58 research outputs found

    Fuzzy-enhanced Dual-loop Control Strategy for Precise Nanopositioning

    Get PDF
    Postprin

    Dynamic Modeling and Control System Design for Shape Memory Alloy Actuators

    Get PDF
    Shape memory alloy (SMA) is a type of smart material which remembers its original state. It is light weight and small, and known to provide high contraction force with low noise. Its application has wide range from robotics to medical science. One of its potential applications in space is a supporting system of membrane structure that can be used as synthetic aperture radar (SAR) antenna to achieve high flatness. It exhibits nonlinear phenomena called hysteresis when it's electrically heated. Hysteresis is a nonlinear phenomenon that refers to the dependence of a physical system on the environment. Hysteresis in SMA causes a major difficulty in control system design. Un-modeled or poorly modeled hysteresis introduces inaccuracy in tracking and the performance of the system. Experimental test bench is constructed for one set of SMA actuators that resembles the membrane structure's supporting system. Hysteresis is obtained by running open loop test with the test bench. Dynamic model of the SMA wires is developed using classical Preisach model and modified Maxwell model. Then the inverse model is implemented in feed-forward loop to compensate for nonlinear hysteresis. Simple feedback controllers are added to correct the modeling errors. Experimental results reveal that the error is significantly reduced when comparing feedback controller with hybrid feedback and feed-forward controller

    Analysis and Design of Hybrid Control Systems

    Get PDF
    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method

    Position control of a shape memory alloy actuator using a four-term bilinear PID controller

    Get PDF
    Shape memory alloy (SMA) actuators have a number of appealing features, such as their low weight or their high force-to-weight ratio, that make them a potential alternative to traditional actuation technologies in fields such as space applications, surgical devices or wearable robotics. In this paper, a type of bilinear controller consisting of a conventional PID controller cascaded with a bilinear compensator, known as BPID, is proposed. Bilinear controllers are a subset of nonlinear controllers, which is why the BPID may be a promising alternative to control the position of a SMA actuator. Nonlinear control techniques are commonly applied to control SMA actuators, because of their nonlinear behavior caused by thermal hysteresis. The BPID controller is simpler and easier to implement than other nonlinear control strategies, which makes it a very appealing candidate to control SMA actuators. The performance of the BPID controller has been compared with other two controllers, a conventional PID and a commuted feed-forward PIPD, controlling a real SMA actuator. To this end, a set of five tests has been defined, in which the controlled actuator must follow a series of position references. From these tests, the position and error of the actuator have been plotted, and a series of metrics has been computed to have quantitative measurements of the performance of the three controllers. It is shown that, in most of the experiments, the BPID has a better performance than the other two tested controllers, especially tracking step references. However, the power consumption is slightly higher when the actuator is controlled with this strategy, although-the difference is minimal. Also, the BPID imposes greater energy variations to the SMA actuator, which might affect its service life. Overall, the BPID controller has proved to be a viable alternative to control SMA actuators.The research leading to these results has received funding from the STAMAS (Smart technology for artificial muscle applications in space) project, funded by the European Union’s Seventh Framework Programme for Research (FP7) (grant number 312815), and from the RoboHealth (DPI2013-47944-C4-3-R) Spanish research project

    Wind Turbine Reliability Improvement by Fault Tolerant Control

    Get PDF
    This thesis investigates wind turbine reliability improvement, utilizing model-based fault tolerant control, so that the wind turbine continues to operate satisfactorily with the same performance index in the presence of faults as in fault-free situations. Numerical simulations are conducted on the wind turbine bench mark model associated with the considered faults and comparison is made between the performance of the proposed controllers and industrial controllers illustrating the superiority of the proposed ones

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    MATLAB Applications in Engineering

    Get PDF
    The book presents a comprehensive overview of MATLAB and Simulink programming. Chapters discuss MATLAB programming for practical usages in mesosphere–stratosphere–troposphere (MST) radars, geometric segmentation, Bluetooth applications, and control of electric drives. The published examples highlight the capabilities of MATLAB programming in the fields of mathematical modeling, algorithmic development, data acquisition, time simulation, and testing

    An investigation into the merits of fuzzy logic control versus classical control.

    Get PDF
    A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering.Up to now the benefits and problems with fuzzy control have not been fully identified and its role in the control domain needs investigation. The past trend has been to show that a fuzzy controller can provide better control than classical control, without examining what is actually being achieved. The aim in this project report is to give a fair comparison between classical and fuzzy control. Robustness, disturbance rejection, noise suppression" nonminimurn phase and dead time are examined for both controllers. The comparison is performed through computer simulation of classical and fuzzy controlled plant models. Fuzzy control has the advantage of non-linear performance and the ability to capture linguistic information. Translating quantitative information into the fuzzy domain is difficult; therefore when the system is easily mathematically modelled and linear, classical control is usually better. Which controller should be used depends on the application, control designer and information available.Andrew Chakane 201

    Fuzzy control design based on genetic algorithms

    Get PDF
    A new methodology for design of fuzzy controllers based on Genetic Algorithms has been proposed. The developed design tool initially identifies an approximate model for a system based on a small set of input/output data of the plant. The system identification is also performed based on Genetic Algorithms. The model is then used in the design procedure. The tuning can be carried out either on the membership functions or the fuzzy rules of the fuzzy controller. The method can be applied to linear and non linear SISO and MIMO systems with time delay and unknown structure. Experimental observations show that the developed methodology performs well and is superior to other considered in this study

    Matlab Program Library for Modeling and Simulating Control Systems for Electric Drives Based on Fuzzy Logic

    Get PDF
    Fuzzy control of the speed of electric drives is an alternative in the field of the control system. Modeling and simulation of electric drive control systems based on fuzzy logic is an important step in design and development. This chapter provides a complete means of modeling and simulation of fuzzy control systems for DC motors, induction motors, and permanent magnet synchronous motors, made in the Matlab/Simulink program environment, useful for performing complex analyzes. The functioning of the programs is demonstrated by an example of characteristics obtained practically, with a functioning regime often encountered in practice
    corecore