
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

1995

Fuzzy control design based on genetic algorithms Fuzzy control design based on genetic algorithms

Zibo Zhang
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Zhang, Zibo, Fuzzy control design based on genetic algorithms, Master of Engineering (Hons.) thesis,
Department of Electrical and Computer Engineering, University of Wollongong, 1995.
https://ro.uow.edu.au/theses/2454

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages

FUZZY CONTROL DESIGN BASED ON

GENETIC ALGORITHMS

A thesis submitted in fulfilment of the requirements for the Award of
the Degree

university of j
WOLLONGO*KS i

LI8RAHT I

Master of Engineering (Honours)

from

THE UNIVERSITY OF WOLLONGONG

by

Zibo Zhang
M.E. (Honours), HUNAN UNIVERSITY, 1986
B.E. (Honours), HUNAN UNIVERSITY, 1982

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

1995

Contents II

Declaration

This is to certify that the work presented in this thesis was carried out by the
author in the Department of Electrical and Computer Engineering, the University
of Wollongong, and has not been submitted to any other university or institute.

Zibo Zhang

Contents III

Acknowledgments

I would like to thank my supervisor Dr. Fazel Naghdy for his continuos guidance and

assistance during the project. Without his help this work could not have been

concluded. I would also like to acknowledge the contributions made by Mr P. P.

Ciufo, Dr Li Zheng and Ms Bronwyn Evnas towards my experimental work. Also a

warm thank to my wife and daughter who have patiently supported me throughout the

course in China.

Zibo Zhang
March 1995

Contents IV

FUZZY CONTROL DESIGN BASED ON

GENETIC ALGORITHMS

b y

Zibo Zhang

Submitted to the Department of Electrical and Computer Engineering in

June 1995, in fulfilment of the requirements for the award of the degree

Master of Engineering (Honours)

Abstract

A new methodology for design of fuzzy controllers based on Genetic Algorithms has
been proposed. The developed design tool initially identifies an approximate model for a
system based on a small set of input/output data of the plant. The system identification
is also performed based on Genetic Algorithms. The model is then used in the design
procedure. The tuning can be carried out either on the membership functions or the
fuzzy rules of the fuzzy controller. The method can be applied to linear and non linear
SISO and MIMO systems with time delay and unknown structure. Experimental
observations show that the developed methodology performs well and is superior to
other considered in this study.

Thesis Supervisor: Dr. F. Naghdy, Senior Lecturer,

Department of Electrical and Computer Engineering, the
University of Wollongong.

Contents V

Contents:

Declaration... n

Abstract.. IV

Chapter 1 Introduction... 1

1.1 Problem Statement..1

1.2 Aim and Objectives of the W ork..1

1.3 Significance of Fuzzy Controllers.. 2

1.4 Genetic Algorithms... 4

1.5 Structure of Thesis..5

Chapter 2 Background..7

2.1 Introduction..7

2.2 Trial and Error Method...8

2.3 Knowledge-Base Approach... 9

2.4 Computer-Aided techniques... 10

2.5 Design Based on Conventional Control Concepts..11

2.6 Fuzzy PID Methods...12

2.7 Neural Network Methods...15

2.8 Genetic Algorithms...18

2.9 Conclusion...20

Chapter 3 Design Overvie...22

3.1 Introduction..22

3.2 Fuzzy Set and Fuzzy Logic Control (FLC)...22

3.3 Design Procedure..25

3.4 Characteristics of Genetic Algorithms.. 27

3.4.1 Introduction to Genetic Algorithms.. 27

3.4.2 Basic Parameters of Genetic Algorithms.. 28

3.4.3 Operation of Genetic Algorithms..30

3.4.4 New Two-Point Crossover...32

Contents VI

3.4.5 Adaptive Computation of Fitness..33

3.5 Summary...35

Chapter 4 System Identification Using the G A s... 36

4.1 Introduction..36

4.2 Background..36

4.3 SISO Linear System Identification Using GA's...37

4.3.1 Encoding Zeros and Poles...39

4.3.2 Encoding Time Delay... 40

4.3.3 Identification of Parameters and System Structure...40

4.3.4 Simulation Results..41

4.3.4.1 Simulation 1.. 42

4.3.4.2 Simulation I I .. 43

4.3.4.3 Simulation III...45

4.3.5 Validation of the Method...48

4.4 MIMO System Identification Using GA's...49

4.4.1 Experimental W ork... 51

4.4.1.1 Estimation of A n (q-1) and A 12(q_1) ...52

4.4.1.2 Estimation of A 22(q_1) and A 21(q_1) ...54

4.4.1.3 Parameters of Identified Model... 56

4.5 Identification of SISO Hammerstein-type Non Linear System..............................60

4.5.1 Simulation Results 1..61

4.5.2 Simulation Results I I ... 63

4.6 Summary.. 65

Chapter 5 Optimisation of Fuzzy Controller.. 66

5.1 Introduction..66

5.2 Normalisation of Input and Output Values........................ 67

5.3 Fuzzification Process.. 68

5.3.1 Membership Functions of E(k) and AE(k)...................... 68

5.4 Fuzzy Rules and the Membership Functions of the Output.................................. 71

5.4.1 Method 1..71

5.4.2 Method II...74

Contents VII

5.5 Defuzzification of the Fuzzy Controller Output...76

5.6 Design of the Fuzzy Controller Using Genetic Algorithms.................................. 78

5.6.1 Encoding the Membership Functions for Method One................................... 78

5.6.2 Encoding the Fuzzy Rules for Method Two..79

5.6.3 Objective Function...79

5.6.4 Procedure of Search Process...81

5.7 Summary.. 82

Chapter 6 Validation of the Method... 84

6.1 Introduction..84

6.2 Validation Through Simulation... 84

6.2.1 Optimisation of Membership Functions.. 84

6.2.2 Optimisation of Fuzzy Rules... 92

6.3 Validation Through Experimental Work...97

6.3.1 System Identification... 97

6.3.2 Design of the Fuzzy Controller Using the Design Tool...................................98

6.4 Comparison of results with a Conventional PD Controller.................................. 101

6.5 Summary.. 103

Chapter 7 Conclusion.. 104

7.1 Introduction..104

7.2 System Identification.. 104

7.3 Fuzzy Controller Tuning...105

7.4 Future W ork...106

Bibliography...108

Appendix 1 Source Code of Optimisation of Rules of the Fuzzy Controller.... 114

Chapter 1 Introduction 1

Chapter 1
Introduction

1.1 Problem Statement

Fuzzy control was first introduced by Mamdani in early 1970s [1] and since then it has

been successfully applied to a large number of real industrial processes. Fuzzy controllers

can easily handle non linear problems, exhibit robust behaviour and are cost effective

because human knowledge can be easily captured using rules that contain fuzzy linguistic

terms.

In spite of this simplicity, defining the membership functions, determining the number of

rules and rule-consequent parameters are generally difficult tasks. This process is referred

to as tuning a fuzzy controller to reproduce a desired behaviour at an adequate accuracy.

There has been a significant number of approaches proposed in the literature for tuning

fuzzy controllers. This work also addresses this problem by proposing a tuning method

developed based on genetic algorithms.

1.2 Atm and Objectives of the Work

The primary aim of this work has been to study the design and tuning procedures of FLC

based on genetic algorithms. During the work, the following objectives have been

pursued:

I. Study of the work conducted by the authors in the design of fuzzy controllers.

II. Development of techniques for identification of a system as a pre-requisite to design

based on generic algorithms.

Chapter 1 Introduction 2

III. Development of methodologies for tuning the rule-base and data-base of a FLC using

genetic algorithms.

IV. Validation of the techniques developed in the work.

1.3 Significance of Fuzzy Controllers

In spite of considerable progress made in the field of control over the last four decades, PID

controllers are still the most popular method implemented in industry. The PID controllers

are simple to design and implement. A great deal of knowledge and experience in tuning

them for different industrial applications has been also accumulated. In addition, PID

controllers can be tuned based on indirect assumptions and a priori knowledge about the

system without an explicit mathematical model of the plant.

There are also a number of shortcomings associated with PID controllers. It is rather difficult

to achieve high performance control using PIDs. A change in the dynamic parameters of the

plant can quickly degrade system performance and even make the plant unstable. In addition

if a PID controller is tuned for a particular reference input, a satisfactory performance of the

plant cannot be guaranteed if the reference input is changed.

Linear controllers such as state space feedback control systems, optimal control systems, and

predictive control systems have also been successfully applied to some industrial processes.

The performance characteristics, stability, and robustness of linear controllers can be

analytically studied and accurately quantified. The linearity of the plant is, however, the

fundamental assumption made in such methods. In the majority of industrial applications,

such an assumption does not hold true. Hence a desired performance can not be achieved

Chapter 1 Introduction 3

if a linear model for a system may not be obtained or the derived linear model does not

always describe the dynamic behaviour of the system.

FLC has been introduced as an alternative approach in control. FLC has been cast by

many investigators as an expert system paradigm where human-like intelligence may be

adopted and applied to a complex and non linear system. Hence FLCs can solve the

control problems that PID and linear controller cannot handle due to the complexity of the

dynamics of the plant.

Controllers designed based on FLC have been considered as a class of static (memoryless)

non linear controllersf 1, 2]. The input-output mapping in a FLC is achieved through three

steps:

(a) Fuzzification or input fuzzy sets activation from the crisp values of the input sensors.

(b) Output fuzzy sets selection from the input fuzzy sets and the fuzzy rule base.

(c) Defuzzification or generation of crisp output values based on the output fuzzy sets

The fuzzy control methods have been commonly accepted and widely applied to various

processes ranging from household appliances to industrial process control systems, and

even production planing and scheduling [3]. FLCs have the following advantages:

(i) They are simple to implement and allow bypassing constraining mathematical

analysis by a pure algorithmic process.

(ii) They are quite robust with respect to undesirable perturbations occurring within the

process itself. This is because the fuzzy controllers can generalise and extrapolate

from referential situations.

(iii) They are also robust with respect to outside disturbances affecting the control

systems.

Chapter 1 Introduction 4

(iv) The design of a FLC for a system is not dependent on an accurate model of the

plant.

(v) Fuzzy systems lend themselves to hardware realisation (fuzzy chips). This simplifies

the implementation of a fuzzy controller.

The design of a FLC has been the main challenge in the utilisation of this method. The

rule-base and data-base of a fuzzy controller play a dominant role in its performance. It is,

therefore, necessary to tune them for a particular application. The main difficulty in this

process is the large number of parameters that should be optimised. This requires an

efficient and generic method. Genetic algorithms have been studied in this work for this

purpose.

1.4 Genetic Algorithms

Genetic algorithms have been widely used in many fields to produce a global optimal

solution. A genetic algorithm is a probabilitically-guided optimisation technique simulating

genetic evolution. Due to random mutation procedure, the algorithms can always escape

from local minima. Unlike other classical optimisation algorithms, genetic algorithms do

not need to compute local derivatives to guide the search process. Through encoding the

variables, the algorithms identify the populations with stronger fitness in the whole

universe of discource and removes populations with weaker fitness in order to reproduce

better offsprings.

Genetic algorithms, therefore, have great potential for identifying a mathematical model of

a dynamic system. The search process used can determine the globally optimal parameters

of a system.

Chapter 1 Introduction 5

The population of solutions is explored in parallel in genetic algorithms [2]. The search

process is similar to the natural evolution. With the advantages genetic algorithms have

been widely used in control systems. [3, 4, 5, 6].

1.5 Structure of Thesis

The details and results of the study conducted in the work are reported in this thesis

through seven chapters. The problem studied, the aim, and objectives of the work are

introduced in chapter one. A brief description of the nature and significance of FLC and

genetic algorithms are also provided in this chapter.

Chapter 2 is mainly dedicated to study of the previous work. A review of the major

methods developed in the design and tuning of FLC is conducted. The significance of each

work and its outcome are briefly described.

An overview of the design approach developed in this work is provided in chapter 3. In

addition FLC and genetic algorithms are described in more details. The methodologies

developed to enhance the operation of genetic algorithms for this particular application are

also introduced in this chapter.

Chapter 4 describes the first stage of the design, i.e., the identification of a mathematical

model of the system. This is achieved through genetic algorithms(GAs). Contrary to

conventional system identification methods, this approach can produce a satisfactory result

with a small set of input/output data and can identify the structure and order of a system,

as well as its time delay.

Chapter 1 Introduction 6

The optimisation process developed in this work is described in chapter 5. The procedure

of automatic tuning of the membership functions and fuzzy rules are explained. The

fuzzification and defuzzification processes used in the fuzzy logic controller are presented

The encoding and search processes of the optimisation algorithm using GAs are finally

addressed.

The validation of the methodology developed in this work is presented in chapter 6 through

computer simulation and experimental work. In the simulation, the fuzzy membership

functions and rules for a non linear system are optimised. In the experimental work the

optimised controller tuned for a DC motor is applied in real time and the results are

compared with a PD controller.

Chapter 7 provides an overview of the work carried out and summarises the results. Some

conclusions are also drawn highlighting the significance of the work and its drawbacks.

Chapter 2 Background 7

Chapter 2
Background

2.1 Introduction

Fuzzy control has been successfully applied to a large number of real industrial processes.

Fuzzy controllers can easily handle non linear control problems, exhibit robust behaviour

and are very cost effective. This is because the human knowledge can be easily captured

using rules that contain fuzzy linguistic terms.

In spite of this simplicity, defining the membership functions and determining the number

of rules and rule-consequent parameters are generally difficult tasks. This process is

referred to as tuning of a fuzzy controller to reproduce a desired behaviour with an

adequate accuracy.

There have been a significant number of approaches proposed in the literature for tuning

fuzzy controllers. They vary from trivial method of "trial and error" to automatic methods

handling different stages of design. These methods, though radically different in concept

and approach, can be categorised into the following groups:

(i) Trial and Error methods

(ii) Knowledge-base approaches

(iii) Computer-aided techniques

(iv) Design based on conventional control concepts

Chapter 2 Background 8

(v) Fuzzy PID methods

(vi) Neural network methods

(vii) Genetic Algorithms approach

The objective of this chapter is to provide a review on the most important works

conducted on the design and tuning of the fuzzy controllers over the last two decades. In

the end, the relationship between the reviewed methods and the approach developed in this

work will be studied and a summary will be provided.

2.2 Trial and Error Method

This approach often employs the correlation-minimum inference method [7, 8] to

transform inputs to outputs. The inputs are the errors between the required responses of

the system to be controlled and the real responses of the system. The outputs are the

control actions applied to the system. In this method the crisp input variables are initially

transformed to fuzzy variables that can be described by a set of linguistic terms. The fuzzy

linguistic terms representing the inputs correspond to a set of linguistic terms of the

outputs. The performance of the control action is improved using correlation-minimum

inference method.

The method is primarily based on the intuition and deduction ability of the designer and

cannot be considered as a systematic method for the design of fuzzy controllers. The

approach is generally inefficient, particularly if a large number of parameters are tuned.

The trial and error tuning method has been applied to the control of a two-tank system by

Thomas and Sebastian [9]. Initially a crude mathematical model for the plant dynamics is

Chapter 2 Background 9

assumed. Then eleven fuzzy rules are derived from the mathematical model. Using trial

and error, 32 parameters of the fuzzy rules are tuned for time-optimal control of the

system.

2.3 Knowledge-Base Approach

In this method, an operator skilled to operate a system manually is interviewed and the

knowledge obtained is used to model the required control strategy in the form of a

look - up table and the necessary fuzzy rules. The designer may adjust the rules intuitively

based on the characteristics of the physical system. Hence the design of the fuzzy

controller depends entirely on the knowledge and experience of the expert and intuition of

the designer. This approach, therefore, is far from a systematic and reliable method [11]

and is effective when the experts can accurately express their knowledge in terms of fuzzy

rules.

In the work conducted by M. Sugeno [11], the fuzzy controller was applied to park a

model car based on if-then fuzzy rules obtained from a human operator. By tuning the

fuzzy rules, the fuzzy controller can successfully park the model car. This approach has

also been applied to the control of a cement kiln operation [12] by P. J. King and E. H.

Mamdani.

In the work conducted by Floor Van Der Rhee, Hans R. Van Nauta Lemke, and Jaap G.

Dijkman [13], the design procedures are divided into two phases. During the first phase the

relationship between the input and output of a system is obtained and the knowledge

structure is constructed. This is referred to as the learning phase. In the other phase, the

knowledge structure is applied to control the process. Both linear and non linear systems

can be controlled by this method.

Chapter 2 Background 10

A novel approach referred to as automated fuzzy controller design station (AFCDS) is

reported in [14]. An automatic knowledge generator generates the fuzzy rules and

semantic intervals. The rules and semantic intervals are then used by a fuzzy tuner to create

and optimise the membership functions together with any other parameters. The tuner

takes into account design parameters such as allowable percentage of the overshoot, the

desired rise time and the maximum desired settling time. The optimised knowledge base is

then interfaced to the user in the form of fuzzy rules and membership functions.

2.4 Computer-Aided techniques

Computer-aided tuning approaches for fuzzy controllers have been popular methods and

reported in the literature by a number of authors. The work conducted by L. Zheng [15,

16, 17] is based on the knowledge of the process and the input-output data pairs obtained

from the process. A max-min fuzzy inference engine and tuning technique by gradient

analysis has been introduced. This method cannot automatically complete all the

procedures necessary for the design of a fuzzy controller and may become trapped in local

optima. Overall the method is not a systematic design technique.

In the work conducted by Boscolo and Drius [18], a crude model of the process to be

controlled is assumed to be available from the input/output data. The identification

algorithm applied to identify the system model is Instrumental variable (IV). The structure

of the mathematical model is assumed to be a linear system of ARMAX type. A gradient

optimal method is then employed to tune the membership functions of the fuzzy controller.

This approach has been applied to tune the fuzzy controller of a DC motor. The outcome

has been satisfactory for a single set point. This is because the gradient optimal method

does not guarantee an optimal performance for all possible set points. The identification

Chapter 2 Background 11

algorithm used to obtain the system model cannot estimate the parameters of a general

industrial process with time delay.

A multi-objective design of controllers with fuzzy logic using control engineering

computation environment is presented by H. D. Joos and M. Schlothane[21]. This method

mainly uses Analysis & Design Control System (ANDECS) and Multi-Objective

Programming System (MOPS) to optimise the fuzzy controller. For generating a data

object which contains all necessary information about a fuzzy-logic controller, a specific

editor module, called FZEDIT, has been developed and integrated in ANDECS. Each

'fuzzy-controller' data object consists of a rule base, a mathematical description of the

linguistic variables, and information about the evaluation methods used for fuzzification,

inference, and defuzzification. The hierarchical data structure is designed for an arbitrary

number of input and output variables, and for rules of arbitrary length.

The multi-objective programming algorithm is employed to optimise the fuzzy rules. In this

way if the mathematical model of the real system is available, then the fuzzy controller can

be optimised and designed. The work, however, does not address how the mathematical

model of the real plant for the simulation of the fuzzy controller is obtained.

2.5 Design Based on Conventional Control Concepts

Fuzzy dynamic programming has been proposed [22, 23, 24]. Since dynamic programming

is basically a feedforward control, its application to real physical problems may be difficult.

This method may also get trapped within the local optima. Once the targets are changed

the fuzzy dynamic programming must be used again to optimise a set of new fuzzy logic

rules for the same fuzzy controller. Moreover, According to Hojo, [22] a necessary

condition for applying fuzzy dynamic programming is that the state variables can be

obtained from the real system. This may not alway be possible.

3 0 0 0 9 0 3 1 5 5 2 7 5 0

Chapter 2 Background 12

Tanaka and Sano [25] proposed design methods for fuzzy phase-lead compensators based

on frequency and transient characteristics. The methods attempt to find parameters that

effectively compensate phase characteristics in the control systems. The work proposes

two important theorems. One is to judge whether or not a fuzzy phase-compensator can be

used. The second theorem provides a methodology to obtain the compensator. The method

has been successfully applied to linear and non linear controlled objects through computer

simulation.

2.6 Fuzzy PID Methods

Fuzzy PID controllers have been widely used in the control of real-time systems. The

references [26, 27, 28] present several methods for tuning fuzzy PID controllers. Brehm

and Rattan [27] propose a reduced fuzzy rule strategy and a hybrid PID controller. The

reduced fuzzy rule strategy is used to simplify the design of the fuzzy controller based on

crisp PI control theory. The reduced rule tables are illustrated in Figures (2-6-1) and (2-6

2). The fuzzy language terms are listed in table (2-6-1):

N u m b e r F u zzy L an g u ag e T erm S ym bol fo r in p u t S y m b o l fo r co n tro l a c tio n

1 " N e g a tiv e b ig " nb NB

2 " n e g a t iv e m id d le " nm N M

3 " n e g a t iv e s m a ll" ns N S

4 “ Z e ro ” 0 z o

5 " p o s i t iv e s m a ll" ps PS

6 " p o s i t iv e m id d le " pm P M

7 “ p o sitiv e b ig ” pb PB

Table (2-6-1) Fuzzy language terms

The actual crisp control actions will be worked out by the defuzzification algorithms as

described in C hapter 5.

Chapter 2 Background 13

^\E rror
Eerror^x^

nb nm ns 0 ps pm pb

nb NB NB NB NB NM NS ZO

nm NB NB NB NM NS ZO PS

ns NB NB NM NS ZO PS PM

0 NB NM NS ZO PS PM PB

_________ NM MS ZO PS PM PB PB

pm NS ZO PS PM PB PB PB

_________ z o PS PM PB PB PB PB

Figure (2-6-1) PI control rule matrix

The error(k) is the error between the desired target and the real output of the system at the

current sampling interval. The "error(k)-error(k-l)" is "change in error" and Xerror(k)

expresses the accumulation of the error during the control period.

The PID controller is divided into two separate control actions: (1) PD controller for

fastest response and (2) PI to remove the steady state error. Since the zero subset is

defined as a range it is possible to have a small error when the control action is zero. In

order to reduce the small error once the output of the system reaches the range, the PD

controller is replaced with a PI controller. The PI control action eliminates the steady-state

error. The other idea proposed by the paper is that when the output of the system is far

from the set point the proportional gain will be decreased. On the contrary, when the

output of the system is close to the set point the proportional gain is increased.

Chapter 2 Background 14

^̂ X̂ AError
error^s^

nb nm ns 0 ps pm Pb

nb NB NB NB NB NM NS ZO

nm NB NB NB NM NS ZO PS

ns NB NB NM NS ZO PS PM

0 NB NM NS ZO PS PM PB

_________ NM MS ZO PS PM PB PB

pm NS ZO PS PM PB PB PB

_£b________ ZO PS PM PB PB PB PB

Figure (2-6-2) PD control rule matrix

Theoretically, the controller designed based on this strategy would behave satisfactory if

the fuzzy rules can be well tuned. The paper reports some excellent results obtained from

computer simulation.

It should be noted that the reduced fuzzy rule method does not completely solve the

problem of design of a fuzzy controller but reduces the number of fuzzy logic rules. When

the system to be controlled is changed the designer must retune all the fuzzy rules.

Although the total number of fuzzy rules are reduced there are still many more fuzzy rules

to be tuned than the number of parameters of a conventional PID controller.

According to the method proposed in [26] a fuzzy controller can be derived from a PD

controller using proportional and derivative gains. This is a simple and direct design

method. The fuzzy controller designed by this method can reach a much better control

performance than the original PD controller. The method, however, does not produce a

fully optimal controller. The membership functions are still tuned by trial and error.

Chapter 2 Background 15

In [28] the authors propose a simulation method for determining fuzzy rules in fuzzy

control of tracking systems. The method is mainly based on minimising the mean squared

error for a combination of the fuzzy rules in the original position control system.

Using this method the fuzzy rules are reduced from 343 to 22. The parameters of the fuzzy

rules, however, should be then tuned by Trial and Error’ method.

2.7 Neural Network Methods

The research reported by W. C. Daugherity [29] involves a new combination of neural and

fuzzy systems in which fuzzy meta-rules are used to produce a series of neural networks

for longer input sequences. The method has improved the inference capability of the fuzzy

system and the learning capability of the neural networks. It can not, however, solve the

problem of design of fuzzy controllers.

The method developed by Khan and Venkatapuram [30] presents an elegant scheme to

combine the neural networks and fuzzy logic. In this work a multilayered feedforward

neural network is applied to learn system's input-output behaviour by using system's input

output data. The other multilayered back propagation neural network, which is called

Fuzzy Rules Generator' (FRG), directly maps weights of different layers into fuzzy rules

and fuzzy membership functions. Figure (2-7-1) shows the procedures that are applied to

generate the fuzzy rules and membership functions.

Chapter 2 Background 16

p?5Sii:| Fuzzy Rules
Membership Functions

INPUTS Multilayered Feedforward
Artificial Neural Networks

Fuzzy Rule Generator

Desired Outputs

Figure (2-7-1) Creating fuzzy rules and membership functions based on neural

network learning

This method uses a three-layered neural network. The first layer is the fuzzification stage

whose task is to match the values of the input variables against the labels used in the fuzzy

control rule. The first-layer neurons and the weights between layer 1 and layer 2 are also

used to define the input membership functions. The middle-layer neurons represents the

rule base. When the neural network has learned the knowledge from the input-output data

of the real systems, the fuzzy rules and membership functions are generated and tuned.

This Neufuz system can only be used to mimic a system model but not to design the fuzzy

controller.

In [31] Y. Y. Chen presented a cell-to-cell design method. This method is further

developed by L. Fortuna [32]. It requires the state variables of each cell for the design of

the fuzzy controller. The plant dynamic is modelled by a set of multilayer neural networks

and the fuzzy rules are optimised by annealing approach. Figure (2-7-2) shows the process

of design of fuzzy controller, where F(*, U) is the cost function.

Chapter 2 Background 17

Figure (2-7-2) Cell-to-Cell design process

The proposed method provides a satisfactory system model and overcomes entrapment in

local minima. The simulated annealing procedure is, however, very time consuming, as a

large set of input/output data is needed to train the neural networks. The cost function

F(*, U) used in the optimisation of the fuzzy rules is

F(*, U) = ['[setpoint-Y(t)]2rfi (2-7-1)JO

In this method the optimisation also takes place for only a specific set point.

A new Neufuz controller has been investigated by M. Balazinski and H. Czogala [10]

(1993). This controller has been used to control metal cutting process. In their research

work a conventional fuzzy controller is changed into a neural fuzzy controller. The

difference between the two controllers is that the knowledge base and decision making of

the conventional fuzzy controller are replaced with a neural network which is able to

accept sampled fuzzy information in addition to crisp data. The inputs to the neural

networks are error and change in error. The presented neural network-fuzzy controller is

trained off-line by quantitative measurements obtained during the observation of the

process. This method also requires a large set of input/output data. The training period of

the neural networks can be also very lengthy.

Chapter 2 Background 18

Another design procedure for fuzzy controllers has been reported by Cheng-Liang. Chen

and Wen-Chih. Chen [33]. The method employs a three-layer neural network. The

controller calculates the control action according to the input error and change in error.

First, a piece wise linear fuzzy controller (PLFC) is designed and transformed to a gaussian

potential function network controller (GPFNC). Then the crude GPFNC is optimised.

During optimisation, a mathematical model or a well-trained plant emulator is needed to

estimate the plant response to the network controller parameters at the current operating

point. This plant emulator is not, however, always available.

There are other tuning methods based on neural networks which automatically optimise

different stages of design particularly the membership functions. They are referred to in the

literature as self-learning or self-organising fuzzy controllers. Some examples are the work

conducted by Takagi and Hayashi [34] using neural networks as membership values

generator and the work by Nomura et al. [35] that handles fuzzy systems as networks and

adjust the membership functions using a back-propagation technique.

2.8 Genetic Algorithms

Genetic algorithms (GAs) are probabilistically-guided optimisation techniques based on the

genetic evolution. Because the algorithms are able to optimise a large number of variables

simultaneously, they have been developed to tune fuzzy controllers. The five references

reviewed in this thesis [36, 37, 38, 3, 4] focus also on processes which will be controlled

by fuzzy controllers.

In the work carried out by D. Park [36], the genetic algorithms have been employed to

design fuzzy controllers and a new fuzzy reasoning model is proposed. The available

domain knowledge is exploited by the genetic algorithm (GA) to produce a better

performance for the fuzzy controller, the GA is used to optimise the fuzzy relation matrices

Chapter 2 Background 19

defining the degree of dependency between fuzzy input and fuzzy output variables. The

method has produced satisfactory results. It should be noted that the prior knowledge

required by the method is not always available.

In [37], the GAs are successfully applied to optimise the objective functions for

classification problems including finding the minimum number of fuzzy rules. The method

has proven that GAs can be employed to complete the difficult task of design fuzzy

controllers for control of industrial processes. Nevertheless, the work does not address the

problem of tuning the fuzzy rules.

Fuzzy net controllers (FNC) is a new model of fuzzy controller [39]. In this model a fuzzy

controller is converted to a set of multi-layer artificial neural networks for parallel

computation of fuzzification and defuzzification. The GAs are used to optimise

membership functions of the fuzzy controller. The method has been applied to control a

temperature control system and an inverted pendulum. The work does not address how the

approximate model of the plant can be obtained for an industrial process.

In the work conducted by S. Isaka and A. V. Sebald [38], GAs are applied to tune the

membership functions of a fuzzy controller which is used to control blood pressure. The

triangular-shaped membership functions are defined by formula (2-8-1). The main task of

the genetic algorithm is to optimise the parameters A, B, and C of the membership

functions. The quadratic cost function used is given in equation (2-8-2)

\ i(x) = {x - A) / {B - A)
\ i(x) = { x - C) / { B - C)

JLL(X) = 0

if A < x < B
if B < x < C
if x< A or x > C

(2- 8- 1)

Chapter 2 Background 20

T

J = Z <1 ̂ - r W| + I“« - “(f - Dl (2-8-2)
/ =]

Where Yd is the target blood pressure, Y(t) is the mean arterial pressure at time t, u(t) is the

drug infusion at time t and T is the simulation length.

Through tuning the membership functions, the fuzzy controller can be designed well using

the GAs under the condition that the mathematical model is available.

Genetic algorithms have been used to determine the number of fuzzy rules[4, 5], and

membership functions [4]. In Karr's method [4], a genetic algorithm is first used to the

determine the number of rules according to a predefined rule. A genetic algorithm is used

again to tune the membership functions. Lee and Takagi [6] have developed a similar

technique with the difference being that two stages are conducted simultaneously with a

penalty strategy favouring systems with fewer rules.

2.9 Conclusion

During the course of this chapter a wide range of works addressing the issue of designing a

fuzzy controller were reviewed. It was realised that the heuristic methods are time

consuming and often unreliable. The majority of the computer-aided design tools presented

only optimise the fuzzy controllers for a single set point and often use the gradient method

to tune the fuzzy rules. In contrast to these methods, genetic algorithms are able to deal

with many tuning parameters simultaneously. The search process can seek for a set of

global optimal fuzzy rules based on some criteria that express the design specifications

directly.

Chapter 2 Background 21

In this work genetic algorithms will be studied for automatic design and tuning of fuzzy

controllers. Genetic algorithms will be initially used to estimate the mathematical model of

an industrial process. Then it will be applied to tune the fuzzy membership functions and

optimise the fuzzy rules.

Chapter 3 Design Overview 22

Chapter 3

Design Overview

3.1 Introduction

In this chapter the design of a fuzzy logic controller (FLC) in general and the methods

developed in this work will be introduced. Initially, the principles behind the operation of

FLC will be covered. The structure of an FLC and parameters considered in its design will be

then addressed. An overview of the design method developed in this work will be presented.

Since this method relies on genetic algorithms at different stages to tune the design, the

remainder of the chapter will introduce the genetic algorithms and describe the methodologies

developed to enhance its operation for this particular application.

3.2 Fuzzy Set and Fuzzy Logic Control

Fuzzy sets have been developed as an extension to crisp sets. In a crisp set, an object is either

a member or not a member of a set. In fuzzy sets, partial membership is possible.

Mathematically, the membership to a crisp set C is described by

[lc (x) =
1 if x e C
0 if x <£C

Whereas for a fuzzy set F the membership is defined as

pF: i / - » [0 ,l]

Chapter 3 Design Overview 23

where U is the universal set defined for a specific problem. In fuzzy sets, membership is

usually defined in terms of a membership function. As an example the membership function

illustrated in Figure (3-2-1) indicates the following membership definition:

1 if x - 0

x + 2

H(*) = 2

0

if - 2 < x < 0
?

otherwise

Figure (3-2-1) Example of fuzzy membership function

There are different types of membership functions used in fuzzy logic systems. The most

common types are:

(i) Monotonic

(ii) Triangular

(iii) Trapezoidal

(iv) Bell-shaped

Fuzzy logic controllers (FLC) are developed based on fuzzy set theory. It lies in the general

stream of a new paradigm of control theory known as expert control [7]. In this approach

symbolic computing is used in the design process of the control algorithm. This method

provides the opportunity to design simple as well as multivariable controllers with complex

control laws.

Chapter 3 Design Overview 24

One of the contributing factors towards development of FLC has been the studies conducted

on the characteristics of a human operator as a controller [7]. It has been observed that

human beings acts as a non linear controller with time-varying parameters. FLC has been

developed to simulate similar behaviour through artificial intelligence.

A fuzzy controller can be illustrated by the block diagram shown in Figure (3-2-2) Similar to

a conventional control system, the information about a system is read from the sensors

attached to it. In an FLC, the sensor measurements are converted to linguistic labels in the

Fuzzifier. There are a number of techniques available for this operation such as conversion

into a fuzzy singleton, which is in fact a precise value, adopting a fuzzy operator to convert

the probabilistic values contaminated with noise into fuzzy data, or using a hybrid method

that involves both the uncertainty (fuzzy numbers) and randomness.

Figure (3-2-2) Simple architecture of FLC

The decision-making logic operates based on the knowledge-base. The knowledge-base (KB)

consists of a database and a fuzzy control rule base. The database characterises the fuzzy

control rules and fuzzy data manipulation. It defines, particularly, the membership functions.

The rule-base is the collection of fuzzy conditional statements based on the process state and

Chapter 3 Design Overview 25

control variables. Various approaches have been used to set up the data-base including the

analytical knowledge obtained from the system, study of a human expert, or development of

the fuzzy model of the process which is the linguistic description of the system dynamics. In

the final stage, a defuzzifier converts the fuzzy values to crisp values in order to drive the

system.

In design of a fuzzy controller the most important thing is to optimise these fuzzy rules. A

fuzzy controller is a non-linear controller. It can, therefore, control some poorly-understood

processes or complex systems if the fuzzy rules are chosen correctly for a particular system.

Furthermore, optimising all the fuzzy rules to reach a global optimal solution is not a simple

task.

3.3 Design Procedure

]The main strategy used in the design of a fuzzy controller is to identify the main control

parameters and to determine a term set that is at the right level of granularity for describing

the value of each linguistic variable. A simple example is a term set including linguistic values

such as {very small, small, medium, large, very large}.

In this work, a systematic method for the design of FLCs in general has been developed. The

design is based on the input/output relationship obtained from a system without any pre

knowledge about its behaviour or knowledge from an expert. Genetic algorithms are used

primarily to tune the design parameters for an optimum performance.

The various stages of the design are illustrated in figure (3-3-1). Initially a small set of input

and output data is obtained from system. The data set is then normalised to numbers between

zero and one in order to be suitable for the design package to a variety of real processes.

Chapter 3 Design Overview 26

The design tool is then able to process the sampled data for a variety of system with

different ranges of parameters.

Chapter 3 Design Overview 27

The next stage is to identify a crude model for the system. A specific method based on

genetic algorithms (GAs) has been developed which can estimate the parameters of various

types of physical systems including Single-Input Single-Output (SISO), Multiple-Input

Multiple-Output (MIMO) and non linear of Hammerstien type. The estimated parameters

include the coefficients of the system transfer function and its time delay. The structure of a

SISO system can be also identified through this method. It is well recognised that

conventional algorithms cannot easily identify the system structure and time delay.

When the crude mathematical model is obtained the GAs are employed again to tune the

parameters of the fuzzy controller. The designer has the option to tune either the fuzzy rules

or the membership functions. These two methods will be discussed in more details in chapter

5.

Once the optimised fuzzy rules or the fuzzy membership functions are obtained a look-up

table can be generated and the design process is complete.

3.4 Characteristics of Genetic Algorithms

In this section an overview of GAs and novel approaches developed for GAs used in this

work will be provided.

3.4.1 Introduction to Genetic Algorithms

Genetic algorithms (GAs) offer a solution for parameter optimisation problems based on the

principle of natural evolution. The solution offered is based on this theory that evolution is an

efficient process that implicitly identifies optimal solutions to aspects of events exhibited by

the environment [2]. A population of solutions are explored in parallel by genetic algorithms

[44].

Chapter 3 Design Overview 28

In GAs, a problem is modelled by defining a candidate solution called an organism, which in

most applications consists of a single chromosome. An iterative procedure is applied to a

fixed-size population of organisms. Each iteration step produces a new generation of the

population by evaluating and modifying the structure of the previous generation.

A chromosome of length n is a vector of the form [49]

< xj,X2 ------- ,x n>

The component x/ is known as a gene and is chosen from a domain of values called the

alphabet. The most commonly used alphabet is the binary digits [0,1], although sometimes

real numbers are used.

The first generation of a population P(0) is chosen heuristically or randomly. Using a

randomised procedure, the structures of P(t+1) is derived from P(t) after applying a genetic

recombination operators to the new population [44]. The most popular recombination

operator is crossover. Another operator called mutation is also applied to a population to

introduce new genetic materials into it. A mutation causes a random change of a gene from

one alphabet to another. It also helps to reinject any information that may have been lost in

the previous generations [44].

3.4.2 Basic Parameters of Genetic Algorithms

There are several parameters in genetic algorithms:

(a) Population Size - This is a free parameter which trades off coverage of the search

space against the time required to compute the next generation.

(b) Length o f chromosomes - The length of a chromosome is generally equal to the

product of the number of variables to be optimised and the length of every variable

encoded in binary. A chromosome represents a combination of its genes. For example,

Chapter 3 Design Overview 29

using genetic algorithms, the time delay d and the parameters of the system

ai,a2...an, bo,b]...bm are encoded as 10-bit binary strings.

(c) Length o f variables coded in binary. This is the length of each variable in the

chromosome.

(d) Crossover probability - This probability controls the frequency at which the crossover

occurs for every chromosome in the search process. This is a number between (0,1)

which is determined according to the sensitivity of the variables of the search process.

For every crossover operation, a random function generates a random number which

is compared with the crossover probability. If it is less than or equal to the crossover

probability then the crossover operation takes place.

(e) Mutation probability - This probability controls the frequency at which mutation

occurs for every gene of a chromosome in the search process. The mutation

operations will be determined by a random function which generates a number

between 0 and 1. If the random number is less than or equal to mutation probability

then the mutations operation occurs. The selection of the mutation probability is

dependent on the sensitivity of the objective function to the variables. The mutation

determines the number of bits on which mutation will be carried out.

(f) Objective Function - This is the main evaluation function based on which the fitness

of each member of the new generation is determined. The members identified as 'fit'

survive and enter a mating pool to reproduce the next generation. The objective

function chosen for this process is

objective function = 'Z ly ik) - y(k)]2 / {Max\y(k)]}2 (3-4-1)
¿=o

Where N is the number of sampled input and output

Max[y(k)] is the maximum of y(k) [k= l,...fl]

Chapter 3 Design Overview 30

y(k) is the measured output of the actual system to be identified.

3.4.3 Operation of Genetic Algorithms

The operation of a simple genetic algorithm is performed according to the following steps:

(i) Initialise the population consisting of chromosomes at random,

(ii) Calculate the fitness of each chromosome in the population,

(iii) Reproduce new chromosomes by mating current chromosomes and applying crossover

and mutation according to the crossover and mutation probability.

(iv) Delete members of the population to make room for the new chromosomes.

(v) Evaluate the new chromosomes and insert them into the population.

(vi) If the available time has expired, stop and find the best result. If not go to step 2.

The implementation of crossover and mutation is shown in Figure (3-4-1)a and Figure (3-4-

l)b respectively. After selecting two parents, crossover is performed according to crossover

probability. If crossover is performed then the portions of genes of offspring are constructed

by copying portions of parent genes which depend on the crossover point determined by

random selection. The other portions of genes of the two offspring are produced by

exchanging the other portions of the two parents in the other side of the crossover point.

Mutation is believed to help to reinject any information that may have been lost in previous

generations[2]. More detailed discussion of genetic algorithms can be found in [2], [44].

Chapter 3 Design Overview 31

Parent 1 Parent 2

m
ii.:«

1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 _!__!_

Offspring 1 Offspring 2

(a) crossover

1

Original
chromosome

1 1 1 0 0 0 1 1

c . J
M uta te d Bits

1 0 1 0 0 0 0 1
Mutated

chromosome

(b) Mutation
Figure (3-4-1) - Genetic Operations and Chromosome with binary encoding

The Genetic Algorithms can be divided into two groups depending on whether binary

encoding or real number encoding is used. The first method employs a binary string to

encode variables and to form a chromosome. The other employs real numbers that often vary

from -1.0 to +1.0, of course one can use the range of the real number he wants. The search

processes used is, however, mostly the same for both methods and modelled after natural

evolution.

A) Binary encoding

The chromosomes of the genetic algorithms with binary encoding is shown in figure (3-4-1).

In this case a chromosome can be encoded as many binary strings each of which represents a

variable to be optimised.

Chapter 3 Design Overview 32

B) Real number encoding

In real number encoding, every variable becomes a gene in the chromosome. As an example,

assume that the variables [a,b,c,d, and e] should be optimised. The population

[a,b,c,d, and e] is [a2,b2,c2,d2,e2] and [an,bn,cn,dn,en] when n is the

population size. The five variables express five genes in chromosome.

1. Operation of crossover: After crossover the offspring of [ax,bx,cx,d^,exJ and

[a2,b2,c2,d 2,e2] will be, [a2,b2,c2,dx,ex] and if the crossover point

selected at random is located between c and d.

2) Operation of mutation: Mutation is the occasional alteration of some gene values in a

chromosome. Every gene in each chromosome is a candidate for mutation, and its

selection is determined by the mutation probability. The current value of the selected

gene is then either added by a random number or substracted by a random number in my

code.

The other operations and parameters are the same as the genetic algorithms with binary

encoding as described above.

3.4.4 Two-Point Crossover

The crossover operator has been modified to improve the performance of the GAs. Multi

crossover points and two crossover points [44(1989), 2(1991)] are some examples to

mention. In this work a new approach for two crossover points has been developed which

has proved to improve the efficiency of the crossover in the exchange of information. It

operates as follows (Figure (3-4-2)

(i) Select points j \ , J2 randomly.

Chapter 3 Design Overview 33

(ii) Employ a random selection number between 0.0 and 1.0. If the random number is

greater than 0.5 swap the genes of the parents to the left of j j to produce the first stage

offspring.

(iii) If the random number is less than or equal to 0.5 then swap the genes to the right of j'2

in the first stage offsprings to produce the next generation.

It will be demonstrated in Chapter 6 that the method proposed here converges more rapidly

than the simple two crossover points suggested in [49] .

3.4.5 Adaptive Computation of Fitness

The fitness of the member of a new generation is determined by minimising the objective

function. In system identification and design of fuzzy controllers, the problem of minimising

the objective function must be transferred to maximising fitness which can be defined as

Fitness = PM - Objective Function
N A

or Fitness= PM ~ ^ [y (k) - y(k)]2 / {Max[y(k)]}2
1=0

where PM is a positive number for scaling the fitness.

During the search process, if PM is a constant value, the fitness will gradually lose its

distinction as the objective function is reduced in value. This will produce a fairly constant

fitness for members of a new generation. As the result, identifying the individual members of

the population with distinct fitnesses to enter the mating pool will be difficult and

consequently the process will evolve slowly.

Chapter 3 Design Overview 34

Parent 1 Offspring 1

o 0 0 0 0 0 0 0 0 0 1 1 ocDO 0 0 1

l Parent 2 Offspring 2

0 0 0 0 0 0 0 0
ì I

0 00 0 0 0 0 0 0

11 1:

J

11 ! 1 1

Parent 1

0 00 00 0 0 0

Parent 2 2

1 1 OC 1 1 cDO' 1 1 dotDCM

Offspring 1

0 0 (01 1 ' 1 ocDO 0 0

oo

Offspring 2

;

l
1 1 cDO 1 'I 0 (DI '1 1 1 0 1 0 1 1

Figure (3-4-2) - The new procedure of two crossover points

On the other hand PM can not be set to a small value as the Objective Function varies during

the search from a large value to a small positive number and hence Fitness may become

negative at some stage.

In this work an adaptive algorithm based on GAs for choosing the best PM for each iteration

of search is developed to overcome this problem. Using this algorithm, for every new

generation of the population, an appropriate value for PM is found before the fitnesses are

calculated. Assume that kxh generation of population with size of ps is produced. The

adaptive algorithm to calculate PM progresses as follows:

Chapter 3 Design Overview 35

(i) Sort the population of generation K according to the ascending order of the objective

functions of the population.

(ii) Choose the 75% top elements of the sorted population as candidates to reproduce the

next generation. Set the fitnesses of the other 25 percent of the population to zero.

(iii) Set PM for generation K to the maximum of the objective function and calculate the

fitnesses.

(iv) Use the method of remainder random rample without replacement to change the

structure of population [44].

(v) Operate crossover and mutation to reproduce the next generation,

3.5 Summary

In this chapter the structure and procedures of a design tool developed in this work to tune a

FLC was introduced. Genetic algorithms have been the main methodology used to identify a

crude model of the system and tune the parameters of the controller. During this chapter GAs

and the method of their employment have been explored. In addition two new strategies of

search in GAs developed in this work were also described. These new strategies help the

search process to converge faster towards an optimal solution compared to conventional GAs

search routines.

Chapter 4 System Identification Using GAs 36

Chapter 4

System Identification Using GAs

4.1 Introduction

The first stage of the design methodology developed in the this work for fuzzy controllers is

to identify the model of a system. The application of genetic algorithms in the identification

process is illustrated in this chapter. The method is applied to SISO, MIMO and non linear

systems with rime delay according to the procedures described in section 3.4. The models

used in each case and the results of the identification have been extensively described.

4.2 Background

In spite of their suitability, genetic algorithms have not been widely applied to identification of

MIMO system and nonlinear systems. The works reviewed in this chapter [50, 51] focus only

on SISO linear systems with parameters of zeros and poles or SIMO [52] linear systems with

state space parameters. They do not address the issues of determining the time delay and

model structure of a system.

In the work carried out by Kristinsson [50] a PRBS is used to identify the poles and zeros of a

system. The fitness function is chosen as

F(r) = £ A / - (r i (r - 0) 2 (4-2-1)
¿=0

where M is a bias term needed to ensure a positive fitness, co is the window size or the number

of time steps over which the fitness is accumulated and t}(t) = y(t) - y (0 ■ The variable

Chapter 4 System Identification Using GAs 37

y(t) represents the output of a deterministic system driven by the actual input U(t). The

authors have not addressed how the positive number M can be selected to ensure the fitnesses

of the individuals are significantly different and hence better offspring are reproduced. The

results obtained from computer simulation have shown that GAs are potentially useful tool for

identification of dynamic systems.

In the work reported by [20], a recursive adaptive filter has been designed using Genetic

algorithms. This paper also does not address how the structure and time delay of a dynamic

system can be estimated using this method.

In the work reported by Andersen [52], the identification process of a SIMO (Single Input

Multiple Output) system with state space parameters has been investigated. A random variable

with a uniform distribution is employed as the input signal to drive the process. The cost

function (E) is defined as

E= - y T R y (4-2-2)
n

where y = y - y (4-2-3)

y is the observation vector of order ny n is the dimension of the error vector, y is the estimate

vector of dimension n, R=Q.TQ, and Q is the diagonal standard deviation matrix related to the

noise characteristics of the sensor used in the process. This work has not utilised the encoding

technique available in the application of GA's to estimate the time delay.

4.3 SISO Linear System Identification Using GA’s

The system considered in this study is assumed to have an ARMAX model the parameters of

which are obtained using search process of the genetic algorithms. The developed algorithm

Chapter 4 System Identification Using GAs 38

estimates all the parameters of the system including zeros, poles, and time-delay of the

transfer function. The adaptive method presented in section 3.4.5 will be used to calculate the

fitness of the population. In addition the new two crossover point strategy introduced in

section 3.4.4 will be employed to speed up the search process.

In the majority of the identification methods used for SISO system including LMS, reduced

order parameter estimation [53], [54], GRLS [55] and testing model structure [56], the

system model is assumed to be ARMAX :

y(k) = - a ly (k - \) - a 1y (k - 2) - . - a ny (k - n) +
+ bxu(k - d - l) + b2u(k -d -2)+ ...+ b mu(k -d - r r i)

Where coefficients {¿Zj,^ ,...,^} and {bx,b2,...,bm} determine the poles and zeros of the

transfer function of the dynamic system. These coefficients are estimated during the

identification process.

Existence of a time delay in the system dynamics increases the number of parameters to be

estimated for the ARMAX model. For example if the time delay is equal to eight sampling

intervals, the parameters bx,b2,...,bm will increase to b],b2,...,bm,...,bm+%. This will not only

increase the amount of computation required but reduce the accuracy of the identification

process. Genetic algorithms can also be applied to estimate a system's time delay without

much difficulty since the delay time can be encoded as a parameter to be identified. Thus we

do not need a high order model to be identified which is used when employing other methods

such as IV to identify a system with time delay.

Estimation of the system structure and time delay is generally difficult particularly for

iterative algorithms such as LMS, IV, IVR and others.

Chapter 4 System Identification Using G As 39

4.3.1 Encoding Zeros and Poles

Initially a stable and minimum phase SISO system with the ARMAX model is assumed. The

zeros and poles of this type of system are inside the unit circle. A single zero is encoded as a

binary string with 10 bits whose most significant bit denotes the sign (±) and the other 9 bits

will express the value of the zero ranging from 0.0 to 1.0 after being divided by 512.

If m is odd then the system will have at least a real zero. The numerator polynomial of the

transfer function can be expressed by equation (4-3-2) with complex conjugate zeros:

B (q ~l) = q~d (1 - pxq - ')[1 - (P2 + j P3)q~'][1 ■- (P2 - j p3)q~l]... (4-3-2)

or equation (4-3-3) without complex conjugate zeros:

= (4-3-3)

On the other hand, if m is even then the numerator polynomial of the transfer function is

expressed by equation (4-3-4) with complex conjugate zeros:

B {q - ')= q -d\ 1 - (p2 + yfc)<T‘][1 - (P2 - Jfi3)q~']... (4-3-4)

or (4-3-5) without complex conjugate zeros:

B (q -1) = q~d\ 1 - P,)q~] If 1 - ß ^ " 1]... (4-3-5)

In order to code a pair of complex conjugate poles and zeros as a pair of strings, the real part

is again encoded as a binary string with 10 bits. For example string 1100000000 is equivalent

to -0.5. The imaginary part is encoded as a binary string with 10 bits whose most significant

Chapter 4 System Identification Using GAs 40

bit denotes whether the string is real or imaginary by setting it to 0 or 1 respectively. As an

example the string 1100000000 and 0100000000 represent -y'0.5 and 0.5 respectively.

The method explained can be also applied to encoding the poles of a transfer function. If n is

odd then the system should include at least a single pole. Therefore the denominator

polynomial of the transfer function can be expressed by equation (4-3-6) with complex

conjugate poles:

A(q~]) = (1 - a }q~l)[1 - (a 2 + j a 3)q~l][1 - (a 2 - y'a3)q~l]... (4-3-6)

or (4-3-7) without complex conjugate poles:

A (q) = (1 - ex,?"1)[1 - a 2q~'][1 - a ,q ~ ']... (4-3-7)

If m is even then the denominator polynomial of the transfer function can be expressed by

equation (4-3-8) with complex conjugate poles:

A (q) = [1 - (a, + j a 2)q~'][1 - (a 2 - j a 2)q~']... (4-3-8)

or equation (4-3-9) without complex conjugate poles:

A (q ~') = 11 - « ,)q~'][1 - a 2q~']... (4-3-9)

4.3.2 Encoding Time Delay

The time delay of a system is encoded by a binary string of length 8. The string represents a

sampling interval of 0 to 255. For example the binary string 00110011 indicates that the time

delay of the system is equal to 51 sampling intervals.

4.3.3 Identification of Parameters and System Structure

The identification process progresses as follows:

Chapter 4 System Identification Using GAs 41

(i) Select a small positive number 8.

(ii) Begin with the order of m = 1 and n - 1.

(iii) Encode d, at, bj, to identify poles and zeros in the complex plane according to the

procedures proposed by Kristinsson and Dumont [50]. For a stable minimum phase

system the poles and zeros are inside the unit circle. Hence the real and imaginary parts

of poles and zeros are less than or equal to 1. If the system to be identified is non

minimum phase, the maximum of real and imaginary parts of the poles and zeros can be

selected according to a prior knowledge available on the system.

(iv) Use genetic algorithms to minimise the objective function or maximise the fitness.

(v) Check the fitness of every individual and the fitness sum. When the search process

converges the fitness sum becomes very small. It implies that all fitnesses are

approximately equal. In order to detect the convergence of this search process a small

positive number 8 (=0.001) is defined compared to which fitness sum measured. If this

sum is less than the product of Population size*z , the search process is terminated.

Otherwise, compare the minimum objective function of the previous search stage with

the current one. If the former is less than the latter, then output the results of the

previous search stage and stop. Else continue

(vi) Increment m and n. Go to step (iv).

4.3.4 Simulation Results

In order to verify the identification method proposed in this chapter, two systems with the

following model structures have been used in a computer simulation.

A{q~l)y(k) = q~dB{q~])u(k) + v(k) (4-3-10)

Where

A(q]) = \ + a]q l +a2q 2+...+anq n, (4-3-11)

B (q~l) = b0 + bxq 1 + b2q 2+...+bmq m, (4-3-12)

Chapter 4 System Identification Using GAs 42

v(k) is white noise, y(k) and u(k) are the output and input of the system to be identified.

4.3.4.1 Simulation I

The first system has a model as:

y (k) ~ 1.5y(k - l)+ .54y(k - 2) = 3.2u(k - 6) - 0.96u(k - 7) (4-3-13)

The conditions and results of the system identification for system 1 are given below. The

parameters of the identified system and the real system are compared in Table (4-3-1). The
A

responses of y(k) and y (k)given the input u(k) are illustrated in Figure (4-3-1). The time

delay is identified after 60 generations.

Number of data =60;

Generations = 345;

Population = 50;

The length of chromosome =50 bits.

Probability of Crossover =0.9

Probability of Mutation = 0.1

Total Error:

X [y (i t) -> ’«:)]2/(W a 4 y ('t)])2 = 137.2/(196.8*196.8)=0.0036;
i = 1

Max[y(/:)]=196.8,

Chapter 4 System Identification Using GAs 43

Figure (4-3-1) The response of y(k) and y(k) to input u{k) -u(k)!10, u(k) is the real

Identified system:

input value.

y(k) - \A3y(k - 1) + 0.477 y(k - 2) = 3.22u{k - 6) - 0.1Q2u{k - 7) (4-3-14)

a2 h2 Delay Time

Original parameters -1.5 0.54 3.2 -0.96 6

Identified parameters -1.43 0.477 3.22 -0.702 6

Table (4-3-1) Param eters and Results of Simulation 1

4.3.4.2 Simulation II

In this simulation a standard system often used in the literature [50] is employed. A time delay

of 7 times the sampling interval is added to the model. The model, as shown below, has a

pair of complex conjugate poles.

y(k) —l.5y(k — \)+.7y(k —2) = \.0u(k —7) + 0.5u(k —&) + C(q])v(k) (4-3-15)

Chapter 4 System Identification Using GAs 44

The poles and zeros of the model are:

poles=(0.15± y'O.37)
zeros = (-0.5)

A pseudo random binary signal (PRBS) with a period of 127 and a bit interval of one

sampling interval is used as the test signal to drive the system. The delay time is identified

after 90 generations of GA. In the test procedure 250 input and output data have been

sampled. The conditions and results of the system identification are given below. The

parameters of the identified system are compared with the original system in Table (4-3-2).

The responses of the original and identified systems are illustrated in Figure (4-3-2).

N = 250 Population = 60

Probability of Crossover = 0.68, Probability of Mutation = 0.06

Time delay = 7 Sampling Intervals,

Estimated poles and zeros:

poles = (0.74 ± y0.347)
zeros = (-0.583)

number A
Total error = ^ [y(k) - y{k)\2/{Max\y(k)\ }2 = 0.0953

i=i

The identified system:

y (k) - \ A $ y (k - l) + 0.668y(/: - 2) = \.06u(k - 7) + 0.618m(& -8) (4-3-16)

#2 b2 Delay Time

Original parameters -1.5 0.7 1.0 -0.5 7

Identified parameters -1.48 0.668 1.19 -0.618 7

Table (4-3-2) Parameters and Result of Simulation II

Chapter 4 System Identification Using GAs 45

Figure (4-3-2) Response of y(k) and y(k) to PRBS.

4.3.4.3 Simulation III

In order to compare the simple two point crossover procedure with the new two point

crossover procedure, system 3 is selected as a model for simulation with the time delay equal

to 9 sampling intervals:

y(k)~ 1.8y(k - l)+.8075y(/: - 2) = I4 u (k -9)-0 J u (k - 10) (4-3-17)

The results with the new two point crossover procedure are given below. The parameters are

compared in Table (4-3-3) and simulation results are shown in Figure (4-3-3).

y(k)-\.15y(k - \)+.159y(k - 2) = 1.38w(* - 9) -0.6\u(k -10) (4-3-18)

a, 0-2 bx b2 Delay Time

Real parameters -1.8 0.8075 1.4 -0.7 9

identified parameters -1.75 0.759 1.38 -0.61 9

Table (4-3-3) Comparison of Param eters using new two-point crossover

Chapter 4 System Identification Using GAs 46

Figure (4-3-3) Results with new two point crossover u A(k)=u(k)/10

Number of data =60 Generations = 525

Probability of Crossover =0.8 Mutation = 0.08

Total Error:

number A

X U (O - y (O] 2/{M a4y(*)]}2=96.98/(132.39*132.39)=0.005514;
¿=1

Max[y(£)]=132.39

The responses of y(k) and y(k) under the input u(k) are shown in Fig (4-3-3).

The results with simple two point crossover procedure are given in Table (4-3-4), and Figure

(4-3-4). The real model is

y(k)-l.Sy(k - l)+.8075y(* - 2) = \Au(k-9)-0.1u(k -10) (4.3.19)

The identified model is

y (k) ~ \ .12\y(k - 1) + 0.731 y(Æ -2) = \A9u(k —9) — 0.6lSu(k - 10) (4.3.20)

Chapter 4 System Identification Using GAs 47

Figure (4-3-4) Results with simple two point crossover u A(k)=u(k)/10

The parameters of the original system are compared with the estimated system in Table(4-3-4).

<h 2̂ b\ b2 Time Delay
Real parameters -1.8 0.8075 1.4 -0.79 9
identified parameters -1.721 0.731 1.19 -0.618 9

Table (4-3-4) Comparison of Parameters using simple two point crossover

The rest of the results are :

Time Delay = 9 sample intervals

Number of data =60;

Generations = 3729; Probability of Crossover =0.85

number A

X [y{k)~ y(k)f I Max^yik)]}1103.33.2/(132.9*132.39)=0.00585;
1=1

Probability of Mutation = 0.08

With the new two point crossover, the search process is converged after 525 generations

compared to simple two point crossover which takes 3729 generations to converge.

Therefore, it can be obviously seen from the results that the new two point crossover

procedure has produced a result much faster than the simple method.

Chapter 4 System Identification Using GAs 48

4.3.5 Validation of the Method

In order to validate the method, the instrumental variable identification method (IV) has been

employed to compare its result with GAs. In this experiment the model of the system to be

identified and input/output data are assumed to be the same as Simulation III:

The parameters estimated by IV are compared with GA's method in Table (4-3-5)

a] «2 b2 b,
Identified parameters -1.233 0.250 0.0436 0.1554 -0.073
Original parameters -1.80 0.8075 0.0 0.0 0.0

K b5 K bn K
Identified parameters -0.058 -0.046 -0.0363 -0.0276 -0.020
Original parameters 0.0 0.0 0.0 0.0 0.0

b9 b]o K
Identified parameters -0.014 0.0 1.443
Original parameters 0.0 0.70 1.40

Table (4-3-5) Comparison of system parameters of the original

Comparison of Figures (4-3-4) and (4-3-5) shows that the GAs has produced a performance

closer to the actual system for the same input due to using a lower order model in the

identification process.

Figure (4-3-5) y(k) and y(k) for u(k) using IV4 (Instrumental Variable)

Chapter 4 System Identification Using GAs 49

The IV method cannot estimate well the parameters of the system when time-delay is

unknown and a small set of input and output data is available.

4.4. MIMO System Identification Using GAs

The multi-variable system employed in this study is an ARMAX model

Y(K) = A(q~l)U(k) + v(k) (4-4-1)

Where A(q~x) is a transfer function matrix in backward shift operator q~l, i.e. y(k-l) =q’l

y(k)

Y(k) = [y1(k) , y2(k), . . .yn(k)] is the output vector,

U(k) = [Ul(k) ,U2(&),.•• Um(k)] is the input vector,

and v(k) is white noise vector. Y(k) can be written as formula (4-4-2).

y t (k) = An (q ~ ' X (k) + A ^ ' ^ i k y + . - . + A ^ i q ' ^ u ^ k)

y2(k) = A2}(q~')ul (k) +A22(q~')u2(k)+...+A2m(q~')um(k)

■ (4-4-2)

y„(k) = Anl(q -')u ,(k) + An2(q-')u2(k)+...+Anm(q~ ')uJk)

In order to simplify the encoding procedure of the parameters in the identification process,

y i,y2---y„ are decomposed as formula (4-4-3)

Yl = Yi\ + y22+---+y2m (4-4-3)

yn = ym +ym +-+y. (4-4-4)

Chapter 4 System Identification Using GAs 50

where

yu = Au (‘!'')u i(k),yn = An (q-l)u2(k),...,ylm = Alm(q~')um(k)

2̂1 — 2̂1 (*7)wt (Æ), ̂ 22 = 2̂2 (<7)Ul{k).....y2m = A2m(t? (4-4-5)

y»i =)« ,(*),;y„2 = = Am (q-')um(k)

The following parameters are also defined:

Dn the time delay of the transfer function An (q~l),

Dl2 the time delay of the transfer function An (q~l),

DXm the time delay of the transfer function Alm (q~]),

D2l the time delay of the transfer function A2l (q~x),

the time delay of the transfer function Au (q~l),

•

Dnm the time delay of the transfer function Anm{q~l),

This approach will also simplify the calculation of the objective function.

If the input u(k) is a PRBS, the parameters of the transfer matrix A(q~l) can be calculated

theoretically. Nevertheless in most of the real systems, a PRBS cannot be applied to the

systems.

The objective function is the same as SISO system but defined for every output:

Objt = f j [yl (k) - y l (k)\2 / IMaxl y^k))]2

Chapter 4 System Identification Using GAs 51

N

O b j2 = X [y2 (*) - y 2 (k) f / [M a x [y 2 (k))]2 (4-4-6)
1=1

A/
o b j . = Xiy.(*)-y. (*)] 2 /[w«(y„a))] 2

Similar to a SISO system 37; (^){;=12..*} are the outputs of the real system, and

M ^ { y J(A:)}(J=i 2j n) are constant values equal to the maximum of y j (k) [k = 1,2,...,A}

respectively. The coefficients of Aa (g - l) , ^ (^ “ ^are estimated by genetic

algorithms using Objj[j=x 2 n] as objective functions.

The encoding method for MIMO system is the same as SISO system described in section

4.3.2. However there are more parameters to be identified in an MIMO system

4.4.1 Experimental Work

A series of experiments were conducted through computer simulation to study the operation

and accuracy of GAs in the identification of a MIMO system. For this purpose a system with

the following model was used:

In implementing the GAs the time delay of Ai }{ q x), i.e., Du ,D2l ,...,D ml,

chromosomes, the gain Kitj of Ai } (q !) as 10-bit strings in the medium of the chromosomes

Y{k) = A(q~l)U(k) {n = 2, m = 2}

where

An(q~l) =
l-2ff~8(l —0.73g-1) , 0.38g-1
l-1 .6 g _1+ 0.63g-2 ’ 12 q 1-0 .95q~

Du ,D22,...,D m2,...Dln,D2n,...,D mn were encoded as 8-bit strings on the right side of the

Chapter 4 System Identification Using GAs 52

and the zeros and poles were encoded as 10-bit strings on the left of the chromosomes. The

identification process has been based on 80 samples of input and output of the system.

4.4.1.1 Estim ation of A n {q~l) and An (q~x)

In the estimation of Au (q~l) and Al2(q~l), a probability of crossover of 0.6 is selected. This

is to ensure a more stable search process when a time delay exists. Furthermore since the

number of sampled data is small, the probability of mutation of 0.05 is chosen. This will help

to reintroduce the information that has been lost in previous generations of the search process.

The objective function calculated was:

number A

Obji = X i y ^ - y . i k)] 2/[Maxly^k)}]2 =303.174/12689.8=0.0239,
¿=1

The evolution of the algorithm in estimating the poles and zeros of Au (q~x) and An (q~x) is

illustrated in Figure (4-4-1). The dominant pole of Au (q~l) with a large time constant (polel

of An (q~1)) has been estimated the fastest and reached a stable value of 0.92 after 700

generations. Since a small change in this pole will cause a big variation in the value of the

objective functions, the accuracy of the estimation of the dominant pole of Au {q~l) has a

great deal of influence on the objective function. The identified poles and zeros on the unit

circle for every 400 generations are shown in Figure (4-4-2).

Figure (4-4-1) Generations of zeros and poles for A n and Aj2

Chapter 4 System Identification Using GAs 53

The estimation process for the gains of An (q~l) and An (q~l) is illustrated in Figure (4-4-3).

In this case the gain of the main channel from input u\(k) to yx(k) converges much faster

than the channel from input u2(k) to y^k). A similar pattern can be also observed in the

estimation of the time delay as shown in Figure (4-4-4). It has taken about 1000 generations to

converge to a time delay of 8 sampling intervals.

Figure (4-4-2) Identified Poles and zeros on the unit circle for An (q !) and Au (q]). (+

and O stand for poles and zeros respectively)

Figure (4-4-3) Generations of gains for An (q l) and Al2(a 1)

Chapter 4 System Identification Using GAs 54

4.4.1.2 Estim ation of A22(q-1) and A21(q_1)

In the estimation of A22(^_1) and A2l(q~x) a smaller value of 0.6 for probability of crossover

is selected to inhibit some chromosomes from crossover operation and hence maintain a more

stable system. Furthermore since the number of sampled data is not large the probability of

mutation is chosen to be 0.038 to restore some of the information lost in the previous

generations. The objective function is

number A

Obj2 = [y2(/:) - y 2(/:)]2 /[Max{y2(£)}]2 =287.69/23545.3=0.0122

1.0
0.9
o.s
0.7
0.6
0.5
0.4
0.3
0.2
0.1

100 200 300 400 500 Ó0Q 700

Figure (4-4-5) Convergence of poles and zeros for An {q~l) and A21 (q~l)

Similar procedures have been applied to An (q ') and A2x{q l). The estimation of poles and

zeros of A^ (q~l) and A21 (q~l) is illustrated in Figure (4-5-5). It can be seen that main pole of

Chapter 4 System Identification Using GAs 55

A^iq l) with a large time constant (pole2 of A ^ q !)) converges after about 220 generations

and reaches a stable value of 0.938. The identified poles and zeros on the unit circle for every

100 generations are shown in Figure (4-4-6).

Figure (4-4-6) Identified Poles and zeros on the unit circle for A^{q *) and A2l(q]).

(+ and O for poles and zeros respectively)

The estimation of the gains of A^iq-1) and A2l(q~l) and their convergence after 390

generations are shown in Figure (4-4-7). The gain of main channel from input u2{k) to y2(k)

converges much faster than the other channel from input ux(k) to y2(^)-The time delay has

converged to a 6 sampling time after 250 generations Figure (4-4-8).

Figure (4-4-7) Convergence of the gains of A^ i q l) and AZ](q])

Chapter 4 System Identification Using GAs 56

Figure (4-4-8) Convergence of delay time for A^ i q *)

4.4.1.3 Param eters of Identified Model

The coefficients of the identified model based on GAs for a model structure of

Y (k) = A(q~])U (/:) (n = 2, m = 2}

is as follows:

* l .226q-\l-0J3q~])
A i l = --------------------- :----------------------- 7

1 - 1.55t?"1 + 0.579t?"2

Â21 (<?-')
0.22t?"1

1 - 0.856t?"1

An (q ')

An(q~l)

0.33t?~‘
1 -0 .959t?"1

0.76t?~6(l-0.744t?~1)
1 - 1.708t?"1 + 0.7226t?"2

Figure (4-4-9) y , (k) a n d y , ^) in repsonse to u,{k) and u2(k)

(the chart of u2(k) is illustrated in the Figure (4-4-10)

Chapter 4 System Identification Using GAs 57

The coefficients of this model in comparison with the actual model of the system is shown in

Table (4-4-1). The poles, zeros and gains are also compared with the original system in Table

(4-4-2). The response of the identified model to inputs Uj and have been also compared

with the original system in Figures (4-4-9) and (4-4-10).

ai a2 b, b2 d

4 ,0 ? “) Real -1.6 0.63 1.2 -0.876 8

Identified -1.55 0.579 1.226 0.895 8

4 2 (9 “) Real -0.95 0.38

Identified -0.959 0.33

4 j (9~‘) Identified -1.75 0.762 0.8 -0.624 6

Real -1.708 0.722 0.76 -0.56 6

4 2 (9 “) Identified -0.88 0.2

Real -0.856 0.22

Table (4-4-1) Comparison of the coefficients

Pole 1 Gain Pole 2 Zero 1 Gain

4 , (9 “) Real -0.7 -0.9 -0.73 1.2

Identified -.63 -0.92 -0.73 1.226

4 2 (9 “) Real -0.95 0.38

Identified -0.959 0.33

4 2 (9 “) Identified -0.81 -0.95 -0.78 0.8

Real -0.77 -0.938 -0.744 0.76

4 2 (9 “) Identified -0.88 0.2

Real -0.856 0.22

Table (4-4-2) Comparison of the poles, zeros and gains

Chapter 4 System Identification Using GAs 58

Furthermore the performance of GAs in the identification of the model has been compared

with instrumental variable (IV) Method using MATLAB package. The input/output data from

the same system used in the GAs was used for system identification. In the estimation of the

coefficients using IV method the model of the system was assumed to be ARMAX with a

known structure. The numerators of An(q~x) and An {q~l) were also assumed to be

polynomials with 10 and 8 terms respectively. The method cannot estimate the time delay.

Figure (4-4-10) y2(k) and y2(k) in repsonse to ux(k) and u2(k)
(the chart of ux(k) is illustrated in the Figure (4-9-9))

140

120 -

100 -

80 -

60 -

40 -

20

0
0 10 20 30 40 50 60 70 80

Figure (4-4-11) Response of yx(k) and yx(k) using IV method

The coefficients of the identified system are compared with the original system in table (4-4

8). The responses of this system in comparison with the original system to inputs and U2

are also illustrated in Figures (4-4-11) and (4-4-12). It is clear that the system identified by the

Chapter 4 System Identification Using GAs 59

IV method is not as accurate as the one obtained using GAs. One important reason for this is

the shortcoming of the IV method to estimate the time delay of the system. This particularly

accounts for the large errors the original and estimated response in the early phases.

aj «2 bj b>2 l>3 b4 1>S b7 bg bw

Ai o r 1) Real -1.6 0.63 0 0 0 0 0 0 0 0 1.2 -

Identified -1.04 0.093 1.72 -2.39 0.144 0.149 0.08 0.0 0.0 0.43 - -

A iO r1) Real -0.95 0 0.38

Identified - 0.0 0.34

A iO r1) Identified -1.75 0.762 0 0 0 0 0 0 0.8 -0.62

Real -1.39 0.404 0.03 0.12 - 0.256 0.03 0.04 0.131 0.19

AzOT1) Identified -0.88 0.0 0.2

Real - - 0.35

Table(4-4-3) Comparison of the coefficient of the system identified by IV method with

the original system

160 -r

140 ■■

120 ■■

100

80 ••

60 ■■

40

20 ■■

0
-20 ■■ 10 20 30 40 50 60 70 80

Figure (4-4-12) Responses of y2(k) and f^{k) using IV method

Nevertheless the response using IV method can be improved if PRBS is used as the input and

the time delay given as a prior knowledge to the identification algorithm.

Chapter 4 System Identification Using GAs 60

4.5 Identification of SISO Hammerstein-type Nonlinear System

A SISO Hammerstein type non-linear system can be modelled as a cascade nonlinear memory

less subsystem and a linear dynamic subsystem as shown in Figure (4-5-1).

Figure (4-5-1) Model of plant characteristics, non linear and linear

A discrete time model of this system can be described by:

Mq~l)y(k) = q~dB(q~l)F[u(k)] + v(k) (4-5-1)

Where

A(<̂ 1) = 1 + CL̂q 1 + ci2q 2+...+£inq n,

B(q l)=bQ+blq l +b2q 2+...+bmq m.,

v(k) is white noise.

It is also assumed that F[u(k)] can be approximately represented by a polynomial of u(k)

F[u(k)] = f 0 + f lu(k) + f 2u2(k)+...+fJui (k) (4-5-2)

The main aim is not only to identify parameters of the linear subsystem but also to estimate the

parameters of the non linear subsystem. The parameters to be identified are encoded as :

— [d\ ? ¿22 5 • • • » ’ • • • ’ fo * f \ > • • • » f y » ̂] (4-5-3)

Chapter 4 System Identification Using GAs 61

bl9b2,...fbn can be represented by the poles and zeros. If the linear subsystem is

minimum phase, its zeros and poles are located inside a unit circle on the complex plane.

Therefore these zeros and poles can be directly identified and encoded between [0, ±1] using

genetic algorithms. For parameters / 0, o f the nonlinear subsystem, the range of

coding is dependent on the amplitude of control signal u(k). In this case a range between 0.0

to ±2*Max{|w(iO|} is chosen. The time delay d can be encoded within 50 sampling intervals.

If this is not sufficient the range can be extended to 1023 sampling intervals.

4.5.1 Simulation Results I

In the simulation a "standard" model of a real system which has been employed often in the

literatures [4, 44] to test different identification method is chosen:

A(q~l) = 1.0 —1.5<7-1 + 0.1 q~2

B iq -1) = 1.0+ 0.5q~l u (k) > - 0.5 (4-5-4)

F[u(k)] = [u(k) + 0 .5 /2 -0 .5 ^

Input test signal is a PRES.

Since F[u(k)] is a nonlinear subsystem the amplitude of the test PRBS must be changed in the

search process. In this simulation PRBS is divided into eight amplitude ranges from 0 to 2.0. Each

amplitude input is a PRBS with the period of 32 bit length and duration of 50 sampling intervals.

There are 400 input and output data to be used in the search.

Responses of the "standard" system and the identified system are shown in Figure (4-5-2). The

curves of the "standard" non linear subsystem F[u(k)] and identified non linear subsystem F*[u(k)]

are shown in Figure (4-5-3). A comparison between identified parameters and "standard" system

can be seen in table (4-5-1).

Chapter 4 System Identification Using GAs 62

Figure (4-5-2) Responses of the real system y(k)and the identified system y(k)

Figure (4-5-3) The identified F[u(k)] and the real F[u(k)]

a1 a2 b2
Real parameters -1.5 0.7 1.0 0.5
Identified parameters -1.472 0.674 0.924 0.294

fx h a /«
Identified parameters 0.23047 0.12333 0.15 0.04667

fs Â fn / ,
Identified parameters 0.0581 -0.07191 0.00381 0.0.0009504

Table (4-5-1) Identified parameters

G en era tio n = 361; P ro b ab ility o f m uta tion = 0 .015; P robab ility o f c ro sso v e r = 0.9;

Chapter 4 System Identification Using GAs 63

i=number

y (k) f =115.6
¿=0

It is obvious from the results that the nonlinear systems with a Hammerstein model can be

directly identified by genetic agorithms. This method provides good convergence and is

successful in a probabilistically guided search process to estimate the parameters of the linear

dynamic and nonlinear subsystems.

4.5.2 Simulation Results II

In order to test the convergence of the search process, the model is changed to the following

y(k +1) = 1.8y(k) - 0.9y(k -1) +1.0F[u(k)] + 0.1F[u(k - 1)]
nr , IV1 . ,« (*) * n , u (k) e [0.0, 2.0]F[u(k)] = sin!-----------}

4.0

The results of simulation for the linear dynamic subsystem are listed in table (4-5-2)

<h a2 6, k
Real parameters 1.8 0.9 0.7 0.5
Identified parameters 1.788 0.892 0.554 0.532

Table (4-5-2) Identified parameters of F [u (k)]

i—number

[y(fc) - y(&)]2 =69.705, the amplitude of PRBS is 2.0.
<=0

The responses of real system and identified system between the range of U(K) = 0.0 to 2.0 are

shown in Figure (4-5-4).

Chapter 4 System Identification Using GAs 64

Figure (4-5-4) Responses of the real system y(£)and the identified system y(k)

i=number

=63.18
<=0

Generation = 1371; Probability of mutation = 0.008; Probability of crossover = 0.99;

Figure (4-5-5) the identified F*[u(k)] and the real F[u(k)]

The parameters of F*[u(k)] are given in to table (4-5-3)

/, a A A
Identified parameters 0.78 0.050 0.04 -0.15

f, A A fs
Identified parameters 0.02 0.01 0.0 0.0

Table (4-5-3) Identified param eters of F[u(k)]

Chapter 4 System Identification Using GAs 65

It can be seen that in spite of some small bias in the estimations, the responses of the real

system and the identified system are almost the same. Therefore the identified model is

sufficient to be employed in the design of a controller.

4.6 Summary

The results of computer simulations carried out in this chapter demonstrate that genetic

algorithms can accurately identify the time delay, order, structure and parameters of a system

with fewer sampled input and output data of the system in comparison to conventional

methods of system identification.

The developed methodologies will be used to identify the approximate model of a process and

tune the parameters of the fuzzy controller designed for it.

Chapter 5 Optimisation of a Fuzzy Controller 66

Chapter 5

Optimisation of a Fuzzy Controller

5.1. Introduction

This chapter describes the approach developed in this work to optimise a fuzzy controller.

This method uses genetic algorithms and is not dependent on the knowledge obtained from a

skilled operator. In the process, the membership functions or fuzzy rules are automatically

tuned to produce a better control performance. This is radically different from heuristic

methods. The method requires only a small set of input and output data from the real

system. The technique is developed based on the assumption that system to be controlled is a

nonlinear system with a Hammerstein model. The discrete-time mathematical model of such

system is given by

A(q-l)Y(k) = q~dB(q-1)F[U(k)] (5-1-1)

Where A(q l) = a0+a1q l+...+anq n

and B(q~1)= b lq~l +b2q~2+...+bmq~m,

F[U(k)] is a nonlinear memory less and continuous function related to U(k).

The chapter starts by defining the normalisation procedures used in the approach. The

fuzzification of the membership functions and fuzzy rules are then described. The

Chapter 5 Optimisation of a Fuzzy Controller 67

defuzzification of the output using two methods is presented. The encoding and search

processes of the optimisation algorithm using GAs are finally addressed.

5.2 Normalisation of Input and Output Values

In order to design a fuzzy controller the variables are normalised to a value between -1 and

+1. This will produce a more generic design algorithm.

The procedures of normalisation of input and output values are as follows:

a) The maximum range of output Y(k) (based on the A/D converter) of the system to be

controlled is ±1200, and the maximum given value of the target value R(k) is ±1000.

Hence the coefficient of normalisation should be 0.001.

b) E(k) -R(k)-Y(k) (5-2-1)

It is assumed that E(k) varies from +1.2 to -1.2. For values out of this range an overflow is

considered.

c) A E(k) = E(k)-E(k-l) (5-2-2)

After normalisation the maximum value of AE(k) will vary between [-2.4, +2.4] based

on the limits defined on E(k) and E(k-l). If we choose a fuzzy rule known as very big

positive AE(k) when AE(k) is equal to or greater than 1.2, and another fuzzy rule

known as very big negative AE(k) when the AE(k) is equal to or smaller than -1.2 the

AE(k) will range between -1.2 and +1.2. Furthermore, if the constraints on the real

controller output action is considered, a very big AE(k) cannot demand a very big

control action due to the constraints on the real controller. Based on the above

Chapter 5 Optimisation of a Fuzzy Controller 68

conditions, the range of AE(k) can be reduced to be [-1.2, +1.2]. The maximum and

minimum membership functions are shown in figure (5-2-1) corresponding to two fuzzy

rules of Maximum and Minimum of AE(k)

d) The output of the controller is a fuzzy combination of the membership functions of E(k)

and AE(k) such as [F(E(k)) v F(AE(k))], or [F(E(k)) a F(AE(k))] where F(.) is

membership function. The X axis should be normalised according to the maximum output

of the D/A Converter. I f the D/A Converter has a 10-bit length then it covers values from

0 to 1023. The X axis will be in the range of -512 to +512. Based on the scaling principle

the values -1 and +1 on X axis should provide an output of -500 and +500 respectively.

5.3 Fuzzification Process

In this section the fuzzification process applied to the input and output of the fuzzy controller

will be described.

5.3.1 M embership Functions of E(k) and AE(k)

In order to get a better approximate fuzzy value of the membership function when it is in the

vicinity of 0.0 or 1.0, the membership function of E(k) is assumed to have a square function

expressed by (5-3-1) where a and b are sections of the membership functions on X axis.

Chapter 5 Optimisation of a Fuzzy Controller 69

Y =
2 e{k) -

- 4 * (E - a) (E - b)
a, b e [-1.2, 1.2] (5-3-1)

(a - b f

If a0 and b0 are the values of a and b located near the coordinate system origin then it is

assumed that a0 = —b0. This ensures that the membership function is a symmetric function

relative to the Y axis. The span of the membership function should be 2*b0.

In general it is desirable to increase the resolution of the errors near the origin of the coordinate

system. If the membership function is located within a small range of the origin of the

coordinate system, the spans should be selected to be smaller than when it is far from the origin

of the coordinate system. This will improve the resolution of the membership function.

Consequently the membership function can be assumed to have the following forms:

F0 = k0(x - a 0) (x - b 0).....a0 = - b 0.......k0 = 4 / (a0 - b0)2 a, b e [-1.2,+1.2] (5-3-2)

Fl = kl(x - 0) (x - b 0ea)............ kx = 4 / (0 .0 -b0ea)2 (5-3-3)

F2 = k2(x - b 0 £ 2i_1 ̂ ia / 21) (jc - V 2“)• •. *2 = 4 / (b0 £ 2'"1 eta / 21 - b0e2a)2 (5-3-4)
i=l i = 1

F3 = it3U - ö 0£ 2 ‘-Ie'a / 2 2) U - V 2a)-^ 3 = 4 /(ö 0X 2 ‘-1e‘a /2 2- V 3“)2 (5-3-5)
1=1 »=1

F4 = (JC - i»0^ 2 - 1 eia / 23)(X - b0e4a)...kA= 4 / (¿>0£ 2M e,a / 23 - b0eia)2 (5-3-6)
1=1 i'=l

F5 = k5(x - [b0X 2 '“1 e'“] / 24){x- b0e5a)...k5= 4 / ([60X 2 Weia] / 24 - 60e5a)2 (5-3-7)
¿=1 ¿=1

y-i
F j = k j (x - [b0 £ 2 - 1] / 2 >- ') (x - V /a)

¿=1

where k } = 4/([b0^ 2 t~1eia] / 2 J~1 - b 0eja)‘

(5-3-8)

(5-3-9)

Chapter 5 Optimisation of a Fuzzy Controller 70

The above membership functions from Fj to Fj are illustrated on the right half plane of Figure

(5-3-1)

On the right half plane (x > 0) b0e6a should be equal to +1.2 . Thus we have the following

equation (5-3-10):

V 6“ = 1.2 (5-3-10)

aB — (5-3-11)

When b0 is known, a will be obtained from

a = [ln(1.2/60)]/6 (5-3-12)

Assuming b0 = 0.1, will give a = 0.41415.

For the left half plane, the membership functions are defined by

F0 = k0(x - a 0) (x - b 0)............k0 = 4 / (a0- b 0)2 a, b e [-1.2,+1.2] (5-3-13)

kx = 4 / (0.0-&0(l + ea))2Fx = kl (x - 0) (x - b 0(l + ea)) (5-3-14)

Chapter 5 Optimisation of a Fuzzy Controller 71

F2 = k2 (x - b0 £ 2‘-' eia / 21) (* - b0e2a) ...* ,= 4 / (¿>0 Y 2“ 1 eia / 2 l - b 0e2ay
*=1 ¿=1

F3 = ¿3 (x ■- ö0 £ 2i_1 e'“ / 22) U - V 2“)• • ■k1= 4/(b0'£ 2 l~'eia / 2 2- b0e,a):
i'=l

(5-3-15)

(5-3-16)

= A:; (x-[& 0^ 2 i' 1eio‘] /2 J-1) (^ - V ;a) (5-3-17)
t=l

kj = 4 /([& 0^ 2 w eia] / 2 >‘ 1 - b 0eia)2 (5-3-18)
i=l

b) The membership function of

The membership functions of the AE(k) are assumed to be the same as the membership

functions of E(k).

5.4 Fuzzy Rules and the Membership Functions of the Output

To derive the fuzzy rules and membership functions of the fuzzy controller output, two methods

have been applied.

5.4.1 M ethod I

In the first method one of the membership functions of the output of the fuzzy controller are

divided into two parts. In order to simplify the design of the fuzzy controller and reduce the

number of the fuzzy rules, a PD (Proportional-plus-differential) controller's reference model is

proposed. For an actuator with an accumulator the model [17] is

U P+D(k) = U e(k) ® U Ae(k),

U(k) = U P+D(k)
(5-4-1)

Chapter 5 Optimisation of a Fuzzy Controller 72

where k is sampling time. When there is no accumulator then the model changes to

UP+D(k) = Ue(k) ® U ^ (k) ,

u (k) = u (k - \) + u P+D(k) (5'4_2)

In these equations, The signal © is the fuzzy logic addition and UP+D(k) is the actual output of

the fuzzy controller obtained from fuzzy inference according to the value of the membership

functions of E(k) and AE(k). Ue (k) and (k) are the fuzzy output values caused by E(k) and

AE(k) respectively. E(k) and AE(k) are used as the inputs to the fuzzy controller because they

are the feedback variables of the control system. To simplify the inference process, if the

Ue(k) and U ^(k) are assumed to have been generated by E(k) and AE(k) respectively, the

relationships between two outputs Ue(k), UAe(k) and two inputs E(k), AE(k) are defined as

follows:

a). The rules and the membership functions of the output related to E(k)

If E (k) = e 0 then Ue(k) = Ue0(k)

If E(k) = ex then Ue(k) = Uel(k)

If E(k) = e2 then Ue(k) = Ue2(k)

If E (k) = e n then Ue(k) = U en(k)

The membership functions of Ue(k) related to E(k) are assumed as (5-4-3) and (5-3-4). In

order to speed up the process of optimisation, the triangular membership functions are chosen

because the number of multiplications during the optimisation will be reduced. The triangular

membership functions are shown in figure (5-4-1)

Chapter 5 Optimisation of a Fuzzy Controller 73

Figure (5-4-1) Membership Function of Output

Fi = K(x ~ a t)....* < (flf + bi) /2. . . k i =2 / (b t -) (5-4-3)

Fi = - k i(x - b i)....x<bl....ki =2/(bl - a i), a, b e [-1.0,+1.0]. and F >0.0 (5-4-4)

The parameters ai and bi (i=l, 11) will be obtained by optimising the control system using

GAs.

b). The rules and the membership functions of the output related to AE(k)

If AE(k)= Ae0 then UAe(k) = UUQ(k)

If AE(k) = Ae: then UAe(k) = UAel (k)

If AE(k) = Ae2 then UAe(k) = UA£2(^)

If AE(k) = Aem then UAe(k) = U^Jk)

The membership functions of UAe(k) related to AE(k) are given by (5-4-5) and (5-4-6):

Fi = ki(x - a i)....x<.(ai +bi)/2...ki = 2/(bi - a i) (5-4-5)

F. = - k i(x - b i)....x <bi...ki - 2 / (bt - a t), a, b e [-1.0,+1.0]. and Fi > 0.0 (5-4-6)

Chapter 5 Optimisation of a Fuzzy Controller 74

Figure (5-4-2) Membership Function of Output

The number of membership functions of outputs related to E(k) and AE(k) is assumed to be 11.

The number of membership functions determines the control performance. If a higher level of

control performance is required more membership functions of outputs should be chosen. This

will, however, increase the number of the membership functions to be optimised. Under these

conditions there will be 44 parameters of at and bt of the output membership functions to be

optimised in the method. When all the parameters ai and bi are obtained, the crisp value of the

output is calculated by the Central of area (COA) method as described in section 5.5 of this

chapter.

5.4.2 M ethod II

In the second method the fuzzy rules for the outputs are directly optimised to tune the fuzzy

controller. The fuzzy rules are:

If E(k) = e0 and AE(k)= Ae0 then U (k) =

If E(k) = el and AE(k)= Ae0 then U(k) = Rxo

If E(k) = e2 and AE(k)~ Ae0 then U(k) = R^

If E(k) - en_x and AE(k) - Ae0then U(k) = Rn_xfi

If E(k) = e0 and AE(k) = Aex then U(k) = R0l

If E(k) = ex and AE(k) = Aex then U (k) = Ru

Chapter 5 Optimisation of a Fuzzy Controller 75

If E(k) = e2 and AE(k) = Aex then U(k) = R2l

9

If E(k) = and AE(k) = A^then U(k) = Rn_xl

If E(k)= e0 and AE(k) = Aen_x then U(k) = R0n_x

If E(k)= el and AE(k) = Aen_x then U(k) = Ru_x

If E(k) = e2 and AE(k) = Aen_x then U(k) = R2n_x

9
9

If E(k)= en_x and AE(k) = Aen_x then U{k) = Rn_l n_,

Where n is the number of membership functions of E(k) and AE(k). Therefore, there are

(n-l)*(n-l) fuzzy rules in the fuzzy controller. The rule look-up table with nine membership

functions is illustrated in Figure (5-4-3). Overall the N will be 81 fuzzy rules. If the number of

membership functions is equal to nine, then there will be 81 fuzzy rules in the look-up table.

Ss\ e
Ae ^ n v b n b n m ns 0 p s p m p b p v b

n v p R 0 0 R 01 R 0 2 R 0 3 R 0 4 R 0 5 R 0 6 R 0 7 R 0 8

n p R IO R I I R 1 2 R 13 R 1 4 R 1 5 R 1 6 R 1 7 R 1 8

n m R 2 0 R 21 R 2 2 R 2 3 R 2 4 1125 R 2 6 R 2 7 R 2 8

ns R 3 0 R 31 R 3 2 R 3 3 R 3 4 R 3 5 /136 R 3 7 R 3 8

0 R 4 0 R 41 R 4 2 R 4 3 R 4 4 R 4 5 R 4 6 R 4 7 R 4 8

p s R 5 0 R 51 R 5 2 R 5 3 R 5 4 R 5 5 R 5 6 R 5 7 R 5 8

p m R 6 0 R 61 R 6 2 R 6 3 R 6 4 R 6 5 R 6 6 R 6 7 R 6 8

P b R 7 0 R 71 R 7 2 R 7 3 R 7 4 R 7 5 R 7 6 R 7 7 R 7 8

p v b R 8 0 R 81 R 8 2 R 8 3 R 84 R 8 5 R 8 6 R 8 7 R 8 8

Figure (5-4-3) Look-up table of a fuzzy controller

Chapter 5 Optimisation of a Fuzzy Controller 76

As described above, the U(k) is only dependent on RiJm However every fuzzy rule Ri} will be

determined by E(k) and AE(k). If the two membership functions are equal to 1 for a pair of E(k)

and AE(k) then the control action of output from the fuzzy controller should be Ri r In general,

the two membership functions are not equal to 1 and hence the control action is calculated by

fuzzy logic operators as described in section 5.5 of this chapter.

In this approach all the fuzzy rules must be optimised. In order to avoid local minima points,

genetic algorithms are used in this work. The encoding method used will be introduced later in

this chapter.

5.5 Defuzzification of the Fuzzy Controller Output

In order to defuzzify the output of the system, two defuzzification methods proposed by

Tsakamoto [57] have been applied in this work. The first method of COA is complex to

calculate but produces more accurate results. The second method, (Tsakamoto's method) is

computationally simple but its resolution is less than the COA method. In general it has been

observed that the COA method is more appropriate when the membership functions are

optimised and the Tsakamoto’s method when fuzzy rules are optimised.

In the COA approach Z* and Z \e ■ which are the control outputs related to E(k) and AE(k) are

obtained from (5-5-1)

(5-5-1)e q

X w

where q is the number of quantisation levels of the output Z, and Fc represents its membership

function value based on the input value.

Chapter 5 Optimisation of a Fuzzy Controller 77

For the second method, the crisp control action is derived from (5-5-2)

U [k] = X *

_n

É ® ,
i=l

(5-5-2)

Where n is the number of rules with firing strength (cot) greater than 0, x; is the amount of

control action recommended by the rule i and X is a proportional parameter which will be

optimised in order to make the fuzzy controller suitable for a system with a specific static gain.

Assume that 7 ^ (2 ^)and Fm2(Ex) denote the values of membership functions Fml and Fm2,

when E(k) is equal to El . F ^ A E ^ , and F ^ A E ^ denote the values of membership function

Fml and Fm2 when AE(k) is equal to AEV then

C0j = [Fml (E{)A Fnl (AEl)], and control action xrl is equal to the value related to this rule.

co2 =[Fml(E1)A and control action xr2 is equal to the value related to this rule.

co3 =[Fm2(E:)A Fml(AFj)], and control action x r3 is equal to the value related to this rule.

C04 = [F m 2 (E l) A F m2 (A E l)] , and control action xr4 is equal to the value related to this rule.

The symbol A is the ‘minimum’ operator.

Therefore:

U[k] = X * (5-5-3)

The formula (5-5-3) is used in the second method for optimising the rules.

Chapter 5 Optimisation of a Fuzzy Controller 78

5.6 Design of the Fuzzy Controller Using Genetic Algorithms

The fuzzy control system can be shown by the block diagram of Figure (5-6-1). The

fuzzification, defuzzification and fuzzy rules are included in the fuzzy controller.

In this section the design process developed using GAs algorithm is described by explaining the

ecoding process, ojective fnction employed, and the search process used.

5.6.1 Encoding the Membership Functions for Method One

The membership functions of the output rules are defined by two points a and b across the x

axis. After normalisation of E(k) and AE(k), the parameters, a and b should be within [-1,

+1].

Figure (5-6-2) Two points a and b of a membership functions

Chapter 5 Optimisation of a Fuzzy Controller 79

In encoding the membership functions, the string consists of 11 bits, the most significant bit of

which denotes the sign, and the remaining bits define the value of a or b. Since there are 11

mles used for E(k) and AE(k), there will be a total of 44 parameters to be optimised. An

increase in the membership functions will obviously increase the number of parameters to be

optimised.

In order to realise the fuzzy logic addition mentioned in section 5.4 of this chapter, two fuzzy

gains cOj and co2 are defined to perform fuzzy logic addition;

UP +D (k) = co j * Up (k) + co 2 * UD (k) (5-6-1)

The parameters cOi and co2 should also be optimised.

5.6.2 Encoding the Fuzzy Rules for Method Two

If there are m membership functions for the fuzzy controller inputs E(k) and AE(k) then m2

fuzzy rules should be optimised. In this case every fuzzy rule Rij in figure (5-4-3) is encoded as

an 8-bit binary string. The most significant bit of the binary string again denotes the positive or

negative sign, and the remaining bits express the value of the fuzzy rule. After obtaining the

values of the fuzzy rules, they are normalised by dividing them by 128. This ensures that the

values of Rij in figure (5-4-3) are within the range of ±1.0. For example, if an 8-bit binary

string expressing R11 is equal to 10010000 then the fuzzy rule R11 is -16/128 or -0.125.

5.6.3 Objective Function

In order to reach a high level of control performance, the objective function is defined as

formula (5-6-2). This provides different weights for various stages of the optimisation

process.

Chapter 5 Optimisation of a Fuzzy Controller 80

W j e 2 (k) (5-6-2)

In this relationship / is the number of the separated phases, wi is the weight for phase j, kj is the

number of sampling intervals for phase j, and e(k) = R (k) ~ Y (k) .

The value of E(k) is significantly large during transient response compared to the steady state.

A small value of wt compensates for large E(k) during the transient response. For example if the

set point function is defined as :

R(k) = 0.5 0 < k< 2 0

R(k) = -0.5 20 < k < 4 0

R(k) = 0.8 40 < k <6 0

R(k) = 0.0 60 < k <80

R(k) = 1.0 80 < k < 100

R(k) = 0.6 100 < k < 120

R(k) = 1.0 120 < k < 140 (5-6-3)

The objective function and typical values of u> will be

Chapter 5 Optimisation of a Fuzzy Controller 81

.... +i> o « 2(^ + i r j ^ « + i> e2(^+x:r12(̂)+x;:ioo^(i)

...+I«s2(*)+Xl̂ oo**)+Xi!,s2<*>+Xl>o*2«
(5-6-4)

As mentioned before in section 3.4 of chapter 3, evaluation function used in the GAs is the

fitness function defined as:

fitness function = PM - Obj (5-6-5)

Where PM is an adaptive positive factor to guarantee a fitness function greater than zero.

The advantages of a set point function with varying amplitudes are to improve the control

performance of the fuzzy controller and to make every fuzzy rule more effective for different

levels of disturbance. It is well known that fuzzy control systems are nonlinear systems. Hence

the change of the set point will cause the control performance to deteriorate if the optimised

controller is globally optimal only for one set point. It is, therefore, necessary to modify the

objective function used in the optimisation process for different levels of step responses.

In other words, if the controller designed by this method is a linear controller and the plant is

also linear then the change of set point does not affect the control performance. On the other

hand, for a nonlinear controller optimised for a given set point and controlling a nonlinear

plant, the change of set point does surely affect the control performance. Hence a fuzzy

controller optimised using an objective function can perform better than a linear controller

under varying required conditions.

5.6.4 Procedure of Search Process

The search process used in the optimisation process progresses as follows:

Chapter 5 Optimisation of a Fuzzy Controller 82

(i) Select a small positive number \ op = 10.0. If a more accurate response is required the £

should be chosen to be less than 10. The probability of mutation and crossover used in the

genetic algorithm should be then provided.

(ii) Define the set point function and the weights w{ of the objective function.

(iii) Use genetic algorithms to minimise the objective function or maximise the fitness function.

The procedures include crossover, mutation, calculation of fitness function of every

individual and estimation of the adaptive positive factor.

(iv) Check the fitness of every individual and pick the best of the population. In order to

detect the convergence of this search process a small positive number e is defined to be

compared with the minimum value of all the objective functions of the population. If this

value is less than e , then the search process is terminated. Otherwise, save the minimum

objective function of this generation of search and continue the search process.

(v) Use method I and method II to establish a look-up table.

5.7 Summary

In this chapter the procedure developed in this work to design and tune a fuzzy controller has

been discussed in detail. In order to achieve a better performance, a multi-level set point

function with different amplitude has been chosen and an objective function with different

weights has been developed. This is different from traditional optimal methods in which the

controller is optimised for a constant set point. Using this strategy, a better performance under

varying set points can be guaranteed for a nonlinear controller that controls a nonlinear system.

Chapter 5 Optimisation of a Fuzzy Controller 83

During the course of the chapter the procedures used for normalisation of input and output

values and selection of objective function were also introduced. Based on the principles

described in the chapter these procedures have been coded as a design tool using Borland C++.

84

Chapter 6 Validation of the Method

6.1 Introduction

In this chapter the developed methodology for tuning a fuzzy controller will be validated through

computer simulation and experimental work. In the simulation work the fuzzy membership

functions and fuzzy rules for a nonlinear system are optimised. In the experimental work the

optimised controller tuned for a DC motor is applied in real time and the results are compared

with a PD controller.

6.2 Validation Through Simulation

The configuration of the control system used in the computer simulation is illustrated in Figure (6

2-1). A nonlinear process is controlled by a fuzzy controller.

Figure (6-2-1) The control system with the non linear process

6.2.1 Optimisation of Membership Functions

For this simulation, a process with the following model is chosen:

85

A(q-l)Y (k) = q - dB(q-')F[U(k)] (6-2-1)

Where A{q~') = { \ -q - ') (\ - \ . l% q ~ ' +0.784«?-2),

B(q-') = 1.36(1 - 0. lq - ') and d = 2

F[U(k)] = \.0sin[U(k)Tl/2]

The model of the membership Functions of the error E(k) and change of error AE(k) have been

defined as section 5.3. In this simulation there are 13 membership functions in the range of -1.0

to 1.0. It is also assumed that there are six membership functions on the right plane and six

membership functions on the left plane, hence n is selected as six. There is also one membership

function at the origin of the coordinate frame making a total of 13 membership functions. Thus:

b0e6a= l 2 (6-2-2)

Assuming b0 =0.1, then

a0 = - b 0 (6-2-3)

a = [ln(1.2/60)] /6 (6-2-4)

a = 0.41415.

The 13 membership functions are similar to the ones illustrated in figure (5-3-1) for a

typical value b0 and a.

Hence in order to define and optimise the membership functions of E(k) and AE(k), 52 variables

are required to be tuned. In addition the weights cOj and co2 of the fuzzy logic addition defined in

formula (5-6-1) of section 5.6 must also be optimised during the search process. This will

increases the number of variables required to be optimised to 54.

86

In a fuzzy control system, a change in the reference point will cause a deterioration in the control

performance if the controller is globally optimised only for one specific reference point. This can

be a problem when a system is continuously disturbed by step functions of different amplitudes.

For each step function, a new objective function optimising the fuzzy controller should be

calculated.

In this work, such problem is avoided by employing an objective function as given by (6-2-5). As

soon as the system arrives at a steady state condition, a weight of 100 is inserted into the

objective function. This will increase the value of the objective function if the steady state error is

too small. Hence small steady state error will result in a large change in objective function. The

steady state error and rise time of the system response are directly proportional to the value of the

chosen weight.

obj=x; f l2 (*)+x>oe2 (*)+x;7j 2 (* >+xZp *2 < * > ■+ XII?,2 <* >
...+X> 0* 2 (*)+XU?,2 (*) ■+ X> 0*2 (*)+XU?,2 (*)+XI" J00*2 (*>
....... + X ^ < *) + Z ^ “ e*(*)+ x “ s 2(*)+ X « J P 0 « * w

(6-2-5)

The reference input function R(k) used in this simulation is defined by

R(k) = 0.5 0 < k <20

R(k) = 0.0 20 < k < 40

R(k) = 0.8 40 < k <60

R{k) = 0.0 60 < k < 80

R(k) = -0.5 80 < k < 100

R(k) = 0.0 100 < k< 120

R(k) = 1.0 120 < k < 140

87

The optimised membership functions of the fuzzy outputs related to E(k) and AE(k) are illustrated

in Figures (6-2-2) and (6-2-3) respectively. The scale of the x-axis is 1/100 of the real value of the

output. In these diagrams (6-2-2) ML and Nt (/ = 1,13) are the membership functions of the fuzzy

controller output related to the ith membership functions of E(k) and AE(k) respectively.

M y^ 2 M3 “ M4 M5 -------- M 5 -------- M 7

m 8 “ M 1 0 M uM 1 2 --------- M 1 3

Figure (6-2-2) Optimised membership functions of fuzzy output related to
membership functions of E(k)

The system response of the optimised controller to the variable reference input R(k) is illustrated

in Figure (6-2-4). The value of the objective function is 11.73 and the weights, CDj and oo2, of the

fuzzy logic addition, are 0.085 and 0.123 respectively. The search process lasted for 867

generations. The response has a maximum overshoot of 0.68%, a rise time of 7 sampling

intervals and a steady state error of 0.03%.

The other parameters of the optimisation process are:

Population size = 280

Probability of mutation = 0.0062

Probability of crossover = 0.96

88

----Nj N2 N 3 N 4— N 5 N6— - Ny
Ng N9- N io Nn N12— N 13

Figure (6-2-3) Optimised membership functions of fuzzy output related to

membership functions of AE(k)

Figure (6-2-4) System responses optimised by the GAs for variable reference-point

The performance of the optimised fuzzy controller has been compared with a fuzzy controller

intuitively tuned. The output membership functions of this controller related to the membership

functions of E(k) and AE(k) are respectively illustrated in Figures (6-2-6) and (6-2-7). The

response of the system with this controller to the variable reference input is shown in Figure 6-2

5. This response has exhibited a maximum overshoot of 8.6%, a rise time of 7 sampling intervals

and a steady state error of 3.4%.

Chapter 6 Validation of the Method 89

Figure (6-2-5) System response of the intuitively tuned controller for variable

reference input

M jM 2 --------M 3--------M 4------- M 5-------- M 6 --------M 7 --------Mg

M 10 M 11 .. . M 12 M 13

Figure (6-2-6) Membership functions of fuzzy output intuitively tuned related to

membership functions of E(k)

Chapter 6 Validation of the Method 90

--------N l --------- N2 --------N 3N 4 -------- n 5 -------- n 6 ---------N ? --------- Ng

-------- N 9 ---------N 10........... N n --------- N 12--------N i3

Figure (6-2-7) M embership functions of the fuzzy output tuned intuitively in relation
to membership functions of AE(k)

In the manual tuning, it is assumed that the membership functions Nx to N6 correspond to

the error from maximum negative to minimum negative values, Nn to /V8 correspond to the

error from maximum positive to minimum positive values and N7 corresponds to the error in

the vicinity of zero. A similar procedure is defined for change of error. The strategies used for

manual tuning of the fuzzy controller are as follows:

1. Initialise fuzzy output membership functions related to error and change of error as

a) The membership functions are isosceles triangular;

b) Every triangular has equal span on x-axis;

c) The membership functions are located on x-axis as shown in Fig (6-2-8).

Y

Figure (6-2-8) Initialised membership functions

Chapter 6 Validation of the Method 91

2. Ignore the change of error and concentrate on using the error as the input to the fuzzy

controller. Use the trial and error approach to tune the output membership functions of

the fuzzy controller to get a step response with a short rise time. To ensure the stability of

the system:

a) If the rise time is too long, increase control action by shifting membership

functions located on the right half plane to right when the set point is positive,

or shifting membership functions located on the left half plane to left when the

set point is negative.

b) If the system is unstable, decrease the control action by shifting membership

functions located on the right half plane to left when the set point is positive, or

shifting membership functions located on the left half plane to right when the

set point is negative

c) Repeat steps a) and b) until the step response has a satisfactory rise time.

3. Include the membership functions of change of error into the tuning process and tune the

output membership functions related to the change in error

a) If the overshoot is too large then increase the control action by shifting

membership functions located on the right-half plane to right and shifting

membership functions located on the left-half plane to left.

b) If the system response is too slow, decrease the control action by shifting

membership functions located on the right-half plane to left and shifting

membership functions located on the left-half plane to right.

Repeat steps a) and b) until the step response has a shorter rise time.c)

Chapter 6 Validation of the Method 92

4. After tuning the membership functions, use COA method as described in section 5.5 to

defuzzify the control action.

Comparing Figure (6-2-4) and Figure (6-2-5) clearly illustrates that the performance of the

fuzzy controller tuned by genetic algorithms is superior to the other. Moreover intuitive

tuning of a fuzzy controller takes much longer than using the design tool.

In the experiment conducted, the method based on GAs converged after 867 generations

which took 30 minutes. The intuitive method required 2400 minutes and 600 iterations.

An understanding about the “optimised” controller (MF) could greatly benifit the thesis and

the reader.

6.2.2 Optimisation of Fuzzy Rules

The optimisation of the fuzzy rules is illustrated through two case studies and the results

obtained from the optimised fuzzy controller will be compared with the results obtained from

a fuzzy controller tuned intuitively. The intuitive method is performed as follows:

1. Initialise a fuzzy rule look-up with some values as shown in table (6-2-1).

2. Use the trial and error Method to tune the fuzzy rules to get a step response with short

rise time while maintaining the stability of the system.

a) If rise time is too long, increase X or decrease control action obtained from the

derivative of error by adding a small positive number such as 0.1 or 0.05 to the

fuzzy rules at the left-top area of the table (6-2-1). Also increase control action

obtained from error by adding a positive number to fuzzy rules at the right-top

area of the table (6-2-1) when the set point is greater that initial value y(0).

b) If the set point is greater that initial value y(0) and the rise time is too long then

increase X or decrease control action obtained from the derivative of error by

Chapter 6 Validation of the Method 93

adding a small negative number such as -0.1 or -0.05 to the fuzzy rules at the left-

bottom area of the table (6-2-1) and increase control action obtained from error by

add a negative number to fuzzy rules at the right-bottom area of the table (6-2-1).

c) If the system is getting unstable or the response has big over-shoot, decrease the

control action by adding a small positive number such as 0.1 or 0.05 to fuzzy rules

at the left-top triangular area of the table (6-2-1) and by adding a negative number

to fuzzy rules at the right- bottom triangular of the table (6-2-1). If necessary we

can decrease X (0< X <1.0).

d) Repeat steps a), to c) until the step response has a shorter rise time and smaller

over-shoot.

\ e
eN, -5 -4 -3 -2 - i 0 l 2 3 4 5

-5 -1.0 -0.9 -0.8 -0.7 -0. 6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

-4 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

-3 0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

-2 -0.7 -0.6 -0.5 -0.4 -0. 3 -0.2 -0.1 0.0 0.1 0.2 0.3

-1 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.30 0.4

0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

1 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.30 0.4 0.5 0.6

2 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

3 -0. 2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

4 -0.1 0.0 0.1 0. 2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

5 0.0 0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Table (6-2-1) Fuzzy rules (Look-up table) for intuitively tuned controller

The system model assumed in the simulation is

Where

A(q-l)Y(k) = q-dB(q-])F[U(k)]

A{q~l) = (l-<7-1)(l -1.78^7 1+0.784g 2),

(6-2-7)

Chapter 6 Validation of the Method 94

B (q) = 0.36(1 - 0. lq~') and d = 2

F[l/(jfc)] = 1.0sin[i/(*)n/2]

This model is the same as the model used in section 6.2.1 of this chapter. Hence the results

obtained by optimising fuzzy rules and fuzzy membership functions can be compared. In this

case the reference points are changed to demonstrate the robustness of the method to

different set points. The objective function, however, has remained the same. The method was

applied to tune the fuzzy controller using the following input function:

R(k) = 0.5 0 < k < 20

R{k) = 0.0 20 < k < 40

R(k) = 1.0 40 < k <60

R(k) = 0.0 60 < k < 80

R(k) = 0.8 80 < k < 100

R(k) = 1.0 100 < k < 120

R(k) = 0.6 120 < £<140

The membership functions related to E(k) and AE(k) are shown in Figure(5-3-l) and the

parameters used in the search process were:

No. of Generations = 1896 Population size = 380

Probability of mutation = 0.0028 Probability of crossover = 0.96

The maximum overshoot = 0.98% for the unit step target

The rise time = 6 sampling intervals for the unit step target

Steady State error = 0.06%

The response of the optimised fuzzy controlled system to the input function is shown in

Figure (6-2-9). The value of the objective function is equal to 12.301 and X = 0.867.

According to (5-5-2) the control signal Ureal(k) of the fuzzy controller is produced by

Chapter 6 Validation of the Method 95

Ureal(k) = X*Ufü2zy(k) O c Xc l . O (6-2-9)

Where Ureal(k) is the control signal, U ^ (k) is the crisp control value obtained from the

look-up table and X is a proportional factor converting the crisp control value to output

control signal. In this process 122 variables have been optimised including the 121 fuzzy rules

and X. The optimised fuzzy rule table is shown in Table (6-2-2). The intuitively tuned fuzzy

rule table is given in table (6-2-3).

Figure (6-2-9) Response of the optimised fuzzy controller - Optimised fuzzy rules

Figure (6-2-10) Response of fuzzy controller tuned intuitively

Chapter 6 Validation of the Method 96

\ e
e \ -5 -4 -3 -2 - l 0 l 2 3 4 5

-5 -0.999 -0.667 -0.534 -0.534 0.303 -.9992 -0.999 -0.667 0.303 -0.820 0.534

-4 -0 .820 -0.534 0.6677 -0.534 -0.414 -0.9992 -0.3032 -0.667 -0.820 0.8201 -0.198

-3 0.667 -0.198 -0.820 -0.820 -0.303 -0.3032 -0.6677 -0.999 -0.414 -0.414 -0.098

-2 -0.303 -0.820 0.0000 -0.303 0.3032 -0.1988 -0.6677 0.3032 0.8201 -0.667 0.4140

-1 -0.414 0.098 -0.999 -0.999 -0.303 0.0000 0.0000 0.1988 0.8201 0.3032 -0.820

0 0.667 -0.198 -0.198 -0.098 -0.198 0.0000 0.3032 0.5342 0.3032 -0.098 0.4140

1 0.667 0.1988 0.667 -0.534 0.1988 0.5342 0.4140 0.3032 0.4140 -0.414 0.5342

2 0.667 0.0984 -0.820 -0.098 0.6677 0.6677 0.5342 0.5342 0.4140 0.5342 -0.667

3 0.303 0.5342 0.0000 0.8201 0.8201 0.8201 0.8201 -0.667' 0.8201 0.8201 -0.414

4 -0.99 0.4140 -0.534 0.8201 0.8201 0.5342 -0.0984 0.1988 0.0000 0.8201 0.4140

5 -0.09 0.0000 -0.198 0.6677 0.8201 0.8201 -0.4140 0.3032 0.1988 0.8201 0.8201

Table (6-2-2) Optimised fuzzy rules (Look-up table) X = 0.867

R -5 -4 -3 -2 -l 0 i 2 3 4 5

-5 -0.99 -0.86 -0.542 -0.32 -0.332 -.28 -0.24 -0.21 0.16 -0.08 0.01

-4 -0.801 -0.534/ -0.303 -0.26 -0.180 -0.2 -0.13 -0.17 -0.081 0.020 0.051

-3 0.6 -0.486 -0.28 -0.26 -0.23 -0.212 -0.16 -0.12 -0.010 0.14 0.098

-2 -0.52 -0.44 -0.41 -0.303 -0.103 -0.1 -0.06 0.02 0.23 0.22 0.24

-1 -0.40 -0.42 -0.36 -0.289 -0.225 0.00 0.00 0.108 0.22 0.30 0.20

0 -0.36 -0.31 -0.21 -0.098 -0.08 0.00 0.004 0.15 0.20 0.34 0.420

1 -0.33 -0.20 -0.17 -0.152 0.058 0.21 0.24 0.30 0.41 0.45 0.52

2 -0.27 -0.19 -0.122 -0.034 0.14 0.17 0.21 0.32 0.40 0.54 0.57

3 0.132 -0.18 0.00 0.201 0.28 0.296 0.32 0.28 0.38 0.42 0.60

4 -0.02 -0.14 0.009 0.022 0.31 0.32 0.436 0.52 0.6 0.82 0.840

5 0.001 0.00 0.168 0.377 0.41 0.61 0.64 0.68 0.74 0.83 0.92

Table (6-2-3) Fuzzy rules (Look-up table) for intuitively tuned controller, X = 0.75

The performance of the intuitive controller to R(k) is provided in Figure (6-2-10). The

performance has

Chapter 6 Validation of the Method 97

Maximum overshoot = 16% for the unit step target

Rise time = 5 sampling intervals for the unit step target

and Steady State Error = 0.786%

It is obvious from the results obtained that optimised fuzzy controller has a better

performance.

The fuzzy controller based on GA converged after 1896 generations and took 100 minutes. In

comparison the intuitively tuned controller required 3600 minutes and completed after 600

iterations

6.3 Validation Through Experimental Work

In this part all stages of design and tuning of a fuzzy controller are applied to the position

control of a DC servo motor. The overall block diagram of the system is shown in Figure (6

3-1).

R(k) E(k) Position
System

Y(k)

Figure (6-3-1) The control system with linearized position system

6.3.1 System Identification

The system to be controlled is a linearised position control system. The typical transfer

function of such a system is given by

K K p-dS
Y(s) = 1 m - U (S) (6-3-1)

S(l + S x J

Chapter 6 Validation of the Method 98

The discrete transfer function of this system with Zero-Order Hold is

T(z_1)
Kh{ l - b z - l)z~d

(I - z - ' X I - æ T 1)
i/(z - ') (6-3-2)

For the identification of the parameters of the system an input/output data set of 80 samples

was gathered from the system at a sampling interval of 20 ms with an 8 bit A/D converter.

The identification package developed based on genetic algorithms and described in section

4.1 of chapter 4 produced the following transfer function for the system.

0.26(1-0.36z~‘)z~
---------- ;---------------------- ;—U (z)
(1 - z”1)(1 - 0.9268z_1)

(6-3-3)

6.3.2 Design of the Fuzzy Controller Using the Design Tool

In this experiment the fuzzy rules are optimised to acquire the look-up table directly.

The parameters used in tuning the fuzzy controller are

Probability of crossover: 0.96

Probability of mutation: 0.009

Population: 196

Number of the variables 122

The objective function is assumed to be nearly the same as equation (6-2-5). However in

order to decrease the number of multiplications in the search process the e 2(k) in the

equation (6-2-5) is changed to \e(k)\. In this case the weight is changed from 100 to 10 so

that the objective function is changed to (6-2-4). The set points are given by (6-3-5).

Chapter 6 Validation of the Method 99

obj= xL,K*>l+X>kwi+XX,k«i+Z l 10i‘<*>t+x rje<*>i+X^iWi
+ X«2.K*>I + Xwl°le(*)l

(6-3-4)

R{k) = 0.6 0 < k <40

R{k) = 0.0 40 < k < 80
5 II o 80 < k < 120

R(k) = 0.0 120 < k< 140 (6-3-5)

e \ -5 -4 -3 -2 - i 0 l 2 3 4 5

-5 -0.875 -1.000 -0.750 -1.000 0.000 -0.625 -0.125 -0.375 0.250 -0.250 -1.000

-4 -0.125 0.250 -0.625 0.750 0.250 -0.750 0.375 0.750 0.375 -1.000 -0.250

-3 -0.250 -0.375 -0.375 0.000 0.500 -0.625 0.125 0.500 0.250 -0.875 -0.500

-2 0.375 -1.000 0.500 0.125 0.875 -0.125 0.875 0.250 0.000 -0.125 0.875

-1 -0.125 0.125 -1.000 0.000 -0.250 -0.125 0.375 0.750 0.000 0.750 -0.625

0 -0.500 0.375 -0.250 -0.875 -0.375 0.000 0.375 0.125 -0.500 0.500 -0.375

1 -1.000 0.000 -0.375 0.125 -0.250 0.125 0.000 0.000 0.500 0.250 -0.125

2 -1.000 0.125 0.375 -0.250 -0.625 0.000 0.500 0.375 0.375 -0.500 -0.875

3 -0.625 -0.250 0.625 -1.000 -0.875 0.500 0.625 0.125 -1.000 -0.375 0.125

4 -0.875 -0.375 0.375 -0.500 0.250 0.500 0.875 -0.875 0.000 0.125 0.375

5 0.875 -0.875 0.875 0.875 -0.500 0.625 0.875 -0.125 0.000 -0.125 0.875

>1=0.626
Table (6-3-1) Optimised fuzzy rules (Look-up table)

The search process converged after 1246 generations. The derived optimised look-up table is

shown in Table (6-3-1). At the same time a gain factor X has been optimised and is equal to 0.626

and the optimised objective function is 32.92.

Ureal{k) = X*Ufutzy(k) 0 < X < 1.0 (6-3-6)

Chapter 6 Validation of the Method 100

Where Ureal(k) is the real control action and Ufuzzy(k) is the crisp control value of the fuzzy

controller calculated based on the look-up table.

The computer simulation of the system response, the reference input and control action

optimised are illustrated in figure (6-3-2). This result is obtained from the optimisation

process based on the mathematical model of the real system identified in the section 6.3.1 of

this chapter and is only a theoretical result.

Figure (6-3-2) Com puter simulation of system response and control action of the
fuzzy controller

Where U(k) is the control action, Y(k) is the response of the fuzzy control system and R(k) is

the reference input function. The value of X and objective function used were 0.626 and

32.92 respectively. The system has produced a maximum overshoot of 1.2% and rise time of

6 sampling intervals.

The optimised fuzzy controller was then applied to the physical system using the optimised

look up Table (6-3-1). The response of the system is shown in the figure (6-3-3). The

response has a maximum overshoot of 4.26% and a rise time of 6 sampling intervals. The

objective function is 35.62.

Chapter 6 Validation of the Method 101

Figure (6-3-3) The system response and the control action of the fuzzy controller in

real time.

6.4 Comparison of results with a Conventional PD Controller

A PD controller was applied to the DC motor to compare its performance with the fuzzy

controller. The results including the control signal, system response and the set points for

computer simulation and real-time control are shown in Figures (6-4-1) and (6-4-2)

respectively. This PD controller was optimised by GAs based on the mathematical model

identified in section 6.3.1. The parameters of the optimised PD controller had a proportional

gain of 0.3672 and a derivative gain of 1.7344.

The following parameters were used in optimising the PD controller:

Number of variable = 2, Proportional gain and Derivative gain

Population size = 20; No. of Generations in the search process = 689;

Probability of mutation = 0.01; Probability of crossover = 0.96.

Objective function:

Chapter 6 Validation of the Method 102

(6-4-1)

Figure (6-4-1) Com puter simulation of system response and control action using
conventional PD controller optimised by GAs

Figure (6-4-2) Real-time system response and control action of PD controller
optimised by GAs

The PD control action was defined by

U(k) = Kp* error[k] +Kd*(error[k]-error[k-l]) (6-4-2)

A detailed comparison of the performance of the real-time fuzzy controller, PD regulator and

computer simulations is provided in Table (6-4-1)

Chapter 6 Validation of the Method 103

Optimised Results Real time Results
Objective
Function

Overshoot Rise Time Objective
Function

Overshoot Rise Time

optimised Fuzzy
Controller

32.92 1.2% 6.4*20 ms 35.62 4.26% 6.8*20 ms

PD
Controller

47.46 4.2% 5.8*20 ms 62.46 8.1% 5.1*20 ms

Table (6-4-1) Comparison of experimental results

It is obvious from this table that the fuzzy controller designed by the design tool has a better

control performance in terms of rise time, overshoot and objective function when compared

with the PD controller optimised by the genetic algorithm.

6.5 Summary

In this chapter the developed methodologies were applied to a number of systems through

computer simulation and real-time control. The results demonstrate that the design tool

developed in this work based on GAs for tuning of fuzzy controllers can successfully produce

a satisfactory controller. The methods developed in this technique has also proved to be quite

robust in response to step inputs with variable gains. This is due to the usage of multi-level

set points during the optimisation process. Finally, an optimised conventional PD controller

was applied to the same real time system as the fuzzy controller. Results obtained indicate

that the fuzzy controller can provide a better performance than PD controller.

Chapter 7 Conclusion 104

Chapter 7 Conclusion

7.1 Introduction

The outcome of this work can be briefly described as a design tool which based on a small

set of input/output data from a system produces an optimised fuzzy controller. In spite of a

number of methodologies developed during the work, its major findings can be described as:

I. Development of a robust, efficient and flexible system identification methodology based

on genetic algorithms

II. Development of a tuning tool for the design of fuzzy controllers based on genetic

algorithms

In this chapter the results obtained in the work along the above two directions will be

reviewed. The significance and drawbacks of the work will be also highlighted and some

conclusions will be drawn. The possible future directions for the continuation of the work

will be also proposed.

7.2 System Identification

The system identification method developed in this work has some unique features which

can be summarised as:

(a) The conventional system identification methods will not produce an acceptable result

unless a large set of input/output data is available. The system identification method

Chapter 7 Conclusion 105

proposed in this work can still produce a satisfactory model for a system with a small

set of input/output data.

(b) The method can be applied with equal success to all types of systems including SISO,

MIMO and nonlinear systems of Hammerstine type.

(c) The new operations proposed in this work for GAs i.e., ‘two-point crossover’ and

‘adaptive positive factor’ for calculating fitness, ensure a fast convergence of the

method.

(d) In contrast to conventional system identification methods, this approach can estimate

the structure, and time delay of a system in addition to all its parameters.

(e) According to the comparison made with conventional IV (Instrumental Variable)

algorithms, the method developed in this work estimates more accurate poles and

zeros for the system.

7.3 Fuzzy Controller Tuning

The design methodology developed in this work operates on the system model identified

using GA approach. The tuning can be carried out either on the membership functions or

fuzzy rules.

In tuning the membership functions, 54 parameters derived from the membership functions

are optimised. For fuzzy rules the number of parameters tuned is 122. In both methods

GAs play a major role. Computer simulation and experimental work carried out in the

work shows that both optimisation methods operate well in practice. The controllers tuned

based on them outperforms other controllers.

Nonlinear controllers usually do not perform well if they operate at a reference point

different from what they have been designed for. In this work an objective function with

Chapter 7 Conclusion 106

multi-reference points was employed during design to overcome this problem. The

computer simulation shows that such approach guarantees almost the same control

performance for varying reference points.

It was also observed that the tuning process takes shorter than other design methods such as

trial and error. The speed of convergence depends greatly on the values selected for

probability of crossover and mutation. Inappropriate values can delay the convergence and

hence increase the tuning time significantly. This is a major shortcoming of this approach. At

present no systematic method for choosing these probabilities exists.

The developed method is not also suitable for on-line design of a controller due to the length

of the tuning process.

7.4 Future Work

This work is perhaps the first step towards a versatile and user-friendly automatic design tool

for fuzzy controllers. Further work along the following directions can improve the useability

and performance of the developed methodology:

(a) More study of the developed tool by applying it to various real-time systems and

observing the performance is necessary before the system can be recommended for

industrial applications.

(b) The search time of the genetic algorithms is quite long for on-line applications at this

stage. Further work is required to reduce this time by

• Implementing the search process in parallel using transputer or similar

parallel computing architectures.

• Reducing the number of parameters and rules to be optimised.

• Increasing the speed of the search process by introducing novel short

cuts.

Chapter 7 Conclusion 107

(c) A windows based user-interface for the design tool will integrate all the routines

developed in this work and will produce a more user friendly system. This can be done

either in Visual Basic or Visual C++.

Bibliography 108

Bibliography
(1) E . H . M a m d a n i, "A p p lica tio n s o f fu zzy a lg o rith m s fo r co n tro l o f sim p le d y n am ic p la n t ,”

ProcJEE 1 2 1 (1 2): 1 5 8 5 -1 5 8 8 (1 9 7 4).

(2) . L . E d . D a v is , "H a n d b o o k o f G e n e tic A lg o rith m s" , V a n N o s tran d , R e in h o ld , 1991.

(3) J. K im , Y . M o o n a n d B . P . Z e ig le r, "D esign ing fu zzy n e t co n tro lle rs u s in g G A o p tim isa tio n " ,

Proceedings IEEEIIFAC Joint Symposium on Computer-Aided Control System Design, P . 83

8 8 , M a rc h 1994 , A Z , U S A .

(4) C . K a rr , " A p p ly in g G e n e tic s to F u z z y L o g ic " , AI Expert, V o l.6 , N o . 2, p p 2 6 -3 3 , 1991.

(5) T . T a k a h a m a , S . M iy a m o to , H . O g u ra , M . N a k a m u ra , "A cq u is itio n o f fu zzy co n tro l ru les by

G e n e tic A lg o rith m s" , 8th Fuzzy System Symposium, p p 2 4 1-244 , 1992.

(6) M ic h a e l A . a n d H id ey u k i. T a k a g i. " In teg ra tin g D esig n S tag es o f F u zzy S y stem s u s in g G enetic

A lg o rith m s" , Second IEEE Int. Conf. on Fuzzy Systems, p p 6 1 2 -6 1 7 , 1993 , S a n F ran c isco .

U S A .

(7) Jo h n A . B e rn a rd , "U se o f a ru le -b ased system fo r p ro ce ss c o n tro l" , IEEE Control Systems

Magazine, p p . 3 -3 3 , O c to b e r, 1988.

(8) X . H u , B . C h u n g , "H e u ris tic le a n in g p a c k ag e fo r fu zzy co n tro l" , Proceedings ANZIIS-93, P erth ,

W e s te rn A u s tra lia .

(9) T h o m a s H e c k e n th a le r an d S e b a s tia n E n g ell, "A p p ro x im ate ly T im e-O p tim a l F u zzy C o n tro l o f a

T w o -T a n k S y stem " . IEEE Control System 1994.

(1 0) M . B a la z in sk i, E . C z o g a la an d T . S ad o w sk i, "C o n tro l o f M e n ta l-C u ttin g P ro c ess U sing N eu ra l

F u z z y C o n tro lle r" , Second IEEE Int. Conf. on Fuzzy Systems, p p l6 1 -1 6 6 , 1993 , S an F ran c isco .

U S A .

(1 1) M . S u g e n o (E D), " In d u s tria l A p p lica tio n s o f F u zzy C o n tro l" , A m ste rd am , N o rth H o llan d , P P

1 2 5 -1 3 8 , 1985 .

(1 2) P . J. K in g a n d E . H . M a m d a n i, "T he a p p lica tio n o f F u zzy C o n tro l S y stem s to In d u str ia l

P ro c e s se s" , Automatica, 13(3): 2 3 5 -2 4 2 , 1977

(1 3) V a n D e r R h e e F lo o r, H an s R . V an N a u ta L em ke, and Ja a p G . D ijk m an , "K now ledge B ased

F u z z y C o n tro l o f S y stem s" . IEEE Trans on Automatic Control, 35(2): 1 4 8 -1 5 5 ,1 9 9 0 .

(1 4) L a b ib S u lta n an d T a lib J a n a b i, "A n A d v an ced S y stem fo r th e G en e ra tio n an d T u n in g o f F u zzy

C o n tro lle r K n o w led g e -B ase" , IA S ' 93 , Conf. Record of the 1993 IEEE Industrial Applications

Conf. Twenty-Eighth IAS Annual Meeting, P P . 2 2 0 5 -2 2 0 9 , V ol. 3 , O ct. 1993.

(1 5) L . Z h en g , "A p ra c tic a l C o m p u te r-a id ed tu n in g tech n iq u e fo r fu zzy co n tro l" , Second IEEE Int

Conf on Fuzzy Systems, M a rc h , 1993 , V o l 2.

Bibliography 109

(1 6) L . Z h en g , "H u m a n O p e ra tio n E m u la tio n T ech n iq u e U sing F u zzy C o n tro l" , Proceedings o f the

instrum ent society o f america, International technical conference, (IS A /9 2). 1992

(1 7) L . Z h en g , "A p ra c tic a l g u id e to tu n e o f P ro p o rtio n a l an d In teg ra l (P I) lik e fu zzy co n tro lle rs" ,

Proceedings o f IE E E Int. C o n f on fu zzy systems, p p . 6 3 3 -6 4 0 , 1992.

(1 8) A . B o sc o lo , F . D riu s , "C o m p u te r a id ed tu n in g to o l fo r fu zzy co n tro lle rs" , Second IEEE In t C onf

on Fuzzy System s, M a rc h , 1993 , P . 2 9 1 -2 9 6 , V o l 1.

(19) L u is M . M . C u sto d io , Jo ao J. S. S en tie iro , an d C a rlo s F . G . B isp o , “P ro d u c tio n P lan n in g and

S ch ed u lin g U sin g a F u z z y D ec is io n S y s tem ,” IEEE Trans, on Robotics and Autom ation, vol.

10, N O . 2 , A p r il 1994 .

(20) D . M . E tte r , M . J. H ick s , an d K . H . C h o , " R ecu rsiv e ad ap tiv e f ilte r d esig n u s in g an adap tive

g en e tic a lg o rith m s," Proc. IEEE i n t . Conf. Acoustics, Speech, Signal Processing, vol. 2 , pp.

6 3 5 -6 3 8 ,1 9 8 2 .

(21) H . D . Jo o s , M . S ch lo th an e , an d G . G rcebel, "M u lti-O b jec tiv e D esig n o f C o n tro lle rs w ith F u zzy

L o g ic U s in g th e C o n tro l E n g in e e rin g E n v iro n m en t A N D E C S " , c l9 9 4 IEEE

(22) T . H o jo , T . T e ra n o an d S. M a su i, "D esig n o f Q u as i-O p tim a l F u zzy C o n tro lle r b y F u zzy

D y n a m ic P ro g ra m m in g " , Second IEEE In t C on f on Fuzzy Systems, M a rc h , 1993 , V o l 2.

(23) J. E so g b u e , R . E . B e llm an , "C o n trib u tio n to fu zzy d y n am ic p ro g ram m in g " , 2nd W orld Conf.

M athem atics a t Service o f M an, L a s P a lm a s , 1982

(24) J. B a ld w in , B . W . P ilsw o rth , "D y n am ic p ro g ra m m in g fo r fu zzy system w ith fu zzy env ironm en t",

J. M ath. A nalysis and A p p lica tio n s ,, 85, 1 -23 , 1982

(25) K . T a n a k a , M . S an o , "D esig n o f fu zzy co n tro lle rs b a sed o n freq u en cy an d T ra n sie n t

C h a ra c te r is tic s" , Proc. IEEE Int. Conference on Fuzzy Systems, p p l 1 1 -116 , 1993

(26) D . S a b h a rw a l an d K . S. R a tta n , "A p ro p o rtio n a l-p lu s-d e riv a tiv e ru le -b ase d fu zzy co n tro lle r" ,

IE E E In t C on f on Systems Engineering, P. 2 2 9 -2 3 3 , D ay to n U S A , 1991.

(27) T . B reh m an d K . S . R a tta n , "H ybride fuzzy log ic P ID co n tro lle r" , Proceedings o f the IEEE

1993 National Aerospace and Electronics Conf. P .8 0 7 -8 1 3 , 1993.

(28) W e n -R u ey . H w an g . W iley . E . T h o m p so n , "A n im p ro v ed m ethod fo r design ing fu zzy co n tro lle rs

fo r p o s itio n co n tro l sy s tem s" , Second IEEE Int C onf on Fuzzy Systems, M a rc h , 1993 , P . 1361

1364, V o l 2.

(29) W . C . D a u g h e rity "A N eu ra l-F u z z y S y stem s fo r the P ro te in F o ld in g P ro b lem " I F IS ' 93 . The

th ird In t . Conf. on Industrial Fuzzy Control and Intelligent Systems. P P . 4 7 -4 9 , 1993,

H o u s to n . U S A

(3 0) E . K h a n an d P . V e n k a tap u ra m , "N eufuz: N eu ra l n e tw o rk b ased fu zzy lo g ic d esig n a lgo rithm ",

S e co n d IE E E In t Conf. on Fuzzy Systems, M a rc h , 1993 , P . 6 4 7 -6 5 4 , V o l 1.

Bibliography 110

(3 1) Y im g -Y aw . C h en , "R u les E x tra c tio n fo r F u z z y C o n tro l S y stem s", 1989 IEEE Int. Conf. on

System , M an and Cyb., p p . 5 2 6 -5 2 7

(32) L . F o r tu n a , S . G ra z ia n i, S . B ag lio , and G . N u n n a ri, " Im p ro v em en ts in fu zzy co n tro lle r design",

IE E E In t C o n f on System s Engineering , P . 2 3 7 -2 4 0 , D a y to n U S A , A ug . 1991.

(33) C h e n g -L ian g . C h en an d W en -C h ih . C hen , "F u zzy C o n tro lle r D esig n b y U sin g N e u ra l N e tw o rk

T e c h n iq u e s" , IEEE Trans, on Fuzzy Systems, p p . 2 3 5 -2 4 4 , V ol. 2. N O . 3. A u g . 1994.

(3 4) H . T a k a g i, I. H a y a sh i, "N N -d riv en F u z z y R easo n in g " , Int. J. Approxim ate Reasoning, V o l 5,

N o . 3 , p p l l6 - 1 3 2 , 1991 .

(35) H . N o m u ra , I. H a y a sh i, N . W a k a m i ," A se lf-tu n in g m eth o d o f fu zzy co n tro l b y d ecen t m ethod",

4 th IF S A Congress, V o l. E n g in e e r in g , p p l5 5 -1 5 8 , Ju ly 1991.

(36) D a ih ee P a rk , A b ra h a m K an d e l, an d G id eo n L an g h o lz , "G en e tic -b ased new fu zzy reason ing

m o d els w ith a p p lic a tio n to fu zzy co n tro l" , IEEE Trans on System, M an and Cybernetics, vol.

2 4 . N O . 1, J a n u a ry 1994.

(3 7) H . Ish ib u c h i, K . N o z a k i an d N . Y am am o to , "S e lec ting fu zzy ru les b y g en e tic a lgo rithm fo r

c la s s if ic a tio n p ro b lem s" , Second IEEE Int Conf. on Fuzzy Systems, M a rc h , 1993 , P . 1119

1124, V o l 2.

(38) S . I s a k a an d A . V. S eb a ld , "A n o p tim isa tio n a p p ro a c h fo r fu zzy co n tro lle r design , co n tro lle rs" ,

IE E E Trans on System , M an and Cybernetics, v o l. 22. N O . 6, pp . 1 4 6 9 -1 4 7 3 , N o v /D e c 1992.

(39) S . C h iu , S . C h a n d , D . M o o re and A C h au d h a ry , "F u zzy L og ic fo r C o n tro l o f R o ll an d M o m en t

fo r a F le x ib le " W ing Aircraft, IEEE Control Systems M agazine, pp . 4 2 -4 8 , Ju n e 1992.

(40) L . A . Z a d e h , "F u zzy a lg o rith m s" , Information and Control 1 2 :9 4 -1 0 2 (1 9 6 8).

(41) L . Z a d e h , "O u tline o f a N ew A p p ro ach to the A n a ly sis o f C o m p lex S y stem s an d D ecision

P ro c e sse s" , IEEE Trans. Sys., M an, Cybren., vo l. sm c -3 3 , pp . 2 8 -4 4 , 1973.

(42) B . K o sk o , "N eu ra l N e tw o rk s an d F u zzy S ystem : A d y n am ica lly sy stem s a p p ro a c h to m ach ine

in te llig en c e " , P re n tic e -H a ll, 1992.

(43) T . T a k a g i an d M . S u geno . "D eriv a tio n o f fu zzy con tro l ru les from h u m an o p e ra to r’s con tro l

a c tio n " . In IF A C Syposium on Fuzzy Information, Knowledge representation and Decision A

nalysis, p p . 5 5 -6 0 , M a rse ille , F ra n ce

(44) D . G o ld b e rg ., "G en etic A lg o rith m s in S ea rch , O p tim iza tio n , and M ach in e L earn in g " , A d d is o n -

W e sle y , 1989.

(45) Z . Z h a n g an d F . N ag h d y , “ Id en tifica tio n o f N o n -lin ea r S y stem U sing G en etic A lg o rith m s” ,

C O N T R O L 95 P ro c e d in g s , 1995 , A u stra lia .

(4 6) E lio t, H . an d W o lo v ich , W . A , " P a ram e te r iz a tio n Issu es in M u ltiv a riab le A dap tive C on tro l,"

A utom atica, 2 0 (1 9 8 4), pp . 5 3 3 -5 4 5 .

Bibliography 111

(4 7) Z . Z h a n g a n d F . N a g h d y , “ S y stem Id en tifica tio n U sin g G enetic A lg o rith m s” , E E C P ro ced in g s

199 4 S y d n ey .

(4 8) Y . D a v id o r , H . S ch w efe l, "A n in tro d u c tio n to ad ap tiv e o p tim isa tio n a lg o rith m s b a sed on

p r in c ip le s o f n a tu ra l ev o lu tio n " , Dynam ic, Genetic and Chaotic program m ing , Jo h n W iley &

S o n s , IN C .

(4 9) B ic k le s B .P ., F re d ric k E . P e try ," G e n e tic A lg o rith m s" , IEEE Com puter Society P re ss , 1992.

(50) K . K ris tin sso n an d G . A . D u m o n t, "S ystem Id en tifica tio n an d C o n tro l U sing G enetic

A lg o rith m s" . IE E E Trans Syst. M an and Cyber ,V O L .22 , N O .5 , 1992.

(51) Z ib o . Z h a n g an d J. P . R a y n e r an d A . D . C h ee th am , “N o n L in e a r S y stem Id en tifica tio n w ith

F u z z y m o d e l A p p lied to P la sm a P ro c e s ” , S E C O N D A N N U A L J O IN T C O N F E R E N C E O N

IN F O R M A T IO N S C IE N C E S (JC IS '9 5), N C , U S A .

(52) B . L . A n d e rsen , W . C . P a g e , an d J. R . M cd o n n ell, "M u lti-o u tp u t system id en tifica tio n using

ev o lu tio n a ry p ro g ram m in g " ,

(5 3) ______ " R e d u c e d -O rd e r P a ra m e te r E s tim a tio n fo r C o n tin u o u s S y stem from S am p led D ata"

A SM E Trans J D ynam ic Syst, 1990.

(54) M . P a w la k ,. "O n the se rie s e x p an sio n a p p ro a c h to the id en tif ica tio n o f H am m ers te in system s",

IE E E Transactions on Autom atic Control. V ol: 36 p p 7 6 3 -7 , Ju n e 1991.

(55) S . S a g a ra , Z . J. Y an k , K . W ad a , "R ecu rsiv e Id en tifica tio n A lg o rith m s fo r C o n tin u o u s S ystem in

A d a p tiv e P r o c e d u r e " , Int. J. Contr, 1991 , vo l. 53 , n . 2.

(56) H . A k a ik e , "O n M o d e l S tru c tu re T estin g in S ystem Id en tifica tio n " , Int. J. C o n tr . 1978 vo l. 27.

(57) C . C . L ee . “ F u z z y lo g ic ian co n tro l sy s tem s,” p a rts I and II. IEEE Trans, on Systems, M an and

Cybernetics, 2 0 (2), M a rc h , A p ril 1990.

(58) T o v o n ic , B ., M u sk in ja , N .; D o n lag ic , D . "P a ra m e te r id en tifica tio n o f n o n lin a e r sy s tem s" , 6th

M editerranean E lectrotechnical conference. Proceedings, p p 8 4 8 -5 1 , V o l .2 1991.

(5 9) A . P a g n i, R . P o lu z z i, a n d G . R izzo tto , "A u tom atic sy n th esis and im p lem en ta tio n o f a fuzzy

c o n tro lle r", S e co n d IEEE I nt C on f on Fuzzy Systems, M a rc h , 1 9 9 3 ,P . 1 0 5 -1 1 0 , V o l 1.

(60) B ack . A d .; T so i, A .C . "N on lin a e r system id en tifica tio n u s in g m u ltila y e r p e rcep tro n s w ith

lo ca lly re c u rre n t sy n ap tic s tru c tu re " . Neural Networks fo r Signal Processing, II Proceedings o f

the IEEE-SP W orkshop p p 4 4 4 -5 3 , 1992

(61) T . T a k a g i, M . S u g en o , “F u z z y id en tifica tio n o f system and its a p p lica tio n to m odeling and

c o n tro l” , IEEE Trans. SM C-15-1, p p 1 1 6 -1 3 2 ,1 9 8 5 .

(6 2) C h o w , P . - C ; C h izeck , H . J. "N on lin ae r recu rsiv e id en tifica tio n o f e lec trica lly s tim u la ted

m u sc le " . Images o f the Twenty-First Century. Proceedings o f the Annual In t C on f o f IEEE

Engineering in M edicine and Biology Society p p 9 6 5 -6 v o l. 3 1989.

(63) H . K a n g a n d G . J. V ach tsev an o s , “ A in te llig en t s tra teg y to ro b o t co o rd in a tio n an d co n tro l” , in

Proc. 28th IE E E Conf. D ec. and Contr., (H a w a ii) , pp . 2 2 0 8 -2 2 1 3 , D ec. 1990.

(64) K rz y z a k , A . "O n id en tif ica tio n o f n o n s ta tio a ry H am m ers te in system s b y the F o u rie r series

re g re ss io n e s tim a te" , Proceedings o f the 28th IEEE conference on Decision and Control, p p

6 2 6 -9 v o l. 1, 1989.

(65) H u n g -Y u a n C h u n g ., Y o rk -Y in S un . "A n aly sis an d P a ra m e te r E s tim a tio n o f N o n lin e a r S ystem s

w ith H a m m e rs te in M o d e l U sing T a y lo r S eries A p p ro ach " , IEEE Trans, on Circuits and

System s, p p 1 5 3 9-41 . V ol. 35 , N o . 12, D e c e m b e r 1988

(66) L a n g Z iq ian g , "A new m ethod fo r the id en tifica tio n o f H am m erste in m odel" , ACTA

AU TO M ATICA SINICA V o l. 19, NO. 1, Jan ., 1993.

(67) N a re n d ra , K . S . an d G a llm an , P. G ., "A n Ite ra tive M eth o d fo r the Id en tifica tio n o f N o n linear

S y stem U sin g a H am m ers te in M o d e l" , IEEE Trans., A C -14, 1966, p p 5 4 6 -5 5 0 .

(68) W . G reb lick i an d M . P a w la k , " Iden tifica tion o f d isc re te H am m erste in system s u sin g kernel

re g re ss io n e s tim a tes ," IEEE Trans. Automat. Control, vo l. A C -3 1 , pp . 7 4 -7 7 , 1986.

(69) W . G re b lic k i an d M . P a w la k , " Iden tifica tion H am m erste in system Id en tifica tio n by non

p a ra m e tr ic reg re ssio n e s tim a tio n s ," Int. J. Contr., vo l. 4 5 , pp . 3 4 3 -3 5 4 , 1987

(70) W . G reb lick i and M . P aw lak , "R ecursive non p a ram etric id en tifica tio n o f H am m erste in

sy s te m s," J. F ra n k lin In st., vo l. 326 , pp. 4 6 1 -4 8 1 , 1989

(71) W . G re b lic k i and M . P a w la k , "N on p a ram etric id en tifica tio n o f H am m erste in system s ," IEEE

Trans. Inform . Thoery, vo l. IT -3 5 , pp . 4 0 9 -4 1 8 , 1989

(72) K . S . N a re n d ra an d P . G . G a llm an , "A n ite ra tiv e m ethod fo r the id en tifica tio n o f non linear

sy s te m s u s in g the H am m ers te in m odel" . IEEE Trans. Automat. Contr., vol. A C -1 1 , pp . 5 4 6

5 5 0 , 1966

(73) S . A . B illings an d S. Y . F ak h o u ri, "N on lin ea r system s id en tifica tio n u sin g the H am m erste in

m o d el" , Int. J. Syst. Sci., v o l. 10, pp. 5 6 7 -5 6 8 , 1979.

(74) F . H . I. C h a n g an d R . L u u s , "A non ite ra tiv e m ethod fo r id en tifica tio n u sin g the H am m erste in

m o d el" . IE E E Trans. Automat. Contr., vo l. A C -16, p p .4 6 4 -4 6 8 , 1971

(75) J. C S ta p le to n an d S. C . B aas , "A dap tive no ise concella tion fo r a c lass o f non lin ea r, dynam ic

re fe ren ce ch an n e ls" . IEEE Trans. Circuit and Systems, vo l. C A S -3 2 , pp . 1 4 3 -150 , 1985

(76) M . S u g en o , T . M u ro u sh i, T . M o ri and T a tem a tsu . "F uzzy A lgorithm ic C o n tro l o f a M odel C a r

b y O ra l In s tru c tio n s" . F u z z y S ets an d S y stem s, 32: 2 0 7 -2 1 9 , 1989.

(77) G . L a m b e r t T o rre s , D. M u k h ed k ar, “ W ritin g a fuzzy know ledge b a se ” , Int. Conference on

System , M an and Cybernestics, 1990.

(78) F . H . I. C h an g an d R . L u u s , "A n o n ite ra tiv e m ethod fo r id en tifica tio n using the H am m erste in

m o d el" . IE E E Trans. Autom at. Contr., vo l. A C - 16, p p .4 6 4 -4 6 8 , 1971

Bibliography 112

Bibliography 113

(7 9) J. C S ta p le to n an d S. C . B a a s , "A d ap tiv e n o ise co n ce lla tio n fo r a c la ss o f n o n lin ea r, dynam ic

re fe re n c e ch a n n e ls" , IEEE Trans. C ircuit and System s , vo i. C A S -3 2 , pp . 1 4 3 -1 5 0 , 1985

(8 0) H . K a n g a n d G . J. V a c h tse v a n o s , “ M o d el refe rence fu zzy c o n tro l,” in Proc. 29th IEEEConf.

D ec. and Contr., (T a m p a , F L), p p . 7 5 1 -7 5 6 , D ec . 1989.

(8 1) Z . Z h a n g a n d F . N ag h d y , “ A p p lica tio n o f G en e tic A lg o rith m s to S ystem Id en tifica tio n ” , IE E E

C o n fe re n c e , 1995 , W e ste rn A u stra lia .

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 114

Appendix 1 Source Code of
Optimisation of Rules of the Fuzzy
Controller

in c lu d e < std io .h>
in clu d e < io .h>
in c lu d e < a lloc .h>
in c lu d e < fcn tl.h>
in c lu d e < p ro cess .h >
in c lu d e < m ath .h>
in c lu d e < g rap h ic s .h >
include < con io .h>
in clu d e < tim e.h>
in c lu d e < std lib .h >
in clu d e < co m p lex .h >

/* F u zzy co n tro lle r o p tim iza tio n so ftw are */
/* T h is p ro g ra m o p tim ize fu zzy ru les d irec tly */
/* and th e n u m b er o f m em b ersh ip fu n ctio n s is 11. */
/* T h e file o f O u tp u t (Y * an d Y) is n am ed as re sp .d a t */
/* and the fu zzy ru le tab le file is n am ed as m em b e .d a t */
/* In itia l d a ta 2 6 8 ,1 2 2 ,8 0 0 0 ,0 .9 6 8 ,0 .0 0 8 . */
/* R em ain d er S to ch astic S am p lin g W ith o u t R ep lacem en t */
/* T h e sy stem to be co n tro lled is the fo llo w in g m odel */
/* Y (K)= a 1 * Y (K -1)+a2* Y (K -2)+ K * [U (K -d- l)+ b 1 * U (K -d-2)] */
Z** =fy

s tru c t bitfO

{
u n sig n ed c h r o l : l ;
u n s ig n ed c h ro 2 :l ;
u n s ig n ed c h ro 3 : l ;
u n s ig n ed c h ro 4 : l ;
u n s ig n ed c h ro 5 : l ;
u n s ig n ed c h ro 6 : l ;
u n s ig n ed c h ro 7 : l ;
u n s ig n ed c h ro 8 : l ;
u n s ig n ed c h ro 9 : l ;
u n s ig n e d c h r o l0 : l ;
u n s ig n e d c h r o l l : l ;
u n s ig n e d c h r o l2 : l ;
u n s ig n e d c h r o l3 : l ;
u n s ig n e d c h r o l4 : l ;
u n s ig n e d c h r o l5 : l ;
u n s ig n e d c h r o l6 : l ;

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 115

s tru c t b i tf

{
s tru c t bitfO c h ro m [4 4];
f lo a t fitn ess ;
u n s ig n e d p a re n tl ,p a re n t2 ;

};
s tru c t b i tf h u g e n ew p o p [2 0 0];
s tru c t b i tf h u g e o ld p o p [2 0 0];
f lo a t c m a x = 5 1 0 0 0 0 0 0 0 0 0 0 .0 ;in t x d t[1 6][1 6],x d [1 8 0],n u m b e r;

f lo a t fa r p o [1 4 8];

u n sig n ed f la g l,lc h ro m ,g e n l,g e n ,m ax g e n ,n m u ta tio n = 0 ,n c ro ss= 0 ,e m a te ,p o p s ize ,m a x j;
f lo a t a v g ,m ax ,m in ,p c ro ss ,p m u ta tio n ,m in o b jfit,su m fitn e ss ,p y [1 4 8];
flo a t p p y [1 4 8],p m u ta tio n 0 ,re su ltc ; f lo a t a [1 4],b [1 4],k [1 4];
v o id sam plecopyO ;
v o id in itrepo rtO ;
v o id s ta tis tic s(u n sig n ed p o p size);
f lo a t o b jfu n c (u n sig n e d j);
v o id d e c o d e(s tru c t b i tf po p ,u n sig n ed lch rom);
v o id g e n e ra tio n (v o id);//p o p size ,su m fitn ess ,o ld p o p
u n sig n ed m u ta tio n (u n sig n ed a lle le ,flo a t p m u ta tio n);
u n sig n ed f lip (f lo a t tion);
u n sig n ed c ro sso v e r(s tru c t b i tf h u g e * p a re n tl,s tru c t b i tf h u g e *paren t2 ,
s tru c t b i tf h u g e * c h ild l,s tru c t b i tf h u g e * ch ild 2 ,u n sig n ed lch ro m ,flo a t p c ro ss ,f lo a t pm u ta tio n);
u n sig n ed c ro s s o v e r l(s tru c t b i tf h u g e * p a re n tl,s tru c t b i tf h u g e *paren t2 ,
s tru c t b i tf h u g e * c h ild l,s tru c t b i tf h u g e * ch ild 2 ,u n sig n ed lch ro m ,flo a t p c ro ss ,f lo a t pm u ta tio n);
u n sig n ed se lec t(u n sig n ed p o p s ize ,f lo a t sum fitness);
v o id in itdataO ;
v o id in itia lizeQ ;
v o id in itpopO ;
void objpO;
v o id changO ;
f lo a t in p u tm (flo a t a t,f lo a t b t ,f lo a t k t,f lo a t x t);
v o id m em b (v o id);//p o p size ,su m fitn ess ,o ld p o p

m ain (v o id) / / s im p le g en e tic a lgo rithm s //

{
f la g l= 0 ; re su ltc = 2 8 8 .8 ;n u m b e r= 1 4 0 ; g e n l= 0 ;
u n s ig n ed k ,k l ;

alOO: fo r(k = 0 ;k < = n u m b er;k + +)
{ PPy[k]=0.0;py[k]=0;}

p rin tf(" \tY \n ");
m em b Q ;//p o p s ize ,su m fitn e ss ,o ld p o p

objpO;
a300: g en = 0 ;

in itia lizeQ ;
f la g l= 0 ;c h a n g O ;
p m u ta tio n = p m u ta tio n O ;
fo r (g en = 0 ;g e n < = m ax g e n ;g e n + +)

{
if(g e n > 2 6 0 & & re su ltc > 2 8 0 .0)

{ g e n = l ;
p m u ta tio n = p m u ta tio n * . 9;

in itp o p O ;s ta tis tic s(p o p size);ch an g O ;

}
if (g e n l= = 2 6 8)

{
p m u ta tio n = p m u ta tio n * .98;
if(p m u ta tio n < = 0 .0 0 6)p m u ta tio n = 0 .0 0 6 ;g e n l= l;

}
i f (i la g l= = 2) g o to a200 ;
i f (f la g l= = l) g o to alOO;
if (f la g l= = 3) g o to a300 ;

genera tionO ;
s ta tis tic s (p o p size);

p rin tf(" * *sum fitness= % 6.6 f* ***** *gen= = % 3i\n" ,sum fitness,gen);
c h a n g () ;g e n l+ + ;

}
a200: p rin tf("* su m fitn e ss= % 2 .9 f* * * * * * ila g l= % i\n " ,su m fitn e ss ,f la g l) ; re tu rn 0;

}
vo id changO
{ in t k ,k l ,k 2 ;

fo r(k = l ;k < = p o p s iz e ;k = k + 1)

{
k 2 = l ; k l = l ;
w h ile (k 2 < = lch ro m)

{
o ld p o p [k] .c h ro m [k l] .c h ro l= n e w p o p [k] .c h ro m [k l] .c h ro l;
o ld p o p [k] .c h ro m [k l] .c h ro 2 = n e w p o p [k] .c h ro m [k l] .c h ro 2 ;
o ld p o p [k].c h ro m [k l] .c h ro 3 = n e w p o p [k] .c h ro m [k l] .c h ro 3 ;
o ld p o p [k].c h ro m [k l] .c h ro 4 = n e w p o p [k] .c h ro m [k l] .c h ro 4 ;k 2 + + ;
o ld p o p [k].c h ro m [k l] .c h ro 5 = n e w p o p [k] .c h ro m [k l] .c h ro 5 ;
o ld p o p [k].c h ro m [k l] .c h ro 6 = n e w p o p [k] .c h ro m [k l] .c h ro 6 ;
o ld p o p [k].c h ro m [k l] .c h ro 7 = n e w p o p [k] .c h ro m [k l] .c h ro 7 ;
o ld p o p [k]. ch ro m [k l]. ch ro 8 = n ew p o p [k] .ch rom [k 1]. ch ro 8; k 2 + + ;
o ld p o p [k].c h ro m [k l] .c h ro 9 = n e w p o p [k] .c h ro m [k l] .c h ro 9 ;
o ld p o p [k] .c h ro m [k l] .c h ro lO = n e w p o p [k] .c h ro m [k l] .c h ro lO ;
o ld p o p [k] .ch rom [k l] .chro 1 l= n e w p o p [k] .ch rom [k 1]. chro 11 ;
o ld p o p [k] .c h ro m [k l] .c h ro l2 = n e w p o p [k] .c h ro m [k l] .c h ro l2 ;k 2 + + ;
o ld p o p [k] .c h ro m [k l] .c h ro l3 = n e w p o p [k] .c h ro m [k l] .c h ro l3 ;
o ld p o p [k] .c h ro m [k l] .c h ro l4 = n e w p o p [k] .c h ro m [k l] .c h ro l4 ;
o ld p o p [k] .c h ro m [k l] .c h ro l5 = n e w p o p [k] .c h ro m [k l] .c h ro l5 ;
o ld p o p [k] .c h ro m [k l] .c h ro l6 = n e w p o p [k] .c h ro m [k l] .c h ro l6 ;k 2 + + ;
k l+ + ;

}
ol d p o p [k]. f itn ess= n e w p o p [k]. fitness;
o ld p o p [k]. p a re n t l= n e w p o p [k] .p a re n ti ;
o ld p o p [k].p a ren t2 = n ew p o p [k].p a ren t2 ;

/ / fo r(k 2 = l;k 2 < = lc h ro m /1 0 ;k 2 + +)o ld p o p [k].x [k 2]= n e w p o p [k].x [k 2];

}
}
v o id in itrep o rt(v o id)

{
prin tf(" \t* * * * *SG A P A R A M E T E R S * * * * *\n");
p r in tf(" \t p o p u la tio n s ize = % i\n " ,p o p size);

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 116

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 117

p rin tf(" \t c h ro m o so m e len g th = % i\n " ,lch ro m);
p r in tf(" \t m ax n u m b er o f g en e ra tio n = % i\n " ,m ax g en);
p r in tf(" \t c ro sso v e r p ro b a b ility = % f\n " ,p c ro ss);
p r in tf(" \t m u ta tio n p ro b ab ility = % f\n",pm utationO);
p rin tf("* * * * * in itia l g en era tio n sta tis tics***** \n \n");
p r in tf(" \t in itia l p o p u la tio n m ax fitn ess = % f\n ",m ax);
p r in tf(" \t in itia l p o p u la tio n avg f itn e ss = % f\n " ,av g);
p r in tf(" \t in itia l p o p u la tio n m in fitn ess = % f\n",m in);
p r in tf(" \t in itia l p o p u la tio n su m fitn ess = % f\n ",su m fitn ess);

}
v o id s ta tis tic s(u n sig n ed p o p size)

{
u n sig n ed j;
su m f itnes s= (flo a t)n ew p o p [1]. f itn e ss ;
m in = (flo a t)n ew p o p [l] .f itn e ss ;
m ax = (llo a t)n e w p o p [1]. f itn e ss ;
fo r(j= 2 ;j< = p o p s iz e ;j= j+ l)

{
su m l'itn ess= su m fitn ess+ n ew p o p [j] .fitn ess;
/ / p rin tf("su m fitn ess= = % 9 .1 f,g en = % 2 i\n " ,su m fitn ess ,g en);

/ / p rin tf("n ew p o p [% 2 i]= = % 9.1 An" ,j,new pop[j] .fitness);
if (n ew p o p [j] .fitn e ss> = m ax)

{
m ax = n ew p o p [j].f itn ess ;

}
if (n ew p o p [j] .fitn ess< = m in)

m in = n ew p o p [j] .f itn ess;

}
/ / p r in tf(" su m fitn e ss= = % 9 .1 f \n " ,su m fitn ess);

a v g = su m fitn ess /(flo a t)p o p size ;

}
f lo a t o b jfu n c (u n sig n ed j)

{
in t k y ,iy ,x x a [8] ,x x b [8] ,k b ;F IL E * p l ;
f lo a t u l[1 4 8] ,x a [4] ,x b [4] ,e rro r[1 4 8] ,m u c ,d e rro r ,m e m v [1 5] ,m e m c[1 5] ,

o b j,u e ,u d e ,u in te ,m u cv [1 6];

if(g e n = = 0 & & j= = 1)

{
fo r(iy = 0 ;iy < = 1 0 ;iy + +)
p rin tf("a[% i]= % 2 .4 A tb [% i]= % 2 .4 1 \tk [% i]= % 2 .4 A n " ,iy ,a [iy],iy ,b [iy],iy ,k [iy]);

}
d eco d e(n ew p o p [j] ,lch ro m);
uinte=(float)(xd[122]+16*xd[123])/256.0;//ude=(float)(xd[124]+16*xd[125])/256.0;

o b j= 0 .0 ;p p y [l]= 0 .0 ;p p y [2]=0 .0 ;e r ro r [l]= p y [l] -p p y [l] ;e r ro r [2]= p y [2]-p p y [2];

u l [0] = 0 .0 ;u l [l] = 0 .0 ;u l [2] = 0 .0 ;
fo r(k b = 2 ;k b < = n u m b e r- l;k b + +)

{
e rro r [k b + l]= p y [k b]-p p y [k b] ;d e rro r= e rro r[k b + l] -e r ro r[k b];

if (e rro r[k b + l]> 1 .1 9) { x x a [l] = l l ;x x a [2] = l l ;x a [l] = 1 .0 ;x a [2]= 1 .0 ;g o to

o u d e ;} //u d e= d e riv ia te ;u in te= in teg e r
i f (e r ro r [k b + l]< -1 .1 9){ x x a [l]= l ; x x a [2]= l;x a [l]= 1 .0 ;x a [2]= 1 .0 ;g o to ou d e ;}
fo r(iy = 0 ;iy < = 1 0 ;iy + +)//e rro r m em b ersh ip e fu n c tio n co m p u tin g

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 118

{
if (e rro r [k b + 1] > = a[iy] & & e rro r [k b + 1] < = b [iy])

{
m e m v [iy + l]= in p u tm (a [iy] ,b [iy] ,k [iy] ,e r ro r[k b + l]) ;

if(m e m v [iy + l]< 0 .0)p r in tf("m e m v [% i]= % f, a [% i]= % f, b [% i]= % f\n " ,iy ,m em v [iy],iy ,a [iy],iy ,b [iy]);

}
else m e m v [iy + l]= 0 .0 ;/ /e r ro r o u tp u t v a lu e c a lc u la tin g

}
m em v [1 2]= 0 .0 ;

/* b eg in to co m p u te the u e */

k y = l;
w h ile (m e m v [k y]< = 0 .0 & & k y < = ll)k y + + ;//to fin d the f irs t p o in t th a t is n o t equal to 0;
if(ky> 11) { p rin tf("erro r!!! k y > l l") ; r e tu rn 0 ;}
m em c [l]= 0 .0 ;
if(m em v [k y]> 0 .0)//!!! c a lcu la te the a rea v a lu e !!!

{
x x a [l]= k y ;x a [l]= m e m v [k y] ;
if(k y + 1 < = 11)

{
if(m e m v [k y + l]> 0 .0) { x a [2]= m e m v [k y + l] ;x x a [2]= k y + l;}
e lse { x x a [2]= k y ;x a [4]= m em v [k y]; }

}}
oude: if(d e rro r> 1 .1 9) (x x b [l] = l l ; x b [l]= 1 .0 ;x x b [2]= l l;x b [2]= 1 .0 ;g o to
en d e ;} //u d e= d eriv ia te ;u in te= in teg er

if (d e r ro r< -1 .1 9){ x x b [l]= l; x b [l]= 1 .0 ;x x b [2]= l;x b [2]= 1 .0 ; go to ende ;}
fo r(iy = 0 ;iy < = 1 0 ;iy + +)//e rro r m em b ersh ip e fu n c tio n co m p u tin g

{
if(d e rro r> = a [iy]& & d erro r< = b [iy])

{
m em v [iy + l]= in p u tm (a [iy] ,b [iy],k [iy],d e rro r);
if(m e m v [iy + l]< 0 .0)p rin tf("d m e m v [% i]= % f, a [% i]= % f,

b [% i]= % f\n " ,iy ,m em v [iy],iy ,a [iy],iy ,b [iy]);

} .
else m e m v [iy + l]= 0 .0 ;//e r ro r o u tp u t v a lu e ca lcu la tin g

}
m em v [1 2]= 0 .0 ;

/* b eg in to co m p u te the ue */
k y = l;
w h ile (m e m v [k y]< = 0 .0 & & k y < = ll)k y + + ;//to find the f irs t p o in t th a t is n o t equal to 0;

i f (k y > l l) {printf("derror!M k y > 1 0 d e rro r= % f,
m em v [6]= % A n ",d erro r,m em v [6]);fo r(iy = 0 ;iy < = 1 2 ;iy + +)p rin tf("m em v [% i]= % A t a[% i]= % A t
b [% i]= % f\n " ,iy ,m em v [iy] ,iy ,a [iy] ,iy ,b [iy]) ;re tu rn 0;}

m em c[2]= 0 .0 ;
if(m em v [k y]> 0 .0)//!!! c a lcu la te the area v a lu e !!!

{
x x b [l]= k y ;x b [l]= m e m v [k y] ;

i f (k y + l< = l l)

{
i f (m e m v [k y + l]> 0 .0){ x b [2]= m e m v [k y + l] ; x x b [2] - k y + l; }
e lse { x b [2]= m em c[k y];x b [2]= k y ;}

}
}

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 119

ende: m u c= 0 .0 ; m em c[1 4]= 0 .0 ;
// i f (f a b s (e r ro r [k b + l])< 0 .0 2){ u l[k b + l]= u l[k b] ;g o to aoude ;}

//u in te = (x x c [l]+ x x c [2]* fa b s (e r ro r[k b + l]))* in te rro r ;
i f (x a [l]> x b [l]) m e m c [5]= x b [l] ;e lse m e m c [5]= x a [l] ;m e m c [9]= ta n (((f lo a t)x d t[x x a [l]][x x b [l]]-

8)* 0 .1 8 3 7 5)/1 0 .0 ;
i f (x a [l]> x b [2]) m em c[6]= x b [2];e lse m em c[6]= x a [l];m e m c[1 0]= ta n (((flo a t)x d t[x x a [l]][x x b [2]]-

8)* 0 .1 8 3 7 5)/1 0 .0 ;
i f (x a [2]> x b [l]) m em c [7]= x b [l] ;e lse m e m c [7]= x a [2];m e m c [ll]= ta n (((f lo a t)x d t[x x a [2]][x x b [l]]-

8)* 0 .1 8 3 7 5)/1 0 .0 ;
if(x a [2]> x b [2]) m em c[8]= x b [2];e lse m em c[8]= x a[2];m em c[1 2]= tan (((flo a t)x d t[x x a[2]][x x b [2]]-

8)* 0 .1 8 3 7 5)/1 0 .0 ;
fo r(iy = l;iy < = 4 ;iy + +)

{
m u c= m u c+ m êm e [iy+4] ;
m em c[1 4]= m em c[1 4]+ m em c[iy + 8]* m em c[iy + 4];

}
if(m u c= = 0 .0) { p rin tf("m u c= 0 .0 ,\t% f\t" ,m u c);m u c= 1 .0 ;}

// u l[k b + l]= u in te * m e m c [1 4] /m u c + u l[k b] ;
u l[k b + l]= u in te * m e m c [1 4] /m u c ;

// i f (fa b s (e r ro r[k b + l])< 0 .2)
// u l [k b + l] = u d e * u l[k b] + u l [k b + l] ;

i f (u l[k b + l] > 1 .0) u l [k b + l]= 1 .0 ;
if (u l [k b + 1] < -1 -0) u l [k b + l]= -1 .0 ;

a o u d e :p p y [k b + l]= 1 .9 2 6 8 * p p y [k b]-0 .9 2 6 8 * p p y [k b -l]+ 0 .6 6 0 * (u l[k b - l] -0 .3 6 0 * u l[k b -2]) ;
if ((fa b s (p p y [k b + l])-c m a x)> = 0) g o to ag lO ;

// p r in tf(" u l[% 2 i]= % 3 .3 f \tu in te = % f \n " ,k b ,u l[k b] ,(x x c [l]+ x x c [2]* e rro r[k b + l])* in te rro r/1 0 0 .0);

}
fo r(k b = l;k b < = n u m b e r- l;k b + +)

{
i f(k b > = l& & k b < 7){ o b j= o b j+ fa b s(e rro r[k b + l]) ;g o to ag8;}
if(k b > = 7 & & k b < 2 0){ o b j= o b j+ 1 0 .0 * fa b s(e rro r[k b + l]);g o to ag8;}
if(k b > = 2 0 & & k b < 2 6){ o b j= o b j+ fa b s(e rro r[k b + l]) ;g o to ag8;}
if(k b > = 2 6 & & k b < 4 0){ o b j= o b j+ 1 0 .0 * fa b s(e rro r[k b + l]);g o to ag8;}
if(k b > 4 0 & & k b < 4 6){ o b j= o b j+ fa b s(e rro r[k b + l]) ;g o to ag8;}
if(k b > = 4 6 & & k b < 6 0){ o b j= o b j+ 1 0 .0 * fa b s(e rro r[k b + l]);g o to ag8;}
if(k b > = 6 0 & & k b < 6 6){ o b j= o b j+ fa b s(e rro r[k b + l]) ;g o to ag8;}
if(k b > = 6 6 & & k b < 8 0){ o b j= o b j+ 1 0 .0 * fa b s(e rro r[k b + l]);g o to ag8;}
if(k b > = 8 0 & & k b < 8 6){ o b j= o b j+ fa b s(e rro r[k b + l]) ;g o to ag8;}
if(k b > = 8 6 & & k b < 1 0 0){ o b j= o b j+ 1 0 * fa b s(e rro r[k b + l]);g o to ag8;}
if (k b > = 100& & k b < 106){ o b j= o b j+ fa b s (e rro r[k b + l]) ;g o to ag8;}

if(k b > = 1 0 6 & & k b < 120) {o b j= o b j+ 1 0 * fab s(e rro r[k b + l]) ;g o to a g 8 ;}
if (k b > = 120& & k b < 126){ o b j= o b j+ fa b s (e rro r[k b + l]) ;g o to ag8;}
if (k b > = 126& & k b < = n u m b e r)o b j= o b j+ 10.0* fa b s(e rro r[k b + l]) ;

ag8: if((o b j-cm ax)> = 0 .0)

ag lO : ^ p rin tf("o b j= % f\tj= % i\tp p y [% i]= % f\tu l= % A n " ,o b j,j,k b ,p p y [k b + l] ,u l[k b + l]) ;o b j= c m a x ;

// .
p rin lf("u e= % A tu d e= % A tu in te= % A n ",u e ,u d e ,(x x c [l]+ x x c [2]* fab s(e rro r[k b + l]))* in te rro r);g o to alO ;

}

a l o / il'(j==40 ||j= = 200 ||j= = 120| |j= = 160|lj==260)p rin tf("o b j= % i\tj= % i\n " ,o b j,j) ;re tu m obj;

}

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 120

f lo a t in p u tm (f lo a t a t,f lo a t b t ,f lo a t k t ,f lo a t x t)

{
f lo a t resu lt;
re su lt= -k t* (x t-a t)* (x t-b t) ;
if(re su lt< = 0 .0)re su lt= 0 .0 ;
re tu rn resu lt;

}
vo id d eco d e(s tru c t b i tf p o p ,u n s ig n ed lch ro m)

{
u n sig n ed k ,k x ,k c ;
in t a c c u m ,p o w e ro f2 ;a c c u m = 0 ;p o w e ro f2 = l;
k x = l ;k = l ; / /1 1 b its c o d in g
w h ile (k < = lch ro m)

{
i f (p o p .c h ro m [k x] .c h ro l= = l) { a ccu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
e lse p o w ero f2 = p o w ero f2 * 2 ;
if(p o p .c h ro m [k x] .c h ro 2 = = l) { a ccu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
else p o w ero f2 = p o w ero f2 * 2 ;
if(p o p .c h ro m [k x] .c h ro 3 = = l) { a c cu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
else p o w ero f2 = p o w ero f2 * 2 ;
if(p o p .c h ro m [k x] .c h ro 4 = = l) { a ccu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
e lse po w ero l'2 = p o w ero f2 * 2 ;
x d [k]= a c cu m ; k+ + ;
a c cu m = 0 ;p o w ero f2 = 1;
if(p o p .c h ro m [k x] .c h ro 5 = = l) { a c cu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
e lse p o w ero f2 = p o w ero f2 * 2 ;
if(p o p .c h ro m [k x] .c h ro 6 = = l) { accu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
e lse p o w ero f2 = p o w ero f2 * 2 ;
if(p o p .c h ro m [k x] .c h ro 7 = = l) { a c cu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
e lse p o w ero f2 = p o w ero f2 * 2 ;
if(p o p .c h ro m [k x] .c h ro 8 = = l) { a ccu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
e lse p o w ero f2 = p o w ero f2 * 2 ;
x d [k]= accu m ;
accu m = 0 ;p o w ero f2 = 1 ;k + + ;
if(p o p .c h ro m [k x] .c h ro 9 = = l) { a ccu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
else p o w ero f2 = p o w ero f2 * 2 ;
if(p o p .c h ro m [k x] .c h ro lO = = l) { accu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}

else p o w e ro f2 = p o w ero G * 2 ;
if (p o p .c h ro m [k x] .c h ro l l= = l) { accu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}

else p o w ero f2 = p o w ero f2 * 2 ;
i f (p o p .c h ro m [k x] .c h ro l2 = = l) { accu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}
e lse p o w e ro f2 = p o w ero i2 * 2 ;

x d [k]= a c cu m ;
a c cu m = 0 ;p o w ero f2 = 1 ;k++ ;
if (p o p .c h ro m [k x] .c h ro l3 = = l) { a ccu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}

e lse p o w ero f2 = p o w ero f2 * 2 ;
i f (p o p .c h ro m [k x] .c h ro l4 = = l) { accu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}

e lse p o w ero f2 = p o w ero f2 * 2 ;
i f (p o p .c h ro m [k x] .c h ro l5 = = l) { a ccu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}

e lse p o w ero l2 = p o w ero f2 * 2 ;
i f (p o p .c h ro m [k x] .c h ro l6 = = l) { accu m = accu m + p o w ero f2 ;p o w ero f2 = p o w ero f2 * 2 ;}

e lse p o w ero i'2 = p o w ero i2 * 2 ;

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 121

x d [k]= a c cu m ;
a c c u m = 0 ;p o w e ro f2 = l;k + + ;k x + + ;

}
k c = l ;
f o r (k = l ;k < = l l ;k + +)

{
fo r(k x = 1 ;k x < = 11 ;k x + +)

{
x d t[k][k x]= x d [k c];k c + + ;

}
}

/ / p rin tf(" lch ro m = =% 3. i \n " ,lch ro m);

}
v o id g e n e ra tio n (v o id)//p o p size ,su m fitn e ss ,o ld p o p

{
s tru c t f it

{
f lo a t ran k fit[2 6 6];
f lo a t ran k in g [5];
f lo a t a ccu m [2 6 6];

}half;
F IL E * fp l,* fp u ;
u n s ig n ed jx ,j ,m a te l,m a te 2 ,jc ro s s ,jc ro s s l ,h a lfc o u n tl ,h a lfc o u n t, f itcoun t= 0 ;

u n s ig n e d jy = l ,jr a n k ; m a x j= l;
f lo a t o b jf it,o b jm in ,o b jh a lf ,o b jm ax ;
h a lfc o u n t= p o p s iz e /2 + g e n /1 2 0 ;if(h a lfc o u n t> 2 8 0)h a lfco u n t= 1 0 0 ;
fo r(j= l;j< = p o p s iz e ;j= j+ 2)

{
m ate l= se le c t(p o p s iz e ,su m fitn e ss);
m a te 2 = se lec t(p o p s iz e ,su m fitn e ss);
if(ra n d o m (1 0 0)> = 5 0)

{
jc ro ss= c ro sso v e r(& o ld p o p [m a te l] ,& o ld p o p [m a te2] ,
& n e w p o p [j] ,& n e w p o p [j+ l],lc h ro m ,p c ro ss ,p m u ta tio n);

}
e lse {

jc ro s s l= c ro s so v e rl(& o ld p o p [m a te l] ,& o ld p o p [m a te 2] ,
& n ew p o p [j] ,& n e w p o p [j+ l],lc h ro m ,p c ro ss ,p m u ta tio n);

}
o b jfit= (flo a t)o b jfu n c (j) ;
if (j== l)o b j h a lf= o b j fit;
e lse

{
if(o b jh a lf> o b jfit)

{ .
o b jh a lf= o b jfit;
fo r (jc ro s s= l;jc ro s s < = n u m b e r- l ; jc ro s s + +) p o [jc ro ss]= p p y [jc ro ss];

}
} . .

half. accu m [j]= o b jf it;
if(cm ax - o b jf it< = 0)

h a lf .rank fit[j]= c m a x ;

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 122

e lse {

fitco u n t+ + ;
h a lf .ran k fit[j]= o b jfit;

}
n e w p o p [j] .p a ren t 1= m a te 1;
n ew p o p [j] .p a ren t2 = m a te2 ;
o b jf i t= (f lo a t)o b jfu n c (j+ 1);
if(ob j ha l f> obj fit)

{
o b jh a lf= o b jfit;
fo r (jc ro s s= l;jc ro s s < = n u m b e r- l ; jc ro s s + +) p o [jc ro ss]= p p y [jc ro ss];

}
h a lf .a c c u m [j+ l]= o b jf it ;
if(cm ax - o b jf it< = 0)

h a lf .ra n k f it[j+ l]= c m a x ;
e lse {

fitco u n t+ + ;
h a lf .ran k f it[j+ l]= o b jf it;

>
n e w p o p [j+1]. p a re n t 1= m a te 1;
n e w p o p [j+1]. p a re n t2 = m a te 2 ;

}
j y = l ; m a x j= l ;
h a lf .ra n k in g [2]= h a lf .a c c u m [l] ;
fo r(j ran k = 1 ;j ran k < = p o p s ize ;j ra n k + +)

{ .
if(h a lf .ra n k in g [2]> h a lf .ac c u m [jra n k])//g e t m in e* e su b scrip t

{
h a lf .ran k in g [2]= h a lf .a ccu m [jran k];
m ax j= jran k ;

} //find th e o rd e r fro m sm all o n e to b ig one

}
for(j ran k = 1 ;j ran k < = p o p s ize ;j ra n k + +)

{
fo r(jy = jra n k + l;jy < = p o p s iz e ;jy + +)

{
if((h a lf .a c c u m [jra n k]> h a lf .a c cu m [jy]))

{
h a lf .ra n k in g [l]= h a lf .a c c u m [jy] ;
hal f . a ccu m [j y]= h a lf . accu m [j ra n k] ;
h a lf .a c c u m [jra n k]= h a lf .ra n k in g [l] ;

}
}

}
m in o b jfit= h a lf . accu m [1];
p r in tf(" \tre su ltc = % 6 .3 A n " ,re su ltc);
if(h a lf .a c c u m [l]< re su ltc)

{
obj fi t= (flo a l)o b jfu n c (m a x j) ;
re s u ltc = h a lf .a c c u m [l] ;
p rin tf(" \n \to b jfitm in = = % 6 .3 A tp m u ta tio n = % f\n " ,o b jfit,p m u ta tio n);
if((fp l= fo p e n ("c :re sp .d a t" ,"w "))!= N U L L)

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 123

fo r(j= l;j< = n u m b e r;j+ +)
fp rin tf(fp l," \t% 3 i\t% 6 .3 A t% 6 .3 A n " ,j,p o [j] ,p y [j]) ;
fp r in tf(fp l/ '\ tre su ltc = % 6 .3 f\tp m u ta tio n = % 2 .6 i\tg e n = % i\n " ,re su ltc ,p m u ta tio n ,g e n);
fc lo s e (fp l) ;
p r in tf(" \tre su ltc= % 6 .3 f\tp m u ta tio n = % f\tg en = % i\n " ,re su ltc ,p m u ta tio n ,g en);
if((fp u = fo p en ("c :m em b e .d a t" ,"w "))!= N U L L)
{ d eco d e(n ew p o p [m ax j],lch ro m);

fo r(j=1 ;j<= 11 ;j+ +)

{
f o r (j c r o s s l= l ; jc r o s s l< = l l ; j c r o s s l+ +)
fp rin tf(fp u / '% 2 .4 A t'\ ta n (((f lo a t)x d t[j] [jc ro s s l] -8)* 0 .1 8 3 7 5) /1 0 .0) ;
fp rin tf(fp u ," \n ");

}
}

fp rin tf(fp u (flo a t)(x d [1 2 2]+ 16 * xd [12 3])/2 5 6.0);
fp rin tf (fp u ,"% f\n M,(flo a t)(x d [1 2 4]+ 1 6 * x d [1 2 5])/2 5 6 .0);

fc lo se (fp u);

}
if (h a lf .a c c u m [l]< = 2 .1 8)

{
o b jfit= (flo a t)o b jfu n c (m ax j);
f la g l= 2 ;
p r in tf(A n * flag l= = % 2 i\to b jf itm in = = % 6 .3 f\tp m u ta tio n = % fy n " ,fla g l,o b jfit ,p m u ta tio n);
p r in tf("h a lf .a c c u m [l]= = % 6 .2 f* * * * h a lf .ra n k in g [2]= = % 6 .2 f\n " ,h a lf .a c cu m [l] ,h a lf .ra n k in g [2])

p rin lf(" m ax n e w p o p [% 2 i]\n " ,m ax j);
p rin tf(" * * * * * g e n = % 4i * * * * ****accum o f e rro rs= = % 6 .3 f\n M,gen ,m inob jfit);
if((fp l= fo p e n ("c :re sp .d a t" ,"w "))!= N U L L)
fo r(j= l;j< = n u m b e r;j+ +)
fp rin tf(fp l," \t% 3 i\t% 6 .3 A t% 6 .3 1 \n " ,j,p o [j] ,p y [j]) ;

fc lo s e (fp l) ;
if((fp u = fo p en ("c :m em b e .d a t" ,''w "))!= N U L L)
{ d eco d e(n ew p o p [m ax j],lch ro m);

f o r (j= l ; j< = l l ; j+ +)

{ .
f o r (jc r o s s l= l ; jc r o s s l< = l l ; j c r o s s l+ +)
fp rin tf(fp u ,"% 2 .4 A t" ,ta n (((f lo a t)x d t[j] [jc ro ss l]-8)* 3 .14 /32 .0));

fp rin tf(fp u ," \n ");

}
fp rin lf(fp u ,"% l\n " ,(flo a t)(x d [1 2 2]+ 1 6 * x d [1 2 3])/6 4 .0);
fp rin tf (fp u ," % A n ",(flo a t)(x d [122]+ 16 * xd[12 3])/2 5 6.0);

}
fc lo se (fp u);

} //o b jm ax is c a lled as ad ap tiv e fitn ess sca lin g fac to r
if(fitco u n t> = h a lfc o u n t) o b jm ax = h a lf .accu m [h a lfco u n t];

e lse o b jm a x = h a lf .a c c u m ffitc o u n t-1];
fo r(j= l;j< = p o p s iz e ;j+ +)

{
if (o b jm a x -h a lf .ra n k f it[j]< = 0) n ew p o p [j] .f itn ess= 0 .0 0 5 ;
e lse n e w p o p [j].f itn e ss= o b jm a x -h a lf .ran k fit[j];

}
o b jf it= (ilo a t)o b jfu n c (m a x j) ;

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 124

p rin tf("* * g en = % 4 i* m ax j= % 2 i* e rro rs= = % 6 .3 f\n " ,g en ,m ax j,m m o b jfit);

>
unsig n ed m u ta tio n (u n sig n ed a lle le ,flo a t p m u ta tio n)

{
u n sig n ed m u ta ;f lo a t m u ta te ;
m u ta te = (flo a t)ra n d o m (1 0 0 0 0)/1 0 0 0 0 .0 ;

if(p m u ta tio n -m u ta te> = 0 .0)
{ n m u ta tio n + + ; //p e rfo rm m u ta tio n

if (a lle le = = l)
m u ta= 0 ;
else
m u ta= 1;

>
else
m u ta= alle le ;
re tu rn m u ta ;

}
unsigned f lip (f lo a t tion)

{
f lo a t tru ep m ;
tru e p m = (flo a t)((f lo a t)ra n d o m (1 0 0)/1 0 0 .0)* (tio n + .5);
if((tru ep m -0 .5)> 0)
re tu rn 1;
else
re tu rn 0;

} . .
unsig n ed c ro sso v e r(s tru c t b itf h u g e * p a re n tl,s tru c t b i tf h u g e * p aren t2 ,s tru c t b itf huge * c h ild l,
s tru c t b i tf h u g e * c h ild 2 ,u n sig n ed lch ro m ,flo a t p c ro ss ,f lo a t p m u ta tio n)

{
u n sig n ed jc ,jc ro ss ;in t jx l , jx ;
f lo a t c ro p ;
c ro p = (flo a t)ra n d o m (1 0 0)/1 0 0 .0 ;
if(p c ro ss -c ro p > = 0 .0)//b iased w h e ig h t w hee l

{
jc ro ss= ran d o m (4 * lch ro m -1)+ 1;
//p rin tf(" ******** * jcross=% 4i* ******* *\n",jcross);

n c ro ss+ + ;

}
else jc ro ss= lch ro m * 4 ;

j c = l ; j x = l ;
w h ile (jx < = jc ro ss)

{
c h ild l-> c h ro m [jc] .c h ro l= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l,p m u ta tio n);
c h ild 2-> c h ro m [jc] .c h ro l= m u ta tio n (p a re n t2-> ch ro m [jc] .c h ro l,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro 2= m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 2 ,pm uta tion);
c h ild 2-> c h ro m [jc] .c h ro 2= m u ta tio n (p a ren t2-> ch ro m [jc] .ch ro2 ,pm uta tion);

jx + + i . ,
c h ild l-> c h ro m [jc] .c h ro 3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 3 ,p m u ta tio n);
c h ild 2 -> ch ro m [jc] .ch ro 3 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 3 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro 4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 4 ,p m u ta tio n);

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 125

c h ild 2 -> c h ro m [jc] .ch ro 4 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 4 ,p m u ta tio n);
jx + + ;

c h ild l-> c h ro m [jc] .c h ro 5 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 5 ,p m u ta tio n);
c h ild 2 -> ch ro m [jc] .ch ro 5 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 5 ,p m u ta tio n);
jx++;
c h ild l-> c h ro m [jc] .c h ro 6 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 6 ,p m u ta tio n);
c h ild 2 -> ch ro m [jc] .ch ro 6 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 6 ,p m u ta tio n);
jx + + ;
c h ild l-> c h ro m [jc] .c h ro 7 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 7 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .ch ro 7 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 7 ,p m u ta tio n);
jx + + ;
ch ild l-> c h ro m [jc] .c h ro 8 = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro 8 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .ch ro 8 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 8 ,p m u ta tio n);
jx + + ;
c h ild l-> c h ro m [jc] .c h ro 9 = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro 9 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .ch ro 9 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 9 ,p m u ta tio n);
jx + + ;
c h ild l-> c h ro m [jc] .c h ro lO = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro lO ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l0 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l0 ,p m u ta tio n);
jx + + ;
c h ild l-> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro ll ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro ll ,p m u ta tio n);
jx + + ;
c h ild l-> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l2 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .ch ro 1 2 = m u ta tio n (p a ren t2 -> ch ro m [jc] .chro 12 ,pm utation);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l3 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l3 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l3 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l4 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l4 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l4 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l5 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l5 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l5 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l6 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l6 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l6 ,p m u ta tio n);

jc + + ;jx + + ;

}
if(jc ro s s != lch ro m * 4)
{ jx l= jx ;
w h i le (jx l> 1 6) jx l= jx l -1 6 ;
s w itc h (jx l)

{
case l :{ c h ild l-> c h ro m [jc] .c h ro l= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro lp m u ta tio n) ;

c h ild 2 -> c h ro m [jc] .c h ro l= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l,p m u ta tio n) ;

jx + + ;g o to s i ;}
case 2 : { s i : ch ild l-> ch ro m [jc].c h ro 2 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 2 ,p m u ta tio n);

ch ild 2 -> ch ro m [jc] .c h ro 2 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 2 ,p m u ta tio n);

jx + + ;g o to s2;}
case 3: {s2: ch ild l-> ch ro m [jc].c h ro 3 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 3 ,p m u ta tio n);

ch ild 2 -> ch ro m [jc] .c h ro 3 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 3 ,p m u ta tio n);

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 126

jx + + ;g o to s3;}

case 4: {s3: c h ild l-> c h ro m [jc] .c h ro 4 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 4 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 4 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 4 ,p m u ta tio n);
jx + + ;g o to s4;}

case 5: {s4: ch ild l-> c h ro m [jc] .c h ro 5 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 5 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 5 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 5 ,p m u ta tio n);
jx + + ;g o to s5;}

case 6 :{ s5 : ch ild l-> c h ro m [jc].c h ro 6 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 6 ,p m u ta tio n);
ch ild 2 -> c h ro m [jc] .c h ro 6 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 6 ,p m u ta tio n);
jx + + ;g o to s6;}

case 7 :{s6: ch ild l-> ch ro m [jc].c h ro 7 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 7 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 7 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 7 ,p m u ta tio n);
jx + + ;g o to s7;}

case 8: { s7 : ch ild l-> c h ro m [jc].c h ro 8 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 8 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro 8 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 8 ,p m u ta tio n);
jx + + ;g o to s8;}

case 9 :{s8 : ch ild l-> c h ro m [jc].c h ro 9 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 9 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro 9 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 9 ,p m u ta tio n);
jx + + ;g o to s9;}

case 1 0 :{s9: c h ild l-> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l0 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l0 ,p m u ta tio n) ;
jx + + ;g o to slO ;}

case 1 1 :{s 10: c h ild l-> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro ll,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro ll,p m u ta tio n) ;
jx + + ;g o to s l l ; }

case 1 2 :{ s l l : c h ild l-> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l2 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l2 ,p m u ta tio n);
jx + + ;g o to s l2 ;}

case 1 3 :{ s l2 : c h ild l-> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l3 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n tl-> c h ro m Ijc] .c h ro l3 ,p m u ta tio n);
jx + + ;g o to s l3 ;}

case 14: { s l3 : c h ild l-> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l4 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l4 ,p m u ta tio n);
jx + + ;g o to s i 4;}

case 1 5 :{ s l4 : c h ild l-> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l5 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l5 ,p m u ta tio n);

jx + + ;g o to s l5 ;}
case 1 6 :{ s l5 : c h ild l-> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l6 ,p m u ta tio n);

c h ild 2 -> c h ro m [jc] .c h ro l6 = m u la tio n (p a re n tl-> c h ro m [jc] .c h ro l6 ,p m u ta tio n);

jx + + ;jc + + ;b re a k ;}
defau lt: b reak ;

}
w h ile (jx < = 4 * lch ro m)

{
c h ild l-> c h ro m [jc] .c h ro l= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l,p m u ta tio n) ;

j x + + ?
ch ild l-> ch ro m [jc].c h ro 2 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 2 ,p m u ta tio n);
c h ild 2-> c h ro m [jc] .c h ro 2= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 2 ,pm uta tion);

jx + + ;
ch ild l-> ch ro m [jc].c h ro 3 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 3 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro 3 = m u ta tio n ^ p a re n tl-> c h ro m [jc] .c h ro 3 ,p m u ta lio n);

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 127

jx + + ;
ch ild l-> ch ro m [jc].c h ro 4 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 4 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 4 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 4 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro 5 = m u ta tio n (p a ren t2 -> c h ro m |jc] .c h ro 5 ,p m u ta tio n);
ch ild 2 -> c h ro m [jc] .c h ro 5 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 5 ,p m u ta tio n);

jx + + ;
ch ild l-> ch ro m [jc].c h ro 6 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 6 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro 6 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 6 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc].c h ro 7 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 7 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro 7 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 7 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc].c h ro 8 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 8 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro 8 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 8 ,p m u ta tio n);

jx + + ;
ch ild l-> c h ro m [jc].ch ro 9 = m u ta tio n (p a ren t2 -> ch ro m [jc] .ch ro 9 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro 9 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 9 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l0 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l0 ,p m u ta tio n);

jx + + ;
ch ild 1 -> ch ro m [jc] .chro 11= m u ta tio n (p a ren t2 -> ch ro m [jc] .chro 11 ,pm uta tion);
c h ild 2 -> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro ll,p m u ta tio n) ;

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l2 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l2 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l3 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l3 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l4 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l4 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l5 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l5 ,p m u ta tio n);

jx + + ;
c h ild l-> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l6 ,p m u ta tio n);
c h ild 2-> c h ro m [jc] .c h ro l6= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l6,pm uta tion);

jx + + ;jc + + ;

}
}

re tu rn jc ro s s ;

u n s ig n e d c ro s s o v e r l(s tru c t b i tf h u g e * p a re n tl,s tru c t b i tf h u g e * p aren t2 ,s tru c t b itf huge * c h ild l,
s tru c t b i tf h u g e * c h ild 2 ,u n sig n ed lch ro m ,flo a t p c ro ss ,f lo a t p m u ta tio n)

{
in t j c , jx , jx l , j c r o s s l ;

f lo a t c ro p ;
c ro p = (llo a t)ra n d o m (1 0 0)/1 0 0 .0 ;
if(p c ro ss -c ro p > = 0 .0)//b iased w h e ig h t w h ee l

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 128

jc ro ss l= ra n d o m (4 * lc h ro m -1)+ 1;
\n",jcross);

n c ro ss+ + ;

}
else j c r o s s l= l ;
jc= lch ro m ;jx = 4 * lch ro m ;

w h ile (jx > = jc ro s s l)

{
c h ild l-> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l6 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l6 ,p m u ta tio n);

c h ild l-> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l5 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n t2 -> c h ro m |jc] .c h ro l5 ,p m u ta tio n);

jx-S
c h ild l-> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l4 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l4 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l4 ,p m u ta tio n);

jx ~ ;
c h ild l-> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l3 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l3 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l3 ,p m u ta tio n);

j x - ;
c h ild l-> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l2 ,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l2 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro l2 ,p m u ta tio n);

jx -S
c h ild l-> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro ll ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro ll ,p m u ta tio n);

jx-S . .
c h ild l-> c h ro m [jc] .c h ro lO = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro lO ,p m u ta tio n);
ch ild 2 -> ch ro m [j c] . ch ro 10 = m u ta tio n (p a ren t2 -> ch ro m [j c] .chro lO p m u ta tio n);

jx -S
c h ild l-> c h ro m [jc] .c h ro 9 = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro 9 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 9 = m u ta tio n (p a re n t2 -> ch ro m [jc].c h ro 9 p m u ta tio n);

jx -- ;
c h ild l-> c h ro m [jc] .c h ro 8 = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro 8 ,p m u ta tio n);
c h ild 2-> c h ro m [jc] .c h ro 8= m u ta tio n (p a ren t2-> ch ro m [jc] .ch ro8,pm uta tion);

jx -- ;
c h ild l-> c h ro m [jc] .c h ro 7 = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro 7 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .ch ro 7 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 7 ,p m u ta tio n);

c h ild l-> c h ro m [jc] .c h ro 6 = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro 6 ,p m u ta tio n);
c h ild 2-> c h ro m [jc] .c h ro 6= m u ta tio n (p a ren t2-> ch ro m [jc] .ch ro6,pm uta tion);

jx-S . ,
c h ild l-> c h ro m [jc] .c h ro 5 = m u ta tio n (p a ren tl-> c h ro m [jc] .c h ro 5 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 5 = m u ta tio n (p a re n t2 -> ch ro m [jc].c h ro 5 p m u ta tio n);

jx-S . x
c h ild l-> c h ro m [jc] .c h ro 4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 4 p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 4 = m u ta tio n (p a re n t2 -> ch ro m [jc].c h ro 4 p m u ta tio n);

jx-i . ,
c h ild l-> c h ro m [jc] .c h ro 3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 3 ,p m u ta tio n);
c h ild 2 -> ch ro m [jc] .ch ro 3 = m u ta tio n (p a ren t2 -> ch ro m [jc].ch ro 3 ,p m u ta tio n);

jx-S . ,
ch ild l-> c h ro m [jc] .c h ro 2= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 2 ,pm uta tion);
c h ild 2-> c h ro m [jc] .c h ro 2= m u ta tio n (p a re n t2-> ch ro m [jc] .ch ro 2 ,pm uta tion);

jx—;

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller

Jx-S
c h ild l-> c h ro m [jc] .c h ro l= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l,p m u ta tio n);
c h ild 2 -> c h ro m [jc] .c h ro l= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l,p m u ta tio n);
jx--;jc-s

}
i f (jc r o s s l ! = l)

{
jx l= jx ; jx l= 4 * lc h r o m - jx l ;
w h i le (jx l> 1 6) jx l= jx l -1 6 ;
j x l= 1 6 - jx l ;
s w itc h (jx l)

{
case 16:{ ch ild l-> c h ro m [jc].ch ro 16 = m u ta tio n (p a ren t2 -> ch ro m [jc] .ch ro 16 ,pm uta tion);

c h ild 2 -> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l6 ,p m u ta tio n) ;
jx -- ;g o to c a l ;}

case 1 5 :{ c a l: c h ild l-> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l5 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l5 ,p m u ta tio n) ;

jx —;go to ca2 ;}
case 14:{ c a 2 :c h ild l-> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l4 ,p m u ta tio n);

c h ild 2 -> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l4 ,p m u ta tio n) ;

j x —;go to ca3 ;}
case 13 :{ca3: c h ild l-> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l3 ,p m u ta tio n) ;

c h ild 2 -> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l3 ,p m u ta tio n) ;

j x —;go to ca4 ;}
case 12:{ ca4 : c h ild l-> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l2 ,p m u ta tio n) ;

c h ild 2 -> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l2 ,p m u ta tio n);

j x —;go to ca5 ;}
case 11:{ ca5 : c h ild l-> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro ll,p m u ta tio n) ;

c h ild 2 -> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro ll,p m u ta tio n) ;

j x —;go to ca6 ;}
case 10: {ca6: c h ild l-> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l0 ,p m u ta tio n);

c h ild 2 -> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l0 ,p m u ta tio n);

jx —;go to ca7 ;}
case 9:{ c a 7 :c h ild l-> c h ro m [jc].c h ro 9 = m u ta tio n (p a ren t2 -> c h ro m [jc] .c h ro 9 ,p m u ta tio n);

c h ild 2 -> c h ro m [jc] .c h ro 9 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 9 ,p m u ta tio n);

j x —;go to ca8 ;}
case 8 :{ca8 : c h ild l-> c h ro m [jc].c h ro 8 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 8 ,p m u ta tio n);

c h ild 2-> c h ro m [jc] .c h ro 8= m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 8 ,pm uta tion);

jx —;go to ca9 ;}
case 7 :{ ca9 : ch ild l-> ch ro m [jc].c h ro 7 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 7 ,p m u ta tio n);

c h ild 2 -> c h ro m [jc] .c h ro 7 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 7 ,p m u ta tio n);

j x - ; g o to ca lO ;}
case 6:{ calO : c h ild l-> c h ro m [jc] .c h ro 6 = m u ta tio n (p a ren t2 -> c h ro m |jc] .c h ro 6 ,p m u ta tio n);

c h ild 2-> c h ro m [jc] .c h ro 6= m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 6 ,pm uta tion);

j x - ; g o to c a l l ; }
ca se 5 :{ c a l l : ch ild l-> ch ro m [jc].c h ro 5 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 5 ,p m u ta tio n);

ch ild 2 -> ch ro m [jc] .c h ro 5 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 5 ,p m u ta tio n);

j x - ; g o to c a l2 ;}
case 4:{ cal2: childl->chrom[jc].chro4=mutation(parent2->chrom[jc].chro4,pmutation);

child2->chrom[jc].chro4=mutation(parentl->chrom[jc].chro4,pmutation);
j x - ; g o to c a l3 ;}

case 3:{ c a l3 : ch ild l-> c h ro m [jc] .c h ro 3 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 3 ,p m u ta tio n);

129

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 130

c h ild 2 -> c h ro m |jc] .c h ro 3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 3 ,p m u ta tio n);
j x —;g o to c a l 4;}

case 2: { c a l4 : c h ild l-> c h ro m [jc] .c h ro 2 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 2 ,p m u ta tio n);
ch ild 2 -> c h ro m [jc] .c h ro 2 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 2 ,p m u ta tio n);
j x —;g o to c a l5 ;}

case 1:{ c a l5 : c h ild l-> c h ro m [jc] .c h ro l= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l,p m u ta tio n) ;
j x - ; j c - ;b r e a k ; }

d e fau lt:b reak ;

}
w h ile (jx > = l)

{
c h ild l-> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l6 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l6 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l6 ,p m u ta tio n) ;

jx -S
c h ild l-> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l5 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l5 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l5 ,p m u ta tio n) ;

j x - ;
c h ild l-> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l4 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l4 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l4 ,p m u ta tio n) ;

jx - - ;
c h ild l-> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l3 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l3 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l3 ,p m u ta tio n) ;

jx - - ;
c h ild l-> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l2 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l2 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l2 ,p m u ta tio n) ;

j x - ;
c h ild l-> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro ll ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro ll= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro ll ,p m u ta tio n) ;

j x - ;
c h ild l-> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n t2 -> c h ro m [jc] .c h ro l0 ,p m u ta tio n) ;
c h ild 2 -> c h ro m [jc] .c h ro l0 = m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro l0 ,p m u ta tio n) ;

j x - ;
ch ild l-> ch ro m [jc].c h ro 9 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 9 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 9 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 9 ,p m u ta tio n);

j x - ;
ch ild l-> ch ro m [jc].c h ro 8 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 8 ,p m u ta tio n);
c h ild 2-> c h ro m [jc] .c h ro 8= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 8,pm utation)-,

j x - ;
ch ild l-> ch ro m [jc].c h ro 7 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 7 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 7 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 7 ,p m u ta tio n);

j x - ;
ch ild 1 -> ch ro m [jc] .c h ro 6 = m u ta tio n (p a ren t2 -> ch ro m [jc] .ch ro6 ,pm utation);
c h ild 2 -> c h ro m [jc] .c h ro 6= m u ta tio n (p a re n tl-> c h ro m [jc] .c h ro 6,pm uta tion);

j x - ;
ch ild l-> c h ro m [jc].c h ro 5 = m u ta tio n (p a ren t2 -> c h ro m [jc] .c h ro 5 ,p m u ta tio n);
ch ild 2 -> c h ro m [jc] .c h ro 5 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 5 ,p m u ta tio n);

j x ” ; . x
ch ild l-> c h ro m [jc] .c h ro 4 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 4 ,p m u ta tio n);
ch ild 2 -> ch ro m [jc] .c h ro 4 = m u ta tio n (p a re n tl-> c h ro m [jc] .ch ro 4 ,p m u ta tio n);

j x " ; . x
ch ild l-> c h ro m [jc] .c h ro 3 = m u ta tio n (p a ren t2 -> c h ro m [jc] .ch ro 3 ,p m u ta tio n);

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 131

child2->chrom[jc].chro3=mutation(parentl->chrom[jc].chro3,pmutation);
jx-S
childl->chrom[jc].chro2=mutation(parent2->chrom[jc].chro2,pmutation);
child2->chrom^c].chro2=mutation(parentl->chrom[jc].chro2,pmutation);
jx-S
child 1 ->chrom[jc] .chro l=mutation(parent2->chrom(j c] .chro 1 ,pmutation);
child2->chrom[jc].chrol=mutation(parentl->chrom[jc].chrol,pmutation);
jx--;jc--;
}

}
return jcrossl;

}
void initdata(void)
{

char cha,*p,pl[100],c; intj;
// void cleardeviceQ;

printf("**** A basic Genetic Algorithms for Design of Fuzzy controller****\n\n");
printf(" ĵ y using C++ *\n\n")’
p=" ZIBO ZHANG March, 1994 Version 1.0 All Rights Reserved";

p=" SGA Data Enter and Initialization";
pniltT ̂ *f*4'H»'i*'i'*i*'i*'i''f*"l**i**l'*i* p̂*
p=" please input population size number, then press 'return'";
printf("**** %s **** \n",p);
fflush(stdin);
scanf(" % i",&popsize);
p=" please input chromosome length, then press 'return'";
printf("**** %s **** \n",p);
scanf(" % i" ,&lchrom);
p=" please input max generations, then press 'return'";
printf("**** %s **** \n",p);
scanf("%i",&maxgen);
p=" please input crossover probability, then press 'return'";
printf("**** %s **** \n",p);
scanf(" %f",&pcross);
p=" please input mutation probability, then press 'return'";
printf("**** %s **** \n",p);
scanf(" %f",&pmutationO);
randomizeO;
nmutation=0,ncross=0;

}
void initialize(void)
{

if(flagl==0)
in itdataO ;
initpopO;
statistics(popsize);
in itrepo rtO ;

}
void initpopO
{ . .

float objfit;

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 132

u n s ig n e d j , j2 ,j l , jx z ;
fo r (j= l ; j< = p o p s iz e ; j= j+ l)

{ j2=l;jl=l;
w h ile (j2 < = lch ro m * 4)

{
n e w p o p [j] .c h ro m [jl] .c h ro l= (u n s ig n e d)f lip (0 .5);j2 + + ;
n e w p o p [j] .c h ro m []l] .c h ro 2 = (u n s ig n e d)flip (0 .5);j2 + + ;
n ew p o p [j] .ch ro m [jl] .c h ro 3 = (u n s ig n e d)flip (0 .5) ;j2 + + ;
n ew p o p (j] .ch ro m [jl] .c h ro 4 = (u n s ig n e d)flip (0 .5) ;j2 + + ;
n ew p o p [j] .ch ro m [jl] .c h ro 5 = (u n s ig n e d)flip (0 .5) ;j2 + + ;
n ew p o p [j] .c h ro m [jl] .c h ro 6 = (u n s ig n e d)flip (0 .5);j2 + + ;
n ew p o p [j] .ch ro m [jl] .c h ro 7 = (u n s ig n e d)flip (0 .5) ;j2 + + ;
n ew p o p [j] .c h ro m [jl] .c h ro 8 = (u n s ig n e d)flip (0 .5);j2 + + ;
n ew p o p [j] .ch ro m [jl] .c h ro 9 = (u n s ig n e d)flip (0 .5) ;j2 + + ;
n e w p o p [j] .c h ro m [jl] .c h ro l0 = (u n s ig n e d)f lip (0 .5);j2 + + ;
n ew p o p [j] .ch rom [j 1] .chro 11= (u n s ig n ed)flip (0 .5);j2 + + ;
n ew p o p [j] .ch rom [j 1] .chro 1 2 = (u n sig n ed)flip (0 .5);j2 + + ;
n e w p o p [j] .c h ro m [jl] .c h ro l3 = (u n s ig n e d)f lip (0 .5);j2 + + ;
n e w p o p [j] .c h ro m [jl] .c h ro l4 = (u n s ig n e d)f lip (0 .5);j2 + + ;
n e w p o p [j] .c h ro m [jl] .c h ro l5 = (u n s ig n e d)f lip (0 .5);j2 + + ;
n ew p o p [j]. ch rom [j 1] .chro 16 = (u n sig n ed)fl ip (0 .5);j 2 + + ;j 1++;

}
o b jf it= (flo a t)o b jfu n c ® ;
if((cm ax -o b jfit)< 0 .)

n e w p o p jj].fitn ess= 0 .;
else

{
n e w p o p [j]. f itn ess= cm ax -o b jfit;

}
n e w p o p [j] .p a re n tl= 0 ;n e w p o p [j] .p a re n t2 = 0 ;
p rin tf("n ew p o p [% 2 i].f itn e ss= % 6 .6 A t" ,j,n ew p o p [j] .f itn ess);

}
}

vo id ob jp (vo id)

{
in t k b ,m o d ,k b y ,zh an g ;
f lo a t x x m [5] ,u y [5] ,sh [7] ;

/* fo r(k b = l;k b < = n u m b e r;k b + +)
{ p y l[k b]= 0 .0 ;u l[k b]= 0 .0 ;}

u y [l]= 1 .0 ;u l [0]= -1 .0 ; / /n u m b e r o f d a ta
fo r (k b = l;k b < = 5 ;k b + +)s h [k b]= u y [l] ;
fo r (k b = l;k b < = (n u m b e r- l) /6 ;k b + +)

{
x x m [l]= sh [4]+ sh [5] ;//(+)= N O R

if (x x m [l]= = 0 .0)x x m [l]= 1 .0 ;e ls e x x m [l]= -1 .0 ;
fo r(k b y = 2 ;k b y < = 5 ;k b y + +)
{ z h a n g = 6 -k b y ;sh [z h a n g + l]= sh [z h a n g];} //sh if t reg is te r

s h [l] = x x m [l] ;
fo r (k b y = (k b - l)* 6 ;k b y < = k b * 6 ;k b y + +)p y [k b y]= x x m [l] ;

prinlf("ul[%2i]=%2.2At",kb,py[kb]);
}*/
fo r(k b = l;k b < = n u m b e r;k b + +)

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller 133

{
i f (k b > = l& & k b < 2 0){ p y [k b]= 0 .5 ;g o to o a g 8 ;}
if (k b > = 2 0 & & k b < 4 0){ p y [k b]= 0 .0 ;g o to o ag 8 ;}
if(k b > = 4 0 & & k b < 6 0){ p y [k b]= 1 .0 ;g o to o ag 8 ;}
if(k b > = 60& & kb< 80){py[kb]= = 0 .0 ;go to o ag 8 ;}
if (k b > = 8 0 & & k b < 1 0 0){ p y [k b]= 0 .8 ;g o to o ag 8 ;}
if (k b > = 1 0 0 & & k b < 1 2 0){ p y [k b]= 1 .0 ;g o to oag 8 ;}
if(k b > = 1 2 0 & & k b < = n u m b er)p y [k b]= 0 .6 ;

oag8 : p r in tf("p y [% 2 i]= % 2 .2 A t" ,k b ,p y [k b]);

}
}
u n sig n ed se lec t(u n sig n ed p o p s ize ,f lo a t su m fitn ess)

{
f lo a t ra n d ,p a r tsu m = 0 .0 ;
u n s ig n ed j= 0 ;
ran d = ((flo a t)ran d o m (1 0 0 0)/1 0 0 0 .0)* su m fitn e ss ;
w h ile (((p a r tsu m -ran d)< 0) & & (j< p o p size))

{

p a rtsu m + = o ld p o p [j]. f itn e ss ;

}
re tu rn j;

}
v o id m em b (v o id)//p o p size ,su m fitn e ss ,o ld p o p

{
FILE *pl;
in t jx ,j,m [1 0];
f lo a t x ,e ,t,a a [1 8] ,b b [1 8],k k [1 8];
b b [0]= 0 .1 ;t= 0 .4 9 6 9 8 ;k k [0]= 1 0 0 ;a a [0]= -0 .1 ;
aa[l]=0.0;bb[l]=.3;aa[2]=0.1;bb[2]=0.5;aa[3]=0.3;bb[3]=0.7;
aa[4]=0.5;bb[4]=1.0;aa[5]=0.7;bb[5]=1.2;
k k [l] = 4 .0 / ((b b [l] - a a [l]) * (b b [l] - a a [l])) ;

p r in tf (''k [0]= % 3 .5 f \ tk [l]= % 3 .6 f \ tb [l]= % 3 .5 f \n " ,k k [0] ,k k [l] ,b b [l]) ;

fo r(jx = 2 ;jx < = 6 ;jx + +)

{
/ / a a [jx]= 0 .0 ;
// for(j=l;j<=jx-l;j++)aa[jx]=aa[jx]+pow(2.0,j-l):1;pow(2.7182,j*t);
// aa[jx]=aa[jx]*bb[0]/pow(2.0,jx-l);
/ / b b [jx]= b b [0]* p o w (2 .7 1 8 2 8 ,jx * t) ;

k k [jx]= 4 .0 /((a a [jx]-b b [jx])* (a a [jx]-b b [jx])) ;
p rin tf("k [% i]= % 3 .5 f\ta [jx]= % 2 .4 f\tb [jx]= % 3 .5 f\n " ,jx ,k k [jx] ,a a [jx] ,b b [jx]) ;

}
x = 0 .0 ;jx = 1+ 120 ;
x = a a [l] ; jx = 1 0 0 * x + 1 2 0 ;
if ((p l= fo p e n ("c :ab k .d a t" ,"w "))!= N U L L)
fo r (j= l;j< = 5 ;j+ +) //th e le f t s id e o f y ax is

f p r in tf (p l , ,'% 1 .6 f\t% 1 .6 f\t% 1 .6 £ \n " ,-b b [6 -j] ,-aa [6 -j] ,k k [6 -j]) ;
a [j - l]= -b b [6 - j] ;b [j- l]= -a a [6 - j] ;k [j- l]= k k [6 - j] ;

}
fo r (j= 6 ; j< = ll ; j+ +) / / th e r ig h t s id e o f y ax is

{

fprintf(pl,"%1.6f\t%1.6f\t%1.6f\n",aa[j-6],bb|j-6],kk[j-6]);
aU“l] =aa[j-6];b[j-l]=bb[j-6];k|j-l]=kk[j-6];
}
fclose(pl);

Appendix 1 Source Code of Optimisation of Rules of Fuzzy Controller

	Fuzzy control design based on genetic algorithms
	Recommended Citation

	tmp.1448590232.pdf.vHRhj

