilities of crossover and mutation and the global fitness function.

Feature set optimization: The feature set L as previously mentioned, needs to be
chosen with great care. The condition mentioned in equation 3.2 must be true for
the chosen set. The problem of finding L, is an optimization problem, that attempts
to minimize |L|, while ensuring that equation 3.2 is always satisfied.

Mapping from L to P: After the feature set L has been chosen optimally, it must
be converted to an appropriate population set of genetic machines. Thus each mem-
ber of L must be represented by a genetic machine in P. The design of each ma-
chine, should be such that the fitness landscape would encourage the population to
converge at the local maxima. This is important from the standpoint of the global
fitness function and the merging operator. Convergence at the local maxima is a

3.4 Algorithm 55

pre-requisite, before the individuals in the population can be considered against the
global function. Otherwise, the algorithm does not reach the global optimum.

φ(x) : The global fitness function: The global fitness function φ(x) is designed
with an overall view of the problem. If a single population based classical genetic
algorithm must be implemented to solve the problem at hand, this function must
be used. When applied, this function provides a landscape suitable to the global
optimum. Direct application of the function, causes the GA to get stuck at a local
maxima, instead of converging towards the global optimum. Individuals are period-
ically evaluated against this function to ensure that they do not stray away from the
requirements of the final solution.

3.4 Algorithm

The visual depiction of the algorithm is also shown in Figure 3.1. We shall now
explore the algorithm in more detail. The given problem statement, must first be
carefully analyzed to derive specific characteristics that need to be optimized. Ac-
cordingly, once the desired characteristics of the solution have been decided upon,

Algorithm 1. ALGORITHM FOR GI BASED GA

1: n ← Number of features
2: for i = 0 to n do
3: Design f itness[i]
4: end for
5: Design normalized f itness(population)
6: while num o f populations > 1 do
7: if n > 1 then
8: for i = 0 to num o f populations do
9: evolutions ← 0

10: while evolutions < saturation[i] do
11: evolve(population[i])
12: end while
13: end for
14: end if
15: end while
16: for i ← 0 to n do
17: Evaluate normalized f itness(population[i])
18: end for
19: while num o f populations! = 1 do
20: Select pop1 and pop2.
21: merge populations(pop1, pop2)
22: end while
23: while f itness(f inal population) < required f itness do
24: evolve(f inal population);
25: end while

56 3 Characteristic Amplification Based Genetic Algorithms

Fig. 3.1 GI based GA: Our proposed approach

the number of populations for the algorithm must be decided. For this purpose, an
optimization problem must be solved to find an optimal L. It may be required to use
one machine for a set of minor characteristics. In either circumstance, the fitness
function for the machine has to be designed appropriately.

3.4 Algorithm 57

The fitness functions, must work on mutually independent characteristics. If there
is any overlap of characteristics, thus violating the condition in equation 3.2, the
populations would have individuals, with similar characteristics. The overlap, would
be at the cost of exploring other candidate solutions. This exploration must be opti-
mized in an exhaustive search, such as ours. More importantly, this overlap causes
unnecessary crossover inputs and significantly slows down the algorithm.

Each fitness function, causes the population to saturate at a given point. This
saturation is defined at the point, when the population no longer evolves appreciably
with any further generations. This point of saturation, can be a fitness value which is
reached upon sufficient evolution of the population, or the desired number of times
the population has evolved. The point of saturation only serves to define a point at
which the algorithm must stop evolving a particular population. This point is not
a “hard” point, so to speak, but only serves as a guide as to when a machine has
reached its local maxima. At this point, the machine’s evolutions must be stopped
and its individuals must be evaluated against the global fitness function φ(x).

The population merging function, defined by merge populations(pop1, pop2),
serves to move individuals, which have adapted well to one population to evolve
in another landscape. This function is a direct implementation of the genetic merge
operator ∗ that has previously been introduced. This has the effect of improving
the quality of crossover, without changing the crossover rate itself. For implemen-
tations, with fewer populations, this merging scheme could be predefined such as
a trivial transfer of individuals from one population to another. For more complex
implementations, the merging scheme should define the number of individuals to be
transferred, as well as the order of merging. The order of merging defines the order
of characteristics that are optimized. In general, it would be more useful to transfer
individuals from stronger populations to weaker populations, as this would have the
effect of optimizing already strong individuals, in a different landscape. In addition,
the native population would have a varied mutant quantum.

The global fitness function φ(x), must to be designed, keeping in mind the over-
all requirements of the solution. This function is used to evaluate individuals across
populations and thus, must cover taking account of all characteristics. This function
should be applied when a single population based genetic algorithm is implemented
to solve the problem. Once these functions have been setup as desired, the algo-
rithm is executed. Each of the populations are evolved, without any interaction from
the other populations, thus realizing the concept of geographical isolation. After
all populations have been sufficiently evolved (once their points of saturation have
been reached), the global fitness function is called to evaluate the individuals in the
machines.. The merging function is then used to merge individuals from different
machines, in the order that is decided with the help of the global fitness function.
Each single merge is accompanied by iterative evolution, until the point of saturation
is reached.

The above process is iterated, until one single population is left, so that |P| = 1.
This final population is evolved, until a sufficiently fit solution is found. This final so-
lution is optimized against all the characteristics presented by the different machines.

58 3 Characteristic Amplification Based Genetic Algorithms

Analysis and Implications: One of the main implications of our algorithm, is that
the cardinality of a set of Individuals |I|, is not fixed. This size increases after a
merging operation. The size stays at twice the original size, until the culling is done.
This culling ensures that the number of individuals evaluated against the global
function is small. The individuals at the lower end of the fitness curve need not be
evaluated, as they do not contribute any more than the ones at the higher end of the
curve. Effectively, their existence is unnecessary and thus they can be removed.

The time taken for the complete execution of the algorithm is much larger than
a single population genetic algorithm, for shorter problems. This is because the
overhead involved due to the use of multiple machines is much larger. For larger
and more complex problems, this one-time overhead is much smaller as compared
to the evolution time of the machines. The time taken for the algorithm depends
on the solution of the optimization problem, that defines L. The fewer the number
of machines, the less the time taken to complete execution. However, if too few
machines are used, the algorithm continues to totter around the local maxima, taking
much longer to complete execution.

3.5 Results and Performance Analysis

In order to validate our algorithm, we have compared it with the output of a standard
genetic algorithm. Our test involved the GA to attempt to guess a given ASCII string.
The Figures 3.2, 3.3 and 3.4 show the convergence rates for a single GA based

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

N
o
rm

a
liz

e
d
 F

itn
e
ss

Generations

Fig. 3.2 Normal GA: With 4 character string

3.5 Results and Performance Analysis 59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

N
o
rm

a
liz

e
d
 F

itn
e
ss

Generations

Fig. 3.3 Normal GA: With 8 character string

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

N
o
rm

a
liz

e
d
 F

itn
e
ss

Generations

Fig. 3.4 Normal GA: With 32 character string

60 3 Characteristic Amplification Based Genetic Algorithms

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35

N
u
m

b
e
r

o
f
g
e
n
e
ra

tio
n
s

n

Fig. 3.5 Normal GA: For increasing n

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

N
o
rm

a
liz

e
d
 F

itn
e
ss

Generations

Fig. 3.6 GI based GA: With 8 character string

References 61

attempt to guess the string. As n increases, the number of generations considered
is shown in Figure 3.5. The convergence rate of our attempt at the same problem,
using a geographically isolated genetic algorithm is shown in Figure 3.6.

As it can be seen, as the size of the chromosome increases, the number of gener-
ations taken also increases, at a rate that is approximately quadratic. Thus a linear
split of the chromosome takes less time to complete execution. We initialize two
populations to solve the problem for n = 8, one population that solves the first half
of the chromosome (the first 4 alleles) and the second population solves the second
half of the chromosome (the next 4 alleles). The fitness function used in both GAs
is given in Algorithm 2.

Algorithm 2. Fitness function
1: f itness ← 0
2: for i ← 1 to mw do
3: if test string[i] != candidatestring[i] then
3: f itness = f itness+chr(test string[i])−chr(candidate string[i])
4: end if
5: end for
6: return f itness

For the purpose of plotting the graphs, we have used a normalized value for all
fitnesses, normalized over the range [0,1]. It can be clearly seen that the algorithm
reaches the local maxima in each of the single population runs. In the geographically
isolated populations run, the algorithm directly converges towards the local maxima.

3.6 Summary

The given problem statement is divided into a set of features, which are then op-
timized. A genetic machine, which has been mathematically defined and formal-
ized, is created for each of the features. These machines are optimized to converge
towards their respective local maxima. As each machine converges towards its lo-
cal maxima, it is merged with another such machine. The genetic merge operator
has also been mathematically defined. The net effect, is that before being evaluated
against the global function, individuals are optimized against specific characteris-
tics. Thus they need only evolve from the local maxima towards the global optimum,
instead of evolving from random points in space. When compared with standard
genetic algorithm the proposed algorithm produces better results.

References

1. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Nat-

ural Selection. MIT Press, Cambridge (1992)

62 3 Characteristic Amplification Based Genetic Algorithms

3. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge (1994)

4. Packard, N.H.: A Genetic Learning Algorithm for the Analysis of Complex Data. Com-
plex Systems 4(5), 543–572 (1990)

5. Chughtai, M.: Determining Economic Equilibria using Genetic Algorithms. Imperial
College (1995)

6. Hillis, W.D.: Co-evolving Parasites Improve Simulated Evolution as an Optimization
Procedure. Physica D-42, 228–234 (1990)

7. Hillis, W.D.: Co-evolving Parasites Improve Simulated Evolution as an Optimization
Procedure. In: Artificial Life II. Addison-Wesley, Reading (1992)

8. Forest, S., Mithell, M.: What makes a Problem Hard for a Genetic Algorithm? Some
Anamalous Results and their Explanation. Machine Learning 13, 285–319 (1993)

9. Deb, K., Beyer, H.-G.: Self-Adaptive Genetic Algorithms with Simulated Binary
Crossover. IEEE, Los Alamitos (2004)

10. Harik, G.: Finding Multiple Solutions in Problems of Bounded Difficulty, Information
Sciences (1994)

Chapter 4
Dynamic Association Rule Mining Using Genetic
Algorithms

Abstract. A large volume of transaction data is generated everyday in a number of
applications. These dynamic data sets have immense potential for reflecting changes
in customer behaviour patterns. One of the strategies of data mining is association
rule discovery which correlates the occurrence of certain attributes in the database
leading to the identification of large data itemsets. This chapter seeks to generate
large itemsets in a dynamic transaction database using the principles of Genetic
Algorithms. Intra Transactions, Inter Transactions and Distributed Transactions are
considered for mining Association Rules. Further, we analyze the time complexi-
ties of single scan technique DMARG(Dynamic Mining of Association Rules using
Genetic Algorithms), with Fast UPdate (FUP) algorithm for intra transactions and
E-Apriori for inter transactions. Our study shows that the algorithm DMARG out-
performs both FUP and E-Apriori in terms of execution time and scalability, without
compromising the quality or completeness of rules generated.

4.1 Introduction

Mining association rules is a process of discovering expressions of the form x ⇒ y.
For example, customers buy bread (x) along with butter (y). These rules provide
valuable insights to customer buying behaviour, vital to business analysis. Let I =
{i1, i2...im} be a set of literals called items. Let DB denote a set of transactions
where each transaction T is a set of items such that T is a subset of I. Associated
with each transaction is a unique identifier, called Transaction IDentifier (TID). A
transaction T contains x, a set of some items in I, if x ⊆ T . An association rule is
an implication of the form x ⇒ y where x ⊆ I, y ⊆ I and x ∩ y = 0. The rule x ⇒ y
holds in a transaction set DB with confidence c, if c% of transactions in DB that
contain x also contain y. The rule x ⇒ y has support s in the transaction set DB if
s% of transactions contain x ∪ y. The process of discovering association rules can
be split into two domains, (i) finding all itemsets with appreciable support(large
itemsets). (ii) generate the desired rules. Finally, rule x ⇒ y is generated if, support
(x ∪ y)/support (x) ≥ minimum confidence.

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 63–80.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

64 4 Dynamic Association Rule Mining Using Genetic Algorithms

Consider the example of a departmental store. Let DB consist of 5,00,000 trans-
actions, of which 20,000 transactions contain bread, 30,000 transactions contain
chips and 10,000 transactions contain both bread and chips. The frequency of oc-
curence of bread and chips together as a percentage of the total transactions is called
support, i.e., 2% in this case(10,000/5,00,000). The measure of dependence of a
particular item on another is called confidence. 20,000 transactions contain bread
of which 10,000 also contain chips. Hence, when people buy bread, there is a 50%
probability of them buying chips. This is called as intra transaction association rule
mining [1].

4.1.1 Inter Transaction Association Rule Mining

Conventional association rule mining has focussed primarily on intra transaction as-
sociation rules that are limited in scope. This has led to the development of more
powerful inter transaction association rules. Inter transaction association rule offers
insight into correlations among items belonging to different transaction records. The
classical association rules express associations among items purchased by a cus-
tomer in a transaction i.e., associations among the items within the same transaction
record. Inter transaction rules express the relations between items from different
transactional records. A typical example would be that when the prices of Wipro
shares go up on first day and Infosys share prices go up on second day, then TCS
share prices go up on fourth day with 80% probability. Intra transaction associations
can be treated as a special case of inter transaction association.

Mining inter transaction associations presents more challenges than intra trans-
action associations as the number of potential association rules becomes extremely
large. A frequent inter transaction itemsets must be made up of frequent intra-
transaction itemsets. It has wide applications in predicting stock market price move-
ments, traffic jams by discovering traffic jam association patterns among different
highways, flood and drought for a particular period from weather database, etc.. We
consider a sliding window of some specific size (size is the number of transactions
to be handled at a time) to generate inter-transaction association rules. Mining intra
transaction association rules, is the special case of inter transaction association rule
mining when the window size is one.

Let I = {i1, i2...is} be a set of literals called items. A transaction database DB is
a set of transactions {t1,t2...tm}, where ti (1 ≤ i ≤ m) is a subset of I. Let xi =< v >
and x j =< u > be two points in one-dimensional space, then the relative distance
between xi and x j is defined as Δ(xi,x j) =< u − v >. A single dimensional space
is represented by one dimensional attribute, whose domain is a finite subset of non-
negative integers. A single dimensional inter transaction association rule is an im-
plication of the form x ⇒ y, where x ⊂ Ie, y ⊂ Ie and x∩y = 0. A single dimensional
inter-transaction association rule can be expressed as Δ0(a), Δ1(c) ⇒ Δ3(e), which
means if the price of stock a goes up today, and price of stock b increases next day,
then most probably the price of stock e will increase on the fourth day.

4.1 Introduction 65

Dynamic Data Mining: New association rules, which reflect the changes in the
customer buying pattern, are generated by mining the updations in the database and
is called Dynamic mining [2]. Dynamic mining algorithms are proposed to handle
updation of rules when increments or decrements occur in the database. It should
be done in a manner which is cost effective, without involving the database already
mined and permitting reuse of the knowledge mined earlier. The two major opera-
tions involved are (i) Additions: Increase in the support of appropriate itemsets and
discovery of new itemsets. (ii) Deletions: Decrease in the support of existing large
itemsets leading to the formation of new large itemsets. The process of addition and
deletion may result in the invalidation of certain existing rules.

Distributed Data Mining: Distributed data mining is a result of further evolution of
data mining technology. It embraces the growing trend of merging communication
and computation. It accepts the fact that data may be inherently distributed among
loosely coupled sites connected by a network and these sites may have heterogenous
data. It offers techniques to discover new knowledge through distributed data analy-
sis and modeling using minimal communication of data. Consider the large amount
of data present on the net. There exist sites for weather, city demography etc.. If
the database is large it becomes practically impossible to download everything and
build a global data model. Instead partial data models would correctly lead to the
computation of global data model.

4.1.2 Genetic Algorithms

Recent trends indicate the application of GA in diverse fields ranging from character
script recognition to cockpit ambience control [3]. The objective of this chapter is
to generate association rules by applying genetic algorithms on dynamic databases.
The resulting single-scan technique, Dynamic Mining of Association Rules using
Genetic algorithms (DMARG) is presented. It is an iterative technique which works
with a solution set, called population, directly. The population of solutions undergo
selection using operators of reproduction, crossover and mutation. The fitness func-
tion, a property that we want to maximise, is used to evaluate quality of solutions.
The genetic algorithm used in this chapter is summarized below.

1. Create an initial population of schema (M(0)), where each member contains a
single one in its pattern. For example, for transactions of length four, the initial
population would contain 1*** , *1** , **1* , ***1.

2. Evaluate the fitness of each individual with respect to the schema. Fitness of
each individual, m, in the current population M(t) is denoted by u(m) where
u(m) = number o f matchingbits−number o f non matchingbits

Total number o f f ields
3. Enter the schema into the Roulette wheel. The selection probabilities p(m) for

each m in M(t) determines the size of each slot in the Roulette wheel.
4. Generate M(t + 1) by probabilistically selecting individuals from M(t) to pro-

duce offspring via crossover. The offspring is a part of the next generation.

66 4 Dynamic Association Rule Mining Using Genetic Algorithms

5. Repeat step (2) until no new schema are generated.
6. Steps (2), (3) and (4) create a generation which constitutes a solution set.

Every transaction comprising of a set of items is represented by a fixed number
of bits forming a string, where 0 and 1 represent the absence or presence of an
item respectively. For example, in the string 1001, the bit positions one and four
have been set to one while the bit positions two and three have been set to zero.
Hence, the items corresponding to bit positions one and four viz., A and D have
been purchased, while those corresponding to bit positions two and three viz., B
and C have not been purchased.

Reproduction is a process in which fit strings are passed to the next generation
where they have a higher probability of contributing one or more offspring. Once a
string has been selected for reproduction, an exact replica of it is made which enters
the mating pool - a tentative new population for further genetic action.

Random pairs of these strings are chosen for crossover from the mating pool.
An integer position k is then selected along the string at random between 1 and l
- 1, l being the length of the string. Two new strings are created by swapping all
characters between positions k+1 and l of the parents. For example, consider two
strings X = 0101 and Y = 1010. Choose a random number between 1 and 3 , say 2.
The resulting crossover yields two new strings X*= 0110 and Y*= 1001 . These are
the members of the new generation.

Flip Mutation is the operation of changing a 1 to 0 and vice-versa. For example,
0000 becomes 0010 after mutation. Schemata are representative of a set of strings
with similarities at certain positions. Schemata is a pattern of {1, *}, where 1 repre-
sents the presence of an item in a transaction and * is a don’t-care-condition, which
may correspond to either the presence or absence of an item.

4.2 Related Work

The incremental updating technique proposed in [4] is similar to Apriori [5] and
operates iteratively on the increment database and in each iteration makes a
complete scan of the current database. At the end of the kth pass all the frequent
itemsets of size k are derived. The performance evaluation of the Fast Updation
Technique(FUP) shows that it is much better than the direct application of the Apri-
ori algorithm on the entire database and needs O(n) passes over the database where
n is the size of the maximal large itemset. FUP is 2 to 16 times faster than rerunning
Apriori or DHP(Dyanamic Hashing and Pruning) [6] and number of candidate sets
generated are about 2-5% of DHP and overhead of running FUP is only 5-20%. This
algorithm is extended to handle general updations like additions, deletions and other
modifications in FUP2 [7].

DEMON [8], Mining and Monitoring Evolving data handles updation to
databases in a systematic manner. It takes care of the warehousing environment by
adding or deleting data in blocks. Here the concepts of Block Sequence Selection
and Data Span Windows are used to select the appropriate blocks and to control the

4.3 Algorithms 67

fine-grained block selection respectively. The algorithm ECUT mines the data on
TIDlist which helps in reducing the candidate itemsets. The use of negative border
(Negative border is the set of minimal itemsets that do not satisfy the constraints)
concept as a constraint relaxation technique to generalize incremental mining of
association rules with various types of constraints is handled in [9].

Efficient one-pass incremental algorithms based on negative-border concept are
proposed in [10, 11]. The algorithms can be used in conjunction with algorithms
like Apriori or Partition based algorithms. The advantage of this algorithm is that, it
needs the full scan of the entire database only when the database update causes the
negative border of the set of large itemsets to expand. They performed better than
the Apriori algorithm as it takes fewer scans of the database, but the drawback of
the above methods are that too many candidates are generated in the negative border
closure resulting in the increase of the overall mining time. The negative borders are
computed by applying the Apriori repeatedly. The Delta proposed in [12] takes care
of multi support, local count, identical and skewed databases.

Mining inter-transaction association rules was first introduced in [13], in which
extended Aprori and extended hash apriori are proposed to deal with single and
multidimensional inter transaction association rules. The algorithm FITI proposed
in [14] is much faster than EH-Apriori.

R Agrawal and J C Shafer [15] introduced count distribution, data distribution
and candidate distribution algorithm, which effectively uses aggregate main mem-
ory to reduce synchronization between the processors and has load balancing built
into it. FDM [16] tries to generate small number of candidate sets and substantially
reduces the number of messages passed at mining association rules. The intelligent
data distribution algorithm and hybrid distribution proposed in [17], efficiently use
aggregate memory of the parallel computer by employing intelligent candidate par-
titioning scheme and uses efficient communication mechanism to move data among
the processors. Parallel algorithms for generalized association rules with classifica-
tion hierarchy was introduced in [18].

4.3 Algorithms

Consider a large database DB with horizontal layout consisting of a finite set of
transactions {t1,t2, ...tm}. Each transaction is represented by a binary string of fixed
length n, where n is the total number of items present. Let an incremental set of new
transactions db be added to DB. The objective of this paper is to generate all the
large intra/inter transaction association rules in DB∪db without involving DB using
scan only once technique through the algorithm DMARG.

Assumptions

• A transaction is represented by a binary coded string.
• The items in a transaction are ordered.
• The transactions are generated by synthetic data generator [19].

68 4 Dynamic Association Rule Mining Using Genetic Algorithms

Algorithm: DMARG

1. Initialize Database DB.
2. Read Window Size(Window Size)
3. Prepare Database(DB, Window Size)
4. Initialize itemsets database I.
5. [Incremental operation causes increase in the support of the relevant itemsets]

Read an itemset i from the incremental database db.
Update those Itemsets in I which share one or more common transactions
with i.

6. [Discover new itemsets]
Repeat step 4.

a. Apply Genetic Algorithms to members of I.

i. Crossover parents with high fitness values.
ii. Mutate certain itemsets to obtain a new itemset, if complete set not found.

b. [Add new combinations of itemsets discovered to the existing itemset
database]
Update itemsets until complete solution is obtained.

7. [Repeat process for the entire incremental transaction database]
If end of database db has not been reached, goto Step 3.

8. [Identify all large itemsets]
Identify large itemsets above minimum support.

9. [Generate rules]
Generate all rules above minimum confidence.

10. [Repeat if more increments]
If the incremental operation is to be repeated, goto Step 1.

The algorithm is inherently incremental in nature. The database initialization is
done by converting the given database into an initial population of itemsets in the
form of schemata ({*, 1}*), with their support zero. This information is stored in
an itemset file, whose contents are updated after each iteration. Since the algorithm
works both for intra transaction and inter transaction association rule mining, the
function Read Window Size() takes the input from the user about the type of asso-
ciation rules to be mined. If the window size is one, the algorithm mines the intra
transaction association rules, if the window size > 1, then the algorithm mines the
inter transaction association rules. Depending upon the window size the function
Prepare Database(), does the preprocessing of the initial data. If the window size is
greater than one, then the function Prepare Database() concatenates the transactions
upto the window size and hence prepares the database for mining inter transaction
association rules.

Once the database is represented in the form of a schemata, the itemsets database
I is created. Initially, the itemsets database is a list consisting of all the distinct items
in the database with their support as zero. As the algorithm reads the transactions,
the itemsets database is updated with the new itemsets if their support is greater

4.4 Example 69

than the minimum support. The Genetic Algorithm is applied on the members of I
to discover the new itemsets. Finally, the algorithm generates the association rules
with the minimum support and confidence. The working principle of the algorithm
is explained through an example in Section 4.4.

Given n hosts {h1,h2, ...hn} where each hi (1 ≤ i ≤ n), contains a local database
dbi, we mine dbi to discover large itemsets local to hi and generate local associa-
tion rules. The local large itemsets are combined to generate global rules. The local
databases are horizontally partitioned. Databases are uniformly distributed across
all the nodes of the homogeneous network.

Algorithm: DDMARG

1. The server waits for the request from the clients.
2. Clients register themselves within the allotted time frame.
3. Server registers the clients which participate in mining process.
4. Server requests the clients to check for the integrity of the executables required

for distributed mining.
5. Clients return the status of the association rules mined from local database dbi.
6. Server waits for clients to perform local mining on the database (dbi) and places

it in WAIT state.
7. Clients interrupt server when the local mining on dbi is completed and generates

the local association rules using the algorithm DMARG.
8. Server requests the clients to send the entire rule chromosome mined.
9. Server builds the universal database of rule chromosomes after receiving the

complete set of association rules mined in all the registered clients.
10. Server generates global association rules from the result obtained from step 9.
11. Server closes connections with all the clients.
12. End.

4.4 Example

Intra Transaction Association Rule Mining: Consider an example transaction
database given in Table 4.1. The first column represents the transaction identifier
TID. The various items purchased in a particular transaction is given in column 2.
The third column consists of the encoded binary string. As the number of items con-
sidered in the database is five(n = 5), the length of the encoded transaction is also
five.

Table 4.1 A Simple Transaction Database

TID Transaction Encoded Trans.

1 AD 10010
2 ABE 11001

70 4 Dynamic Association Rule Mining Using Genetic Algorithms

Table 4.2 Strings of Initial Population and their Support

String Itemset Support

1**** A 0
1* B 0
***1** C 0
****1* D 0
*****1 E 0

The algorithm scans the database one transaction at a time and tries to approx-
imate or classify the data by the nearest itemset if not already present and updates
its support. Assuming, this is the first run of the code and the mode of operation
is incremental, the initial population contains the following strings with individual
support as zero. The initial population, the itemsets and corresponding supports are
shown in Table 4.2.

When the first transaction record is read, it is compared with the existing strings
in the itemset list and the fitness value of the string is computed with respect to the
encoded transaction TID 1 as follows,

f itness = No.o f matchingbits−No.o f non matchingbits
No.o f items inthetransaction(n)

If the fitness is one, then the support of the string in question is incremented. In
Table 4.3, the fitness of the item A is one, therefore its support is incremented to 1.
All strings with fitness 1, are placed in a dynamically created array which serves as
a Roulette wheel.

In the case of TID 1, the Roulette wheel would contain strings 1**** and
***1*(as shown in Table 4.3). A random crossover point (position 3) is chosen
and crossover operation is applied on the two parents strings 1**** and ***1* to
obtain chidren 1**1* and *****. The null string is discarded as it serves no purpose.

Table 4.3 Updations and Reproduction by the Transaction TID 1

String Itemset Support Fitness

1**** A 1 1
1* B 0 0.6
***1** C 0 0.6
****1* D 1 1
*****1 E 0 0.6

No. of Matching Bits = 5, No. of Non Matching Bits = 0.
Fitness(10010,1****) = (5−0)/5 = 1.
Fitness(10010,*1***) = (4−1)/5 = 0.6.
Roulette Wheel(10010); 1****, ***1*, Crossover at Position 3.
Parent1 = 1∗∗‖∗∗ Child1 = 1**1*(Itemset AD).
Parent2 = ∗∗∗‖1∗ Child2 = *****(Invalid).

4.4 Example 71

Table 4.4 Itemset List after the First Iteration

String Itemset Support Fitness

1**** A 1 1
1* B 0 0.6
***1** C 0 0.6
****1* D 1 1
*****1 E 0 0.6
1**1* A,D 1 1

Roulette Wheel; 1****, *1***, ****1.
Parent1 = 1∗∗‖∗∗ Child1 = 1***1(Itemset AE).
Parent2 = ∗∗∗‖∗1 Child2 = *****(Invalid).

Table 4.5 Itemset List after the Second Iteration

String Itemset Support Fitness

1**** A 2 1
1* B 1 1
***1** C 0 0.6

****1* D 1 0.6
*****1 E 1 1
1**1* A,D 1 0.6
1***1 A,E 1 1

Roulette Wheel; 1****, *1***, ****1, 1***1.
Parent1 = 1∗‖∗∗1 Child1 = 1****(Itemset A).
Parent2 = ∗1‖∗∗∗ Child2 = *1**1(Itemset BE).

Table 4.6 Itemset List after the Final Iteration

String Itemset Support Fitness

1**** A 2 1
1* B 1 1
***1** C 0 0.6
****1* D 1 0.6
*****1 E 1 1
1**1* A,D 1 0.6
1***1 A,E 1 1
11 B,E 1 1
11*** A,B 1 1
11**1 A,B,E 1 1

Roulette Wheel; 1****, *1***, ****1, 1***1, *1**1, 11***, 11**1.
Reproduction: Perfect match between 11**1 and 11001.
Processing stops for this transaction.

72 4 Dynamic Association Rule Mining Using Genetic Algorithms

Since a perfect match(number of ones in the encoded transaction 10010 matching
the number ones in the generated string 1**1*) has been reached, the process stops
and the updated table with the string 1**1* is as shown in the Table 4.4.

The next transaction data is read(TID 2) from the database and genetic operators
are applied on the updated database as shown in the Table 4.5. There is a possibility
that a perfect match may not be obtained in the first trial, as in the case of trial 1
of TID 1. However, new itemsets are created which are added to the list of itemsets
strings and also to the Roulette wheel. The process is repeated for a fixed number of
trials and if a perfect match is not found, mutation operator is applied. The iteration
is repeated and the final itemset list is as shown in the Table 4.6. A perfect match
for the itemset ABE is generated after ten iterations and hence the process stops.

Inter Transaction Association Rule Mining: When the window size is greater than
one, then the algorithm generates inter transaction association rules. The database is
prepared for mining inter transaction association rules. The major task in this phase
is to organize the transactions. We consider equal length transactions and the win-
dow size is taken as three. The output of the Prepare Database() is the augmented
transaction T’. Now we run the algorithm DMARG on this augmented transaction
T’. This data preparation step is not necessary in the case of intra transaction asso-
ciation rule mining as the window size is one.

Since the rules generated on the augmented transaction database T’ is explosive,
only few rules of interest are considered in the Table 4.8. As the string length is three
and the window size considered is also three, the first three bits in the augmented

Table 4.7 Transaction Database and Corresponding Augmented Transactions

TID Transaction Binary Encoded String Augmented Trans T’

T0 AB 110 110@101@111(T0 ∪T1 ∪T2)
T1 AC 101 101@111@110(T1 ∪T2 ∪T3)
T2 ABC 111 111@110@011(T2 ∪T3 ∪T4)
T3 AB 110
T4 BC 011

Table 4.8 Inter Transaction Association Rules

Example Rules Support Rules generated

1** *** *** 3 A[0]
1* * *** 2 B[0]
**** 1** *** 3 A[1]
11* *** *** 2 A[0]B[0]
1** 1** *** 3 A[0]A[1]
1* 1 *** 2 B[0]A[1]
11* 1** *** 2 A[0]B[0] A[1]

4.4 Example 73

transaction T’ belong to TID T0, similarly second three bits belong to TID T1 and
the last three bits belong to TID T2 in the first row of Table 4.7. Considering the
itemsets, A[0]B[0]A[1] and A[0]B[0] with support 2 in Table 4.8., we can conclude
a valid inter transaction association rule i.e., A[0]B[0]⇒ A[1].

Distributed Mining of Association Rules: Consider the example of a transaction
database present in two client nodes H1 and H2 as shown in Table 4.9. The genetic
operators are applied on the database of each node to generate local large itemsets
as shown in the Table 4.10.

Given the local itemsets of H1 and H2 in Table 4.10, the next step is to obtain a
global list which is the aggregate of rule strings produced in all the hosts. This is
the responsibility of the server. The server polls each of the clients on a round robin
basis. Node H1 is first prompted to send its rule string to the server. In reply, H1

sends the first string in its list (i.e., 1****). The server now sends a copy of this rule
string to all clients. These nodes are instructed to send the local count or support of
the string, if it is present in their database. Thus, node H1 sends the value 2 and node
H2, 1. The process is repeated for all the strings in the database of node H1. Once
node H1 exhausts its list of strings, the server moves to the next node, i.e., node H2.
Node H2 then searches for strings from its database that have not been considered
so far, for example, *1**1. It then sends the string to the server. The server gathers
the global support of this string by surveying the other nodes. The above algorithm
is repeated until every node in the network has been scanned for local rules. The
result is shown in Table 4.11.

Table 4.9 Transaction Database in Two Nodes H1 and H2

Node H1 Node H2
TID Transaction Encoded Trans. TID Transaction Encoded Trans.

100 AD 10010 103 BE 01001
101 ABE 11001 104 ABD 11010

Table 4.10 Local Rules Generated at Nodes H1 and H2

Node H1 Node H2
List Rule String Sup List Rule String Sup

1 1**** 2 1 1**** 1
2 *1*** 1 2 *1*** 2
3 ***1* 1 3 ***1* 1
4 ****1 1 4 ****1 1
5 1**1* 1 5 *1**1 1
6 1***1 1 6 11*** 1
7 11*** 1 7 1**1* 1
8 11**1 1 8 *1*1* 1
9 *1**1 1 9 11*1* 1

74 4 Dynamic Association Rule Mining Using Genetic Algorithms

Table 4.11 Global Rules Generated at Server

List Rule String Global Count List Rule String Global Count

1 1**** 3 7 1**1* 2
2 *1*** 3 8 *1*1* 1
3 ***1* 2 9 *1**1 2
4 ****1 2 10 11**1 1
5 1***1 1 11 11*1* 1
6 11*** 2

4.5 Performance Analysis

Transaction data, in the form of binary strings of desired length, was generated using
a Synthetic Data generator[19]. The number of items in a transaction was 1000, the
average size of each, 10, the maximum number of items, 25 and the average size
of maximal potentially large itemsets was 4. DMARG is compared with a standard
algorithm, FUP (Fast UPdate), which works on the principles of Apriori.

Figure 4.1, shows the plot of the execution time of DMARG versus the number of
transactions. The transaction databases are varied in the range of [100k-500k]. The
support considered is 1. This low value has been explicitly chosen to exhaustively
generate all the possible combinations of itemsets. The execution time varies from 2
minutes to 25 minutes. To avoid losing any small itemsets which may become large

0

5

10

15

20

25

100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
 T

im
e

Number of Transactions in 000s

Support:1

Fig. 4.1 Execution Time of DMARG vs Number of Transactioons (Intra Transaction)

4.5 Performance Analysis 75

in future, pruning is not employed. It is evident from Figure 4.1, that DMARG can
handle large databases without compromising performance and has excellent scal-
ability. The experimental analysis shows that the time complexity of the algorithm
DMARG is linear with respect to the number of transactions in the database.

Figure 4.2, compares the execution time of DMARG with the standard algorithm
for incremental mining, FUP. The initial database DB was of size 100k. The incre-
mental database db varies from 1% to 100% of DB. The execution time for DMARG
vary from 2.6 seconds to 269.5 seconds. Under identical conditions, the execution
time of FUP varied from 20.7 seconds to 861.4 seconds. It is obvious from Figure
4.2, DMARG is faster than FUP. This difference in the time complexity between
DMARG and FUP is due to the single scan feature of DMARG. Figure 4.3, plots
the variation of the execution time of DMARG for various decrements of DB. The
initial database DB considered is of size 100k. The decrements are varied from 1%
to 80% of DB. DMARG is versatile in handling both increments and decrements to
DB. For inter transaction association rules the database of size of 1,00,000 transac-
tions with 300 items and the window size of three is taken. The execution time of
DMARG is compared with Extended-Apriori. Figure 4.4, shows the graph of com-
parision of execution times for E-Apriori and DMARG and DMARG is faster than
E-Apriori.

In case of distributed mining, simulations are performed on an Ethernet Local
Area Network. Data is distributed uniformly amongst all the processors. Figure 4.5,
shows the variation of execution time in minutes versus the number of processors.
The execution time decreases as the increase in the number of processors. The time

0

200

400

600

800

1000

0 20 40 60 80 100

E
xe

cu
tio

n
 T

im
e
 in

 S
e
cs

No. of Transactions in 000s

Support 1%

DMARG
FUP

Fig. 4.2 Execution Time vs Increment Database (Intra Transaction)

76 4 Dynamic Association Rule Mining Using Genetic Algorithms

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80

E
xe

cu
tio

n
 T

im
e

 in
 S

e
cs

Decrements in %

Support:1

Fig. 4.3 Execution Time vs Decrement Database (Intra Transaction)

0

5

10

15

20

25

0 20 40 60 80 100

E
xe

cu
tio

n
 T

im
e
 in

 M
in

s

No. of Transactions in 000s

Support 1%

DMARG
E-Apriori

Fig. 4.4 Execution Time vs Number of Transactions (Inter Transactions with Window
Size 3)

4.5 Performance Analysis 77

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

E
xe

cu
tio

n
 T

im
e
 in

 M
in

s

No. of Processors

Fig. 4.5 Execution Time vs Number of Transactions (Distributed Mining)

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

D
e
g
re

e
 o

f
P

a
ra

lle
lis

m

Number of Processors

Fig. 4.6 Degree of Parallelism vs Number of Processors (Distributed Mining)

78 4 Dynamic Association Rule Mining Using Genetic Algorithms

taken for the synchronization is negligible. Instead of synchronizing at every itera-
tion, the synchronization is done at the final stage without pruning away redundant
rules, hence the DDMARG consumes minimal time for synchronization. In our ex-
periments, the database is kept constant and the number of processors are varied. We
define the degree of parallelism as ratio of the execution time for running DMARG
on the entire database versus the execution time for running DDMARG on n pro-
cessors, where the database is distributed equally amongst all the processors. The
Figure 4.6, shows the variation of degree of parallelism versus the number of pro-
cessors (n). The ratio varies from 1 to 2.5. The curve does not follow the linearity
because of communication and synchronization overheads.

4.5.1 Experiments on Real Data

The experiments are conducted on BMS-POS dataset [20]. The IBM-POS dataset
contains several years worth of point-of-sale data from a large electronics retailer.
The product categories in this dataset are used as items. The transaction in this dataset
is a customer’s purchase of all the product categories at a time. Our objective is
to find associations among the different product categories purchased by the cus-
tomers. The dataset contains 5,15,597 transactions, 1,657 distinct items and 164
being the maximum transaction size, where as the average transaction size is 6.5.
Figure 4.7 shows the number of association rules generated with respect to minimum
support. Table 4.12 gives the summary of the number of association rules generated
for a given minimum support and the corresponding running time requirements in
seconds.

0

20

40

60

80

100

120

140

160

180

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

T
h

e
 N

u
m

b
e

r
o

f
A

R
s

(i
n

 1
0

0
0

0
s)

Minimum Support

Fig. 4.7 Total Number of Association Rules versus Minimum Support(%) on IBM−POS
Dataset

References 79

Table 4.12 Number of Association Rules and Running Time Requirement for a given Mini-
mum Support for IBM-POS Dataset

Min. Support No. of ARs Running Time

0.02 17, 564, 123 23.2
0.04 1,189, 422 18.4
0.06 2, 14, 799 14.2
0.08 1, 43, 298 13.8
0.10 1, 26, 226 11.6

4.6 Summary

We examine in this chapter, the issue of mining intra and inter transaction associa-
tion rules for dynamic databases. The algorithm proposed is effective in generating
large itemsets and in addressing updations in the database. The rules generated us-
ing DMARG, are qualitatively sound. The single scan feature reduces computational
costs significantly. The algorithm generates inter transaction association rules using
the augmented transactions. The performance of DMARG is studied and compared
with that of FUP(in case of intra transactions) and E-Apriori(in case of inter trans-
actions), the results show that DMARG is faster and more efficient than FUP and
E-Apriori. DMARG also takes care of decremental transactions. DMARG handles
identical and skewed databases. The algorithms DMARG and DDMARG are effi-
cient and effective; Efficient, because of the inherent speed and scalability of genetic
algorithms in performing data mining and a low communication overhead achieved
when building global knowledge. It is effective because, the quality of the rule chro-
mosomes are not compromised in the process. Further, pruning is not done on the
local string chromosomes set. This ensures that no rule is lost until the final filter-
ing process on the server side. In DMARG, a single scan technique, the support is
required only before the association rule generation, to build stronger and relevant
rules.

References

1. Pujari, A.: Data Mining Techniques. University Press (2000)
2. Shenoy, P.D.: Evolutionary Approach for Mining Association Rules on Dynamic

Databases. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003.
LNCS, vol. 2637, pp. 325–336. Springer, Heidelberg (2003)

3. Srinivas, M., Patnaik, L.M.: Genetic Algorithms: A Survey. IEEE Computers 27(6), 17–
26 (1994)

4. Cheung, D.W., Han, J., Vincent, T., Wong, C.Y.: Maintenance of Discovered Association
Rules in Large Databases: An Incremental Updating Technique. In: Proc. of Intl. Conf.
on Data Engineering, pp. 106–114 (Feburary 1996)

5. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of Intl.
Conf. on Very Large Data Bases, Santiago, pp. 478–499 (September 1994)

80 4 Dynamic Association Rule Mining Using Genetic Algorithms

6. Park, J.S., Chen, M.S., Yu, P.: An Effective Hash based Method for Mining Association
Rules. In: Proc. of ACM-SIGMOD Intl. Conf. on Management of Data, pp. 175–186
(May 1995)

7. David, W., Cheung, L., Lee, S.D., Kao, B.: A General Incremental Technique for Main-
taining Discovered Association Rules. In: Proc. of 5th Intl. Conf. on Database Systems
for Advanced Applications, Melbourne (1997)

8. Ganthi, V., Gehrke, J., Ramakrishnan, R.: DEMON: Mining and Monitoring Evolving
Data. IEEE Trans. on Knowledge and Data Engineering 13(1), 50–62 (2001)

9. Thomas, S., Chakravarthy, S.: Incremental Mining of Constrained Associations. In:
Prasanna, V.K., Vajapeyam, S., Valero, M. (eds.) HiPC 2000. LNCS, vol. 1970, pp. 547–
558. Springer, Heidelberg (2000)

10. Thomas, S., Bodagal, S., Alsabti, K., Ranka, S.: An Efficient Algorirhm for the Incre-
mental Updation of Association Rules in Large Databases. In: Proc. of KDD 1997, pp.
263–266 (1997)

11. Fildman, R., Aumann, Y., Amir, A., Manila, H.: Efficient Algorithms for Discovering
Frequent Sets in Incremental Databases. In: Proc. of SIGMOD Workshop on Research
Issues in DMKD, pp. 59–66 (1997)

12. Harishta, J.: Technical Report on Data Mining, Dept. of CSA, IISc (1997)
13. Lu, H., Feng, L., Han, J.: Beyond Intra-Transaction Association Analysis: Mining Multi-

Dimensional Inter-Transaction Association Rules. ACM Transactions on Information
Systems 18(4), 423–454 (2000)

14. Anthony, K., Tung, H., Lu, H., Han, J., Feng, L.: Breaking the Barrier of Transactions:
Mining Inter-Transaction Association Rules. In: Proc. of Intl. Conf. on Knowledge Dis-
covery and Data Mining, pp. 297–300 (August 1999)

15. Agrawal, R., Shafer, J.: Parallel Mining of Association Rules. IEEE Tran. on Knowlegde
and Data Engineering 8(6), 962–969 (1996)

16. Cheung, D.W., Han, J., Ng, V.T., Fu, A.W., Fu, Y.: A Fast Distributed Algorithm for
Mining Association Rules. In: Proc. of IEEE Intl. Conf. on Parallel and Distributed In-
formation Systems, pp. 31–42 (December 1996)

17. Han, E.-H., Karypis, G., Kumar, V.: Scalable Parallel Data Mining for Association Rules.
In: Proc. of ACM-SIGMOD Intl. Conf. on Management of Data, pp. 277–288 (1997)

18. Shintani, T., Kitsuregawa, M.: Parallel Mining Algorithms for Generalized Association
Rules with Classification Hierarchy. In: Proc. of ACM SIGMOD, Intl. Conf. on Manage-
ment of Data, pp. 25–36 (1998)

19. Synthetic Data Generator,
http://www.almaden.ibm.com/cs/quest/syndata.html

20. Real Data Set from KDD CUP,
http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-1.dat.gz

http://www.almaden.ibm.com/cs/quest/syndata.html
http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-1.dat.gz

Chapter 5
Evolutionary Approach for XML Data Mining

Abstract. Extensible Markup Language(XML) has emerged as a medium for inter-
operability over the Internet. The XML technology, with its self-describing and ex-
tensible tags, is significantly contributing to the next generation semantic web. The
present search techniques used for HTML and text documents are not efficient to re-
trieve relevant XML documents. In chapter four, Self Adaptive Genetic Algorithms
for XML Search(SAGAXSearch) is presented to learn about the tags, which are use-
ful in indexing. The indices and relationship strength metrics are used to extract fast
and accurate semantically related elements in the XML documents. Experiments are
conducted on the DataBase systems and Logic Programming (DBLP) XML corpus
and are evaluated for precision and recall. The proposed SAGAXSearch outper-
forms the existing algorithms XSEarch and XRank with respect to accuracy and
query execution time.

As the number of documents published in the form of XML is increasing, there is
a need for selective dissemination of XML documents based on user interests. In the
proposed technique, a combination of Self Adaptive Genetic Algorithms and multi
class Support Vector Machine is used to learn a user model. Based on the feedback
from the users, the system automatically adapts to the users preference and inter-
ests. The user model and a similarity metric are used for selective dissemination of
a continuous stream of XML documents. Experimental evaluations performed over
a wide range of XML documents, indicate that the proposed approach significantly
improves the performance of the selective dissemination task, with respect to accu-
racy and efficiency.

On similar grounds, there is a need for categorization of XML documents into
specific user interest categories. However, manually performing the categorization
task is not feasible due to the sheer amount of XML documents available on the
Internet. A machine learning approach to topic categorization which makes use of
a multi class SVM for exploiting the semantic content of XML documents is also
presented. The SVM is supplemented by a feature selection technique which is used
to extract the useful features. Experimental evaluations performed over a wide range
of XML documents indicate that the proposed approach significantly improves the
performance of the topic categorization task, with respect to accuracy and efficiency.

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 81–118.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

82 5 Evolutionary Approach for XML Data Mining

5.1 Semantic Search over XML Corpus

Extensible Markup Language (XML) has been recognized as a standard for describ-
ing the data format and its meaning. The user defined tags associate semantics with
the contents of XML documents. Hence XML is a medium for interoperability over
the Internet. With these advantages, the amount of data that is being published on
the Web in the form of XML is growing enormously and many naive users find
the need to search over large XML document collections. The keyword query is a
search technique that does not require the users to know the structure of the underly-
ing data. There is no need to learn complex query languages to discover knowledge.
Thus, the keyword search over XML documents in the present context is of signifi-
cant importance.

Keyword search over large document collections has been extensively used for
text and HTML documents [1] and it has two main drawbacks. First, Search engines
are not as intelligent as their users. For example, a keyword search Kevin Database
Technology retrieves documents in which Kevin is the author and also documents in
which Kevin is mentioned in the references with equal priority, though the former is
more semantically relevant to the user. The second drawback is that keyword queries
are inherently flexible in nature and can produce large number of results. The results
are of varying relevance to the user and they need to be ranked. The time taken to
rank the results should be a small portion of the total query execution time. In con-
trast, a structured query language retrieves only the most relevant results, but the
complex query syntax makes it unsuitable for naive users. Thus an approach which
has the flexibility of keyword queries that still retains the accuracy of a query lan-
guage would be most suitable. The keyword search over XML documents presents
many new challenges [2].

Search engines for XML can be classified into two general categories: database-
oriented and information retrieval-oriented. In the database approach [3], the XML
documents are decomposed and stored in relational database. However, query pro-
cessing becomes expensive since, in many cases, an excessive number of joins is re-
quired to recover information from the fragmented data. Object-oriented databases
have been associated with XML document collections [4]. In this case, retrieval of
information from XML documents is considered as an object view problem.

Extensive research has been done on structured declarative queries over XML
documents. A structured declarative query is supported by XQuery [5], which is
analogous to SQL queries over relational databases. Though XQuery can achieve
perfect precision and recall, they require user to learn query semantics and in cases
where the user is unaware of the document structure, a search cannot be performed.
An improvement over XQuery that has elegant syntax and semantics is devel-
oped in [6].

Information retrieval techniques can consider XML documents as normal text
documents, with additional markup overhead. There are several ways of handling
the tags. For simplicity the tags can simply be ignored but the document loses
its semantics, leading to lower retrieval performance. When tags are taken into

5.2 The Existing Problem 83

consideration, search can retrieve documents containing certain tags, or certain
words. Keyword search over XML documents falls under this category.

In Information Retrieval, Genetic Algorithms have been used in several ways [7]
but in a different context. Genetic Algorithms have been used to modify user queries
[8, 9] and for automatic retrieval of keywords from documents. In [10], GA is ap-
plied to adapt multiple matching functions obtained from the combination of scores
using individual matching functions. This is used to rank and retrieve documents.
In [11] GA has been used for mining of HTML structures. The algorithm learns the
important factors of HTML tags through a series of queries.

Keyword search over XML documents is supported by XKeyword [12], XRANK
[13] and XSEarch [14]. All these keyword search techniques have elaborate ranking
schemes. The simplicity of the search queries i.e., keywords make these techniques
suitable for naive users. But, precision and recall values tend to suffer and the ex-
tensive ranking function employed acts as an overhead during query execution.

In XRANK, the hierarchical and hyperlinked structure of XML documents are
taken into account while computing the ranks for the search results. A ranking tech-
nique at the granularity of XML elements is considered here. XRANK can query
over a mix of XML and HTML documents.

XSEarch introduces a concept known as interconnected relationship. However,
checking for the interconnected relationship is a huge overhead during runtime.
Moreover, XSEarch suffers from drawbacks similar to other keyword search en-
gines: unimpressive precision and recall values. In the proposed SAGAXsearch al-
gorithm, the association of Self Adaptive Genetic Algorithms with keyword queries
ensures high accuracy i.e., very few non-relevant fragments (high precision) and
most of the relevant fragments (high recall) will be selected as results.

5.2 The Existing Problem

Consider a keyword search query operating system over the XML document in
Table 5.1. The keyword is associated with the <inproceedings> tag (line 19) and is
a relevant result, but returning only the elements related to the <inproceedings> tag
(line 19) would be more intuitive than returning the whole document. Thus, granular-
ity of the search terms must be refined when searching over XML document corpus
[14]. Second, the result of a keyword search over XML documents must be seman-
tically interconnected document fragments. Consider the Keyword search Ananth
Synchronization mechanism over the XML document shown in Table 5.1. Though,
the keywords exist independently in the XML document (line 4, 15 in Table 5.1),
they belong to different <inproceedings> tags. The author Ananth is not semanti-
cally interconnected to the title synchronization mechanism. Thus, only semantically
interconnected document fragments should contribute to the search results.

Finally, XML documents include large amounts of textual information and part
of this is rarely searched. Building a single index for the whole document makes
the index bulky and difficult to manage. Thus, there is a prospect of improving the
search accuracy and query execution time by separating the frequently searched tags
from the occasionally searched ones and building separate indices for both, and this

84 5 Evolutionary Approach for XML Data Mining

Table 5.1 Example of a XML Document

<dblp>
<inproceedings>
<author>I S Vipin</author>
<author>C G Ananth</author>
<author>G Sarah</author>
<title>Land Use: Problems and Experience</title>
<pages>135-172</pages>
<year>1979</year>
<crossref>conf/ibm/1979</crossref>
<booktitle>Data Base Techniques</booktitle>
<url>db/conf/ibm/db79.htm#zaGM79</url>
</inproceedings>
<inproceedings>
<author>A N Ravi</author>
<title>Synchronization Mechanisms</title>
<pages>2-22</pages>
<year>1980</year>
<crossref>conf/ibm/1980</crossref>
<booktitle>Operating Systems</booktitle>
<url>db/conf/ibm/db80.htm#saito80</url> </inproceedings>
</dblp>

is explored by the use of SAMGA(Refer to Chapter 2). A search over the XML
documents in the decreasing order of the importance of the tags is accurate and
efficient.

The human search strategy which is efficient for small documents, is not viable
when performing search over enormous amounts of data. Hence, making search en-
gines cognizant of the search strategy using GA, can help in fast and accurate search
over large document collections. We have explored the possibility of Retrieval and
ranking of XML fragments based on keyword queries. Self adaptive and real coded
Genetic Algorithms are used for learning tag information. A measure of distance
metric between the keywords among the XML documents is proposed. Genetically
learned tag information is used to retrieve semantically interconnected document
fragments.

5.2.1 Motivation

Consider the XML document fragments, an excerpt from a health-care record. Con-
sider a keyword search Vinu salbutamol over the XML document in Table 5.2. A
standard HTML search engine would consider the whole document in Table 5.2
as a suitable response, due to the presence of both the terms in the search query.
However, in XML environment the two search terms occur as totally unrelated
elements in the document as they belong to the medical records of different pa-
tients. In the XML document of Table 5.2 the keyword penicillin appears in two
different contexts; first it is associated with the <administer> tag and then with
the <drug allergy> tag and the tag name precisely categorizes between the two

5.3 XML Data Model and Query Semantics 85

Table 5.2 Example of Health Care Record

<medical records>
<patient>
<name>Vinu Krishnan</name>
<record id>4312</record id>
<administer>Penicillin</administer>
<drug allergy>None</drug allergy>
</patient>
<patient>
<name>Victor James</name>
<record id>4313</record id>
<administer>Salbutamol</administer>
<drug allergy>Penicillin</drug allergy>
</patient>
</medical records>

occurrences. Additional information like name, record identifiers are also explicitly
captured using application specific self explanatory tags. This is useful in keyword
search over XML documents. Thus exploiting the tagged and nested structure of
XML can help in effective knowledge discovery.

5.3 XML Data Model and Query Semantics

In this section, we briefly describe the XML data model and the keyword query se-
mantics for search over XML documents.

Data Model: The Extensible Markup Language (XML) is a human readable, ma-
chine understandable, general syntax for describing hierarchical data, applicable to
a wide range of applications. XML allows users to bring multiple files together to
form a compound document. The XML document consists of nested elements start-
ing from the root and corresponding associated values. The XML document can be
considered as a directed, node-labeled data graph G = (X ,E). Each node in X corre-
sponds to an XML element in the document and is characterized by a unique object
identifier, and a label that captures the semantics of the element. Leaf nodes are
also associated with a sequence of keywords. E is the set of edges which define the
relationships between nodes in X. The edge (l,k) ∈ E , if there exists a directed edge
from node l to node k in G. The edge (l,k) ∈ E also denotes that node l is the parent
of node k in G. Node l is also the ancestor of node k if a sequence of directed edges
from node l leads to node k. An example XML document tree is shown in Figure 5.1.

Query Semantics and Results: Let the XML document tree be called τ . Let x be
an interior node in this tree. We say that x directly satisfies a search term k if x has a
leaf child that contains the keyword k and x indirectly satisfies a keyword k if some
descendant of x directly satisfies the search term k. A search query q = {k1,k2, ...km}
is satisfied by a node x iff x satisfies each of k1,k2, ...km either directly or indirectly.

86 5 Evolutionary Approach for XML Data Mining

dblp
(0)

inproceedings
(1)

inproceedings
(2)

author
(3) title

(4)

year

(5)
author title year

(6) (7) (8)

Land
Use...

1979
Synchronization ...

1980Vipin Ravi

Fig. 5.1 Example XML Document Tree

For example, in the XML tree shown in Figure 5.1, inproceedings(1) satisfies the
search term Vipin and the search term Vipin 1979 but not the term Vipin 1980.

The nodes obtained as result should also be semantically related. Semantically
related nodes are nodes that appear in the same context. The various steps in the
working of SAGAXSearch are enlisted below.

1. A representative training set is chosen to assist the genetic learning of tags.
2. The keyword queries and the relevant search results are collected from the user.
3. The GA retrieves tag combination which can answer a maximum training queries.
4. Separate indices are built for the frequently used and occasionally used tag com-

binations.
5. A search over the XML documents in the decreasing order of importance of tags

is performed.
6. The search produces only semantically related results.

5.4 Genetic Learning of Tags

XML documents include extensible tags for formatting the data. These tags are self-
describing and thus represent the semantics of the contents associated with them. For
example, consider the keyword Widows Location. Due to the ambiguity in the key-
words, it is not possible to determine context and the exact meaning of the keywords.
But in the case of XML, using self-describing tags such as <Operating Systems>
or <Building Plan> the context of the keywords can be precisely highlighted. The
combination of tags in the XML documents also helps in revealing more information

5.4 Genetic Learning of Tags 87

about the contents of the documents. For example, the tag combination <author>,
<age> <date of birth> describes the personal details of the author. Whereas, the
tags <author>, <books>, <publication year> are more concerned about the work
of the author rather than his personal details. An XML document usually includes a
large number of tags and only a small number of these may be of interest to a user.
Hence, a user profile that stores only the tag combinations interesting to a user is
more accurate. Using genetic algorithms to learn user profiles has two advantages.
First, the tag combinations which are interesting to a user can be extracted. This task
can be automatically done using the search terms and the relevant feedback given by
the users. The tags which are not interesting to a user can be omitted from the user
profile. Second, the context of the search terms given by the users can be adjudged
and a profile can be constructed accordingly.

Consider an XML document collection with n documents. Each of the distinct
tags in this document collection is stored in a tag pool. Let T = {t1,t2, ...tm} be the
tag pool with m tags and ti represents ith tag. Usually, for document collection the
tag pool is huge. The purpose of SAMGA is to select from the tag pool, the tag com-
binations which are interesting to a user. For the system to learn the user interests,
the user has to first issue a set of search queries q = {k1,k2, ...km}. The documents
satisfying the search terms are retrieved as results. The user has to classify the re-
sults relevant to him. This is the feedback given to the system in order to learn the
user interest. The fitness function used in the GA is given by,

f itness = α ∗ (
N

∑
i=1

f req(i,Stag)
rank(i)

)+ (1 − α)N (5.1)

XML Document

Set

Tag Combination

Frequently Used

Genetic Learning

of Tags

Occasionally Used

Tag Combination

Training
Queries

Selection

Tag

Tag

Selection

Fig. 5.2 Genetic Learning of Tags

88 5 Evolutionary Approach for XML Data Mining

Table 5.3 Genetic Algorithms for Learning Tag Information

Begin
Initialize the population Pi by assigning random tag weights to j = { j1, j2, ... jl}.
for gen = 1 : maximum generation limit, do

(a) Order the tags by their decreasing weights and select the top k tags.
Let Stag = {t1,t2, ...tk} represent the selected tags.

(b) Evaluate fitness using Equation 5.1.
(c) For the population Pi perform a selection with stochastic universal sampling as
the selection operator.

(d) Perform discrete recombination on the selected individuals of the population Pi.
(e) Perform mutation on the individuals of the population Pi.

Next.
End

where N is the number of documents retrieved with a specific tag configuration, Stag

is the set of top k tags with highest tag weights. f req(i,Stag) is the frequency of
occurrence of the terms of the query q = {k1,k2, ...km} within the tags in Stag in the
ith retrieved document. The retrieved documents are ranked according to the fre-
quency of occurrence of the terms. The rank(i) denotes the rank of the ith retrieved
document provided the document is also classified as relevant by the user. α is a
parameter that is used to express the degree of user preference for accuracy of the
search results or the total number of documents that are retrieved. The architecture
of the genetic learning system is illustrated in Figure 5.2. A real coded GA is used
for learning the tag information in GaXsearch, and is explained in Table 5.3 and the
application of SAMGA for XML search(SAGAXSearch) is given Table 5.4.

Consider a training set with n documents. Let q = {q1,q2, ...qm} be a collection
of typical user queries where qi represents the ith query and m is the total number of
queries. The chromosome is represented as j = { j1, j2, ... jl} where ji denotes the

Table 5.4 Self Adaptive Migration Model Genetic Algorithms(SAMGA) for Learning Tag
Information

Initialize the population size and the mutation rate for each population.
Associate random tag weights with tags in the tag pool τ . This represents individuals
of the initial population.
for generation = 1: maximum generation limit
for each population

for each individual select top k tags with highest tag weights.
Let Stag = {t1,t2, ...tk} represent the selected tags.
Evaluate the fitness function using Equation 5.1.
Modify mutation rate using Equation 2.3.
Modify population size according to Equation 2.1.
Select individuals and perform the recombination operation.

If the average fitness of the ecosystem fails to change over two successive generations,
migrate best individuals between populations.

5.5 Search Algorithm 89

weight of the tag i, l is the total number of distinct tags appearing in the document
corpus which can be determined from the Document Type Definition (DTD) of the
corpus. Thus, a tag weight is associated with each of the distinct tags appearing in
the document collection.

The selection operator used in the algorithm is stochastic universal sampling.
Here individuals of the population are assigned contiguous segments on a straight
line based on their fitness values. Let b be the total number of individuals selected,
which are placed on equidistant points over a line. The distance between the points
is given by 1

b . Such a selection scheme has a zero bias and minimum spread, and is
found suitable for our algorithm.

The recombination operator used is intermediate recombination, where the vari-
able values of the offspring are around and between the variable values of the par-
ents. Offspring are generated according to the rule O = a1 ∗ ρ(a2 − a1) where ρ
is a scaling factor chosen over some interval and a1,a2 are the parents in the cur-
rent generation. Geometrically intermediate recombination produces variables with
a slightly larger hypercube than that defined by the parents but constrained by the
values of ρ . A real valued mutation operation is also applied in the algorithm to
explore new regions and make sure that good genetic material is never lost.

The result of the GA is the classification of tags as either frequently used or
occasionally used. This precise categorization helps in maintaining separate indices
for the information within the tags. The information within the frequently used tags
is stored in an index called Most Frequently used Index (MFI) and the information
within the occasionally used tags is stored in an index called Less Frequently used
Index (LFI).

5.5 Search Algorithm

The response to a search over an XML document is not the document in its en-
tirety but only semantically relevant document fragments. In this section we discuss
identification schemes and semantic relationship between nodes in XML tree.

5.5.1 Identification Scheme

The granularity of search over XML documents is not at the document level, but at
the node level in the XML document tree. Hence, an identification scheme for the
nodes in the document tree is required. This is accomplished by encoding the posi-
tion of each node in the tree as a data value before storing it in an index. Given the
identification values of the nodes, the scheme must also be able to reconstruct the
original XML tree. An identification scheme called Hierarchical Vector for Identifi-
cation (hvi) is derived.

Let x be a node in the XML document tree τ . Then the Hierarchical Vector for
Identification of x is given by, hvi(x) = [τid(x)p(x)s j(p)], Here, τid is the unique iden-
tification number assigned to the XML document tree τ , and p(x) is a vector which
is recursively defined as, p(x) = [p(parent(x))s j(parent(p(x)))] and s j(p) denotes

90 5 Evolutionary Approach for XML Data Mining

00

000

001
002 010

011
012

A
B C

1

1000

1001 1002 1010
1011

1012

D

(b)(a)

0

01

100

10

101

Fig. 5.3 Semantic Interconnection

the jth sibling of the parent p. With this identification scheme, each node captures
its absolute position within the whole document. The hvi of a node identifies itself
and all its ancestors. The hvi of various nodes in two XML documents are shown in
Figure 5.3(a) and 5.3(b).

Theorem 1: Let τ1,τ2, ...τn represent the XML document trees of the documents
with identification numbers (1, 2, 3,...n), where n is the number of documents. Then,
{∃xi ∈ {τ1,τ2, ...τn} ∧∃x j ∈ {τ1,τ2, ...τn},such that xi �= x j,hvi(xi) �= hvi(x j)},
i.e., there exist no two distinct nodes among all the XML documents in the collec-
tion, such that they have the same hvi.

Proof
Case 1: Consider the two nodes xi and x j are present in different documents. i.e.,
xi ∈ τi and x j ∈ τ j such that τi �= τ j. Since τi �= τ j, τid(xi) �= τid(x j),hvi(xi) �= hvi(x j).

Case 2: Consider the two nodes xi and x j that are present in the same document. i.e.,
{xi,x j} ∈ τ . Since both the nodes are in the same XML document τid(xi) = τid(x j).
But, since xi �= x j (from the statement of the theorem) and {xi,x j} ∈ τ there exist two
possibilities p(xi) = p(x j) or p(xi) �= p(x j). If p(xi) �= p(x j) then hvi(xi) �= hvi(x j).
If p(xi) = p(x j) then xi and x j represent different siblings of the same parent; there-
fore hvi(xi) �= hvi(x j). Thus, each element of all the XML documents in the docu-
ment collection is assigned a unique identifier. From Figure 5.3(a) and 5.3(b), it can
be observed that there are no two nodes with the same hvi values. The same is true
for a collection of n documents.

5.5.2 Relationship Strength

Let hvi(xi) and hvi(x j) represent the hvi of two distinct nodes xi and x j, exist-
ing in the XML document tree τ . The length of the longest common prefix(lcp)
for both the hvi is denoted as lcp(xi,x j). Consider two keywords k1, k2. The rela-
tionship strength between these two keywords, denoted as RS(k1,k2) is defined as,

5.5 Search Algorithm 91

RS(k1,k2) = lcp(xi,x j), such that xi directly satisfies k1 and x j directly satisfies k2.
The condition that the node should directly satisfy the keyword ensures that only
those nodes satisfying the keyword and also having the longest length of their iden-
tification vectors (hvi), are selected while evaluating the Relationship Strength(RS).
This is important because a node and all its ancestors satisfy a keyword, but a true
measure of RS is represented only by the node which directly satisfies the keyword.

Consider two keywords k1 and k2 such that xi directly satisfies k1, x j directly sat-
isfies k2. If xi ∈ τi and x j ∈ τ j such that τi �= τ j, then RS(k1,k2) = lcp(xi,x j) = 0,
since they do not share a common prefix. Thus a Relationship Strength value of
zero indicates unrelated keywords (keywords in different documents). If τi = τ j

and both the keywords are directly satisfied by the same node i.e., xi = x j, then
RS(k1,k2)= lcp(xi,x j) = length(hvi(xi)) = RSmax. Thus Relationship Strength val-
ues of two keywords can take integer values in the range of [0: RSmax] based on
their occurrence and proximity in the XML document. The concept of Relationship
Strength can be extended to a query q = {k1,k2, ...km} consisting of m terms. For
example, in the document trees in Figure 5.3(a) and 5.3(b), the nodes A and B have
a common prefix of length two. Thus, they have a RS value of two; similarly nodes
A and C have an RS value of one. Whereas, nodes A and D have an RS value zero
since they belong to different document trees.

5.5.3 Semantic Interconnection

In terms of the XML document tree, two nodes are semantically interconnected if
they share a common ancestor and this ancestor is not the root of the document tree.
As an illustration, consider the XML document tree in Table 5.1. The keywords
Vipin and 1979 have a common ancestor, inproceedings(1). Thus, they are semanti-
cally interconnected. Whereas the keywords Vipin and 1980 have a common ances-
tor, dblp(0), which is the root of the document tree. Hence, the two keywords are
not semantically connected.

Theorem 2: Two keywords k1 and k2 are semantically interconnected iff, RS(k1,k2)>
leveli + 1, where leveli is the first such level in the document tree where the degree
of the node is greater than one.

Proof: Consider leveli = 0. The document tree is as shown in Figure 5.3(a). Since
leveli = 0, RS(k1,k2) > 1. If RS(k1,k2) > 1, then there exist two nodes xi,x j that
directly satisfy k1,k2 and with Hierarchical Vectors for Identification hvi(xi) and
hvi(x j), such that lcp(xi,x j) ≥ 2. Thus the two keywords have at least two com-
mon ancestors and of these only one can be the root of the document tree. The two
keywords k1,k2 share at least one common ancestor apart from the root, hence they
are Semantically Interconnected. For leveli > 0, the document tree is as shown in
Figure 5.3(b). For example, in the XML document tree in Figure 5.3(a), since
leveli = 0, RS must be greater than one for the nodes to be semantically relevant.
The nodes A and B have an RS value of two and are semantically relevant. Whereas,
nodes A and C have an RS value of one, and hence are not semantically relevant.

92 5 Evolutionary Approach for XML Data Mining

Search ResultsKeyword Queries

User

Keyword Query
Processor

MFI LFI

Index Builder

XML Document
Collection

Information
Learned Tag
Genetically

Fig. 5.4 Architecture of SAGAXSearch

The RS can also be used to rank the semantically interconnected keywords. The
semantically interconnected keywords with higher RS values are the more relevant
results and hence are better ranked than those having low RS values. The architec-
ture to compute semantically related results from the Most Frequently used Index
(MFI) and Less Frequently used Index (LFI) is shown in Figure 5.4.

The algorithm SAGAXSearch works as follows. Let q = {k1,k2, ...km} be the
search query where ki represents the ith term in the query q and m represents the
total number of terms in the query. The search algorithm first checks the length of
the keyword query. If the query consists of a single term, a search over the MFI is
performed. If the search is not successful, the algorithm continues search over the
LFI. A failure to retrieve results from both MFI and LFI implies that the term is not
found. The same technique is extended when searching with queries having more
than one term. The only change is that, at each stage the semantic interconnection
of the results is checked. Only semantically interconnected nodes are considered as
the search results.

For example, in the XML document tree in Figure 5.3(a), since leveli = 0, RS
must be greater than one for the nodes to be semantically relevant. The nodes A and
B have an RS value of two and are semantically relevant. Whereas, nodes A and C
have an RS value of one, and hence are not semantically relevant.

5.6 Performance Studies 93

Table 5.5 Partitioned Index Search

if (m = 1) { s = search the MFI with query q }.
if (s = NULL) { s = search LFI with query q; search result = s;}.

elseif (m > 1)
if search with q in MFI is successful

s = semantically interconnected nodes in the search results.
if (s = NULL) No semantically related nodes.
else search result = s.

else
continue search with q in LFI.
s = semantically related nodes in the search results.
if (s = NULL) No semantically related nodes.
else search result = s.

Let q = {k1,k2, ...km} be the search query where ki represents the ith term in the
query q and m represents the total number of terms in the query. The algorithm to
find the semantically interconnected elements is given in Table 5.5.

The search algorithm first checks the length of the keyword query. If the query
consists of a single term, a search over the MFI is performed. If the search is not
successful, the algorithm continues search over the LFI. A failure to retrieve results
from both MFI and LFI implies that the term is not found. The same technique is
extended when searching with queries having more than one term. The only change
is that, at each stage the semantic interconnection of the results is checked. Only
semantically interconnected nodes are considered as the search results.

5.6 Performance Studies

In this section, we analyze the efficiency, and accuracy of SAGAXSearch, which is
implemented in Java, via experiments on real data. The real data are XML files from
the DBLP database [15].

Test Set: The test set used in SAGAXSearch is the DBLP XML corpus. The DBLP
XML corpus is a collection of 200,000 XML documents and is repository for the
details of a wide range of scientific articles. The document in the DBLP corpus can
be classified into two major categories: journal articles and conference papers. The
structure and the elements (nodes) used to represent the two types of documents
are different. The corpus makes use of 36 different elements. The elements can be
unique to a document category or they might be shared by document categories.

The GA used in SAGAXSearch takes a small number of user queries and the
documents adjudged as relevant by the user as inputs. The input queries are sam-
pled randomly from a large collection of user queries. Weights are associated with
tags and the GA tries to explore all possible tag combinations and finds the best
tag combination which satisfies the maximum number of queries. This is used to
build the MFI and LFI. As the generation continues, the weights of the tags in the
XML document are adjusted. The adjustments are such that maximum number of

94 5 Evolutionary Approach for XML Data Mining

Fig. 5.5 Tag weights at the start of GA

Fig. 5.6 Tag weights at termination

relevant results are retrieved. The DBLP XML database has a large number of dis-
tinct tags (>30). The evolution of these tag weights with the generations of the GA
is shown in Figures 5.5 and 5.6. Due to space constraints the evolution of all the
tags cannot be represented; so we illustrate the evolution in the weights of only six
tags: < author >, < title >, < year >, < pages >, < booktitle >, and < url >. The
average tag weight represents the average of the weights assigned to all the tags in
the document.

5.6 Performance Studies 95

The weight of a tag, when compared to the average weight of all tags in the doc-
ument, is a measure of the importance of the tag within the document. Figure 5.5
shows the random tag weights assigned to the tags at the start of GA. As the gen-
erations continue, the user queries are evaluated and the tag weights are adjusted so
as to obtain maximum fitness values. The tag weights after the termination of GA
are the real measure of the importance of tags, and are as shown in Figure 5.6. For
the DBLP dataset, based on randomly sampled user queries, tags like < author >,
< title >, < year >, and < booktitle > are classified as important. The tags like
< pages >, < url >, < cite >, and < ee > failed to classify as important.

Query Performance: We now evaluate the performance of keyword queries over
a subset of the DBLP XML corpus, using SAGAXSearch. Here, we compare the
performances of a search using a normal index and a search using MFI and LFI.
A normal index is one which stores all the XML tag information within a single
flat index structure. For large XML collections, such an index becomes huge and is
difficult to manage. In contrast, the MFI has an index size which is much smaller, but
still is capable of satisfying a majority of the user queries. During experimentation,
the normal index which we built from the subset of the DBLP XML document had
a size of 51.8 MB. The same document was indexed into two separate partitions by
making use of the knowledge learnt from GA. The two partitions, MFI and LFI, had
sizes of 20.4 MB and 31.6 MB respectively. In addition to this, MFI was capable of
satisfying about 70% of the user keyword queries and for the remaining 30% of the
queries, search had to be continued with LFI.

 0

 20

 40

 60

 80

 100

 120

 140

 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
 T

im
e
 (

in
 m

ill
is

e
co

n
d
s)

Number of Keywords

Partitioned Index
Normal Index

Fig. 5.7 Low frequency of occurrence of keywords

96 5 Evolutionary Approach for XML Data Mining

 0

 20

 40

 60

 80

 100

 120

 140

 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
 T

im
e
 (

in
 m

ill
is

e
co

n
d
s)

Number of Keywords

Partitioned Index
Normal Index

Fig. 5.8 High frequency of occurrence of keywords

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 5 10 15 20 25

F
itn

e
ss

Generations

SGA
SAMGA

Fig. 5.9 Average Fitness of the Populations

The query execution time is shown in Figure 5.7 and Figure 5.8. The query ex-
ecution time depends upon several factors like the number of terms in the search
query, the desired number of search results and the frequency of occurrence of the

5.6 Performance Studies 97

Table 5.6 Top Four Tags and their corresponding Weights

Generation No. Tag1 : Weight Tag2 : Weight Tag3 : Weight Tag4 : Weight
1 Month : 7.71 Author : 6.67 ee : 6.16 url : 4.26
5 Author : 7.63 Pages : 7.15 School : 6.74 Cite : 5.23

10 Title : 7.72 Year : 6.35 Cite : 5.92 Book Title : 5.87
15 Author : 8.1 Year : 7.63 Title : 7.19 Pages : 6.53
20 Author : 8.03 Year : 7.51 Title : 6.83 Pages : 6.60

keywords. We experimented with variations in all these factors and found that the
frequency of occurrence of keywords was the main factor which decided the query
execution time. Terms like database, conference, technique had very high frequency
of occurrence in the DBLP document, and search queries involving these terms took
longer to execute.

The Self Adaptive GA used in SAGAXSearch takes a small number of user
queries (10-20 queries) and the documents adjudged as relevant by the user as in-
puts. The input documents to the GA are XML fragments from the DBLP XML
database [16]. The GA tries to explore all possible tag combinations from the DBLP
database and tries to find the best tag combination which satisfies the maximum
number of queries. The experimental result in Figure 5.9 shows the average fitness
for the generations of population. Note that the fluctuations in the curve represent-
ing Self Adaptive Migration model GA (SAMGA) is because of the adaptiveness
introduced in the migration rate and population size. For SAMGA the average fit-
ness steadily raises until about the fifteenth generation and then the fitness increases
slowly. As the generation progresses further, the increment of fitness falls, as most
of the individuals have already converged to their best fitness values. In contrast, a
Simple GA (SGA) fails to converge even after 20 generations. Thus, the application
of SAMGA helps in faster convergence when compared to SGA.

Table 5.6, shows the tag weights of the top four tags with the largest tag weights
at the end of every five generations. It can be observed that the tags like < author >,
< title >, < year >, < booktitle > are given higher tag weights when compared to
the other tags.

Precision and Recall: Precision of the search results is the proportion of the re-
trieved document fragments that are relevant. Relevance is the proportion of rele-
vant document fragments that are retrieved. For precision and recall, we compare
SAGaXsearch with XSEarch [14] and the naive results. Naive results are those
which satisfy the search query, but are not semantically interconnected. All these
techniques yield perfect recall i.e., all relevant documents are retrieved and the pre-
cision values vary. This is because of the factor that apart from the relevant results,
some irrelevant results are also retrieved. The precision values of SAGaXsearch are
found to be higher than those of XSEarch and naive approaches, when compared
with the DBLP XML dataset. The small loss in precision occurs when the same
keywords are present in both the MFI and LFI and the intention of the user is to
retrieve information from the LFI. In such cases, the algorithm has already retrieved

98 5 Evolutionary Approach for XML Data Mining

0.01 0.02 0.09 0.85

Precision

Approach
Naive XSEarch

Tag
XSEarch
Tag+KW

SAGAXSearch

Fig. 5.10 Comparison of Precision Values

the results from the MFI, it will not continue search over the LFI. The possibility of
such an event is quite rare, and hence SAGaXsearch manages to exhibit high pre-
cision values. The comparison of precision values of these techniques is shown in
Figure 5.10.

Example: We elaborate the working of SAGAXSearch using examples. The scala-
bility of SAGAXSearch is confirmed by the performance measures on real data as
explained earlier. For simplicity and better understanding, we consider small exam-
ple documents. All the example documents are that of a shopping portal and have a
common structure, which is shown in Table 5.7.

Various XML documents conforming to this structure are considered as train-
ing and test sets. The training set also consists of keyword queries and the results
classified as relevant by the users. During experimentation, the keyword queries are
randomly sampled, from the feedback of relevance given by a large number of sim-
ulated users. Thus, the training set is not biased towards the preference of any par-
ticular user. Training queries like CD pack India, IBM Notebook Rs 50000 Credit
card, cartridge for inkjet printer, used car Ford Fusion, etc., are sampled along with
the relevance feedbacks of the results. The relevance feedback is a set of XML doc-
uments which the users consider as relevant. The genetic algorithm is used to find
the tag combinations which can answer the maximum number of sampled queries.
The initial random weights associated with tags in the XML document are shown in
Table 5.8.

Table 5.7 Structure of example documents

<item>
<location> </location>
<price range> </price range>
<manufacturer> </manufacturer>
<name> </name>
<description> </description>
<item id> </item id>
<payment> </payment>
<condition> </condition>
<seller> </seller>
</item>

5.7 Selective Dissemination of XML Documents 99

Table 5.8 Initial weights of tags in the example XML documents

location price range manufacturer name
7.3 5.6 1.2 7.3

description item id payment condition seller
2.5 4.1 4.5 6.1 1.2

Table 5.9 Tag weights after termination of GA

location price range manufacturer name
1.1 6.1 7.2 7.3

description item id payment condition seller
6.5 2.1 3.6 2.1 0.8

The GA starts with this tag configuration and terminates with the tag combi-
nation satisfying the maximum number of queries. The genetically learned tag
configuration which can satisfy the maximum number of queries is found to be
<price range>,<manufacturer>, <name>, <description>. Tags like <item id>,
<payment>, <condition>, <location>, <seller> are less frequently used during
search. The tag weights after the termination of GA are shown in Table 5.9. With
this information, two separate indices are built. MFI contains the information in the
tags <price range>,<manufacturer>, <name>, <description>. LFI contains the
information in the remaining tags.

Consider a keyword search query like Motorola mobile GSM on the test set XML
documents. The intention of the user is to find Motorola mobile phones with GSM
technology. The indexing of the XML test set documents is performed offline and
the hvi values for the various elements is stored in the index. When a search is per-
formed, all elements satisfying the search terms are retrieved as results. Consider the
result elements with hvi values [1 2 4], [1 2 7]. They have two prefix <1, 2> in com-
mon and hence have RS values greater than one. i.e., they share a common parent
apart from the root. Thus, they are semantically interconnected. The search results
with hvi values [1 2 4], [1 3 5] have a common prefix 1. They have an RS value
of one. Such results have a single ancestor in common and hence are semantically
unrelated elements. Note that the query Motorola mobile GSM can be answered by
the MFI alone without the help of LFI and thus the query results are obtained faster.
A modified query like Motorola mobile Bangalore credit card payment after search-
ing over the MFI continues search with LFI, but the system has learnt that such
specific queries are rarely encountered. Hence, even when such specific queries are
encountered there is no loss in precision.

5.7 Selective Dissemination of XML Documents

The ability of individuals to be cognizant of information interesting to them is ham-
pered by the abundant availability of knowledge. One method of addressing this
problem is Selective Dissemination of Information (SDI).

100 5 Evolutionary Approach for XML Data Mining

Information overload is a major problem on the Internet. The deployment of In-
ternet as a medium for news, electronic mail, digital libraries and e-commerce ac-
tivities has led to an explosion in the amount of information published on it. The
ability of individuals to be cognizant of information interesting to them is hampered
by the abundant availability of knowledge. One method of addressing this problem
is Selective Dissemination of Information (SDI). An SDI system helps users to cope
with the large amount of information by automatically disseminating the knowl-
edge to the users in need of it. Such systems maintain user profiles to judge the
interests of the users and their information needs. The new documents are filtered
against the user profiles, and the relevant information is delivered to the correspond-
ing users. XML being a markup language, associates structure to the contents of the
document using user defined tags. Both the structure and contents of the document
can help in effective filtering. The self describing tags and the hierarchical structure
of the knowledge can help in efficient selective dissemination of XML documents.
Selective dissemination of XML documents presents several new challenges. The
utilization of user defined tags is of great importance to improve the effectiveness
of the dissemination task. The hierarchical structural information of the XML doc-
uments can help in efficient filtering. Thus, a system that can handle the structural
information of XML documents can help in accurate and fast dissemination.

The growing amount of information on the internet has led to increased interest
regarding selective dissemination systems. Majority of the research on the selective
dissemination systems till now has focused on text documents. The SIFT SDI [17]
makes use of an inverted list for indexing the user profiles. The incoming documents
are matched with the user profiles to select the target users to whom the informa-
tion has to be sent. The SIFT SDI can be extended to handle XML documents, but
this setup cannot handle the tagged and the nested structure of XML documents.
Thus, the system fails to produce accuracy values which are expected from XML
applications.

The SDI systems for XML can be classified into two types: Boolean or Similarity
based. A Boolean approach finds exact match between the incoming documents and
the user profiles. The Boolean approach is supported by XFilter [18] which allows
the users to define their interests using the XPath query language. The structural
information available in the XML documents is used to construct highly expressive
user profiles. A Finite State Machine is also used for matching incoming documents
with the user profiles. However, such a system has limited scope as it can only find
documents with exact match for the dissemination task. In [19], the similarity based
approach is satisfied, user profiles are constructed and stored in a multi level index-
ing structure. The items previously classified as valuable by the users are clustered
together using a similarity measure. This approach can perform a fast dissemination
of XML documents even in the presence of large number of user profiles.

The Support Vector Machine (SVM) is an efficient method used for classifica-
tion and regression purposes. The SVM builds a model from the training samples
which is later used on the test data. This model is built using the training samples
that are most difficult to classify (Support Vectors). SVMs can exhibit good accuracy

5.8 Genetic Learning of User Interests 101

and speed even with very less training. In this section, we propose a framework
for selective dissemination of XML documents based on user profiles learnt using
SAMGA and SVM.

Consider the XML documents which share a common set of tags. Sharing a com-
mon set of tags implies that the XML documents have the same topic and thus, are
similar to each other. However, for text documents the similarity is measured by
making use of the words that the documents share, and the accuracy of such a sim-
ilarity assessment is often low. Thus, in the XML environment, similarity refers
to topic similarity rather than the similarity of words. Topic similarity has a close
resemblance to the human perception of similarity.

The XML document is structured collection of self describing tags. The tags as-
sociate semantics to the contents of the XML documents. For example, the <item>
tag is used to specify that the item Ford is a commodity for sale. The parent child re-
lationship among the elements can also be used to impart special meanings to plain
text contents. Thus, exploiting the tagged and nested structure of XML can help in
effective SDI. We have explored the possibility of selective dissemination of XML
documents based on a user model. Self adaptive and real coded genetic algorithms
are used to learn the user interests. SVM is used to build a user model based on user
interests. A similarity metric between the continuously streaming XML documents
and the profiles stored in the user model is proposed.

5.8 Genetic Learning of User Interests

The SAMGA of Chapter two used in this approach extracts from the tag pool, the
combination of tags which are interesting to a user. It builds the profile of a user.
Such a profile can be generated using a single query and relevance feedback session
with the system or by using multiple sessions to generate aggregate profile. The
accuracy and the utility of the selective dissemination tags improve with the number

Tag Pool
Genetic

Learning of
User Interests

User
Profiles

Query Results Relevance
Feedback

User Feedback Session

Fig. 5.11 User Profile Construction

102 5 Evolutionary Approach for XML Data Mining

of sessions of interaction between the user and the system. The SAMGA used in our
approach extracts from the tag pool, the combination of tags which are interesting
to a user as shown in Figure 5.11.

5.9 User Model Construction

The Self Adaptive Genetic Algorithms constructs a user profile, which is a set of tag
combinations interesting to a user. A user model which can judge the interest cate-
gory of a user from his profile is to be constructed. We consider this as a supervised
learning problem. From the collection of user profiles, random profiles are sampled
and a decision on the category to which they belong is made. A feature extractor
and a SVM are used for the user model construction.

Feature Extraction: The user profiles constructed using SAMGA can have tags
which are rarely used and also tags spread over all the categories. Such tags can
deteriorate the performance of SVM. Hence a feature extractor is used to eliminate
such tags. The feature extraction is performed using the measure of expected entropy
loss. The entropy loss ranks the features high that are discriminators among the
categories. It also assigns low ranks to features that cannot act as discriminators.

Let x be an event that a user profile belongs to a specific category and y be an
event that the profile contains the specified tag. Let P() represent their probability.
Let x and y be the negations of x and y respectively. All the profiles which belong to
a category are considered as positive for the category and the remaining profiles are
considered as negative. The following probabilities are computed.

P(x) = no. o f positive pro f iles
no. o f pro f iles

P(x) = 1 − P(x)
P(y) = no. o f pro f iles with tag y

no. o f pro f iles
P(y) = 1 − P(y)

P(x/y) = no. o f positive pro f iles with tag y
no. o f pro f iles with tag y

P(x/y) = 1 − P(x/y)
P(x/y) = no. o f positive pro f iles without tag y

no. o f pro f iles without tag y
P(x/y) = 1 − P(x/y)

The initial entropy of a class distribution is given by,

e = −P(x)lg(P(x))P(x)(lgP(x))

The posterior entropy for a class when the tag is present is given by,

ep = −P(x/y)(lgP(x/y))P(x/y)(lgP(x/y))

Similarly, the posterior entropy when the tag is absent is given by,

ep = −P(x/y)lgP(x/y)− P(x/y)lgP(x/y)

5.10 Selective Dissemination 103

The expected entropy loss is given by,

e − (ep ∗ P(y)+ ep ∗ P(y))

and the entropy loss ratio for a tag is given by,

E = e − (ep ∗ P(y)+ ep ∗ P(y))/e

E takes values in the range of (0:1). Higher values of E indicate more discriminatory
tags. All the tags with entropy loss ratio values greater than a predefined variable
are chosen as features for the SVM.

5.9.1 SVM for User Model Construction

SVM is a machine learning approach for the task of classification which is based on
structural risk minimization [20]. Here, the decision surface chosen must minimize
the test error on unseen samples. The binary SVM can be extended to support mul-
ticlass classification using the one against one approach. Here k(k−1)/2 SVMs are
used where, k is the number of classes. Each SVM trains data from two different
classes. A voting vector with a dimension for each class is also used for classi-
fication. There are as many votes as the number of SVMs and the class having the
maximum number of votes is the result. The result of application of SVM is the user
model. The user model has two functions. First, it classifies the various profiles into
user interest category. Second, the same model can assign a user interest category to
an incoming XML document from among the various prespecified categories.

5.10 Selective Dissemination

The selective dissemination is the task of disseminating the documents to the users,
based on their profiles to whom the incoming documents would be most relevant.
The first step in this task is determining the user interest category of an incoming
XML document. Next, the similarity between the incoming XML document and the
user profiles belonging to the same user interest category are determined. A high
similarity value indicates that the document is relevant to the corresponding user.

The similarity between the XML document and the user profile is determined
by modeling the XML document as a directed tree G = (Vg,Eg). Each node in Vg

corresponds to an XML element and Eg is a set of edges which defines the rela-
tionships between the nodes in Vg. A vertex in Vg is said to be at a level levi if it
is at distance of levi from the root. Let leveli(Dx) represent the set of all tags of
an XML document Dx at a level levi. Let userp j represent the jth user profile and
userp j = {tag1,tag2, ...tagl}, where l is the total number of tags in the jth user pro-
file. The similarity between a user profile userp j and the incoming XML document
Dx is given by

S(Dx,userp j) =
∑d

i=1
|userp j∩leveli(Dx)|

i∗|leveli(Dx)|
userp j ∪Dx

(5.2)

where d is the depth of the XML document tree. The following observations can be
made about the similarity metric.

104 5 Evolutionary Approach for XML Data Mining

• 0 ≤ S(Dx,userp j) < 1; Since the XML document tree and the user profiles are
structures of different kinds, a perfect similarity between the two can never be
achieved.

• S(Dx,userp j) = 0, iff there exists no common tags between the XML documents
and the user profile.

• S(Dx,userp j) = S(userp j,Dx)
• Let Dx1 and Dx2 be two XML documents so that |userp j,Dx1 | > |userp j,Dx2 |

i.e., the number of tags shared between userp j and Dx1 is greater than the num-
ber of tags shared between userp j and Dx2 . However, this does not imply that
S(Dx1 ,userp j) > S(Dx2 ,userp j) i.e., the number of tags shared between the in-
coming XML document and the user profiles is not the only factor which decides
their similarity.

Definition: The similarity between the user profile and the XML document depends
upon two factors:

• The level in the document tree where a dissimilarity occurs. A dissimilarity is
said to occur in level j iff |leveli(Dx)− userp j| ≥ 1.

• The Degree of Congruity (dc) in dissimilar levels also effects the similarity. The
degree of congruity between the user profile and a level in a XML tree Dx1 is
given by,

dc(userp j, levelm(Dx1)) =
|userp j ∩ levelm(Dx1)|

|levelm(Dx1)|

Proof: Let levelm(Dx1) and leveln(Dx2) represent the tags in the mth and nth levels
of two XML documents Dx1 and Dx2 respectively. Assume that the mth level in Dx1

and nth level in Dx2 are the only levels which have dissimilarity with the user profile
userp j.

Case 1: Let. dc(userp j, levelm(Dx1)) = dc(userp j, leveln(Dx2)) From Equation
5.5, it is clear that the similarity depends upon the values of m and n. Thus,
S(Dx1,userp j) > S(Dx2,userp j) iff m < n. The similarity between the user profile
and the XML document depends upon the depth at which the dissimilarity occurs. A
dissimilarity near the root, results in very less similarity values whereas dissimilarity
near the leaf nodes, can still result in high similarity values.

Case 2: Assume m = n i.e., the dissimilarity in the two documents occurs at the
same level. From equation 5.5, it can be inferred that the similarity S now de-
pends upon the degree of congruity, dc. That is, S(Dx1,userp j) > S(Dx2,userp j)
iff dc(userp j, levelm(Dx1)) > dc(userp j, leveln(Dx2)). Thus, higher the value of dc,
better are the similarity values and vice versa.

The architecture for selective dissemination of XML documents based on the
user model learnt using SAMGA and SVM is given in Figure 5.12. The user model
is used for two purposes. First, it classifies the user profiles among the various user
interest categories. The profile is then stored under the corresponding category. Sec-
ond, for streaming XML documents it determines the user interest category. The
similarity metric of Equation 5.2 is used to find the similarity between the user

5.11 Performance Analysis 105

User Profile Streaming XML Documents

User Model

Determine User Interest Category

Store Profile Under
the Category

Determine Similarity with
Profiles Stored Under

the Category

Document
Dissemination

Fig. 5.12 Architecture of the Selective Dissemination System

profiles and the XML document. A high similarity value represents that the corre-
sponding user is interested in the document. The document is disseminated to the top
k users whose profiles have the greatest similarity with the input XML document.

5.11 Performance Analysis

The SAMGA used in our approach takes a small number of user queries and the
documents adjudged as relevant by the user as input. The GA explores all possible
tag combinations from the tag pool and tries to find the best tag combination which
satisfies the maximum number of queries. This tag combination forms the profile of
a user. Even for small XML document collections the tag pool is usually large. The
time taken for the dissemination of the documents depends upon two factors: The
number of stored user profiles and the number of user interest categories. The user
interest categories are various divisions like sports, books, politics, religion, etc.,
to which the user profiles are assigned. It is important to have sufficient numbers
of such categories. If the number of user interest categories is less, large number
of profiles come under a single category and the time to find a matching profile
increases. Thus, maintaining a optimal number of user interest categories results in
good performance. The time taken for selective dissemination of XML documents
is shown in Figure 5.13.

The number of user interest categories utilized also determines the accuracy of
the selective dissemination task. The accuracy of the selective dissemination system

106 5 Evolutionary Approach for XML Data Mining

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80

F
ilt

e
r

T
im

e
(m

se
cs

)

Number of Profiles*1000

UIC = 15
UIC = 10

Fig. 5.13 Time for Selective Dissemination

is the proportion of disseminated documents that are relevant to the user. The varia-
tion of the accuracy with the number of User Interest Categories (UIC) is shown in
Figure 5.14.

In order to validate the accuracy and efficiency of the proposed technique, we
compare it with Multi-level Indexing Technique proposed in [19]. From
Figure 5.15 it can be observed that the accuracy of selective dissemination increases
with the number of profiles accessed. If an exhaustive search over the user profiles
is performed, both the accuracy and time for dissemination increase. Since selec-
tive dissemination systems should be able to handle a large number of user profiles,
the number of profiles accessed for an incoming document must be limited. From
Figure 5.15, the accuracy of both the techniques is same when the percentage of pro-
files accessed is high. When the percentage of the profiles accessed is in the range
of 30-40%, the proposed technique outperforms the Multi-level Indexing strategy in
[19]. Thus the application of SAMGA and SVM helps in accurate and fast selective
dissemination of XML documents.

Too many categories result in segmentation of the user interests and results in low
accuracy. If the number of categories is less, it leads to superior performance with
respect to accuracy but the time for selective dissemination increases. The intricate
relationship among the number of profiles, the number of user interest categories,
accuracy and time for selective dissemination, is given in Table 5.10 and it includes
the following metrics; (i) Number of User Profiles (NUP), (ii) Number of User In-
terest Categories (NUIC), (iii) Accuracy (Acc), and (iv) Time for Selective Dissem-
ination (TSD). From Table 5.10, it can be observed that the accuracy depends more

5.11 Performance Analysis 107

1 2 3 4
0

20

40

60

80

100

120

140

160

Number of Keywords

E
xe

cu
tio

n
 T

im
e

 (
In

 m
ill

is
e

co
n

d
s)

Partitioned Index
Normal Index

Fig. 5.14 Accuracy of Selective Dissemination

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
cc

u
ra

cy

Profile Access (%)

Using SAMGA and SVM
Multi Level Indexing

Fig. 5.15 Accuracy versus Number of Profile Access

108 5 Evolutionary Approach for XML Data Mining

Table 5.10 Variations of Accuracy and Time

NUPx1000 NUIC Acc TSD(msec)
5 10 0.92 162
5 15 0.87 143

10 20 0.89 201
10 25 0.81 189
20 30 0.74 331
25 15 0.87 547

on the number of user interest categories than on the number of profiles. Thus the
system is potent in handling a large number of users. An optimal number of user in-
terest categories should serve as a tradeoff between the accuracy and the efficiency
and can result in good performance of the selective dissemination task.

5.12 Categorization Using SVMs

In this section, we have explored the possibility of topic categorization of XML doc-
uments using SVMs. The semantic information in the self describing tags is used for
the purpose of categorization. A feature extraction strategy which can improve the
efficiency of the SVM is also employed. Experimentation evaluations which com-
pare the proposed technique with other classification techniques are also provided.

5.12.1 XML Topic Categorization

The topic categorization is the process of assigning a document to a specific cate-
gory, from a predefined set of labels. Topic categorization of XML documents is of
great interest as it can help in efficient XML data management. As the number of
XML documents on the Internet is growing at an enormous rate there is a need for
systematic organization of the documents. Such an organization must be capable of
meticulously storing the XML documents according to the category to which they
belong. The topic categorization can also help in effective information retrieval. A
category specific knowledge discovery process discloses more relevant information
compared to a general search.

The topic categorization problem has been extensively studied for text and
HTML documents. In the case of text and HTML, a document is classified to belong
to a specific category if it shares a common set of keyword terms with other docu-
ments under the same category. However, such a classification is often not accurate
as the context of the keyword terms is not known. But in the XML environment, us-
ing self describing and extensible tags the context of the keywords can be precisely
highlighted. Thus, the tags in the XML document can help in effective knowledge
discovery.

The topic categorization of XML documents poses several new challenges. The
hierarchical and the structural information in the XML document must be utilized

5.12 Categorization Using SVMs 109

in order to improve the quality of the knowledge discovered. A knowledge discov-
ery framework which assigns equal priority to both the tags and the contents of
an XML document is not able to exhibit any significant performance improvement
when compared to knowledge discovery over text documents. The tags represent
the semantics of the contents of an XML document and thus are more significant
than the contents during the process of classification. Thus, a topic categorization
framework with prominence to tags is highly efficient.

There has been a recent increase in interest regarding topic categorization of elec-
tronic documents. The topic categorization can be considered as a binary classifica-
tion problem [21] or multi class classification problem [22]. A binary classification
model, checks whether a document is relevant or not with respect to a category.
However, for real world applications the binary model has limited applicability. In
a multi class classification model the class to which a document belongs is judged
from a set of predefined classes. In [23], distributed clustering is applied for doc-
ument classification. Words are clustered into groups based on the distribution of
class labels associated with each word. The classification of XML documents is dis-
cussed in [24]. The focus of this paper is to build effective feature space. Here, apart
from the term frequency vectors, XML tag paths are used as features. In [25], an
artificial neural network is used for categorization of HTML documents. The Prin-
cipal Component Analysis (PCA) has been used to select the most relevant features
for the classification. The most regular words that exist in each class are manually
selected and weighted using an entropy weighting scheme. The fixed number of
regular words from each class will be used as a feature vectors together with the
reduced principal components from the PCA.

The weighing schemes can be used for feature selection in text mining applica-
tions. The weights are real numbers which can be used to judge the significance
of terms. In [26], the tf.idf weighing scheme is discussed. The tf is the term fre-
quency and the idf is the inverse document frequency. The tf.idf scheme assigns
higher weights to more significant tags and vice versa. In [27], a Bayesian inference
network model is used for term weighing. SVM is a machine learning approach for
the task of classification which is capable of efficient multidimensional function ap-
proximation. It is based on the principle of structural risk minimization [28]. SVMs
are widely used for text classification [29]. In [30], the standard feature representa-
tion of text is reviewed. The properties of text which make them suitable for clas-
sification using SVMs are discussed. Empirical results are also provided to prove
that SVM text classification is more efficient than conventional text classification
methods.

5.12.2 Feature Set Construction

The SVM is a machine learning approach to classification which is capable of low
generalization error. For the application of SVM to the given XML data a feature
vector must be constructed. The choice of the feature set determines the overall
accuracy of the categorization task. Hence a robust feature extraction strategy is re-
quired. In the proposed technique, all the distinct tags from the training set XML

110 5 Evolutionary Approach for XML Data Mining

documents are collected. This represents the initial tag pool. The tag pool can have
rarely used tags and tags spread over all the categories apart from the more fre-
quently used tags. Such tags can deteriorate the performance of SVM. The purpose
of feature selection is to select the optimal feature subset that can achieve highest
accuracy.

Consider a training set with n XML documents. Let TI = {t1,t2, ...,tl} represent
the initial tag pool, constructed using each of the distinct tags in the training set
XML documents and l represents the total number of distinct tags. The ti represent
the ith tag in the tag pool. The purpose of feature selection is to obtain an optimal
tag set To = {t1,t2, ...,tm}, such that m ≤ l. Feature selection has two advantages:
First, the dimension of the feature vector is reduced. This can help in faster com-
putations. Second, the features, or in the present context the tags, which are spread
over all the categories are eliminated and importance is given to those tags that are
representatives for a particular category. This can help in greater accuracy of the
categorization task. In order to perform feature selection each tag in the tag pool
is weighed using a standard weighing scheme. We analyze two weighing schemes:
tf.idf [26] and t-statistics [31]. The weight of a tag ti in TI is given by,

wi = t fi.log(
N

d fi
) (5.3)

where wi is the weight of the ith tag in TI , t fi is the frequency of the ith tag in
the document, N is the total number of documents in the collection and d fi is the
number of documents in which the ith tag occurs. This scheme assigns weights
to tags proportional to the number of times it occurs in document. However, the
tags which are common among all the classes are assigned lower weights. But, in
the case of XML documents only the information about the existence or the non-
existence of a tag is sufficient to classify the documents and there is no necessity
to calculate the tag frequency. Hence another weighing scheme based on t-statistics
[31] is considered. Here, the initial expression vector for the training samples is
given by Fx = { f x

1 , f x
2 , ... f x

l }, where 1 ≤ x ≤ m, m is the number of training sam-
ples and l is the number of features. Here Fx, represents the training sample x, and
{ f x

1 , f x
2 , ... f x

l }represent all the features of this sample. Each sample is labeled with
D ∈ −1,+1. All samples belonging to a particular class are considered as positives
for the class and the rest of the samples are considered as negatives. The following
values are computed for each tag:

• n+ and n−, the number of positive and negative training samples.
• μ+

i and μ−
i , the mean values of the ith tag over the positive and the negative

samples respectively.
• δ+

i and δ−
i , the standard deviations of the ith feature respectively over the positive

and the negative samples.

5.13 SVM for Topic Categorization 111

The weight of a tag is given by,

wi =
|μ+

i − μ−
i |√

(δ+
i)2

n+ + (δ−
i)2

n−

(5.4)

Equation 5.5, measures the normalized feature value difference between two
groups. Higher weights are assigned to the tags that are discriminators for a class.
Also, tags which are spread among all the categories are assigned low weights. In
both the tf.idf and the t-statistics weighing schemes only the top k% of the tags with
highest tag weights are chosen as dimensions for the optimal tag set To.

After the feature selection process, a feature vector for an input XML document
must be constructed. The XML document is parsed and all the tags present in the
document are extracted. Only binary values are assigned as dimensions of the fea-
ture vector. The feature vector of XML document consists of a 1 if the tag is present
in the document and 0 otherwise. The feature vector thus constructed is the input to
the multi class SVM.

5.13 SVM for Topic Categorization

SVM is a machine learning approach for the task of classification which is based on
structural risk minimization. Here, the decision surface chosen must minimize the
test error on unseen samples. The robust performance of SVM for both linearly sep-
arable and non-linearly separable data has lead to a rapid increase in the number of
applications making use of SVM. First, we explain the binary and linearly separable
classification problem and later extend the SVM to support multi class XML cate-
gorization. For a binary SVM, the training sample is {(x1,y1),(x2,y2), ...(xn,yn)},
where xi represents the feature vector for the ith sample and yi = {−1,1} i.e., a class
label +1 or -1 is associated with each of the training samples. If we assume the
profiles to be linearly separable then the equation of the hyperplane that does the
separation is given by, wT x + b = 0, where x is an input vector, w is an adjustable
weight vector and b is the bias. Thus, wT xi + b ≥ 0, i f yi = +1 and wT xi + b ≤
0, i f yi = −1 or equivalently,

yi(wT xi + b) ≥ 1 (5.5)

The training samples (xi,yi) for which Equation 5.5, is satisfied with a equality
sign are called Support Vectors. Support Vectors represents the classification sam-
ples that are most difficult to classify. Hence, maximizing the margins between the
Support Vectors results in a model which has good generalization properties. In or-
der to take care of the non-separable data points a non-negative scalar variable ξ
is introduced in Equation 5.5. The variable ξ is known as the slack variable. The
resulting equation for a soft margin SVM is given by, yi(wT xi + b) ≥ 1 − ξ . A soft
margin SVM solves the following optimization problem

minw,b,ξi

1
2

wT w+CΣn
i+1ξi (5.6)

subject to yi(wT xi + b) ≥ 1 − ξ ,ξ > 0

112 5 Evolutionary Approach for XML Data Mining

Feature Vector

SVM1 SVM2 SVM3 SVMp

d1 d2 d3 dp

max(d1, d2, d3, ... dp) Topic Category

Fig. 5.16 All-vs-One SVM topic categorization

Documents
Test Set XML

Documents
Training Set XML

Feature Vector

Construction

Training Phase Test Phase

Feature Selection

SVM 1 SVM 2 SVM 3 SVM p

All vs. One Multi Class SVM

SVM Model for Topic Category
of Input XML
Documents

Topic
Categorisation

Fig. 5.17 Architecture of the Topic Categorization Framework

5.14 Experimental Studies 113

where C is a variable selected by the user. A quadratic programming algorithm is
usually used to solve the constrained optimization problem of Equation 5.6. In order
to classify samples that are not linearly separable the feature space can be mapped
into a high dimensional linearly separable space using kernel tricks. However, in
the present context where tags represent the features, the linear kernel is efficient
compared to polynomial kernels.

The binary SVM can be extended to support multi class classification using the
All-vs-One approach. Here P binary SVMs are used where, P is the number of pre-
defined topics. Each of the P SVMs are trained using the training set documents.
When a new XML document has to be categorized the feature vectors for the doc-
ument are constructed and are individually provided as inputs to the P SVMs. Each
SVM decides whether the given document is in its own topic or not. The All-vs-
One approach for categorization of XML documents is shown in Figure 5.16. Here,
each SVM calculates the distance to the optimal hyperplane. A document belongs
to a particular category if the corresponding SVM representing the category yields
maximum positive distance value. The architecture for topic categorization using
SVM is shown in Figure 5.17. The dotted lines are used to represent the steps dur-
ing the training phase and the solid lines represent the steps during the test phase.
During the training phase, the feature vectors are constructed and given as inputs to
the multi class SVM. The number of topic categories are predefined. Each SVM in
the multi class setup is trained with the feature vectors for a particular category. The
result of the training is a All-vs-One SVM model for topic categorization. In the test
phase, the feature vectors are constructed for the input XML documents. The multi
class SVM model is used to assign a topic category for the input XML document.

5.14 Experimental Studies

In this section, we analyze the efficiency and accuracy of the topic categorization
of XML documents performed using the proposed approach. The experiments are
performed with XML documents belonging to various categories collected from
the Web as well as synthetic XML documents generated using the XML Generator
[32]. The XML Generator is used to generate various XML documents conforming
to a number of Document Type Definitions (DTDs). The performance experiments
are done with 6,216 XML documents belonging to 33 topics.The feature selection
performed prior to the application of SVM has a profound impact on the accuracy
of the framework. Accuracy is the percentage of the correctly categorized XML
documents.

The variations in the accuracy of the categorization with the values of k are shown
in Figure 5.18. It can be observed that the accuracy of the t-statistics feature selec-
tion is greater than the tf.idf feature selection scheme for all values of k. This is
because the t-statistics scheme is able to select an optimal number of features which
are effective discriminators for the various classes. From Figure 5.18, it can also be
seen that the accuracy is highest when k is in the range of 60-70%. When the value
of k is low, the number of features selected is less. This affects the generalization
performance of the SVM and it performs poorly over the test set. When the value of

114 5 Evolutionary Approach for XML Data Mining

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
(%

)

Value of k(%)

t-statistics
ti.idf

Fig. 5.18 Variation of accuracy with value of k

Table 5.11 F1-measure values for linear and Polynomial kernel

Category F1-Measure (linear) F1-Measure (polynomial)
Agriculture 0.5381 0.5416
Astronomy 0.6612 0.6709

Biology 0.5911 0.6215
Computer science 0.6617 0.6451

Entertainment 0.6910 0.7101
Health 0.7152 0.7093
News 0.5916 0.5911

k is high most of the features get selected. This results in poor classification accu-
racy of the SVM. A value of k in the range of 60-70% results in good classification
accuracy as it chooses an optimal number of tags as features.

In addition to the accuracy of the system, precision, recall and F1-measure can be
used to evaluate the classification system. Precision is the percentage of predicted
documents for the given topic that are correctly classified. Recall is the percentage of
total documents for the given topic that are correctly classified. Also, high precision
values leads to low recall and vice versa. A classification framework which can
exhibit optimum precision and recall values is required. Hence, the F1-measure,
which is a weighted combination of precision and recall is used for evaluation. The
F1-measure is given by,

5.14 Experimental Studies 115

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

F
1
 M

e
a
su

re

Number of Training Samples

t-statistics
ti.idf

Fig. 5.19 F1 measure using the two schemes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e
ca

ll

Precision

SVM Classifier
KNN Classifier
Decision Tree

Fig. 5.20 Precision versus Recall

116 5 Evolutionary Approach for XML Data Mining

F1 =
2 ∗ precision ∗ recall

precision + recall

The F1-measure for the two feature selection schemes is shown in Figure 5.19. The
T-statistics feature selection scheme results in better F1-measure values. The com-
parison of the linear kernel with Polynomial kernel for each topic category is shown
in Table 5.11. It can be observed that the improvement in accuracy of the categoriza-
tion task due to the application of kernel functions is not significant. Also, the time
for application of the kernel function acts as an overhead during the categorization
task. In the proposed technique though the accuracy of the linear kernel is slightly
below that of the polynomial kernel, it is still utilized as it is more efficient.

In order to verify the accuracy of the proposed technique, we compare it with two
traditional classification techniques: k-Nearest Neighbor and Decision Tree classi-
fier. The average precision versus recall graph for all the three techniques is shown
in Figure 5.20. It can be observed that the SVM classifier with the t-statistics feature
selection strategy outperforms the KNN classifier and the Decision Tree techniques
for the XML topic categorization problem.

5.15 Summary

A framework for information retrieval from XML documents that uses tag infor-
mation to improve the retrieval performance is proposed in this chapter. Genetic
Algorithms, which are efficient for search in large problem spaces, are used to learn
the significance of the tags. A Self Adaptive Real Coded GA is used in particu-
lar because of its ability to perform a rapid exhaustive search over a large problem
space. The notations for relationship strength and semantic relationship help in ef-
ficient retrieval of semantically interconnected results as well as ranking the search
results based on the proximity of the keywords. Experiment on real data show that
the SAGAXsearch is accurate and efficient. It has the flexibility of keyword query
search, but the results obtained maintain accuracy values comparable to that of struc-
tured queries over XML documents.

The problem of Selective dissemination of XML documents that makes use of
genetic algorithms to learn user interests is also discussed. A Self Adaptive Genetic
Algorithm is used in particular as the problem space is large and a rapid exhaustive
search is required to determine the user interests. Profiles which represent the user
interests are built. A model which assigns user interest categories to the user pro-
files as well as the streaming XML documents is also proposed. A similarity metric
between the user profile and the incoming XML document is used to determine the
users to whom the document is to be disseminated. The efficiency and the accuracy
of the selective dissemination of XML documents using the proposed technique is
superior compared to the Multi Level indexing strategy.

The topic categorization of XML documents that makes use of Support Vec-
tor Machines for the purpose of classification is explained in this chapter. Feature
selection schemes that can improve the accuracy of the SVM are presented. The
All-Vs-One Multiclass SVM is used to assign a topic category to the input XML

References 117

document from among the various pre-specified categories. Experimental evalu-
ations are performed to test the efficiency of the feature selection schemes. The
performance of the proposed framework is compared with other classification tech-
niques like k-Nearest Neighbors and Decision Tree Classifiers. The comparisons
show that the proposed technique outperforms the traditional classification tech-
niques with respect to accuracy and efficiency.

References

1. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
In: Proceedings of International Conference on Seventh World-Wide Web conference
(WWW7) (1998)

2. Luk, R., et al.: A Survey of Search Engines for XML Documents. In: SIGIR Workshop
on XML and IR (2000)

3. Shanmugasundaram, J., et al.: A General Technique for Querying XML Documents us-
ing a Relational Database System, SIGMOD Record (2001)

4. Abiteboul, S.: On views and XML. SIGMOD Record 28(4), 30–38 (1999)
5. World Wide Web Consortium. XQUERY: A Query Language for XML W3c Working

Draft, http://www.w3.org/XML/Query
6. Florescu, D., Kossmann, D., Manolescu, I.: Integrating Keyword Search into XML

Query Processing. The International Journal of Computer and Telecommunications Net-
working 33(1), 119–135 (2000)

7. Gordon, M.: Probabilistic and Genetic Algorithms for Document Retrieval. Communi-
cations of the ACM 31(1), 1208–1218 (1988)

8. Yang, J., Korfhage, R.R.: Effects of Query Term Weights Modification in Annual Docu-
ment Retrieval: A Study Based on a Genetic Algorithm. In: Proceedings of the Second
Symposium on Document Analysis and Information Retrieval, pp. 185–271 (1993)

9. Yang, J., Korfhage, R.R., Rasmussen, E.: Query improvement in Information Retrieval
using Genetic Algorithms: A Report on the Experiments of the TREC project. In: Pro-
ceedings of the First Text Retrieval Conference (TREC-1), pp. 31–58 (1993)

10. Pathak, P., Gordon, M., Fan, W.: Effective Information Retrieval using Genetic Algo-
rithms based Matching Functions Adaptation. In: Proceedings of 33rd Hawaii Interna-
tional Conference on System Sciences (2000)

11. Kim, S., Zhang, B.T.: Genetic Mining of HTML Structures for effective Web Document
Retrieval. Applied Intelligence 18, 243–256 (2003)

12. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Key-word Proximity Search on XML
Graphs. In: International Conference on Data Engineering (2003)

13. Guo, L., et al.: XRANK: Ranked Keyword Search over XML Documents. In: SIGMOD
(2003)

14. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine for
XML. In: VLDB 2003, pp. 45–56 (2003)

15. DBLP XML Records (2001),
http://acm.org/sigmoid/dblp/db/index.html

16. Shanmugasundaram, K.T., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F.: Relational
Databases for Querying XML Documents: Limitations and opportunities. In: VLDB
1999, pp. 302–314 (1999)

17. Yan, T., Garcia-Molina, H.: The SIFT Information Dissemination System. ACM Trans-
actions on Database Systems TODS 24(4), 529–565 (1999)

http://www.w3.org/XML/Query
http://acm.org/sigmoid/dblp/db/index.html

118 5 Evolutionary Approach for XML Data Mining

18. Altinel, M., Franklin, M.: Efficient Filtering of XML Documents for Selective Dissem-
ination of Information. In: International Conference on Very Large Databases (VLDB
2000), pp. 53–64 (2000)

19. Stanoi, I., Mihaila, G., Padmanabhan, S.: A Framework for Selective Dissemination of
XML Documents based on Inferred User Profiles. In: Proceedings of the Nineteenth
International Conference on Data Engineering (ICDE 2003) (2003)

20. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398,
pp. 137–142. Springer, Heidelberg (1998)

21. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing
Surveys 34(1), 1–47 (2002)

22. Weiss, S.M., Apte, C., Damerau, F.J., Johnson, D.E., Oles, F.J., Goetz, T., Hampp, T.:
Maximizing Text-Mining Performance. IEEE Intelligent Systems 14(4), 2–8 (1999)

23. Baker, K.D., McCallum, A.K.: Distributional Clustering of Words for Text Classification.
In: Proceedings of ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR 1998), pp. 96–103 (1998)

24. Theobald, M., Schenkel, R., Weikum, G.: Exploiting Structure, Annotation, and Onto-
logical Knowledge for Automatic Classification of XML Data. In: Proceedings of Inter-
national Workshop on the Web and Databases (WebDB) (2003)

25. Selamat, A., Omatu, S.: Web Page Feature Selection and Classification using Neural
Networks. Information Sciences-Informatics and Computer Science: An International
Journal 158(1), 69–88 (1999)

26. Salton, G.: Automatic Text Processing. Addison-Wesley, Reading (1989)
27. Turtle, H., Croft, W.B.: Inference Networks for Document Retrieval. In: Proceedings of

the Thirteenth International Conference on Research and Development in Information
Retrieval, pp. 1–24 (1990)

28. Christopher, J.C.B.: A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery 2, 121–167 (1998)

29. Joachims, T.: Transductive inference for Text Classification using Support Vector Ma-
chines. In: Machine Learning - Proceedings of Sixteenth Inernational Conference (ICML
1999), pp. 200–209 (1999)

30. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398,
pp. 137–142. Springer, Heidelberg (1998)

31. Liu, H., Li, J., Wong, L.: A comparative Study on Feature Selection and Classification
Methods using Gene Expression Profiles and Proteomic Patterns, Genome Informatics
(2002)

32. Diaz, A.L., Lovell.: XML Generator (1999),
http://www.alphaworks.ibm.com/tech/xmlgenerator

http://www.alphaworks.ibm.com/tech/xmlgenerator

Chapter 6
Soft Computing Based CBIR System

Abstract. Multimedia mining primarily involves, information analysis and retrieval
based on implicit knowledge. The ever increasing digital image databases on the
internet has created a need for using multimedia mining on these databases for ef-
fective and efficient retrieval of images. Contents of an image can be expressed in
different features such as Shape, Texture and Intensity-distribution(STI). Content
Based Image Retrieval(CBIR) is the efficient retrieval of relevant images from large
databases based on features extracted from the image. Most of the existing systems
either concentrate on a single representation of all features or linear combination
of these features. The chapter proposes a CBIR System named STIRF (Shape, Tex-
ture, Intensity-distribution with Relevance Feedback) that uses a neural network for
nonlinear combination of the heterogeneous STI features. Further the system is self-
adaptable to different applications and users based upon relevance feedback. Prior
to retrieval of relevant images, each feature is first clustered independent of the other
in its own space and this helps in matching of similar images. Testing the system on
a database of images with varied contents and intensive backgrounds showed good
results with most relevant images being retrieved for a image query. The system
showed better and more robust performance compared to existing CBIR systems.

6.1 Introduction

Multimedia mining is a subfield of data mining that deals with an extraction of
implicit knowledge, data relationships, or other patterns not explicitly stored in the
multimedia database. Relevant information analysis and retrieval is a key aspect of
this field. The recent growth of the image databases on the internet has created a
need for a more effective and efficient method for retrieval of images from a large
database. The most common method of image retrieval is to use textual keywords
to retrieve appropriate images. The major problem faced in context based textual
image searches is the tedious manual process of image annotation. Content based
image retrieval overcomes this problem by efficiently retrieving relevant images
from large databases based on automatically derived imagery features like shape,
color and texture features [1].

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 119–137.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

120 6 Soft Computing Based CBIR System

Image searches using text keyword often result in retrieving images that may be
irrelevant to the user as the context in which the user uses the keyword may be
different. For instance, if the user is looking for images of tea cups and hence gives
the keyword as cups, he might get search results related to world cup as keyword
matches. Further, the increasing size of image databases makes annotating images a
tedious task. CBIR helps to solve these problems by using visual contents to retrieve
relevant images.

Motivation: In classical CBIR the number of classes of inputs is very huge and not
known before hand. Hence combining all the heterogeneous features and using a
single SOM or Linear Vector Quantization(LVQ) over the entire set is not feasible
or efficient. For individual features, the exact number of classes is not known and the
number varies from feature to feature. Hence, LVQ would not help in dealing with
heterogeneous features separately and combining them later to obtain good results
[3, 4, 5].

The method proposed in this chapter is similar to method proposed in [2] only
upto the the part, where the features are clustered independently. Even in clustering
the topological ordering of SOM helps in the retrieval of images similar to query
images easily. The system uses a non linear combination of the features with user
relevance feedback to finally get merged results. This helps in not only retrieving
the most relevant images, but also in taking users perspective into consideration.

The CBIR system proposed in this chapter, combines heterogeneous STI features
in a nonlinear fashion to retrieve relevant images. An efficient comparison of the
features is obtained by first clustering them independently in their own space. A
static clustering system, along with a dynamic classification system using relevance
feedback from users help in effective retrieval of images from large databases. The
relevance feedback also helps the system to adapt itself to the user perspective.

6.2 Related Work

There has been considerable work done in the field of general purpose CBIR sys-
tems. Two of the pioneering CBIR systems are IBM QBIC [6, 7] and the MIT
Photobook [8]. In these systems shape, color and texture features are generally rep-
resented in the form of histograms. The major drawback of this method is sensitivity
to intensity variations, color distortions and cropping. Many approaches have been
proposed to improve the retrieval by minimizing the effects of intensity variations
and color distortions like the PicToSeek system that uses color model invariant of
the object geometry, illumination and pose. There have also been systems which
have concentrated on image retrieval based on a single set of features like shape
features [9, 10] or texture features [11, 12] by finding appropriate way to extract
the features. The performance of these system hint that rather than seeking a single
representation for all features, it is better to use appropriate representation for each
feature independently and finally use some way of combining them to achieve better
results.

6.3 Model 121

User relevance feedback can be a key to improve performance of CBIR. The Vi-
rage [13] and UIUC Mars [14] Systems allow user feedback and the systems learn
to retrieve images better by learning from user feedback. To perform more relevant
retrieval, systems like UCSB NeTra [15] and Berkley Blobworld [16] systems per-
form automatic image segmentation to obtain objects present in the image and use
these for the image search. But both systems often partition a single object to several
segments and none of the segments completely represent the object. In this chapter,
we have attempted to overcome the above mentioned shortcomings.

6.3 Model

The image retrieval system proposed has two distinct phases. The first phase consists
of creating the database of signatures used for image retrieval. Here the Shape, Tex-
ture and Intensity-distribution(STI) features are extracted from the image and each
feature is individually clustered using Kohonen Self Organizing Map(SOM). The
vector obtained by listing winner neuron’s index for each of the clustered feature is
then stored as signature for the corresponding image in the database.

The model of the final image retrieval system proposed which processes the im-
age queries (query phase) is shown in Figure 6.1. The system accepts images as
query key. The image is then preprocessed, followed by the feature extraction stage
where the shape, intensity distribution and texture features are extracted from the
image. Next, the trained Kohonen SOM used during the first phase is reused on
the features to get signature of the query image. The classifier system, which is a
backpropagation neural network, is used to compare this signature with the ones in

INTENSITY

C2

C3

FEATURES

FEATURES

FEATURES

Feature
Clustering

Image Feature Extraction

CLUSTERED FEATURES
DATABASE OF

P
R

E

O/P
SHAPE

TEXTURE

IMAGE

P
R

O
C

E
S

S
IN

G

Classification

CLASSIFIER

Relevance Feedback

C1

Fig. 6.1 Retrieval System Model

122 6 Soft Computing Based CBIR System

the database and retrieve appropriate images from the database. The users relevance
feedback is used as the supervision for the backpropagation network to learn to
retrieve the most relevant images. Thus, the system adapts to the users perspective.

6.3.1 Pre-processing

The preprocessing stage consists of first normalizing all the images to size 256x256.
This makes the features computed to be independent of the original image size.
Next, the histogram equalization of the image is done to distribute intensity across
image uniformly. The preprocessing is done to make the system more robust to
intensity variations and variable image size.

6.3.2 Feature Extraction

The system uses nine features for the purpose of image retrieval, four shape features,
four texture features and one intensity feature.

(i) Shape Features: The four Shape features used are histogram of edge direc-
tions, Co-occurrence matrix of edge directions, Discrete Cosine Transform(DCT),
and Hough transform.

Histogram of Edge Directions: The first step in finding Histogram of Edge Direc-
tions is converting RGB image to HIS(Hue, Intensity and Saturation) format using
the formulae

I =
1

3(R + G+ B)
(6.1)

S = 1 − 3
R + G+ B

min(R,G,B) (6.2)

H = arccos(
(R − G)+ (R − B)

2((R − B)2 +(R − B)(G− B))1/2
) (6.3)

Further, Sobels mask is used to obtain the direction edge maps for the eight
directions 0,45,90,135,180,225,270, and 360 degrees. For shape analysis, Sobel
edge detection provides detailed shape information about the image as compared
to MPEG7. Combination of only intensity and saturation values of the image are
used to obtain the edge maps as hue does not contribute to useful edges. The his-
togram of edge directions is computed using the eight direction edge maps. The
edge histogram is translation invariant and captures the general shape features in the
image. The edge histogram is computed by counting the edge pixels in each direc-
tion. The histogram is then normalized by the number of pixels in the image rather
than number of edge pixels as done in [17]. To make the histogram more robust to

6.3 Model 123

rotation, smoothing of the edge histogram [17] (To make the histogram robust to
rotation. Objects in the image when rotated should not affect the query results) is
performed as follows:

HS
e (i) =

∑i+k
j=i−k He(j)

2k + 1
(6.4)

where HS
e (i) is the histogram for direction i.

Co-occurrence Matrix of Edge Directions: To retain spatial features of the image,
a more generalized edge direction histogram, a two dimensional edge histogram or
co-occurrence matrix of edge directions is used as one of the features. The matrix
is computed by taking every edge pixel pairs and enumerating based on their di-
rections. The normalized 64 dimensional co-occurrence matrix Hco is obtained as
follows :

Hco(i, j) =
1

NM

N−1

∑
x=0

M−1

∑
y=0

Ie,i(x,y) ∑
(x̂,ŷ)U(x,y)

Ie,i(x̂, ŷ, i = 1, ...,8, j = 1, ...,8. (6.5)

Fig. 6.2 Causal neigh-
borhood set U(P5) =
{P1,P2,P3,P4} P1 P2

P4 P5

P3

Where U(x,y) is the causal neighborhood set of the pixel (x,y)[Figure 6.2].

DCT of Edge map: Since edge map of an image contains all relevant shape fea-
tures, DCT of edge map is used as one of the features. As the most significant infor-
mation about the image is stored in the top left corner of the DCT matrix, only these
values are used as one of the shape features. Image size becomes 256x256 after the
normalization process is carried out during preprocessing. For every 256x256 im-
age, 16x16 (because, 8*8 DCT coefficients for a large set of images were zero) DCT
coefficients of the edge map are considered as feature vector and they are arranged
row and column wise.

Hough Transform: The Hough transform is a technique which can be used to
isolate shape features within an image. The main idea behind Hough transform is
to apply the algorithm for detecting straight line to edge map of an image. In this

124 6 Soft Computing Based CBIR System

0 50 100 150

−150

−100

−50

0

50

100

150

0 50 100 150

−150

−100

−50

0

50

100

150

0 50 100 150

−150

−100

−50

0

50

100

150

0 50 100 150

−150

−100

−50

0

50

100

150

50 100150200250

50

100

150

200

250
50 100150200250

50

100

150

200

250
50 100150200250

50

100

150

200

250
50 100150200250

50

100

150

200

250

Fig. 6.3 Hough transform on objects

transform, each line is characterized by two parameters d and θ , d is the distance of
line from origin and θ is the angle the normal of the line makes with the reference
direction. Thus, the Hough transform of an image is again an image where the color
of a pixel at a distance d and orientation θ from the origin is given by number of edge
pixel that lie on the line. This transform is especially efficient when the image has a
single distinct object. As Hough transform can be used to retrieve original images,
it is evident that dissimilar images have dissimilar Hough transform. Moreover, the
transform gives rotation, scale and transition invariant.

0 50 100 150

−150

−100

−50

0

50

100

150

0 50 100 150

−150

−100

−50

0

50

100

150

0 50 100 150

−150

−100

−50

0

50

100

150

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

Fig. 6.4 Hough transform scaling and rotation invariance

6.3 Model 125

The Figure 6.3 shows Hough’s transform for two fish and two bird images. It
can be seen that the fish images have similar Hough transform image and the bird
figures have similar Hough transform images. The transform is rotation, scaling and
translation invariant. This is seen in Figure 6.4 where the image produces similar
Hough transform even after it is scaled or rotated.

(ii) Texture Feature: Texture feature is extracted using co-occurrence matrix [18]
of the grey-scale image. The co-occurrence matrix is a two dimensional histogram
of size GxG where G is number of grey levels. If I is a discrete image array and
d = (dx,dy) a displacement vector, The co-occurrence matrix HCO is defined as

HCO
i j = {x|I(x) = i, I(x + d) = j} (6.6)

where the (i, j)th element of the matrix is the number of appearances of gray levels
i and j in the distance and direction from each other determined by the displacement
vector d, is the number of elements in the set and x = (x,y) runs through the image
array I. For extracting texture features, the co-occurrence matrix is computed for dif-
ferent displacement vectors and from these co-occurrence matrices energy, entropy,
inertia and homogeneity terms are calculated and used as features. The computa-
tion of these terms from co-occurrence matrix reduces the feature vector size while
retaining texture details. The Energy is computed as

Energy(HCO) =
1

C2

G

∑
i=1

G

∑
j=1

(HCO
i j)2 (6.7)

Entropy is computed as

Entropy(HCO) =
1
C

G

∑
i=1

G

∑
j=1

HCO
i j log(

HCO
i j

C
) (6.8)

Inertia is computed as

Inertia(HCO) =
1
C

G

∑
i=1

G

∑
j=1

(i− j)2HCO
i j (6.9)

Homogeneity is computed as

Homogeneity(HCO) =
1
C

G

∑
i=1

G

∑
j=1

HCO
i j

1 +(i− j)2 (6.10)

where C is number of entries in co-occurrence matrix. The sets of different values of
energy, entropy, inertia and homogeneity for different displacement vectors is used
as the four feature vectors for texture feature.

(iii) Intensity Distribution Feature: Histogram of intensities is used as inten-
sity distribution feature. Various CBIR systems have shown good results using

126 6 Soft Computing Based CBIR System

histogram matching. Histograms contain some information about features like color,
texture, geometry and shape of images. Here histogram for the image is computed
based on Intensity map of image obtained using Equation 6.1. The smoothing of
histogram (Equation 6.4) is applied as well for rotation invariance. This makes the
feature more robust to rotation.

6.3.3 Feature Clustering

Once the heterogeneous feature vectors are obtained, each feature is clustered in-
dependent of the others using Kohonen neural network. Since the Kohonen SOMs
are topology preserving, similar features are mapped close to one other. A Gaussian
neighborhood function is used for training. As epochs proceed, the neighborhood
size decreases and neurons far away from the winner neuron(neuron whose weights
are closer to the input, taking Euclidian distance into consideration) are affected to
a lesser extent by the winner neuron. After training the Kohonen neural network,
for each image, the index of the winner neuron of each feature is taken as signature
vector. The number of neurons used in the Kohonen neural network that cluster each
of the extracted feature varies as each feature may require different cluster map size.
Hence the signature is normalized by dividing each winner neuron index by corre-
sponding number of neurons in the corresponding Kohonen neural network. The
normalized signature is used for the image retrieval by comparing it with signatures
of images in the database. Based on how well the images of different classes get
separated by clustering each feature, the SOM size for each feature varies. Obvi-
ously the larger the cluster size better is the separation. But beyond a certain point,
increase in the SOM size does not lead to improvement in clustering. Hence, the
SOM size for each feature is fixed as the size beyond which not much improvement
in results are seen. The SOM is trained on the part of the images available initially
and as new classes of image are added to the system the SOM is retained. In the
example, half of the images from each class is used for training.

6.3.4 Classification

Based on the clustered heterogeneous features, the image retrieval system retrieves
relevant images. A back propagation neural network is used to compare query image
signature with those in database and hence retrieve appropriate images. The input
to the neural network is the signature of query image and signature of image in
database to be retrieved. The number of signatures from the database fed to classi-
fier for retrieval are pruned to increase the speed. The Eucliedian distance between
signature of query image and images in the database is considered for pruning. This
is possible because of the topological ordering of clusters in the SOM. If the output
of the neural network is greater than 0.5, then the image is retrieved(Consider, an
example of a database in which no images of a car are present. Hence, query of a
car image should result in retrieving n images that are irrelevant just because they
are the closest to query image in the database. On the other hand, if there are 100

6.3 Model 127

images of bird in the database, a query of bird image should retrieve all of them, as
all are relevant). The order of retrieved images is in the order of their outputs. The
system accepts relevance feedback from the user to retrieve more relevant images
the next time. The user relevance is used to set target value to supervise the output
of the backpropagation neural network. The user relevance feedback can be -1, 0
or 1 corresponding to irrelevant, relevant and alike. This feedback f is converted to
current target value as targetcur

targetcur = (f + 1)/2 (6.11)

During training the average target values is used as target for training the neu-
ral network using backpropagation of errors. The average target value targetavg is
obtained as

targett
avg = (α)targetcur +(1 − α)targett−1

avg (6.12)

where α is decay factor. The relevance feedback accounts for difference in the per-
spective of different users. During the testing and the use of system, set the target
of the back propagation neural network to targetcur. During training per query per
image retrieved use user feedback to update targetavg and use it as target for the
back propagation neural network. The neural network used here, contains one hid-
den layer and the input layer size is given by twice the number of cluster maps(each
feature has a cluster map and hence a pair of 8 inputs, hence input vector size is 16).
The user relevance feedback entails a nonlinear combination of features as the user
feedback is assumed not to be just a weighted linear combination of features, but
subject to perspective which is non-linear (Figure 6.5).

The clustering neural network uses static learning to cluster features of images in
the database. The classifier on the other hand learns dynamically and becomes better
after each retrieval. Since a total of nine features are considered the input is only a
set of 18 values (a set of nine values of key image and another set of nine values
of image in database under consideration.) Due to low dimension of classifier, the
retrieval and learning is fast. When no example image is available in the beginning

Fig. 6.5 Use of query
and relevance feedback
in BPNN Query Image

Signature

Signature of an
Image in the

Database

Backpropagation

Neural

Network

User

128 6 Soft Computing Based CBIR System

of the query, the query is matched with other images in the database and if any
of them closely resemble the query image only those are retrieved. If none of the
images resemble the query image then the search retrieves no image.

6.4 The STIRF System

The description of the STIRF(Shape, Texture, Intensity-distribution features with
Relevance Feedback) system is presented in Table 6.1.

Problem Definition: Given a large image database consisting of n images, the ob-
jective of the system is to retrieve the most relevant images from the database, based
on Shape, Texture and Intensity-distribution features and Relevance Feedback.

The STIRF System: The query image is accepted as an input in RGB format and
normalized to 256x256 pixels by scaling the image. The image is represented as
three 256x256 RGB matrices. Histogram equalization is then performed on the im-
age to distribute intensities uniformly across the image. Four shape features, an 8x8
co-occurrence of edge direction matrix, a vector of length eight as edge direction
histogram, a 16x16 matrix as the DCT of edge map and a 180x362 matrix as Hough

Table 6.1 Algorithm for STIRF System

1. Input the query image
2. Normalize the image to size 256x256

3. Perform histogram equalization on the image
4. Extract the shape features Hough transform, co-occurrence matrix of edge direction,

edge direction histogram and DCT of the edge map.
5. Extract the texture feature by first calculating co-occurrence matrices for different

displacement vectors and calculating energy, entropy, inertia and homogeneity for
the different co-occurrence matrices.

6. Extract the intensity distribution feature by calculating histogram of intensities.
7. Use Kohonen SOM to cluster each feature individually.
8. Create signature for the image by taking a vector made up of winner neuron index

normalized by dividing them by the number of neurons in the neural network used
to cluster the feature.

9. For each of the n images in the database, do

a. Use the signature of the query image and images in the database as input to
classifier and if output is greater than selected threshold, retrieve the image.

10. Rearrange the images in the order of output from classifier.
11. If relevance feedback is given by user for any of the retrieved images, use relevance

feedback to train the classifier.

6.5 Performance Analysis 129

transform are extracted from the processed image. In the next step, the texture fea-
tures are computed as Energy, Entropy, Homogeneity and Inertia vectors of size 24,
one each for displacement vectors. Finally, the histogram of intensities, a vector of
size 256 is obtained as intensity-distribution feature.

Once the feature extraction is completed, it is fed as input to a Kohonen neural
network that clusters each feature independently. The number of inputs to the Ko-
honen neural network is equal to the feature size. Once clustering is performed, we
get eight winner indices, one for each feature as output of clustering. Next, the sig-
nature for the image is created, using the clustered features. For each image in the
database, the signature of the image along with signature of the query image is fed
as input to the classifier.

The output of the classifier is a value between zero and one. All images in the
database, that give output of more than a selected threshold for the query image are
retrieved. The threshold value decides the number of images retrieved. The retrieved
images are presented to user after they are rearranged according to the output from
the classifier. The user relevance feedback can be used to train the classifier.

6.5 Performance Analysis

Retrieval tests are conducted with different combinations of texture, intensity and
shape features. Figure 6.6 shows the first ten retrieval results based on Hough trans-
form alone. The first image to the top left corner of the figure is the query image.
Here a total of three misclassifications (images balloon(6),cloud(7) and cloud(9))
can be seen. The misclassifications are due to the fact that, certain edges in the mis-
classified images are responsible for producing Hough transform for these images
that are similar to Hough transform of query image. Figure 6.7 shows retrieval re-
sult for another query of a plane image based on the remaining three shape features

Fig. 6.6 Hough transform based retrieval

130 6 Soft Computing Based CBIR System

Fig. 6.7 Based on remaining three shape features

(Edge direction histogram, edge direction co-occurrence matrix and DCT of edge
map). Here four (images cloud(5), shark(8), shark(9) and flower(10)) out of the top
ten are misclassified due to similarity in certain edges present in the images and due
to similar edge histogram being produced for the images, even though the objects in
the image are different.

Figure 6.8 shows top ten query result of a cloud image based on texture fea-
ture alone. There is only one misclassification here (image 6(airplane)). The mis-
classification is due to the cloud background of the misclassified image which
gives it similar texture feature as query image. Finally, Figure 6.9 shows top ten
query results of a bird image based on intensity histogram. Here, we see seven

Fig. 6.8 Retrieval based on Texture feature

6.5 Performance Analysis 131

Fig. 6.9 Retrieval based on Intensity distribution

misclassifications (images polar bear(3), sharks(4), airplane(5), building(6), air-
plane(8), tiger(9) and clouds(10)) due to similarity in intensity histograms of dis-
similar images. In all these queries, the query image chosen was that image which
gave best results with the chosen feature. Similarity matching of each feature is
based on some factor independent of the other.

When all the heterogeneous features are combined together and similarity match-
ing is done then distance between images is compared in an n dimensional space
where n is the number of features. Hence the result obtained is much better and
complete. Figure 6.10 shows the top 16 query result when all the features are con-
sidered together. Figure 6.11 shows improvement in the performance when rele-
vance feedback is used in retrieval. It can be seen that relevance feedback has a
significant impact on the rank of the retrieved images. Further, in the top 16, one
misclassification (image 16) is resolved by the use of relevance feedback.

Fig. 6.10 Retrieval before Relevance feedback

132 6 Soft Computing Based CBIR System

Fig. 6.11 Retrieval after Relevance feedback

Tests were conducted on the effect of distortions in the image on the retrieval
of the image to show the robustness of the system. Figure 6.12 shows the effect of
contrast variations on the rank of the retrieved image. The x axis shows the variation
in contrast of the image (each step by a factor of 5 units) and the y axis shows the
change in the rank of the retrieved image. An interesting fact that can be observed
is that lowering of contrast does not affect retrieval as much as increasing contrast
of the image beyond a certain point (x = 2). This phenomenon, is due to the fact
that, increasing the contrast by a large extent induces edges that previously were not
detected in the low contrast image. For instance, when we consider an image of a
cloud, when contrast is further increased, the sky becomes distinctly bright blue and
clouds distinctly white. Hence the edge detection gives clear outline of the cloud
while edge map of the low contrast image does not have such a distinct outline.
From the figure, it can be observed that our system is more robust to lowering of
contrast of image than the CBIR system that uses local histogram matching. Both
methods however deliver similar performance when contrast is increased.

Figure 6.13 shows effect of sharpness variation of an image on retrieval. The
steps used to increase sharpness or blur the image is Gaussian filter of size 5. Positive
value for variation indicates that the image is sharpened and negative value indicates
that it is blurred. It can be observed that there is a symmetry in the graph about y axis.
That is, sharpening and blurring of the image have similar effects. The rank initially
increases and then returns back to rank of original image. Initially, when the image
is sharpened or blurred, the distortion in the image, plays a role in increasing the
rank of the image. As image is further sharpened or blurred, the system considers
a larger area of the image as feature, and hence maps general shape of object with
query image and hence performance improves. One more interesting observation
in the graph is the sharp rise in the rank when the image is sharpened beyond a
particular point (x = 15). This is due to the roughly pixelating effect that occurs
due to increasing sharpness of image excessively. Overall, the effect of sharpness
of image has little effect on retrieval compared to other distortions as the change
in rank of image is in the range of about zero to ten as can be seen in Figure 6.13.

6.5 Performance Analysis 133

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-4 -3 -2 -1 0 1 2 3 4

R
a
n
k

o
f
im

a
g
e

Variation in contrast

Our System
Localized histogram matching

Fig. 6.12 Effect of contrast variations on retrieval

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5 0 5 10 15 20

R
a
n
k

o
f
im

a
g
e

Sharpness.

Our System
Localized histogram matching

Fig. 6.13 Effect of sharpness variations on retrieval

134 6 Soft Computing Based CBIR System

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

R
a
n
k

o
f
im

a
g
e

Number of pixels used to shift

Our System
Localized histogram matching

Fig. 6.14 Effects of image shift on retrieval

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

R
a
n
k

o
f
im

a
g
e

Noise

Fig. 6.15 Effects of noise on retrieval

6.5 Performance Analysis 135

Here, better results are obtained by our system compared to CBIR system using
local histogram matching.

Often a shift effect is seen, especially in the images captured by a moving camera.
Figure 6.14 shows the effect of shift in image on the rank of retrieved image. In the
experiment, image was shifted in steps of 5 pixels. Upto a critical point(x = 10) shift
effect does not affect the rank of the image retrieved. Beyond the critical point, as
shift effect distorts the shape of the image and hence there is a variation in the rank.
It can be observed that our system is more robust to shift in image than the local
histogram matching method for image retrieval.

Figure 6.15 shows the effect of noise in image on the rank of retrieved image.
The x axis represents the amount of intentional noise added to the image. The noise
added is in steps of 0.2 Gaussian noise pixels being added per pixel of image in all
red green and blue channels. It can be observed from Figure 6.15 that low noise has
insignificant effect on the rank of the image. As the noise increases, there is a linear
increase in the rank of the image. Beyond a particular point (x = 5), addition of noise
to the image does not affect the rank of the image significantly. Thus, the rank of the
image stabilizes as adding noise to an already distorted image does not affect the
image. In all the above experiments, the step of variation is large, so that the effect
on image is clearly distinguishable to the human eye.

Description of the Database: The dataset consisting of the classes mentioned in
Figure 6.16 plus some assorted images. This is considered as our test environment.
The training was on less than the half the testing data. The table in Figure 6.16
shows the general performance of the system on image database where images are
classified by humans roughly based on objects present in them. It can be observed
that the performance of the system depends widely on the kind and variety of objects
in the image.

The recall is defined as the proportion of relevant documents retrieved and pre-
cision is defined as the proportion of retrieved documents that is relevant. The

Fig. 6.16 Performance of
the STIRF system

Sl.
No.

1 Birds 0.468 0.734 0.93 0.468

2 Sea Birds 0.88 0.94 1.00 0.88

3 Buildings 0.36 0.68 0.86 0.36

4 Clouds 0.94 0.97 1.00 0.94

5 Flowers 0.716 0.858 0.97 0.716

Hot air ballons 0.63

0.7335

0.815 1.00 0.63

7

6

Planes 0.467 0.75 0.467

8 Sharks 0.342 0.671 0.71 0.342

Category
Average
Precision

Precision Recall Accuracy

136 6 Soft Computing Based CBIR System

accuracy is defined as the difference between the proportion of retrieved documents
that are relevant and the proportion of retrieved documents that are irrelevant. The
recall, precision and the accuracy for the database is shown in Figure 6.16.

The average precision is calculated as Average Precision = Average (No. of rel-
evant pictures retrieved - No. of irrelevant pictures) / No. of relevant pictures in the
database, the average is calculated over query of all the images in the class.

6.6 Summary

We have developed a CBIR system based on the combination of heterogeneous STI
features. The system is self-adaptive and improves image retrieval based on the user
feedback. Unlike traditional systems, which combine features in a linear fashion,
this system learns to appropriately combine features in a nonlinear fashion based
on relevance feedback. Since features are clustered independently, the system re-
trieves images based on various similarity factors like shape, texture and intensity
variation. Since the dimension of the signature obtained from the cluster is small,
the retrieval process is efficient. The key to the good performance of the system,
is that the slow and expensive process of clustering is made static and the classifi-
cation which is a relatively less intensive process is made dynamic which helps in
increasing effectiveness of the system without compromise in efficiency. Although
the proposed model is for CBIR, it can be easily extended to other type of Content
Based Multimedia retrieval like audio or video by choosing appropriate features.

References

1. Chen, Y., Wang, J.Z.: A Region-Based Fuzzy Feature Matching Approach to Content-
Based Image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 24(9) (2002)

2. Sheikholeslami, G., Chang, W., Zhang, A.: SemQuery: Semantic Clustering and Query-
ing on Heterogeneous Features for Visual Data. In: Proceedings of ACM Multimedia,
pp. 3–12. ACM Press, Bristol UK (1998)

3. Li, J., Wang, J.Z., Weiderhold, G.: IRM:Integrated Region Matching Approach for Image
retrieval, ACM Multimedia, pp. 147–156 (2000)

4. Yu, L., Gimel’farb, G.: Image Retrieval Using Color Co-occurrence Histograms. Image
and Vision Computing, NZ, pp. 41–46 (2003)

5. Srisuk, S., Fooprateepsirr, R., Petrou, M., Waraklang, S., Sunat, K.: A General Frame-
work for Image Retrieval Using Reinforcement Learning. Image and Vision Computing,
NZ, 36–41 (2003)

6. Faloutsos, C., Barber, R., Flinkner, M., Hafner, J., Niblack, W., Petkovick, D., Equitz,
W.: Efficient and Effective Querying bi Image Content. Journal of Intelligent Information
Systems: Integrating Artificial Intelligence and Database Technologies 3(3-4), 231–262
(1994)

7. Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E., Petkovick, D., Yanker, P.,
Faloutsos, C., Taubin, G.: The QBIC Project: Querying Images by Content Using Color,
Texture and Shape. In: Proc. of SPIE, in Storage and Retrieval for Image and Video
Database, vol. 1908, pp. 173–187 (February 1993)

References 137

8. Picard, R.W., Kabir, T.: Finding Similar Patterns in Large Image Databases. IEEE, Min-
neapolis V, 161–164 (1993)

9. Kadyrov, A., Petrou, M.: The Trace Transform and Its Applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence 23(8), 811–828 (2001)

10. Wolf, C., Jolion, J.M., Kropatsch, W., Bischof, H.: Content based Image Retrieval using
Interest Points and Texture Features. In: Proc. of International Conference on Pattern
Recognition, pp. 4234–4237 (2000)

11. Distasi, R., Nappi, M., Tucci, M., Vitulano, S.: CONTEXT: A Technique for Image Re-
trieval Integrating CONtour and TEXTure Information. In: Proc. of International Con-
ference on Image Analysis and Processing, pp. 224–229 (2001)

12. Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Large Image
Data. IEEE Transactions on Pattern Analysis and Machine Intelligence (Special issue on
digital libraries) 18(8), 837–842 (1996)

13. Gupta, A., Jain, R.: Visual Information Retrieval. Communications of ACM 40(5), 70–79
(1997)

14. Malhotra, S., Rui, Y., Ortega-Binderberger, M., Huang, T.S.: Supporting Content-based
Over Images in MARS. In: Proc. IEEE Int. Conf. on Multimedia Computing and Sys-
tems, pp. 632–638 (1997)

15. Ma, W.Y., Manjunath, B.: NeTra: A Toolbox for Navigating Large Image Databases. In:
Proc. IEEE Int. Conf. Image Processing, pp. 568–571 (1997)

16. Carson, C., Thomas, M., Belongie, S., Hellerstien, J.M., Malik, J.: Blobworld: A System
for Region-Based Image Indexing and Retrieval. In: Proc. Visual Information Systems,
pp. 509–516 (1999)

17. Jain, A.K., Vailaya, A.: Image Retrieval Using Color and Shape. Pattern Recogni-
tion 29(8), 1233–1244 (1996)

18. Haralick, R., Shanmugam, K., Dinstein, I.: Textual Features for Image Classification.
IEEE Transactions on Systems, Man, and Cybernetics (2000)

Chapter 7
Fuzzy Based Neuro - Genetic Algorithm for
Stock Market Prediction

Abstract. Stock market prediction is a complex and tedious task that involves the
processing of large amounts of data, that are stored in ever growing databases. The
vacillating nature of the stock market requires the use of data mining techniques like
clustering for stock market analysis and prediction. Genetic algorithms and neural
networks have the ability to handle complex data. In this chapter, we propose a
fuzzy based neuro-genetic algorithm - Fuzzy based Evolutionary Approach to Self
Organizing Map(FEASOM) to cluster stock market data. Genetic algorithms are
used to train the Kohonen network for better and effective prediction. The algorithm
is tested on real stock market data of companies like Intel, General Motors, Infosys,
Wipro, Microsoft, IBM, etc. The algorithm consistently outperformed regression
model, backpropagation algorithm and Kohonen network in predicting the stock
market values.

7.1 Introduction

Financial forecasting involves the gathering and processing of enormous amount
of data. The future stock market values depend upon various market variables. The
market variables like past returns, dividend yields, default spreads, term spreads,
level of short term interest rates, and value line predictions, are usually considered
for prediction. Even parameters like gross exposure, net exposure, concentration,
and volatility in real-time affect the future stock values. Thus the data required
for predicting stock market values are high dimensional in nature and reducing its
dimensionality results in loss of information. For a human expert, predicting the
market using the stock variables is a laborious and error prone task. Stock market
prediction involves extraction of information on the correlations between the stock
market values from the complex and enormous stock market data, and presents an
interesting and challenging data mining task.

Data mining is a process of extracting nontrivial, valid, novel and useful informa-
tion from large databases. Clustering is a promising approach to mine stock market
data and it attempts to group similar objects based on features in actual data [1].

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 139–166.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

140 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

Machine learning techniques like neural network and genetic algorithms have been
successfully used to cluster large amount of data.

In backpropagation networks, errors are propagated back during training and us-
ing these errors weights are adjusted. Errors in the output determine the errors in
hidden layer, which are used as a basis for adjustment of connection weights be-
tween the input and hidden layers. Adjusting two sets of weights between the pairs
of layers and recomputing the outputs is an iterative process that is carried out until
the errors fall below a tolerance level. Learning rate parameters scale the adjust-
ments to weights and a momentum parameter is used to overcome local minima
[2].

The objective of a Kohonen network is to map input vectors (patterns) of arbitrary
dimension N onto a discrete map with one or two dimensions. The Kohonen layer
works on the idea of neighborhood. Each node has a set of neighbors; when a node
wins a competition, the weights of the winning node and its neighbors are changed.
Further the neighbor is from the winner, smaller is the change in its weight. The
Kohonen layer is composed of neurons that compete with each other. The weights
of the winner and its neighbors are brought closer to input pattern during training
and hence the output obtained are clusters, that are topologically ordered [2].

Genetic algorithms are examples of evolutionary computing methods which are
highly nonlinear, multifaceted search process. It searches for the best solution in
a large set of candidate solutions. Genetic algorithms can be considered as com-
putational models consisting of starting set of individuals(P), crossover technique,
mutation algorithm, fitness function and an algorithm that iteratively applies the
crossover and mutation techniques to P using fitness function to determine the best
individuals in P. The fitness function is determined by the goal of the genetic algo-
rithm [3]. Fuzzy Inference Systems apply logics on fuzzy sets, and use a defuzzifier
to obtain crisp outputs. In cases where the required output is not always crisp and
precise, fuzzy inference systems provide good results [4].

7.2 Related Work

A survey of all the different techniques used for forecasting is briefed in [5]. In pa-
per [5], all the models like Exponential Smoothing, ARIMA, Kalman Filters, Neu-
ral Nets, Regime Switching Models, State Space and Structural Models, Univariate
Models, etc., for efficient and accurate time series forecasting is discussed in brief.
The various measurements like Robustness, Seasonability, Accuracy Measures, etc.
for determining the accuracy of the forecasting model is also explained. A state of
the art paper on usage of Artificial Neural Networks(ANNs) for better forecasting
is given in [6]. The paper [6], presents a summary of all the modeling issues of
ANNs forecasting. The paper presents a relative performance of ANNs with tradi-
tional statistical models. A method called automated ANNs to develop an automatic
procedure for selecting the architecture of an ANNs for forecasting purpose is ex-
plored in [7]. An analytical model for an efficient market hypothesis is given in
[8]. The role of model specification uncertainity, the effect of dynamic learning and
the effect of feedback on return predictability is discussed in [8]. A comparison of

7.3 Model 141

classification techniques and level estimation models for an efficient forecasting of
stock indices is discussed in [9]. A set of threshold trading rules driven by the prob-
abilities estimated by the classification models are also derived. A hybrid system of
neural networks guided by genetic algorithms for better customer targeting is used
in [10].

Pioneering systems for the prediction of time series uses classical mathematical
models like autoregression. These models are static and hence not very effective in
prediction of stock market values [11]. The use of artificial neural networks in pre-
diction of time series [12] offers an attractive solution to better and more adaptable
prediction model. A primitive stock market prediction model using a basic Artificial
Neural Network is discussed in [13]. A methodology analysis on the applications
of neural networks in stock market data analysis is explained in [14]. A prediction
model, based on neural networks, for time series with origin in chaotic systems is
used in [15]. Application of a hybrid/expert system for database mining in market
survey data is addressed in [16]. This approach uses backpropagation method for
market survey. However, the backpropagation neural network cannot efficiently ex-
tract useful correlations from the raw stock market values. Clustering of data before
prediction often provides valuable information on correlations required for predic-
tion. An analysis and prediction of stock market data using SOM and its recent
developments are discussed in [17]. The use of genetic algorithms along with neural
networks [18,19] has shown better performance with noisy input sets. A combina-
tion of recurrent neural network and genetic algorithms is used for predicting stock
market values in [20]. The advantage of this model is the temporal preservance
which is very important in any time series model. However, here [20] again the
neural network is fed with the raw input without any clustering. This brings down
performance of system.

7.3 Model

Classical economic models like multiple regression and rolling average models are
used to predict stock market values. The multiple linear regression model uses the
mathematical equation of the form

y = β0 + β1x1 + β2x2 + ...+ βnxn + e (7.1)

where x1, x2, ..., xn are the n previous stock market values, y is the predicted value,
β0, β1, ..., βn are the coefficients of regression and e is the error factor to predict the
stock market. This model tries to find multiple linear correlations between the inputs
and the output. The model uses the previous stock values to solve the simultaneous
equation to obtain correlations to predict next stock value.

The regression model has many shortcomings. First, stock market is highly non-
linear for a linear model of single equation to predict its values accurately. Further,
the results are not generalizable on account of a high degree of multicollinearity, as
the parameter estimates in the model may not be stable owing to the high variance
of the estimated coefficients.

142 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

The backpropagation neural network overcomes the shortcomings of the classical
economic models by using the concept of feedback. In the backpropagation neural
network each layer represents a feature with the number of neurons representing the
number of dimensions of the feature. It is difficult to determine the features required
for predicting the stock market.

The problem of determining the features for predicting share market is overcome
by using Kohonen algorithm along with backpropagation neural network. Here the
Kohonen neural network learns to cluster by choosing a winner and using competi-
tive learning. The learning process of the Kohonen algorithm can be summarized as
(i) initialize the weights of all the neurons participating in the competition. (ii) train
the Kohonen network by changing the weights of the winner neuron and its neigh-
boring neurons appropriately. The cluster map obtained from the Kohonen network
preserves the topological order.

Kohonen algorithm does not learn effectively but keeps oscillating about the
learning peak when similar input patterns are far away from each other as noticed in
the stock market data. The Kohonen network in conjunction with genetic algorithms
helps in achieving outputs nearer to the learning peak.

In this chapter, we propose a five stage model to predict the stock market values,
as shown in Figure 7.1. In the first stage, the ordered stock market values are fed
as input. The preprocessing of raw stock market data is performed in the second
stage. The third stage uses a Kohonen network to output a cluster map. The Ko-
honen layer uses evolving genetic algorithms to obtain weights of its winners. In
the cluster map, the winners are assigned values in the order of their ranks forming
a multichromatic cluster map unlike the usual cluster maps which have only zero
or one as outputs. This is a unique feature which helps in accurate prediction of
stock market data. This layer also uses a fuzzy inference system to obtain fuzzily
the learning rate using number of epochs and rank of winner under consideration.
The use of fuzzy logic helps achieve a faster convergence rate. The fourth stage uses
a simple backpropagation algorithm to extract share values from the cluster map. In
the final stage, the output of the backpropagation algorithm is processed to obtain
the absolute share values. The predicted stock market value can be used in the next
input set for future predictions.

Mathematical Model: The Kohonen layer can be considered as a mapping from
input space I of n dimensions to output space of clusters O of m dimensions using
the transformation weight matrix W . Consider an input vector, Î = < I1, I2, ..., In >
of n inputs and a weight matrix W = {wi j|i < n and j < m}. The output vector is
computed as Ô = Î x W = < O1,O2, ...,Om >.

Let P = {P1,P2, ...,Pm} be a set of population of the m neurons. Then P j
i repre-

sents the jthindividual of population Pi and P j
ik is the kth chromosome of individual

P j
i . A set of neurons are selected in order of their outputs as winners. For these win-

ners, the corresponding weights wik are computed as, wik = P j
ik, 1 ≤ k ≤ n, where P j

i
is the best individual from the population Pi of neuron i.

7.3 Model 143

Cluster input data
Kohonen layer to Genetic algorithms to

train Kohonen Network

Predicted stock market values

Simple back propagation neural network

Preprocessing

market values
Set of previous stock

to extract value of shares from cluster map

Fig. 7.1 Model of the FEASOM

Once the weights of winner neurons are fixed using genetic algorithm, for the
remaining neurons, the change in weights of the neurons is given by:

Δwik =
{

0 if i is a winner
η(κ ,γ)λ (i,φ ,γ)(oldwφk − wφk) otherwise

where φ is the winner under consideration, κ is its rank and γ is the number of
epochs(an epoch is a learning cycle of neural network) and λ (i,φ ,γ) = e−d2/2σ 2(γ)

is the Gaussian distribution function, where σ(γ) = 1/1 − eγ . η(κ ,γ) is the fuzzy
inference system that fuzzily fixes the learning rate using number of epochs and the
rank of the winner.

The fuzzy inference system uses the plot shown in Figure 7.2 to find the mem-
berships μH

κ , μM
κ and μL

κ to fuzzy sets High(H), Medium(M) and Low(L) of rank of
winners. Similarly, it uses the plot in Figure 7.3 to find the memberships μH

γ , μM
γ

and μL
γ to fuzzy sets High(H), Medium(M) and Low(L) of number of epochs.

Further the memberships μH
η , μHM

η , μM
η , μLM

η and μL
η to fuzzy sets High(H), High

Medium(HM), Medium(M), Low Medium(LM) and Low(L) of learning rate to be
determined is obtained using the fuzzy rule table and the corresponding logic is
shown in Figure 7.5.

144 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

Fig. 7.2 Fuzzy sets of rank
of winners

L M H

0

1

Rank of Winner
M

em
be

rs
hi

p

Fig. 7.3 Fuzzy sets of num-
ber of epochs

L M H

0

1

M
em

be
rs

hi
p

Number of epochs

Fig. 7.4 Fuzzy sets of learn-
ing parameter

0

1

M
em

be
rs

hi
p

LML M HM H

n n n n n
L HLM HMM

Learning Rate

7.3 Model 145

Fig. 7.5 Fuzzy Rules Table
Rank of Winner Number of Epochs Learning Rate

HLL

H

M

L

M

H

L

M

H

L

M

M

M

H

H

H

L

L

HM

M

L M

M

L M

M

L M

Finally using the plot in Figure 7.4 and the memberships to fuzzy sets of learning
rates, the crisp learning rate is obtained as

η(κ ,γ) = η0 +
μH

η ηH + μHM
η ηHM + μM

η ηM + μLM
η ηLM + μL

ηηL

μH
η + μHM

η + μM
η + μLM

η + μL
η

(7.2)

where ηH , ηHM , ηM , ηLM and ηL obtained from the Figure 7.4 are used to calculate
the centroid which is the required learning rate. η0 is a bare minimum learning used
to offset learning rate parameter.

The entire population Pi is cultivated using a genetic algorithm with fitness
function

f (P j
ik) =

n

∑
k=1

I2
k −

n

∑
k=1

(P j
ik ∗ Ik) (7.3)

As the better offspring of the current generation are carried over to the next gener-
ation, fitness of the best individual of the next generation is at least as good as the
current generation. In general as the genetic algorithm evolves through the neural
network epochs, all the individuals of a population lie around the ideal solution. The
contributions of this work are as follows.

1. Genetic algorithms that evolve through the epochs of the Kohonen network is
used. The Genetic algorithms bring the weights of the Kohonen neural network
closer to the learning peak and hence prediction is better.

2. Use of multivalued winner neurons where the winner neurons are assigned output
values varying according to the rank of the winner. Thus the cluster formed is
multichromatic and hence gives more discernable output.

3. The neural network assumes that the neurons closer to the winner neurons are
similar to winner neurons. Hence the calculation of change in weights of the
neurons need to be done only for the winner neurons. Thus the time required for
computation is less and the cluster map formed is more distinguishable.

146 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

4. The learning rate for an individual neuron is fuzzily decided using number of
epochs and the rank of winner under consideration. This helps in achieving faster
convergence rate.

7.4 Algorithm

Problem De f inition : Given a large data set of ordered share values s1, s2, s3, ...,
sn, the objective is to effectively predict m future share values, sn+1, sn+2, ..., sn+m

using the n previous share values.

7.4.1 Algorithm FEASOM

The FEASOM algorithm uses a modified Kohonen algorithm for the first layer
which uses genetic algorithms to obtain weights of its winners. The output of this
layer is a cluster map, which is fed to a backpropagation algorithm for prediction.
The algorithm FEASOM can be summarized as follows:

1. Initialize Kohonen network with n input units, m output units and a weight matrix
W .

2. Initialize for each neuron in Kohonen layer, a set of populations P.
3. Initialize a backpropagation algorithm with random weights.
4. Obtain the input vector Î for the Kohonen layer by subtracting an arbitrary value

v from each element of S, where v ≤ min(S).
5. Use modified Kohonen algorithm with Î as input.
6. Set target t as (sn+1 - v)/f , where f is some arbitrary normalizing factor.
7. Feed the backpropagation algorithm with output cluster map of Kohonen layer

as input and t as the target.
8. Multiply f to the output of the backpropagation algorithm and add v to get the

predicted stock market value.

7.4.2 Modified Kohonen Algorithm

Consider a Kohonen layer defined by an input vector Î=< I1, I2, ..., In > where n is
the number of input units, an output vector Ô=< O1,O2,O3, ...,om > where m is
the number of output units and a weight matrix W = {wi j | i < n and j < m}.

1. Initialize the weight matrix W with small random values.
2. For each epoch from Zero to the maximum number of epochs,

do

a. Accept input Î from the training set.
b. Obtain output Ô as Ô = Î x W.
c. Select the l winner neurons with the l largest outputs.
d. For each winner neuron with index r,

do

7.4 Algorithm 147

• Use Genetic algorithms to fix the weights of winner neuron.
• For each neuron in the Kohonen layer with index i,

do
– Distance d = abs(r − i);
– Use fuzzy inference system to obtain learning rate fuzzily using rank

of winner and number of epochs.
– Change the weights of neurons by a factor of learning weight obtained

using change in the weights of the winner neuron by a factor θ , where
θ is the Gaussian of distance d which is the neighborhood function.

• Endfor
e. Endfor

3. Endfor

In this algorithm, we first initialize all the weights to some small random value
(≤ 1). Next, for each input pattern, the outputs of every neuron i is calculated as

out put = ∑(wi jIi). (7.4)

The weights and the inputs are usually normalized, which means that the magni-
tudes of the weight and input vectors are set equal to one. The l neurons with the
largest outputs are the winners. These neurons have a final output of one, for their
corresponding input patterns.

Consider a vector, A = ax + by + cz. The normalized vector Â is obtained by
dividing each component of A by the square root of the sum of squares of all the
components. In other words, each component is multiplied by 1/

√
(a2 + b2 + c2) .

Both the weight and the input vectors are normalized with respect to the input during
the operations of the Kohonen feature map. The reason for this is that the training
law uses subtraction of the weight vector from the input vector. Using normalized
values while subtraction reduces both input and weight vectors to a unit-less state,
and hence makes the subtraction of like quantities possible.

In the next step, genetic algorithms are used to obtain the weights of the Kohonen
network. The fitness function of the genetic algorithm is obtained from the training
law of Kohonen algorithm given by, Wnew = Wold + α * (Input −Wold). The training
law takes the weight at each epoch closer to the input. Consider the old weight vector
Wold and the new weight vector Wnew in a three dimensional plane. In Figure 7.6,
it is evident that at each epoch, the weight is pushed closer to the input pattern by a
factor of α . In higher dimensions, similar process occurs in the hyperplane.

The change in the weight of the winner neuron given by the genetic algorithm
is used to adjust the weights of neighboring neurons (a factor of Gaussian of their
distance from the winner neuron is used). This is done under the assumption that
neurons closer to winner neurons resemble the winner. Since initially all neurons
are initialized with small random weights, though the assumption may not be true

148 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

Fig. 7.6 Kohonen learning
rule

Input vector

W W

Input * alpha

oldnew

initially the small weights of neurons ensures that the cluster map is properly
formed. As the distance from the winner neuron increases, the Gaussian of the same
decreases. Hence the change in the weight of the neuron far away from winner
neuron reduces with its distance from the winner. The Gaussian function also de-
creases at each epoch and thus as the training proceeds, the size of the neighborhood
decreases.

7.4.3 The Genetic Algorithm

Consider an ecosystem having m populations P1,P2,P3, ...,Pm of u individuals where
each individual is a set of weights for the winner neuron. That is each individual is
a vector of floats. Let P‘ be the new improved population for each epoch.

Since the genetic algorithm is used to adjust weights of the winner neurons of the
Kohonen layer, the fitness function of the genetic algorithm follows the Kohonen
learning rule. The genetic algorithm tries to move the weights of winner neurons
closer to the input pattern. Hence the fitness function of the genetic algorithm for an
individual is given by equation 7.3.

The algorithm for obtaining weights of the winner neurons for each epoch is as
follows;

1. For each generation from Zero to maximum number of generations per epoch,
do

a. For each population Pi do
i. P‘ = { }

ii. N = |Pi|
iii. Sort Pi according to the fitness of the individuals
iv. For z = 0 to some constant B of the better individuals do

• P‘ = P‘ U Pz
i

v. Endfor
vi. For the next C (some constant) individuals do

• Select any individual P j
i from Pi and mutate P j

i

• P‘ = P‘ U P j
i

vii. Endfor

7.4 Algorithm 149

viii. For every few generations crossover and mutate between populations
ix. Until |P‘| = N
x. Pi = P‘

b. Endfor

2. Endfor

The genetic algorithm starts with a set of populations used previously during
each epoch of the neural network to obtain the weights of the winner neurons. Its
populations are preserved through the neural network epochs for each neuron. The
populations of winners during each epoch are cultivated from the populations used
last. The crossover used is a single point crossover. During mutation a small random
value is added or subtracted to some randomly chosen weight in the individual.

7.4.4 Fuzzy Inference System

Input : κ the rank of the winner and γ the number of epochs.
Algorithm of fuzzy inference system:

1. Find the degree of membership of κ to each of the fuzzy sets High(H),
Medium(M) and Low(L) of rank of winner.

2. Find the degree of membership of γ to each of the fuzzy sets High(H),
Medium(M) and Low(L) of number of epochs.

3. Use fuzzy logic to obtain the degree of membership of learning parameter
to be obtained to fuzzy sets High(H), High Medium(HM), Medium(M), Low
Medium(LM) and Low(L).

4. Use centroid method to obtain crisp learning rate parameter from memberships
to fuzzy sets.

7.4.5 Backpropagation Algorithm

Consider a backpropagation network with one input layer, multiple hidden layers
and an output layer. Initialize all the weights to some small random values. For
every input in the training set, update each network weight using the errors that
are calculated for every layer, until the termination condition is met. The algorithm
propagates back the square of the error and adjusts the weights accordingly.

7.4.6 Complexity

Consider a pure Kohonen network. Let n be the number of input units, m be the
number of neurons and l be the number of winners. Computation of output requires
nm operations per epoch and obtaining l winners requires lm steps per epoch. Fi-
nally, the adjustment of weights of the winner neuron and neurons surrounding each
winners requires ln operations as after first few epochs, only winners and few other
surrounding neurons weights are changed. Therefore, the computational complexity

150 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

is typically of the order O((n + l)m) per epoch. Generally, l is small and hence the
complexity of the Kohonen network is of the order O(nm).

Let p be the number of populations, u be the number of individuals and g be the
number of generations per epoch in the genetic algorithm used to train Kohonen
network. For the genetic algorithm to calculate the fitness function it takes n steps.
Fitness function of n individuals are to be computed. Sorting of the u individuals
is of the order u ∗ log(u). These steps are to be performed for p populations and g
generations. Hence nupg number of steps are to be performed per neural network
epoch per winner by the genetic algorithm. Hence the complexity of our algorithm
is of order O(nm+ lm+ wnupg).

For a complex input set with many possible classes m is much greater than nupg.
Hence, the order of computational complexity of the proposed algorithm is same as
Kohonen, that is O(nm), which is linear and the training complexity of the back-
propagation network is exponential and higher than FEASOM.

7.5 Example

Consider the simple network shown in Figure 7.7, with two input units, four neu-
rons in clustering neural layer and a single backpropagation neuron. Consider the
network to be partially trained. Let the weights of clustering layer be

Wc =
[

0.09 0.21 0 0.2
0.19 0 0.21 0.1

]

Consider an input vector Î=< 0.1,0.2 > and let the expected output be 0.3. Now we
obtain the outputs of the clustering neurons by normalizing the vector Î x Wc with
respect to the input, by dividing each element in the input vector by the summation
of squared values is and given by (0.12 + 0.22). Hence the outputs of the clustering
network is < 0.94,0.42,0.84,0.8 >

Fig. 7.7 Example Neural
Network

clustering
layer

Backpropagation
layer

7.5 Example 151

Choosing the winner with the largest value from the output of the clustering net-
work and assigning it with value one and the rest of the neurons with value zero, the
output of the clustering layer is Ô = < 1,0,0,0 >

Let the weights of the backpropagation neuron be

Wb =

⎡
⎢⎢⎣

0.29
0
0.4
0.01

⎤
⎥⎥⎦ ,

then the output of the neural network is Ô x Wb = 0.29 + 0 + 0 + 0 = 0.29.
Now for training, consider the learning rate η to be 0.3. For the backpropagation

network, the change in weights is given by Δwik = ηoi(1 − oi)(ti − oi)Inputk. Here
if the target t is set to 0.3, the output o obtained is 0.29. Hence the change in weight
is given by

Δwik = 0.3 ∗ 0.29 ∗ (1 −0.29)∗ (3 −0.29)Inputk = 0.0062Inputk
The new weights for the backpropagation neuron are

Wb =

⎡
⎢⎢⎣

0.29 +(0.0062 ∗ 1)
0 +(0.0062 ∗ 0)
0.4 +(0.0062 ∗ 0)
0.01 +(0.0062 ∗ 0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.2962
0
0.4
0.01

⎤
⎥⎥⎦

In the clustering layer for simplicity let the neighborhood size be one, that is only
the weights of the winner neuron are changed during every epoch. Consider a pop-
ulation with four individuals from which the weights of the winner neuron are to be
selected. Let the four individuals be P1

1 , P2
1 , P3

1 and P4
1 .

P1
1 = < 0.09,0.19 >, P2

1 = < 0.08,0.189 > , P3
1 = < 0.09,0.01 > and P4

1 =
< 0.02,0.19 >

Now for the next generation, the value of the best individual is retained. Hence,
the new population has an individual P1

1 = < 0.09,0.19 > . Mutation is performed
by choosing some random chromosome and altering its value slightly for the second
individual to obtain the individual P2

1 = < 0.09,0.189 > . Let the third and fourth
individuals crossover at the second position giving individuals P3

1 = < 0.09,0.19 >
and P4

1 = < 0.02,0.01 > . Slightly mutating them, we get P3
1 = < 0.092,0.193 > and

P4
1 = < 0.024,0.008 >

Now applying the fitness function given by ∑ input2 − ∑(gene ∗ input), the fit-
ness of P1

1 is 0.003, P2
1 is 0.0032, P3

1 is 0.0022 and P4
1 is 0.0046. Choosing the best

individual as P3
1 which has the lowest fitness value and hence is closest to the input

pattern, the new Kohonen weight matrix is as follows,

Wc =
[

0.092 0.21 0 0.2
0.193 0 0.21 0.1

]

152 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

In the next epoch, repeating the input vector < 0.1,0.2 > we obtain the prediction
value of 0.2962 which is better than the previous result and the winner is pushed
closer to the given pattern, thus assuring it the winning position in the next epoch.

Similarly, consider an input vector < 0.2,0.1 >. For this, the winner is the fourth
neuron. Applying backpropagation, the output is 0.01. It is almost a straight line
with decreasing slope of 0.1. Thus, with this simple model of neural network with
trained weights we could predict two sets of linear values with a fixed slope.

7.6 Implementation

The algorithm FEASOM is implemented to take in eight previous stock values and
predict three values. The Kohonen layer had eight input units and six hundred neu-
rons with two hundred winners. The winners’ are assigned outputs varying from
zero to one, such that the first winner has one as its output and subsequent winners
have lower outputs. To train the weights of the Kohonen layer, the genetic algorithms
used, evolved through one hundred generations per epoch of the neural network.
The genetic pool consists of a collection of five populations and inter-population
crossovers are carried out for every thirteen generations. Each population consists
of seventeen individuals and the best four individuals of a population are retained for
the next generation. The populations are preserved between neural network epochs
for better results. The fuzzy inference system divided inputs rank of winners and
number of epochs into three fuzzy sets each as Low [0 : 75], Medium [50 : 150],and

Output

In
pu

t v
al

ue
s

Kohonen layer
trained by genetic

algorithm.

8 neurons

600 neurons
200 winners

8
Neurons

Backpropagation
Neural Network

Fig. 7.8 Implementation model

7.6 Implementation 153

Fig. 7.9 Cluster 1

Fig. 7.10 Cluster 2

High [125 : 200]. Output learning rate is divided into six fuzzy sets and centroid
method is used to obtain crisp learning rate value.

To extract stock market prediction values from the cluster map, a simple two
layer backpropagation neural network is used, which has eight neurons in the first
layer and one neuron in the next layer to predict the share value. Momentum is used
to avoid settling of the neural network at local minima. The cluster map obtained
from the Kohonen layer shows complex but distinct traits for different features in the
input stock market values. The backpropagation neural network is used to discern
these features and predict the share value.

154 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

The inputs to the model are the eight previous stock market values subtracted
by a value less than the least share value. The output of neural network is a value
which when added to the least value initially subtracted gives the predicted value.
The predicted value is used as the input to the next two predictions and thus three
future predictions are made from eight past values.

The entire implementation model is summarized in Figure 7.8. Figure 7.9 and
Figure 7.10 show example illustrations of two cluster maps. The different shades
of gray show the corresponding values of output varying from zero to one. This
multichromatic nature of the cluster map helps in better prediction of stock market
value by the backpropagation algorithm.

7.7 Performance Analysis

To analyze and compare the efficiency of the proposed algorithm with those of the
other algorithms, we trained our network(FEASOM) with a synthetic dataset taken
from a linear function. The training set consists of one-fourth the test set which is
evenly spread. The Kohonen, FEASOM and backpropagation networks are trained
with the same training set. The difference between predicted and actual values is
plotted in Figure 7.11 for all the three models. From the graph, it can be seen that
FEASOM is closer to the base line and has less error than Kohonen and backpropa-
gation neural networks. The sample taken from the Figure 7.11 showing errors of the
three models is tabulated in Figure 7.12. It can be observed that the rate of increase

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200

E
rr

o
rs

Number of days

FEASOM
Pure kohonen

Back propagation network

Fig. 7.11 Error graph on a set of linear data

7.7 Performance Analysis 155

Fig. 7.12 Errors gener-
ated on prediction of linear
dataset

0.01

0.02

0.02

0.03

0.05

0.05

0.06

0.07

0.07

0 0.37

0.38

0.39

0.09

0.1

0.41

0.42

0.43

0.44

0.450.14

0.13

0.12

0.11

0.11

0.04

0.08

0.07

0.06

0.06

Kohonen Back propagation
networknetwork

EASOM

25

30

35

40

45

0 50 100 150 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Regression

Fig. 7.13 Predicted values for GM stock market

of error in backpropagation method is more than that in the Kohonen or FEASOM
methods.

One striking feature seen in the graph is the oscillation of error about the base
line that can be, observed in both Kohonen and FEASOM methods. From the
Figure 7.11, it is evident that the use of Genetic algorithms in FEASOM restricts

156 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200

E
rr

o
rs

Number of days

Back propagation
FEASOM

Fig. 7.14 Error generated for GM stock values from Figure 7.13

6

7

8

9

10

11

12

13

14

15

0 50 100 150 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Pure kohonen
Backpropagation

Fig. 7.15 Predicted values for Satyam stock values

7.7 Performance Analysis 157

0

5

10

15

20

25

30

35

40

0 50 100 150 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Back propagation

Fig. 7.16 Predicted values for Wipro stock values

20

25

30

35

40

45

50

55

60

0 50 100 150 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Backpropagation

Fig. 7.17 Predicted values for General Motors stock values

158 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

the range of error. Better predictions are achieved because, during the later epochs
of the neural network, all individuals lie within a small area round the learning peak.

To test the effectiveness of FEASOM, the algorithm is tested on several real
datasets. The stock market data of all the companies are collected from BSE(Bombay
Stock Exchange) on request. The training and test sets taken are disjoint. A compar-
ative study is conducted to juxtapose regression model, backpropagation algorithm
and Kohonen algorithm.

Figure 7.13 shows the plot of predictions of GM stock market by both classic
regression model and FEASOM. It is clear from Figure 7.13 that FEASOM out-
performs the regression model. The error graph in Figure 7.14 displays the errors
in predictions of FEASOM and regression model while predicting GM stock mar-
ket data. It is observed that the predictions of the regression model are erroneous
compared to those of FEASOM.

The three algorithms, FEASOM, Kohonen and backpropagation, are trained to
predict the actual stock values of a leading Indian software company Satyam Inc.
The training set consists of 40 datapoints of Satyam stock values from the year 1999
to mid 2001. Finally when the neural networks trained using the three algorithms
are tested, FEASOM shows the best performance amongst the three methods. The
graph plotted in Figure 7.15 shows the predictions of the three algorithms on Satyam
stock market values. As the graph indicates, the stock values are highly fluctuating,
yet it is observed that FEASOM is able to predict the share values well.

The graph in Figure 7.16 shows the predictions of stock values for Wipro
software company, another Indian IT giant. Here the share prices have been more
stable and it can be seen that FEASOM gives good prediction results while the
backpropagation algorithm gives highly fluctuating result. Figure 7.17 shows the
prediction of GM(General Motors) stock market values. The graph shows much bet-
ter predictions by FEASOM than by the backpropagation algorithm.
Figure 7.18 shows the error plots of prediction of FEASOM and backpropagation
algorithms. The error considered here is difference between actual and predicted
values. It is evident that FEASOM consistently performs better than backpropaga-
tion. Figure 7.19 shows the prediction of Microsoft stock market. It can be noticed
that the stock market values are more or less stable except towards the end where
the values are fluctuating. Figure 7.20 shows the comparison of errors in predicting
Microsoft stocks by FEASOM and Backpropagation. Here at most places FEASOM
has much less errors. Figure 7.21 shows the prediction of Motorola stock market.
The prediction by FEASOM here is close to the actual value. Figure 7.22 shows the
errors in prediction of the Motorola stock market by FEASOM and backpropaga-
tion methods. The errors in the predictions of FEASOM are less than that of errors
in predictions by the backpropagation algorithm. Figure 7.23 shows the prediction
of US Steels stock values by FEASOM. The prediction is very close and only one
place where the market value had a very sudden sharp rise, the prediction is not
possible. The predictions of stock market values of Infosys, Intel, Lee and IBM are
shown in Figure 7.24, Figure 7.25, Figure 7.26 and Figure 7.27 respectively and it
is observed that FEASOM performs well consistently in all the four cases. As al-
ready mentioned eight previous values are used to predict next three stock market

7.7 Performance Analysis 159

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8

E
rr

o
r

Number of days into future

FEASOM Prediction

Fig. 7.18 Error generated for GM stock values from Figure 7.17

10

15

20

25

30

0 50 100 150 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Fig. 7.19 Predicted values for Microsoft stock values

160 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

E
rr

o
r

Number of days

Back propagation
FEASOM

Fig. 7.20 Error generated for Microsoft stock values from Figure 7.19

0

2

4

6

8

10

12

0 50 100 150 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Fig. 7.21 Predicted values for Motorola stock values

7.7 Performance Analysis 161

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200

E
rr

o
r

Number of days

Back propagation
FEASOM

Fig. 7.22 Error generated for Motorola stock values from Figure 7.21

0

5

10

15

20

0 50 100 150 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Fig. 7.23 Predicted values for US Steels stock values

162 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

40

45

50

55

60

65

70

75

80

85

90

0 20 40 60 80 100 120 140 160 180 200

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Fig. 7.24 Predicted values for Infosys stock values

5

10

15

20

25

0 20 40 60 80 100 120 140 160

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Fig. 7.25 Predicted values for Intel stock values

7.7 Performance Analysis 163

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Fig. 7.26 Predicted values for Lee stock values

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

S
to

ck
 v

a
lu

e
s

Number of days

Actual data
FEASOM

Fig. 7.27 Predicted values for IBM stock values

164 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8

E
rr

o
r

Number of days into future

Fig. 7.28 Performance degradation of prediction

Backpropagation
ANN

Regression

Method MAD SSE MSE RMSE MAPE

446.91.115 2.235 1.495 0.005

1.335

1.884

578.7

1113.6

2.894

5.668

1.701

2.381

0.017

0.056

FEASOM

Fig. 7.29 Performance Measures

closing prices. Figure 7.28 shows plot of how performance degrades as the same
eight values are used to predict closing values of stocks further into the future. The X
axis has days into the future and the Y axis the average error of prediction. It can be
seen that predicting three days into the future is most appropriate, as graph increases
steeply after that. Certain standard performance measures are used to evaluate the
performance of the method and compare it with other methods. These performance
measures include

• the mean absolute deviation (MAD) = ∑ |et |
N

• the sum of squared errors (SSE) = ∑(et)2

• the mean squared error (MSE) = ∑(et)2

N

References 165

• the root mean squared error (RMSE) =
√

MSE
• the mean absolute percentage error (MAPE) = 1

N ∑ | et
yt

|(100)

The table in Figure 7.29, shows the values of these performance measure for autore-
gression, backpropagation and FEASOM predictors and it is seen that the perfor-
mance of FEASOM is superior.

7.8 Summary

In this chapter, we examine the issue of predicting stock market values using an
effective fuzzy based neuro-genetic algorithm. The algorithm is efficient and effec-
tive in predicting share values. The time complexity of FEASOM is linear which
is more efficient than other neural network algorithms which are usually of nonlin-
ear complexity. The use of genetic algorithms to train the weights of the Kohonen
network and the multivalued winner approach makes the prediction of stock mar-
ket more accurate. The algorithm FEASOM outperforms both backpropagation and
Kohonen networks in predicting accurate share values. Extensive simulations on
real data varying from software industries to steel industries shows the consistent
better performance of FEASOM. However sharp rise and fall in the stock market
values due to unforeseen circumstances and external factors cannot be predicted by
the algorithm. The algorithm can also be extended to heterogeneous and distributed
databases.

References

1. Shenoy, P.D., Srinivasa, K.G., Mithun, M.P., Venugopal, K.R., Patnaik, L.M.: Dynamic
Subspace Clustering on Very Large High-Dimensional Databases. In: Liu, J., Cheung,
Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 850–854. Springer, Heidelberg
(2003)

2. Haykin, S.: Neural Networks, A Comprehensive Foundation. Pearson Education Inc.,
London (1999)

3. Shenoy, P.D., Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: Evolutionary Approach
for Mining Association Rules on Dynamic Databases. In: Whang, K.-Y., Jeon, J., Shim,
K., Srivastava, J. (eds.) PAKDD 2003. LNCS, vol. 2637, pp. 325–336. Springer, Heidel-
berg (2003)

4. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Explorations.
Morgan Kaufmann, San Francisco (2004)

5. de Gooijer, J.G., Hyndman, R.J.: 25 Years of IIF Time Series Forecasting: A Selective
Review, TI 2005-068/4, Tinbergen Institute Discussion Paper (2005)

6. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with Artificial Neural Networks: The
State of the Art. International Journal of Forecasting 14, 35–62 (1998)

7. Balkin, S.D., Ord, J.K.: Automatic Neural Network Modeling for Univariate Time Series.
International Journal of Forecasting 16, 509–515 (2000)

8. Timmermann, A., Granger, C.W.J.: Efficient Market Hypothesis and Forecasting. Inter-
national Journal of Forecasting 20, 15–27 (2004)

166 7 Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction

9. Leung, M.T., Daouk, H., Chen, A.-s.: Forecasting Stock Indicies: A Comparision of
Classification and Level Estimation Models. International Journal of Forecasting 16,
173–190 (2000)

10. Kim, Y., et al.: Customer Targeting: A Neural Network Approach Guided by Genetic
Algorithms, Technical Report, Management Sciences Department, University of Iowa,
USA (2000)

11. Bansal, A., Kauffman, R.J., Weitz, R.R.: Comparing the Modeling Performance of Re-
gression and Neural Networks as Data Quality Varies: A Business Value Approach. Jour-
nal of Management Information Systems 10, 11–32 (1993)

12. Dorffner, G.: Neural Networks for Time Series Processing. Neural Network World 6(4),
447–468 (1996)

13. Egeli, B., Ozturan, M., Badur, B.: Stock Market Prediction Using Artificial Neural Net-
works. In: Hawaii International Conference on Business (June 2003)

14. Zekic, M.: MS Neural Network Applications in Stock Market Prediction - A Method-
ology Analysis. In: Proc. of 9th Intl’ Conf. Information and Intelligent Systems, pp.
255–263 (September 1998)

15. Lu, R., Mois, M., Pires, F.M.: Prediction Model, Based on Neural Networks, for Time
Series with Origin in Chaotic Systems. In: Workshop on Artificial Intelligence for Fi-
nancial Time Series Analysis (2001)

16. Ciesielski, V., Palstra, G.: Using a Hybrid Neural/Expert System for Database Mining
in Market Survey Data. In: Proc. of Intl’ Conf. on KDD 1996, pp. 36–43. AAAI Press,
Menlo Park (1996)

17. Ivakhnenko, A.G., Miiller, J.: Recent Developments of Self Organizing Modelling in Pre-
diction and Analysis of Stock Market, http://www.inf.kiew.ua/GMDH-home

18. Balakrishnan, K., Honavar, V.: Evolutionary Design of Neural Architectures: Prelimnary
Taxonomy and Guide to Literature, Technical Report CS TR95-01, Department of Com-
puter Science, Iowa State University (1995)

19. Yao, X.: Evolutionary Artificial Neural Networks. Encyclopedia of Computer Science
and Technology 33, 137–170 (1995)

20. Armano, G., Murru, A., Roli, F.: Stock Market Prediction by a Mixture of Genetic-Neural
Experts. IJPRAI 16(5), 501–526 (2002)

http://www.inf.kiew.ua/GMDH-home

Chapter 8
Data Mining Based Query Processing Using
Rough Sets and GAs

Abstract. The optimization of queries is critical in database management systems
and the complexity involved in finding optimal solutions has led to the development
of heuristic approaches. Answering data mining query involves a random search
over large databases. Due to the enormity of the data set involved, model simplifi-
cation is necessary for quick answering of data mining queries. In this chapter, we
propose a hybrid model using rough sets and genetic algorithms for fast and effi-
cient query answering. Rough sets are used to classify and summarize the datasets,
whereas genetic algorithms are used for answering association related queries and
feedback for adaptive classification. Here, we consider three types of queries, i.e.,
select, aggregate and classification based data mining queries. Summary tables that
are built using rough sets and analytical model of attributes are used to speed up
select queries. Mining associations, building concept hierarchies and reinforcement
of reducts are achieved through genetic algorithms. The experiments are conducted
on three real-life data sets, which include KDD 99 Cup data, Forest Cover-type
data and Iris data. The performance of the proposed algorithm is analyzed for both
execution time and classification accuracy and the results obtained are good.

8.1 Introduction

The process of classification involves finding a set of models that describe and dis-
tinguish data classes or concepts for the purpose of being able to use the model to
predict the class of objects whose class labels are unknown. The derived model is
based on the analysis of a set of training data. The derived model may be presented
in various forms such as classification rules, decision trees, mathematical formulae,
etc.. The interestingness of patterns are measured by support and confidence. Ob-
jective measures for association rules of the form X →Y are support and confidence
[1], that represent the percentage of transactions that satisfy the rule and degree of
certainty of the detected association, respectively. Pattern classification problems
have been widely used as traditional formulation of machine learning problems and
researched with various approaches including statistical methods [2], neural net-
works [3] [4], genetic algorithms [5], etc..

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 167–195.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

168 8 Data Mining Based Query Processing Using Rough Sets and GAs

Fig. 8.1 Database model
DMQL/SQL

Query
Results from
Mining Query

DMQL/SQL

Parser

Mining Query

Optimizer

Query Engine

Storage

Major issues in data mining are the mining methodology and user interaction
issues. The mining methodology is concerned with coverage of wide spectrum of
data analysis and user interaction deals with interactive mining of knowledge at
multiple levels of abstraction with reference to the domain knowledge. Just as re-
lational query languages allow users to pose ad-hoc queries, Data Mining Query
Languages(DMQL) [1] have been developed to describe ad-hoc mining tasks by
facilitating the specification of the relevant knowledge, kinds of knowledge to be
mined and the condition and constraints to be enforced on discovered patterns. Some
of the commands used in knowledge discovery to specify the kinds of knowledge to
be mined include (i) Generalized relations (ii) Characteristic rules (iii) Discriminant
rules (iv) Classification rules and (v) Association rules. The typical Database model
using DMQL is shown in Figure 8.1. The DMQL parser validates the user given
commands and builds the query trees. The optimizer determines the optimal query
evaluation path. Finally, the query engine transforms the query algebra and executes
over the database. The results obtained after the execution of query are presented to
the user in a representable form. The syntax of DMQL is close to that of SQL and
is generally of the form,

use database <database_name>
{use hierarchy <hierarchy_name> for <attribute>}
<rule_spec>
related to <attr_or_agg_list>
from <relation(s)>
[where <conditions>]
[order by <order list>]
{with [<kinds of>] threshold= <threshold_value>
[for <attribute(s)>]}

8.2 Problem Definition 169

The optimization of queries is critical in aspect of database management and the
exponential time complexity involved in finding optimal solutions has led to the de-
velopment of heuristic approaches. Here, we experiment with the concepts of rough
sets and genetic algorithms in order to reduce the query execution time with approx-
imate reasoning of data, without going into exact statistical measures [6], [7], [8].

Since its inception, rough set theory has proved itself of being valuable in the
context of intelligent information systems. Developed by Pawlak [9] for classifi-
cation analysis of data tables, it seeks to synthesize approximation of information
through focus on discernibility of objects in the domain. It bears on the assumption
that in order to define a set, a prior information about the elements of the universe
is needed. This information about the elements is presented through an attribute-
value system. All objects are classified into higher level concepts. The classification
itself is in the form of lower and upper approximations, where the lower approx-
imation consists of all the objects that surely belong to the concept and those in
the upper approximation possibly belong to the concept. The primary focus is on
extracting information granules and reducts. The information granule is a group
of objects grouped together through similarity or functionality. Data is reduced by
identification of equivalence classes through information granules, thereby reducing
the number of attributes that are needed to represent the entire class. The retained
attributes form the reducts. However, the concept of rough set is more general and
can be extended to situations where underlying equivalence relation is not available
[10]. Attempts to extend rough set theory to handle complex objects have also been
made through case-based-reasoning systems [11].

On the other hand, there has been tremendous developments in the field of Genetic
Algorithms(GA) over the last two decades. Their origin is attributed to Holland’s
work on cellular automata [12]. The applications of the theory include diverse areas
such as training objective optimization, job scheduling, neural nets, classification,
image extraction, etc.. A genetic algorithm is a search process that follows the prin-
ciples of evolution through natural selection. It is efficient, adaptive and robust search
process producing near optimal solutions and enjoys the advantage of implicit par-
allelism. GAs are executed iteratively on a set of coded solutions, called population
with three basic operators: selection/reproduction, crossover and mutation.

8.2 Problem Definition

Assume that the entire database is represented as a single relational table R with
attributes A1,A2,A3, . . .An. Let the number of tuples in R be N with each tuple iden-
tifiable by a TupleID, where ti represents the ith tuple. The objective of this chapter
is to efficiently answer the queries belonging to the following three categories.

1. An information retrieval query whose purpose is to search the tuples satisfying
one or more conditions usually specified by the WHERE clause

2. An aggregate query which involves the extraction of statistical information that
does not exist as it is, but have to be derived from the existing attributes.

170 8 Data Mining Based Query Processing Using Rough Sets and GAs

3. The third type of queries are those that exist for the discovery of knowledge and
patterns in an information system. These involve mining characteristics, identi-
fying associations, dynamic classification defining hierarchies and visualization
among others.

Assumptions

1. The proposed framework works in conjunction with the existing information
systems.

2. Only the queries belonging to the categories as mentioned above are executed
by the proposed framework, whereas, other types of queries are executed by the
existing information systems.

3. The entire dataset is represented as a single relational table.

8.3 Architecture

A data mining query language that allows ad-hoc mining is used for this purpose.
The DMQL adopts SQL like syntax so that it can be seamlessly integrated with
relational query language SQL.

Figure 8.2 shows the block diagram of the proposed frame work {Upper Sec-
tion(a)} in conjunction with the existing information system{Lower Section(b)}.
Here, a classification based information rich(compressed), alternate data catalog is
built using roughsets on the primary data source. Only the essential features that
best describe the database are stored in the catalog in the form of summary tables.
Genetic algorithm-based approach is used for association and concept hierarchy

Rough Sets

MathematicalCompressed

Data Model of
Attributes

Alternate Data Catalog

Runtime
Database
Processor

System

Catalog

OLAP
using
GA

Mining

Query Complier /

Query Optimizer Transaction

Queries

Feedback

a

b

Dataset

Fig. 8.2 Architecture of the Proposed Model

8.3 Architecture 171

queries, in which the summarized models are used in order to reduce the execu-
tion time. Genetic algorithms are also used as feedback to improve the accuracy
of classification. Only the queries belonging to the three categories as mentioned
in the problem definition are answered by the proposed framework (Figure 8.2,
section (a)), whereas, the remaining queries are answered by the existing system
(Figure 8.2, section (b)).

The proposed framework as shown in Figure 8.2, seeks to speed up the processing
time required to produce results for all the three types of queries, where the results
obtained from the proposed system slightly differ from those obtained by querying
the actual database.

For the first type of query, the performance is measured by the commonality be-
tween the results obtained. If T is the set of tuple − ids that are retrieved for an
actual query and T’ is the set obtained from the proposed framework; the quality
can be measured as, α = |T ∩T ′|/|T | and β = |T − T ′|/|T | where α represents the
relevance factor and β signifies the margin of error. For other types of queries, the
deviation of the obtained result from the actual one is quantifiable and can be flexibly
changed by the user. Mining related queries such as finding association, character-
istics, concepts hierarchies are evaluated based on the percentage of records in the
data sets that are correctly classified. The approach given here focuses on efficient
results with lower query-execution times.

8.3.1 Rough Sets

The rough set theory, despite being relatively simple, has the capability to deal with
imperfections, such as noise and unknown values. Some of the concepts that are
relevant to this article are briefed here. Details can be referred from [13] and [14].

Information System: An Information System is a set of objects with attribute re-
lated to it. By definition, An Information System is an ordered pair A =(U, A) where
U is a nonempty finite set of objects - the Universe, and A is a non-empty, finite set
of elements called Attributes. Every attribute a ∈ A is a total function a : U → Va,
where Va is the set of allowed values for the attribute

A Decision System IS A =(U, A) for which the attributes in A are further clas-
sified into disjoint sets of condition attributes C and decision attributes D. (A =
C ∪D,C ∩D = φ)

Indiscernibility: With every subset of attributes B ⊆ A in the IS A = (U,A), an
equivalence relation IND(B) called an Indiscernibility Relation is associated: which
is defined as follows:

IND(B) = {(x,y) ∈ U2|a(x) = a(y)∀a ∈ B }

By definition, U/IND(B) is the set of all equivalence classes in relation IND(B).
The equivalence classes induced by Indiscernibility relation are known as granules.

172 8 Data Mining Based Query Processing Using Rough Sets and GAs

The partition induced by equivalence relation can be used to build new subsets of
the universe.

The Lower Approximation BX and the Upper Approximation BX of a set of ob-
jects X ⊆ U with reference to a set of attributes B ⊆ A (defining an equivalence
relation on U) may be defined in term of the classes in the equivalence relation, as
follows:

BX =
⋃

{E ∈ U/IND(B)|E ⊆ X}

BX =
⋃

{E ∈ U/IND(B)|E ∩X �= φ}

Reducts: Indiscernibility relation reduces the data by identifying equivalence
classes, using the available attributes. Only one element of the equivalent class is
needed to represent the entire class. The minimal set of attributes minA are taken
from initial relation A, such that minA induces same partition on the domain of
DS as done by A. The above set of attributes are called reducts. Reducts have
been appropriately characterized in [14] by discernibility matrices and discernibil-
ity functions. For a set of attributes B ⊆ A in A = (U ,A), the Discernibility Matrix
MD(B) = mD(i, j)nxn 1 ≤ i, j ≤ n = |U/IND(B)|, where

mD(i, j) = {a ∈ B|a(Ei) �= a(E j)} f or i, j = 1,2, . . . ,n.

The entry mD(i, j) in the discernibility matrix is the set of attributes from B that
discern object classes Ei,E j ∈U/IND(B). The Discernibility Function f (B) of a set
of attributes B ⊆ A is

f (B) =
∧

i, j∈{1...n}

∨
mD(Ei,E j)

where n = |U/IND(B)|, and mD(Ei,E j) is the disjunction taken over the set of
boolean variables mD(i, j) corresponding to the discernibility matrix element mD(i, j).

The relative discernibility function f ′(B) computes the minimal sets of attributes
required to discern any equivalence class from all the others. Similarly, the relative
discernibility function f ′(E,B) computes the minimal sets of attributes required to
discern a given class E from the others.

Dispensibility : An attribute a is said to be dispensable or superfluous in B ⊆ A
if IND(B) = IND(B −{a}), otherwise the attribute is indispensable in B.

An Example: An example of decision system is shown in Table 8.1, with income
being the decision attribute.

From Table 8.1, it can be observed that,

U/IND({studies,education,works}) = {{1,2},{3},{4,5}}

The objects that are grouped together cannot be discerned between one another
when using the selected set of attributes. The equivalence class is formed with such
a group. In Table 8.2, it can be observed that, class E1 comes from objects 1 and 2,
class E2 from object 3, while class E3 comes from objects 4 and 5.

The following relative discernibility functions can be calculated:

8.3 Architecture 173

Table 8.1 An Example of Decision System

studies education works income
1 no good yes high
2 no good yes high
3 yes good yes none
4 no poor no low
5 no poor no medium

Table 8.2 Equivalence classes

studies education works
E1 no good yes
E2 yes good yes
E3 no poor no

Table 8.3 Discernibility Matrix

E1 E2 E3

E1 - studies education
works

E2 studies - studies
education

works
E3 education education -

works works
studies

f ’(E1, C) = studies ∧ (education ∨ works)
f’(E2, C) = studies ∧ (studies ∨ education ∨ works)
f’(E3, C) = (education ∨ works) ∧

(studies ∨ education ∨ works)

From Table 8.3, it can be noted that, IND(C) = IND(C −{works}) = IND(C −
{education}). The only dispensable attribute is studies.

It is clear that all the attributes are not needed to determine the classification of
the dataset. Dispensable attributes should be mapped to the attributes from which
its value can be derived. The attribute mapping table (Table 8.4) is constructed so
that the query containing any of these attributes can be translated if needed, before
execution. For example, the query

select ... from <table> where works="yes";

can be translated to

select ... from <table> where education="good";

The above methodology is described for discrete attributes, whereas slight mod-
ifications [9] are required to make the rough set to work for continuous attributes.

174 8 Data Mining Based Query Processing Using Rough Sets and GAs

Table 8.4 A mapping of attributes to reducts

A R
A1 R1

A2 R1

A3 R1

A6 R2

A7 R2

The difficulty of continuous-type attributes arises due to the fact that they cannot
be used to partition the data set into classes based on their values since the num-
ber of values they assume are nearly the same as the number of tuples present in
the dataset. The usual approach taken during the cleaning process is to quantize the
values into classes and then treat the attributes like a discrete valued function [15].
However in this case the complexity is increased by the fact that the classifier needs
to produce efficient results for user-invoked SQL-like queries. The approach taken
here is predominantly analytical in nature described in section V.

8.3.2 Information Streaks

TupleID: Assume that each of the tuples in the data table is identified by a unique
identifier called TupleID. The primary attribute(primary key) can also be used as
unique identifier. However, for the explanation we assume TupleID to be just an
integer identifying the position of the tuple. The objective of finding information
streaks(consecutive tuples) is to identify TupleID-ranges such that tuples within
the range belong predominantly to an information class. Each range value contains
the summarized information about the attributes it is built upon.

The pseudocode used to find the information streaks is given in Algorithm 1. Its
purpose is to find tuple-ranges of size ≥ l in the entire dataset such that tuples in
the range can be considered to belong to an information class(E). In order to avoid
fragmentation, w is used as a weighing factor which proportionally increases with
the length of the current streak. The sensitivity of classification can be considered
by constants β and β ′; p denotes the number of samples taken at each iteration and
thus determines the resolution of the classification.

It can be observed that the above algorithm resembles clustering with proximity
consideration. Clustering takes into account all the classes and hence tuples are
bound to be well distributed in the entire data space. Accessing tuples belonging
to one cluster would mean many blocks of data being read, causing time overhead.
Information Streaks would overcome this problem with some sacrifice being made
to the accuracy of classification. Figure 8.3 depicts a typical scenario. Left side
of Figure 8.3 shows the data block accesses by the clustering algorithm. Consider
the highlighted tuples belonging to a particular information class. The clustering
algorithm would retrieve all the tuples resulting in four block accesses, whereas
only one block is accessed using the information streaks.

8.4 Modeling of Continuous-Type Data 175

Algorithm 1. Obtaining tuple-ranges
p : number o f samples to be taken at each iteration
l : the minimum length for a tentative information range to be accepted
α :the tolerance level for a sample belonging to a different class to be included in the
current streak
β ,β ′:constants to determine the nature of exponential averaging
w: information to store the weight associated with each class
Ek:information class to be included in the current streak
tl : store the tentative length o f the streak
Ec : current in f ormation class
pA : a pseudo tuple f ragment

s ← 1
tl ← 0
while s ≤ lastTupleID do

sample tuples with TupleID’s from s to s+ p
produce pA whose attribute values are obtained from averaging over the sample set
Classify pA based on rules deducted earlier(say Ek)
if tl = 0 then

wk ← β +(1−β)wk
Ec ← Ek

else if Ec �= Ek then
w ← (1−β)wk −β ′

if wk > α then
Add the current sample range to the streak
tl ← tl + p

else
if tl > l then

current streak to the range table with summarized information
else

s ← s+ tl
tl ← 0

end if
end if

end if
end while

8.4 Modeling of Continuous-Type Data

Continuous-type attributes which are not included in the reduct table are individu-
ally represented as mathematical functions. This might seem like an unreasonable
assumption to make since real-world data scarcely lend themselves to be fit into an-
alytical deductions. However, it is a feasible concept to use when attributes change
gradually over a period of time such as daily temperature, traffic flow, stock index,
etc.. Attributes from a couple of data sets from Time-series Library are shown in

176 8 Data Mining Based Query Processing Using Rough Sets and GAs

5 Block Access

1 Block Access

5

4

3

2

1

Fig. 8.3 Comparison of Clustering against Information Streaks

Figure 8.4 and 8.5. Figure 8.4 shows variation of daily stock closing prices. By ob-
servation, it can be roughly approximated to an exponential distribution. Figure 8.5
shows the quarterly variation of Sales and Purchase rates. Similarly, Figure 8.5 is
found to be closely approximated to a function involving sine components with five
different frequencies.

If A is an attribute that has been represented by a mathematical function f (tid),
then any query involving condition checking on values of A can be answered by
solving f (tid), to find the corresponding tuple-id ranges.

All the functions shown in Figures 8.6 through 8.9 are obtained by approximating
the exchange rates to function of sine and cosine components of three frequencies.
The Figure 6 depicts single valued selection for tupleID versus exchange values.
The points of intersection give the tupleID satisfying the condition for exchange-
rate = 1.2. In Figure 8.7, the query involving the range function is given. The corre-
sponding tuple ranges are t1 − t ′1, t2 − t ′2 and t3 − t ′3(shaded regions in Figure 8.7) for
satisfying the range between 1.2 to 1.4.

A combination of interval-based sampling and analytical treatment can be ob-
tained if patterns are found in classes [15]. The smoothness of data can be achieved
by taking the mean for each of τ values, where τ is an user defined value for
smoothening the data values. Some of the parameters involved in projection of
tuples are given below:

8.4 Modeling of Continuous-Type Data 177

Fig. 8.4 Stock Market Index

Fig. 8.5 Quarterly S and P rates

(i) Marginal error width (me): Since the projections are not accurate enough to
pick single-values, the number of adjacent tuples to be included is determined by
m. Selection in Figure 8.7 cannot be accurate. Therefore, adjacent tuples around
the point of selection are also considered. The width of the selection defines the
marginal error. This scenario is shown in Figure 8.8.

178 8 Data Mining Based Query Processing Using Rough Sets and GAs

Fig. 8.6 A single-valued selection

Fig. 8.7 Range query involving “ SELECT . . .WHERE1.2 <= EXCHANGE < 1.4

(ii) Snap factor (sn): Snap factor is a width lower than which two adjacent pro-
jection ranges can be merged, sn appears to achieve the same function as that of
τ in attempting to coalesce closely split tuples. However, a closer look would re-
veal that τ is a parameter used when the attribute model is built and hence a change

8.4 Modeling of Continuous-Type Data 179

Fig. 8.8 Marginal error selection

Fig. 8.9 Snap factor

in τ would require that data blocks are re-read, whereas sn is a tunable factor that
can be set at the time of execution of a query. Figure 8.9 shows the effect of snap
factor, where the two tuple ranges with the distance less than sn are merged into a
single range.

180 8 Data Mining Based Query Processing Using Rough Sets and GAs

8.5 Genetic Algorithms and Query Languages

The search bias during genetic search depends on the kind of problem solved, the
structure of search space and the genetic operators. There are two possible ways to
build meaningful blocks

1. Search through possible encodings for a good one while searching for a solution.
2. Expand the number of good encodings by increasing the types of building blocks

considered meaningful.

Here, task-based specific queries are posed in form of DMQL queries. Some of the
popular mining characteristics sought are comparison, classification, associations
and concept hierarchies.

A typical specification of each query in DMQL may be generalized as:

<Mine_Knowledge_Specification> ::= <Mine_Char> |
<Mine_Discr> |
<Mine_Assoc> |
<Mine_Class>

In general initial population is created consisting of randomly generated rules.
Each rule represented by a string of bits. For example, if the training set consist of
two attributes A1 and A2 and a class C, then the rule “IF A1 AND NOT A2 THEN C”
can be encoded as 101. Attributes with more values can be encoded using more bits,
while continuous attributes can be encoded after interval-based classification. The
fitness of a rule is assessed by its classification accuracy on the dataset. The general
structure of GA is as follows:

t=0;
P(t) = Initialize Random Population

(no_attributes, attribute_domains);
while (t < max_generations)

Evaluate fitness (P(t), dataset)
t = t+1
P(t) = select(P(t-1))
Crossover(P(t));
Mutate(P(t))

end while

the modified version is,

t=0;
P(t) = Generate biased Population

based on query attributes
while (t<max_generations)

Evaluate fitness(P(t), summarized data tables)
t = t+1
P(t) = select(P(t-1))

8.5 Genetic Algorithms and Query Languages 181

Crossover(P(t));
Mutate(P(t))

end while

8.5.1 Associations

Each rule can be represented as a string. In generation of rules along with the sup-
port of a pattern, the number of set positions are also important. A pattern full of
don’t cares will gain a support of 100% but has no meaning in terms of knowledge
discovery. Each discovered rule in the rule set is usually represented in the form

IF < condition1 > & < condition2 > . . .& < conditionn >

T HEN < action >

There are various representation methods for conditions and actions in terms of rule
properties (fuzzy or non-fuzzy) and the attribute properties(continuous or discrete).
A rule set supposed to be the solution for a classification problem. Processing a
query which is of the form,

<Mine Assoc> ::= mine associations
[as <pattern name>]
[match <meta-pattern>]

involves the extraction of rules consisting of two parts: searching for hidden patterns
and generation of rules based on those patterns. After the validation of candidates,
the rules are selected based on expected values of support and confidence. Let the
attributes selected to form a classification rule Ri are < A1,A2, . . . >, out of which
b attributes are of boolean type, and k of continuous and pi denotes the number of
intervals of Ath

i attribute and d the number of discrete attributes with each taking at
the most di values. The length of the binary chromosome is given by :

lb = b + log

(
k

∑
i=0

pi

)
+ log

(
d

∑
j=0

d j

)
+ m

where m is the length of the consequent.
The fitness of a chromosome reflects the success rate achieved and the corre-

sponding rule set is used for classification. The GA operators use this information to
evolve better chromosome over the generations. The fitness function actually mea-
sures the collective behavior of the rule set. The evaluation of the fitness can be
speeded up using the summarized table built from the reduct rules and information
streaks. In case of rules exactly matching the reduct rules, the support and confi-
dence measures of earlier classification can be directly used with a new threshold
value. The decomposition of a query in order to find rules already computed is a
part of query relaxation. Query relaxation involves the rewriting of query to form a
new query. Some of the main reasons for relaxation are

182 8 Data Mining Based Query Processing Using Rough Sets and GAs

• the query is too general or too specific
• some of the query terms may not be used in the database
• one or more query terms have multiple meanings subject to context.

One approach used to deal with the above scenarios is generalization which involves
rewriting of a query to a more generalized term based on information found in asso-
ciation mappings and attribute transformation. It is also possible to reduce associated
clauses in the query to a single generalized attribute based on reduct table.

8.5.2 Concept Hierarchies

A frequently used and an important type of query is the concept hierarchy query,
which usually takes the form

<Concept_Hierarchy_Definition_Statement>
::= define hierarchy< hierarchy_name>

[for <attribute_or_dimension>]
on <relation_or_cube_or_hierarchy>
as <relation_description>
[where <condition>]

Concept hierarchies allow the mining of knowledge at multiple levels of abstrac-
tion. They define a sequence of mappings for a set of a low-level concepts to higher-
level more general concepts. A concept hierarchy is represented as a set of nodes
organized in a tree, where each node in itself, represents a concept. The common
types of hierarchies are

• schema hierarchies which express semantic relationship between attributes.
• set-grouping hierarchies that organizes values for a given attribute or dimension

into groups of constants, typically used for defining small sets of object relation-
ships.

• operational-derived hierarchies is based on operations specified by users, experts
or the data mining systems.

• rule-based hierarchies that occur when either the whole concept hierarchy or a
portion of it defined by a set of rules.

Since problem of concept hierarchies involve classification of attribute values
with multiple levels of abstraction genetic algorithm can be used with a slight mod-
ification of including multiple types of chromosomes each defining the strength of
classification for each level of abstraction.

It can be observed that the number of features that have to be used to describe a
particular class in the hierarchy may be different from one another. Consider the ex-
ample of classification of connection types in KDD99-Cup Dataset [16], the number
of attributes(features) that are needed to predict a normal connection is only four,
while predicting the exact class of attack requires more than six attribute values. The
concept hierarchy for KDD99-Cup dataset is shown below.

8.5 Genetic Algorithms and Query Languages 183

Connection

Attack

probe DOS user-to-root R2L

Normal

The difference in the number of bits to represent features demands the use of
chromosomes with different length and a non-conventional type of crossover. A
simple approach to take is to consider each path of the concept hierarchy as a se-
ries of classification where the support for a lower level concept p is based on the
percentage of data objects belonging to its immediate higher level concept. The au-
tomatic building of concept hierarchies is close to concept maps and ontologies [17].
Figure 8.10 shows the first few actions of GA, with concepts being {PLANT, ROOT,
STEM} and relation {has part}. Based on concept map(CM) and ontology the GA
determines initial populations of CMs. Later it selects individuals better selected to
be parents based on fitness values. Genetic operators are applied to these individu-
als. The fitness of the gene is calculated based on binary relation it expresses. The
taxonomy that allows assigning of values to binary relations is described in [18].
The root of the hierarchy that has been denoted by a schema serves as a template

PLANT PLANT PLANT

PLANT PLANT

PLANT

ROOT STEM LEAF

ROOT STEM ROOT LEAF

STEM LEAF

(c1) (c2) (c3)

three chromosomesinitial population with

cross(c1,c2) cross(c1,c3)

cross(c2,c3)

has part has part has part

has part has part

has part

Fig. 8.10 Hierarchical Crossover

184 8 Data Mining Based Query Processing Using Rough Sets and GAs

for all its descendants, which more specific instances of the root schema. At each
stage GA selects in the individual population better fitted to be parents of the next
population. It then submits these individuals to genetic operators of crossover and
mutation. The new population is formed by the ancestors and descendants.

Since the initial set of population is biased to include genes of specific classes a
efficient way to deal with over-specification and underspecification has to be used.
In order to achieve this the concept of semantic hierarchy [19] of chromosomes can
be used. The identification of points of similarity within two chromosomes and the
new hierarchical operator, that can be used to generate meaningful offspring from
parent solutions from within GA, suit the requirements of construction of concept
hierarchies. The semantic hierarchy is simply a ‘part-of’ hierarchy, which defines
the semantics of a genotype and not the syntax. An example of semantic hierarchy
of 16 bit, 2 gene chromosome is shown in Figure 8.11.

Individual

Gene 1 Gene 2

b1 b2 b3 b4 b5 b6 b7 b8 b6 b2 b8 b4 b5 b1 b7 b3

0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0

Level 2

Alleles

Level 1

Fig. 8.11 Semantic Hierarchy of 16 bit, 2 gene chromosome

Binary encoding scheme works reasonably well for the above described
problems, however, a different representation of chromosomes is needed when the
solution space is huge.The chromosomes are represented as tentative solutions to
sub-problems. Some of the queries that involve mining of characteristics or analysis
of patterns, identification of key-attributes values for finding an optimal result can
be solved using this approach.

The basic idea is to represent the solution as a combination of sub-problem each
of which is solved using a subset of chromosomes. As the generations evolve the
fittest chromosomes from each range are taken and the cross-over function may be
adapted to fit the new populations. This avoids the clustering of fittest chromosomes
in one region and explores the solution space in an efficient way. The structure of a
chromosome is given in Figure 8.12.

Fig. 8.12 Structure of the
Chromosome Range Strength Cross-over function Value

One of the direct applications of the above method of GA is to find the number
of minimal reducts. Due to the exponential complexity of finding minimal reducts a
model simplification has to be made unless it results in unacceptable loss of accuracy
[20]. Order-based genetic algorithm for searching minimal reducts can be used with

8.5 Genetic Algorithms and Query Languages 185

the fitness evaluated on already available summary tables rather than on the dataset.
The new reducts, if discovered, can be integrated to the system thus acting as a
feedback.

8.5.3 Dealing with Rapidly Changing Data

The methods discussed so far are based on the assumption that the dataset is not
rapidly changing. When the dataset is incrementally changed the new data that is
added can affect the classification in the following ways:

• Increase in the number of categories in classification
• Refinement of existing solutions due to data being added
• New rules being formed by added attributes

Incremental approach used for learning tasks as described in [21] can be used to
overcome these problems. Each classifier agent has a current solution based on the
attributes, classes and training data that are currently known. When new attributes,
classes or data are acquired, the GA is used to learn the new changes and evolve into
a reinforced solution.

There are many ways in which new chromosomes can be obtained from old ones.
Either the best rule set chromosome can be used as a seed for the entire population
or the whole group of chromosomes can be used if the current solution is available.
New rules can be formed either by evolving new rule sets from the added attributes
or by appending randomly selected new elements to old rule sets. The pseudocode
to evolve new chromosomes is given by

Chromosome population
in the current solution

Old elements copied
from the best
chromosome

new elements
acquired from
another agent

Best Chromosome

Fig. 8.13 Appending Additional Rules to Chromosomes

186 8 Data Mining Based Query Processing Using Rough Sets and GAs

if(new attributes are to be integrated)
select group chromosomes as seeds from current
solution if available;

else
select chromosomes with best fitness as seed;

if(new chromosomes for new attributes are available)
integrate new rules to old rules;

else
expand old chromosomes by randomly created elements;
perform GA on the resulting population;

Figure 8.13 shows the pictorial representation of appending new rules to old ones.
Various initialization schemes with different techniques for appending can be found
in [21].

8.6 Experimental Results

Experiments are performed on three real-life data sets taken from UCI Machine
Learning Archive [22]. The characteristics of data sets are summarized below:

1. KDD 99 Cup data: The competition task was to build a network intrusion de-
tector, a predictive model capable of distinguishing between “bad” connections,
called intrusions or attacks, and “good” normal connections. The attacks fall into
four categories as DOS(denial of service), R2L, U2R and probing. The datasets
contain a total of 24 training attack types. The attributes describe the basic fea-
tures of TCP connections, content features within the connection suggested by
domain knowledge and traffic features.

2. Forest Cover-type: It is a Geographical Information System data representing
forest cover type like pine, fir, etc., found in US. The variables are cartographic
and remote sensing measurements. It contains 10 dimensions, seven classes and
586,012 samples. All the attribute values are numerical.

3. Iris: A data set with 150 random samples of flowers from the iris species setosa,
versicolor, and virginica. There are four features all of which are numeric.

Classification: The classification accuracy is defined as the percentage of data
points whose class labels are correctly predicted. The classification accuracy of the
datasets considered above is shown in Table 8.5. The size of summarized tables

Table 8.5 Classification Accuracy of all datasets

Dataset Accuracy(%)
KDD 99 98.3

Covertype 64.2
Iris 97.6

8.6 Experimental Results 187

Table 8.6 The sizes of summarized tables

Dataset na size
KDD 99 12 7.1%

Covertype 6 6.8%
Iris 4 2.6%

expressed as percentage of size of the original dataset is shown in Table 8.6. na de-
notes the number of attributes that are the part of the summarized tables.

Relation between l and classification accuracy: Figure 8.14 shows the variation
of classification accuracy versus minimum streak length l for KDD99 Cup data,
Forest Cover-type data and Iris databank. As the minimum length of the informa-
tion streak is increased the resolution of the classification decreases, hence the drop
in accuracy.

Aggregate functions: A random set of queries are generated involving aggregate
functions count, aggregate and max/min to test the performance of the proposed
methods. For count and aggregate operations the error is the difference between
the values obtained, while for max/min operations it is the percentage of times the
correct max/min value was returned. Table 8.7 shows the comparison of execution
times for three aggregate functions. t denotes the average time that was taken to
execute the queries directly on the database and ts is the average time of execution
when summarized tables are used. The last column shows the % error which is the
deviation of the numerical value obtained from the actual value.

Accuracy of Concept Hierarchies: The accuracy of the hierarchies is calculated
with respect to each level. If pi j denotes the set of tuples at jth class in the ith

level and ci j the corresponding number that have been classified correctly, then the
accuracy of ith level is

∑n
j=1 Ci j/Pi j

n

where n is the number of classes at that level. Overall hierarchy accuracy is ex-
pressed as average of all the levels. The experiments are performed on only two of
the data sets, the results of which is shown in Table 8.8.

Analysis of improvement with GA feedback: The datasets are increased by 10%
and experimented with GA feedback. A slight improvement is seen in two data sets
and there is no change observed in Iris dataset due to the absence of formation of
new rules. The results are tabulated in Table 8.9.

188 8 Data Mining Based Query Processing Using Rough Sets and GAs

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(K
D

D
99

)

The minimum streak length (l)

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(C
ov

er
 ty

pe
)

The minimum streak length (l)

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(I
ris

)

The minimum streak length (l)

Fig. 8.14 Variation of Accuracy versus minimum streak length

8.7 Adaptive Data Mining Using Hybrid Model of Rough Sets and Two-Phase GAs 189

Table 8.7 Comparison of execution times for Aggregate Function

Dataset query-type t (secs) ts (secs) % Error

KDD 99 count 40.3 2.1 10.2
avg 51.3 2.2 11.6

max/min 43.3 2.1 23.0

Cover count 63.1 5.1 14.3
avg 71.3 6.2 13.6

max/min 61.3 5.2 29.6

Iris count 0.5 0.02 10.1
avg 0.45 0.02 9.6

max/min 0.32 0.02 14.1

Table 8.8 Average concept hierarchy accuracy

Dataset Accuracy
KDD 99 95.9%

Covertype 61.2%

Table 8.9 Classification Accuracy with GA feedback

Dataset Classification Accuracy
KDD 99 98.9

Covertype 66.2
Iris 97.6

8.7 Adaptive Data Mining Using Hybrid Model of Rough Sets
and Two-Phase GAs

Extraction of knowledge and information retrieval presents a formidable challenge
when huge databases are involved. Various techniques and algorithms are being
continually experimented upon, with varying results. In this section, we provide a
framework for efficient ad-hoc-query answering with quick response times, using
hybridization of adaptive rough set approach and two phase genetic algorithm. To
overcome the drawbacks of rough sets and to include user adaptiveness to the sys-
tem, a framework for non conventional rough sets is provided. The main features of
this framework, given in Figure 8.15, are as follows:

• The queries from the users are studied over a period of time to determine which
attributes are most frequently used which are given higher priority to be included
in the reducts. This requires the system to undergo a period of training.

• If prior knowledge of database is already known then the above process can be
speeded up.

190 8 Data Mining Based Query Processing Using Rough Sets and GAs

A1 A2 A3 A4 A5 A6 An......

Obtain the set of attributes which influence
decision making process based on analysing

queries and requires training

Use classical rough set theory to obtain
minimum reducts

reducts, map the unused
attribute related to it

Mathematical Model of Attributes

Hash Tables Queries

R1 R2 R3 Rk...

OR

for each Ri selected in the

Fig. 8.15 Framework for adaptive Rough-Set model

• If the queries are inconsistent or substantial confidence is not obtained in classical
training, classical rough set theory can be used to obtain the reducts.

• Once the reducts are obtained, for each Ri selected in the set, the dependency
attributes (which have correlation with Ri) are mapped to corresponding reduct.
This is done so that, should a relation be added to the database with missing tuples,
approximate values of missing attributes can be obtained from other attributes.

• The subset of reducts obtained is used to store a representation of the entire
dataset in the form of MMA.

8.8 Mathematical Model of Attributes (MMA)

The MMA takes advantage of the fact that all real data obtained usually have def-
inite systematic patterns which are sometimes overlooked. Data sets obtained in
real-scenarios usually fall into one of the many standard mathematical distributions.
MMA is an attempt to store the data back in compressed form by representing the

8.9 Two Phase Genetic Algorithms 191

Table 8.10 Illustrative Example

Marks Hrs/Day IQ
40 0.5 100
50 0.5 110
60 1.0 90
70 2.0 90
80 4.0 100
30 0.5 90
. . .
. . .

attributes through their natural distribution functions, which can later be used for
statistical reasoning without actually querying the dataset. This way the number of
accesses to the disk is reduced and greatly improves the response time. Consider
a student-database, given in Table 8.10, in which a relation which has 3 reducts:
Marks (R1), Average number of hours (R2) and IQ (R3).

If correlation between R1 and R2 are found and have same probability distribu-
tions, both of them can be represented using a single distribution but with different
parameters. This would lose some of the inconsistent attributes and therefore such
inconsistencies need to be separately stored when performing the actual query exe-
cution using GA. If R3 can be represented using a different distribution then, MMA
is designed such that the relation between R1, R2, and R3 are represented by multi-
variate distribution.

8.9 Two Phase Genetic Algorithms

The search bias during genetic search depends on the kind of problem solved and
the structure of search space and the genetic operators. There are two possible ways
to build meaningful blocks.

• Search through possible encodings for a good one while searching for a solution.
• Expand the number of good encodings by increasing the types of building blocks

considered meaningful.

The general structure of GA is as follows:

t = 0;
P(t)=Initialize Population(no_of_attributes,
attribute_domains);
while(t < max_generations)
Evaluate fitness (P(t),dataset)
t=t+1
P(t) = select(P(t-1))
Crossover(P(t));
Mutate(P(t));
end while

192 8 Data Mining Based Query Processing Using Rough Sets and GAs

The drawbacks of classical GA are as follows,

• Repetition of values from chromosomes.
• Clustering among best chromosomes.
• Inability to differentiate between chromosomes that are approaching the same

maxima/minima.
• Initialization step is random and hence the prior knowledge obtained from the

dataset is not put into use.
• If naı̈ve GA is used to calculate fitness functions based on number of tuples

belonging to a class in the database, then the cost of computation is high since
each time the fitness function needs to be computed the actual data blocks have
to be read into the memory.

As the basic problem with classical GA is that the offspring of two chromosomes
are likely to be similar to its parents and hence scarcely has new information present
carried through. Chromosomes of similar type survive through many populations
and tend to produce redundant information. We seek to overcome this by using a
two-phase GA that has spatial considerate chromosomal nets along with binary en-
coded GA. The fraction of population that has to be encoded using either method is
decided by the success of that method. If classical GA is found to do better than the
other, then the fraction of population that have to be binary encoded is dynamically
increased, likewise for the other. Initially, the solution space is divided into a num-
ber of non-overlapping quarters with each quarter having a chromosomal net of its
own, each net having identity Ci. Each chromosome has a field that contains the net
to which it belongs to. The generation of the next population is evolved as follows:

1. The fitness values for the present chromosomes are calculated.
2. Let the fitness value of a chromosome at point (x, y) be v.
3. For each chromosome in a net, fitness values at points (x± t, y± t) is calculated.
4. The collective fitness value of a chromosomal net is calculated based on all of its

chromosomes.
5. A positive convergence is indicated by decrease in the area of the convex hull

circumventing the chromosomal net for a particular sequence of t1, t2, t3, . . . tn
for n chromosomes.

6. If the centroid of two chromosomal nets are within the threshold d then the two
are merged together to form a new net.

7. If divergence of net is observed with decrease in collective fitness value then the
net is dismantled.

The modified algorithm given below makes use of both binary GA along with a
new type of chromosomes that have spatial consideration, but are more computa-
tionally intensive, with ability to exploit patterns in the solution space.

Pc: A parameter that denotes fraction of population that is used to produce the next
generation
Pi: performance index
Ti: threshold for significant increase in performance

8.9 Two Phase Genetic Algorithms 193

G(t): binary encoded Generation a time t
sG(t): spatial Generation a time t
Generate initial population using MMA and inconsistencies with s percent spatial
chromosomes sG(0) and (1-s) binary coded population G(0).

t = 1
Pc=0.5
while(solution not found and t < maxgenerations)
{
Generate G(t) using G(t1) * Pc

Modify sG(t) based on proximity sampling of sG(t-1) * (1 -Pc)
Calculate performance index Pi

Compare Pi with threshold value Ti

Increment/Decrement Pc proportional to (Ti − Pi)
t = t+1
}

The Experiments are performed on three real-life data sets taken from UCI Machine
Learning Archive. The classification accuracy of all datasets is given in Table 8.11.

Classification: The classification accuracy of the proposed two phase genetic algo-
rithm with Mathematical Model of Attributes is given in Table 8.11.

The size of summarized tables expressed as percentage of original dataset is
shown in Table 8.12. nadenotes the number of attributes that are a part of sum-
marized tables.

Analysis of improvement with GA: The datasets are increased by 10% and exper-
imented with GA. The emerging classification accuracy with two phase GA is given
in Table 8.13. A slight improvement is seen in two data sets. There is no change
observed in Iris dataset due to the absence of formation of new rules.

Table 8.11 Classification Accuracy of all datasets

Dataset Classification Accuracy
KDD99 98.3

Cover-Type 64.2
Iris 97.6

Table 8.12 The sizes of summarized tables

Dataset na Size
KDD99 12 7.1%

Cover-Type 6 6.8%
Iris 4 2.6%

194 8 Data Mining Based Query Processing Using Rough Sets and GAs

Table 8.13 Classification Accuracy with Two Phase GA

Dataset Classification Accuracy
KDD99 98.9

Cover-Type 66.2
Iris 97.6

8.10 Summary

In this chapter we have proposed an intelligent query answering system using rough
sets and genetic algorithms. The flexibility involved in building the summary ta-
bles of rough sets makes the system more scalable. The system performs well even
with acceptable level of accuracy as justified in the experiments. Reinforcement
of reducts with genetic algorithms leads to adaptive classification. The proposed
framework can be used as alternative to system catalog. In future work, the system
can be extended to other types of DMQL queries, since it is handling only a subset
of queries.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Technique, 2nd edn. Morgan Kaufmann
Publishers, San Francisco (2006)

2. Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn:Classification and Pre-
diction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems.
Morgan Kaufmann, San Francisco (1991)

3. Yamauchi, K., Yamaguchi, N., Ishii, N.: Incremental Learning Methods with Retrieving
of Interfered Patterns. IEEE Transactions on Neural networks 10(6), 1351–1365 (1999)

4. Su, L., Gain, S.U., Yeo, Y.C.: Incremental Self-Growing Neural Networks with the
Changing Environment. Journal of Intelligent Systems 11(1), 43–74 (2001)

5. DeJong, K.A., Spears, W.M.: Learning Concept Classification Rules using Genetic Al-
gorithms. In: Proceedings of International Joint Conference on Artificial Intelligence, pp.
651–656 (1991)

6. Wojciechowski, M., Zakrzewicz, M.: Evaluation of the Mine Merge Method for Data
Mining Query Processing. In: Advances in Databases and Information Systems, ADBIS
(2004)

7. Zakrzewicz, M., Morzy, M., Wojciechowski, M.: A Study on Answering a Data Mining
Query Using a Materialized View. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS
2004. LNCS, vol. 3280, pp. 493–502. Springer, Heidelberg (2004)

8. Grosky, W.I., Tao, Y.: Multimedia Data Mining and Its Implications for Query Process-
ing. In: DEXA Workshop (1998)

9. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences
(1982)

10. Lingras, P.: Application of Rough Patterns. In: Rough Sets in Data Mining and Knowl-
edge Discovery. Series Soft Computing Physics Verlag (1998)

11. Kolonder, J.L.: Case Based Reasoning. Morgan Kaufmann, San Francisco (1993)

References 195

12. Holland, J.H.: Adaption in Natural and Artificial Systems. Series Soft Computing
Physics Verlag (1975)

13. Lingras, P., Davis, C.: Application of Rough Genetic Algorithms. Computational Intelli-
gence (2000)

14. Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Sys-
tems. In: Intelligent Decision Support, Handbook of Applications and Advances of the
Rough Sets Theory, pp. 331–362. Kluwer Academic, Dordrecht (1992)

15. Shumway, R.H.: Applied Statistical Time Series Analysis. Prentice Hall, Englewood
Cliffs (1988)

16. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
17. da Rocha, F.E.L., da Costa Jr., J.V., Favero, E.L.: A New Approach to Meaningful As-

sessment using Concept Maps Ontologies and Genetic Algorithms. In: Proceedings of
the first International Conference on Concept Mapping, Spain (2004)

18. Costa Jr., V., Rocha, F.E.L., Fevero, E.L.: Linking Phrases in Concept Maps in Study
on Nature of Inclusivity. In: Proceedings of First International Conference on Concept
Mapping, Spain (2004)

19. Bentley, P.J., Wakefield, J.P.: Hierarchical Crossover in Genetic Algorithms. In: Proceed-
ings of First Online Workshop on Soft Computing (1996)

20. Slezak, D., Wroblewski, J.: Order Based Genetic Algorithms for the Search of Approxi-
mate Entropy Reducts. Springer, Heidelberg (2003)

21. Guan, S.-U., Zhu, F.: An Incremental Approach to Genetic-Algorithms-Based Classifi-
cation. IEEE Transactions on Systems, Man and Cybernetics - Part B 35(2), 227–239
(2005)

22. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases, Univer-
sity of California, Irvine, Department of Information and Computer Sciences (1998),
http://www.ics.uci.edu/˜mlearn/

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.ics.uci.edu/~mlearn/

Chapter 9
Hashing the Web for Better Reorganization

Abstract. World Wide Web is a huge, distributed repository of global information.
A large number of pages are added to the Web everyday and these pages contain
countless hyperlinks and volumes of access and usage information. Web mining is a
technique to discover knowledge from the Web documents and services. Web usage
mining is a technique to discover useful access patterns from Web log data. The
generated patterns are used to reorganize the Web structure for faster access and
retrieval. In this paper, we propose an efficient hash based algorithm to analyse the
Web log data and generate frequent access patterns for dynamic databases, which
takes care of insertion and deletion of Web pages. The algorithm uses optimum
memory and a single scan technique, which reduces access time enormously. This
algorithm outperforms Web Access Pattern (WAP) tree and Generalized Sequential
Patterns (GSP) both in time and space complexity. An algorithm to reorganize the
existing Web structure from the frequent access patterns is proposed for improved
navigation. Extensive simulations are performed on real and synthetic data and the
performance of our algorithm is much superior to the existing algorithms.

9.1 Introduction

World Wide Web (WWW) is a huge, distributed repository of global information
to service the enormous requirements of news, advertisement, consumer informa-
tion, financial management, education, government, e-commerce etc.. The WWW
contains huge dynamic collection of hyperlinks, Web page access and usage infor-
mation, and providing useful sources for data mining. Data mining holds the key to
uncover the authoritative links, traversal patterns and semantic structures that bring
intelligence and direction to Web interactions. Web mining is a technique that auto-
matically retrieves, extract and evaluate information for knowledge discovery from
Web documents and services. The Web page complexity far exceeds the complexity
of any traditional text document collection. Only a small portion of the Web pages
contains truly relevant or useful information.

The Web mining tasks can be classified into following (i) Web structure min-
ing, (ii) Web content mining and (iii) Web usage mining. The Web structure mining

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 197–215.
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

198 9 Hashing the Web for Better Reorganization

generates structural summary about the organization of Web sites and Web pages.
Web structure mining tries to discover the link structure of the hyperlinks at the
inter-document level. Web content mining deals with the discovery of useful infor-
mation from the Web data. The contents of the Web include a very broad range of
data such as audio, video, symbolic, metadata and hyperlinked data in addition to
text. Web content mining mainly focuses on the structure of inner-document, based
on the topology of the hyperlinks, while Web structure mining categorizes the Web
pages and generate the information, such as the similarity and relationship between
different Web sites.

Web usage mining involves data from Web server access logs, proxy server logs,
browser logs, user profiles, registration files, user sessions or transactions, user
queries, book mark folders, mouse clicks, scrolls and any other data generated by
the interaction of the users and the Web. Web usage mining provides a key to un-
derstand Web traffic behaviour, which can in turn be used for developing policies
for Web caching, network transmission, load balancing and data distribution. Web
content and structure mining utilize the real or primary data on the Web, while
Web usage mining takes secondary data generated by the user’s interaction with Web.

The Web usage mining basically extracts useful access information from the
Web log data. The mined information can be used for analyzing the access patterns
and concluding on general trends. An intelligent analysis helps in restructuring the
Web. Web log analysis facilitates in building customized Web services for individual
users. Since Web log data provides information about specific pages’ popularity and
the methods used to access them, this information is integrated with Web content and
linkage structure mining for ranking the Web pages. They are used to classify Web
documents and construct a multilayered Web information base. Web usage mining
is used to improve and optimize the structure of a site, to improve the scalability and
performance of Web-based recommender systems and to discover e-business intelli-
gence for the purpose of online marketing. Web usage mining also provides patterns
which are useful for detecting intrusion, fraud, attempted break-ins, etc.. The anal-
ysis of the mined data provides detailed feedback on user behaviour and providing
the Web site designer with the information to redesign the Web organization.

9.1.1 Frequent Items and Association Rules

Frequent itemset discovery can be used to correlate pages that are most often ref-
erenced together in a single server session. Examples of frequent itemsets are as
follows. (i) The Home page and Food World page are accessed together in 30% of
the sessions. (ii) The Car Race game and Soap Product pages are accessed together
in 1.5% of the sessions. Any set of n frequent items can further be broken into n sep-
arate association rules, where directionality is added to the rule. A frequent itemset
of pages A and B leads to two association rules i.e., A → B and B → A. In the
context of Web usage mining, frequent itemsets and association rules refer to set
of pages that are accessed together with a support value exceeding some specified

9.1 Introduction 199

threshold. These pages may or may not be directly connected to one another via
hyperlinks.

Sequential patterns: The technique of sequential pattern discovery finds inter-
session patterns such that the presence of a set of items is followed by another
item in a time-ordered set of sessions. For example, the Snake and Ladder game
is accessed after the Car Race game page view 45% of the time. By using this ap-
proach, Web marketers can predict future visitor patterns, which is helpful in placing
advertisements aimed at certain user groups. Trend analysis can be used to detect
changes in the usage patterns of a site over a period of time, and change point de-
tection identifies when specific changes take place. For example, (a) Page views for
the Car Race video game have been decreasing over the last two quarters. (b) The
Car Race video game page views increased from April through July, are steady until
November, and then began to drop.

Frequent Itemsets: All the information contained in the server sessions is not nec-
essary for frequent itemset discovery. The order and the number of occurrences of
a page view or page file in a session are not required. Therefore, sessions must be
reduced to a list of unique session ID/page pairs. A minimum support must be used
in order to limit the number of discovered patterns. The support of an itemset is the
fraction of the total sessions that appears in an ordered sequence. Let support S, for
a set of n items, on a data-set D for an item li is defined as,

S = Count({l1 , ... , ln} D) / Count(D).

The frequent itemsets discovered can be used to rank the sites. Interest is defined
as the support of a frequent itemset divided by the probability of all of the items
appearing together in a set, if the items are randomly and independently distributed,
and is represented by,

I = S(l1 , ... , ln) / Π n
j=1 S(l j).

The confidence of a rule is the fraction of sessions where the subsequence is present
if the antecedent is also present. Confidence for a rule is defined as follows,

(i) la = {ls1 , ... , lsn},
(ii) C = S(la ,ls1 , ... , lsn) / S(la).

Dynamic mining algorithms are proposed to handle the updation of associations
when increments or decrements to database occur. It should be done in a cost ef-
fective manner, without involving the database already mined while permitting the
reuse of the knowledge mined earlier. The two major operations involved are (i) Ad-
ditions: Increase in the support of appropriate frequent access patterns and discovery
of new patterns. (ii) Deletions: Decrease in the support of existing large frequent ac-
cess patterns leading to the formation of new large patterns. The process of addition
and deletion may result in the invalidation of certain existing associations. Dynamic
Web usage mining helps in Web reorganization, so that the user can navigate the

200 9 Hashing the Web for Better Reorganization

Web with minimum efforts. The analysis of the usage of a Web site and the struc-
ture of the Web site facilitates the modifications to the existing Web structure for
efficient access.

9.2 Related Work

The problem of mining association rules using an iterative and multi-scan method
is introduced in [1]. An effective hash-based algorithm discussed in [2] is especially
useful for the generation of candidate sets for large two-itemsets. The incremental
updating technique presented in [3] is similar to Apriori algorithm and operates iter-
atively to make complete scan of the increment database in each iteration. This tech-
nique is better than direct application of Apriori algorithm on the entire database.
Mining frequent itemsets and association rules on dynamic database using ge-
netic algorithms for intra-transaction, inter-transaction and distributed databases are
proposed in [4].

Sequential pattern mining and Generalized Sequential Patterns (GSP), which dis-
covers frequent patterns in a sequence database, is introduced in [5, 6]. GSP is ef-
ficient when the sequences are not long and the number of transactions is less. The
problem of mining access patterns from the Web logs using a data structure called
Web Access Pattern (WAP) tree from pieces of logs is presented in [7]. WAP tree
recursively reconstructs a large number of intermediate WAP trees during mining
which makes it expensive. The solution for discovering structural association rules
and other features of a semi-structured data is given in [8]. The problem of auto-
matic knowledge classification from classified Internet documents using Intelligent
Internet Document Organization and Retrieval is addressed in [9]. The intelligence
and direction to Web interactions by uncovering the authoritative links, traversal
patterns and semantic structures is surveyed in [10].

Sergey Brin [11] discusses the problem of extracting patterns and relations from
the WWW and also deals with pattern relation duality. The Web site reorganization
for faster retrieval and easy access based on mining user access patterns is proposed
in [12]. Web personalization using clustering of URLs to prepare customized con-
tent of particular users is handled in [13] and Web personalization is improved using
collaborative filtering based on clustering in [14].

9.3 Web Usage Mining and Web Reorganization Model

The Web mining model is presented in the Figure 9.1. Initially, the Web usage data
generated by the user’s interaction with the Web is taken (Information Selection).
Information extraction is a process of selecting and pre-processing the log data to
maximize the information content in order to facilitate efficient mining. Intelligent
Web agents can be used to search the relevant information. A robust pre-processing
system is required to extract the data as and when a user requests for a Web page. A
variety of files like images, sound, video, etc., which are accessed are irrelevant or
redundant (noise) to the mining task.

9.3 Web Usage Mining and Web Reorganization Model 201

Raw Web
Log Data Filtering Labelling

Session

Creation

Preprocessing

Generate

Associations

Pattern analysis

and Mining

Fig. 9.1 Web Usage Mining Model

Raw Web

Log Data

Web Usage

Mining

Web Page

Classification

Web Structure

Information

Reorganization

Fig. 9.2 Web Reorganization Model

Filtering process removes such noise from the raw Web log data. Labelling pro-
cess assigns unique names (labels) to all the Web pages (URI and Referrer). New
sessions are created for each login-session of every user, in addition new sessions
are also created when the session times out (usually in 30 minutes). Web usage As-
sociations are generated for each and every URI-Referrer pairs to obtain first level
associations where no pruning is done. Later we proceed to generate n level associ-
ations in the pattern analysis phase based on minimum support criteria.

For reorganizing the Web Structure the frequent itemsets generated by mining
the Web log data is used as input. Using the Web structure information, the Web
pages are classified as either content page or index page. The result of reorganization
generates a set of suggestions to the Webmaster to restructure the existing Web pages
both in terms of content and structure. This results in the Web page being tailored
to the needs of the users and hence improves the efficiency of Web page access. In
addition, the filtered or the less frequent pages are also listed which can be removed
from the Web sites either temporarily or permanently.

202 9 Hashing the Web for Better Reorganization

9.4 Problem Definition

Given a Web log access sequence database D = {T1T2...Tm}, where each Web log
access sequence Ti = {l1, l2...ln} is an ordered set of events and n is the length of the
access sequence, the objectives are to

1. Explore and discover Web usage patterns.
2. Add/Remove Web records to/from the Web log database.
3. Generate frequently accessed Web pages with minimum support S
4. Reorganize the Web structure for efficient retrieval and faster access using a sin-

gle scan technique.

Assumptions

• The Web log data contains the URI, IP address, Timestamp and Referrer.
• The events in the sequence need not be unique.
• Synthetic data generator is used for simulations.
• The real Web log data is taken from server sessions.

9.5 Algorithms

Input: The Web log data W
Output: Frequent Web access patterns F

1. PreprocessData();
2. LabelData();
{Generates unique labels to each URI and their corresponding Referrers}
3. CreateSessions();
{Creates separate sessions for a required timestamp and for each new referrer}
4. GenerateAssociations();
{Generates n level associations without pruning, access sequence database D}
5. HashMine()
{Hash based method for mining associations}
6. DynamicUsageMining()
{Handles insertions and deletions of data in batch mode}
7. WebReorganization()
{Reorganization of existing Web structure based on the output of HashMine}

Initially, the n-level associations for each session are obtained after pre-processing
to generate all the two level association pairs and their corresponding support and
position, using a bucketing algorithm. At any instant, only two buckets are consid-
ered and the {Support, Position} pairs for every pair of labels is generated at each
iteration. The {support, position} pairs are generated for all the labels in a file at
the end of this phase. In the next phase, the contents of this file are read into a data
structure(linked list) in the main memory that contains the position and supports.

9.5 Algorithms 203

Algorithm I: HashMine()

Input: The n - level association database D
Output: Frequent Web access patterns F

Begin
HashList ← Associations
{A list of all the generated associations}
for i = 1 to n - 1
{n is the maximum length of the sequence T }

for j = 1 to m
{m is the number of access sequences in D}
bi ← Merge(a j(i),a j(i+1)) // bi is the ith bucket.
j ← j + 1;

endfor
i ← i + 1;

endfor
HashList ← bn−1 ;
Index ← 0;
for each HashEntry hi in HashList

for each association a j in HashEntry
HashIndex ← position(a j[n]);
SearchList ← HashList[HashIndex];
for each Label in SearchList
if (Label.Support > ξ)
// ξ is the threshold support determine
// MergePoints & TotalSupport
// Add this new label to appropriate hash entry
// along with position and support.
endif

endfor
endfor

endfor
End.

Using this data structure, we proceed to identify the frequent itemsets. In each it-
eration, usage information for patterns that have length (number of labels in the pat-
tern) one more than the length of the patterns in the previous iteration is generated.
The patterns not having sufficient support are eliminated and are not considered for
the next iteration. This process comes to an end until either no further patterns can
be generated or the maximum length of the association has been reached. While
selecting labels for generating new combinations, a hashing technique is used to
minimize the total time complexity. The merging and generation of new patterns
occurs on the basis of the value of the last label. Two patterns P1 and P2 can only be
merged if P1 .pos = (P2.pos< >1) and the last index of P1 matches the first index
of P2. The hashing technique is a simple hashing with chaining. In case of conflicts,

204 9 Hashing the Web for Better Reorganization

Algorithm II: Dynamic Usage Mining

Input: The existing usage database D, Increment database Δd
Output: Updated database, Frequent Patterns

D - Existing usage database
Δd - New database, such that Δd ≥ 0.1D
F- Frequent associations in D
S(x,y) - Support of x in database y
L - List of URI
ξ - Threshold support.
Ad - Associations in Δd

Begin
for each association Ad in Δd
if Ad /∈ D

if S(Ad , Δd) ≥ 2 ξ
Add Ad

for each URI Uain Ad
Add Uato L

endfor
endif

else if S(Ad , Δd) ∨ S(Ad , Δd + D)≤ ξ
Remove Ad

endif
endfor

End

the value is linked to previously stored value in that hash position in the form of
a linked list. This kind of chaining does not affect the performance because all the
feasible patterns are available at the same time for making the processing easier and
simpler.

The Dynamic Usage mining algorithm is used whenever a new database with
atleast 10% of the existing database is available. The new data undergoes pre-
processing and associations are generated. New associations are added to the
database only when their support is sufficiently large. Here we have heuristically
taken it as twice the threshold. In such a scenario the Web pages involved are also
added to URI list. Associations, which are already present in the existing database,
is retained only if their combined support is ≥ ξ or 2ξ , the threshold support. For
example consider a usage database D and the increment database Δd as shown. The
threshold ξ = 1/8 which is 12.5%.

The supports of the URI’s in D are a = 10, b = 5, c = 3, d = 4, e = 6, f = 8 out
of 40 Web page access. Among these c and d fall below the threshold. The supports
in Δd are a = 6, b = 1, c = 2, d = 2, e = 4, f = 3, g = 6 out of 24 Web page access.
Now considering each page from Δd for addition we first have a with support 6/24
= 0.25 > ξ , similarly e and f also have threshold support. However as the support

9.5 Algorithms 205

Table 9.1 An Example Database D

acadef abaef aefe bfead bacdfe abdfe aefef ace

FD = {a, b, e, f }

Table 9.2 Increment Database δd

acefdgag abdegfg acagefeag

FΔd = {a, e, f , g}

of b fall below threshold, b is removed from the frequent set. Also g which is a new
occurrence has a support of 2ξ is included in the updated database and added to
the URI list. The Frequent set in the resulting database is FUPD = {a, e, f , g}. To
reorganize the Web structure we start processing each Frequent Pattern and classify
each page as an index page or a content page (Table 9.1 and 9.2).

Algorithm III: Web Reorganization

D – Web usage data
F - Frequent item sets, obtained from Usage Mining
W - Web structure data
A f - An association in F
U f - A Web URI or a Web Page

Begin
for each association A f in F

for each URI Uf in A f
if isContentPage(Uf) in D ∧ isIndexPage(Uf) in W
Uf should appear as content page. {if the page consists
of links rather than any textual content }
else if isIndexPage (Uf) in D ∧ isContentPage (Uf) in W
U f should appear as an index page in the Web site,
link Uf to URI of all other pages. {if the page
contains textual or other content }
else if U f isContentPage(Uf)
Add a link to Uf in all the major index pages (Related index pages).
else {if it is an index page }
Add all the URI that links to Uf .
endif
Remove unused links.

Endfor
endfor

End

206 9 Hashing the Web for Better Reorganization

9.5.1 Classification of Pages

The two procedures isIndexPage() and isContentPage() are used to identify whether
a Web page is a content page or index page. These two procedures when used with
reference to usage information the decision is taken by looking into the access se-
quence in which the page is involved. If it is not possible to decide using the access
sequence alone, then the average time spent on that page is computed from the Web
log data. If it were to be an index page then the time spent on it is just a few seconds,
but if the time spent is more, say a minute or a few minutes then it is a content page.
The decision taken about the nature of the page based on the usage information
rather than the structure information defines the actual role each page is playing;
hence we make sure that each page’s role and its corresponding place in the Web
site do not contradict. For example if a page P is found to be a content page, but has
too many other uninterested links, which are never referred to in the actual access
patterns then those links ought to be removed from P, and at the same time all the
major index pages in this context should have a link to P.

9.6 Pre-processing

The raw Web log data W is transformed into a set of unique labels for mining opera-
tions. It consists of following steps (i) Filtering (ii) Bit Representation (iii) Labelling
(iv) Session Creation and (v) Association Generation.

(i) Filtering: The function PreprocessData() filters the raw Web log data W by
removing all log entries concerned with image files. In addition, white spaces are
removed and some special characters are translated for easier string processing. The
standard Extended Common Log Format (ECLF) is as shown in Table 9.3, which
consists of four fields <IP Address, Access Time, URI, Referrer> where URI and
Referrer are the Web pages. In this format, each field is delimited by “||".

Table 9.3 The ECL Format

IP Address Time of Access URI Referrer
20 chars 20 chars Variable Variable

(ii) Bit Representation: The bit representation shown in Table 9.4, is tailored to a 32
bit machine. The Hash Index field stores the index of all the associations stored in
main memory. The association hence can be obtained as following; A ← HashList
[HashIndex].

The eight bit support field is the threshold count of the number of occurrences of
particular associations (support S), where 0 ≤ S ≤ 100 and is expressed as a percent-
age of the total database. For example in a database of size 3 million if a particular
association occurs 3000 times then its support expressed in terms of percentage is
3000/3,000,000 which is 0.003 i.e., 0.3 percent. The first seven bits are used to store

9.6 Pre-processing 207

Table 9.4 The bit representation

Pool Support (S) Hash Index
1 bit 8 bits (1+7) 23 bits

the percentage. MSB is 0 if the support is greater than one percent and the MSB is
1 if the support is less than one percent.

If the support of any associations falls below the threshold value (ξ), then it is dis-
carded. Pool A corresponds to the content page and is represented by zero, whereas
Pool B corresponds to an index page and is represented by one. The Bit representa-
tion helps in Web reorganization and the space and time complexity is significantly
reduced.

(iii) Labelling: The Web log entry of a user’s navigation pattern at http://www.search.
edu site is given in Table 9.5. Each log entry is translated into a unique label. The
corresponding labels for all URI’s and Referrers of Table 9.5 are given in Table 9.6.

(iv) Session Creation: For mining access patterns, sessions are created depending
on the time or the Referrer. New sessions are created based on two criteria. When
the session is 30 minutes old, a new session is created. In addition, a new referrer
also creates a new session and this is performed by CreateSessions() function.

(v) Association Generation: Initially, the function GenerateAssociations() gener-
ates a two level associations and the function can be used iteratively to generate n
level associations. From the above table, we can derive the following associations,
AA1 → AA2, AA2 → AA3, AA4 → AA5 and AA2 → AA6. In the next iteration,
we generate three level associations AA1 → AA2 → AA3 etc. This procedure gives
the Web access sequence database D.

Table 9.5 An Example for Web log data

Sl. No. IP Address Time of Access URI Referrer
1 123.456.78.9 2000/21/01-15:04:41 /index.html http://www.search.edu/?key=search
2 123.456.78.9 2000/21/01-15:04:41 /1.html http://www.search.edu/index.html
3 123.456.78.9 2000/21/01-15:04:41 /A.html http://www.search.edu/10.html
4 123.456.78.9 2000/21/01-15:05:18 /C.html http://www.search.edu/index.html

Table 9.6 Assignment of labels to each URI/Referrer

Sl. No. Web Pages Referrer
1 http://www.search.edu/?key=search AA1
2 http://www.search.edu/index.html AA2
3 http://www.search.edu/1.html AA3
4 http://www.search.edu/10.html AA4
5 http://www.search.edu/A.html AA5
6 http://www.search.edu/C.html AA6

208 9 Hashing the Web for Better Reorganization

The function PreprocessData() takes the raw Web log data as input and filters
it by removing all log entries concerned with image files. In addition, white spaces
are removed and some special characters are translated for easier string processing.
Then the data is sorted by time and the fields URI and Referrer are split and fed to
the function LabelData().

LabelData() then merges both URI and Referrer and for each unique Web
page a label is assigned, which is used while creating associations. The CreateSes-
sions() procedure now starts creating separate sessions for each user by populating
the log entries in each session. A new session is also created whenever the session
time-out (usually 30 minutes) occurs. The history of all the existing sessions are main-
tained in a singly linked list called session list, and is used when entries need to be
added into existing sessions. The output of this procedure is a series of single level ac-
cess sequence information per each session. Now the labelling information is read by
the GenerateAssociations() function and translates the access sequence output of the
previous procedure into label representation, and generates upto n-level associations.

9.7 Example

Consider a database D = {T1, T2, T3, T4} shown in Figure 9.3. It consists of a set of
Web access sequences T1, T2, T3 and T4. Each column identifies a unique position
(P1, P2, P3, P4 and P5) for the construction of hash table. In the first iteration, two
columns P1 and P2 are merged to form two level associations and placed in bucket
b1. For each pair of associations, positions and their corresponding support is indi-
cated in Figure 9.4. The sequence b follows a is represented by a → b. This pattern
occurs thrice beginning with the first position, hence the support S of a → b is rep-
resented by Sa→b = 3, in Figure 9.4. Similarly, the support of b → a, i.e., Sb→a =
1. The Frequent Pattern (FP) and the occurrences of the Web access sequences are
illustrated in Figure 9.4.

The FP is placed in position P2. In the next iteration (Figure 9.5) the patterns
generated by the combined positions P1 and P2 are merged with position P3 to form
the set of three level associations and we derive {aba = min (3, 2)}. This is obtained
from the combination of ab and ba. The pattern ab occurs thrice beginning from
position 1 and this is represented by (ab :: 3). Similarly, the pattern ba occurs twice
beginning from position 2, i.e., (ba :: 2). So we have (i) (ab :: 3), (ii) (ba :: 2). From
(i) and (ii) we can derive {aba = min (3, 2)}, i.e., pattern aba occurs twice as shown
in Figure 9.5. Similarly, the patterns {abc :: 1} and {bab :: 1} are generated. {In the
following examples, the notation ∩ is used as a merge operator}.

Pos/Seq P1 P2 P3 P4 P5
T1 a b a c
T2 a b c a c
T3 b a b a c
T4 a b a c b

Fig. 9.3 Initial Database

9.7 Example 209

pos/Seq P1 P2 P3 P4 P5
T1 a b
T2 a b
T3 b a
T4 a b

Fig. 9.4 The Merge of two positions P1 and P2 (P2 ← P1 ∩ P2)

FP: a → b (Sa→b = 3), b → a (Sb→a = 1)

pos/Seq P1 P2 P3 P4 P5
T1 a b a
T2 a b c
T3 b a b
T4 a b a

Fig. 9.5 The Merge of two positions P2 and P3(P3 ← P2∩P3)

FP: a→b→a (Sa→b→a= 2), a→b→a (Sa→b→a= 2)

pos/Seq P1 P2 P3 P4 P5
T1 a b a c
T2 a b c a
T3 b a b a
T4 a b a c

Fig. 9.6 The Merge of two positions P3 and P4(P4 ← P3 ∩ P4)

FP: a → b → a (Sa→b→a=3), a → b → c(Sa→b→c=1)
b → a → b(Sb→a→b=1), b → a → c(Sb→a→c=2)
b → c → a(Sb→c→a=1),a → b → a → c(Sa→b→a→c=2)
a → b → c → a(Sa→b→c→a=1),a → b → c → a(Sa→b→c→a=1)

pos/Seq P1 P2 P3 P4 P5
T1 a b a c
T2 a b c a c
T3 b a b a c
T4 a b a c b

Fig. 9.7 The Merge of two positions P4and P5(P5 ← P4 ∩ P5)

FP: a → c(Sa→c = 2), a → c → b(Sa→c→b = 1) b → a → c(S b→a→c=3), a → b → a →
c(Sa→b→a→c=3)

210 9 Hashing the Web for Better Reorganization

In Figure 9.6, the combined positions of P1, P2, and P3 are merged with position
P4. The patterns generated are given in Figure 9.6. Finally, the positions P1, P2, P3,
and P4 are merged with P5 and patterns generated are shown in Figure 9.7.

Reorganization: An access sequence usually begins with an index page and ends
with a content page. Moreover we see that in the above example that a is consistently
the start page for a sequence and c is the end of web access sequence three out of
four times, which implies that c is a content page while a is an index page, however
it is not possible to take such an outright decision about b as b is once at the start of a
sequence and once at the end. As a result we have to consider the average time spent
on b by various users. This time spent on a particular page is one such metric used
to infer whether a page is an index page or a content page, in addition inferences can
also be drawn as in the above example where the type of pages a and c are known
directly from the access pattern itself. Reorganization is necessary as the user’s Web
usage pattern keep changing with time. For example, Let X be an index page that
has link to various content pages. Assuming a content page Y is the most accessed
page which the Webmaster has highlighted in all the index pages including X . But
as time progresses it may so happen that some other page (say Z) becomes more
popular among users who visit X and in such a case it should be noted that page Z
is highlighted. Our algorithm generates such decisions about the reorganization of
existing pages based on the popularity of a page, while page Y which is no longer
popular is deleted from the link X .

9.8 Performance Analysis

Simulations are performed on a system of physical memory capacity of 256 MB and
Pentium III processor of speed 800 MHz. Experiments are conducted to compare
the efficiency of HashMine algorithm with WAP tree and Generalized Sequence
Patterns (GSP). A synthetic data generator is used which is based on Gaussian dis-
tribution. The sequence database is varied in the range of 100k to 500k. A random
n level association is used as input to the algorithm.

Synthetic Data Generator: The Synthetic Data Generator uses a random number
generator based on Gaussian distribution. It directly produces n- level associations
and hence obviates the pre-processing and association generation steps. The number
of associations and the maximum length of an association are taken as the input.

Figure 9.8 illustrates the performance of HashMine with GSP and WAP with
increase in support from 1% to 3.0% for a database of 500k transactions. The al-
gorithm GSP works on the principles of Apriori and makes multiple scans over the
database, whereas WAP is better than the Apriori based algorithms but scans the
database twice to construct the WAP tree and then recursively employs conditional
search to find out the frequent patterns in a level wise manner. So the performance
of HashMine is superior to those of GSP and WAP.

Figure 9.9 illustrates the comparison of the time complexity of the algorithm with
increase in size of the database. The access sequence database is changed from 100k

9.8 Performance Analysis 211

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3

E
xe

cu
tio

n
 T

im
e
 in

 s
e
cs

Support(%)

GSP
HashMine

WAP

Fig. 9.8 The Execution Time versus varying support

50

100

150

200

100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
 T

im
e
 in

 s
e
cs

Web Access Sequence Database D(K)

GSP
HashMine

WAP

Fig. 9.9 The Execution Time versus varying Web access sequence database

212 9 Hashing the Web for Better Reorganization

 0

 20

 40

 60

 80

 100

 120

 140

 1 1.5 2 2.5 3

E
xe

cu
tio

n
 T

im
e
 in

 S
e
c.

Support(%)

GSP
WAP

HashMine

Fig. 9.10 The Execution Time versus varying Support

 0

 50

 100

 150

 200

 1 1.5 2 2.5 3 3.5 4 4.5 5

E
xe

cu
tio

n
 T

im
e
 in

 S
e
c.

Web Access Sequence Database D(in Lakhs)

GSP
WAP

HashMine

Fig. 9.11 The Support versus Speedup Factor

9.8 Performance Analysis 213

Sl. No URI LABEL
1 www.csee.usf.edu/music/machines/ AA8
2 hyperreal.com/music/machines/samples.html AA6
3 hyperreal.com/music/machines/manufacturers/Roland/TR.909/samples/ AA5
4 guide.p.infoseek.com/machines/manufacturers/Roland/TB.303/ AA1
5 www.hyperreal.com/machines/manufacturers/ AA9
6 www.hyperreal.com/machines/samples.html AA11
7 hyperreal.com/music/machines/manufacturers/Sequential/Tom/samples/ AA12
8 hyperreal.com/music/machines/categories/drum.machines/samples/ AA13
9 hyperreal.com/music/machines/images.html AA4
10 www.hyperreal.com/machines/samples.html AA11

Fig. 9.12 The URI Database

Sl. No REFERRER LABEL
1 www.csee.usf.edu/ gould/synth.html AA7
2 hyperreal.com/music/machines/ AA3
3 hyperreal.com/music/machines/samples.html AA11
4 guide.p.infoseek.com/Titles?qt=devilfish+sample AA2
5 www.hyperreal.com/machines/manufacturers/Roland/TB.303/ AA10
6 www.hyperreal.com/machines/manufacturers/ AA9
7 hyperreal.com/music/machines/samples.html AA6
8 hyperreal.com/music/machines/samples.html AA6
9 hyperreal.com/music/machines/ AA3
10 hyperreal.com/music/machines/images.html AA4

Fig. 9.13 The Referrer Database

Fig. 9.14 The Generated
Associations

AA3 −→ AA4 −→ AA6
AA10 −→ AA9 −→ AA11

AA6 −→ AA12
AA7 −→ AA8
AA6 −→ AA13
AA2 −→ AA1

AA3 −→ AA6 −→ AA5

to 500k with a support of 0.5%. HashMine is much faster than other algorithms on
account of single scan method and low time complexity of the hashing technique.
The time complexity increases with the size of the database linearly and the algo-
rithm is scalable. Figure 9.10 shows the plot of the execution time of our algorithm
versus the support. Increment of 20% is added to the existing database of size 500K
and the support is varied from 1% to 5%. The graph clearly illustrates that the time
taken for the dynamic update (DUPD) is much lower than that for the static up-
date (SUPD) as dynamic update (DUPD) procedure makes use of the associations

214 9 Hashing the Web for Better Reorganization

already available from mining the original database (D) whereas the static update
(SUPD) makes a complete scan of the entire updated database (D + Δd).

A good speedup factor of 2 to 4 is achieved for various supports for a database of
size 500K (Figure 9.11). Experiments are conducted on real data sets from UCI data
repository. The sample database of the URI is shown in Figure 9.12 and the corre-
sponding Referrer database is shown in Figure 9.13. The generated associations are
shown in Figure 9.14.

9.9 Summary

In this chapter, we examine the issue of Web usage mining to discover frequent
usage patterns. The HashMine is efficient in generating frequent access patterns on
a dynamic database. The frequent access patterns generated are used to reorganize
the Web structure for faster access and retrieval. The algorithm uses a single scan
technique resulting in low time complexity. The use of bit vector to represent all
the necessary information of the log entry in a single word reduces the memory
requirements significantly and helps in the reorganization of the Web structure. The
algorithm HashMine outperforms WAP and GSP in both time and space complexity.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. Very
Large Data Bases (VLDB), pp. 487–499 (1994)

2. Park, J.S., Chen, M.-S., Yu, P.S.: An Effective Hash-Based Algorithm for Mining Asso-
ciation Rules. In: Proc. ACM-SIGMOD, pp. 175–186 (1995)

3. Cheung, D.W., Han, J., Vincent, T., Wong, C.Y.: Maintenance of Discovered Association
rules in Large Databases. In: Proc. On Data Engineering, pp. 106–114 (1996)

4. Shenoy, P.D., Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: Evolutionary Approach
for Mining Association Rules on Dynamic Databases. In: Proc. Of Int’l Conf on Pacific
Asia Conference on Knowledge Discovery and Data Mining. LNCS (2003)

5. Agrawal, Srikant, R.: Mining Sequential Patterns. In: Proc. on Data Engineering, pp.
3–14 (March 1995)

6. Srikant, R., Agrawal, R.: Mining Quantitative Association Rules in Large Relational
Tables. In: Proc. ACM-SIGMOD on Management of Data, June 1996, pp. 1–12 (1996)

7. Pei, J., Han, J., Mortazavi-asl, B., Zhu, H.: Mining Access Patterns Efficiently from
Web Logs. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805. Springer,
Heidelberg (2000)

8. Wang, K., Liu, H.: Discovering Structural Association of Semi structured Data. IEEE
Transactions on Knowledge and Data Engineering 12(3) (May/June 2000)

9. Lin, S.-h., Chen, M.C., Ho, J.-M., Huang, Y.-M.: ACIRD: Intelligent Internet Document
Organization and Retrieval. IEEE transaction on knowledge and data engineering 14(3),
599–614 (2002)

10. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.N.: Web Usage Mining: Discovery and
Applications of Usage Patterns from Web Data. In: SIGKDD Explorations, pp. 12–23
(2000)

References 215

11. Brin, S.: Extracting Patterns and Relations from the World Wide Web. In: WebDB Work-
shop at 6th Intl. Conf. on Extending Database Technology, EDBT (1998)

12. Fu, Y., Shis, M.-Y., Creado, M., Ju, C.: Recognizing Web Sites Based on User Access
Patterns. In: Proc. on Information and Knowledge Management (2001)

13. Mobasher, B., Cooley, R., Srivastava, J.: Creating Adaptive Web Sites through Usage-
Based Clustering of URLs. In: IEEE Knowledge and Data Engineering Workshop,
KDEX 1999 (November 1999)

14. Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and Evaluation of Aggre-
gate Usage Profiles for Web Personalization. Kluwer Academic Publishers, Netherlands
(2001)

Chapter 10
Algorithms for Web Personalization

Abstract. Personalization is a process of gathering, storing and analyzing informa-
tion about site visitors and delivering the right information to each visitor at the right
time. A personalization technique can enable a website to target advertisement, pro-
mote products, personalize news feeds, recommend documents, make appropriate
advice and target e-mail. In this chapter, an adaptive weight update algorithm based
on the standard search engine, using the combination of query refinement, recom-
mender system and user profiles is explored. The algorithm proposed captures and
records the user interest with respect to the indicated keywords to the search engine.
The user profile is built dynamically on the recorded interests of the user and used
as a recommender system to refine the query on further hits by adding additional
keywords depending upon the users interest. A dynamic weight update equation is
used to adapt to the changing user interests. The algorithm is tested on varying key-
words and the results obtained are better when compared with the Googles page
rank system.

10.1 Introduction

Web Personalization is a set of actions that can tailor the Web experience to a par-
ticular user or a group of users. The experience can be like, users browsing patterns,
sequence of pages visited by a user, usual query patterns, etc.. The actions can range
from simply making the presentation more pleasing to anticipating the needs of a
user and providing customized and relevant information to the user. To achieve ef-
fective personalization, organizations must rely on all available data, user behavior,
the site content, the site structure, domain knowledge, as well as user demographics
and profiles [1].

One of the techniques to achieve effective personalization is by having visitors of
a site fill out the forms with information fields that populate a database. The Web site
then uses the database to match a user’s needs to the products or information pro-
vided at the site, with middleware facilitating the process by passing data between
the database and the Web site. Consider an example of Amazon.com, which is used
for online book purchase/selling. One of the facilities provided by Amazon.com for

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 217–230.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

218 10 Algorithms for Web Personalization

its registered users is the suggestion of books/CDs depending on their previous pur-
chase history or his interests captured while browsing the Web. Customers tend to
buy more when they know exactly what’s available at the site and they do not have
to hunt around for it. Cookies may be the most recognizable personalization tools.
Cookies are bits of code that sit in a user’s Internet browser memory and inform Web
sites about a person. That is how a Web site is able to greet its users by name [2].

Web personalization is also achieved by collaborating filtering software that re-
sides on a web site and tracks the path of the users interest and viewing habits de-
pending upon various parameters like types of pages they visit, the amount of time
they spend on a page, etc., Collaborative-filtering software compares the informa-
tion it gains about one user’s behavior against data about other customers with simi-
lar interests. In this way, users get recommendations like Amazon’s “Customers who
bought the book x also bought other books y and z”. Domain-specific search engines
are growing in popularity because of their increased accuracy and extra functional-
ity that is not possible with the general search engines. For example, scholar.com
of Google allows complex queries over Internet by type of file, prioritization of in-
stitutions, size, and location. Yahoo is another example for domain-specific search
engines. Unfortunately, these search engines are difficult to use for naive users and
time-consuming to maintain.

The key challenge in personalization is to display to the visitor a sub graph that
contains both relevant content items, and also organizes them in a coherent and
meaningful manner. The problem of automatically constructing Personalized Site
Maps is discussed in [3]. The approach is based on the assumption that the best
way to indicate the relationship between a given pair of pages is to show the path
between them that has been most popular with past visitors. An ontology based
personalized retrieval of audio information is addressed in [4]. The crux of the work
is the development of an ontology-based model for the generation of metadata for
audio and the selection of audio information in a user customized manner.

The data mining methods are very much exploited to build the customer
profiles. The system constructs personal profiles based on customers transactional
histories and then uses data mining techniques to discover a set of rules describ-
ing customers behavior and supports human experts in validating the rules [5].
The study of personalized recommendation to build improved algorithm for learn-
ing Bayesian networks efficiently and effectively is proposed in [6]. The algorithm
reduces the number of independence tests and database passes, while effectively
restricting the search space and by means of the heuristic knowledge of mutual in-
formation. In [7], a web personalization system based on web usage mining and
automatic customization is proposed. It is an effective technique for capturing com-
mon user profiles based on association rule discovery and usage-based clustering.
The techniques for combining knowledge with the current status of an ongoing Web
activity to perform real-time personalization are also discussed.

The use of Agent technology for personalized recommendation, which is fuzzy
cognitive in nature, to give personalized suggestions based on the current users pref-
erences, general users common preferences, and the experts knowledge is described
in [8]. Fuzzy cognitive agents are able to represent knowledge via extended fuzzy

10.3 Data Structures 219

cognitive maps, to learn users common preferences from most recent cases and to
help customers to make inference/decisions through numeric computation instead
of symbolic and logic deduction. The idea of Web reconfiguration based on page
personalization rules is discussed in [9]. A page personalization rule for providing
reconfigurable Web content including hyperlinks is described in a declarative lan-
guage. The concept of geo-cookie for reconfiguring Web pages based on a user’s
physical and logical location is also used. An algorithm that can generate and dis-
play helpful links while users navigate a site can increase a Web sites usability and
help Web designers and the user achieve their goals has been presented in [10]. Par-
tial evaluation is a technique popular in the programming languages community. It
is applied in [11] as a methodology for personalizing Web content. Two different
implementations of the methodology demonstrate their effectiveness. Domain Spe-
cific Search engines [12] are developed to search for information regarding only a
specific field. Such systems maintain a user profile of the histories of web pages that
a user has visited. The problem here is that lack of narrowing of the search field
by supplying more keywords. Manual work has to be done apriori, to categorize a
collection of pages according to domains. They have the problem of scalability and
do not adapt to users changing interests.

10.2 Overview

In this chapter, we propose a hybrid system of Web Search Personalization using a
combination of Query Refinement, Recommender Systems and User Profiles. Con-
sider a Search Engine S, which accepts queries in the form of keywords and returns
a list of near relevant web pages. The queries are of the form kw1[(op)kwi], for i = 2
to n, where,kwi is the ith keyword supplied to S, (op) is a Boolean operator like OR,
AND, n is the number of keywords supplied to S and [...] indicates the parameters
are optional.

The search query supplied to S contains keywords. The presence of these key-
words indicate that the user is interested in them. This interest has to be captured
and recorded for future use by the system. By recording this interest, the system can
modify the search query supplied to S in subsequent searches to narrow the search
field and concentrate on those topics that are of interest to the user. Once S returns
its results, those web pages of interest to the user have to be scanned for keywords
that are already present in the User Profile. This indicates the relation of the re-
turned keywords to the one supplied to S for searching. We address these issues in
the following sections.

10.3 Data Structures

The data structure used in this approach is discussed below.

Integer Relative_Search for global;
Integer Domain_Search[Number of Domains];
Structure Domain {

220 10 Algorithms for Web Personalization

String Keyword;
String Type;
Real Weight;
Integer Keyword_Search;
Integer Rel_Keyword_Search;

}

Each domain is associated with one or more keywords. Each search instance in the
system is specified by a set of keywords. When a search is performed, the keywords
are matched to their corresponding domains. A keyword may be associated with
more than one domain. In such a case, in the first domain it is assigned to its Type as
primary. In any subsequent assignments to other domains, the Type in those domains
is auxiliary.

Each keyword has an associated weight. The weight decides the keywords that
have to be chosen to add as keyword spices to the user specified keyword(s) while
performing a search. It also indicates the users interest in a particular domain. Each
time a new keyword is created, it is assigned an initial weight zero. Hence all the
keywords start with the same weight or same opportunity in the User Profile. The
weights for a keyword are dynamic in nature. This is done to reflect the users in-
terest in certain domains. A higher weight indicates a greater interest in that do-
main. For each search instance, the weights for all the keywords in that domain
are varied as defined by the functions weight increment() and weight decrement().
When the weight for a keyword crosses a pre-defined lower threshold, it is deleted
from the User Profile. This reflects the fact that the user has lost interest in that area
in the domain.

A global variable Relative Search is maintained by the system, which keeps track
of the total number of searches conducted by the user. It is incremented by one af-
ter every search. It is required to deduce the relative importance of the domains
in the User Profile. Each domain has an associated counter called Domain Search
that keeps track of the User Profile. Each time a new domain is created, the Do-
main Search variable is assigned an initial value of one. For each subsequent search
in any domain, the value of this variable is incremented by one.

Each keyword has an associated counter that indicates the absolute number of
times the keyword has been used in a search. Each time a new keyword is created,
the Keyword Search variable is assigned an initial value of one. For each subse-
quent search on that keyword, the value of this variable is incremented by one. Each
keyword has an associated counter that shows the absolute number of times, the
domain which contains the keyword has been used in a search, since the keyword
has been introduced into the User Profile. Each time a new keyword is created, the
Rel Keyword Search variable is assigned an initial value of one. For each subse-
quent search the user performs in the domain, the value of this variable is incre-
mented by one. At no point can the value of Keyword Search exceed the value of
Rel Keyword Search. It can only be less than or equal to it.

Organization of the Data Structures for retrieval: The data structure Domain has to
be stored for use by the system. It has to be stored in a permanent storage medium

10.4 Algorithm 221

for use after the system has been powered down and re-started. Each domain key-
word creates a new instance of the Domain structure. Storing all the domains in a
single file is not an efficient method. This is because, each time a domain has to be
accessed, the entire file has to be searched to find the location of the desired domain.

Another approach is to store each domain in its own file. The files are named
according to the name of the domain. All these files are stored under the same di-
rectory tree. This transfers the search for a domain location to the OS. Since the
OS has to anyway set up its File Allocation Tables every time it is run, it does so
for the domain files as well and reduces the overhead of having to search for the
domain locations. Now, the basic file operations and only the name of file need to
be specified to the OS to manipulate a domain.

A RDBMS system is used for the storage of the User Profile. Each Domain is
represented by a table in the database. Each Keyword is represented by a tuple in
the domain. This facilitates the search for a particular keyword in a domain using
any query language and the retrieval of top-k weighted keywords is more efficient.

10.4 Algorithm

The function weight increment() is used to decide the amount, the value of the
Weight variable has to be incremented to reflect the users changing interests. This
reflects the user’s growing interest in an area of a domain. The following terms
are used in function weight increment(). The variable increment is the value of the
weight for a keyword that has to be incremented, the variable factor is used to repre-
sent keyword’s Weight that has to increase after it is used in a search. The following
equation is used for denoting the factor to increment the weight for a keyword,

increment = (1/Weight)∗ log(f actor). Hence we have
Weightnew = Weightold + increment and
f actor = (T f ∗ INL)/(log(Pr)∗ ROL).

We use Term Frequency (Tf) as an indicative factor to the information represented
in a page. It is directly proportional to the information with respect to an area of
interest. The Number of IN Links (INL) indicates the ’authoritativeness’ of a page
on a topic. Higher the value of INL, the more likely it is to be an Information page.
We assume that the user is interested more in information than links to information.
The rank of the page (Pr) represents an independent ranking of the page by an ex-
ternal source. Since here we use the Pagerank provided by Google, the increment is
inversely proportional to Pr. Higher value of Pr represent lower ranks. The Related
Out Links (ROL) indicates the status of the page as a ’hub’. Higher the value of
ROL, the more likely it is to be a hub. This term is used to balance the Tf as in a
hub page; higher Tf indicates more links to the information rather than information
itself.

The weight increment new() uses same equation as defined in weight
increment(). However since there is no Weightold for a new keyword, we use the
modified form, increment = log(f actor) and Weightnew = increment.

222 10 Algorithms for Web Personalization

The function weight decrement() is used to decide the amount the value of the
Weight variable has to be decremented to reflect the users changing interests. This
makes it possible to prevent the User Profile from growing indefinitely, since ev-
ery new keyword encountered in a search instance creates its own domain. As
mentioned earlier a domain can be deleted from the User Profile when its weight
crosses a pre-defined lower threshold . The following terms are used in function
weight decrement(). The variable decrement is the value of the weight for a key-
word that has to be decremented, the variable counter is used to represent the factor
by which the keyword has not been involved in the searches performed by the user
and the variable life is used to represent the lifetime of the keyword. The lifetime of
the keyword indicates the usage of the keyword from the instant it has been intro-
duced into the User Profile. We use the following equation for denoting the factor
to decrement the weight for a keyword,

decrement = Weight ∗ (counter/li f e),
Weightnew = WeightoldWeightold∗ (counter/li f e)
counter = Rel Keyword Search − Keyword Search
li f e = Rel Keyword Search

A dynamic Weight Update Algorithm for Web Personalization (WUAWP) is given
as follows.

1. The user profile U is initially empty. The profile is divided into domains and
each domain has a collection of keywords. U = φ initially,

2. Let QS be the query string supplied to S. QS = kw1[(op)kwi], for i = 2 to n.
Parse QS to obtain the individual keywords and check if any kwi is a primary
keyword in any domain. Let m be the number of kwi that are present in U.

3. If (m = 1) then add the top-k weighted keywords to QS from that domain. Let
this be QSmod .

4. If (m > 1) then group the keywords into p groups by the domains in which they
exist

a. Case 1: If any p groups of keywords have the same number of keywords then;
i. for all p sum j = Σ x

i=1weight(kwi);
ii. calculate sum j as the sum of weights of all keywords in jth group,

iii. where x is number of keywords in jth group
iv. kwi are the keywords of jth group
v. Add the top-k weighted keywords to QS from the domain(s) to which the

jth group(s) belongs.
vi. Let this be QSmod and sum j > sumi; where i = 1 to p and i �= j

b. Case 2:If no p groups of keywords have the same number of keywords then
Add the top-k weighted keywords to QS from the domain to which the group
with the highest number of keywords belong. Let this be QSmod

5. Submit QSmod to S as the query string.
6. Collect user response to the pages returned by QSmod .
7. For all pages wpi found interesting, parse wpi to find keywords f kw.

10.5 Performance Analysis 223

8. If m = 0 and the f kw do not belong to any existing domain, then create a new
domain with these keywords. Set WEIGHT (f kw) = 0 and W EIGHT (kwi) = 0.

9. If m = 0 and f kw belong to any p domain(s) in U add kwi as primary keywords
to MSD and as auxiliary keywords in the other domains; where MSD = Domain
having mdsr and msdr = max(DOMAINSEARCH/RELATIVESEARCH) over
p domains

10. for each keyword kwi in all domain(s) on which search was applied do

• If keyword kwi is included in the search and WEIGHT (kwi) �= 0 then change
weight by weight increment()

• If keyword kwi included in the search and W EIGHT (kwi) = 0 then change
weight by weight increment new()

• If keyword kwi not included in the search then change weight by the function
weight decrement()

• If WEIGHT (kwi) < δ then delete kwi from the domain, where, δ is the user-
defined lower threshold for pruning the User Profile

Since counter represents the factor that the keyword has not been involved in any
searches the user has performed, the value of decrement is directly proportional to
counter. This reflects the fact that the weight for a keyword decreases by a higher
factor if it is not being used often. Since life represents the lifetime of the keyword
from the instant it was introduced into the User Profile, the value of decrement has
to be inversely related to it. This reflects the fact that keywords with a larger lifetime
indicate sustained user interest in them and hence must be given more importance.
The following points can be observed from the equation,

• The value of decrement is always between zero and one.
• If counter = 0 then no decrement is performed. This shows Rel Keyword Search

= Keyword Search and reflects the fact that the keyword has been involved in
searches every time from the time it was introduced into the User Profile

At any instant the counter cannot be equal to life. If it is true then Keyword Search
would have to be zero. This is impossible because if an entry exists for a keyword
then it would have to be searched at least once and therefore Keyword Search would
be minimally one. Hence at any instant the value of decrement cannot be equal to
Weight for a keyword and the weight after decrement would never be zero. There-
fore, a lower threshold value has to be selected for pruning the user profiles.

10.5 Performance Analysis

The test results are obtained by running sample queries on the commercial search
engine, Google [www.google.com]. The training phase of the system, i.e., the con-
struction of the User Profile up to an initial state, is done, by asking a single user
to enter queries and provide feedback on the search results. The feedback involved
identifying the web pages that the user found interesting (relevant) and then pars-
ing the pages to obtain the keywords. These keywords are added to the User Profile

224 10 Algorithms for Web Personalization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

o
n

Top Ranked Documents Retrieved(Scale of 10)

With Keyword Addition
Without Keyword Addition

Fig. 10.1 Precision of Requests with and without keyword addition

Table 10.1 Domain: Music

Keyword Type Weight Keyword Rel. Keyword
Search Search

music p 3.98 14 15
guitar a 1.15 4 9

sheetmusic p 2.47 10 13
tablature p 2.47 10 13

lyrics a 0.33 1 5
piano a 0.62 2 6

according to our algorithm. In the testing phase, the same user is asked to provide
queries. The user should also provide relevance judgments regarding the web pages
he expects from the search engine to return. These queries are run on the search en-
gine twice. The first time, the queries are run without the addition of any keywords
and the second time, the system added keywords to the query according to our al-
gorithm. For different top-k web pages returned, the precision is calculated for both
the test runs. The precision is defined as the ratio between the number of selected
relevant pages and the total number of selected pages. The results are as shown in
Figure 10.1.

From Figure 10.1 it is obvious that the precision of the search engine increases
with the addition of relevant keywords, otherwise, the precision suffers because of

10.5 Performance Analysis 225

Table 10.2 Domain Artificial Intelligence

Keyword Type Weight Keyword Rel. Keyword
Search Search

Artificial Intelligence p 3.42 12 20
Neural Networks p 2.38 10 20

Computer a 0.47 3 20
Pattern recognition p 1.62 7 14
Genetic algorithms p 2.25 8 12

Expert systems p 1.81 5 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

o
n

Top - k Ranked Documents(k in 10s)

With Keywords
Without Keywords

Fig. 10.2 Precision for Query: Expert Systems Original Query: Expert Systems; Keywords
Added: Artificial Intelligence, Neural Networks

broader search. A snapshot of the domains for Artificial Intelligence and Music is
as shown in Table 10.1 and Table 10.2. This state of the domain is obtained after
a period of time the user builds his profile. The results for the queries run by the
user with and without the addition of keywords are as shown in Figure 10.1. The
precision is calculated for the top-k pages.

Experiments are conducted on varying keywords and adding keywords to the
original query. Figure 10.2, demonstrates the precision of top-k ranked documents
retrieved with or without additional keywords. In Figure 10.2, since the original
query is Expert Systems and it belongs to the Artificial Intelligence domain the top
ranked keywords in that domain are Artificial Intelligence and Neural Networks.

226 10 Algorithms for Web Personalization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

o
n

Top - k Ranked Documents(k in 10s)

With Keywords
Without Keywords

Fig. 10.3 Precision for Query: Pattern Recognition Original Query: Pattern Recognition;
Keywords Added: Artificial Intelligence, Neural Networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

o
n

Top - k Ranked Documents(k in 10s)

With Keywords
Without Keywords

Fig. 10.4 Precision for Query: Guitar Original Query: Guitar; Keywords Added: Music,
Talature

10.5 Performance Analysis 227

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

o
n

Top - k Ranked Documents(k in 10s)

With Keywords
Without Keywords

Fig. 10.5 Precision for Query: Piano Original Query: Piano; Keywords Added: Music, Sheet
Music

Table 10.3 Efficiency of the Proposed Algorithm

Original Query Keywords added Top-k pages
Without Keywords With Keywords

Expert Systems Artificial Intelligence 20 11
Neural Networks

guitar music, tablature 38 17
piano music, sheetmusic 28 14

Pattern Recognition Artificial Intelligence 30 14
Neural Networks

Therefore, these two keywords are added in addition to the given query. The pre-
cision of the retrieved documents with addition of two keywords is compared with
the precision of retrieved documents without any keyword addition. Similarly, the
experiments are conducted on original queries Pattern Recognition, Guitar and Pi-
ano in Figure 10.3, 10.4 and 10.5 respectively. In all the cases, the top-2 ranked
keywords of that particular domain are added and the precision of the retrieved doc-
uments with keyword addition is better as compared to retrieval without any addition
of keywords.

Table 10.3 represents the top-k pages that need to be examined by the user to
obtain 10 pages, which are relevant to him. For example, in the case of the query on
Expert systems, the user is expected to search the top 20 pages to find 10 relevant

228 10 Algorithms for Web Personalization

pages when the keywords are not added to the query but the number drops to 11
when the query is run by adding relevant keywords to the original query. The listing
of retrieved URLs with and without the addition of keywords for different queries
is given below.. It is observed from the results that when the algorithm adds the
keywords, more relevant pages appear at higher ranks in the results obtained.

Original Query: Expert Systems
Top 10 Webpages Retrieved without Addition of Keywords:

-www.aaai.org/AITopics/html/expert.html
-www.ghg.net/clips/CLIPS.html

-www.sciencedirect.com/science/journal/09574174
-herzberg.ca.sandia.gov/jess/

-www.computer.privateweb.at/judith/
-www.cee.hw.ac.uk/ alison/ai3notes/chapter2 5.html

-www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=exsy
-www-2.cs.cmu.edu/Groups/AI/html/faqs/ai/fuzzy/part1/faq.html

-www.aiinc.ca/demos/whale.html
-www.claes.sci.eg

Top 10 Webpages Retrieved with Addition of Keywords:
Artificial Intelligence, Neural Networks

-www.pcai.com/web/ai info/expert systems.html
-www.pcai.com/

-www.compinfo-center.com/tpai-t.htm
-www.sigma-research.com/bookshelf/default.htm

-ai-depot.com/Applications/1092.html
-www.webopedia.com/TERM/A/artificial intelligence.html

-www.blackwellpublishing.com/journals/exsy
-www.wargaming.net/Programming/113/Expert Systems index.htm

-www.decision-team.com/knowledge base/ knowledge base showarticle.asp?
-www.nasatech.com/software/ai.html

Original Query: Guitar
Top 10 Webpages Retrieved without Addition of Keywords:

- www.guitar.com
- www.guitarnotes.com
- www.guitarworld.com

- www.olga.net
- www.gibson.com/

- www.guitarplayer.com
- www.guitarcenter.com/

- www.ultimate-guitar.com
- www.acousticguitar.com

References 229

Top 10 Webpages Retrieved with Addition of Keywords: Music, Tablature
- www.olga.net

- www.harmony-central.com/Guitar/tab.html
- www.1christian.net/guitar/
- www.guitarnotes.com/tabs

- www.guitarnotes.com/guitar/chords.shtml
- www.mxtabs.net

- alt.venus.co.uk/weed/music/classtab
- adamschneider.net/music

- dir.yahoo.com/Entertainment/Music/Tablature/
- www.countrytabs.com

10.6 Summary

In this chapter, a weight update algorithm for consolidating the user interests, do-
main specific search and addition of keyword for a better web personalization is
proposed. The algorithm is tested on Google results and Google PageRank to obtain
the top 10 results and the results obtained are much better compared to the output
of Googleś PageRank system.

References

1. Kolari, P., Joshi, A.: Personalized Web Search for Improving Retrieval Effectiveness. In:
Computing in Science and Engineering, pp. 49–53. IEEE, Los Alamitos (2004)

2. Pokorny, J.: Web Searching and Information Retrieval. In: Computing in Science and
Engineering, pp. 43–48. IEEE, Los Alamitos (2004)

3. Toolan, F., Kusmerick, N.: Mining Web Logs for Personalized Site Maps. In: Proceed-
ings of the Third International Conference on Web Information Systems Engineering
(Workshops), WISE 2004, pp. 232–237 (2004)

4. Khan, L., McLeod, D.: Audio Structuring and Personalized Retrieval Using Ontologies.
IEEE Intelligence Systems (2000)

5. Gediminas, A., Alexander, T.: Using Data Mining Methods to Build Customer Profiles.
IEEE Computer, 74–82 (2001)

6. Ji, J., Liu, C., Yan, J.: Bayesian Networks Structure Learning and Its Application to
Personalized Recommendation in a B2C Portal. In: Proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2004) (2004)

7. Mobasher, B., Cooley, R., Srivastava, J.: Creating Adaptive Web Sites Through Usage-
Based Clustering of URLs. In: IEEE Knowledge and Data Engineering Exchange Work-
shop (KDEX 1999) (1999)

8. Miao, C., Yang, Q., Fang, H., Goh, A.: Fuzzy Cognitive Agents for Personalized Recom-
mendation. In: Proceedings of 3rd International Conference on Web Information Systems
Engineering (WISE 2002) (2002)

230 10 Algorithms for Web Personalization

9. Kiyomitsu, H., Takeuchi, A., Tanaka, K.: Web Reconfiguration by Spatio-Temporal Page
Personalization Rules Based on Access Histories. In: Proceedings of 2001 Symposium
on Applications and the Internet (SAINT 2001) (2001)

10. Jenamani, M., Mohapatra, P.K.J., Ghose, S.: Online Customized Index Systhesis in Com-
mercial Web Sites. IEEE Intelligent Systems, 20–26 (2002)

11. Ramakrishnan, N.: PIPE: Web Personalization by Partial Evaluation. IEEE Internet
Computing, 21–31 (2000)

12. Oyama, S., Kokubo, T., Isida, T.: Domain-Specific Web Search with Keyword Spices.
IEEE Trans. On Knowledge and Data Engg. 16(1), 17–26 (2004)

Chapter 11
Classifying Clustered Webpages for Effective
Personalization

Abstract. Personalization is the process of presenting the right information to the
right user at the right moment, by storing browsing history about the user and
analysing that information. Personalization methods enables the site to target ad-
vertising, promote products, personalize news feeds, recommend documents, make
appropriate advice, and target e-mail. In this chapter, we introduce a clustering algo-
rithm, which creates clusters of similar sites, Naive Bayesian probabilistic model,
which classifies the sites into different categories and a hybrid model, which is a
combination of both. The user profile is built dynamically on the recorded interests
of the user, which are categories of the site in which the user browses. The algo-
rithms are tested on varying keywords and the results obtained are compared with
the Google’s page rank system.

11.1 Introduction

Internet is one development, which fuelled the growth of IT industry to a large
extent. It has single handedly changed the way we communicate, collaborate and
cooperate with each other. It has been responsible for breaking the barriers of time
and geographical limitations and helped to set a new business order. From being an
information repository it has today grown to be a strategic tool in business. Internet
by its very nature does not support systematic storage of information. The units of
storing information in Internet servers are websites which are uniquely identified
by their URL. The problem which everyone had to face aftermath the explosion of
information in Internet is to get relevant information on time. Remembering URLs
proved cumbersome and difficulty in mining for correct information was proving as
hindrance for the further growth of Internet.

Search engines proved to the right medicine for this ailing problem of the in-
dustry. But search engines faced a typical problem since they relied on keywords
for conducting search. The present day search engines have failed to understand
the specific requirements of the user. Users experience increasing difficulty finding

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 231–247.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

232 11 Classifying Clustered Webpages for Effective Personalization

documents relevant to their interests as search engines throw same result to every-
one irrespective of their expectation. Google’s personalized search drives to make
search experience more relevant to the user. Using personalized search, user can get
the results most relevant to user, based on what user has searched in the past, view
and manage user’s past searches, including the web pages, images, Google results
which he has clicked on and create bookmarks. Personalized search orders search
results based on user’s past searches, as well as the search results and news head-
lines the user has clicked on. User can view all these items in the search history and
remove any items. Early on, user may not notice a huge impact on his search results,
but as he builds up the search history, his personalized search results continues to
improve.

This work tries to bridge this gap; a gap created between the search engine’s
capabilities and user expectations. By trying to learn from the previous behaviour
of the user, it tries to readjust the generic results thrown by the search engine. The
behaviour of the user is identified by the categories the user browses. Using snippets
as the input, the proposed algorithms identify the category to which the site belongs.
The algorithms make use of clustering concepts and Naı̈ve Bayesian with a new
flavor as a tool for categorization.

With Google becoming the default search engine and it giving away the Ap-
plication Programming Interface (API) for development freely, it’s natural that the
present system takes Google results as its source. Alternatively, we can even parse
the results retrieved for getting snippets, which actually form the source for iden-
tifying category. This chapter is a demonstration of effort that can be carried on
to increase the usability and usefulness of a common Internet service like search
engine.

11.2 Related Work

Conceptual search can be done by explicitly providing the meaning of the content
in a Web page. So one way to address this problem is by having the authors of
the content explicitly specify the meaning associated with a page using a knowl-
edge representation language. One of the knowledge representation languages is
Ontobroker and is discussed in [1]. Domain-specific Web search engines are effec-
tive tools for reducing the difficulty experienced when acquiring information from
the Web. Building of a domain-specific search engine simply by adding domain-
specific keyword, called “keyword spices,” to the user’s input query and forwarding
it to a general-purpose Web search engine is presented in [2]. A tool that assists an
end-user or application to search and process information from Web pages automat-
ically by separating the primary content sections from the other content sections is
presented in [3].

Ontology is a specification of a conceptualization. Sophisticated ontologies in-
corporate logical relationships and membership rules. However, concept hierar-
chies can also be used as simple ontologies. Use of Yahoo! categories as a concept

11.3 Proposed System 233

hierarchy and classifying documents into it using an n-gram classifier is discussed
in [4]. The user profiles are a representation of the user’s interests. Systems such
as Wisconsin Adaptive Web Assistant (WAWA) builds profiles non-invasively by
observing the patterns of web usage of its users over a period of time [5]. They
generally use the profile to suggest related Web pages to the users as they browse.
The study of personalized recommendation in a B2C portal to build improved al-
gorithm, EI-B&B-MDL, for learning Bayesian networks effectively and efficiently
is proposed in [6]. The algorithm reduces the number of independence tests and
database passes while effectively restricting the search space.

A personalized recommendation agent which is fuzzy cognitive in nature to give
personalized suggestions based on the current users’ preferences, general users’
common preferences, and the experts’ knowledge is given in [7]. Fuzzy cognitive
agents are able to represent knowledge via extended fuzzy cognitive maps, to learn
user’s common preferences from most recent cases and to help customers to make
inference/decisions through numeric computation instead of symbolic and logic de-
duction. An algorithm that can generate and display helpful links while users navi-
gate a site can increase a Web site’s usability and help Web designers and the user
achieve their goals [8]. In the literature, data mining methods are very much ex-
ploited to build the customer profiles [9]. The 1:1 Pro system constructs profiles
based on customers’ transactional history. The system uses data mining techniques
to discover a set of rules describing customers’ behaviour and supports human ex-
perts in validating the rules.

The vision of ontology learning including a number of complementary disci-
plines that feed on different types of unstructured, semi structured, and fully struc-
tured data to support semiautomatic, cooperative ontology engineering is presented
in [10]. A new method for tracking the dynamics of user interests from a minimal
number of relevance judgments is proposed in [11].

11.3 Proposed System

Problem Formulation: Search engines are affected by problems such as ambiguity
[12] and the results are ordered by web site popularity rather than the user interests.
Natural language queries are inherently ambiguous. For example, consider a user
query “Pluto”. Due to ambiguity in the query terms, the user gets the results that
are either related to astronomy or cartoon. Most users enter queries in just a word
or two, without providing enough information. These short queries are often am-
biguous. Providing little more information to a search engine on which to base its
selection of the most relevant Web pages among millions is always preferred. But
explicit detailed unambiguous query from the user cannot be expected always. A
user profile that represents the interests of a specific user can be used to supplement
queries and thus narrowing down the number of topics considered when retrieving
the results. For the user in our example, if we know that he has a strong interest
in Astronomy but little or none in cartoon, the Astronomy – related results of Pluto

234 11 Classifying Clustered Webpages for Effective Personalization

can be presented to the user preferentially. Therefore, user profile creation is an
important step for personalization.

Our approach of building user profiles is based on the user’s interactions with
a particular search engine. For this purpose the tool GoogleWrapper, a wrapper
around the Google search engine [13], which logs the queries, search results and
clicks on a per user basis is used. The snippets, which is extracted using wrapper,
forms the input for our algorithms to identify the category of that site. This infor-
mation is then used to create user profiles and these profiles are used in a controlled
study to determine their effectiveness for providing the personalized search results.

Information can be collected from users in two ways. First using explicit way, for
example asking the user to fill up the forms when he logs in for the first time and
ask him to give preferences or ratings. Secondly using implicit way, for example
observing user behaviors such as the categories of the URLs visited, time spent and
number of inner clicks made in a particular site. Explicit construction of user pro-
files has several drawbacks. The user provide inconsistent or incorrect information.
The profile built is static whereas the user’s interests may change over time, and the
construction of the profile places a burden on the user that they may not wish to
accept. User browsing history i.e., the categories the user has browsed so far are the
most frequently used source of information about user interests. We use this infor-
mation to create user profiles represented as user interest. Classifying the collected
Web pages with respect to a category in which the user is interested creates the user
profile. The fact that a user has visited a page and spent some time is an indication
of user interest in the content of that page i.e., in that category.

Problem Definition: Consider a search engine E , which accepts queries in the form
of keywords and returns a list of near relevant web pages. The queries are of the
form k1 [(op) ki] for i= 2 to n, Where ki is the ith keyword supplied to E , (op) is a
Boolean operator like OR, AND. . . , n is the number of keywords supplied to E , and
[. . .] indicate the parameters are optional.

Search engine E returns its results when an user clicks on some site and the
corresponding snippet S is used as an input to the proposed algorithm to identify
the category of the site. This category actually represents the users’ interest and
is added to the user profile. Each category has an associated weight. The weight
decides the category of the results to be shown to the user. Each time a new category
is created, it is assigned an initial weight CWeight = 0. Hence all categories start with
the same weight or same opportunity in the user profile. The weights for a category
are dynamically updated. The dynamic updation is carried out to reflect the users’
interest in a certain domain. The weight of the category also depends on the amount
of time the user spends in a particular site and therefore in a particular category.
A higher weight indicates a greater interest in that domain. When the weight for a
category crosses a pre-defined lower threshold, it is deleted from the user profile.
This reflects the fact that the user has lost interest in that area in the domain. The
steps involved in the personalization system are given below.

11.3 Proposed System 235

Input: Query
Output: Personalized results

1. GoogleWrapper ();
{Gets the snippets of the retrieved results.}

2. PreprocessData ();
{Stop words are removed from Snippets.}

3. Choose (Classifier / Clustering)
If (Cluster Analysis is chosen)
{Create cluster () : Clusters of similar sites are formed and sites within the cluster
are ranked.}
If (Classifier is chosen)

{Naı̈ve Bayesian Probabilistic model: Classify sites into their respective categories.}

System Architecture: The system consists of four modules, (i) Google Wrapper,
(ii)Pre-processing, (iii) Identification of the category and (iv) Clustering/Classifying
the URLs with snippets. The overall system architecture is shown in Figure 11.1.
Once the query is passed to the system, the following steps are executed.

GoogleWrapper(): Google wrapper takes query string as an input. Each time the
user issues a search request to the Google service, a response is returned back to
the user. This response contains many result elements, two of which are URL and
Snippet, where,

Query

Google

Wrapper
Snippet Pre−

Processing

Pruned
Snippet

Create Cluster()

Bayesian Algorithm
or

Identified
Cluster /

Category

URL
Snippet

Cluster / Classify
the URL &

Snippet

Personalized Results

Fig. 11.1 Proposed System

236 11 Classifying Clustered Webpages for Effective Personalization

<URL> - the Uniform Resource Locator(A Web Link) of the search result is re-
turned as text, with an absolute URL path.

<Snippet> - A text excerpt from the results page that shows the query in context
as it appears on the matching results page. This is formatted HTML and usually in-
cludes tags within it. Query terms are highlighted in bold in the results and line
breaks are included for proper text wrapping. If Google has searched for stemmed
variants of the query terms using its proprietary technology, those terms are also
highlighted in the snippet. This snippet is then preprocessed.

PreprocessData (): Here the snippet obtained from the Google wrapper is pruned.
The stop words such as {a, is, the, are, in, as etc.,} stored in stop words list are
removed from the snippet and forwarded to the algorithm.

Algorithm I: Create cluster(): Find the similar sites using snippets
and rank the sites within a cluster.
Input: Snippets of the results retrieved from the Search Engine.
Output: Clustered results.
Method:
Begin
n ← Number of Clusters; S ← Snippet of the URL;
Sw← Stop words; Sp← Pruned Snippet;
Wp← Words in S p;Wc← Words in the Cluster;
Uc← URLs in the Cluster;
count ← 0;
If URL is clicked then
Sp← S - Sw;// Prune step: remove stop words
If (n == 0) then // No clusters
Create cluster with Wp and Label it;
else
for i= 1 to n
if check similarity (Wp, Wc) then
Uc← UcU URL; // add new URL
Rank = count / number of Wc;
Wc← WcU Sp; // add new words
endfor

Procedure check similarity(Wp: Words in Sp; Wc : Words in the clus-
ter)
for each Wp

for each Wc

if (Wp
⋂

Wc) then // words match
count ←− count +1; // number of words matched
return TRUE (1);
return FALSE (0);
endfor
endfor
End

11.4 Example 237

11.4 Example

Let us assume that a new user logs in for the first time and submits a query ‘Mickey
Mouse’, many cartoon related sites of Mickey Mouse will be retrieved. Now if a
user clicks on some URL, immediately the corresponding snippet is preprocessed by
removing stop words (the, in, a, of, etc.,). With the remaining words (mickey, mouse,
Disney, land, animation, cartoon) a cluster, say A1 is created as shown in Table 11.1.

Now, when the same user submits a query ‘Pluto’ (which is ambiguous having
two meaning, cartoon and planet), the retrieved sites are checked for similarity with
the cluster A1. Similarity is found considering the word as a binary variable i.e., if a
word is found then it is 1 or else 0 as shown in Table 11.1. If the snippet of the site
contains a single word or more that is available in cluster A1, then it is said to be
similar and shown to the user. Now the sites 1, 2, 5, 7, 8 and 9 are said to be similar
and are clustered with A1 and displayed to the user. The ranking (Rank = sort in
decreasing order of weight) of these sites is based on the number of words matched
to the total number of words in the cluster. Here, three cases are discussed:

Case 1: Yes, the results retrieved are as needed by the user.

• Increment the weight of that particular cluster,
CWeight = CWeight + 1;

• Add additional words to the cluster.

Case 2: No, the results retrieved are not as per the users’ need.

• Show the remaining results.
• Create a cluster using the snippet on which user clicks.

Case 3: Yes, the retrieved results are correct but the user also wants other results.

• Increment Case 1: Yes, the results retrieved are as needed by the user.
• Increment the weight of that particular cluster, CWeight = CWeight + 1;
• Add additional words to the cluster.

Table 11.1 A Relational table containing mostly binary attributes and site’s weight

CLUSTER A1 Mickey Mouse Disney Land Animation Cartoon Similar? Weight
Query: Pluto Y/N x

Site 1 0 0 1 0 1 1 Y 3/6=0.500
Site 2 0 0 1 1 0 1 Y 3/6=0.500
Site 3 0 0 0 0 0 0 N 0/6=0.000
Site 4 0 0 0 0 0 0 N 0/6=0.000
Site 5 0 0 1 1 1 1 Y 4/6=0.670
Site 6 0 0 0 0 0 0 N 0/6=0.000
Site 7 0 0 1 0 0 1 Y 2/6=0.340
Site 8 0 0 1 1 1 1 Y 4/6=0.670
Site 9 0 0 0 0 0 1 Y 1/6=0.167
Site 10 0 0 0 0 0 0 N 0/6=0.000

238 11 Classifying Clustered Webpages for Effective Personalization

Case 2: No, the results retrieved are not as per the users’ need.

• Show the remaining results.
• Create a cluster using the snippet based on the weight of that particular cluster,

CWeight = CWeight + 1;
• Show the remaining results.
• Create a cluster using the snippet on which user clicks.

Case 1: User is interested in this cluster, so the weight of the cluster is incremented
i.e., weight of cluster A1 now becomes 2 which was initially 1 when created. Now
let us say the user clicks on Site 2 containing the words Disney, Land, Cartoon and
in addition to that Drawing, friend etc., and these additional words are also added to
the cluster.

Case 2: User is not interested in this cluster, so there is no need of incrementing the
weight of this cluster. Show the remaining sites retrieved for the same query ‘pluto’,
i.e., sites 3, 4, 6, and 10. Now if the user clicks on some site, a cluster is created with
the words from the corresponding snippet after pruning (say, Pluto, Planet, Fastest
Sun, Smallest) and assign a new label say A2 and assign weight 1.

Case 3: User shows interest in this cluster but also wants other results. In this case,
increment the weight of cluster A1, as in Case 1, then show the other remaining
results and continue as in Case 2.

These weights of the cluster show the user’s interest. But users may click erro-
neously on the sites although they are not interested in that site, providing some
error weight to the cluster. To overcome this error, the weight of the cluster also de-
pends on the amount of time spent by the user in a site falling in a particular cluster.
If the user spends more time on a particular site it implies that he is more interested

Table 11.2 Training Data

Category (2 levels) Keywords Total
Arts > Entertainment actors, animation, 10

movies, games,
literature, museum,

radio, television,
cartoons, characters.

Science > Astronomy astrophysics, cosmology, 5
sky, eclipses, planets.

Science > Biology anatomy, biochemistry, 10
biomechanics, bio-physics,

biotech, ecology,
evolution, genetics,
taxonomy, zoology.

Science > Computer artificial intelligence, genetic algorithms, 8
graphics, software engineering, database

...

11.5 Algorithm II: Naı̈ve Bayesian Probabilistic Model 239

in that site. Assuming that the user does not spend more time in the sites in which
he has entered erroneously, the time-spent attribute compensates the error.

For identifying the categories using naı̈ve Bayesian probabilistic model, the train-
ing data used is as shown in the Table 11.2. The training data is obtained from ya-
hoo directory search [14, 15] or Open Directory Project(ODP) [16]. ODP is readily
available for download from their web site in a compact format. In addition, it is
becoming a widely used as an informal standard. Only the top 2-level and 3rd level
categories along with other related words are used as keywords for classification.

11.5 Algorithm II: Naı̈ve Bayesian Probabilistic Model

Step 1: The data sample is Snippet S = (w1,w2, ...,wn), where, wi for i = 1 ...n are
the words in the snippet after removing stop words.

Step 2: Suppose that there are m categories C1,C2, ...,Cm. Given an unknown Snippet
S (i.e., with no label), the classifier predicts that S belongs to the category of having
highest probability. By Bayes Theorem, it is given that,

P(Ci/S) = P(S/Ci)∗ P(Ci)/P(S)

Step 3: P(S) is constant for all categories, therefore only P(S/Ci)∗P(Ci) need to be
maximized. If the prior probability of a category is not known, then it is assumed
that categories are equally likely i.e., P(C1) = P(C2) = ... = P(Cm). Therefore max-
imize only P(S/Ci). Otherwise, maximize P(S/Ci)∗ P(Ci). This even identifies the
users interest in a particular category and the prior probability of the Category is
estimated as,

P(Ci) = (Number of times the user visited the category Ci / Total number of visits)

Step 4: Now, Naı̈ve assumption of class conditional independence is made. That is,
P(S/Ci) = ∑n

k=1 P(Sk/Ci), Thus P(w1/Ci),P(w2/Ci), ...,P(wn/Ci) can be estimated
from training samples, where P(Sk/Ci) = (Number of words in Ci having value Sk /
number of words in Ci).

Step 5: In order to classify an unknown snippet S, P(S/Ci) ∗ P(Ci) is evaluated for
each category Ci, Sample snippet S is then assigned to the category Ci, if and only
if P(S/Ci)∗ P(Ci) > P(S/Cj)∗ P(Cj) for 1 ≤ j ≤ m, j �= i. In other words, it is as-
signed to the category Ci for which P(S/Ci)∗ P(Ci) is maximum.

Observation: Our version of naı̈ve Bayesian probabilistic model differs in compu-
tation of prior probability of a category P(Ci) (Step 3). Traditional model estimates
the prior probability of a category by P(Ci) = (number of training samples in the
category Ci/total number of training samples), instead we make use of user profile
for computation of P(Ci). We also classify the sites into the categories found in
the user profile (Table 11.3) and not rest, since user would be most interested in
those categories found in his profile. This reduces the cost of the model to a large
extent because we are not classifying the sites into all the available categories. It

240 11 Classifying Clustered Webpages for Effective Personalization

Table 11.3 User Profile

Category (Ci) Weight (No. of visits) P (Ci)
Science > Astronomy 2 2/10 = 0.2
Science > Computer 5 5/10 = 0.5
Science > Biology 3 3/10 = 0.3

only tries to classify into other categories when user is no more interested in these
categories, which seldom happens. In that case P(Ci) is not considered, i.e., only
P(S/Ci) is maximised. Here three cases exist:

Case 1: Yes, the results retrieved are as needed by the user.

• Increment the weight of that particular category, CWeight = CWeight + 1.

Case 2: No, the results retrieved are not as per users need.

• Classify the remaining results and display.
• Append the category of the site on which the user clicks and assign weight 1.

Case 3: Yes, the retrieved results are correct but user also wants other results.

• Increment the weight of that particular category, CWeight = CWeight + 1.
• Classify the remaining results and display.
• Append the category of the site on which user clicks and assign weight 1.

Example: Lets assume that a user has logged in and browsed 10 sites, 5 of which
fall under Science > Computer, 3 of which come under Science > Biology and
remaining 2 Science > Astronomy as shown in his profile (Table 11.3). Now if he
submits a query say ‘Genetics’ (Ambiguous because genetics can be related to both
genetic algorithms and genetics of biology), all the possible results of genetics is
retrieved initially. Now we apply Naı̈ve Bayesian algorithm to classify these results
into categories found in the profile. Let us say there is an unknown snippet, which
is to be classified, the following scenarios are possible.

• It has words wi={genetics, powerful} after getting pruned.
• Number of training samples belonging to category Science>Astronomy(SA)=5
• Neither of the words wi are found in training set of SA (so the query is not in this

category).
• Number of training samples belonging to category Science>Biology(SB)=10
• This has only one word, genetics.
• P(genetics/SB) * P(SB) = (1/10) * 0.3 = 0.03
• Number of training samples belonging to category Science>Computer(SC)=8
• This has only two words, genetics and algorithm.
• P(genetics/SC) * P(SC) = (1/8) * 0.5 = 0.0625
• P(genetics/SC) * P(SC) > P(genetics/SB) * P(SB) therefore the snippet S be-

longs to SC i.e., (Science>Computer) category.

11.6 Performance Analysis 241

Hybrid Model: Algorithm II suffers with the overhead of storing training data and
in Algorithm I we find the similarity of sites taking binary variables into consid-
eration and it is not a probabilistic model. To combine the advantages of both the
algorithms, we present a hybrid model which uses the clustering concepts as in algo-
rithm I and instead of computing the similarity of the sites with cluster using binary
variables, it uses Naı̈ve Bayesian probabilistic model as in algorithm II.

11.6 Performance Analysis

Experiment 1: Average rank of the Google search results remain the same irrespec-
tive of user interest, where as the rank of the search results of the proposed technique
is better because the system knows users’ interest better. When user interest is zero
i.e., the system does not know anything about the user, then the rank is same as the
Google rank, say 5. As user interest approaches to one, i.e., the system is learning
the user interest gradually, then the ranking improves to 3 as shown in Figure 11.2.
Google pagerank works on the basis that if a website abc.com has been linked from
an another website xyz.com, abc.com must have some good content and therefore
Google counts the link from xyz.com as a vote for abc.com.

 0

 1

 2

 3

 4

 5

 6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
n
k

User Interest

Google
Our Search

Fig. 11.2 Variation in ranking of Google results and results of the proposed technique as the
user interest is varied.

Experiment 2: Precision is the percentage of retrieved documents that are in fact
relevant to the query (i.e., “correct” responses). Precision of the system depends on
the number of times the users use the system and the sequence in which the user
proceeds.

242 11 Classifying Clustered Webpages for Effective Personalization

Precision = | {Relevant} ∩ {Retrieved} | / | {Retrieved} |

Figure 11.3 shows a comparison of the precision of the search results obtained from
the proposed technique with that of Google. In Google the precision does not vary
much, where as the precision of the proposed technique grows linearly as shown in
Figure 11.3, if the flow of logins is as assumed below. Let us say the system retrieves
100 results every time and the query is Pluto.

Login 1: 20 relevant documents (user interested in cartoon) are found and user clicks
on cartoons site. So precision is 0.2.

Login 2: Query is Pluto. Only cartoon sites are retrieved as user showed interest in
cartoons last time. Now user does not want cartoons site, but wants planets. There-
fore there are no relevant sites and the user opts for planets sites. So precision is 0.

Login 3: Query is Pluto again. This time the system retrieves both cartoons and
planets because both categories have equal weight, and user is interested in any one
of them, say user shows interest in cartoons, so cartoon site gets more weight. Pre-
cision is 0.5.

Login 4: Query is Pluto. System retrieves 75 cartoon results and 25 planet results
based on weight. Users wants cartoon. Therefore precision is 0.75.

Login 5: Query is Pluto. System shows 80 results of cartoon and 20 of planets and
the user wants cartoon sites. Hence precision is 0.8.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

o
n

Logins

Google
Our Search

Fig. 11.3 Variation in precision of Google results and the search results of the proposed
technique as the number of times user logs in i.e., as the system is used more

11.6 Performance Analysis 243

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

User Interest

Google
Our Search

Fig. 11.4 Variation in precision of Google results and the proposed technique as the user
interest is varied

Therefore, the precision of the results is function that is dependent on training the
system.

Experiment 3: In this experiment one can see that the precision of the Google
search results and the search results of the proposed technique vary when user inter-
est changes. Figure 11.4 shows that google search results’ precision does not change
much whereas the precision of the search results of the proposed technique varies
from 0.2 to 1 as user interest approaches one. Therefore, the precision increases as
the system learns the user interest.

Experiment 4: Recall is the percentage of documents that are relevant to the query
and are, in fact, retrieved. It is formally defined as

Recall = | {Relevant} ∩ {Retrieved} | / | {Relevant} |

Figure 11.5 shows a variation in recall of Google results and of the proposed tech-
nique as the user interest is varied. Recall in case of Google does not change much
as it does not depend on the user interest, whereas recall varies from 0.2 to 1 as the
user interest reaches one in our case, which demonstrates the effeciency proposed
technique.

Experiment 5: Figure 11.6 shows a comparison of recall between the two tech-
niques. Recall in case of Google remains the same i.e., one, because every time the
user logs in and submits a query, say pluto there is at least one result relevant to the

244 11 Classifying Clustered Webpages for Effective Personalization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
ca

ll

User Interest

Google
Our Search

Fig. 11.5 Variation in recall of Google results and the proposed technique as the user interest
is varied

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 1.5 2 2.5 3 3.5 4 4.5 5

R
e
ca

ll

Logins

Google
Our Search

Fig. 11.6 Variation in recall of Google results and the proposed technique as the number of
times user logs in i.e., as the system is used more

11.6 Performance Analysis 245

user among the retrieved. If it does not retrieve any result relevant to users interest
then the recall becomes zero according to its definition. Where as the recall in our
case is described with respect to the flow of logins as given below. Let us say the
system retrieves 100 results every time and the query is Pluto.

Login 1: 20 relevant documents (user interested in cartoon) are found and user clicks
on cartoons site. So recall is 1 because for recall to be 1, it is sufficient to have one
relevant site of user’s interest.

Login 2: Query is Pluto. Only cartoon sites are retrieved as user showed interest in
cartoons last time. But now user is does not want cartoons site, he wants planets.
Therefore no relevant sites and the user goes for planets sites. So precision is 0.

Login 3: Query is Pluto again. This time the system retrieves both cartoons and plan-
ets because both categories have equal weight, and user is interested in any one of
them; say user shows interest in cartoons, so cartoon site gets more weight. Recall
again becomes 1 as user gets what he wants.

Table 11.4 Comparison of Google search results with proposed technique for the query Pluto

Query: Pluto
Top 10 results of Google search

www.nineplanets.org
www.solarviews.com
dosxx.colorado.edu

en.wikipedia.org
www.plutobooks.com

portals.apache.org
pluto.jhuapl.edu

www.pluto.net.nz
www.plutorecords.com
solarsystem.nasa.gov

Top 10 results of our search

User interest: Cartoons User interest: Planets
disney.go.com www.nineplanets.org

en.wikipedia.org www.kidsastronomy.com
www.bcdb.com www.nasm.si.edu

www.toonzone.net www.brightsurf.com
www.melaman2.com www.kidskonnect.com

www.barksbase.de www.enchantedlearning.com
www.animationshow.com www.studyworksonline.com
disneyshorts.toonzone.net www.netmoon.com

www.imdb.com www.solarviews.com
www.ultimatedisney.com solarsystem.nasa.gov

246 11 Classifying Clustered Webpages for Effective Personalization

Table 11.5 Comparison of Google search results with proposed technique for the query
Genetic

Query: Genetic
Top 10 results of Google search
www.genetic-programming.org

gslc.genetics.utah.edu
www.geneticalliance.org

www.aic.nrl.navy.mil
www.savingsandclone.com

www.genengnews.com
www.genome.gov

www.nsgc.org
www.greenpeace.org

www.genetichealth.com
Top 10 results of our search

User interest: Computers User interest: Biotech
www.genetic-programming.org www.icgeb.org

www.babicgroup.com www.vivo.colostate.edu
www.rennard.org www.i-biotechnology.co.uk
www.doc.ic.ac.uk www.medbioworld.com

www.mathworks.com www.cln.org
ai-depot.com www.geneinfo.net
www.jaga.org www.carolina.com/biotech/

www.aridolan.com www.genetics.wisc.edu
www.nd.com www.biotech.wisc.edu

www.codeproject.com www.genengnews.com

Login 4: Query is Pluto. System retrieves 75 cartoon results and 25 planet results
based on weight. Users wants cartoon. Recall is again 1.

Login 5: Query is Pluto. System shows 80 results of cartoon and 2 of planets and
user wants cartoon sites. Recall is again 1.

11.7 Summary

In this chapter, a clustering algorithm is proposed, which creates clusters of similar
sites, our version of Naive Bayesian probabilistic model, which classifies the sites
into different categories and a hybrid model, which is a combination of both is used
for classification of web pages. These algorithms are tested on Google’s results and
Google PageRank to obtain the top 10 results and the results obtained are good.
Table 11.4 shows the Comparison of Google search results against the proposed
technique for the query Pluto. Table 11.5 shows the comparison of Google search
results against the proposed technique for the query Genetic.

References 247

References

1. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based Access to
Distributed and Semi-Structured Information. In: Proceedings of W3C Query Language
Workshop QL 1998 (1998)

2. Oyama, S., Kokubo, T., Ishida, T.: Domain-Specific Web Search with Keyword Spices,
1041-4347/04/2004 IEEE

3. Debnath, S., Mitra, P., Pal, N., Giles, C.L.: Automatic Identification of Informative Sec-
tion of Web Pages, 1041-4347/05/2005 IEEE

4. Labrou, F.: Yahoo! as an Ontology: using Yahoo! Categories to Describe Documents. In:
Proceedings of Eighth International Conference on Information and Knowledge Man-
agement, Kansas City, Missouri (1999)

5. Shavlik, J., Calcari, S., Eliassi-Rad, T., Solock, J.: An Instructable, Adaptive Interface
for Discovering and Monitoring Information on the World Wide Web. In: Proceedings of
International Conference on Intelligent User Interfaces, Redondo Beach, CA, pp. 157–
160 (1999)

6. Ji, J., Liu, C., Yan, J.: Bayesian Networks Structure Learning and Its Application to
Personalized Recommendation in a B2C Portal. In: Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2004) (2004)

7. Miao, C., Yana, Q., Fang, H., Goh, A.: Fuzy Cognitive Agents for Personalized Rec-
ommendation. In: Proceedings of the 3rd International Conference on Web Information
Systems Engineering (WISE 2002) (2002)

8. Jenamani, M., Mojapatra, P.K.J., Ghose, S.: Online Customized Index Synthesis in Com-
mercial Web Sites. IEEE Intelligent Systems, 20–26 (2002)

9. Gediminas, A., Alexander, T.: Using Data Mining Methods to Build Customer Profiles.
IEEE Computer, 74–82 (2001)

10. Maedche, A., Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligent Sys-
tems (2001)

11. Widyantoro, D.H., Ioerger, T.R., Yen, J.: Tracking Changes in User Interests with a Few
Relevance Judgments. In: CIKM 2003 (2003)

12. Krovetz, R., Croft, B.W.: Lexical Ambiguity and Information Retrieval. Proceedings of
ACM Transactions on Information Systems 10(2), 115–141 (1992)

13. http://www.google.com/api
14. Labrou, Y., Finin, T.: Yahoo! As An Ontology – Using Yahoo! Categories To Describe

Documents. In: Proceedings of the 8th International Conference On Information Knowl-
edge Management (CIKM), pp. 180–187 (1999)

15. Yahoo!, http://www.yahoo.com
16. Open Directory Project, http://dmoz.org

http://www.google.com/api
http://www.yahoo.com
http://dmoz.org

Chapter 12
Mining Top - k Ranked Webpages Using SA and
GA

Abstract. Searching on the Internet has grown in importance over the last few years,
as huge information is invariably accumulated on the Web. The problem involves in
locating the desired information and corresponding URLs on WWW. With billions
of webpages in existence today, it is important to develop efficient means of locat-
ing the relevant webpages on a given topic. A single topic may have thousands of
relevant pages and of varying popularity. Top - k ranked webpages pertaining to a
given topic are of interest to the Web user. In this chapter, we propose an efficient
top-k document retrieval method (TkRSAGA), that works on the existing search en-
gines using the combination of Simulated Annealing and Genetic Algorithms. The
Simulated Annealing is used as an optimized search technique in locating the top-k
relevant webpages, while Genetic Algorithms helps in faster convergence via par-
allelism. Simulations are conducted on real datasets and the results indicate that
TkRSAGA outperforms the existing algorithms.

12.1 Introduction

Data mining and web mining are emerging areas of immense interest for the re-
search community. These two fields deal with knowledge discovery on the Internet.
Extensive work is being carried out to improve the efficiency of existing algorithms
and to devise new and innovative methods of mining the Web. Such efforts have
direct consequences on e - commerce and Internet business models.

The Internet can be considered as a huge database of documents, which is dy-
namic in nature and results in ever-changing chaotic structure. Search engines are
the only available interface between the user and web. It allows the user to locate
the relevant documents in WWW. A huge number of webpages may exist on any
given topic in the order of 104 to 106. It becomes tedious for the user to sift through
all the web pages found by the search engine to locate the documents of interest to
the user.

The problem of page ranking is common to many web-related activities. The
basic goal of ranking is, providing relevant documents on a given search topic.

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 249–258.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

250 12 Mining Top - k Ranked Webpages Using SA and GA

Top -k selection queries are being increasingly used for ranking. In top - k query-
ing, the user specifies target values for certain attributes and does not expect exact
matches to these values in return. Instead a ranked list of top - k objects that best
match the attribute values are returned.

Simulated Annealing (SA) is powerful stochastic search method applicable to
problems for which little prior knowledge is available. It can produce high quality
solutions for hard optimization problems. The basic concept of SA comes from
condensed matter of physics. In this technique, the system (solid) is first heated to a
high temperature and then cooled slowly. The system settles in a minimum energy
state if the cooling point of the system is sufficiently slow. This process can be
simulated on a computer. At each step of the simulation, a new state of the system
is generated from the current state giving a random displacement to a randomly
selected particle. The new generated state is accepted as the current state, if the
energy of the new state is not greater than that of the current state. If not, it is
accepted with the probability, e(−(Enew−state−Ecurrent−state)/T), where E is the energy of
the system and T is the temperature. This step can be repeated with a slow decrease
of temperature to find a minimum energy state [1,2].

Another tested soft computing approach is Genetic Algorithms (GA), which
works on the concept of evolution. Every species evolves in a direction suited for
its environment. The knowledge they gain in this evolution is embedding in their
chromosomal structure. The changes in chromosomes causes changes in the next
generation. The changes occur due to mutation and crossover. Crossover means the
exchange of parts of genetic information between parents to produce the new gener-
ation. Mutation makes it possible for chromosomes to get a structure that is suitable
for the environment [3].

A combination of SA and GA is appropriate to the problems that place a premium
on efficiency of execution, i.e., faster runtimes. This is an important consideration
in any web-based problem as speed is of the utmost importance. The SA and GA
techniques can be combined in various forms. GA can be applied before or after or
even during the annealing process of the system under consideration [4].

Any page ranking algorithm has to be applied online and should be fast and ac-
curate. The existing page ranking algorithms, though they give complete results,
they produce enormous number of webpages resulting in low efficiency. The use of
soft computing approaches can give near optimal solutions, which are better than
existing algorithms. In this chapter, we combine Simulated Annealing with Genetic
Algorithms to devise an efficient search technique. The Simulated Annealing is used
because of its ability to handle complex functions and Genetic Algorithms is used to
choose between the set of points in the intermediate states of Simulated Annealing,
so as to eliminate the points that do not satisfy the fitness function. We thus achieve
more accurate results with fewer runs of SA [5, 6].

Problem Definition: Given a query to a search engine, results in a large number
of relevant web documents in terms of URLs (Uniform Resource Locators). Each

12.1 Introduction 251

Search
Query

Search
Engine

Relevant
URLs

Calculate Sm
Objective
functionSAGA

top − k
Ranks

URL Retrieval
System

top − k
ranked URLs

Fig. 12.1 The System Architecture

webpage is characterized by the number of hits(the number of times a URL has
been accessed by past users), number of referrer pages(incoming links), number of
referred pages(out going links) and the number of occurences of the specified key-
words of the given query. Let E be the dataset containing the set of URLs and their
corresponding characterstics, i.e., E = {Um,Sm}, where 1 ≤ m ≤ n and n is the total
number of URLs returned. The function Sm = Nm + Im +Om +Dm, where, Nm is the
number of hits, Im is the number of incoming links, Om is the out going links and
Dm is the number of occurences of query keywords for the corresponding mth URL.
Our objective is to find the top - k relevant web documents from the dataset E using
combination of Simulated Annealing and Genetic Algorithms.

System Architecture: This section deals with the various modules involved in the
system. The first step is to submit a query to a commonly used search engine. The
query is a string or collection of strings that represent a set of keywords for a
particular topic in which the search is being performed. Each string in the query
is separated by a space or a special symbol. The query is represented as a set,
S = {s1,s2,s3, ...sn}, sk is the kth string in the query. The query is submitted to
the search engine. Once the search engine completes the search process, it returns
a set of n relevant unique web documents (URLs). It can be represented as the set,
E = {Um,Sm} where 1 ≤ m ≤ n. Um actual address of mth URL in the result and Sm

is the function on URL Um.
The resulting URLs are categorized by their characterstic function Sm to ease

the retrieval process. Once the search engine returns n relevant URLs, an objective
function over S is generated using harmonic analysis. The algorithm TkRSAGA is
executed on the objective function f(x) and outputs the top - k ranked URLs.

252 12 Mining Top - k Ranked Webpages Using SA and GA

12.2 Algorithm TkRSAGA

Top - k Document Retrieval using Simulated Annealing and Genetic Algorithms:

Step 1: Preprocessing: Submit a query to an existing search engine like Google. The
search engine returns a list of n URLs (webpages) of relevance to the topic. Each
entry E, in the list of returned URLs must be composed of two entries {U, S}. Thus
E = {U, S}, where U is the actual URL and S is the function over the corresponding
to URL U and is denoted as {(U1,S1),(U2,S2), ...(Un,Sn)}.

Step 2: Harmonic Analysis: Let the output of Step 1 be denoted as {(n1,s1),
(n2,s2), ...(nn,sn)}, where nm is the mth URL and sm is the function over mth URL
and the objective function over these n points can be generated using the formula
f (x) = a0 + akcos(kπ)+ bksin(kπ), where 1 ≤ k ≤ n.

Step 3: Performing Search: The combination of Simulated Annealing and Genetic
Algorithms can be applied over the objective function f(x) as given below,

Generate initial states α0,α1, ...αn−1 at random.
Generate initial temperature T0.
loop

for each αi in {α0,α1, ...αn−1}
loop

βi = generate state(αi,Tj);
until point αi satisfies curve± ε, where ε is the error,
if accept state(αi,βi,Tj),thenαi = βi,
next αi,

for each i 0 ≤ i ≤ n−2
crossover pairs(αi,αi+1)
αi = calculatefitness (αi,αi+1)

next i,
Tj+1 = update state(Tj),
j = j + 1;

until k states remain.

Let the initial states α0,α1, ...αn−1 be randomly chosen set of points from the ob-
jective function f (α), where 0 ≤ αi ≤ 2π . The points αi are chosen on the x - axis
at evenly spaced intervals. However, the actual initial states are computed using the
objective function f(x). The Simulated Annealing technique cools the system uni-
formly and slowly from a higher initial temperature T0 to a lower final temperature
Tk(T0 > Tk). In the next iteration, a random state is generated by the function gener-
ate state(αi,Tj) and is determined by the probability Gαβ (Tj) of generating a new
state βi from an existing state αi at temperature Tj. The generation function is de-
fined as gi(Z) = 2 ∗ (| +1/ln(1/Tj))∗ ln(1 + ln(1/Tj)). The generation probability
is given by G j(Z) = 1

2 +(Σz∗ ln(1+ | z | ln(1/Tj)))/2 ∗ ln(1 + ln(1/Tj)).

12.3 Performance Analysis 253

The newly generated state βi is checked for acceptance by the function ac-
cept state(αi,βi,Tj) and is determined by the probability Aαβ (Tj) of accepting
state βi after it has been generated at temperature Tj. The acceptance probability
Aαβ (Tj) is given by, Aαβ (Tj) = min1,exp(−(f (β)− f (α))/Tj), where f (α) is the
objective function considered for optimization. The new state βi is accepted only if
it has lower energy state than the previous state αi.

The rate of cooling of the Simulated Annealing Technique(Annealing Sched-
ule) is represented by ρ . It is a control parameter used to change the system
temperature as the time progresses. The annealing schedule used in the algo-
rithm is of the form, Tk = T0/eek

, where k represents the kth iteration. For prac-
tical considerations, the annealing schedule is set to Tn+1 = ρTn. The function
update state(Tj) updates the temperature with respect to the annealing schedule.
The function crossover pairs(αi,αi+1) performs the genetic crossover operation on
states αi and αi+1. The random one-point crossover is carried on two states i and j.

Finally, the function calculate fitness(αi,αi+1) performs the fitness calculation
that is used to select the two states which are allowed to propagate to the next gener-
ation. The fitness function calculates the Euclidean distances of points αi and αi+1

to the objective function f(x) and returns the closer point. Thus, the algorithm starts
with few initial number of states and terminates with k final states.

Step 4: Once the algorithm returns k final states, they represent the points on the
global minima over the objective function f(x). These points can be mapped to the
corresponding URLs and these URLs represent the top - k ranked URLs.

12.3 Performance Analysis

The algorithm TkRSAGA works in two basic phases. The first phase involves the
generation of the Fourier coefficients to determine the objective function f(x) and
is linear with respect to the number of URLs supplied. The second phase is the
application of combined SA and GA on the objective function f(x) to obtain the top-k
ranked URLs. The convergence of the second phase depends on the number of initial
states, the annealing schedule and the initial temperature. Keeping these parameters
constant for the test runs, we see that the performance curve for TkRSAGA tends to
be linear. The execution time is higher for smaller number of URLs and relatively
lower for larger URLs. The graph of execution time versus the number of URLs
for the algorithms TkRSAGA and HITS is shown in Figure 12.2. It shows that the
algorithm TkRSAGA works better for larger databases.

The Figure 12.3, shows the graph of execution time versus the number of initial
states and the performance curve is roughly logarithmic. As the number of initial
number of states increases by a factor x, the execution time increases by a factor of
log(2x). This is obvious since, the initial states only influence the number of itera-
tions made by GAs. After every crossover operation, exactly half the new generation
is retained for future propagation. The graph in Figure 12.4, shows the execution
time versus the desired top -k ranks. The graph is plotted for varying number of

254 12 Mining Top - k Ranked Webpages Using SA and GA

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
T

im
e

(in
 S

ec
s)

Number of URLs(in 000s)

(a) Execution time v/s No. of URLs

TkRSAGA
HITS

Fig. 12.2 The graph of execution time versus number of URLs (Number of initial states =
128)

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

E
xe

cu
tio

n
T

im
e

(in
 S

ec
s)

Number of Initial States

(a) Execution time v/s No. of Initial States

Fig. 12.3 The graph of execution time versus number of initial states (Number of URLs =
10,000); for, Annealing schedule (ρ) = 0.95, k = 4

12.3 Performance Analysis 255

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(in
 S

ec
s)

Number of URLs (in 000s)

(a) Execution time v/s No. of URLs and k

k = 2
k = 4
k = 8

Fig. 12.4 The graph of execution time versus varying number of URLs and k (Number of
initial states = 128 and Annealing schedule (ρ) = 0.95)

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100 120 140

A
cc

ur
ac

y

Number of Initial States

(b) Accuracy v/s No. of Initial States

p = 0.99
p = 0.95
p = 0.90
p = 0.85
p = 0.80

Fig. 12.5 The graph of Accuracy versus number of initial states (Number of URLs = 10,000
and k = 4);

256 12 Mining Top - k Ranked Webpages Using SA and GA

0.9

0.92

0.94

0.96

0.98

1

800 850 900 950 1000 1050 1100 1150 1200

A
cc

ur
ac

y

Initial Temperature

(a) Accuracy v/s Initial Temperature

Fig. 12.6 The graph of accuracy versus initial temperature

5

5.1

5.2

5.3

5.4

5.5

5.6

900 950 1000 1050 1100 1150 1200

E
xe

cu
tio

n
T

im
e

Initial Temperature

(b) Execution Time v/s Initial Temperature

Fig. 12.7 The graph of execution time versus initial temperature; for, (Number of initial states
= 128, Annealing schedule (ρ) = 0.95, Number of URLs = 10,000 and k = 4)

12.3 Performance Analysis 257

URLs and varying k. Since the number of iterations increases for lower values of k,
the curve is logarithmic.

Figure 12.5, shows the graph of accuracy of the retrieved top-k documents versus
varying annealing scheduling (ρ) and the initial number of states. The accuracy pa-
rameter defines the ratio of the number of top-k ranks returned by the TkRSAGA to
the desired top-k. The accuracy increases with the number of iterations. For higher
values of initial states, better results are obtained. This is because the GAs produce
the generations satisfying the fitness function. Similarly, for higher annealing sched-
ules, the accuracy increases as SA performs more number of iterations in search of
global optima.

The initial temperature T0 determines the temperature of the system as it starts
cooling. The higher the temperature, the more time it takes the system to reach the
lower equilibrium state, i.e., the algorithm performs more number of iterations and
takes longer time to reach the final k states. However, the number of iterations is di-
rectly proportional to the number of intermediate states being generated. Therefore,
more the number of intermediate states, higher the accuracy and hence generates
accurate k final states. Thus, there exists a tradeoff between execution time and ac-
curacy of results obtained, based on the initial temperature T0. Figure 12.6, depicts
the graph of initial temperature versus accuracy. Therefore, as the initial tempera-
ture increases accuracy increases, inturn increasing the execution time. Figure 12.7,
shows the linear relationship between the initial temperature and the execution time.

Experiments on real datasets: The datasets of university link files from cs.wlv.ac.uk
are used for our experiments. A set of n webpages and corresponding number of hits
are available. The number of hits is used to compute the harmonics for the objec-
tive function f(x). The output of TkRSAGA is a set of k values representing the

Table 12.1 Sample URLs taken from cs.wlv.ac.uk

URL(Um) No. of hits(Nm)

www.canberra.edu.au/UCsite.html 25482
www.canberra.edu.au/secretariat/council/minutes.html 1501
www.canberra.edu.au/Staff.html 199950
www.canberra.edu.au/Student.html 218511
www.canberra.edu.au/crs/index.html 178822
www.canberra.edu.au/uc/privacy.html 15446
www.canberra.edu.au 258862
www.canberra.edu.au/uc/convocation/index.html 16702
www.canberra.edu.au/uc/staffnotes/search.html 38475
www.canberra.edu.au/uc/search/top.html 190852
www.canberra.edu.au/uc/help/index.html 156008
www.canberra.edu.au/uc/directories/index.html 6547
www.canberra.edu.au/uc/future/body.html 25006
www.canberra.edu.au/uc/timetable/timetables.html 257899
www.canberra.edu.au/uc/hb/handbook/search.html 54962

258 12 Mining Top - k Ranked Webpages Using SA and GA

Table 12.2 The output of TkRSAGA and HITS for (T0 = 1200, No. of Initial States = 256,
(ρ) = 0.95, k = 4)

RANK TkRSAGA HITS

1 www.canberra.edu.au www.canberra.edu.au/
uc/timetable/timetables.html

2 www.canberra.edu.au/ www.canberra.edu.au
uc/timetable/timetables.html

3 www.canberra.edu.au/Student.html www.canberra.edu.au/Student.html
4 www.canberra.edu.au/Staff.html www.canberra.edu.au/Staff.html

top-k relevant webpages. These values are mapped to the URLs to obtain the ac-
tual addresses. The HITS [6] algorithm is executed on the same database and the
results of TkRSAGA and HITS algorithm are compared. The Table 12.1 shows the
list of URLs and their corresponding number of hits. Table 12.2 shows the outputs
of both TkRSAGA and HITS. The outputs of both the algorithms are same and our
algorithm TkRSAGA executes much faster than HITS algorithm. From Table 12.2,
we can conclude that TkRSAGA outperforms the HITS in execution time without
compromising with the accuracy of the results obtained.

12.4 Summary

In this chapter, we have proposed an efficient algorithm TkRSAGA, for mining top-k
ranked web documents using the combination of Simulated Annealing and Genetic
Algorithms. The ability of SA to solve harder problems and the combination of GA
to reduce the number of iterations of SA and the inherent parallelism has made the
algorithm efficient and effective.

References

1. Yao, X.: Simulated Annealing with Extended Neighbourhood. International Journal of
Computer Mathematics 40, 169–189 (1991)

2. Yao, X.: Optimization by Genetic Annealing. In: Proc. Second Australian Conference on
Neural Networks, Sydney, pp. 94–97 (1991)

3. Srinivas, M., Patnaik, L.M.: Genetic Algorithms: A Survey. IEEE Computer, 17–26 (1994)
4. Szu, H.H., Hartley, R.L.: Fast Simulated Annealing. Physics Letters A 122, 157–162

(1982)
5. Ingber, L.: Very Fast Simulated Re-Annealing. Mathl. Comput. Modelling 12(8), 967–973

(1989)
6. Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. In: Proceedings of

ACM-SIAM Symposium on Discrete Algorithms (1998)

Chapter 13
A Semantic Approach for Mining Biological
Databases

Abstract. A variety of biological databases are currently available to researchers
in the XML format. Homology-related querying on such databases presents several
challenges, as most available exhaustive mining techniques do not incorporate the
semantic relationships inherent to these data collections. This chapter identifies an
index-based approach to mining such data and explores the improvement achieved
in the quality of query results by the application of genetic algorithms. Our exper-
iments confirm the widely accepted advantages of index and vector-space based
model for biological data and specifically, show that the application of genetic algo-
rithms optimizes the search and achieves higher levels of precision and accuracy in
heterogeneous databases and faster query execution across all data collections.

13.1 Introduction

Research in molecular biology and molecular medicine has accumulated enormous
amount of data. This includes genomic sequences gathered by the human genome
project, gene expression data from micro array experiments, protein identification
and quantification data from proteomics experiments, and SNP data from high-
throughput SNP arrays, etc.. There have been perseverant attempts at generating
knowledge discovery and data mining models that are suitable to biological sys-
tems. But very few such models take into account the underlying complexity of
biological data. Exhaustive search techniques tend to treat biological data as any
other collection of terms or abstracts, while semantically inclined techniques apply
heuristic rules, tested on ordinary data. Mining biological data needs a more com-
prehensive model that aims at making such data relevant and quickly accessible to
researchers [1].

Biological databases refer to structured or non-structured collection of specimens
(DNA, cells, and tissues) or information of a genetic or proteomic nature from a va-
riety of sources - including medical and other health files, and genealogical, socioe-
conomic, and environmental information- which is stored electronically as a single
entity or as part of a larger database. Biological databases are created and managed

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 259–278.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

260 13 A Semantic Approach for Mining Biological Databases

in a constantly evolving, research-focused setting. Most large biological databases
are published and available on IP networks and on the World Wide Web in the
Extended Markup Language (XML) Format. Examples include RCSB Protein Data
Bank and the InterPro PROSITE Database of the European Bioinformatics Institute.

This chapter deals with the storage of vast amounts of information related to
three example biological databases- Protein Structure, Medical Abstracts and Car-
bohydrate Sequences and the issues related to mining necessary information from
such databases. The database of Medical Abstracts has been previously tested for
semantic index-based mining techniques. However, in our work, after having estab-
lished the semantic approach to mining, we test for the optimization achieved by the
application of genetic algorithms.

13.2 Understanding the Nature of Biological Data

XML that complements HTML promises to increase the benefits that can be derived
from the wealth of information found today on IP networks around the world. This is
because XML provides a uniform method for describing and exchanging structured
data [2]. The ability to describe structured data in an open text-based format and
deliver this data using standard HTTP protocol is significant for two reasons:

• XML facilitates more precise declarations of content and more meaningful
search results across multiple platforms.

• Secondly, once the data is located, XML enables a new generation of viewing
and manipulating the data [3].

With respect to biological databases available in electronic format, specifically in
XML, a large number of stakeholders are involved in various capacities and on many
levels: the human subjects affected by genetic research, the researchers and research
community, healthcare providers, research sponsors, regulating bodies, users of the
results, special interest groups, and the media. It becomes imperative then to al-
low these diverse and possibly naı̈ve end users to search available databases in an
efficient manner.

Consider for example a database containing listings and details of proteins. Pro-
teins are found in every cell and are essential to every biological process, protein
structure is very complex: determining a protein’s structure involves first protein
sequencing - determining the amino acid sequences of its constituent peptides; and
also determining what conformation it adopts and whether it is complexed with
any non-peptide molecules. Discovering the structures and functions of proteins in
living organisms is an important tool for understanding cellular processes, and al-
lows drugs that target specific metabolic pathways to be invented more easily. A
tremendous amount of research has already mapped, and continues to map mil-
lions of protein sequences. This information has a wide range of applications, both
academic and commercial. A snapshot of such an XML collection is shown in
Figure 13.1. The most important issue in the interpretation of such data is the
understanding the functional associations between data fields. Previously, several

13.2 Understanding the Nature of Biological Data 261

<protein>
<name> 104 kDa microneme−rhoptry antigen precursor </name>
<name> p104 </name>

</protein>
<gene> <name type = "ORF"> TAO8425 </name> </gene>

<organism key = "1">

<name type = "scientific"> Theileria annulata </name>

<dbReference type = "NCBI Taxonomy" id = "5874" key = "2" />

<lineage>
<taxon> Eukaryota </taxon>

<taxon> Alveolata </taxon>

<taxon> Apicomplexa </taxon>

<taxon> Piroplasmida </taxon>

<taxon> Theileriidae </taxon>

<taxon> Theileria </taxon>
</lineage>

</organism>

Fig. 13.1 Snippet of Protein Sequence Database

approaches have been described to extract relationships from various biological
databases using term-matching methods. However, more flexible automated meth-
ods are needed to identify functional relationships, both explicit and implicit.

Previous works have explored the utility of Latent Semantic Indexing (LSI), a
vector space model for information retrieval, to automatically identify conceptual
gene relationships from titles and abstracts [4]. Latent Semantic Analysis (LSA) is
a theory and method for extracting and representing the contextual-usage meaning
of words by statistical computations applied to a large corpus of text [5]. The un-
derlying idea is that the aggregate of all the word contexts in which the existence of
a given word provides a set of mutual constraints that largely determines the simi-
larity of meaning of words and sets of words to each other. The adequacy of LSA’s
reflection of human knowledge has been established in a variety of ways. It has been
found that LSI identifies gene-to-gene and keyword-to-gene relationships with high
average precision. In addition, LSI identified implicit gene relationships based on
word usage patterns in the gene abstract documents. Also, it has been shown that
pair-wise distances derived from the vector angles of gene abstract documents can
be effectively used to functionally group genes by hierarchical clustering. These
findings provide proof-of-principle that LSI is a robust automated method to elu-
cidate both explicit and implicit gene relationships from the biomedical literature.
These features make LSI particularly useful for the analysis of novel associations
discovered in genomic experiments.

The use of Genetic Algorithms(GA) helps in improving the precision and the
query execution time. A GA is a search technique used in computer science to find

262 13 A Semantic Approach for Mining Biological Databases

approximate solutions to optimization and search problems. Genetic algorithms are
a particular class of evolutionary algorithms that use techniques inspired by evolu-
tionary biology such as inheritance, mutation, natural selection, and recombination.
Genetic algorithms are typically implemented as a computer simulation in which
a population of abstract representations of candidate solutions to an optimization
problem evolves toward better solutions. Traditionally, solutions are represented in
binary as strings of 0s and 1s, but different encodings are also possible. The evo-
lution starts from a population of completely random individuals and happens in
generations. In each generation, the fitness of the whole population is evaluated,
multiple individuals are stochastically selected from the current population, modi-
fied to form a new population, which becomes current in the next iteration of the
algorithm.

13.3 Related Work

Ongoing research in data mining of biological databases encompass a range of
activities along a continuum, from the formative, theoretical development of new
algorithms, data structures and tools specific to the management of biological infor-
mation, through the development of new information resources to the enhancement
of established resources needed by whole communities of biological researchers.
Examples include theoretical research on data structures; new database architec-
tures more tuned to the complexity of biology; planning and prototype development
of new types of biological data- or knowledge-bases; and design of easy-to-use in-
terfaces and tools for data input, manipulation, analysis and extraction.

Some of the commercial search applications available like BIOSIS and EMBASE
use unique indexing systems that allow flexible searching over biological databases.
Other related approaches being continually explored and applied include:

• Development of new I/O scheduling techniques for accessing disk-resident bio-
logical data, using the developed tools for genome comparisons (e.g., human vs.
mouse) and shotgun assembly, and extending the above pair-wise comparison
techniques to multiple alignment of genomes.

• Building of new data models for providing seamless access to heterogeneous data
sources such as strings, structures, and pathways.

• Supporting interactive queries and efficient access to distributed datasets through
the use of prediction and statistics to identify meaningful data.

• Development of new algorithms for comparison of pathways. Use these algo-
rithms for construction of phylogenetic trees based on pathways. Develop tech-
niques for combining information about pathways with sequences and
structures. Realize the information about pathways and use these models to make
predictions.

Analysing data from biological databases often requires the consideration of data
from multiple relations rather than from one single table. Recently, approaches
are being studied that utilize multi-relational data and yet meet the efficiency re-
quirements of large-scale data mining problems. It is difficult and requires profound

13.5 Identifying Indexing Technique 263

understanding of both knowledge discovery and computational biology to identify
problems and optimization criteria which, when maximized by knowledge discovery
algorithms, actually contribute to a better understanding of biological systems. Iden-
tification of appropriate knowledge discovery problems and development of evalu-
ation methods for knowledge discovery results are ongoing efforts.

13.4 Problem Definition

Given a substantially large XML file, containing genomic or other biological data,
it is required to propose a methodology for mining information from the file in a
fast and accurate manner. Specifically, the search methodology must incorporate
semantic knowledge related to the nature of the data stored in order to produce the
required results. The problem at hand can be expressed in three steps as follows:

1. To identify a suitable method to index the data contained in the XML database -
The indexing must take into consideration the underlying relationships between
terms in the biological data.

2. To identify a search technique to query the index.
3. To test the performance of the search technique and to improve accuracy and

precision, possibly with the use of GAs.

Biological data is currently stored in the electronic medium in a plethora of different
data formats. Several technologies have been proposed to integrate data stored in
different formats, or spread across different databases. This chapter restricts itself to
biological data available in the XML format. Further, rather than the integration of
data, the performance studies are concentrated on mining for search terms within a
well-defined but difficult-to-query database.

13.5 Identifying Indexing Technique

Genomic and biological databases are most frequently queried for homology search-
ing. The size of these databases is growing exponentially, given the intensive ongo-
ing research in molecular biology. In searching such data collections, it is desirable
to use inherent semantic relations between data fields. It has been experimentally
shown that this requirement is best fulfilled by index-based approach. Moreover,
index-based searching has been proven to be computationally less expensive and
more, accurate than existing exhaustive search schemes [6].

Given that we are dealing with XML documents, we must also explore the possi-
bility of using standard term-search techniques over such data collections. However,
such techniques can at best return links to documents and not to specific fragments
thereof. This is problematic, since large XML documents may contain thousands
of elements storing many pieces of information that are not necessarily related to
each other. For example, in a pattern entry in a protein database, a date entry is as-
sociated with each of the pattern IDs registered into the database on that date but

264 13 A Semantic Approach for Mining Biological Databases

not with other pattern IDs. Actually, if a search engine simply matches the search
terms against the documents, it may return documents that do not answer the user’s
query. This occurs when distinct search terms are matched to unrelated parts of an
XML document as is likely in a database that contains such information as pro-
tein patterns. The problem arises since the document is treated as an integral unit.
Since a reference to a whole XML document is usually not a useful answer, the
granularity of the search should be refined. Instead of returning entire documents,
an XML search engine should return fragments of XML documents. It is not pos-
sible to present queries that explicitly refer to XML tags. Hence, it is difficult, and
sometimes even impossible to formulate a search query that incorporates semantic
knowledge in a clear and precise way [7,8].

It becomes imperative therefore, to identify an indexing technique that not only
overcomes the drawback of simplistic XML indexing schemes but also satisfies the
current requirement of a scheme that recognizes heuristic rules in biological data
collections. Essentially, various search engines vary with regard to the indexing
methodology they use to create and maintain a repository of documents and the
search algorithm they employ to generate a response to a query. The repository
maintained is implicitly an estimation of the size of the solution space itself. Thus
the index of a large database can itself be large enough to adversely affect the per-
formance of the search algorithm, given the main memory constraints [9].

It is widely accepted that vector-space approaches to data mining enables the user
to search for concepts rather than specific terms and rank the results of the search
according to their relative match to the original query. There are several vector-space
approaches currently in use in various commercial and non-commercial search en-
gines. LSI is one such vector-space approach. Experiments have shown that this
technique can achieve up to 30% better retrieval performance than lexical searching
techniques by employing a reduced-rank model of the term-document space. The
vector-space approach represents the information items and the query as vectors,
and it commonly uses the angle between the information item vectors and the query
vector to determine their similarity [10].

LSI has been widely documented as an advanced vector-space based approach.
According to Letsche and Berry, the LSI information retrieval model builds upon
the prior research in information retrieval and, using the Singular Value Decompo-
sition (SVD) to reduce the dimensions of the term-document space. LSI explicitly
represents terms and documents in a rich, high-dimensional space, allowing the un-
derlying semantic relationships between terms and documents to be exploited during
searching. LSI relies on the constituent terms of a document to suggest the docu-
ment’s semantic content. However, the LSI model views the terms in a document
as somewhat unreliable indicators of the concepts contained in the document. It as-
sumes that the variability of word choice partially obscures the semantic structure of
the document. By reducing the dimensionality of the term-document space, the un-
derlying, semantic relationships between documents are revealed, and much of the
noise like differences in word usage, terms that do not help distinguish documents,
etc., is eliminated. LSI statistically analyses the patterns of word usage across the
entire document collection, placing documents with similar word usage patterns

13.6 LSI Model 265

near each other in the term-document space, and allowing semantically related doc-
uments to be near each other even though they may not share terms [11].

The application of this approach to biological data sets appears intuitively appo-
site. Given the nature of querying on such data sets, an approach that statistically
analyses usage patterns and relies on semantic relations is likely to aid the search
process.

13.6 LSI Model

In the LSI model, terms and documents are represented by an m by n incidence
matrix A. Each of the m unique terms in the document collection are assigned a row
in the matrix, while each of the n documents in the collection is assigned a column
in the matrix [4]. A non-zero element ai j, where A = [ai j], indicates term i occurs in
document j, and also the number of times the term appears in that document. Since
the number of terms in a given document is typically far less than the number of
terms in the entire document collection, A is usually very sparse.

LSI typically uses both a local and global weighting scheme to increase or de-
crease the relative importance of terms within documents and across the entire
document collection, respectively. The product of the local and global weighting
functions is applied to each non-zero element of A is given by ai j = L(i j) * C(i),
where Li j is the local weighting function for term i in document j and C(i) is the
global weighting function for term i.

Once the m by n matrix A has been created and properly weighted, a rank-k ap-
proximation to A, where, k << min(m,n) , is computed using SVD. The SVD of the
matrix A is defined as the product of three matrices, A=U∑V T , where the columns
of U and V are the left and right singular vectors, respectively, corresponding to
the monotonically decreasing in value diagonal elements of ∑ which are called the
singular values of the matrix A. The first k columns of the U and V matrices and the
first (largest) k singular values of A are used to construct a rank-k approximation to
A via the above product definition. The columns of U and V are orthogonal, such
that, UTU = V TV = Ir, where r is the rank of the matrix A. A theorem due to Eckart
and Young suggests that Ak, constructed from the k-largest singular triplets of A is
the closest rank-k approximation to A.

In the LSI model, queries are formed into pseudo-documents that specify the lo-
cation of the query in the reduced term-document space. Given q, a vector whose
non-zero elements contain the weighted term-frequency counts of the terms that ap-
pear in the query, the pseudo-document, q∗ can be represented by q∗ = qT Uk ∑−1

k .
Thus, the pseudo-document consists of the sum of the term vectors (qTUk) corre-
sponding to the terms specified in the query scaled by the inverse of the singular
values (∑−1

k). The singular values are used to individually weight each dimension
of the term-document space.

Once the query is projected into the term-document space, one of several simi-
larity measures can be applied to compare the position of the pseudo-document to
the positions of the terms or documents in the reduced term-document space. One
popular similarity measure, the cosine similarity measure, is often used because, by

266 13 A Semantic Approach for Mining Biological Databases

only finding the angle between the pseudo-document and the terms or documents in
the reduced space, the lengths of the documents, which can affect the distance be-
tween the pseudo-document and the documents in the space, are normalized. Once
the similarities between the pseudo-document and all the terms and documents in
the space have been computed, the terms or documents are ranked according to the
results of the similarity measure, and the highest-ranking terms or documents, or all
the terms and documents exceeding some threshold value, are returned to the user
[12,13].

13.7 Search Optimization Using GAs

The genetic algorithm involves three basic types of operators: selection, crossover
and mutation. Selection operator selects chromosomes in the population for repro-
duction. The better the chromosomes, more often are they likely to be selected to
reproduce. Crossover operator randomly chooses a locus and exchanges the sub-
sequences before and after that locus between two chromosomes to create two off-
spring. For example, the strings 10000100 and 11111111 could be crossed over after
the third locus in each to produce the two offspring 10011111 and 11100100. The
crossover operator roughly mimics biological recombination between two single
chromosome (haploid) organisms. Finally, Mutation operator randomly flips some
of the bits in a chromosome. For example, the string 00000100 might be mutated in
its second position to yield 01000100. Mutation can occur at each bit position in a
string with some probability, usually very small (e.g., 0.001). The general process
of GAs is given below.

1. Randomly select initial population of term documents in the term-document
space.

2. Evaluate the fitness function for each of the term documents in the population.
3. Generate a mating pool from the population where the probability that a term-

document is selected is proportional to its fitness.
4. Randomly select a number of points for mating (crossover) and mutation.
5. Carry out these operations deleting the original term documents on which they

are performed to form a new generation.
6. Stop if the termination criterion has been satisfied and adopt the fittest term-

document as the solution. Otherwise goto step (2).

Problem Formulation: There are two basic steps to representing a problem so a GA
can be applied.

(i) Encoding Solutions: Encode the solution space as strings of a fixed length over
some fixed alphabet.
(ii) Fitness Function: Determine a suitable function that takes a string as input and
returns a number that is a measure of that solution’s performance in solving the
problem. The definition of a chromosome is represented as:

J = (j1, j2, ..., ji, ..., jL)

13.8 Proposed Algorithm 267

Where ji denotes the weight of the tag i and L is the number of tags to be considered.
Each gene represents a tag weight. The genes of initial chromosomes are generated
randomly and the range of weight values is from 0.0 to 8.0 for experiments. The
fitness function used is given by:

Fitness = α (p) + (1- α)R

where precision p is defined as the proportion of retrieved documents that are rele-
vant. Recall R is defined as the proportion of relevant documents that are retrieved.
The selection operator used is stochastic universal sampling. Intermediate recombi-
nation is used in producing new phenotypes around and between the values of the
parents’ phenotypes. Offspring are produced according to the rule

O1 = P1*α (P2 −P1)

where P1 and P2 represent parent populations. A real valued mutation is also applied.
A mutation rate of 1/n (n :number of individuals per individual) means that per mu-
tation only one variable per individual is changed, making the mutation independent
of the size of the population.

13.8 Proposed Algorithm

The proposed methodology for mining over the test databases can now be summa-
rized as follows. Given a large biological data collection, stored in the XML format,
we,

• Apply LSI to the data to obtain a term-document incidence matrix A and conse-
quently assign rank-k approximation to the matrix A [14, 15].

• We then feed the query vector q to the term-document space, to retrieve the
pseudo-document that consists of the sum of the term vectors corresponding to
the terms specified in the query scaled by the inverse of the singular value.

• Next, a similarity measure is applied to compare the position of the pseudo-
document to the positions of the terms or documents in the reduced term-
document space. Once the similarities between the pseudo-document and all the
terms and documents in the space have been computed, the terms or documents
are ranked according to the results of the similarity measure.

• We then execute the GA over the reduced term-document space and the highest-
ranking terms or documents, or all the terms and documents exceeding some
threshold value, are returned to the user.

The overview of the system is given below.

1. Let τ1, τ2, ... τn represent the XML document trees of the documents with iden-
tification numbers (1, 2, 3, ... n), where n is the number of documents.

2. Applying LSI, terms and documents are represented by an m by n incidence
matrix A. Each of the m unique terms in the document collection are assigned a
row in the matrix, while each of the n documents in the collection is assigned a
column in the matrix.

268 13 A Semantic Approach for Mining Biological Databases

3. Once the mXn matrix A has been created and properly weighed, a rank - k ap-
proximation to A, where, k << min(m,n), is computed using SVD.

4. The query vector q is projected into the term-document space, and cosine simi-
larity measure is applied to compare the position of the pseudo-document to the
positions of the terms or documents in the reduced term-document space.

5. Next, to apply modified GA, each document vector is encoded as a chromosome:

J = (j1, jw, ... ji, ... jL)

where ji denotes the weight of tag i and L is the number of tags to be considered.
The simplified fitness function used is given by

Fitness = α(p)+ (1−α)R

where precision P is defined as the proportion of retrieved documents that are
relevant.

6. GA is then applied and the gain in accuracy and query execution time is computed.

13.9 Performance Analysis

The experiments are carried out on a Pentium V, running the Windows XP Operat-
ing System. Matlab6.5 is used as the programming environment. The Algorithm is
executed on three sample databases:

1. The UniProt Swiss Protein XML Database, a manually annotated protein knowl-
edgebase established in 1986 and maintained since 2003 by the UniProt Con-
sortium, a collaboration between the Swiss Institute of Bioinformatics (SIB) and
the Department of Bioinformatics and Structural Biology of the Geneva Univer-
sity, the European Bioinformatics Institute (EBI) and the Georgetown Univer-
sity Medical Center’s Protein Information Resource (PIR). The database contains
function(s) of the protein, post-translational modifications, secondary structure,
quaternary structure etc.. The terms contained in the database are manually pro-
cessed into term matrices, assigned with singular values.

2. Similarly, the Medical Abstracts Database of MEDLARS, used in several previ-
ous works related to LSI. These abstracts are related to journal entries on neonatal
medicine.

3. The Cabos Carbohydrate Sequence Database is defined in the Carbohydrate
Markup Language, similar to XML. It contains XML descriptions of carbohy-
drate types and structures[16].

The term list for each is created with each term assigned with an SVD value. Each
Matrix file is based on the Harwell-Boeing (compressed column) sparse matrix for-
mat. Each record in a Term List file contains the term, its id, and its global weight
based on a Log-Entropy weighting scheme.

Figure 13.2 is a snapshot of a two-dimensional plot of the nonzero elements of
the upper left corner of the term-by-document matrix of the non-zero elements of
the term-by-document matrix UniProt. A non-zero element represented by a dot

13.9 Performance Analysis 269

Fig. 13.2 Term by Term Document Matrix for UniProt

Fig. 13.3 A Plot of Value of a 3 word query q against its index

270 13 A Semantic Approach for Mining Biological Databases

Fig. 13.4 Plot to Analyse Relevance of Results against Query

Fig. 13.5 Term by Document matrix MED

13.9 Performance Analysis 271

Fig. 13.6 A Plot of value of a 2 word query q against its index

Fig. 13.7 Plot to Analyse Relevance of Results against Query

272 13 A Semantic Approach for Mining Biological Databases

Fig. 13.8 Non Zero elements of the matrix Cabos

Fig. 13.9 A Plot of value of a 4 word query q against its index

13.9 Performance Analysis 273

Fig. 13.10 Plot to analyse Relevance of Results against Query

indicates not only that term i occurs in document j, but also the number of times the
term appears in that document. While such plot of a very large term-by-document
matrix would be sparse i.e., contain many zero elements, the same is not true of any
of the three relatively small matrices under observation.

A three word query q is posed on the Matrix, say “constituents of glycine”. The
plot of the query q is shown below, displaying the nonzero elements of the query
vector q. The x-axis represents the index of the document vector while the y-axis
represents the value of the vector at that index. For example, a spike at x =500 with
y = 1 means that the 500th element of the document vector is 1. Figure 13.3 depicts
the similar situation.

Using a truncation point for the SVD, we mine n most relevant document vectors
for query q. This involves the application of the cosine similarity measure. The
retrieved document vectors are then sorted by their angle measure. The plot for
the most relevant document vector, along with the plot for query q is as shown in
Figure 13.4. Each spike represents the location of a member of the document vector.
It may be observed from comparison with the query plot that the plot of the most
relevant result has the closest similarity to the plot of the original query.

In Figure 13.5, similarly, is a snapshot of the non-zero elements of the term-
by-document matrix MED. A non-zero element represented by a dot indicates that
term i occurs in document j, and also the number of times the term appears in that
document. A 2 word query “muscular atrophy” is posed on the Matrix. The plot

274 13 A Semantic Approach for Mining Biological Databases

of the query vector is shown in Figure 13.6. The most relevant document vectors
retrieved are plotted along with the original query vector in Figure 13.7.

Figure 13.8 shows the non-zero elements of the matrix Cabos. A 4 word query
multiple glucose monosaccharide polymer is fed into the term-document space. The
plot of the weighted query vector is shown in Figure 13.9. The plot of the most
relevant results is shown along with the original query vector in Figure 13.10. The
significance of the LSI technique is that the document vectors retrieved in each case,
are not exact term matches but rather, those vectors which are similar to the query
vector.

The results of the search experiments comprehensively prove that the application
of latent semantic indexing to term-relation identification in biological data paves
the way to the construction of a suitable mining system for such datasets. The LSI
engine provides accurate results in terms of term relevance. More importantly, the
results show that the LSI model does away with the exhaustive approach of finding
approximation between a database and a query and instead eliminates mismatched
queries by improved indexing.

The second part of our performance studies is to compare the performance of the
system on the basis of selected queries with and without the application of the ge-
netic algorithm. In this section we capture the performance results of the proposed
search technique. The experiments are conducted wholly in the Matlab Environ-
ment. The functions of the GA Toolbox are used to apply the GA and indexing and
storage is carried out with the help of functions defined by the Geodise Lab XML
Toolbox.

Query Execution Time: The query execution time is the single major factor, which
controls the efficiency of a search engine [5]. In the context of XML documents it
is more relevant due to large corpus size. Single term queries are faster than queries
involving more than one term. This is an aspect of relevance since the nature of
searches over such databases usually constitute single or two term queries as op-
posed to searches over non-biological databases. Also the query execution time for
the first search tends to be high. For the subsequent searches, the query execution
time shows considerable improvements. This is again relevant as for the first search;
the index is not yet loaded into the main memory. This finding is encouraging to the
proposal to apply GAs to partition stored indices in order to negate the constraint
that main memory imposes on the use of the more straightforward, large single in-
dices. The graphs in Figures 13.11 to 13.13 shows the estimated query execution
time for each of the three databases before and after the application of GA.

Thus we find that the application of GA facilitates a significant gain in execution
time. The results are plotted in the graphs below. In each graph, the execution time
is plotted in ms for a query of a particular length before and after the application
of GA. The x-axis denoted the ‘number of terms’ or the number of keywords in the
query. Tests are carried out for single-word queries, 2, 3 and 4 and 5 word queries.

Accuracy of the Search Results: A good search technique should retrieve the re-
sults that are relevant to its users. At the same time, the number of irrelevant results

13.9 Performance Analysis 275

 40

 50

 60

 70

 80

 90

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(i
n
 m

s)

Number of Terms in Query

Before GA
After GA

Fig. 13.11 Execution Time versus Number of Terms in Query for UniProt Database

 40

 60

 80

 100

 120

 140

 160

 180

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(i
n
 m

s)

Number of Terms in Query

Before GA
After GA

Fig. 13.12 Execution Time versus Number of Terms in Query for MED Database

276 13 A Semantic Approach for Mining Biological Databases

 30

 40

 50

 60

 70

 80

 90

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(i
n
 m

s)

Number of Terms in Query

Before GA
After GA

Fig. 13.13 Execution Time versus Number of Terms in Query for Cabos Database

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

o
n

Number of Keywords

Before GA
After GA

Fig. 13.14 Precision versus Number of Keywords

References 277

must be reduced. A measure of the accuracy of a search engine is its precision val-
ues. The precision is defined as:

Precision =
Number o f retrieved and relevant results

Total number o f retrieved results

The precision metric is a measure of the user utility of the search results. If the
search engine has high precision, the results are highly useful to the users and vice
versa.

The precision values before and after applying of Genetic Algorithms to the
UniProt database are shown in Figure 13.14. In the case of the Medical Abstract
Database and the Cabos databases, it is observed that the precision of results ob-
tained before and after the application of GA is near identical. This may be ex-
plained by the nature of these two databases, i.e., there exist more obvious semantic
relationships than in the case of the protein database. For the protein database, on
the other hand, we find that the terms in the data collection are diverse to a greater
extent. We may then conclude that the gain in precision with the use of GA is best
displayed in highly heterogenous databases.

13.10 Summary

This chapter proposes the application of semantic retrieval of information as an
apposite technique for data mining over biological databases. It demonstrates the
technique over a sample databases and shows that the application of GAs can sig-
nificantly increase the accuracy of search results. The framework suggested can be
further experimented with and applied to a wide range of biological data, and par-
ticularly to data collections of larger volumes, to test for the adaptability of the
approach.

References

1. Singh, A.K.: Querying and Mining Biological Databases. Journal of Interactive Biol-
ogy 7(1), 7–8 (2003)

2. Luk, R., et al.: A Survey of Search Engines for XML Documents. In: SIGIR Workshop
on XML and IR (2000)

3. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine for
XML. In: VLDB, pp. 45–56 (2003)

4. Letsche, T.A., Berry, M.W.: Large-Scale Information Retrieval with Latent Semantic
Indexing. Information Sciences - Applications 100, 105–137 (1997)

5. Landauer, T.K., Dumais, S.T.: A Solution to Plato’s problem: the Latent Semantic Anal-
ysis Theory of Acquisition, Induction and Representation of Knowledge. Psychological
Review 104(2), 211–240 (1997)

6. Williams, H.E., Zobel, J.: Indexing and Retrieval for Genomic Databases. IEEE Trans-
actions on Knowledge and Data Engineering 14(1) (January/February 2002)

7. Hammouda, K.M., Kamel, M.S.: Efficient Phrase-Based Document Indexing for Web
Document Clustering. IEEE Transactions on Knowledge and Data Engineering 16(10),
1279–1296 (2004)

278 13 A Semantic Approach for Mining Biological Databases

8. Bellettini, C., Marchetto, A., Trentini, A.: An Approach to Concerns and Aspects Mining
for Web Applications. International Journal of Information Technology (IJIT) (2005)

9. Guo, L., et al.: XRANK: Ranked Keyword search over XML Documents. In: SIGMOD
2003 (2003)

10. Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing
by Latent Semantic Analysis. Journal of the American Society of Information Science
(1990)

11. Caid, W.R., Dumais, S.T., Gallant, S.I.: Learned Vector Space Models for Information
Retrieval. Journal of Information Processing and Management (1995)

12. Berry, M., Dumais, S., O’Brien, G.: Using Linear Algebra for Intelligent Information
Retrieval. SIAM Review 37(4), 573–595 (1995)

13. Cooper, R., et al.: Indexing Genomic Databases. In: Fourth IEEE Symposium on Bioin-
formatics and Bioengineering (2005)

14. Golub, G., Van Loan, C.: Matrix Computations, 2nd edn. Johns-Hopkins (1989)
15. Foltz, P.: Using Latent Semantic Indexing for Information Filtering. In: Proceedings of

the ACM Conference on Office Information Systems (COIS), pp. 40-47 (1990)
16. Kikuchi, N., Kameyama, A., et al.: The Carbohydrate Sequence Markup Language (Ca-

bosML): an XML Description of Carbohydrate Structures, Bioinformatics 21(8), 1717–
1718 (2005)

Chapter 14
Probabilistic Approach for DNA Compression

Abstract. Rapid advancements in research in the field of DNA sequence discov-
ery has led to a vast range of compression algorithms. The number of bits required
for storing four bases of any DNA sequence is two, but efficient algorithms have
pushed this limit lower. With the constant decrease in prices of memory and com-
munication channel bandwidth, one often doubts the need of such compression al-
gorithms. The algorithm discussed in this chapter compresses the DNA sequence,
and also allows one to generate finite length sequences, which can be used to find
approximate pattern matches. DNA sequences are mainly of two types, Repetitive
and Non-Repetitive. The compression technique used is meant for the non-repetitive
parts of the sequence, where we make use of the fact that a DNA sequence consists
of only 4 characters. The algorithm achieves bit/base ratio of 1.3-1.4(dependent on
the database), but more importantly one of the stages of the algorithm can be used
for efficient discovery of approximate patterns.

14.1 Introduction

The realization of the fact that the DNA is the prime genetic molecule, which car-
ries the hereditary information in its chromosomes, focused attention on its struc-
ture. The late 1940s and 1950s saw a huge amount of research in this field when
the structure of the DNA is analyzed. Researchers wanted to find out how the chro-
mosomes replicated themselves to form two identical copies and how they carried
genetic information. The discovery of the double helix is a path breaking revelation,
when researchers expressed the structure as a three dimensional, helical form, where
the difference between two genes is in the order and number of 4 nucleotide build-
ing blocks along complementary strands. Extensive research has shown that though
the genetic structure remains to be the same, there is a lot of variation in the DNA
of one organism to the other. For instance, the chromosomes of small viruses have
single stranded DNA, instead of the usual double stranded molecules. The right-
handedness in the twisting of the helix is also replaced by a left-handed twist in
some organisms. The shape of the DNA molecules varies from linear to circular and
from mono-coiled to super-coiled.

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 279–289.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

280 14 Probabilistic Approach for DNA Compression

The evolution of such a huge plethora of DNA sequences have led to Bio-
informatics scientists developing algorithms and methods to compress and store
the sequences. The final goal though is not only in compressing the sequences but
identifying the properties and patterns from the compressed sequences, saving us
the overhead of decompressing the sequence. The four bases found in a genomic
sequence are:

• Adenine — A
• Cytosine — C
• Guanine — G
• Thymine — T

A Genomic sequence in a programming-sense is a string of A,C,T,Gs of an ap-
proximate length of 3 billion. A genomic sequence can be identified using various
properties it possesses. Repetition is a very important property, which is exploited
in compression [1]. Sequences can be classified as highly repetitive (tandem re-
peats), moderately repetitive (interspersed repeats) and single copy (no repeats).
Other properties include approximate matches, palindromes and reverse matches.
A string that has a four-character alphabet requires 2 bits per base for storage. The
bit/base ratio has been lowered to 1.76 - 1.5 [2], with the use of intelligent algo-
rithms, which uses the redundancies in a genomic sequence to compress but also
help in motif discovery. This concept brings down the bit/base ratio to around 1.4
and also generates subsequences, which can be used to find approximate matches.
Scientists have often relied on statistical analysis to relate to identification of the
various properties in a DNA sequence. The probability modeling approach has been
used as an initial step to approximate the ratio of the four bases in the sequence. This
is an important step as it indicates to the algorithm, what it should expect as it moves
ahead in the various passes in the step-wise compression algorithm. The algorithm
presents a compression model and also exposes its potential in Motif Discovery.

The very first algorithm for DNA sequence compression is that of Grumbach
and Tahi [2] [3], called BioCompress, is mainly aimed at Nucleic Acid sequences.
It used a basic Lempel Ziv [5] [6] style substitution algorithm that detected exact
matches and complementary palindromes. A complementary palindrome is that in
which, the reverse of a particular subsequence, along with the complementary base
interchanges, is an exact match of the original subsequence. Such kind of redun-
dancy is quite frequent in DNA sequences and is often subjected to high compres-
sion. The updated version of the first algorithm is called Bio-Compress-2. The only
major difference is that, this algorithm could detect regions where redundancy is
absent and applied Arithmetic Coding of order 2 in these areas.

An efficient encoding scheme, Cfact is brought forward by Rivals. It had a two-
pass technique, where the first pass, is used to detect exact repeats, and the sec-
ond pass is used to encode the repeats. Regions with no repeats are coded at two
bits per base. Though the encoding scheme is useful, the algorithm, which used
this scheme, did lossy compression [7], which is of little use for DNA sequences.
GenCompress [1] [9] [10] developed by Chen, had a better performance than its
previous algorithms, Cfact and BioCompress-2 [3]. The algorithm created a Suffix

14.2 Probability Model 281

Tree in the first pass, and the encoding is done in the second pass. The algorithm
looked for optimal prefixes at every step, and gave a guaranteed gain in the bits/base
ratio. If no gain is achievable, it used 2 bits/base. There are two variants of this
algorithm, namely, GenCompress-1 that used hamming distances for the repeats,
while GenCompress-2 used Edition Distance (Insertion, Deletion, Substitution) at
each step. CTW+LZ [2] algorithm came about as a very efficient compression algo-
rithm, but it has very slow execution time. Developed by Matsumoto, this algorithm
uses CTW (Context Tree Weighting) method and local heuristics for resolving the
Greedy Selection Problem. Though this algorithm is not practically used because of
the high time consumption, Lempel-Ziv algorithms have formed the crux of most
Gene Compression algorithms. DNACompress [11] developed by Chen, is a 2-phase
algorithm, which used the Lempel-Ziv algorithm for compression. In the 1st phase,
special software called PatternHunter [12] is used to find the exact repeats and the
complimentary palindromes. The matches are sorted in descending order of size or
some gain function. The second phase is finding non-repeating regions and approxi-
mately repeating regions. PatternHunter uses strings for non consecutive systems as
a seed for search. The algorithm had a good execution time, and is popular.

A departure from the Lempel-Ziv method is the use of Normalized Maximum
Likelihood. NMLComp developed by Tabus, encoded the NML Model for dis-
crete regression. The algorithm is suitable for encoding approximate block matches,
based on replacement operations. The algorithm has a low complexity level and
is quite light in terms of computational requirements. The Sequitur used Digram
Uniqueness and Rule Utility. Digram Uniqueness says no pair of adjacent symbols
appear more than once in the grammar, while Rule Utility says that each rule is
used at east twice (except for the start rule). The DNASequitur is an improvement
on the previous Grammar-based compression algorithm, and it used Reverse Com-
pliments. The usual approach used by most algorithms is to find exact repeats and
approximate repeats. The largest subset of compatible repeats is generated and en-
coded using algorithm-specific methods. Our algorithm is a departure from the usual
first step of searching. It uses three step encoding process, to compress the whole
sequence. The advantage in not using repeats is that the sequence is compressed
irrespective of whether the sequence has redundancy or not. The first step in our
algorithm Gene-Compressor is a calculating the probability of the bases, followed
by Huffman coding them. The second step encodes the sequence further using a
transformation that aims at grouping the repetitions in the sequence. The DNA se-
quence is decompressed in the future for analysis and use; hence the transformation
has been designed with an Inverse Transformation process in mind. The third step
uses the localized repetition property that is present in the encoded sequence and
uses a slightly modified version of Run Length Encoding [13] [14] [15] [16].

14.2 Probability Model

In this section, we present a model which is used to calculate the probability of
A, C, T and G in the sequence. Calculating the probability is the first step in the
algorithm, as the probability values of the 4 bases are used to encode the sequence

282 14 Probabilistic Approach for DNA Compression

Fig. 14.1 Variation of accuracy of probability model with changing Sample Length ’R’

Fig. 14.2 Variation of accuracy with changing Sample length ’R’

14.2 Probability Model 283

in a Huffman Code manner. As the length of the sequences is of the order of billions,
we cannot do a full sequential scan of the sequence. This brings to light the need
of a probability model, which can be used to calculate the occurrences of the bases.
The steps for finding the probability are given below.

1. Let the length of the sequence be L. Using statistical methods, generate N such
that 1 < N < (L/10). N′ denotes the partition length to be considered. The value
of N′ should be restricted to L/10 as we want to calculate using a minimum of
10 samples.

2. Generate another number, R′ such that 1 < R < N. R′ denotes the sample size of
each sample.

3. Partition the sequence into groups of N bases. Let the groups be called G1,G2,G3

... Gi ... GN .
4. A sample of each partition of length R can be selected in (N − (R− 1)) ways.

The sample is selected using a Rand() function with seed value equal to system
time (which assures uniqueness). The Rand() function chooses any one of the
Samples. The length of the sample R′ affects the accuracy of the Probability
Model. The graph (As shown in Figure 14.1) displays values corresponding to
partition size of 2000.

5. The probability of the four bases is calculated in these samples of R. Let the
probability be defined as
(PG1A,PG1C,PG1T ,PG1G) for the 1st group
(PG2A,PG2C,PG2T ,PG2G) for the 2nd group
(PG3A,PG3C,PG3T ,PG3G) for the 3rd group
...
...
...
(PGiA,PGiC,PGiT ,PGiG) for the ith group

6. The groups are classified into three types according to the conditions given below:

• Condition 1: Let the difference between all pairs (PGiX ,PGiY) where X ,Y =
A,C,T,G and X! = Y be equal to D. ′i′ signifies the group number. Condition
1 state that all values of D should be less than 0.05. This condition signifies
No Base Dominance, a condition where the probability of occurrence of all
bases tends to 0.25 and they have equal share in the sequence. This group is
assigned a weight of 5.

• Condition 2: The probability of any two of the four bases PGiX , where
X = A,C,T,G should be greater than 0.4. Condition 2 signifies Two Base
Dominance, a situation in which where two complementary bases dominate
the sequence. This group is assigned a weight of 3.

• Condition 3: The probability of any 1 of the bases PGiX , where X = A,C,T,G
should be greater than 0.8.

• Condition 4: signifies Single Base Dominance, a situation where one base
dominates the sequence. In the absence of a complementary pair, the base
forms Hydrogen Bonds to attain stability. This group is assigned a weight 2.

284 14 Probabilistic Approach for DNA Compression

7. Multiply the probability of each base in a group with the corresponding multiplier
of that group, i.e., (PGiX ∗Wi) where X = A,C,T,G and i′ denotes the group
number.

8. To find the probability of a particular base X , Px = (Σ(PGix ∗Wi))/ΣWi, where
X = A,C,T,G

The group length is selected as 1000 and the subsequence in that group is of length
100. This gives a reliability co-efficient of 0.1. These values are not standardized
and can be manipulated according to the reliability of statistical analysis required.
The reliability coefficient with changing values of R′ and constant N′ = 2000(As
shown in Figure 14.2).

14.3 Algorithm

Problem Definition: Given a genomic sequence, the objectives are: (i) Compress
the sequence so as to obtain an effective bit/base ratio. (ii) Generate subsequences,
which can be used for Pattern Matching.

Assumptions: The probability of each base calculated using the above probability
model described in section 3, tends to the actual probability in the sequence. We cal-
culate the probability of each base and then apply Huffman coding to the Sequence.
Huffman Coding helps us convert the file into 0s and 1s, the basic requirement, if
we want to bring down the bit/base ratio from 2 to 1.4. Algorithm for Huffman tree
creation is given below.

1. Let the base probability values be leaf nodes or independent sub-trees.
2. Sort the sub-trees according to their values.
3. Combine the sub-trees with two lower-most values by a root node.
4. Eliminate the two sub-trees chosen from the list and insert the new sub-tree.
5. Repeat Steps 2 to 5 till we obtain a single Sub-tree.
6. Mark all the left edges as zero and all the right edges as one.
7. The path from the root to a particular base is the Huffman Code for the corre-

sponding base.

The new file is approximately double the size of the original sequence, but it brings
the alphabet size down to 2.

Algorithm PacketGen: Used to generate intermediate packets.

• The sequence is broken down into packets of length p′.
• All p′ length rotations of each packet P is generated.
• The last base of each rotation is extracted and put in another packet P′.
• This packet is interposed into the sequence in place of Packet P.

Using the PacketGen algorithm, the sequence is then broken down into packets of
length p′. The value of p′ is an important tradeoff and deserves discussion. The
various values of p′ and its effect on the algorithm are discussed in section 5. For

14.4 Optimization of P′ 285

the time being, we assume that a p′ value of eight is optimal and hence used. The
packets Pi are stored in a buffer, along with all its p′ length rotations. The rotations
of a particular packet can be used in any motif discovery algorithm, which searches
for approximate repeats.

Once all the rotations are generated, we take the last character of each rotation
and form a new p′ length packet, P′

i . This packet is put instead of the original packet.
The new packet, P′

i , has two very important properties which are exploited. P′
i has

very high localized repetitions, because it has been constructed from a sorted order
of strings. This property can be used to compress the packet, but the main question
is how do we get back the original packet P′

i . The method used above to encode a
packet using its rotations can be reversed to get back the original packet. This is
done by a series of sorting operations.

Algorithm Gene-Compressor
Input: Genomic Sequence G
Output: Compressed Sequence GC

1. Calculate the probability of each base in the sequence using the probability.
2. Calculate encryption codes according to the probability to Huffman’s coding

algorithm.
3. Encrypt the input file G by replacing each of the bases by their corresponding

Huffman Codes.
4. The new file G′ consists only of 0′s and 1′s and Length(G′) = 2 ∗Length(G),

approximately.
5. The sequence in G′ is broken into small packets, Pi of length ′p′.
6. Each packet Pi is put in a buffer B and all p rotations of the buffer are generated

and sorted in ascending order.
7. The last character of each rotation is extracted and a string P′

i is made out of it.
8. The packet Pi is replaced by P′

i in the file G′.
9. The file G′ now consists of packets which have a high percentage of repetitions

of 0′s and 1′s.
10. Using this to our benefit, let us do run length encoding of consecutive repetitions

of four and five bases only.
11. Store the run-length encoded sequence in a file called Gc, which is the output

file.

Once we generate the encoded sequence, we apply a modified version of run-length
encoding, where only 4 and 5 length repetitions are encoded. This has two reasons.
First, we cannot increase the number of alphabets used in the final compression. It
has to remain at 4. Hence we just add two more characters, 4 and 5, along with the
characters 0 and 1. Additionally, a close observation has showed that the frequency
of localized rotations occurs rarely.

14.4 Optimization of P′

The value of p′, or the length of the packets can vary from two, three, four to around
sixteen. With increase in the value of p′, the buffer length increases meaning we

286 14 Probabilistic Approach for DNA Compression

can generate motifs of a larger length. But on the other hand, using large value of
p′ increases the overhead of sorting and generating full-length rotations. Using very
low values of p′ means that the repetitions are of length two to three, which does not
give any compression sense when we apply run length encoding. The algorithm is
tested with p′ values of four, six, eight and it is found that eight is the most optimal
value for compression.

At p = 8, the buffer length to be sorted is not too high, and also it gives repetitions
of length 4 to 5, which is the ideal for the modified run length encoding process that
is used in this algorithm. At p = 4, the repeat sequences is of length 2, which did not
provide any decrease in the bit/base ratio, when encoded using run-length encoding.
At p = 6, the buffer length is too less for later use in motif discovery.

14.5 An Example

Let a sequence of length 250 bases be:
atattccgtttaattgcagatagtgtatcgccgggatcaacccctttgggagatatgcattcctagttgcagtactgatcgag
cggggcttcccttacgaatggtttagcgagaatcgggaccgagggctatattgcgacaaatcagcgccgagtctgcagc
tacctaaacgcatagatgtatactgataggcgtatgcagactcgccccttgccaaagattgcaaacgtagcccaaagatg
agagctcg

Calculating the probabilities using statistical measures and the probability model
given in section 3: PA : 66/250 = 0.264, PC : 59/250 = 0.236, PT : 60/250 = 0.24,
PG : 65/250 = 0.26.

Taking the example of the first few bases: “atattccgttta...”, The subsequence is
Huffman coded as: “011101111110100011111101” and According to Figure 14.3,
dividing into packets of Length p′ = 8, Packet 1: 01110111, Packet 2: 11101000
and Packet 3: 11111101. Generating all p length rotations for Packet I, we get,

Random Order Sorted Order
10111011 01110111
11011101 01110111
11101110 10111011
01110111 10111011
10111011 11011101
11011101 11011101
11101110 11101110
01110111 11101110

Extracting the last character from the Buffer, we get the transformed packets,
Packet 1 : 11111100, Packet 2: 10100110 and Similarly Packet 3: 11111110. Ap-
plying modified Run-length encoding to the packets we obtain: Packet 1 : 51100,

14.6 Performance Analysis 287

Packet 2 : 10100110 and Packet 3 : 51110. Applying the algorithm to the sequence
of 250 bases we get:

51100101001101110111011001010101001101100110010011015040101101101111
40100011101140101100101051110110011101115051010100011101015010001000
11110010110110101001101010510101501011011015000101501000110051110101
50101110001115010001000110110101115051000410010110010101010011051100
10101100101501041001140101001101041001011150101140110010101000110011
010100101110001401101015010

Finally we get, the Length of the above sequence as 367 and the Compression
rate (bit/base ratio) as 1.472.

14.6 Performance Analysis

The Compression algorithm, Gene-Compressor, is used for compression of Repet-
itive and Non-repetitive Sequences. During the development of the algorithm, we
used a DNA Sequence generator to generate sample input and test the code. After
the development of the algorithm, it is tested using standard DNA databases. The
results of the tests have been given in Table 14.1 and Table 14.2. Table 14.1 gives the
comparative analysis of Gene-Compressor with other text-based compression algo-
rithm. Table 2 gives the comparative analysis with other DNA-specific compression
algorithms. All the values given are in bits/base. The algorithm performs better than
most other algorithms in terms of compression. The algorithm does require a large
amount of Buffer for storing the intermediate encoding stages. It also requires a high
amount of Buffer for storing the full-length rotations of the packets.

Table 14.1 Comparison of Text Compression Algorithms

DNA Sequence gzip lz arith PPMD+ adapted normal CTW Gene
Sequence Length -9 (1M) +(1m) PPMD+ CTW -4 Compressor
name
CHNTXX 121024 2.220 2.234 1.866 1.977 1.840 1.879 1.838 1.473
CHNTXX 155844 2.291 2.300 1.956 2.062 1.934 1.974 1.933 1.403
HEHCMVCG 229354 2.279 2.286 1.985 2.053 1.965 1.997 1.958 1.523
HUMDYSTROP 38770 2.377 2.427 1.948 2.237 1.921 1.960 1.920 1.534
HUMGHCSA 66495 1.551 1.580 1.438 2.077 1.694 1.376 1.363 0.901
HUMHBB 73308 2.228 2.255 1.911 2.116 1.921 1.917 1.892 1.653
HUMHDABCD 58864 2.209 2.241 1.950 2.130 1.948 1.909 1.897 1.661
HUMHPRTB 56737 2.232 2.269 1.942 2.130 1.932 1.922 1.913 1.532
MPOMTCG 186609 2.280 2.289 1.961 2.075 1.966 1.989 1.962 1.715
PANMTPACGA 100314 2.232 2.249 1.873 2.018 1.872 1.902 1.866 1.722
SCCHRIII 315339 2.265 2.268 1.935 2.023 1.950 1.976 1.945 1.732
VACCG 191737 2.190 2.194 1.862 2.002 1.910 1.897 1.857 1.672

288 14 Probabilistic Approach for DNA Compression

Table 14.2 Comparison of DNA-Specific Compression Algorithms

DNA Sequence Bio- Gen- CTW- DNA- DNA- DNA- Gene
Sequence Length Compress2 Compress LZ Compress Pack MEM Compressor
name
CHNTXX 121024 1.6848 1.6730 1.6690 1.6716 1.6602 1.660 1.473
CHNTXX 155844 1.6172 1.6146 1.6120 1.6127 1.6103 1.610 1.403
HEHCMVCG 229354 1.8480 1.8470 1.8414 1.8492 1.8346 1.834 1.523
HUMDYSTROP 38770 1.9262 1.9231 1.9175 1.9116 1.9088 1.908 1.534
HUMGHCSA 66495 1.3074 1.0969 1.0972 1.0272 1.0390 1.031 0.901
HUMHBB 73308 1.8800 1.8204 1.8082 1.7897 1.7771 1.776 1.653
HUMHDABCD 58864 1.8770 1.8192 1.8218 1.7951 1.7394 1.739 1.661
HUMHPRTB 56737 1.9066 1.8466 1.8433 1.8165 1.7886 1.788 1.532
MPOMTCG 186609 1.9378 1.9058 1.9000 1.8920 1.8932 1.892 1.715
PANMTPACGA 100314 1.8752 1.8624 1.8555 1.8556 1.8535 1.853 1.722
VACCG 191737 1.7614 1.7614 1.7616 1.7580 1.7583 1.758 1.672

14.7 Summary

The algorithm presented in this chapter is tested for around 12 sequences. It per-
forms better than most of the text compression algorithm as it uses a upper limit of
2 bits/base. It performs better than most of the DNA compression algorithms also(as
shown in Figure 14.3). It has a high execution time for Sequences of length greater
than 2 billion. On the other hand, we have also seen that the Buffer used in the inter-
mediate step can be used to generate full length and partial length rotations. These
rotations can be used in Motif Discovery for finding approximate matches. We are
trying to use this algorithm for compression of larger genes with a optimized exe-
cution time and also for Non-Repetitive genes like HUMDYSTROP, which failed to
compress efficiently using most of the standard compressors.

References

1. Rivals, E., Delahaye, J.-P., Dauchet, M., Delgrange.: A Guaranteed Compression Scheme
for Repetitive DNA Sequences. LIFL Lille I University Technical Report (1995)

2. Matsumuto, T., Sadakane, K., Imai, H.: Biological Sequences Compression Algorithms.
Genome Information Ser. Workshop Genome Inform 11, 43–52 (2000)

3. Grumbach, S., Tahi, F.: Compression of DNA Sequences. In: Data Compression Confer-
ence, pp. 340–350 (1993)

4. Grumbach, S., Tahi, F.: A New Challenge for Compression Algorithms Genetic Se-
quences. Journal of Information Processing and Management 30, 866–875 (1994)

5. Ziv, J., Limpel, A.: Compression of Individual Sequences using Variable-Rate Encoding.
IEE Transactions on Information Theory 24, 530–536 (1978)

6. Ziv, J., Limpel, A.: A Universal Algorithm for Sequential Data Compression. IEE Trans-
actions on Information Theory 23(3), 337–343 (1977)

7. Sadel, I.: Universal Data Compression Algorithm based on Approximate String Match-
ing. In: Probability in the Engineering and Informational Sciences, pp. 465–486 (1996)

References 289

8. Chen, X., Kwong, S., Li, M.: A Compression Algorithm for DNA Sequences and its
Application in Genome Comparison. Genomic 12, 512–514 (2001)

9. Chen, X., Kwong, S., Li, M.: A Compression Algorithm for DNA Sequences. IEEE
Engineering in Medicine and Biology Magazine 20(4), 61–66 (2001)

10. Li, M., Badger, J.H., Chen, J.H., Kwong, S., Kerney, P., Zhang, H.: An Information based
Sequences Distance and its Application to whole Mitochondrial Genome. Bioinformat-
ics 17(2), 149–154 (2001)

11. Chen, X., La, M., Ma, B., Tromp, J.: DnaCompress: Fast and Selective DNA Sequence
Compression. Bioinformatics 18, 1696–1698 (2002)

12. Ma, B., Tromp, J., Li, M.: Patternhunter-faster and more sensitive homology search.
Bioinformatics 18, 440–445 (2002)

13. Sata, H., Yoshioka, T., Konagaya, A., Toyoda, T.: DNA Compression in the Post Ge-
nomic Era. Genome Informatics 12, 512–514 (2001)

14. Willems, F.M.J., Shtralov, Y.M., Tjalkens, T.J.: The Context Tree Weighting Method:
Basic Properties. IEE Transactions on Information Theory 41(3), 653–664 (1995)

15. Sadakane, K., Okazaki, T., Imai, H.: Implementing the Context Tree Weighting Method
for Text Compression. In: DCC 2000: Proceedings of the Conference on Data Compres-
sion, USA (2000)

16. Rivals, E., Dauchet, M.: Fast Discerning Repeats in DNA Sequences with a Compression
Algorithm. In: Proceedings of Genome Informatics Workshop, pp. 215–226. Universal
Academy Press, Tokyo (1997)

Chapter 15
Non-repetitive DNA Compression Using
Memoization

Abstract. With increasing number of DNA sequences being discovered the problem
of storing and using genomic databases has become vital. Since DNA sequences
consist of only four letters, two bits are sufficient to store each base. Many algo-
rithms have been proposed in the recent past that push the bits/base limit further.
The subtle patterns in DNA along with statistical inferences have been exploited to
increase the compression ratio. From the compression perspective, the entire DNA
sequences can be considered to be made of two types of sequences: repetitive and
non-repetitive. The repetitive parts are compressed using dictionary-based schemes
and non-repetitive sequences of DNA are usually compressed using general text
compression schemes. In this chapter, we present a memoization based encoding
scheme for non-repeat DNA sequences. This scheme is incorporated with a DNA-
specific compression algorithm, DNAPack, which is used for compression of DNA
sequences. The results show that our method noticeably performs better than other
techniques of its kind.

15.1 Introduction

The bases found in DNA come in four varieties: adenine, cytosine, guanine, and
thymine often abbreviated as A, C, G, and T, the letters of the genetic alphabet.
Genome sequencing is finding the order of DNA nucleotides, or bases, in a genome
the order of As, Cs, Gs, and Ts that make up an organism’s DNA. Sequencing the
genome is an important step towards understanding it. A genome sequence does
contain some clues about where genes are, even though scientists are just learn-
ing to interpret these clues. The human genome is made up of over 3 billion of
these genetic letters. The human genome is about 20-40 percent repetitive DNA,
but bacterial and viral genomes contain almost no repetition. In repetitive DNA, the
same short sequence is repeated over and over again. Somewhere in the genome
the sequence GCA may be repeated 100 times in a row; elsewhere there may be
30 consecutive copies of the sequence ACTTCTG. For example, the following
DNA sequence is just a small part of telomere located at the ends of each human
chromosome:

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 291–301.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

292 15 Non-repetitive DNA Compression Using Memoization

...GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT
TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT
AGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG...

An entire telomere, about 15 kb, is constituted by thousands of the repeated se-
quence “GGGTTA”. Based on the repetition rate, DNA sequences are divided into
three classes:

• Highly repetitive: About 10-15% of mammalian DNA reassociates very rapidly.
This class includes tandem repeats.

• Moderately repetitive: Roughly 25-40% of mammalian DNA reassociates at an
intermediate rate. This class includes interspersed repeats.

• Single copy: This class accounts for 50-60% of mammalian DNA.

Deriving meaningful knowledge from DNA sequence defines biological research
through the coming decades and require the combined effort biologists, chemists,
engineers, and computational scientists, among others. Some of the research chal-
lenges in genetics include Gene regulation, DNA sequence organization, Chromoso-
mal structure and organization, Non-coding DNA types and functions, coordination
of gene expression, protein synthesis, and post-translational events interaction of
proteins in complex molecular machines, evolutionary conservation among organ-
isms, Protein conservation, correlation of SNPs (single-base DNA variations) with
health and disease, etc.

With increasing number of genome sequences being made available, the problem
of storing and using databases has to be addressed. Conventional text compression
schemes are not efficient when DNA sequences are involved. Since DNA sequences
contain only 4 bases A,G,T,C, each base can be represented by 2 bits. However
standard compression tools like compress, gzip and bzip2 have more than 2 bits per
base when compressing DNA data. Consequently, DNA compression has become
a challenge. Algorithms like GenCompress [1], Biocompress [2], Biocompress-2
[3], that use the characteristics of DNA like point mutation or reverse complement
achieve a compression rate of about 1.76 bits per base [4]. Many compression meth-
ods have been discovered to compress DNA sequences. Invariably, all the methods
found so far take advantage of the fact that DNA sequences are made of only 4 al-
phabets, together with techniques to exploit the repetitive nature of DNA [5]. The
algorithm given here is used to encode non-repetitive regions. The popular tech-
niques that have been shown to be efficient in compressing non-repeat regions are
Order-2 Arithmetic Coding and Context Tree Weighting Coding. Order-2 coding
overcomes the constraint of Huffman coding that the symbol to be encoded has to
be coded by round number of bits. The adaptive nature of coding has been an advan-
tage. The adaptive probability of a symbol is computed from the context after which
it appears. Order-2 algorithm usually have better compression ratios with high ef-
ficiency in general. The Context Tree Weighting Coding is proposed by Willems
[6] and has a good compression ratio. The CTW encoder has two parts: a source
modeler which is the actual CTW algorithm, which receives the uncompressed data
and estimates the probability of thee next symbol and an encoder which uses the

15.2 Related Work 293

estimated probabilities to compress the data. The context tree is built dynamically
during the encoding decoding process. The visited substring of shorter size than a
fixed bound, exist as a path in the tree. Each node of the tree contains a probabil-
ity. In order to encode a given bit, the following steps are performed: the path in
the context tree which coincides with the current context is searched and if needed
extended. For every node in this context path, an estimated probability of the next
symbol is computed using weighting function on all the estimated probability val-
ues. The weighted probability is sent to the arithmetic encoder which encodes the
symbol, and the encoder goes to the next symbol [7]. The repetitive regions are
compressed using methods given in [8,9].

15.2 Related Work

The first DNA-specific algorithms are given by Grumbach and Tahi [2,3]. Two al-
gorithm namely, BioCompress and BioCompress−2, based on Ziv and Limpel data
compression method [10,11] are proposed. BioCompress− 2 detects exact repeats
and complementary palindromes located earlier in the target sequence, and then
encodes them by repeat length and the position of a previous repeat occurrence.
If no significant repetition is found then the arithmetic coding of order-2 is used.
The use of arithmetic encoding is the only difference between BioCompress and
BioCompress−2.

C f act algorithm is proposed by E. Rivals.et al, which searches the longest ex-
act matching repeat using suffix tree data in an entire sequence. C f act is similar to
Biocompress−2 except for being a two-pass algorithm, where the first pass involved
building the suffix tree. In the second phase, repetitions are coded with guaranteed
gain; else, two-bit per base encoding is used. The compression algorithm to detect
the approximate tandem repeats in DNA sequences is later given in [8]. Approxi-
mate string matching is used to provide some lossy compression algorithms by [12].
However, lossy algorithms are of little use in DNA compression.

A better compression algorithm than BioCompress and BioCompress−2 is Gen-
Compress [1, 13, 14]. The basic idea is to approximate repetitions. There are two
variants of GenCompress-one that uses hamming distance for repeats and the other
uses the edition distance(deletion, insertion and substitution) for the encoding of the
repeats.

CTW −LZ [4] algorithm is based on context tree weighting method. It basically
works by combining LZ-77 type algorithm like GenCompress with CTW algorithm.
The long repeats are coded by LZ77 while the short repeats are encoded by CTW.
The execution time of CTW + LZ is not impressive although it does achieve good
compression ratios.

DNACompress [15] is a two-phase algorithm that employs the Ziv-Lampel com-
pression scheme as BioCompress−2 and GenCompress. The first phase finds all ap-
proximate repeats including complementary palindromes, using a special software,
PatternHunter [16]. The second phase involves coding of non-repeat regions and
approximate repeat regions. The DNACompress achieves a better execution time in
general than GenCompress.

294 15 Non-repetitive DNA Compression Using Memoization

DNAC [17] is another DNA compression algorithm that works in four phases.
The first phase involves building of suffix tree to find exact repeats. The second
phase involves extending exact matches to approximate matches using dynamic
programming. In the third phase, it extracts the optimal non-overlapping repeats
from overlapping ones. The repeats are encoded in the last phase. Some of the
recent lossless compression for large DNA microimages compression is given in
[18-20]. DNAPack that uses hamming distance for repeats and complementary
palindromes, and either CTW or Arth-2 compression for non-repeat regions is
proposed in [21]. The algorithm marginally performs better than the earlier men-
tioned algorithms due to selection of repeat regions using dynamic programming
method rather than greedy approach. In this chapter, we propose another encod-
ing algorithm based on memoization that is useful in coding non-repeats. Section
15.3 describes the idea behind the algorithm along with pseudocode. In Section
15.4, we describe the setup and evaluate the performance of the proposed encoding
scheme by comparing the results obtained by incorporating our encoding scheme
into GenCompress and DNAPack algorithms along with results obtained by other
algorithms.

15.3 Algorithm

The encoding scheme works in two passes. Each pass is identical, except that the
symbols being encoded are different. The following method is used to represent the
bases:

• In the first pass alphabets A and G are represented by A; T and C are represented
by T.

• In the second pass alphabets A and C are represented as A; G and T are
represented by T.

For example, the sequence AGTCwould be taken as AATT and ATTA. The decoding
procedure requires both the sequences, with four possible combinations of A and T
representing each base as shown in Table 15.1.

The above substitutions is made to the entire DNA sequence. Let the pass 1 sub-
stitution sequence be S1 and pass 2 sequence be S2. If the length of the sequences is
l then the each linear sequence is transformed to a matrix of dimension α ×β where
α ∗β = l. The transformation is done row-wise and hence the entry in ith row and
jth column (zero-indexed) would correspond to alphabet in i∗β + j position in the
sequence.

Table 15.1 Mapping scheme for decoding

Sequence 1 Sequence 2 Base
A A A
A T G
T T T
T A C

15.3 Algorithm 295

The choice of α and β can be made in different ways. A simple approach would
be to break the sequence into multiple sequences each of length of a perfect square,
chosen greedily, and represent each sub-sequence as a square matrix. This is always
possible since any number can be represented as sum of squares. An efficient way
to determine the split is to consider all possible combinations of α and β and take
the combination that leads to maximum compression ratio. This increases the com-
plexity considerably but can be made non-prohibitive if the length of the longest
sequence is restricted to a certain maximum value. The encoding and decoding of
S1 and S2 are done independently. The compression technique works on the matri-
ces obtained by the sequences. The encoding idea is based on the idea of recursively
dividing the matrix into sub-matrices until each sub-matrix is composed of a single
alphabet. The division of matrix can be done in one of the following ways:

• L : The matrix can be divided into left half and right half. If the number of
columns is odd, the center column is included in the left half.

• U : The matrix can be divided into upper half and lower half. If the number of
rows is odd, the center row is included in the upper half.

• C : The matrix can be split into even columns and odd columns. The leftmost
column is considered even.

• R : The matrix can be split into even and odd rows. The first row is considered as
even.

For example, the matrix

AAAATTTT
AAAATTTT
AAAATTTT

can be divided into two 3×4 sub-matrices :

AAAA TTTT
AAAA TTTT
AAAA TTTT

the left sub-matrix can be encoded as A and the right sub-matrix can be encoded as
T. Hence the entire division of matrix would be represented by “LAT”. The letter A
and T denote that each sub-matrix is composed only of alphabet A and T, respec-
tively. If the matrix is a combination of both the alphabets, it is divided into one of
the four ways mentioned above. The first letter gives the division type followed by
encoding of left/upper/even submatrix followed by corresponding right/lower/odd
submatrix. For example, the matrix :

ATATATAT
TATATATA
ATATATAT
TATATATA

would be encoded the best as CRATRTA. The first column split produces two
submatrices:

296 15 Non-repetitive DNA Compression Using Memoization

AAAA TTTT
TTTT AAAA
AAAA TTTT
TTTT AAAA

The subsequent letters (RAT and RTA) further describe each of the subimages,
until only 2×4 images of As and Ts are left.

AAAA TTTT
AAAA TTTT

TTTT AAAA
TTTT AAAA

Decompressing the encoded string requires the knowledge of the original size of the
matrix. The dimension is not encoded in the string. This is stored as a separate array
of integers and is used at the time of decompression. The compression ratio is given
taking into account the space needed to store the sizes of each matrix.

The simplest implementation(Algorithm 1) is a recursive function that tries all
possible ways of dividing the matrix and keeps the solution having the minimum
encoded length, with memoization to keep it efficient. The main function is the
compress which takes the matrix as the argument and returns the best encoding
string possible. The matrix is considered as array of strings. The termination con-
dition occurs when all the entries in the matrix have the same alphabet. Other-
wise compress makes use of four functions splitrow, splitcolumn, splitupper and
splitle f t in order to try all possible combinations of division of matrix recursively.
mem is the map data structure that holds the values for each matrix for which the
best encoding string has been found.

For simplicity, the algorithm is shown without incorporating any of the optimiza-
tions that reduce the running time significantly. The functions in algorithm takes the
matrices themselves as arguments thus maintaining copies of matrices of their own.
This can be avoided by representing the sub-matrices by 6 parameters and keeping
a single copy of the matrix.

• row: the topmost row in the sub-matrix
• col: the leftmost column in the sub-matrix
• rowC: the number of rows in the sub-matrix
• colC: the number of columns in the sub-matrix
• rowS: the distance between adjacent rows in the sub-matrix, relative to the origi-

nal matrix
• colS: the distance between adjacent columns in the sub-matrix, relative to the

original matrix

Initially, row and col are the top left corner of the original matrix, and both step sizes
are 1.

15.3 Algorithm 297

Algorithm 1. Encoding algorithm
Input : Matrix consisting of As and Ts
Output: Encoded string corresponding to input matrix
mem is the data structure used to store matrices and their corresponding encoded strings if
already found
ts is local string ; s1 and s2 are matrices local to the functions

function compress (matrix mat)
if mem[mat] not empty then

return mem[mat]
end if
if mat contains only single alphabet(τ) then

mem[mat] ← τ
return mem[mat]

else
if mat has more than one column then

ts ← “C”+ splitcolumn(mat)
if mem[mat] is empty OR len(ts) < len(mem[mat]) then

mem[mat] ← ts
end if
ts ← “L”+ splitlower(mat)
if mem[mat] is empty OR len(ts) < len(mem[mat]) then

mem[mat] ← ts
end if

end if
if mat has more than one row then

ts ← “R”+ splitrow(mat)
if mem[mat] is empty OR len(ts) < len(mem[mat]) then

mem[mat] ← ts
end if
ts ← “U”+ splitupper(mat)
if mem[mat] is empty OR len(ts) < len(mem[mat]) then

mem[mat] ← ts
end if

end if
return mem[mat]

end if

function splitcolumn (matrix mat)
return compress(even columns of mat)+compress(odd columns of mat)

function splitrow (matrix mat)
return compress(even rows of mat)+compress(odd rows of mat)

function splitleft (matrix mat)
return compress(first half columns of mat)+compress(second half columns of mat)

function splitupper (matrix mat)
return compress(first half rows of mat)+compress(second half rows of mat)

298 15 Non-repetitive DNA Compression Using Memoization

• Left-Right: Sets colC to half for the left sub-matrix and colC-half for the right
sub-matrix, where half is (colC+1)/2. Also sets col to col+half*colS for the right
sub-matrix. Similar method is used for rowC for Upper-lower split.

• Even-Odd Columns: Sets colC to half for the even sub-matrix and colC-half for
the odd sub-matrix, where half is (colC+1)/2. Also sets col to col+colS for the
odd sub-matrix, and colS to 2*colS for both sub-matrices. Similar method is used
for rowC and rowS in even-odd row split.

15.4 Experimental Results

Since the compression algorithm proposed is specifically made to compress non-
repeat DNA sequences, a fair method of evaluation of performance can be made
only by combining the compression scheme with another DNA-specific algorithm
that exploits repeating sequences. For this purpose we use DNAPack, which is found
to outperform most other methods available. We briefly describe the working of
DNAPack and the method of incorporating memoization algorithm into it to achieve
better results. DNAPack is based on dynamic programming for selection of seg-
ments as opposed to greedy methods of selection [22]. Let s be the input sequence.
Let BestComp[i] be the smallest compressed size of prefix s[1 . . . i]. The recurrence
given in Fig 15.1 is the general scheme of dynamic programming.

Initialization: BestComp[0] = 0
Recurrence:

BestComp[i] = min

⎧⎨
⎩

BestComp[j]+CopyCost(j, i,k) ∀k∀0 < j < i
BestComp[j]+PalinCost(j, i,k) ∀k∀0 < j < i
BestCopy[j]+MinCost(j +1, i) ∀0 < j < i

⎫⎬
⎭

Fig. 15.1 Dynamic programming scheme for finding best compression

Table 15.2 Comparison with text-compression algorithms

DNA sequence adapted normal
Sequence name length gzip-9 lz(1M) arith(1M) PPMD+ PPMD+ CTW CTW-4 DNAMem

CHNTXX 121024 2.220 2.234 1.866 1.977 1.840 1.879 1.838 1.6601
CHNTXX 155844 2.291 2.300 1.956 2.062 1.934 1.974 1.933 1.6101

HEHCMVCG 229354 2.279 2.286 1.985 2.053 1.965 1.997 1.958 1.8349
HUMDYSTROP 38770 2.377 2.427 1.948 2.237 1.921 1.960 1.920 1.9084

HUMGHCSA 66495 1.551 1.580 1.438 2.077 1.694 1.376 1.363 1.0311
HUMHBB 73308 2.228 2.255 1.911 2.116 1.921 1.917 1.892 1.7765

HUMHDABCD 58864 2.209 2.241 1.950 2.130 1.948 1.909 1.897 1.7395
HUMHPRTB 56737 2.232 2.269 1.942 2.130 1.932 1.922 1.913 1.7884
MPOMTCG 186609 2.280 2.289 1.961 2.075 1.966 1.989 1.962 1.8925

PANMTPACGA 100314 2.232 2.249 1.873 2.018 1.872 1.902 1.866 1.8533
SCCHRIII 315339 2.265 2.268 1.935 2.023 1.950 1.976 1.945 1.8331
VACCG 191737 2.190 2.194 1.862 2.002 1.910 1.897 1.857 1.7582

15.4 Experimental Results 299

CopyCost(j, i,k) is the number of bits needed to encode the substring of size k
starting at position i if it is an approximate repeat of the substring of size k starting
at j. The PalinCost is similarly defined for reverse complementary substrings. The
function MinCost(j + 1, i) is the number of bits needed for compression of the seg-
ment s[j + 1, i]. It depends on the size of the substring as well as the compression
ratio obtained for the algorithm by arithmetic coding or CTW. MinCost allows the
creation of repeat segment if it yields a benefit in the compression ratio [22]. We re-
place the CTW or arithmetic coding with our compression algorithm. The modified
algorithm is referred as DNAMem. The performance of the DNAMem is evaluated
along with other popular algorithms of its kind.

Comparison: The comparison of results are made between the conventional text
compression algorithms with DNAMem. Table 15.2 gives the compression ratios
expressed as bitsperbase. The first column gives the DNA sequence name. The sec-
ond column gives the sequence length. Columns from 3-10 gives the bitsperbase
value of all the algorithms. The DNAMem algorithm performs better than all the al-
gorithms in all cases. Table 15.3 shows the comparison of DNA-specific algorithms.
The DNAMem performs slightly better than all others in 7 out of 11 sequences con-
sidered. BC2, GC and DNAC refer to BioCompress2, GenCompress, DNACom-
press respectively.

Execution Time Analysis: The experiment is conducted on Pentium V running
Red Hat Linux 9. On an average the execution time taken by DNAMem is 26mins,
while that of DNAPack is 1min. The high execution time is the result of high asymp-
totic complexity of the memoization algorithm. Despite the improvements made the
complexity remains O(n5), where n is the size of longest non-repeat sequence.

Table 15.3 Comparison with DNA-specific compression algorithms

DNA sequence
Sequence name length BC2 GC CTW-LZ DNAC DNAPack DNAMem

CHMPXX 121024 1.6848 1.6730 1.6690 1.6716 1.6602 1.6601
CHNTXX 155844 1.6172 1.6146 1.6120 1.6127 1.6103 1.6101

HEHCMVCG 229354 1.8480 1.8470 1.8414 1.8492 1.8346 1.8349
HUMDYSTROP 33770 1.9262 1.9231 1.9175 1.9116 1.9088 1.9084

HUMGHCSA 66495 1.3074 1.0969 1.0972 1.0272 1.0390 1.0311
HUMHBB 73308 1.8800 1.8204 1.8082 1.7897 1.7771 1.7765

HUMHDABCD 58864 1.8770 1.8192 1.8218 1.7951 1.7394 1.7395
HUMHPRTB 56737 1.9066 1.8466 1.8433 1.8165 1.7886 1.7884
MPOMTCG 186609 1.9378 1.9058 1.9000 1.8920 1.8932 1.8925

PANMTPACGA 100314 1.8752 1.8624 1.8555 1.8556 1.8535 1.8533
VACCG 191737 1.7614 1.7614 1.7616 1.7580 1.7583 1.7582

300 15 Non-repetitive DNA Compression Using Memoization

15.5 Summary

We have presented a new algorithm for encoding non-repeat parts of DNA se-
quences. Twelve sequences are used for experimentation. The algorithm proposed
is combined with DNAPack compression algorithm to evaluate the performance
of compression with other algorithms of its kind. The results obtained show that
DNAMem clearly outperforms conventional text compression algorithms and
marginally does better that DNA-specific algorithms. The compression ratio of
DNAMem is the best for 7 out of 11 sequences considered. However, the time taken
by DNAMem is around 25 times slower than other similar algorithms.

References

1. Chen, X., Kwong, S., Li, M.: A Compression Algorithm for DNA Sequences and its
Application in Genome Comparison. Genomic 12, 512–514 (2001)

2. Grumbach, S., Tahi, F.: Compression of DNA Sequences. In: Data Compression Confer-
ence, pp. 340–350 (1993)

3. Grumbach, S., Tahi, F.: A New Challenge for Compression Algorithms Genetic Se-
quences. Journal of Information processing and Management 30, 866–875 (1994)

4. Matsumuto, T., Sadakane, K., Imai, H.: Biological Sequences Compression Algorithms.
In: Genome Information Ser. Workshop Genome Inform, vol. 11, pp. 43–52 (2000)

5. Rivals, E., Delahaye, J.-P., Dauchet, M., Delgrange.: A Guaranteed Compression Scheme
for Repetitive DNA Sequences. LIFL Lille I Univerisity Technical Report (1995)

6. Willems, F.M.J., Shtralov, Y.M., Tjalkens, T.J.: The Context Tree Weighting Method:
Basic Properties. IEE Transaction on Information Theory 41(3), 653–664 (1995)

7. Sadakane, K., Okazaki, T., Imai, H.: Implementing the Context Tree Weighting Method
for Text Compression. In: DCC 2000: Proceedings of the Conference on Data Compres-
sion, USA (2000)

8. Rivals, E., Dauchet, M.: Fast Discerning Repeats in DNA Sequences with a Compression
Algorithm. In: Proc. Genome Informatics Workshop, pp. 215–226. Universal Academy
Press, Tokyo (1997)

9. Sata, H., Yoshioka, T., Konagaya, A., Toyoda, T.: DNA Compression in the Post Ge-
nomic Era. Genome Informatics 12, 512–514 (2001)

10. Ziv, J., Limpel, A.: Compression of Individual Sequences using Variable-Rate Encoding.
IEE Transactions on Information Theory 24, 530–536 (1978)

11. Ziv, J., Limpel, A.: A Universal Algorithm for Sequential Data Compression. IEE Trans-
actions on Information Theory 23(3), 337–343 (1977)

12. Sadel, I.: Universal Data Compression Algorithm based on Approximate String Match-
ing. Journal of Probability in the Engineering and Informational Sciences, 465–486
(1996)

13. Chen, X., Kwong, S., Li, M.: A Compression Algorithm for DNA Sequences. IEEE
Engineering in Medicine and biology Magazine 20(4), 61–66 (2001)

14. Li, M., Badger, J.H., Chen, J.H., Kwong, S., Kerney, P., Zhang, H.: An Information based
Sequences Distance and its Application to Whole Mitochondrial Genome. Bioinformat-
ics 17(2), 149–154 (2001)

15. Chen, X., La, M., Ma, B., Tromp, J.: DnaCompress: Fast and Effective DNA Sequence
Compression. Bioinformatics 18, 1696–1698 (2002)

References 301

16. Ma, B., Tromp, J., Li, M.: PatternHunter-Faster and more Sensitive Homology Search.
Bioinformatics 18, 440–445 (2002)

17. Chang, C.: Dnac: A Compression Algorithm of DNA Sequences by Non-Overlapping
Approximate Repeats. Master Thesis (2004)

18. Modegi, T.: Development of Lossless Compression Techniques for Biology Information
and its Application for Bioinformatics Database Retrieval. Genome Informatics (14),
695–696 (2003)

19. Zhang, Y., Parthe, R., Adjeroh, D.: Lossless Compression of DNA Microarray Images.
In: CSBW, pp. 128–132 (2005)

20. Tan, Z., Cao, X., Ooi, B.C., Tung, A.K.H.: The Ed-Tree: An Index for Large DNA Se-
quence Databases. In: SSDBM (2003)

21. Behzadi, B., Le Fessant, F.: DNA Compression Challenge Revisited: A Dynamic Pro-
gramming Approach. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005.
LNCS, vol. 3537, pp. 190–200. Springer, Heidelberg (2005)

22. Apostolico, A., Lonardi, S.: Compression of Biological Sequences by Greedy Off-Line
Textual Substitution. In: DCC (2000)

Chapter 16
Exploring Structurally Similar Protein Sequence
Motifs

Abstract. Protein sequence motifs are short conserved subsequences common to
related protein sequences. Information about motifs is extremely important to the
study of biologically significant conserved regions in protein families. These con-
served regions can determine the functions and conformation of proteins. Conven-
tionally, recurring patterns of proteins are explored using short protein segments
and classification based on similarity measures between the segments. Two protein
sequences are classified into the same class if they have high homology in terms of
feature patterns extracted through sequence alignment algorithms. Such methodol-
ogy focuses on finding position specific motifs only. In this chapter, we propose a
new algorithm to explore protein sequences by studying subsequences with relative-
positioning of amino acids followed by K-Means clustering of fixed-sized segments.
The dataset used for our work is most updated among studies for sequence motifs.
The various biochemical tests that are found in literature are used to test the sig-
nificance of motifs and these tests show that motifs generated are of both structural
and functional interest. The results suggest that this method may also be applied to
closely-related area of finding DNA motifs.

16.1 Introduction

Motif Identification is one of the most important problems covering many applica-
tions in protein sequence analysis. It is related to the discovery of portions of protein
strands of major biological interest with important structural and functional features.
These functional and structural features may include enzyme-binding sites, pros-
thetic group attachment sites, or regions involved in binding other small molecules.
There exists a strong relationship between the amino-acid sequence and correspond-
ing structure. Many biochemical tests suggest that sequence determines confor-
mation completely [1]. For example, conserved blocks within groups of related
sequences can often highlight features which are responsible for structural similar-
ity between protein that can be used to predict the dimensional structure of protein.
Motifs also carry useful information for generation rules for determining whether a

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 303–318.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

304 16 Exploring Structurally Similar Protein Sequence Motifs

Table 16.1 An example of Position Weighted Matrix. The columns denote the positions in
the pattern.

1 2 3 4
A 0.01 0.02 0.01 0.05
C 0.03 0.04 0.01 0.03
D 0.07 0.04 0.03 0.05
E 0.01 0.07 0.01 0.07

.
Y 0.00 0.01 0.00 0.02

given sequence belongs to a characteristic protein family. The PROSITE database
[2] consists of large number of collection of such patterns used to identify protein
families. Core PROSITE sequence patterns are created from biologically signifi-
cant protein families. Analysis of three-dimensional structure of PROSITE patterns
suggests that recurrent sequence motifs imply common structure and function [3].

However, no currently existing definition of “motif” is fully satisfying for the pur-
poses of accurately identifying features that motifs are supposed to represent. There
are two popular ways of defining a motif that are widely used today. The first one
works with defining representation of motifs given in the form of PSSM(Position
Specific Scoring Matrix), also called Position Weight Matrix(PWM) [4,5]. A PWM
is a matrix of score values that gives a weighted match to any given substring of fixed
length as shown in Table 16.1. It has one row for each symbol of the alphabet, and
one column for each position in the pattern. PWM score is defined as ∑N

j=1 mi(j), j ,
where j represents position in the substring, i(j) is the symbol at position j in the
substring, and mi, j is the score in row i, column j of the matrix. In other words, a
PWM score is the sum of position-specific scores for each symbol in the substring.
Interesting PWMs are those that have high information content, which says how
different a PWM is from a uniform distribution.

The second technique defines a motif as a consensus [6,7], a pattern that appears
repeatedly with certain number of differences. The methodology of considering mo-
tifs are patterns helps explore motifs identification problem in a more exhaustive
way, although the relative algorithmic complexity remains high. A motif may be
composed of various submotifs separated with variable-length distances that may be
found in reasonably efficient way [8]. It is observed that when motifs are extracted
as patterns, there is scope for finding further structure from the set of motifs found
even when the set is huge. This is generally explored by means of clustering or by
combining other models of motifs like PSSMs. It is generally accepted that PSSMs
are more appropriate for modeling well-characterized biological feature for the pur-
pose of identifying other occurrences of the feature, however identifying PSSMs
themselves is a difficult problem when large data sets are involved.

In this chapter, we explore motifs by defining a new measure of similarity. The
segments are clustered by similarity with respect to distances between each pair of
amino-acids rather than consensus between the amino-acid positions. The protein
sequences are broken down into fixed length segments (non-overlapping) and are

16.3 Motifs in Protein Sequences 305

not of sliding window type as used in [9-11]. The segments are then grouped using
K-Means clustering with respect to similarity of secondary structure. Clusters with
similarity higher than a pre-determined threshold are taken to obtain sequence motifs.

16.2 Related Work

Many computational approaches have been introduced for the problem of motif
identification in a set of biological sequences which are classified based on type
of motifs discovered. Surveys by [6,12,13] in literature cover several motif discov-
ery techniques. Finding PWM-based motifs of complicated nature, that allow gaps,
insertions/deletions such as profiles and Hidden Markov Models are studied in [14].
Methods for finding multiple shared motifs within a set of unaligned sequences are
given by Gibbs sampling, MEME, probabilistic suffix trees, etc. Finding recurring
sequence motifs through K-Means clustering is proposed by Han and Baker [9,10].
In order to overcome the problem of sensitivity of initial points for cluster centers,
a greedy method proposed by Zhong et al., [11] is used for initialization method for
clustering.

16.3 Motifs in Protein Sequences

Protein motifs may be defined by their primary sequence or by the arrangement
of secondary structure elements. The term motif is used in two different ways in
structural biology. The first refers to a particular amino-acid sequence that is char-
acteristic of a specific biochemical function. An example is the zinc finger motif,
CXX(XX)CXXXXXXXXXXXXHXXXH, which is found in a widely varying family of DNA-
binding proteins. The conserved cysteine and histidine residues in this sequence
motif form ligands to a zinc ion whose coordination is essential to stabilize the ter-
tiary structure. The second, equally common, use of the term motif refers to a set
of contiguous secondary structure elements that either have a particular functional
significance or define a portion of an independently folded domain. Along with the
functional sequence motifs, the former are known generally as functional motifs.
An example is the helix-turn-helix motif found in many DNA-binding proteins [15].

Examples of well-known Motifs: Described below are some commonly found mo-
tifs along with their characteristics. Most of the motifs obtained in our experimental
results are indicative of conserved helix turns.

Helix-turn-helix Motifs: The helix-turn-helix motif was the first protein motif to
be discovered for site specific DNA recognition. This motif has been widely investi-
gated and there exists substantial knowledge of the chemical interactions of specific
residues. It characterizes a family of transcription factors.

The motif is characterized by two α-helices connected by a loop. Transcription
factors of this type are typically dimeric, each with one helix containing basic amino
acid residues that facilitate DNA binding. One helix is typically smaller and due
to the flexibility of the loop, allows dimerization by folding and packing against

306 16 Exploring Structurally Similar Protein Sequence Motifs

another helix. The larger helix typically contains the DNA binding regions. Basic
Helix-turn-Helix proteins typically bind to a consensus sequence called an E-box,
CANNTG. The canonical E-box is CACGTG, however some transcription factors
bind to different sequences, which are often similar to the E-box Features of the
helix-turn-helix motif have been reviewed extensively by Pabo and Sauer [16] and
Nelson [17].

One of the two helices is responsible for binding to DNA in a sequence-specific
manner, and is referred to as the recognition helix. In most proteins, the second of
the two helices is the recognition helix. Residues of the recognition helix interact
directly with bases in the major groove of the DNA. A combination of residues
in both the helices are believed to be responsible for maintaining the appropriate
angle between the two helices. Proteins with helix- turn-helix motifs share only
limited sequence homology in the motif region; the dissimilarity is attributed to the
sequence-specific interactions with the bases in the DNA. Most proteins have at
most one helix-turn-helix motif.

Beta ribbon is an extremely common motif. Structurally two antiparallel beta
strands are connected by a tight turn of a few amino acids between them.

Zinc finger: Two beta strands with an alpha helix end folded over to bind a zinc ion.
The structure of each individual finger is highly conserved and consists of about 30
amino acid residues, constructed as a β β α-fold and held together by the zinc ion.
The α-helix occurs at the C-terminal part of the finger, while the β -sheet occurs at
the N-terminal part. Many transcription factors, regulatory proteins, and other pro-
teins that interact with DNA contain zinc fingers. These proteins typically interact
with the major groove along the double helix of DNA in which case the zinc fingers
are arranged around the DNA strand in such a way that the α-helix of each finger
contacts the DNA, forming an almost continuous stretch of α-helices around the
DNA molecule.

Greek key is a type of structural motif with 4 beta strands folded over into a sand-
wich shape.

Homeodomain Motifs Proteins containing the homeodomain motif play an impor-
tant role in plant and animal development. The homeodomain [18] motif is made up
of three α-helices and an extended N-terminal arm. The first and second α-helices
pack against each other in an anti-parallel arrangement, while the third α-helix lies
perpendicular to them. The third helix is the recognition helix; like its counterpart
in the helix-turn-helix motif, it interacts with DNA in the major groove and pro-
vides the DNA-binding specificity. However, unlike the helix-turn-helix unit, the
60-residue homeodomain forms an independent folded structure and can indepen-
dently bind to DNA. It is interesting to note that the homeodomain motif contains a
canonical helix-turn-helix structure. Mutational and evolutionary analysis and crys-
tal structures of these domains are also available.

16.4 Algorithm 307

Motif detection: There are many definitions for the protein sequence motif. One of
the definition for the protein sequence motif is given as follows [19]:

Definition 1. Given an integer h, a set of m sequences S1,S2,S3, . . . ,Sm on the al-
phabet A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V , and threshold k ≤ m, a motif
is a pattern occurring in at least k sequences of S1,S2,S3, . . . ,Sm with at the most h
errors.

Definition 2. Given a sequence S of length m, i.e., S = s1...m,Si... j,1 ≤ i ≤ j ≤ m
denotes the subsequence si . . .s j starting from position i and ending at j.

The motifs to be extracted are usually a collection of subsequences that are con-
strained and represented by certain expressions. There are basically two types of se-
quence motifs based on their representation –deterministic motifs and probabilistic
motifs. Deterministic motifs either match or do not match a sequence while prob-
abilistic motifs is given a score of probability of matching against a sequence. The
definition given is suited for a deterministic motif. For the probabilistic motif, motifs
can be considered as the patterns ranking highest when matched against the given
set of proteins among all possible patterns. To extract deterministic motifs, we con-
sider a sequence motif as the common subsequence of a set of protein sequences.
The most simple way to represent a motif is to use a consensus string that is a sin-
gle string composed of most likely residues on each position with substitutions and
wildcards. A regular expression is a natural choice to represent wider range of mo-
tifs and is a powerful notational algebra available to describe strings and sequences
[20].

The PROSITE [2] database is a well-established source of protein motifs. It
records a large number of classified motifs into different families. For each fam-
ily, some motifs are given to characterize the family. PROSITE uses regular ex-
pressions to represent the motifs. Database is a well-established source of protein
motifs. It records a large number of classified motifs into different families. For each
family, some motifs are given to characterize the family. PROSITE uses regular ex-
pressions to represent the motifs. For example, a PROSITE pattern may look like
< [AH]− x−A− x(4)−EP >. In the regular expression used by Prosite, [] means
a match of included amino-acid in that position, x is for any amino acid, () is used
to specify that range, is to show the excluded amino acids, ‘,’ denotes the end of the
pattern, ‘<’ is for N-terminal and ‘>’ is for C-terminal.

16.4 Algorithm

The presence of functionally conserved regions in proteins by itself confirms the fact
that amino-acids do not appear independently. The structure of motifs is decided by
the arrangement of amino-acids, which give them their characteristic function. The
conserved regions contain amino-acids that seem to occur in groups, with some gaps
between them. With this assumption, the algorithm tries to detect conserved regions
using similarity between relative positions of amino-acids across protein families.

308 16 Exploring Structurally Similar Protein Sequence Motifs

We use a Pairwise Relative Distance Matrix(PRDM) for distance measures be-
tween protein segments. The PRDM is calculated for each protein segment. The
PRDM is a three dimension matrix with two dimensions used to represent each
amino-acid pair and the other is used for distance between corresponding pairs. For
example, p[A][S][3] = 2 denotes that there are two instances of regular expression
A− x(2)−S in the corresponding segment.

Algorithm 1. Motif Extraction Algorithm
Input Protein sequence and corresponding secondary structure
Output Structurally similar motifs
1. Divide the protein sequence and corresponding secondary structure sequence into seg-
ments of size s
2. Initialize pairwise-relative distance matrices(PRDMs) p[i][j][k] ← 0, 1 ≤ i, j ≤ 20 and
0 < k < s
3. Foreach segment increment p[X][Y][d] if position of amino-acid Y – position of amino-
acid X = d
4. Compute the distances between segments from their corresponding PRDM
5. Apply Improved K-Means clustering and partition the initial segments
6. Calculate the secondary structure similarity among segments within one cluster
7. Extract consensus sequences from clusters with structural similarity > threshold

The Improved K-Means algorithm proposed by Zhong et al., is used for cluster-
ing segments. The greedy initialization overcomes the potential problems of random
initialization and tries to choose suitable initial points so that final partitions can
represent the underlying distribution of the data samples more consistently and ac-
curately. Each point is represented by one PRDM corresponding to one segment. In
greedy initialization method, the clustering algorithm is performed for several itera-
tions during each run. After each run, initial points, which can be used to form clus-
ter with good structural similarity are chosen and their distance is checked against
that of all points already selected in the initialization array. If the minimum distance
of new points is greater than specified distance, these points is added to the initial-
ization array. Satisfaction of the minimum distance can guarantee that each newly
selected point is well separated from all the existing points in the initialization array
and will potentially belong to different natural clusters. This process is repeated sev-
eral times until the specified number of points is chosen. After this procedure, these
selected points are used as initial centers for K-Means clustering algorithm [11].

16.5 Experimental Setup

This section introduces the experimental parameters, the dataset, distance measures
between segments and similarity measure of clusters. A measure for comparing the
results obtained by using city-block distance metric for calculating distance between
segments and the relative-distance metric is given.

16.5 Experimental Setup 309

Algorithm 2. Improved K-Means algorithm
while the number of initial points discovered is less than the total number of clusters do

Run the traditional K-means algorithm for a fixed number of iterations on the whole
sample space
Assess the structural similarity of clusters created by each initial point
if the structural similarity for one cluster is bigger than or equal to a given threshold
then

Check the minimum distance of the point creating this cluster with existing points in
the initialization array
if the minimum distance is bigger than threshold then

This new point is included into the initialization array
end if

end if
end while

Dataset: The dataset used in this work is obtained from the Protein Sequence
Culling Server(PISCES) [21]. Two thousand protein sequences are taken with iden-
tity cutoff of 30%, resolution cutoff of 2.1 and the R-factor cutoff of 1.0. The
PISCES produces a satisfactory non-redundant database.

Generation of Segments: The protein segments are obtained from the protein se-
quences by taking eight successive residues at a time. Each segment therefore repre-
sents eight continuous positions from the protein sequence. Sixty thousand sequence
segments from 2000 protein sequences are obtained. These segments of eight posi-
tions are classified into different groups using improved K-Means algorithm. Each
segment is defined by a Position Relative Distance Matrix(PRDM). For each pair
of amino acids (20× 20) along with the possible distance between them (< 8) the
matrix has a value to denote the number of such instances in the corresponding seg-
ment. Hence each segment is represented by a 20×20×8 matrix.

Distance Measures: Each centroid of a sequence cluster is represented by a PRDM.
The values of centroid is first calculated on an average measure of frequency and
then the PRDM of the segment chosen as a closest point to the centroid. This is
similar to what is done in K-Menoids method. The approach is reasonably resistant
to outliers.

Definition 3. Let S1 = A1,A2, . . . ,A8 and S2 = B1,B2, . . . ,B8 be two segments. Let
Ai,A j(i < j) and Bk,Bl(k < l) be any two amino acid pairs taken from S1 and S2

respectively. If Ai = Bk, A j = Bl and j− i = l − k then S1 and S2 are said to have
a pairmatch for < Ai,A j, j− i >.

Definition 4. The cumulativepairmatch(cp) between two segments is the total num-
ber of pairmatches considering combinations of all amino-acids pairs and distances.

310 16 Exploring Structurally Similar Protein Sequence Motifs

For example, cp between AACC and ACAA is 2 (for AC and AA both of distance
1). The maximum cp for segment of size n is n(n + 1)/2. Since the size of segment
in this case is 8 the maximum cp is 28. Therefore, the value of the cp increases
with more number of similar segments. Since the convention is to use lower values
to denote closer distances between points, we calculate the distance between two
segments as follows:

distance = 228 −2cp

The exponential scale is used instead of linear since the probability of pairmatches
between segments decrease exponentially.

Secondary Structure Assignment: Definition for Secondary Structure of Pro-
teins(DSSP) [22] is used for determining the secondary structure of proteins. We
follow the convention of using H to represent helices, E for sheets and C for random
coils.

Intra-cluster Similarity Measures: The following formula calculates the level of
structural similarity. Structural similarity for a given cluster (%) is [9]

∑l
i=1 max(Pi,H ,Pi,E ,Pi,C)

l

l is the window size. Pi,H is the frequency of occurrence of helices among the se-
quence segments for the cluster in position. Pi,C and Pi,E are similarly defined. The
secondary structure with the maximum frequency is used for representing the com-
mon structure in that position. The average results of the maximum frequency from
all positions of a given window show the structural similarity level for a given clus-
ter. If the structural similarity for secondary structure within the cluster exceeds
70%, the cluster can be considered structurally similar [23]. If the structural similar-
ity for secondary structure within the cluster is between 60% and 70%, the cluster
can be considered weakly structurally similar.

Evaluation of Performance: The percentage of sequence segments belonging to
clusters with high structural similarity and the number of clusters with high struc-
tural similarity are two measures to evaluate the performance of clustering algorithm
[11]. The number of segments belonging to clusters with high structural similarity
and number of clusters with high structural similarity are averaged from results
of three runs. The percentage of sequence segments belonging to clusters with the
structural similarity greater than 60% is calculated by dividing the sum of all se-
quence segments belonging to clusters with structural similarity greater that 60% by
total number of sequence segments in the database.

16.6 Experimental Results

In this section, we compare the experimental results of the city-block distance
based algorithm and relative-distance measure algorithm. The motifs generated by

16.6 Experimental Results 311

relative-distance measure algorithm is shown along with brief explanations of their
structural and biological interest based on biochemical experiments published in lit-
erature like [24-28], etc..

Comparison of PWM-based algorithm with PRDM algorithm: In Table 16.2,
the average percentage of sequence segments belonging to clusters with high-
structural similarity for the City-block based algorithm and PRDM algorithm is
given. The first column of Table 16.2 shows the algorithm with different distance
measures. Four distance measures given for each approximately correspond to each
other. The first column in PRDM refers to the cumulativepairmatch(cp) value.
Lower the cp larger is the distance between the segments, hence the decreasing trend
in numbers. For PWM, the first column is the value of the minimum distance between
initial cluster centroids for K-Means algorithm, measured with city-block metric.

The second column in Table 16.2 gives the average percentage of sequence seg-
ments belonging to clusters with structural similarity greater than 60% from three
runs. The third column of Table 16.2 gives the standard deviation of the percentage
of segments belonging to structural similarity greater than 60%. The fourth column
to Table 16.2 gives the average percentage of sequence segments belonging to clus-
ters with structural similarity greater than 70% from three runs. The fifth column
of Table 16.2 gives the standard deviation of the percentage of segments belong-
ing to structural similarity greater than 70%. Analysis of the clustering process of
the both the algorithms reveals that the initial points chosen are very close to each
other. However, the results show that the number of high similarity clusters steadily
improve with increase in distance for both the algorithms. Compared to PWM, the
PRDM shows slightly better performance with respect to the percentage of segments
included, however the standard deviation measure is better for PWM. For clusters

Table 16.2 Comparison of percentage of sequence segments belonging to clusters with high
structural similarity

CITY-BLOCK

Distance
Measures > 60% > 60% > 70% > 70%

1100 26.43% 1.31 10.61% 0.68
1200 30.74% 0.51 11.26% 0.49
1300 31.91% 0.61 13.96% 0.38
1500 35.18% 0.53 15.16% 0.39

PRDM

26 24.05% 1.21% 8.28% 1.71
24 29.69% 1.12% 11.18% 1.01
22 33.33% 1.42% 13.18% 1.11
20 36.14% 1.22% 15.49% 1.10

312 16 Exploring Structurally Similar Protein Sequence Motifs

Table 16.3 Comparison of Number of Clusters with High Structural Similarity

CITY-BLOCK

Distance
Measures > 60% > 60% > 70% > 70%

1100 191 4.34 61 3.18
1200 181 4.47 66 3.69
1300 196 3.44 78 3.08
1500 221 3.38 81 3.10

PRDM

26 151 4.01 44 2.27
24 190 4.92 47 2.51
22 213 4.22 48 2.92
20 234 3.82 51 2.55

with structural similarity greater than 70% the trend is nearly the same as that of
structural similarity greater that 60%. Table 16.3 shows the number of clusters ex-
ceeding given structural similarity thresholds for the city-based and PRDM-based
algorithms. The first column shown is the same as in Table 16.2. The second column
shows the average number of clusters with structural similarity greater than 60%
from three runs rounded off to nearest whole number. The third column indicates
the standard deviation for the number of clusters with structural similarity greater
than 60% for three runs. The fourth column shows the average number of clusters
with structural similarity greater than 70% from three runs rounded off to nearest
whole number. The fifth column indicates the standard deviation for the number of
clusters with structural similarity greater than 70% for three runs. The improvement
in the number of clusters for PRDM is much higher than of PWM. For PRDM the
increase in clusters from distance cp = 26 to cp = 20 is 55%, while for city-block
the increase in clusters from distance 1100 to 1500 is only 15%. However the stan-
dard deviation of the number of clusters for PRDM is lower than that of city-block.
The comparison between results obtained shows that the PRDM-based algorithm is
not significantly better than city-block metric in all respects. However, the purpose
of the algorithm is not just to increase the number of high similarity clusters or the
percentage of segments belonging to high similarity clusters but to intuitively ex-
plore local sequence motifs that are expressed differently.

Sequence Motifs: About 70 local sequence motifs indicating common structure
are discovered in this work. Various biochemical tests that are found in the litera-
ture are applied to the best among these for uncovering their biological properties.
Some of the motifs that appeared nearly the same as the ones already found are not
reported here. Most of the motifs have helices as predominant secondary structure

16.6 Experimental Results 313

as expected. Analysis of some of the motifs obtained suggest that PRDM uncovers
subtle motifs which are sensitive to relative positioning of amino-acids that are not
obtained using the PWM city-block based approach.

Among the motifs obtained 15 of those that are biologically meaningful are given
in the tables that follow. The following format is used to represent each sequence in
motif table.

• The first row gives the Motif pattern in PROSITE format. Each of these patterns
are of size eight. Only significant amino-acid residues are shown explicitly(>
15%).

• The second row gives the representative secondary structure, i.e., the secondary
structure sequence that best describes the motif

• The third row shows the Hydrophobicity index. The Hydrophobicity is the sum of
the frequencies of occurrence of alanine, valine, isoleucine, leucine, methonine,
proline, phenylalanine and tryptophan. There are denoted by high(H),medium(M)
or low(L) depending on the Hydrophobicity index. H if greater than 0.7, L if less
that 0.3 and M otherwise.

• The fourth row gives the number of segments present in the cluster from which
the motif is obtained.

• The fifth row gives the structural similarity measure for the corresponding cluster
• The sixth row indicates the statistical significance of motif expressed as Z-score

(percentile based).

Pattern 1 (Table 16.4) has conserved Serine residues for the first half of the mo-
tif. They are hydrophilic in nature and outer regions of proteins are found to be rich
with them. Pattern 2(Table 16.5) has conserved regions of leucine and is a amphi-
pathic helix motif and is one of the common structural motifs present in proteins
[29]. Possible functions of amphipathic helices have been tested in [30]. Pattern 3

Table 16.4 Pattern 1: Conserved Serine Residues for the First Half of the Motif

Motif [ES]-S-S-[DS]-S-x(3)
Sec.Str C-C-C-C-H-H-H-H

H L-L-L-L-L-L-L-M
N.Seg 101

Struct.Sim 63.31%
Z-Score 97.45

Table 16.5 Pattern 2: Conserved Regions of Leucine

Motif [LV]-[LV]-[LE]-L-x-L-x(2)
Sec.Str H-H-H-H-H-H-H-H

H H-H-H-H-H-H-M-M
N.Seg 67

Struct.Sim 71.3%
Z-Score 96.12

314 16 Exploring Structurally Similar Protein Sequence Motifs

Table 16.6 Pattern 3: Conserved Glutamic Acid and Lysine Bases

Motif E-E-x(4)-[EK]-[EK]
Sec.Str H-H-H-H-H-H-H-H

H L-L-H-H-H-H-L-M
N.Seg 162

Struct.Sim 66.6%
Z-Score 98.12

Table 16.7 Pattern 4: Conserved Glutamic Acid and Lysine

Motif [AK]-[AK]-[K]-x-[EK]-x-K-K
Sec.Str H-H-H-H-H-H-H-H

H L-L-H-H-H-L-M-L
N.Seg 151

Struct.Sim 65.1%
Z-Score 97.61

Table 16.8 Pattern 5: Motif with Complete Helix and Low Hydrophobicity

Motif E-E-K-L-E-x-K-K
Sec.Str H-H-H-H-H-H-H-H

H L-L-L-M-L-L-L-L
N.Seg 234

Struct.Sim 64.1%
Z-Score 95.12

Table 16.9 Pattern 6: Coil to Helix Transitional Motif

Motif L-G-E-V-[EK]-L-x(2)
Sec.Str C-C-C-C-H-H-H-H

H L-M-H-L-M-L-L-M
N.Seg 100

Struct.Sim 60.56%
Z-Score 97.16

(Table 16.6) shows motif that has conserved Glutamic acid and Lysine bases. Glu-
tamic acids are acidic while lysine is basic in nature. The ability to form ionic bonds
with charged molecules suggest its function in salt bridges [24]. Pattern 4 (Ta-
ble 16.7) shows motifs with conserved glutamic acid and lysine. The secondary
structure is completely helical just like in Pattern 3. This pattern can be classified as
a polar helix. Major functional locations on protein surfaces are the result of charged
amino acids [25].

16.6 Experimental Results 315

Table 16.10 Pattern 7: Coil to Sheet Transitional Motif with varying Hydrophobicity

Motif L-G-L-L-V-V-V-x
Sec.Str C-C-C-C-E-E-E-E

H L-M-L-M-H-H-M-L
N.Seg 110

Struct.Sim 63.56%
Z-Score 95.34

Table 16.11 Pattern 8: Conserved Region of Glycine

Motif L-[SP]-[EP]-D-P-D-[DP]-V
Sec.Str C-C-C-C-H-H-H-H

H M-H-M-M-M-L-L-M
N.Seg 211

Struct.Sim 70.45%
Z-Score 96.15

Table 16.12 Pattern 9: Completely Conserved Regions of Glycine

Motif G-G-G-G-[GS]-[GS]-G-[GS]
Sec.Str C-C-C-C-C-C-C-C

H H-H-H-M-M-M-M-H
N.Seg 48

Struct.Sim 77.1%
Z-Score 98.89

Table 16.13 Pattern 10: Sheet-Coil-Helix Motif

Motif [LV]-x-[LV]-x-V-V-D-x
Sec.Str E-E-E-E-C-C-C-H

H M-M-M-H-M-M-H-M
N.Seg 51

Struct.Sim 71.1%
Z-Score 97.67

Pattern 5(Table 16.8) has a motif with complete helix and low Hydrophobicity.
This is due to the presence of glutamic acids and lysine. Pattern 6 (Table 16.9) shows
a coil to helix transitional motif. The conserved glycine is found to be predominant
in the second position with frequency of occurrence exceeding 30%. Pattern 7(Ta-
ble 16.10) is a coil to sheet transitional motif with varying Hydrophobicity. The
conserved region of glycine is responsible of disruption of sheets and helices–
Pattern 8(Table 16.11).

316 16 Exploring Structurally Similar Protein Sequence Motifs

Table 16.14 Pattern 11: Proline which Contains an Unusual Ring

Motif [P]-[ST]-T-[ST]-[S]-T-[PST]-x
Sec.Str C-C-C-C-C-C-C-C

H M-L-L-L-L-L-L-M
N.Seg 34

Struct.Sim 71.6%
Z-Score 98.10

Table 16.15 Pattern 12: Sheet-Coil-Helix Motifs

Motif V-V-[IV]-G-R-[AR]-R-A
Sec.Str E-E-E-C-C-H-H-H

H H-H-H-M-L-L-L-L
N.Seg 80

Struct.Sim 73.65%
Z-Score 95.6

Table 16.16 Pattern 13: Sheet-Coil-Helix Motifs Hydrophobicity Transition

Motif G-x-x-A-[AR]-[AV]-V-V
Sec.Str E-E-E-C-C-H-H-H

H L-L-M-M-M-M-H-H
N.Seg 21

Struct.Sim 73.65%
Z-Score 94.6

Table 16.17 Pattern 14: Alternating Patterns of Sheets, Helices and Coils

Motif [ILV]-x(5)-D-x
Sec.Str E-H-E-H-E-E-C-C

H H-M-H-M-M-L-L-L
N.Seg 220

Struct.Sim 67.66%
Z-Score 98.81

Pattern 9(Table 16.12) has completely conserved regions of glycine and is es-
sentially made up only of coils as expected. Since glycine is the smallest amino
acid, rotates easily, adds flexibility to the protein chain. However too much fragility
makes the motif structurally less rigid. A related pattern is Pattern 11 (Table 16.14)
here the effect is due to proline which contains an unusual ring to the N-end amine
group, which forces the CO-NH amide sequence into a fixed conformation. It
disrupt protein folding structures like α-helix or β -sheet. Common in collagen,
where it undergoes a post-translational modification to hydroxyproline.

References 317

Table 16.18 Pattern 15: Helix-sheet-helix with conserved alanine

Motif [AL]-x(6)-A
Sec.Str H-E-E-E-E-E-E-H

H L-L-M-M-M-M-L-L
N.Seg 21

Struct.Sim 70.67%
Z-Score 94.15

Pattern 10 is again a sheet-coil-helix motif with high Hydrophobicity. Both Pat-
tern 12(Table 16.15) and Pattern 13(Table 16.16) are sheet-coil-helix motifs with
smooth Hydrophobicity transition. Pattern 14 (Table 16.18) is an interesting struc-
tural motif with alternating patterns of sheets, helices and coils. It has a hydrophobic
aminoacids on one side and an acidic residue at the other. Pattern 15(Table 16.18)
is a Helix-sheet-helix with conserved alanine on both ends.

16.7 Summary

In this chapter, a new algorithm is proposed to explore protein sequences by studying
subsequences with relative-positioning of amino acids followed by K-Means cluster-
ing of fixed-sized segments. The purpose of this approach is to find different motifs
that have hidden relative-distance significance between its residues along with con-
sensus of secondary structure. The most updated dataset from PISCES is used to
generate protein segments. The size of motifs discovered are limited to eight which
is the size of segment chosen. A decrease in segment size would reduce the structural
significance while an increase would suffer statistical support. A comparison to PWM
based algorithm is also made. The experimental results show that motifs generated
are of structural and functional interest and hence are biologically meaningful.

References

1. Karp, G.: Cell and Molecular Biology(Concepts and Experiments), 3rd edn. Wiley, New
York (2002)

2. Hulo, N., et al.: Recent Improvements to the Prosite Database. Nucl. Acids Res. (1994)
3. Kasuya, A., Thornton, J.M.: Three-Dimensional Structure Analysis of Prosite Patterns.

Journal of Molecular Biology 286(5), 1673–1691 (1999)
4. Gribskov, M., McLachlan, A., Eisenberg, D.: Prole Analysis: Detection of Distantly Re-

lated Proteins. Proceedings of National Academy of Sciences 84(13), 4355–4358 (1987)
5. Hertz, G.Z., Stormo, G.D.: Escherichia Colipromoter Sequences: Analysis and Predic-

tion. Methods in Enzymology 273, 30–42 (1996)
6. Brazma, A., Jonassen, I., Edhammer, I., Gilbert, D.: Approaches to the Automatic Dis-

covery of Patterns in Biosequenes. Journal of Computational Biology 5, 279–305 (1998)
7. Vanet, A., Marson, L., Sagot, M.F.: Promotor Sequences and Algorithmical Methods for

Identifying Them. Research in Microbioloby 150, 779–799 (1999)
8. Marson, L., Sagot, M.F.: Algorithms for Extracting Structured Motifs using Suffix Tree

with an Application to Promoter and Regulatory Site Consensus Identification. Journal
of Computational Biology 7, 345–362 (2000)

318 16 Exploring Structurally Similar Protein Sequence Motifs

9. Han, K.F., Baker, D.: Recurring Local Sequence Motifs in Proteins. Journal of Molecular
Biology 251(1), 176–187 (1995)

10. Han, K.F., Baker, D.: Biophysics - Global Properties of the Mapping Between Lo-
cal Amino Acid Sequence and Local Structure in Proteins. Proceedings of National
Academy Sciences, USA 93, 5814–5818 (1996)

11. Zhong, W., Altun, G., Harrison, R., Tai, P.C., Pan, Y.: Improved K-Means Clustering Al-
gorithm for Exploring Local Protein Sequence Motifs Representing Common Structural
Property. IEEE Transactions on Nanobioscience 4(3) (2005)

12. Brejova, B., DiMarco, C., Vinar, T., Hidalgo, S.R., Holguin, C., Patten, C.: Finding Pat-
terns in Biological Sequences - Project Report for CS79g. University of Waterloo (2000)

13. Rigoutsos, L., Floratos, A., Parida, L., Gao, Y., Platt, D.: The Emergency of Pattern Dis-
covery Techniques in Computational Biology. Metabolic Engineering 2, 159–177 (2000)

14. Durbin, R., Eddy, S., Krough, A., Mitchison, G.: Biological Sequence Analysis: Prob-
abilistic Models of Protein and Nucleic Acid. Cambridge University Press, Cambridge
(1998)

15. Petsko, G.A., Ringe, D.: Proteins Structure and Function. New Science Press (2003)
16. Pabo, C.O., Sauer, R.T.: Transcriptional Factors: Structural Familes and Principle of

DNA Recognition. Annals of Revolutionary Biochemistry 61, 1053–1095 (1992)
17. Nelson, H.C.M.: Structure and Function of DNA-Binding Proteins. Current Opinion in

Genetics and Development 5, 180–189 (1995)
18. Scott, M.P., Tamkun, J.W., Hartzell, G.W.: The Structure and Function of the Home-

odomain. Biochemistry Biophysics Acta 989(1), 25–48 (1989)
19. Crochemore, M., Sagot, M.: Motifs in Sequences: Localization and Extraction. In: Hand

book of Computational Chemistry. Marcel Dekker Inc., New York (2001)
20. Heger, A., Lappe, M., Holm, L.: Accurate Detection of Very Sparse Sequence Motifs.

In: Proceedings of RECOMB, pp. 139-147 (2003)
21. Wang, G., Dunbrack Jr., R.L.: Pisces: Recent Improvements to a PDB Sequence Culling

Server. Nucleic Acids Research 33 (2005)
22. Kabsh, W., Sander, C.: Dictionary of Protein Secondary Structure: Pattern Recognition

of Hydrogen-Bonded and Geometrical Features. Biopolymers 22, 2577–2637 (1983)
23. Sander, C., Schneider, R.: Database of Homology Derived Protein Structures and the

Structral Meaning of Sequence Alignment. Proteins Structural Functional Genetics 7(2),
121–135 (1967)

24. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 5th edn. W H Freeman, New York
(2002)

25. Robertson, A.D.: Intramolecular Interactions at Protein Surfaces and Their Impact on
Protein Function. Trends Biochemistry Sciences 27, 521–526 (2002)

26. Kyte, J., Doolitle, R.F.: A Simple Method for Displaying the Hydropathic Character of
Protein. Journal of Molecular Biology (157), 105–132 (1982)

27. Zimmerman, J.M., Eliezer, N., Simha, R.: The Characterization of Amino Acid Se-
quences in Proteins by Statistical Methods. Journal of Theoretical Biology (2001)

28. Finer-Moore, J., Stroud, R.M.: Amphipathic Analysis and Possible Formation of the Ion
Channel in an Acetocholine Receptor. Proceedings of National Academy of Sciences,
USA 81(1), 155–159 (1984)

29. Segrest, J.P., De Loof, H., Dohlman, L.G., Brouilette, C.G., Anantharamaiah, G.M.:
Amphipathic Helix Motif: Classes and Properties. Protein Structural Functional Genet-
ics 8(2), 103–117 (1990)

30. Kaiser, E.T., Kezdy, F.J.: Amphiphilic Secondary Structure: Design of Peptide Hor-
mones. Science 223, 249–255 (1984)

Chapter 17
Matching Techniques in Genomic Sequences for
Motif Searching

Abstract. Sequence retrieval serves as a “preprocess” for a number of other pro-
cesses including motif discovery, in which obtained sequences are scored against a
consensus before being recognized as a motif. This depends on the way sequences
are stored prior to retrieval. The usage of two bits for representing genomic charac-
ters is optimal storage wise, however does not provide any details regarding length
of repetitive characters or other details of positional significance. The intent of the
chapter is to showcase an alternative storage technique for the sequence and its cor-
responding retrieval technique. We represent our technique with the use of integers
for clarity of understanding. With the bit equivalent of the integers used in actual
representation we could minimize storage complexity significantly. We give a clear
picture of the requirements of a storage technique from a motif discovery perspec-
tive before showcasing our proposal.

17.1 Overview

Bioinformatics is a vast field that includes integrating the fundamentals of genomic
and proteomic sciences with advanced mathematics and computational sciences [1].
The field of bioinformatics which we address here is Motif Discovery. A simple ex-
planation is given by Leung-Chin [2] where they state, in order to start the decoding
process (gene expression), a molecule called the transcription factor binds to a short
region (binding site) preceding the gene. One kind of transcription factor can bind to
the binding sites of several genes to cause these genes to co-express. These binding
sites have similar patterns called motifs.

Motivation: Among existing methodologies, the storage technique involves the
storage of characters in plaintext. Each of the subsequences which are retrieved from
the sequence are then evaluated or scored with respect to a motif and returned. For
the purpose of subsequence retrieval there exist a number of algorithms which utilize
integer evaluation to find the matches. One such method is the dated Needleman-
Wunsch Algorithm [10] which makes use of simple arithmetic to evaluate sequences

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 319–330.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

320 17 Matching Techniques in Genomic Sequences for Motif Searching

for the purpose of retrieving subsequences. With the intention of further promoting
this method of arithmetic evaluation in order to retrieve subsequences we propose
the work which is reflected in this chapter.

While high performance methods do exist in retrieving substrings, our approach
looks at the problem from a storage perspective. The need is to have a storage
technique for existing sequence databases which could result in a more informa-
tive method of storing sequences. A storage method with the ability to provide us
with information of the genomic sequences, to favor compression and also compress
to an extent at runtime, to be able to retrieve subsequences from it and so on. The
proposed method provides us with these fundamental benefits and also promote the
use of simple arithmetic evaluation of the subsequence and the main sequences.This
chapter proposes such a method in which integers or bit sequences are used to rep-
resent the genomic characters and which also signify various positional details. For
example, the number of consecutive characters is readily available as an entry in the
table. Also, in cases where consecutive characters are present, the entire length gets
reduced down to one single integer value thereby saving memory. The method pro-
vides a table storage for the main sequence. The entries in the table, as mentioned
earlier, can be integers as well as bit sequences. Each of the entries made in the main
table signify two main things:

• If consecutive genomic characters are present, the length of such a pattern.
• Integer redundancy if there is no change in the current entry in the table to the

next with respect to the substring, thereby favoring compression since redun-
dancy can be accounted for in popular compression algorithms.

The method also provides the critical task of retrieving subsequences with the use
of simple arithmetic comparison involving the interdifferences between integers of
the main sequences (entries in the table can be looked as an array of integers) and
the integers of the subsequence. Method for mutations can also be incorporated by
having a tolerance between the differences between the integer entries.

17.2 Related Work

Motif discovery has attracted a lot of attention from scientists from various compu-
tational backgrounds. Numerous approaches have been taken to motif discovery
considering different constraints and have different trade-offs based on the con-
straints. Motif discovery algorithms can be broadly classified into two types: deter-
ministic and non-deterministic. The deterministic algorithms are usually
regular expression based and are exhaustive, that is the flexibility of tolerance is
minimal in these algorithms. On the other hand non-deterministic algorithms are
non-exhaustive and are stochastic in nature. That is, the flexibility of tolerance is
greater in non-deterministic algorithms and thus can result in different sequences
matches in different runs. Pratt [3] and TEIRESIAS [4] are examples of a de-
terministic algorithm. These algorithms, like many other, use regular expressions
to represent sequences. Other enumerated approaches which are based more on

17.3 Introduction 321

mathematically intensive methods also exist, such as MDScan [5]. MDScan use
higher order Markov model and a scoring technique to identify motifs.

Non-deterministic algorithms as earlier mentioned use algorithms which are non-
exhaustive. Most of the methods which come in this category use positional weight
matrices or matrices whose score depend on positions. These are probabilistic mod-
els. It has been a trend to prefer stochastic algorithms over exhaustive, deterministic
algorithms simply because they are more capable of containing more information
than regular expressions. Some of the popular motif discovery tools are Gibbs Sam-
pling [6], CONSENSUS [7], MEME [8] and BioProspector [9] among others.

Genetic algorithms is another method which is employed for the purpose of mo-
tif discovery. They are stochastic in nature and utilize different forms of fitness
functions usually assuming that only one motif per sequence is present. An evolu-
tionary concept is utilized in genetic algorithms which consider populations, which
in turn further evolve incorporating various mutations. Some populations continue
to evolve resulting closer to the desired solution while other weaker populations
become extinct.

17.3 Introduction

Sequence analysis is used extensively in motif discovery. A motif can be thought
of as a sequence of characters that is widespread and is, in some way, biologically
significant. Given a main string M, of a certain length, our task is to find substrings
Si , that are similar if not identical to a subset of M. The alphabet derives its name
from the four bases: adenine (A), cytosine (C), guanine (G) and thymine (T). Thus
we refer to it as the genetic alphabet. These characters in a sequence define an
organism’s DNA. It is estimated that over 3 billion of these genetic letters constitute
the human genome. A point of consideration is the repetitiveness of sequences. This
observations help in various ways: compression and motif discovery for example.
The human genome is about 20-40 percent repetitive. The extent of repetitiveness
varies from organism to organism.

Before, exploring our algorithm we briefly discuss the relevance of the (l, d)
problem. We primarily use the notations used in the (l, d) problem analysis. Given
a length of string l, and each substring (that is of length l and is some Si) can vary
from the similar pattern found in the main string by d characters. That is given the
main string M=GTACAGTTACAT and S=GTAC. Here l=4 and say that d=1 then,
potential similar strings could be all variations of G,T,A,C which are of length 4 and
differ from S by one character (GTAC, GTAA, GAAC and so on). In our algorithm
the substring matches are done based on the value of d. If d=1 then we produce sub-
strings from the main string which differ by 1 character, as output. Thus, resulting
in similar sequences with a flexibility tolerance of d (in this case d=1).

Notations: We now define some important terms and sets:
Substring S: This is the input string for which we search. The actual variations of
this substring result in Si where i = 1,2,3...
Main string M: This is the string in which we search for Si.

322 17 Matching Techniques in Genomic Sequences for Motif Searching

(l,d): l is the length of the substring and each of its variations. The number of vari-
ations depend on the value of d. l has to be lower than the length of M and should
accommodate for d, i.e., l ± d.
The character set: considered here is from the set {G,A,T,C}.

Degenerative Motifs: Since the substrings returned by the algorithm depend on the
value of d, we can use a state like diagram to generate the substrings. Consider that
the value of S={GTAGCGTA} and d=1, we thus can trace and obtain the following
possible matches. We explain taking, for example,
M={ATCGGTTCGGTACGGTAC}.

At the first scan S[0] does not match with M[0], so a count variable increases
by 1. Beginning the scan from M[1], this results in yet another mismatch and the
count variable has to be incremented by 1 again. However, since the user specified
d=1 this increment is not allowed. It is to be noted that at each iteration the count
variable must be reset to 0. On the tenth iteration where M[9]=G, we proceed with
the state like diagram as shown in Figure 17.1.

Fig. 17.1 Example of d-
alternate (d=1) substring
returned as result

Brute Force Analysis of Subsequence Retrieval: After discussing degenerative
motifs we now look at the algorithm for obtaining the patterns which differ from the
main substring S by at most d mutations. This is a straightforward approach to the
(l,d) problem and incurs huge costs if the length of M is large.

We take an extra input from the user denoting the start and end points between
which the user wishes the degenerative motifs to exist. If a user does not enter any
(start,end) then the entire string is scanned. Algorithm 7 is a brute force approach
to obtaining the subsequences. Some runs of the algorithm, with an example, are
shown below:

M={GTACGCGACTGCACGTGCACGTGCACGGTGCA
CGTGCACGTGGCCCAACACAGATCGATGCATAGC
TAGATCGATAGCTAGATCGATCAGATCGATAGAT
CGATAGCTAGCATAGAGAGACTCGATAGATCGAT
AGCTAGACTAGCATCGATCAGCATCGACTACGAT
CAGCTACGACTAGCACTCGACAG}
S={AGCATAA}
d=1

17.4 Alternative Storage and Retrieval Technique 323

Results in one subsequence returned : {AGCATAA}
With d=2 the subsequences returned are :
TGCATAG
AGCATAG
AGCATCG
AGCATCG

From the two for loops it is clear that the complexity of the algorithm is O(n x n).
It is observed that as d increases, the distance between the degenerative motifs and
the desired sequence increases. The following graph in Figure 17.2 indicates the
variance associated between the parameters: length (of S), d and the time taken to
search M for S.

Algorithm 1. Brute Force Approach (n)

1: len1 ← length of M
2: len2 ← length of S
3: if start,end not defined then
4: start ← 0
5: end ← len1
6: end if
7: for i ← start; i ← end; i++ do
8: for k ← 0; k ← len2; k ++ do
9: if M[i+k] == S[k] then

10: skip
11: else
12: if M[i+k]! = S[k] and count < d then
13: count++;
14: end if
15: else
16: break;
17: end if
18: end for
19: end for
20: if k == len2 then
21: return detected string
22: end if
23: count ← 0

17.4 Alternative Storage and Retrieval Technique

Table Construction: Here we discuss an alternative method that could be adopted
for storing the content of M. Since the character set is specific to 4 bases, G,T,A,C,
we use each of these four characters as four main indexes. We maintain a table
where each row is headed by one of the four characters. The rest of the table contains
integers which denote their occurrence (even if consecutive occurrences are present)
and also hold information of preceding and succeeding characters which helps us

324 17 Matching Techniques in Genomic Sequences for Motif Searching

Fig. 17.2 Analysis of brute force approach

when we scan M for subsequences. It is observed that the method is more suitable
for finding existing subsequences than degenerative ones. Also, with integers being
readily related to the character set, compression techniques can be readily applied
to the storage. We explain the construction of the digest table before going into the
algorithm.

Consider M=GTACGGTCTGCATC. Now, we scan through M once and make
entries into our table at each scan as we proceed. At M[0]=G which is the first
character, and occurs once, so we enter 1 in the table. This trend follows on until we
reach M[4]=G. Here since there are two consecutive Gs we enter the last value (4)
plus 2, i.e., we enter 6. As we progress, M[7]=A and the present value is incremented
and stored (in this case 7). Thus, we ensure that for a change in the sequence we
increment the previous value by one. Also, if the next character does not match the
current index in the table, we re-enter the previous value as in the case of M[8]=T.
The algorithm for constructing the digest table is given below:

Table 17.1 Table construction for considered M

G T A C
1 2 3 4
6 7 7 8
8 9 9 9
10 10 10 11
11 11 12 12
12 13 13 14

17.4 Alternative Storage and Retrieval Technique 325

For our example, tracing M=GTACGGTCTGCATC results in the Table 1. It is
observed that the table presented here is for the purpose of understanding the con-
cept of our technique. Usage of integers naturally incurs high cost in terms of mem-
ory. In turn one can use bit patterns which convey the same message in the form of
bits. We used LEU1 and LEU2 as sample to test our algorithm. The partial tables
(since the tables would occupy too much space) are given below for verification
purposes.

Subsequence Retrieval: Having constructed the table using the above algorithm,
we now discuss how one can check whether the subsequence entered by the user
exists in the table. Again, we illustrate the process with an example taking M to be
the same as before in order to maintain continuity.

Given M=GTACGGTCTGCATC, let us say that we want to check if the subse-
quences CGGTC and CTGC exist. Looking at our table, we start with the index
being G. We continue scanning till we reach C for the first time. Having reached C

Table 17.2 Table Construction for
LEU1 - Initial Part

G T A C
0 0 2 2
2 3 4 4
4 5 5 5
6 6 8 10
10 10 11 12
12 12 13 13
14 15 16 17
17 17 18 18
18 19 19 20
20 20 21 21
21 22 23 23
23 25 27 27
28 28 29 30
31 32 33 33
34 35 36 36
36 38 38 39
40 40 41 41
41 42 42 42
43 43 44 44
44 46 46 46
47 47 49 49
51 51 51 53
54 54 54 56
56 57 57 59
60 60 60 61
62 62 65 65

Table 17.3 Table Construction for
LEU1 - Final Part

G T A C
469 470 471 471
471 472 472 473
474 474 475 475
475 480 481 481
481 483 484 484
484 487 487 487
488 488 488 489
489 490 490 490
491 495 498 498
498 499 499 500
500 500 501 501
501 502 502 502
504 507 508 509
509 509 510 511
511 512 512 514
514 514 515 515
515 516 516 518
518 518 520 520
523 524 524 526
526 526 528 528
529 529 531 532
532 533 533 534
534 537 538 539
540 540 541 541
541 542 544 544

326 17 Matching Techniques in Genomic Sequences for Motif Searching

Algorithm 2. Construction of Storage Table
1: index ← the row belonging to one of G,A,T,C.
2: cur ← current value being entered into table
3: prev ← previous value entered into table.
4: prev ← 0, cur ← 0 index ← G.
5: Input: M
6: Output: Table consisting of integer values of positional significance
7: for each character in M do
8: if M[i] == table[index] then
9: check for consecutive occurrences of M[i]

10: Let this value be count
11: prev ← cur
12: cur ← prev + count
13: enter value into table.
14: count ← 0
15: else
16: enter prev as value into table
17: end if
18: end for

Table 17.4 Table Construction for
LEU2 - Initial Part

G T A C
0 1 2 2
4 4 5 5
5 6 8 8
8 10 11 11
11 12 13 14
14 15 15 16
16 17 18 18
18 21 21 22
22 23 23 24
24 24 26 27
27 27 29 29
30 31 33 33
33 35 35 35
37 39 39 39
40 43 43 43
45 45 45 47
48 48 49 49
50 50 50 51
53 54 54 55
55 56 58 58
60 60 60 61
62 62 62 64
64 65 65 65

Table 17.5 Table Construction for
LEU2 - Final Part

G T A C
487 487 488 488
488 489 490 490
490 491 492 494
494 494 495 495
495 497 497 498
498 499 501 501
501 502 502 502
503 504 504 505
505 506 506 506
507 507 507 511
511 512 514 514
515 515 517 517
518 518 519 519
519 520 520 521
522 523 523 524
525 529 529 529
530 530 530 532
532 532 533 533
535 536 536 536
537 537 538 540
540 540 541 542
543 545 545 545
547 548 548 549

17.5 Experimental Setup and Results 327

where the value is 4, we need the next character in the subsequence (G) to be present
next with an increment. This is true since the next index is G and the value is more
than 4. Since two Gs are present in the subsequence as well as M, this is automati-
cally validated by the increase of 2 in the value. Thus, at each scan, we need to check
if the bases being compared are the same and the value is incremented correctly.

Algorithm 3. Subsequence Retrieval Algorithm
1: index ← the row belonging to one of {G,A,T,C}.
2: cur ← current value in table
3: prev ← previous value in table.
4: prev ← 0, cur ← 0 index ← G.
5: Input: M
6: Output: In this case, whether the subsequence is present or not
7: prev ← initial table value
8: cur ← initial table value
9: index ← G

10: construct table for S
11: for each character in M do
12: if M[i]==table[index] then
13: check if cur > prev same as S[cur] > S[prev]
14: i.e., the consecutive numbers increase in the same order
15: else
16: move index to next location of M[i] in table
17: end if
18: end for
19: if all characters matched then
20: return true
21: else
22: return false
23: end if

17.5 Experimental Setup and Results

All algorithms are implemented and executed on Pentium 5 running Red Hat Linux
9. Simple C/C++ code is used in order to better gauge the speed of algorithms. The
compiler used is the Gnu C Compiler which came bundled with Red Hat Linux
9. Figure 17.2 is the graph plotted with the results obtained from an equivalent C
code implementation of the brute force method. The figure shows the time taken for
subsequence retrieval from relatively smaller length of strings unlike the existing
ones. Figure 17.3 is the graph that is plotted for the proposed algorithm. The graph
also included the LEU1 and LEU2 table construction time. The possible reason for
large time values is the maintenance of indexes and the process of evaluating the
entry of each cell with the previous cell. Implementation on large scale systems
result in a significantly lesser running time.

328 17 Matching Techniques in Genomic Sequences for Motif Searching

Fig. 17.3 Results of proposed approach of table construction

Fig. 17.4 Compression ratio for standard character storage

17.6 Summary 329

Fig. 17.5 Compression ratio for proposed technique

Figure 17.4 and Figure 17.5 indicate the compression ratio when the sequenced
where compressed using bzip2. The compression ratio is calculated using com-
pressed file size divided by regular file size and factors such are repetitiveness as
well as type of the data in the file, integer or character are considered. Our file sizes
where considerably larger than the character files since we utilized integers in our
calculation. The usage of bits to represent bases would greatly reduce the file sizes
associated with our technique.

17.6 Summary

We investigated the problems associated with retrieving patterns from an existing
gene sequence. We also illustrated the use of a digest table that contains integers
or digest values, as we referred to them earlier. Probable uses of integers include:
indicating positions of occurrence, incorporating the (l, d) options as input on simple
alteration of the algorithm in order to provide degenerative sequences as results.
Usage of integer equivalent bit patterns for consecutive characters reduce the entire
length to a bit sequence while continuing to indicate the length of repetition. This
type of representation promotes compression as well.

330 17 Matching Techniques in Genomic Sequences for Motif Searching

References

1. Srinivas, V.R.: Bioinformatics - A Modern Approach. Prentice-Hall of India, Englewood
Cliffs (2005)

2. Leung, H.C.M., Chin, F.Y.L.: An Efficient Algorithm For the Extended (l,d)-Motif Prob-
lem With Unknown Number of Binding Sites. In: Proceedings of the 5th IEEE Sympo-
sium on Bioinformatics and Bioengineering (BIBE 2005) (2005)

3. Jonassen, I., Collins, J.F., Higgins, D.: Finding Flexible Patterns in Unaligned Protein
Sequences. Protein Science 4(8), 1587–1595 (1995)

4. Rigoutsos, I., Floratos, A.: Combinatorial Pattern Discovery in Biological Sequences:
The TEIRESIAS Algorithm. Biofinformatics 14, 55–67 (1998)

5. Liu, X.S., Burtlag, L., Liu, J.S.: An Algorithm for Finding Protein-DNA Binding
Sites with Applications to Chromatin Immuno Precipitation Microarray Experiments.
Biotechnology 20, 835–839 (2002)

6. Neuwald, A.F., Liu, J.S., Lawrence, C.E.: Gibbs Motif Sampling: Detection of Bacterial
Outer Membrane Protein Repeats. Protien Science 4, 1618–1632 (1995)

7. Hertz, G.Z., Stormo, G.D.: Identifying DNA and Protien Patterns with Statistically Sig-
nificant Alignments of Multiple Sequences. Bioinformatics 15, 563–577 (1999)

8. Bailey, T.L., Elkan, C.: Unsupervised Learning of Multiple Motifs in Biopolymers using
Expectation Maximization. Machine Learning 21, 51–80 (1995)

9. Liu, X., Burtlag, D.L., Liu, J.S.: Bioprospector: Discovering Conserved DNA Motifs in
Upstream Ergulatory Regions of Co-expressed Genes. Pacific Symposium on Biocom-
puting 6, 127–138 (2001)

10. Needleman, S., Wunsch, C.: A General Method Applicable to the Search for Similarities
in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology 48(3), 443–
453 (2000)

Chapter 18
Merge Based Genetic Algorithm for Motif
Discovery

Abstract. Motif discovery is an important problem in bio-informatics that involves
the search for approximate matches. Various algorithms have been proposed, in-
cluding exhaustive searches as well as heuristic searches that involve searching only
a subset of all the possible solutions. One such often employed method is the ge-
netic algorithm. A genetic algorithm based approach is employed in MDGA, using a
single population. We build on that method using multiple populations, each evolv-
ing against different fitness landscapes. Individuals in each population compete for
participation in the genetic events of crossover and mutation based on probabili-
ties. Each of these fitness landscapes, is designed to solve a subset of the problem,
thus optimizing a particular characteristic. Once evolution in each of these popula-
tions has saturated, they are merged according to a global fitness scheme and then
evolved. This process continues till the final population also converges. Different
options for implementation are also mentioned. We then proceed to compare our re-
sults with that of standard methods, on well known datasets and the results obtained
are good.

18.1 Introduction

Bioinformatics and computational biology involve the use of techniques includ-
ing applied mathematics, informatics, statistics, computer science, artificial intel-
ligence, chemistry and biochemistry to solve biological problems usually on the
molecular level. Bioinformatics seeks to solve problems of sequence alignment,
protein structure prediction and gene prediction among many others. Computational
biology is yet another related term.

Bioinformatics greatest claim to fame has been the much publicized compilation
of the human genome sequence. Protein structure prediction which attempts to de-
termine the 3 dimensional structure of proteins from their amino acid sequences is
also a key and well known area. Detection and analysis of point mutations to detect
cancer is a very important application. The large sequences that are generated from
the sequencing efforts often contain noisy data. Sifting and analyzing this data is
done by the use of informatics based approaches.

K.R. Venugopal, K.G. Srinivasa, L.M. Patnaik: Soft Comput. for Data Min. Appl., SCI 190, pp. 331–341.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

332 18 Merge Based Genetic Algorithm for Motif Discovery

In molecular biology, a motif is a weakly conserved nucleotide or amino-acid
sequence pattern that is widespread and has, or is conjectured to have, a biological
significance [1]. Motif discovery is one of the holy grail problems of Bioinformatics
research. Motif discovery seeks to find sequence patterns in multiple input patterns
that is similar to a consensus motif of a given length with a certain permissible
number of mutations. Mathematically, this is expressed as the (l,d) problem, where
l denotes the length of the motif and d denotes the maximum number of mutations
permissible within the candidate sequences to be considered to be similar to the
consensus sequence. A d value of 0 indicates a perfect match.

The classic genetic algorithm (GA) models Charles Darwin’s theory of evolution.
A population of a species of organism, whose individuals represent solutions to the
problem posed by their environment, as modeled by the fitness function, evolve to
form better solutions. The weaker solutions, which are not very successful in solv-
ing the problem, are eliminated and become extinct. The stronger solutions then
“mate” to combine the best qualities of both solutions. Also, existing solutions are
mutated according to predefined probabilities. These crossover individuals and mu-
tants then form the next generation of the species. This form of evolution continues
until a suitably close solution is found. GAs are extremely good at scaling problems
where the perceived gap between the solutions and the problem, as according to the
fitness function, is large. However, as the solutions move towards optimality, the
GA no longer has a “hill” to scale and as such, the rate of improvement slows down.
Therefore, GAs are used in cases where an exact solution is not required, but where
a merely good solution is sufficient.

Motivation for this study: Genetic algorithms present a non-exhaustive method
for motif discovery. The search space in the motif discovery problem is extremely
large and a good non-exhaustive method must intelligently choose the candidates
to examine. Existing approaches using genetic algorithms have tried, via a variety
of fitness landscapes, to select a set of candidate solutions. The selection of can-
didate solutions, is thus the key to the solution of the motif discovery problem.
Our approach, attempts to maximize the examination of the solution space, by using
multiple populations. Each population has its own fitness function, thereby allowing
us to fine tune the search parameters for each population’s quest.

Previous approaches, have so far concentrated on single population optimizations
on the basic genetic algorithm. Those that have used multiple population models,
have specified a relation or an interaction between them. Our proposed algorithm,
seeks to isolate the individuals of one population from another and allows them to
evolve unimpeded.

Each population grows on a different fitness landscape. The effect is that to-
wards the end of the algorithm’s execution, the final population has been maxi-
mized against each characteristic. Unlike other GAs however, if the algorithm halts
the point of saturation is reached, the members of the population are not in the
vicinity of the optimality. As the number of iterations in a GA increase, so does its
“closeness” to the optimal value. In our algorithm, the number of iterations after the

18.1 Introduction 333

point of saturation has been crossed, defines the final population’s “closeness” to
the optimal value.

In order to solve the problem of convergence at local maxima, we propose the
introduction of multiple geographically isolated populations. Each of these popula-
tions, uses a different fitness function. Hence, each population evolves towards its
local maxima. At some point of saturation, all populations stops evolving towards
the global optimum. We then seek to evaluate all the populations against a normal-
ized function that determines the average fitness of each population. A strong pop-
ulation is then chosen and its individuals are merged into a weak population. This
causes individuals which are very strong in one environment, to evolve in another
environment, which presents yet another set of challenges. Hence the resulting pop-
ulation after sufficient evolution bears the characteristics of both initial populations.
A population that is generated from the result of merging, may not be evaluated for
fitness for a certain number of iterations. This gives the population a “window of
opportunity” to evolve. This process is iterated, until only one population remains.
This final new population, is then evolved until a sufficiently optimal solution is
reached.

Previous applications of Genetic algorithms to Motif Discovery have used Mul-
tiple populations. Each of these populations has the same fitness function. However,
these algorithms have a measured probability pt which defines the probability on
which individuals are transferred between populations. This has the effect of re-
fining the population into which the new individuals are transferred. The extent of
refinement, however is a matter of chance, since genetic algorithms are non exhaus-
tive and stochastic in nature. The specificity of the fitness function, also plays a
major role in the extent of refinement.

Geographical Isolation, occurs when a part of a species’ population when sepa-
rated from its parent population, over time, evolves to different characteristics. In
nature, when geographical isolation does occur, the new environment presents a
different set of problems for the population. Thus, the population has to solve the
problems in order to avoid extinction. In the perspective of an algorithm, the pop-
ulation has a new “hill” to climb. This hill is formed due to a change in the fitness
landscape.

Our approach, involves a known and predefined number of populations, which
are bred, from the very start, against different fitness landscapes. After a specified
period of individual evolution, these populations are merged, one at a time, with
regular iterations. Different fitness landscapes are achieved by the use of different
fitness functions. Each of these fitness functions evolves the population, in order to
optimize a given characteristic or a set of characteristics. The end result of such evo-
lutionary processes is a set of populations, the union of their sets of characteristics
being the total set of characteristics desired.

These populations are then merged as according to a merging scheme. The
end result of the algorithm, is a well balanced population, which has individuals,
which having evolved in a competitive fitness landscape among competitive peers,
provides a very desirable solution.

334 18 Merge Based Genetic Algorithm for Motif Discovery

18.2 Related Work

Genetic algorithm has been previously applied to Motif Discovery to identify mo-
tifs in multiple unaligned DNA sequences [1], [2]. These methods differ in the
fitness functions they use to evaluate the individuals of the population. Each of
these methods uses a fitness function, which seeks to solve a specific problem. In
some cases, these problems overlap and the final resulting populations have similar
characteristics [3].

A variety of approaches have been applied to solve this problem. These can be
broadly classified as deterministic and non-deterministic. Deterministic approaches
conduct an exhaustive search of the solution space to realize the solution. On the
other hand, non-deterministic approaches only search a subset of the solution space.
This subset is determined via an algorithm that characterizes the approach. Com-
monly used non-deterministic approaches utilize statistical methods such as hidden
Markov models, artificial intelligence methods such as neural networks and evo-
lutionary computing methods such as genetic algorithms. Commonly used motif
discovery tools are MEME [4], CONSENSUS [5], MotifSampler [6], BioProspec-
tor [7], Gibbs sampling [8] and AlignACE [9].

[10] and [11] have also proposed the use of multiple population models. They
advocate the use of either a migration model or a specific distribution of the indi-
viduals. Very often, genetic algorithms tend to converge towards local optima rather
than a global optimum. These solutions, give useful results when the solution space
has only one global optimum. The fitness landscape, as described by the fitness
function can be used to predict the occurrence of either. Some methods that are used
to alleviate this problem include triggered hypermutation and random immigrants.

18.3 Algorithm

We now look into design of an algorithm, which uses multiple populations in order
to achieve the required result. Our first work is to divide the given problem into a
set of sub problems, each requiring a particular characteristic of the solution. This
forms the basis for our algorithm. We then proceed to design fitness functions for
each of these characteristics. Let us now briefly explore some of the design issues.

Design issues: The design of our proposed algorithm, requires the following issues
to be considered.

• The number of populations: A more complex problem, involving very specific
requirements, benefits from a larger number of populations. In such cases, each
population can be tuned to work towards a specific characteristic that is required
of the final solution.

• The fitness functions for each population: For each population required, a unique
fitness function is required. If diversity of a property of the solution is sought,
then more than one population may utilize the same fitness function. The fitness
function for a population, must seek only to present a specific problem to the

18.3 Algorithm 335

individuals of the population. The set of characteristics that the different fitness
functions seek to work with must be disjoint.

• Normalized average fitness function: Since this function decides when a popu-
lation is “weak” or “strong”, it must be defined with some care. The output of
this function may be implementation dependent. Some alternatives for the imple-
mentation are:

1. It can either be an unsigned score in a range [min,max] where a population
with score max is stronger than a population with score min.

2. A ranking based system where a population with rank 1 is the strongest and a
population with rank n is the weakest.

3. The function itself may return a boolean value when two populations are
passed as arguments. This result depicts the relative fitness of the populations.

• Point of saturation: After a certain number of iterations, the individuals in a GA
stop evolving. This point, considered to be the point of saturation, is dependent
on the fitness landscape of the fitness function. Considering the fitness landscapes
of each population, this point of saturation may vary. The GA must run at least till
this point is crossed. The evaluation of the normalized average fitness function
must only be done on a population which has crossed its point of saturation.
When all the populations have been merged into a single final population, this
population must also be evolved until the point of saturation.

• Merging scheme: The order in which the populations are merged, must be de-
cided. This can be implemented in the following ways:

1. A ranking based scheme, which merges the second weakest population into
the weakest population. This has the effect of evolving the “stronger” popula-
tions in a different landscape.

2. An ordering scheme, which is derived from the problem statement itself. For
instance, the evolution of a characteristic may be a pre-requisite for the evo-
lution of another.

Proposed Algorithm: We now define some of the notations that we use to describe
our proposed algorithm. We define the number of populations to be n. The fitness
functions for each of these populations is given as f itness[i](). The corresponding
point of saturation for the population i is saturation[i]. The merging scheme is de-
fined in the function merge populations(pop1, pop2), where pop2 and pop2 are
merged as according to the scheme. The normalized fitness function is written as
normalized f itness(pop). The algorithm for motif discovery using multiple geo-
graphically isolated populations, MGIGA is shown in Algorithm 1.

Explanation: We shall now explore the algorithm in some detail. The given prob-
lem statement, must first be carefully analyzed to derive specific characteristics
that need to be optimized. Accordingly, once the desired characteristics of the
solution have been decided upon, the number of populations for the algorithm
must be decided. It may be required to use more than one population for a given

336 18 Merge Based Genetic Algorithm for Motif Discovery

Algorithm 1. MGIGA

1: n ← Number of populations
2: for i = 0 to n do
3: Design f itness[i]
4: Decide saturation[i] based on f itness[i]
5: end for
6: Design merge populations(pop1, pop2)
7: Design normalized f itness(population)
8: while num o f populations > 1 do
9: if n > 1 then

10: for i = 0 to num o f populations do
11: evolutions ← 0
12: while evolutions < saturation[i] do
13: evolve(population[i])
14: end while
15: end for
16: end if
17: end while
18: for i ← 0 to n do
19: Evaluate normalized f itness(population[i])
20: end for
21: while num o f populations! = 1 do
22: Select pop1 and pop2.
23: merge populations(pop1, pop2)
24: end while
25: while f itness(f inal population) < required f itness do
26: evolve(f inal population);
27: end while

characteristic. It may also be required to use one population for a set of minor char-
acteristics. In either circumstance, the fitness function for the population is to be
designed appropriately.

The fitness functions, must work on mutually independent characteristics. If
there is any overlap of characteristics, the populations would have individuals, with
similar characteristics. The overlap, would be at the cost of exploring other can-
didate solutions and this exploration must be optimized in an exhaustive search.
On the other hand, optimization of the same characteristic across different popu-
lations ensures that, the particular characteristic is studied thoroughly by the al-
gorithm. This issue needs to be factored while designing the fitness functions for
the populations.

Each fitness function, causes the population to saturate at a given point. This “sat-
uration” is defined at the point, when the population no longer evolves appreciably
with any further generations. This point of saturation, can be a fitness value which
is reached upon after the sufficient evolution of the population, or the number of
iterations. The point of saturation defines the stopping criteria for the algorithm and
thus evolving a particular population of interest to the application.

18.4 Experimental Setup 337

The population merging function, defined by merge populations(pop1, pop2),
serves to move individuals, which have adapted well to one population to evolve in
another landscape. This has the effect of improving the quality of mutation, without
changing the mutation rate itself. For implementations, with fewer populations, this
merging scheme could be predefined such as a trivial transfer of individuals from
one population to another. For more complex implementations, the merging scheme
should define the number of individuals to be transferred, as well as the order of
merging. The order of merging defines the characteristics to be optimized and the
order of optimization. In general, it would be more useful to transfer the individuals
from stronger population to weaker population, as this has an effect of optimizing
stronger individuals in a different landscape. In addition, the native population has
a varied mutant quantum. The normalized fitness function, would have to be de-
signed, keeping in mind the overall requirements of the solution. This function is
used to evaluate individuals across populations and thus, must take into account all
characteristics.

Once these functions have been setup as desired, the algorithm is executed. Each
of the populations are evolved, without any interaction from the other populations.
After all populations have been sufficiently evolved (once their points of saturation
have been reached), the normalized average fitness function is called to evaluate the
populations. The merging function is then used to merge individuals from different
populations, in the order that is decided with the help of the normalized average
fitness function. Each single merge is accompanied by iterative evolution, until the
point of saturation is reached. The above process is iterated, until one single popula-
tion is left. This final population is evolved, until a sufficiently fit solution is found.
This final solution is optimized against all populations.

Implementation Strategies: The proposed algorithm may be implemented in par-
allel using a cluster or a grid. A Master node may be utilized to control the timing
and flow of the implementation. Each worker node may be used to evolve one pop-
ulation. MPI may be used for purposes of communication between the master node
and each of the worker nodes.

A character based chromosome may be used for simple implementation of the
crossover and mutation operators. The crossover and mutation operators are based
on set probabilities. To increase the diversity of a population, the probabilities of the
operators may be changed when the iterations near the point of saturation.

18.4 Experimental Setup

The algorithm is implemented using the Python programming language, for its dy-
namic nature and ease of use. The genetic algorithm framework is implemented
using the PyGene library. A single gene of an individual is made up of the start-
ing positions of the candidate motifs, from the different sequences of the in-
put. Selection is done using Roulette wheel selection procedure. This is internally
implemented in the PyGene library.

338 18 Merge Based Genetic Algorithm for Motif Discovery

Fitness Functions: For the first population, we used the following function.
This function optimizes the search for weakly conserved motifs. The fitness of an
individual X is given by f itness(X). β is the bonus coefficient, that is used to give
a bonus to a consensus motif that is found at least once in all the sequences. N
gives the number of sequences. ci gives the number of motif instances of sequence
i having 0 ≤ d j ≤ d. γ is used to give distance based weight to a motif. Always
γ ≥ 2. Finally, w(j) defines the frequency based weight of motif j. A similar fitness
function is used by [1]

f itness(X) = β
N

∑
i=1

ci

∑
j=1

γ(d−d j)w(j))

The second fitness function we use, is given by

f itness(X) =
W

∑
i=1

ICi

W is the Motif width, defined by the number of columns in the motif. ICi is the
information content of column i. This information content is calculated as

IC = ∑obsb log2
obsb

backgroundb

where obsb is the observed frequency of nucleotide b on a particular column and the
backgroundb is a background frequency of the same nucleotide. Thus the fitness of
an individual is calculated as the sum of the information in each column of the motif
alignment. This function is similar to the one used by [3].

Data sets used: To test the results of our algorithm, we ran it against the 15 target
genes of transcription factor YDR026c in Saccharomyces cerevisiae, as well as the
6 sequences MCB transcriptional factors of the same and finally the LEU3 motifs
as well. All sequence datasets are obtained from [12].

YDR026c Binding Sites: The dataset consists of 15 genes of YDR026c in yeast.
Empirical results for the binding site of this sequence have not yet been confirmed.
We also compare our results with those obtained from MEME and MDGA. Motif
patterns detected by all three programs are very similar.

Motif program Predicted Motif
MEME TCCGGGTAAA
MDGA TCCGGGTAAA
MGIGA TACCGGGTAA

18.5 Performance Analysis 339

MCB Transcriptional Factor: Six sequences from positions -500 upstream to +50
downstream of the regulated genes of Saccharomyces cerevisiae are extracted and
used as inputs. Our results are exactly the same as observed by MDGA. Thus the
additional population is not needed in this case.

Embedded motif MDGA MGIGA
ACGCGT ACGCGT ACGCGT
ACGCGA ACGCGT ACGCGT
CCGCGT ACGCGT ACGCGT
TCGCGA ACGCGT ACGCGT
ACGCGT ACGCGT ACGCGT
ACGCGT ACGCGT ACGCGT

The consensus of the embedded motifs is WCGCGW. Notice, that the consensus
of our predicted motifs is ACGCGT. This is the true consensus motif and reflects
that obtained by MDGA.

LEU3 Transcriptional Factors: Two sequences from positions -500 upstream and
+50 downstream of start sites of two regulated genes of Saccharomyces cerevisiae
are extracted. The two regulated genes are LEU1 and LEU2, and have a consen-
sus motif of CCGNNNNCGG. For the consensus CCGGAACCGG, and consensus
CCGTAACCGG, the motifs predicted by MGIGA and by MDGA are identical.

Consensus Motif MDGA MGIGA
CCGGGACCGG CCGGAACCGG CCGGAACCGG

CCGGGACCGG CCGGGACCGG
CCGGAACCGG CCGGAACCGG CCGGAACCGG

CCGGAACCGG CCGTAACCGG
CCGTAACCGG CCGTAACCGG CCGTAACCGG

18.5 Performance Analysis

The running time of our algorithm, is significantly larger from that of other genetic
algorithm based approaches, since multiple genetic algorithms must be run. Even
after running the GAs in parallel, the merging scheme requires additional GAs to
complete evolution. For the experiments shown, two GAs are run and merged after
some evolutions. Thus the running time is the sum of the running time of both
these GAs. Figure 18.1, shows the convergence rate of our GA after all merging
has completed. The rate of convergence of MDGA and of the genetic algorithm
proposed by [1] is much slower than that of MGIGA. This is because, at the final
GA in our algorithm, individuals are already much fitter than the random individuals
chosen by MDGA and [1] at the beginning.

340 18 Merge Based Genetic Algorithm for Motif Discovery

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 10 20 30 40 50 60

MGIGA
MDGA

Weak Motifs

Fig. 18.1 Comparative convergence rate of the final GA after all merging has completed,
MDGA and from [1]

18.6 Summary

We have proposed an algorithm that utilizes many populations in order to reach the
global optimum. Each population represents a characteristic. Each population is op-
timized for the local maxima. Individuals from these populations are combined to
form the population for the final evolution that reaches the global optimum. As ap-
plied to Motif Discovery, our algorithm is as effective as existing genetic algorithm
based approaches. The scope of this work is only exploratory and thus more valida-
tion needs to be done. For shorter sequences, the overhead of the multiple genetic
algorithms outweigh the benefits of scaling the local maxima. This algorithm may
be more suited to longer sequences, when searching for motifs with two or more
characteristics.

References

1. Paul, T.K., Iba, H.: Identification of Weak Motifs in Multiple Biological Sequences using
Genetic Algorithm. In: Proceedings of GECCO 2006, Seattle, USA (2006)

2. Fogel, G.B., Weekes, D.G., Varga, G., Dow, E.R., Harlow, H.B., Onyia, J.E., Su, C.:
Discovery of Sequence Motifs Related to Coexpression of Genes using Evolutionary
Computation. Nucleic Acids Research 32(13), 3826–3835 (2004)

3. Che, D., Song, Y., Rasheed, K.: MDGA: Motif Discovery using a Genetic Algorithm. In:
Proceedings of GECCO 2005, pp. 447–452 (2005)

References 341

4. Baile, T.L., Elkan, C.: Unsupervised Learning of Multiple Motifs in Biopolymers using
Expectation Maximization. Machine Learning 21, 51–80 (1995)

5. Hertz, G.Z., Stormo, G.D.: Identifying DNA and Protein Patterns with Statistically Sig-
nificant Alignment Sets of Multiple Sequences. Bioinformatics 15, 563–577 (1999)

6. Thijs, G., Marchal, K., Lescot, M., Rombauts, S., De Moore, B., Rouze, P., Moreau, Y.:
A Gibbs Sampling Method to Detect Over-represented Motifs in the Upstream Regions
of Coexpressed Genes. Journal of Computational Biology 9, 447–464 (2002)

7. Liu, X., Burtlag, D.L., Liu, J.S.: Bioprospector: Discovering Conserved DNA Motifs in
Upstream Regulatory Regions of Co-expressed Genes. In: Pacific Symposium on Bio-
computing, vol. 6, pp. 127–138 (2001)

8. Neuwald, A.F., Liu, J.S., Lawrence, C.E.: Gibbs Motif Sampling: Detection of Bacterial
Outer Membrane Protein Repeats. Protein Science 4, 1618–1632 (1995)

9. Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M.: Finding DNA Regulatory Motifs
within Unaligned Noncoding Sequences Clustered by Whole-Genome mRNA Quantiza-
tion. Nature Biotechnology 16, 939–945 (1998)

10. Srinivasa, K.G., Sridharan, K., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M.: A Dy-
namic Migration Model for Self Adaptive Genetic Algorithms. In: Gallagher, M., Hogan,
J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 555–562. Springer, Heidelberg
(2005)

11. Srinivas, M., Patnaik, L.M.: Binomially Distributed Populations for Modelling GAs. In:
Proceedings of Fifth International Conference in Genetic Algorithms, pp. 138–143. Mor-
gan Kauffmann Publishers, San Francisco (1993)

12. Fraenkel lab downloads, http://jura.wi.mit.edu/fraenkel/download/
release_v24/fsafiles/

http://jura.wi.mit.edu/fraenkel/download/
release_v24/fsafiles/

	Title Page
	Foreword
	Preface
	Acknowledgements
	About the Authors
	Contents
	Acronyms
	Introduction
	Data Mining
	{\it Association Rule Mining (ARM)}
	{\it Incremental Mining}
	{\it Distributed Data Mining}
	{\it Sequential Mining}
	{\it Clustering}
	{\it Classification}
	{\it Characterization}
	{\it Discrimination}
	{\it Deviation Mining}
	{\it Evolution Mining}
	{\it Prediction}
	{\it Web Mining}
	{\it Text Mining}
	{\it Data Warehouses}

	Soft Computing
	{\it Importance of Soft Computing}
	{\it Genetic Algorithms}
	{\it Neural Networks}
	{\it Support Vector Machines}
	{\it Fuzzy Logic}
	{\it Rough Sets}

	Data Mining Applications
	References

	Self Adaptive Genetic Algorithms
	Introduction
	Related Work
	Overview
	Algorithm
	{\it Problem Definition}
	{\it Pseudocode}

	Mathematical Analysis
	{\it Convergence Analysis}

	Experiments
	Performance Analysis
	A Heuristic Template Based Adaptive Genetic Algorithms
	{\it Problem Definition}

	Example
	Performance Analysis of HTAGA
	Summary
	References

	Characteristic Amplification Based Genetic Algorithms
	Introduction
	Formalizations
	Design Issues
	Algorithm
	Results and Performance Analysis
	Summary
	References

	Dynamic Association Rule Mining Using Genetic Algorithms
	Introduction
	{\it Inter Transaction Association Rule Mining}
	{\it Genetic Algorithms}

	Related Work
	Algorithms
	Example
	Performance Analysis
	{\it Experiments on Real Data}

	Summary
	References

	Evolutionary Approach for XML Data Mining
	Semantic Search over XML Corpus
	The Existing Problem
	{\it Motivation}

	XML Data Model and Query Semantics
	Genetic Learning of Tags
	Search Algorithm
	{\it Identification Scheme}
	{\it Relationship Strength}
	{\it Semantic Interconnection}

	Performance Studies
	Selective Dissemination of XML Documents
	Genetic Learning of User Interests
	User Model Construction
	{\it SVM for User Model Construction}

	Selective Dissemination
	Performance Analysis
	Categorization Using SVMs
	{\it XML Topic Categorization}
	{\it Feature Set Construction}

	SVM for Topic Categorization
	Experimental Studies
	Summary
	References

	Soft Computing Based CBIR System
	Introduction
	Related Work
	Model
	{\it Pre-processing}
	{\it Feature Extraction}
	{\it Feature Clustering}
	{\it Classification}

	The STIRF System
	Performance Analysis
	Summary
	References

	Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction
	Introduction
	Related Work
	Model
	Algorithm
	{\it Algorithm FEASOM}
	{\it Modified Kohonen Algorithm}
	{\it The Genetic Algorithm}
	{\it Fuzzy Inference System}
	{\it Backpropagation Algorithm}
	{\it Complexity}

	Example
	Implementation
	Performance Analysis
	Summary
	References

	Data Mining Based Query Processing Using Rough Sets and GAs
	Introduction
	Problem Definition
	Architecture
	{\it Rough Sets}
	{\it Information Streaks}

	Modeling of Continuous-Type Data
	Genetic Algorithms and Query Languages
	{\it Associations}
	{\it Concept Hierarchies}
	{\it Dealing with Rapidly Changing Data}

	Experimental Results
	Adaptive Data Mining Using Hybrid Model of Rough Sets and Two-Phase GAs
	Mathematical Model of Attributes (MMA)
	Two Phase Genetic Algorithms
	Summary
	References

	Hashing the Web for Better Reorganization
	Introduction
	{\it Frequent Items and Association Rules}

	Related Work
	Web Usage Mining and Web Reorganization Model
	Problem Definition
	Algorithms
	{\it Classification of Pages}

	Pre-processing
	Example
	Performance Analysis
	Summary
	References

	Algorithms for Web Personalization
	Introduction
	Overview
	Data Structures
	Algorithm
	Performance Analysis
	Summary
	References

	Classifying Clustered Webpages for Effective Personalization
	Introduction
	Related Work
	Proposed System
	Example
	Algorithm II: Naïve Bayesian Probabilistic Model
	Performance Analysis
	Summary
	References

	Mining Top - k Ranked Webpages Using SA and GA
	Introduction
	Algorithm {\it TkRSAGA}
	Performance Analysis
	Summary
	References

	A Semantic Approach for Mining Biological Databases
	Introduction
	Understanding the Nature of Biological Data
	Related Work
	Problem Definition
	Identifying Indexing Technique
	LSI Model
	Search Optimization Using GAs
	Proposed Algorithm
	Performance Analysis
	Summary
	References

	Probabilistic Approach for DNA Compression
	Introduction
	Probability Model
	Algorithm
	Optimization of P'
	An Example
	Performance Analysis
	Summary
	References

	Non-repetitive DNA Compression Using Memoization
	Introduction
	Related Work
	Algorithm
	Experimental Results
	Summary
	References

	Exploring Structurally Similar Protein Sequence Motifs
	Introduction
	Related Work
	Motifs in Protein Sequences
	Algorithm
	Experimental Setup
	Experimental Results
	Summary
	References

	Matching Techniques in Genomic Sequences for Motif Searching
	Overview
	Related Work
	Introduction
	Alternative Storage and Retrieval Technique
	Experimental Setup and Results
	Summary
	References

	Merge Based Genetic Algorithm for Motif Discovery
	Introduction
	Related Work
	Algorithm
	Experimental Setup
	Performance Analysis
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

