23 research outputs found

    MISPRONUNCIATION DETECTION AND DIAGNOSIS IN MANDARIN ACCENTED ENGLISH SPEECH

    Get PDF
    This work presents the development, implementation, and evaluation of a Mispronunciation Detection and Diagnosis (MDD) system, with application to pronunciation evaluation of Mandarin-accented English speech. A comprehensive detection and diagnosis of errors in the Electromagnetic Articulography corpus of Mandarin-Accented English (EMA-MAE) was performed by using the expert phonetic transcripts and an Automatic Speech Recognition (ASR) system. Articulatory features derived from the parallel kinematic data available in the EMA-MAE corpus were used to identify the most significant articulatory error patterns seen in L2 speakers during common mispronunciations. Using both acoustic and articulatory information, an ASR based Mispronunciation Detection and Diagnosis (MDD) system was built and evaluated across different feature combinations and Deep Neural Network (DNN) architectures. The MDD system captured mispronunciation errors with a detection accuracy of 82.4%, a diagnostic accuracy of 75.8% and a false rejection rate of 17.2%. The results demonstrate the advantage of using articulatory features in revealing the significant contributors of mispronunciation as well as improving the performance of MDD systems

    Phonologically-Informed Speech Coding for Automatic Speech Recognition-based Foreign Language Pronunciation Training

    Full text link
    Automatic speech recognition (ASR) and computer-assisted pronunciation training (CAPT) systems used in foreign-language educational contexts are often not developed with the specific task of second-language acquisition in mind. Systems that are built for this task are often excessively targeted to one native language (L1) or a single phonemic contrast and are therefore burdensome to train. Current algorithms have been shown to provide erroneous feedback to learners and show inconsistencies between human and computer perception. These discrepancies have thus far hindered more extensive application of ASR in educational systems. This thesis reviews the computational models of the human perception of American English vowels for use in an educational context; exploring and comparing two types of acoustic representation: a low-dimensionality linguistically-informed formant representation and more traditional Mel frequency cepstral coefficients (MFCCs). We first compare two algorithms for phoneme classification (support vector machines and long short-term memory recurrent neural networks) trained on American English vowel productions from the TIMIT corpus. We then conduct a perceptual study of non-native English vowel productions perceived by native American English speakers. We compare the results of the computational experiment and the human perception experiment to assess human/model agreement. Dissimilarities between human and model classification are explored. More phonologically-informed audio signal representations should create a more human-aligned, less L1-dependent vowel classification system with higher interpretability that can be further refined with more phonetic- and/or phonological-based research. Results show that linguistically-informed speech coding produces results that better align with human classification, supporting use of the proposed coding for ASR-based CAPT

    CAPT๋ฅผ ์œ„ํ•œ ๋ฐœ์Œ ๋ณ€์ด ๋ถ„์„ ๋ฐ CycleGAN ๊ธฐ๋ฐ˜ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ธ๋ฌธ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ธ์ง€๊ณผํ•™์ „๊ณต,2020. 2. ์ •๋ฏผํ™”.Despite the growing popularity in learning Korean as a foreign language and the rapid development in language learning applications, the existing computer-assisted pronunciation training (CAPT) systems in Korean do not utilize linguistic characteristics of non-native Korean speech. Pronunciation variations in non-native speech are far more diverse than those observed in native speech, which may pose a difficulty in combining such knowledge in an automatic system. Moreover, most of the existing methods rely on feature extraction results from signal processing, prosodic analysis, and natural language processing techniques. Such methods entail limitations since they necessarily depend on finding the right features for the task and the extraction accuracies. This thesis presents a new approach for corrective feedback generation in a CAPT system, in which pronunciation variation patterns and linguistic correlates with accentedness are analyzed and combined with a deep neural network approach, so that feature engineering efforts are minimized while maintaining the linguistically important factors for the corrective feedback generation task. Investigations on non-native Korean speech characteristics in contrast with those of native speakers, and their correlation with accentedness judgement show that both segmental and prosodic variations are important factors in a Korean CAPT system. The present thesis argues that the feedback generation task can be interpreted as a style transfer problem, and proposes to evaluate the idea using generative adversarial network. A corrective feedback generation model is trained on 65,100 read utterances by 217 non-native speakers of 27 mother tongue backgrounds. The features are automatically learnt in an unsupervised way in an auxiliary classifier CycleGAN setting, in which the generator learns to map a foreign accented speech to native speech distributions. In order to inject linguistic knowledge into the network, an auxiliary classifier is trained so that the feedback also identifies the linguistic error types that were defined in the first half of the thesis. The proposed approach generates a corrected version the speech using the learners own voice, outperforming the conventional Pitch-Synchronous Overlap-and-Add method.์™ธ๊ตญ์–ด๋กœ์„œ์˜ ํ•œ๊ตญ์–ด ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๊ณ ์กฐ๋˜์–ด ํ•œ๊ตญ์–ด ํ•™์Šต์ž์˜ ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์Œ์„ฑ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ์ ์šฉํ•œ ์ปดํ“จํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐœ์Œ ๊ต์œก(Computer-Assisted Pronunciation Training; CAPT) ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋˜ํ•œ ์ ๊ทน์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ˜„์กดํ•˜๋Š” ํ•œ๊ตญ์–ด ๋งํ•˜๊ธฐ ๊ต์œก ์‹œ์Šคํ…œ์€ ์™ธ๊ตญ์ธ์˜ ํ•œ๊ตญ์–ด์— ๋Œ€ํ•œ ์–ธ์–ดํ•™์  ํŠน์ง•์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ์œผ๋ฉฐ, ์ตœ์‹  ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ  ๋˜ํ•œ ์ ์šฉ๋˜์ง€ ์•Š๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๊ฐ€๋Šฅํ•œ ์›์ธ์œผ๋กœ์จ๋Š” ์™ธ๊ตญ์ธ ๋ฐœํ™” ํ•œ๊ตญ์–ด ํ˜„์ƒ์— ๋Œ€ํ•œ ๋ถ„์„์ด ์ถฉ๋ถ„ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค๋Š” ์ , ๊ทธ๋ฆฌ๊ณ  ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด๋„ ์ด๋ฅผ ์ž๋™ํ™”๋œ ์‹œ์Šคํ…œ์— ๋ฐ˜์˜ํ•˜๊ธฐ์—๋Š” ๊ณ ๋„ํ™”๋œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์ด ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ CAPT ๊ธฐ์ˆ  ์ „๋ฐ˜์ ์œผ๋กœ๋Š” ์‹ ํ˜ธ์ฒ˜๋ฆฌ, ์šด์œจ ๋ถ„์„, ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•๊ณผ ๊ฐ™์€ ํŠน์ง• ์ถ”์ถœ์— ์˜์กดํ•˜๊ณ  ์žˆ์–ด์„œ ์ ํ•ฉํ•œ ํŠน์ง•์„ ์ฐพ๊ณ  ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ถœํ•˜๋Š” ๋ฐ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•œ ์‹ค์ •์ด๋‹ค. ์ด๋Š” ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ด ๊ณผ์ • ๋˜ํ•œ ๋ฐœ์ „์˜ ์—ฌ์ง€๊ฐ€ ๋งŽ๋‹ค๋Š” ๋ฐ”๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋จผ์ € CAPT ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ์žˆ์–ด ๋ฐœ์Œ ๋ณ€์ด ์–‘์ƒ๊ณผ ์–ธ์–ดํ•™์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์™ธ๊ตญ์ธ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ๊ณผ ํ•œ๊ตญ์–ด ์›์–ด๋ฏผ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ์„ ๋Œ€์กฐํ•˜๊ณ  ์ฃผ์š”ํ•œ ๋ณ€์ด๋ฅผ ํ™•์ธํ•œ ํ›„, ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์˜์‚ฌ์†Œํ†ต์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”๋„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ข…์„ฑ ์‚ญ์ œ์™€ 3์ค‘ ๋Œ€๋ฆฝ์˜ ํ˜ผ๋™, ์ดˆ๋ถ„์ ˆ ๊ด€๋ จ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ์— ์šฐ์„ ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ต์ •๋œ ํ”ผ๋“œ๋ฐฑ์„ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ CAPT ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ๊ณผ์ œ๊ฐ€ ๋ฐœํ™”์˜ ์Šคํƒ€์ผ ๋ณ€ํ™”์˜ ๋ฌธ์ œ๋กœ ํ•ด์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณด์•˜์œผ๋ฉฐ, ์ƒ์„ฑ์  ์ ๋Œ€ ์‹ ๊ฒฝ๋ง (Cycle-consistent Generative Adversarial Network; CycleGAN) ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. GAN ๋„คํŠธ์›Œํฌ์˜ ์ƒ์„ฑ๋ชจ๋ธ์€ ๋น„์›์–ด๋ฏผ ๋ฐœํ™”์˜ ๋ถ„ํฌ์™€ ์›์–ด๋ฏผ ๋ฐœํ™” ๋ถ„ํฌ์˜ ๋งคํ•‘์„ ํ•™์Šตํ•˜๋ฉฐ, Cycle consistency ์†์‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœํ™”๊ฐ„ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•จ๊ณผ ๋™์‹œ์— ๊ณผ๋„ํ•œ ๊ต์ •์„ ๋ฐฉ์ง€ํ•˜์˜€๋‹ค. ๋ณ„๋„์˜ ํŠน์ง• ์ถ”์ถœ ๊ณผ์ •์ด ์—†์ด ํ•„์š”ํ•œ ํŠน์ง•๋“ค์ด CycleGAN ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ๋ฌด๊ฐ๋… ๋ฐฉ๋ฒ•์œผ๋กœ ์Šค์Šค๋กœ ํ•™์Šต๋˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์–ธ์–ด ํ™•์žฅ์ด ์šฉ์ดํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์–ธ์–ดํ•™์  ๋ถ„์„์—์„œ ๋“œ๋Ÿฌ๋‚œ ์ฃผ์š”ํ•œ ๋ณ€์ด๋“ค ๊ฐ„์˜ ์šฐ์„ ์ˆœ์œ„๋Š” Auxiliary Classifier CycleGAN ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ CycleGAN์— ์ง€์‹์„ ์ ‘๋ชฉ์‹œ์ผœ ํ”ผ๋“œ๋ฐฑ ์Œ์„ฑ์„ ์ƒ์„ฑํ•จ๊ณผ ๋™์‹œ์— ํ•ด๋‹น ํ”ผ๋“œ๋ฐฑ์ด ์–ด๋–ค ์œ ํ˜•์˜ ์˜ค๋ฅ˜์ธ์ง€ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ๋„๋ฉ”์ธ ์ง€์‹์ด ๊ต์ • ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ ๋‹จ๊ณ„๊นŒ์ง€ ์œ ์ง€๋˜๊ณ  ํ†ต์ œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค๋Š” ๋ฐ์— ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ 27๊ฐœ์˜ ๋ชจ๊ตญ์–ด๋ฅผ ๊ฐ–๋Š” 217๋ช…์˜ ์œ ์˜๋ฏธ ์–ดํœ˜ ๋ฐœํ™” 65,100๊ฐœ๋กœ ํ”ผ๋“œ๋ฐฑ ์ž๋™ ์ƒ์„ฑ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ๊ฐœ์„  ์—ฌ๋ถ€ ๋ฐ ์ •๋„์— ๋Œ€ํ•œ ์ง€๊ฐ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ ํ•™์Šต์ž ๋ณธ์ธ์˜ ๋ชฉ์†Œ๋ฆฌ๋ฅผ ์œ ์ง€ํ•œ ์ฑ„ ๊ต์ •๋œ ๋ฐœ์Œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์ธ ์Œ๋†’์ด ๋™๊ธฐ์‹ ์ค‘์ฒฉ๊ฐ€์‚ฐ (Pitch-Synchronous Overlap-and-Add) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์ƒ๋Œ€ ๊ฐœ์„ ๋ฅ  16.67%์ด ํ™•์ธ๋˜์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1. Motivation 1 1.1.1. An Overview of CAPT Systems 3 1.1.2. Survey of existing Korean CAPT Systems 5 1.2. Problem Statement 7 1.3. Thesis Structure 7 Chapter 2. Pronunciation Analysis of Korean Produced by Chinese 9 2.1. Comparison between Korean and Chinese 11 2.1.1. Phonetic and Syllable Structure Comparisons 11 2.1.2. Phonological Comparisons 14 2.2. Related Works 16 2.3. Proposed Analysis Method 19 2.3.1. Corpus 19 2.3.2. Transcribers and Agreement Rates 22 2.4. Salient Pronunciation Variations 22 2.4.1. Segmental Variation Patterns 22 2.4.1.1. Discussions 25 2.4.2. Phonological Variation Patterns 26 2.4.1.2. Discussions 27 2.5. Summary 29 Chapter 3. Correlation Analysis of Pronunciation Variations and Human Evaluation 30 3.1. Related Works 31 3.1.1. Criteria used in L2 Speech 31 3.1.2. Criteria used in L2 Korean Speech 32 3.2. Proposed Human Evaluation Method 36 3.2.1. Reading Prompt Design 36 3.2.2. Evaluation Criteria Design 37 3.2.3. Raters and Agreement Rates 40 3.3. Linguistic Factors Affecting L2 Korean Accentedness 41 3.3.1. Pearsons Correlation Analysis 41 3.3.2. Discussions 42 3.3.3. Implications for Automatic Feedback Generation 44 3.4. Summary 45 Chapter 4. Corrective Feedback Generation for CAPT 46 4.1. Related Works 46 4.1.1. Prosody Transplantation 47 4.1.2. Recent Speech Conversion Methods 49 4.1.3. Evaluation of Corrective Feedback 50 4.2. Proposed Method: Corrective Feedback as a Style Transfer 51 4.2.1. Speech Analysis at Spectral Domain 53 4.2.2. Self-imitative Learning 55 4.2.3. An Analogy: CAPT System and GAN Architecture 57 4.3. Generative Adversarial Networks 59 4.3.1. Conditional GAN 61 4.3.2. CycleGAN 62 4.4. Experiment 63 4.4.1. Corpus 64 4.4.2. Baseline Implementation 65 4.4.3. Adversarial Training Implementation 65 4.4.4. Spectrogram-to-Spectrogram Training 66 4.5. Results and Evaluation 69 4.5.1. Spectrogram Generation Results 69 4.5.2. Perceptual Evaluation 70 4.5.3. Discussions 72 4.6. Summary 74 Chapter 5. Integration of Linguistic Knowledge in an Auxiliary Classifier CycleGAN for Feedback Generation 75 5.1. Linguistic Class Selection 75 5.2. Auxiliary Classifier CycleGAN Design 77 5.3. Experiment and Results 80 5.3.1. Corpus 80 5.3.2. Feature Annotations 81 5.3.3. Experiment Setup 81 5.3.4. Results 82 5.4. Summary 84 Chapter 6. Conclusion 86 6.1. Thesis Results 86 6.2. Thesis Contributions 88 6.3. Recommendations for Future Work 89 Bibliography 91 Appendix 107 Abstract in Korean 117 Acknowledgments 120Docto

    Machine learning approaches to improving mispronunciation detection on an imbalanced corpus

    Get PDF
    This thesis reports the investigations into the task of phone-level pronunciation error detection, the performance of which is heavily affected by the imbalanced distribution of the classes in a manually annotated data set of non-native English (Read Aloud responses from the TOEFL Junior Pilot assessment). In order to address problems caused by this extreme class imbalance, two machine learning approaches, cost-sensitive learning and over-sampling, are explored to improve the classification performance. Specifically, approaches which assigned weights inversely proportional to class frequencies and synthetic minority over-sampling technique (SMOTE) were applied to a range of classifiers using feature sets that included information about the acoustic signal, the linguistic properties of the utterance, and word identity. Empirical experiments demonstrate that both balancing approaches lead to a substantial performance improvement (in terms of f1 score) over the baseline on this extremely imbalanced data set. In addition, this thesis also discusses which features are the most important and which classifiers are most effective for the task of identifying phone-level pronunciation errors in non-native speech

    Directions for the future of technology in pronunciation research and teaching

    Get PDF
    This paper reports on the role of technology in state-of-the-art pronunciation research and instruction, and makes concrete suggestions for future developments. The point of departure for this contribution is that the goal of second language (L2) pronunciation research and teaching should be enhanced comprehensibility and intelligibility as opposed to native-likeness. Three main areas are covered here. We begin with a presentation of advanced uses of pronunciation technology in research with a special focus on the expertise required to carry out even small-scale investigations. Next, we discuss the nature of data in pronunciation research, pointing to ways in which future work can build on advances in corpus research and crowdsourcing. Finally, we consider how these insights pave the way for researchers and developers working to create research-informed, computer-assisted pronunciation teaching resources. We conclude with predictions for future developments

    Methods for pronunciation assessment in computer aided language learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 149-176).Learning a foreign language is a challenging endeavor that entails acquiring a wide range of new knowledge including words, grammar, gestures, sounds, etc. Mastering these skills all require extensive practice by the learner and opportunities may not always be available. Computer Aided Language Learning (CALL) systems provide non-threatening environments where foreign language skills can be practiced where ever and whenever a student desires. These systems often have several technologies to identify the different types of errors made by a student. This thesis focuses on the problem of identifying mispronunciations made by a foreign language student using a CALL system. We make several assumptions about the nature of the learning activity: it takes place using a dialogue system, it is a task- or game-oriented activity, the student should not be interrupted by the pronunciation feedback system, and that the goal of the feedback system is to identify severe mispronunciations with high reliability. Detecting mispronunciations requires a corpus of speech with human judgements of pronunciation quality. Typical approaches to collecting such a corpus use an expert phonetician to both phonetically transcribe and assign judgements of quality to each phone in a corpus. This is time consuming and expensive. It also places an extra burden on the transcriber. We describe a novel method for obtaining phone level judgements of pronunciation quality by utilizing non-expert, crowd-sourced, word level judgements of pronunciation. Foreign language learners typically exhibit high variation and pronunciation shapes distinct from native speakers that make analysis for mispronunciation difficult. We detail a simple, but effective method for transforming the vowel space of non-native speakers to make mispronunciation detection more robust and accurate. We show that this transformation not only enhances performance on a simple classification task, but also results in distributions that can be better exploited for mispronunciation detection. This transformation of the vowel is exploited to train a mispronunciation detector using a variety of features derived from acoustic model scores and vowel class distributions. We confirm that the transformation technique results in a more robust and accurate identification of mispronunciations than traditional acoustic models.by Mitchell A. Peabody.Ph.D

    Analysis of the GOP metric for assessing non-native Spanish pronunciation in the SAMPLE corpus

    Get PDF
    Este trabajo consiste en el anรกlisis de los resultados obtenidos en la evaluaciรณn de pronunciaciรณn a nivel fonema utilizando el algoritmo Forced GOP que ha sido implementado para ello. Se ha hecho uso de locuciones de diferentes oraciones realizadas por distintos hablantes, las cuales han sido grabadas y anotadas dentro del corpus SAMPLE. Este corpus fue desarrollado dentro de nuestro grupo de investigaciรณn en colaboraciรณn con personas del รกmbito lingรผista. Se ha trabajado con los datos obtenidos para identificar posibles mejoras, se hacen varias observaciones en el comportamiento de la mรฉtrica y se discute la dependencia a nivel fonema y hablante que sugiere el establecimiento de posibles umbrales para mejorar su rendimiento. Ademรกs se agregan propuestas en base a los datos de loglikelihood que arroja la FGOP y se aplican una serie de reglas para establecer un nuevo parรกmetro que permita dar una calificaciรณn por cada fonema. Estas calificaciones permiten generar una calificaciรณn global de pronunciaciรณn a nivel hablante. Las puntuaciones globales se han contrastado con los resultados de la FGOP y las evaluaciones realizadas por jueces humanos.Departamento de Informรกtica (Arquitectura y Tecnologรญa de Computadores, Ciencias de la Computaciรณn e Inteligencia Artificial, Lenguajes y Sistemas Informรกticos)Mรกster en Investigaciรณn en Tecnologรญas de la Informaciรณn y las Comunicacione

    Dealing with linguistic mismatches for automatic speech recognition

    Get PDF
    Recent breakthroughs in automatic speech recognition (ASR) have resulted in a word error rate (WER) on par with human transcribers on the English Switchboard benchmark. However, dealing with linguistic mismatches between the training and testing data is still a significant challenge that remains unsolved. Under the monolingual environment, it is well-known that the performance of ASR systems degrades significantly when presented with the speech from speakers with different accents, dialects, and speaking styles than those encountered during system training. Under the multi-lingual environment, ASR systems trained on a source language achieve even worse performance when tested on another target language because of mismatches in terms of the number of phonemes, lexical ambiguity, and power of phonotactic constraints provided by phone-level n-grams. In order to address the issues of linguistic mismatches for current ASR systems, my dissertation investigates both knowledge-gnostic and knowledge-agnostic solutions. In the first part, classic theories relevant to acoustics and articulatory phonetics that present capability of being transferred across a dialect continuum from local dialects to another standardized language are re-visited. Experiments demonstrate the potentials that acoustic correlates in the vicinity of landmarks could help to build a bridge for dealing with mismatches across difference local or global varieties in a dialect continuum. In the second part, we design an end-to-end acoustic modeling approach based on connectionist temporal classification loss and propose to link the training of acoustics and accent altogether in a manner similar to the learning process in human speech perception. This joint model not only performed well on ASR with multiple accents but also boosted accuracies of accent identification task in comparison to separately-trained models
    corecore