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emory alloy (SMA) actuators have a number of appealing features, such as their low weight or their 
ce-to-weight ratio, that make them a potential alternative to traditional actuation tech-nologies in 
ch as space applications, surgical devices or wearable robotics. In this paper, a type of bilinear 
r consisting of a conventional PID controller cascaded with a bilinear compensator, known as BPID, is 
. Bilinear controllers are a subset of nonlinear controllers, which is why the BPID may be a promising 

ve to control the position of a SMA actuator. Nonlinear control tech-niques are commonly applied to 
MA actuators, because of their nonlinear behavior caused by thermal hysteresis. The BPID controller 
r and easier to implement than other nonlinear control strategies, which makes it a very appealing 
e to control SMA actuators. The performance of the BPID controller has been compared with other two 
rs, a conventional PID and a commuted feed-forward PIPD, controlling a real SMA actuator. To this 
t of five tests has been defined, in which the controlled actuator must follow a series of position 

es. From these tests, the position and error of the actuator have been plotted, and a series of metrics 
 computed to have quantitative mea-surements of the performance of the three controllers. It is 

hat, in most of the experiments, the BPID has a better performance than the other two tested 
rs, especially tracking step references. However, the power consumption is slightly higher when the 

 is controlled with this strategy, although the difference is minimal. Also, the BPID imposes greater 
ariations to the SMA actuator, which might affect its service life. Overall, the BPID controller has 

o be a viable alternative to control SMA actuators.
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ological development and research in new types of mate-
manufacturing methods have led to the appearance of

gly smaller sensors, embedded control systems, lighter
ger structures, better energy sources, etc. Some fields of
nics where miniaturization and weight reduction are of
ortance, such as wearable robotics or space applications,

n benefited from these technological advances, resulting
velopment of lighter, smaller and thus, more portable
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owever, actuators, which are a key element of a mecha-
vice, have not undergone similar development. Power
is one of the most important parameters of an actuator
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ost of miniaturizing traditional devices such as electric
ydraulic or pneumatic actuators is an important reduc-
e power they can deliver. Nevertheless, there are some
that, despite their small size, can deliver a considerable

hape memory alloy (SMA) actuators are within this type
s.
A is a metallic alloy that can recover its original
zed” shape after being deformed when heated above
ormation temperature, due to a transition between a
te phase (low temperature) and an austenite phase (high
ure). The most common of these alloys used for actuation
Titanium, or Nitinol. The deformation-recovery cycle of
n be repeated millions of times, provided that the applied

ions are in the recovery range of the alloy. A SMA actua-
SMA element as the transducing material of the actuator:
ransducer converts thermal energy into mechanical work.
A element is heated by means of the Joule effect, with a
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rcuit that applies an electric current to the SMA actua-
transduction processes take place. First, electric energy
rmed into thermal energy thanks to the Joule effect.
mal energy triggers the shape recovery process of the

ent and the resulting recovery energy is transformed
hanical work. SMAs have several advantages when used
ors for mechatronic applications. They are small and
ht, which allows for a reduction in size, weight and com-
f the devices where they are used. The force-to-weight
ery high: a 510 �m diameter Flexinol wire can exert a
ensile deformation of about 35 N [1]. They can be used as
tic actuators: when using SMA wires in tensile deforma-
ctuation resulting from the deformation-recovery cycle is
the behaviour of a human muscle. Finally, their operation

ctuators have some limitations that have to be addressed
an be used as an alternative to traditional actuators in
nic applications. When used in the form of a wire in ten-
mation, they produce low strains, typically 2–5% of their
hey can reach 8–10% at the expense of reducing their
fe). This implies that in applications where great linear
ents are needed, very long SMA wires have to be used.

limitation is their low actuation bandwidth: being ther-
ivated actuators, their actuation speed mainly depends on
g time of the SMA element, which is strongly influenced
cess of heat convection from the SMA to the environment.
tion bandwidth can be improved by passive methods like

s or active methods such as air circulation or liquid cooling.
ell known issue of SMAs, and one of the main research

thin the field of SMA actuators, is their nonlinear behav-
affects their controllability. The reason for this nonlinear
is that the temperatures at which the transformation

tensite to austenite takes place are different from the ones
tenite to martensite transformation, giving rise to thermal
s.
ork presented in this document is part of the STAMAS
which is being currently developed by a consortium of
research centers. The objective of this project is to study
ility and to bring experience on the SMA based actuation
ies addressing terrestrial applications, to research in new

of artificial muscles for biofeedback spacesuits, as an alter-
current technologies. The ultimate goal of the STAMAS
the development of three different SMA-actuated demon-
Two of them are countermeasure devices intended to be
e a spacecraft: one to exercise the legs in order to mitigate
ass and bone loss, and another one to exercise the ankles
ove propioception and balance. The third demonstrator is
assistance device intended to be used in extravehicular
(EVA). It is an exomuscular system designed to release
s from part of the exhausting effort required to move the
the hand when using an EVA glove.
previous work, a commuted feedforward PIPD feedback
rategy, named PIPD for simplicity, has been implemented
l SMA actuators [2]. With the cited method, three short
es were actuated simultaneously, achieving an accurate
of the position reference. Despite of the good results
with this PIPD controller, the control of SMA actuators
rther improved to reduce the error and overshoot pro-
the nonlinear behavior of the material. These effects can
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surface. T
hese systems is simple and similar to a linear one. Bruni
ned bilinear systems as a class of “nearly” linear systems

different techniques and analytical procedures already
linear systems are also valid for bilinear systems. In addi-

nonlinear structure presents some important advantages
controllability, optimization and modeling. Bilinear con-
nd especially the one implemented in this work, are a

ice to control nonlinear systems with hysteresis because of
plicity and ease of implementation, compared with more
strategies. For the above reasons, a four-term bilinear PID
ntroller is proposed in this work to control SMA actua-
he best of our knowledge, no other groups have applied
ompensators to control this type of actuators. The purpose
rol the linear motion of a hanging mass with a SMA lin-
tor. Exhaustive experiments have been conducted to test
rmance of the control approach proposed in this paper.
behavior of the BPID controller regarding accuracy and

ess lets us conclude that it is a suitable alternative to con-
type of materials.
st of this paper is organized as follows. First, Section 2

a brief review of related work, paying attention to the dif-
thods that can be applied to control smart actuators and

me examples. The control strategies implemented in this
detailed in Section 3. After that, the experimental setup
ced in Section 4. In Section 5, the results are presented.
ssion about the experimental results is addressed in Sec-
d, finally, the most relevant conclusions are summarized

7.

d work

different strategies can be applied to control non-
stems. Nevertheless, not all of them are appropriate
ms with hysteresis. SMA actuators present a nonlin-
ated hysteretic behavior during martensite-austenite and
-martensite transformations. This hysteresis cycle can

ined either experimentally or it can be approximately
using different methods. Position and force control of SMA
are topics that have been widely studied during the last
heir nonlinear saturated hysteretic behavior originates
ate errors and limit cycle problems when conventional
rs are used [4,5].
ent techniques can be implemented to control SMA actu-
e controllers vary from simple linear controllers to more
nonlinear control approaches. Due to the complex behav-
d by their hysteresis cycle, SMA actuators are mostly
d using nonlinear methods. The most relevant contrib-
ill be reviewed in the next paragraphs.

the hysteretic nonlinear behavior, simple conventional
rs like proportional controllers are not sufficient to achieve
osition control. In [6], a proportional controller is used in
ape control of a flexible beam. Experimental data have
at a high gain is required to eliminate the steady-state
at the cost of a higher overshoot and actuator saturation.
t al. [7] have used a nonlinear variation of a PID controller
o as PID-P3 controller. Their simulations showed that for
es of error, the cubic term of the regulator, which is the

erence with respect to a traditional controller, produces
trol effort that reduces significantly the settling time. The
m vanishes for small values of error and the controller
a conventional PID controller. This technique has not been

experimentally.
g et al. [8], a first-order system is used to model the step
of a composite beam with SMA actuators located on its
he parameters are experimentally determined and the
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used to tune a controller. To control the response of the
mposite beam, two methods are used. One of them is a
nal PID feedback controller and the other one is a feedfor-

troller. The experimental results have shown a reasonable
ime and high overshoot for the PID controller, and long
ime for the feedforward controller.
et al. [9] have used two PID controllers to control a SMA
The first one is adjusted with Ziegler–Nichols. In the sec-
which is called Internal Model Control (IMC), the SMA is
as successive series of four transfer functions: a gain, a
r transfer function, a second order transfer function, and a
e. The time response of the IMC controller is significantly

t al. [10] have concluded in their experiments that a PI
-windup is the best type of position controller for their
ators.
ticular case of controllers that have been successfully
o SMA actuators are the Pulse Width Modulation (PWM)
rs. This type of controller differs in how the control action
mands the actuator is generated: they use discrete-time
nals as control actions. Therefore, this approach can be
with linear on nonlinear compensators. PWM controllers

wn to be an effective solution reducing the energy con-
of the actuator. This fact has been demonstrated by some
rs. In [11], a PWM controller was used to control a SMA
and results showed a 30% reduction in the energy con-
hen compared with a conventional PD controller, while
ing the same position accuracy. An improved PWM tech-
led Pulse-Width-Pulse-Frequency (PWPF) modulator was
odulate a PD controller in [12]. It was found that the PD

r with PWPF modulation consumed 50% less energy than
ntroller without modulation.
ent years, the experimental results using nonlinear con-
how that (in position control of SMA actuators) it is
o achieve faster tracking and greater accuracy. The most
nfiguration is a combination of feedforward and feedback
rs [13–17]. The main idea of the feedforward controllers
f using an inverse model of the system to generate the
te control input to obtain the desired response. A different

the optimal controller based on the LQR method adopted
d Mavroidis to control SMA actuators [18]. Another type of
controllers that have been used to control SMAs are those
gain scheduling. Gain scheduling control is based on the
ries of linear controllers whose performance is optimized
nt operating points of the plant to be controlled. To switch
the different linear controllers, the gain scheduler moni-
or more observable variables to infer in which operating
he controlled process. There are some examples of gain
g control applied to control the position of SMA actuators,
e works by Jayender et al. [19,20] or Kilicarslan et al. [21].
sis et al. [22] implemented a gain-scheduled controller to
output of the SMA actuation system of a prosthetic hand.
nt procedures can be followed when addressing the prob-
odeling and controlling the behavior of systems with

s. Regarding the techniques applied to SMA actuators,
thods will be divided here into model-based controllers
se model controllers. These approaches are not restricted
tuators and are also applied to other smart actuators like
tric, piezoceramic and magnetostrictive.

based controllers.
ontroller is designed based on the equations of the system.
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ntative models of SMA wires are used. An example of a
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here the stress is related to the state variables of strain,
ature and martensite volume fraction.
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most important difficulty of this type of controllers is
in accurate models. In fact, many aspects of nonlinear
rs are not modeled or highly simplified. Any modeling
requires a model validation previous to the controller

uon and Jala [24] have used a model-based sliding mode
law with SMA actuators. Their model is obtained by

ing the motion equation with the heat convection (con-
e law) and phase transformation (hysteresis) equations of
A. The resulting controller is used in a three-link planar
r position control.

nia and Ahmadian [25,26] have developed a nonlinear
of a 1-DOF rotary arm that is SMA actuated. The non-
pproach uses three models: the arm nonlinear dynamic
a SMA phase transformation model and a nonlinear
nvection model. They use two controller designs: a

ature-based controller and a stress-based controller. The
ature-based controller is a variable structure controller
he stress-based one is a sliding mode controller.
hysteresis model controllers
ompensator is based on an inverse hysteresis model. In a
p, a hysteresis model is built based on the experimental
the system. The hysteresis model is designed to minimize
r between the real system and the model. In a second step,

n loop controller in which the inverse operation adjusts
uator input to compensate the hysteresis of the system
emented. The previous steps produce a linear relation-
tween the reference input and the system output [27].
tice, the inverse model cannot cancel completely all hys-
nonlinearities in SMA actuators, and some authors use a
k controller together with the feedforward open loop con-
13]. The use of a feedforward controller can speed up the
led system response and increase the bandwidth when
ed with a PID controller. On the other hand, the PID con-

provides better tracking performance at low frequencies

rch in modeling the hysteresis of SMA actuators has been
tive in the last two decades. These techniques can be clas-
to two groups:
box-based controllers: the hysteresis (or more frequently
erse) is modeled as a black or grey box. They exploit the
rsal approximation properties of neural networks, fuzzy
ms and neuro-fuzzy structures. These methods require a
amount of experimental data.
sua et al. [10], an experimentally trained neural network
d to cancel the nonlinearities of a SMA wire. The neural

ork is trained to learn the inverse hysteresis behavior and,
that, a PI with anti-windup control loop is used. Kumagi
[14] have proposed a controller with a feedforward part
ses a neuro-fuzzy inference system and a PD controller.
et al. [15] have designed a neural network feedforward
oller for open loop tracking control of a SMA wire actuator
ut a position sensor. Their neural network controller is

verse model of the hysteresis that maps the relationship
een the applied voltage and the actuator displacement. In
eian et al. [16], they are focused on the application of an
inverse controller as a feedforward regulator for force

ol applications of SMA actuators.
menological-based controllers: the hysteresis is
led by phenomenological hysteresis modeling meth-
Preisach models, Krasnosel’skii-Pokrovskii models and
tl–Ishlinskii models are operator-based models in which
lobal behavior is defined by the integral of the hysteresis
tors over a specified region. Accurate results are obtained
ing the inverse of these phenomenological hysteresis
ls as a feedforward compensator.
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hes and Wen [29] have used the Preisach inverse model
trol a SMA actuator. In Ahn and Kha [30], the inverted

rical Preisach model is integrated in a closed loop PID
ol system to compensate the hysteresis in SMA actuators.

a et al. [17] have developed a control system composed
control loops: a PID feedback control loop and a feedfor-

loop. The feedforward loop is used to obtain the desired
ol input corresponding to the desired displacement. This
ained from a SMA model based on a Preisach hysteresis
l. Hysteresis compensation based on the Krasnosel’skii-
vskii hysteresis inverse model can be found in [31]. They
parameterized discrete inverse Krasnosel’skii-Pokrovskii
l to compensate the hysteresis effects. They have imple-
ed a temperature control law (with electrical current
ut) and a model reference controller. The main draw-

of the temperature-based feedback controller is that it
cult to measure the disturbed temperature of the SMA

tor in an open environment. The position control of smart
tors can also be performed using the Prandtl–Ishlinskii
se model as a feedforward controller. The advantages of
randtl–Ishlinskii model are its lower complexity and the

ility to obtain analytically its inverse. Ru et al. [28] have
d this model to describe the hysteresis and the LMS algo-
to estimate the weights of the major hysteresis loop

ibed by the Prandtl–Ishlinskii operator. The inverse of the
ified model is used in an open loop adaptive controller to
ensate the hysteresis of a piezoelectric actuator.

ol strategies

ntrol strategies that have been tested in this work to con-
wires are presented in this section. First, the BPID control
proposed in this paper is detailed. After that, the PID and
niques are also reviewed because they will be tested for
on.

ear PID control

ar systems can be considered as a specific type of nonlinear
haracterized by the following dynamic equation [32]:

(t) + bu(t) + u(t)Nx(t), (1)

∈ Rn is the state vector, u(t) is a single input, A is a n × n
real values, b is a n × 1 vector of real values, and N is a n × n
real constants that contains the nonlinear coefficients.
ass of systems presents interesting properties. The type of
ity shown in Eq. (1) is simple and close to a linear system.

allows the application of many techniques and analytical
es already set up for linear systems. Besides, the nonlinear
offers other important features.
the controllability is analyzed, the input controls the state
not only additively by means of the term bu(t), but also in

icative way by means of the term u(t)Nx(t). This combina-
ntrol approaches can result in a more effective control
some cases. For example, some researchers have con-
at a linear system with input amplitude constraints is, in
ot controllable. This system can be controlled by adding

icative control law [32,33].
the objective is to model a process, it will be possible to

those systems where the dynamics depends on the prod-
states by the input. This situation happens in some natural
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different bilinear models for biochemical and physiolog-
ms [32]. Other examples where bilinear systems can be
re some economical processes and the electrical power
n.
control loop with a bilinear compensator is proposed in

to control SMA actuators. The BPID control system is
ly a combination of a standard linear PID controller cas-
th a bilinear compensator. To the best of our knowledge,
first time that this type of controllers is applied to control
ators. The addition of a bilinear compensator can result

ain linearization of a nonlinear plant. From a controller
iew, a tuned BPID control system is achieved. According

an [34], the overall performance of the controlled sys-
proved when a BPID controller is tuned with a minimum

ge of the plant.
ilinear controller follows the structure proposed by Mar-
al. [35]. The structure of their controller relies on another
e of this type of systems, which is that the order of the
ystem is lower than the corresponding linear model. Mar-
al. concluded that the next equation can be successfully

o model industrial furnace applications:

y(k − 1) + b u(k − 1) + � u(k − 1)y(k − 1), (2)

k) represents the state in the discrete-time domain, which
put of the plant in this case, u(k − 1) is the discrete input
− 1, and a, b, and � are constants.
pplication is completely different here, but it will be
rated that the same controller can be used for SMA wires.
ut or state to be controlled is the position of the SMA actu-
rranging the terms, the following equation is obtained:

y(k − 1) + b
[

1 + �

b
y(k − 1)

]
u(k − 1). (3)

pe of nonlinear system can be controlled by the state feed-
arization method. This technique is based on the definition
itional input v. In the case studied here, the system dynam-
arized if the relation between the original input and new

1
1 + Kby(k − 1)

v(k − 1), (4)

= �/b is the tuning parameter.
bstituting Eq. (4) in Eq. (3), it can be observed that the
ynamics is now linear:

y(k − 1) + b v(k − 1). (5)

that, the linearized system can be controlled by a tradi-
ear technique such as a PID controller.
st component added to the bilinear compensator is a term
tee that the performance is maintained at the tuning

ll compensation at this point). Finally, the formula of the
ator proposed by Martineau et al. and introduced in the
lock is

ef (k)
− 1)

, (6)

ef(k) is the reference output at which the PID controller
d.
d before, the final structure of the BPID approach is a four-
troller comprising the three-term PID controller (see the
in Eq. (11)) and an additional bilinear term. This simple
ure is displayed in Fig. 1. The bilinear term of Eq. (6) is
d in the bilinear compensator block. An anti-windup sys-

lso been included to limit the control action that can be
e actuator.
ins of the BPID controller may be fixed following differ-
. It is possible to use standard commercial packages or
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Fig. 1. BPID control scheme (taken and adapted from [35]).
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Fig. 2. PIPD control scheme.

engineer experience. Martineau et al. propose autotuning
for three-term controllers or least-squares fit to measured
a [35].

muted feedforward PIPD control

control strategy, presented in [2], uses a com-
strategy that switches between two controllers: a
nal-Derivative (PD) controller and a feedforward
portional–Integral (ff+PI) controller. The selection of
oller to be used at each moment is done according to
nce signal to follow. The general idea is to use different

rs for the heating-cooling phase and for maintaining the
. The output of the controller is converted to a PWM
at regulates the current flowing through the SMA wire.
roller switches automatically between the PD and the
trollers depending on its input. If the actuator has to
a fixed position given by the input position reference,
ntroller is active. When a new position reference is given
ntroller and the actuator has to contract or expand to
s new position, it switches to feedforward-PI control.
orward term of the controller applies a small current to
he SMA wire in order to achieve a small contraction. This
s applied only when the SMA actuator contracts from
position to a new position given by the input position

. When the wire expands, the preheating current given
dforward term is not applied.

ontrol architecture is shown in Fig. 2. The PD controller
the PI regulator is given by CPI. CFF represents the offset

d by the feedforward component. This approach is ruled
lowing formulas and conditions:

; if yref (k) ≤ yref (k − 1),

FF ; otherwise,
(7)

is the small current that is added when necessary.

D e(k) + KdPD

e(k) − e(k − 1)
Ts

, (8)

) = yref(k) − y(k) is the error signal (difference between the
eference and the output), KpPD and KdPD

are the gains of the
r, and Ts is the sample time, which is equal to 0.002 s.∫ k
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PI and KiPI
are the gains of the controller.

The SMA
temperat
35 N [1].
lector block (Sel) commutes the output of the controller
to the following condition:

u1(k); if yref (k) /= yref (k − 1),

u2(k); if yref (k) = yref (k − 1).
(10)

entional PID control

ontrol strategy is the starting point of the other two tested
rs. The PIPD controller consists of two conventional lin-
ollers, a PI and a PD, whose output is switched depending
put position reference, whereas the proposed BPID con-
conventional PID whose output is multiplied by a bilinear
this reason, the performance of a PID will be tested and

d with its two implemented variations.
ethod applies the following control reference to assign a
he current applied to the SMA actuator at each time:

WM) = Kpe(k) + Ki

∫ k

0

e(�)d� + Kd
e(k) − e(k − 1)

Ts
, (11)

: proportional gain, Kd: derivative gain, Ki: integral gain.

imental setup

bjective of the performed experiments is to control the
tion of a hanging mass with a SMA linear actuator. To

the proposed BPID controller has been tested along with
two controllers described in Section 3: a conventional

oller and a commuted PIPD controller. Their performances
n assessed and compared in terms of accuracy, actuation
ess and power consumption. The general scheme of the
ntal setup is shown in Fig. 3, where the blue lines indicate
ections, the red lines indicate electrical connections and
lines indicate mechanical connections.

actuator

tuator chosen to control the displacement of the hang-
has been a high-displacement flexible SMA actuator first

in [36] and refined in [37]. The main field of applica-
is flexible actuator is wearable robotics, more specifically
keletons and robotic prostheses, where weight reduction
r design factor and where large displacements and forces
red. Its main feature is that it is a flexible actuator: it can
nd still be able to transmit force and motion. This fea-
s to overcome one of the limitations of SMA actuators,
d displacements they can produce, by using a long SMA
can be bent to fit the shape of the structure in which

tor is installed, without limiting the motion of the struc-
if it is articulated and changes its shape dynamically.

ws for a better integration and adaptability than other
igh-displacement SMA actuators. The mechanical design
esented SMA flexible actuator is based on the Bowden
smission system, with an approach similar to the designs
in [38] or in [39].
xible element of the actuator is a multilayer sheath con-
a PTFE inner tube to reduce friction losses and a helical

steel outer sheath that is rigid enough not to be deformed
SMA wire contracts, but at the same time it is flexible

tuator can be bent. The steel outer sheath has another
eous feature: it acts as a heat sink, increasing the actua-
transducer is a Flexinol HT wire, with an austenite start
ure of 90 ◦C, a diameter of 0.5 mm and a pull force of about
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bench

scribed SMA actuator has been installed on a test bench
to test the effect of the bending angle on the performance
tuator, although this feature has not been used in the

control tests and the actuator is installed in a straight
tion. The test bench, shown in Fig. 4, is composed of a
cture and the mechanical interfaces to fix the actuator, a
gnetic position sensor with a resolution of 0.488 �m (AMS
to measure the contraction of the SMA wire and obtain
ion feedback for the control algorithms, the power elec-
at provides the electric current to the SMA element, the

nd data acquisition electronics and a PC to store the data
unicate with the control electronics.

nd of the SMA wire is fixed to one end of the Bowden
hich in turn is fixed to the structure of the test bench.
end of the Bowden sheath is attached to a part of the test
taining a movable piece and the position sensor. The non-
of the SMA wire is crimped to the movable piece, which

gnetic strip on its top side. When the actuator contracts,
ble part is displaced and the position sensor measures the
ent of the magnetic strip. This moving part is attached

ne inextensible cord to a load of 40 N, which is the element

sign
outp
of th
unit

4.4.

T
as to
perf
Prot
used
Mad
ful a
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ing p
Usua
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guag
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toolb
RCP
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E
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cont
the SMA actuator in the performed tests and that provides
sary restoring force to recover the initial length of the SMA
ng the cooling phase.

tion to a
that hand
as the re
me.

er electronics

ted before, the most common method to heat a SMA wire
ate its shape memory effect is by the Joule effect, pass-
ctric current through the wire. To supply this current to

actuator, a 16 channel power driver specially designed to
A wires has been used. Each channel consists of a power

(STMicroelectronics STP310N10F7) commutation circuit
a PWM signal from the control electronics [11]. The aver-
of the output current is directly dependent on the pulse

Max + (1 − D) ∗ OMin. (12)

2) expresses the average value of the output for a PWM
here D is the Duty Cycle, OMin is the minimum value of the
d OMax is the maximum value of the output. Each channel

wer electronic hardware is optocoupled from the control
iding enhanced security for all connected equipment.

rol electronics

sign and implement the three tested controllers, as well
uire and process all the relevant data to compare their
nce, a methodology based on the usage of Rapid Control

ing (RCP) software/hardware tools have been used. The
is a custom system developed at Carlos III University of
C3M) [40,37]. The UC3M RCP system is based on a power-
eap 32 bit microcontroller unit (MCU): the STM32F4 from
lectronics. This MCU runs at 168 MHz, contains a float-
coprocessor and provides plenty Input/Output interfaces.
RCP system provides a higher level of abstraction than

thods thanks to the usage of graphical programming lan-
n the case of the UC3M RCP, the graphical programming
used for the development of the embedded controllers
B/Simulink, which is well suited and has very powerful

s for the development of control systems. With the UC3M
ode generation, compiling and loading into the MCU are
ly automatic and transparent to the user.
mplemented controller consists of two different Simulink
dels. The “target” model is compiled and loaded into the
series of specific blocks of the STM32F4 MCU peripherals
le the communication with the position sensor as well

ception and sending of data from and to the computer.
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Simulink model is the “host” model and runs on a PC.

odel, the values of the controller gains can be adjusted

the control hardware in real time, while the controller

he host model also receives data packets from the MCU

he position of the actuator measured by the linear posi-

the error signal measured as the difference between the

the real position of the actuator, and the value of the

of the PWM control signal. This capacity of displaying

ition of the SMA actuator relative to the given reference

s a qualitative measurement of the performance of the

along with the possibility of adjusting the gains in real

s the experimental adjustment of the controller output

ries out its control task, until the desired performance

. The data received by the host model is stored in PC

processed and analyzed to evaluate and compare the

e of the controllers.

ate the suitability of the proposed BPID controller in

the output position of a SMA actuator, compared with

ance of the other two implemented controllers, a set

has been defined. These tests are intended to show

r of the controllers in different situations: performing

continuous motions at different speeds, undergoing

ion variations as well as abrupt position changes, and

a fixed position. For each controller, a total of fifteen

s, three trials for each defined test, have been con-

sisting of a series of position references that the actuator

as accurately as possible.

wing position references have been used to test and

e performance of the three controllers:

l reference: three sinusoidal signals with an amplitude

peak-to-peak at three different frequencies (0.125 Hz,

d 0.5 Hz) are applied during 20 s to test the performance

trollers when following a continuously varying refer-

fferent speeds. For the sake of brevity, only the results

ts performed with the 0.125 Hz sinusoidal references

tted. Numerical results of the tests performed with the

soidal references are summarized in Section 5.4.

ence: two step signals lasting 5 s, with an amplitude

and separated by a 30 s interval, are applied to test

ior of the controlled actuator when it is subjected to a

d large position variation and to study its operation in

nary portion of the reference.

tal step reference: the position reference is increased in

mm, from 0 to 20 mm. From this position, the actuator

d to the starting position in decrements of 5 mm. This

nded to check the performance of the controlled actu-

it is subjected to small position changes, as well as its

behavior at different amplitudes.

es of the gains of the controllers, adjusted for the com-

he tests described above, are shown in Table 1. These

been obtained experimentally by adjusting the values

ng the response of the actuator in real time, thanks to

of the UC3M RCP.

performed test, data provided by the position sensor

data generated by the RCP system have been stored in
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7 show the results of the PID controller tracking the

step and incremental step references, respectively.

onse of the controller is not bad, taking into account that

ar controller driving a nonlinear actuator. The tracking

e during the ascending parts of the reference is good,

small overshoot of 0.3 mm and close to the reference.

oint during the descending parts of the actuation cycle

ich the actuator is not able to follow the reference, due

ng time of the SMA wire.

g the performance of the PID controller tracking a step

ig. 6), a surprisingly good behavior is observed again.

se of the controller is fast (it takes 1.2 s to reach the

ition) and there is no overshoot when reaching the ref-

, the steady-state error is small, about 0.02 mm, which

the total commanded displacement.

se of the incremental step reference (Fig. 7), the con-

s a performance very similar to the one of the previous
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teps of the reference, but the overall behavior is good,
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0 show the results of the PIPD controller tracking the
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Fig. 5. Actuator position and error for the PID controller tracking a 0.125 Hz sinusoidal reference.

0 10 20 30 40 50 60 70
5

0

5

10

15

20

25

Time (s)

P
os

iti
on

 (
m

m
)

PID controller response tracking a step reference
Reference
Real position

0 10 20 30 40 50 60 70
20

10

0

10

20

Time (s)

E
rr

or
 (

m
m

)

Corresponding tracking error

Fig. 6. Actuator position and error for the PID controller tracking a step reference.
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Fig. 7. Actuator position and error for the PID controller tracking an incremental step reference.
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Fig. 8. Actuator position and error for the PIPD controller tracking a 0.125 Hz sinusoidal reference.
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Fig. 9. Actuator position and error for the PIPD controller tracking a step reference.
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Fig. 10. Actuator position and error for the PIPD controller tracking an incremental step reference.
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Fig. 11. Actuator position and error for the BPID controller tracking a 0.125 Hz sinusoidal reference.
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Fig. 12. Actuator position and error for the BPID controller tracking a step reference.
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Fig. 13. Actuator position and error for the BPID controller tracking an incremental step reference.
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BPID

solute control signal increment.

nce 0.125 Hz

sine
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sine

0.500 Hz
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Step Incremental

step

14.13 8.81 6.24 0.71 1.92

9.73 4.88 2.89 0.24 0.68

21.69 8.37 5.44 1.87 5.83

power consumption.

nce 0.125 Hz
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Table 3
Integrated abs

Reference ty

PID
PIPD
BPID
give advantage to this controller over the other two

tests, the same set of gains has been used for the five

cted. It is for this reason that the obtained results are

as the ones shown in our previous work.

controller performs well on the step reference (Fig. 9).

overshoot, despite the fact that its response is fast (1.1 s

e reference), and the steady-state error has a value of

m, which is a 0.6% of the total actuator displacement.

the incremental step reference (Fig. 10), the controlled

ows a similar behavior to the one obtained tracking the

ce. However, in this case there are some steps where

rshoot, with an amplitude reaching a value of 0.7 mm (a

osition variations). The steady-state error has a mean

5 mm, a 1% of the amplitude of the steps.

, 12 and 13 show the results of the BPID controller

e sinusoidal, step and incremental step references,

.

avior of the BPID controller tracking sinusoidal refer-

y similar to the one observed using the PID controller.

of the actuator oscillates around the reference during

ng parts, with an amplitude of 0.2 mm. Again, due to

l nature of the actuator, there is a final portion of the

parts of the actuation cycle that the controller is not

k.

seen that the controller performs very well when track-

erences (Fig. 12), although it is the slowest of the three

taking 1.4 s to reach the desired position. The response

th when reaching the reference, with no overshoot. The

e error is about 0.02 mm, a 0.1% of the displacement.

pect to the case of the controlled actuator tracking the

l step reference (Fig. 13), the performance is very good.

the best of the three controllers for this case. Unlike the

PIPD controllers, the BPID shows no overshoot in any

of the reference. The value of the steady-state error is

m, which is a 0.2% of the position increments.

of merit

ction, the different metrics used to quantitatively com-

rformance of the three implemented controllers in the

Table 4
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Table 5
Average
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∫

5.4.3.

The

trol sig

abrupt
sts carried out, will be shown in Tables 2–5. These

help assessing if the proposed BPID controller has some

when compared with the other two tested controllers.

ared error.

0.125 Hz

sine

0.250 Hz

sine

0.500 Hz

sine

Step Incremental

step

1.71 mm 4.25 mm 7.66 mm 4.4 mm 1.96 mm

1.95 mm 3.87 mm 6.5 mm 4.27 mm 1.75 mm

1.72 mm 3.51 mm 7.08 mm 4.1 mm 1.58 mm

from one s

electrical p

service life.

MACSI =
n

5.4.4. Avera

The aver

during the

RMS value

signal) has

olute value of the error.

pe 0.125 Hz sine 0.250 Hz sine 0.500 Hz

1.95 × 103 mm 5.85 × 103 mm 11.79 × 1

2.05 × 103 mm 5.01 × 103 mm 9.44 × 1

2.06 × 103 mm 4.79 × 103 mm 10.72 × 1
25.23 W 29.83 W 32.04 W 10.56 W 8.23 W

32.56 W 33.62 W 35.41 W 11.46 W 10.99 W

mean squared error

a very common value to assess the performance of

r. It measures the square root of the average of the

ll the errors over the duration of the control test. Com-

the similar Mean Absolute Error, the RMSE amplifies

ly punishes large errors. The RMSE is computed as

1

n

n∑
i=1

[yref (i) − y(i)]2 (13)

rated absolute value of the error

gives a measure of the cumulative error over the dura-

ontrol test. In this way, both large and small errors are

ccount. The IAE is computed as:

|yref (t) − y(t)|dt (14)

absolute control signal increment

SI provides a measurement of how abrupt is the con-

hat commutes the power of the SMA actuators. A more

rol signal (a control signal that has greater increments

ample to the next) will impose greater variations of

ower on the SMA actuator, which might shorten its

The MACSI is computed as:

1

− 1

n−1∑
i=1

|u(i + 1) − u(i)| (15)

ge power consumption
age power consumed by the actuator for each controller

different tests has been measured. To compute it, the

of the control signal (which is the duty cycle of a PWM

been multiplied by the maximum squared current to

sine Step Incremental step

03 mm 1.81 × 104 mm 7.33 * 103 mm

03 mm 1.62 × 104 mm 6.41 * 103 mm

03 mm 1.3 × 104 mm 5.42 * 103 mm
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1
n

∑n
i=1

u(i)2

100
∗ I2 ∗ RSMA (16)
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e results of every controller have been presented, the

e of every one must be analyzed in order to determine if

ntroller is a viable alternative to control SMA actuators.

on, the results of the three controllers are analyzed and

This comparative study will help to draw a conclusion

ity of the control method proposed in this paper.
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E and IAE values suggest that the BPID is slightly better

her two controllers tracking sinusoidal references. The

ference is observed in the case of the 0.25 Hz reference,

e BPID controller achieves the best performance. For the

ence, the PIPD controller has better RMSE and IAE values

and BPID because the latter follow the ascending part

ence with some delay, whereas the greater response

PIPD controller allows a more accurate tracking at this

ation frequency.

ng the results of the step reference, the performance

controllers is apparently the same, with no overshoot
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tically the same, and smaller than the one of the PIPD.
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can be seen (Fig. 15).
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Fig. 14. Detailed view of the PID, PIPD and BPID tracking a 0.1
onse of the PIPD controller is faster than the other two

reaching the reference earlier than the PID and the BPID.

ffect of the bilinear compensator, whose value becomes

the position of the actuator approaches the reference,

f the SMA actuator when reaching the reference starts

earlier than in the case of other two controllers, and

n a more gradual way. This effect of the bilinear term

ntageous in cases like this, in which there is a sudden

osition, since it prevents overshoot.

gard to the tests performed with the incremental step

he response of the three controllers is very similar. The

ller is again the fastest during the descending part of

on. A detailed view of the response of the controllers

e differences (Fig. 16).

controller is the fastest of the three, but it has some

(0.7 mm) when reaching the reference. The PID con-

ter than the BPID, although, just as in the previous test,

eaches the reference in a smoother and more regular

ting overshoot.

on to the RMSE values for these two tests, it can be

e best performance is achieved by the BPID controller,

the PIPD and the PID controllers. Actually, although

o the RMSE values the PIPD controller performs better

D controller, by looking in detail at the response of the

ollers when tracking the step and the incremental step

the PID controller performs slightly better that the PIPD

as can be seen in Fig. 16.

the RMSE, the measured IAE values imply that the best

n terms of accuracy is the BPID, followed by the PIPD

. But, as stated above, the PID controller is slightly better

D, especially when tracking step references. This can be

17, which shows a detailed view of the actuator reach-
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and the PIPD controller overshoot when reaching the

he overshoot of the PID is smaller than the one of the

he steady-state error of the PID is smaller than the one
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e of the PIPD controller, as shown in the previous fig-
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the controllers, are bigger for the PID than for the PIPD.
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as a shorter duration than the error of the other two

6 7 8

oidal reference (detailed view)
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PID
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BPID

25 Hz sinusoidal reference.
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