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ABSTRACT

Recent breakthroughs in automatic speech recognition (ASR) have resulted in a
word error rate (WER) on par with human transcribers on the English Switchboard
benchmark. However, dealing with linguistic mismatches between the training
and testing data is still a significant challenge that remains unsolved. Under the
monolingual environment, it is well-known that the performance of ASR systems
degrades significantly when presented with the speech from speakers with different
accents, dialects, and speaking styles than those encountered during system training.
Under the multi-lingual environment, ASR systems trained on a source language
achieve even worse performance when tested on another target language because
of mismatches in terms of the number of phonemes, lexical ambiguity, and power
of phonotactic constraints provided by phone-level n-grams.

In order to address the issues of linguistic mismatches for current ASR sys-
tems, my dissertation investigates both knowledge-gnostic and knowledge-agnostic
solutions. In the first part, classic theories relevant to acoustics and articulatory
phonetics that present capability of being transferred across a dialect continuum
from local dialects to another standardized language are re-visited. Experiments
demonstrate the potentials that acoustic correlates in the vicinity of landmarks
could help to build a bridge for dealing with mismatches across difference local or
global varieties in a dialect continuum. In the second part, we design an end-to-end
acoustic modeling approach based on connectionist temporal classification loss
and propose to link the training of acoustics and accent altogether in a manner
similar to the learning process in human speech perception. This joint model not
only performed well on ASR with multiple accents but also boosted accuracies of

accent identification task in comparison to separately-trained models.
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CHAPTER 1

INTRODUCTION

Automatic speech recognition (ASR), as the system transcribing human speeches
into texts, has been an active research area for decades. It becomes an essential
bridge for better communications between human and machines. In the early
stage of ASR development, people prefer to use keyboards and mice as their main
input methods rather than to use voice interfaces in that ASR performance was not
reliable. Recent research progress has resulted in a much lower word error rate
(WER) ever since the interest in hybrid ASR systems with deep neural networks
(DNNs) and hidden Markov models (HMMs) resurged [1]. Breakthroughs on
English Switchboard benchmark are achieved on par with human transcribers [2,3].
Figure 1.1 illustrates the evolution of ASR performance in terms of WER. Speech-
driven products, such as Amazon Alexa, Google Home, Microsoft Cortana, and
Apple Siri, grow rapidly in the market, but still, they are not broadly accepted in

our daily lives due to the deficiency of front-end ASR systems.
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The Switchboard corpus is a collection of recorded
telephone conversations widely used to train and
test speech-recognition systems
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Figure 1.1: Evolution of ASR performance on selected benchmarks'.
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The state of the arts of ASR systems remain to highly rely on the HMM paradigm
in a hybrid of expressive statistical models, such as Gaussian mixture models
(GMMs), resurgent DNNs, and various recurrent neural networks (RNNs). From
the perspective of statistical learning theory, both training and testing examples
are assumed to be drawn from the same feature space and the same probability
distribution, otherwise, those statistical models would be adversely affected by
the mismatches [4,5]. In practice, however, this standard assumption often does
not hold—the training and testing data distributions may somewhat differ. In the
context of ASR applications, the mismatches between training and testing examples
mainly result from different conditions in environmental noise, transducers, chan-
nels, speaker characteristics, and language dialects. This dissertation drills down
to explore feasible solutions to the challenging problems of linguistic mismatches

for ASR systems.

1.1 Linguistic Mismatches: Interpretation from
Dialect Continua

Linguistic mismatches are variations of a language that the speech community
accepts and typically do not lead to human communication problems. However,
such mismatches often lead to ASR errors. One of the major types of linguistic
mismatches that pose problems for ASR is the subtle dialect variations human
listeners can adapt to quickly. Very often, such dialectal variations form a dialect
continuum where the dialectal distance is reflected in the geological distance where
close-by geographical areas have similar language varieties that differ slightly
but areas further apart show more diverse language variations. As the geological
and linguistic distance? grow, the dialects may no longer be mutually intelligible.
Naturally, many factors affect the forming of a dialect continuum and the linguistic
distance may not reflect geological distance due to political, economic, transporta-
tion and migration patterns throughout the history. When a dialect continuum is
observable, dialectologists draw lines to separate areas that differ with respect to
some features. Standard varieties in each area together with its dependent varieties

are considered as a “language”, while those dependent varieties are considered

?Linguistic distance is a measure of how different one language or dialect is from another based
on mutual intelligibility, i.e. the ability of speakers of one language to understand the other. The
higher linguistic distance, the lower is the level of mutual intelligibility [6].



as “dialects”. Figure 1.2 illustrates the concept of a dialect continuum. Speakers
of local varieties usually read and write in a related standardized form, and use it
for official purposes, for example, on radio or television; the standardized form
may change in their pronunciation realizations due to another independent culture
status [7]. Standard Dutch and standard German are exemplars of standardized
forms in the West Germanic language family in that they are not closely linked
with regard to their ancestral dialects and hence they do not show a high degree of
mutual intelligibility when spoken. Local dialects of such west Germanic contin-
uum are oriented towards either Dutch or German, depending on which side of the

state border they are spoken.

Standardized form Standardized form
IAI IB.'

dialect continuum
State border

Figure 1.2: Illustration of a dialect continuum.

From a dialect continuum’s point of view, under the monolingual environment,
it is well-known that the performance of ASR systems degrades significantly
when presented with the speech from speakers with different accents, dialects,
and speaking styles than those encountered during system training [8]. Under the
multi-lingual environment where linguistic distance in the dialect continuum grows
across the state border as shown in Figure 1.2, ASR systems trained on a source
language achieve even worse performance when tested on another target language
because of mismatches in terms of number of phonemes, lexical ambiguity, and
power of phonotactic constraints provided by phone-level n-grams [9]. In contrast
to human speech recognition, human listeners usually well perceive the voices even
with linguistic mismatches and they are capable of outperforming machines by a
large margin. Figure 1.3 demonstrates the above observations of differences on the

accented speech corpora Librispeech [10] by comparing human speech recognition
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and the DeepSpeech?2 system [11] that is one of state-of-the-art end-to-end ASR
systems. That being said, it is still a long row to hoe for ASR techniques before

approaching the ability of human speech recognition.
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Figure 1.3: Comparison of human speech recognition and DeepSpeech2 on the
accented English corpora Librispeech. European category represents countries in
Europe where English is not a first language. Commonwealth represents the
accents from British, Irish, South African, Australian and New Zealand.

1.2 Contribution

Inspired by the interpretation of linguistic mismatches from the perspective of
dialect continua, this dissertation explored knowledge-gnostic solutions to the issues
of linguistic mismatches for current ASR systems by leveraging prior knowledge
of acoustic, articulatory, and auditory phonetics that presents capability of being
transferred across a dialect continuum from local dialects to another standardized
language. This dissertation also investigated knowledge-agnostic solutions in an
end-to-end (E2E) fashion, especially by leveraging benefits from connectionist
temporal classification (CTC) without any needs of prior phonetics knowledge.
All discoveries are summarized from my peer-reviewed papers [12-21] along with

their supplementary technical reports, and would be elaborated in the following.

Acoustic Landmarks Bridge Mismatches Across Languages

Acoustic landmarks exploit quantal nonlinear articulator-acoustic relationships,

which identify times when acoustic patterns of linguistically motivated distinctive
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features are most salient. Acoustic cues extracted in the vicinity of landmarks may,
therefore, be more informative for identification of articulator manner changes and
classification of distinctive features than other cues extracted from other times in
the signal. We conducted ASR decoding experiments on TIMIT by a heuristic
approach of weighting acoustic likelihood scores of speech frames. We found
that speech frames locating at landmarks are more informative for recognition
than other frames; our system can maintain the same phone error rate (PER) when
even a half of non-landmark frames are dropped during decoding process [12, 13].
Acoustic landmark theory is claimed to be suitable for any dialects and languages.
Dialects may differ in phonetic features, but landmarks are invariant to different
dialects. Therefore ASR systems could adapt to dialect variations by extracting
essential acoustic information at landmarks. We validated such portability of
acoustic landmark theory to any languages in applications of pronunciation error
detection [14].

Previous experiments and analysis are conducted in the sense that acoustic
landmark positions are known in advance so that accurate information related
to manners and places of articulation can be further extracted according to their
acoustic correlates. We believe this assumption is actually not realistic since
transcriptions with landmark annotations are rather scarce in any languages other
than English®. Labeling accurate acoustic landmarks requires annotators with solid
background knowledge of phonetics and phonology. It becomes an obstacle to build
up knowledge base accessible to any languages, such that the potential benefits
of acoustic landmarks are discarded. In order to fill gaps of insufficient landmark
labels for any languages, we implemented deep neural models to detect manner
changes of articulation in English. According to our previous findings [14] where
acoustic landmark positions are demonstrated to be capable of being transferred
cross-lingually, these landmark detectors trained on English is suitable to apply
to completely new speech in completely new languages as well [15]. We also
attempted to find an alternative approach to obtain landmark labels by analyzing
the correlation between spiky CTC predictions and acoustic landmark positions
based on peak detection algorithms [16]. The preliminary experiments suggested a

promising way of landmark annotation.

3Only English TIMIT and its noise-perturbed NTIMIT provide detailed landmark information



Distinctive Feature Classifiers Are Transferrable Crosslingually

Differences can be observed in the acoustic manifestation of the same feature in
different languages. The acoustic correlates of categorical distinctive features,
especially of the articulator-bound features, are still most salient in the vicinity
of landmarks. Building classifiers on these expressive acoustic correlates may
contribute to distinguishing categorical distinctive features in any languages, which
furthermore may help to improve the performance of ASR systems with the combi-
nation of acoustic signal observations and phonetic information in multi-lingual
scenarios. We designed multiple classifiers anchored at phonetic landmarks to
detect the consonantal voicing feature. Experiments demonstrated the advantage
of these classifiers—they can be transferred cross-lingually while without loss of

detection accuracy [17].

Joint Modeling of Acoustics and Dialects Using CTC

Local varieties of pronunciations in a standardized form typically share acoustic
representations that are universal to any dialects while they can be distinguished by
individual characteristics that preserve dialect-specific knowledge. Ideal config-
uration of an end-to-end model assumes to utilize all sources of dialects to train
the model that captures shared representations across dialects. But this strategy
doesn’t work well since it ignores the mismatches across different domains. An-
other extreme configuration only needs dialect-specific data while missing common
patterns shared across domains.

Previous approaches of dealing with accented speech do not explicitly utilize
accent information during the training procedure of acoustic models, but do so
only indirectly, for example, through different target phoneme sets for various
accents. These solutions contrast sharply with the way in which humans memorize
the phonological and phonetic forms of accented speech. We considered accent
identification as an auxiliary task and proposed to link the CTC training of acoustic
models and cross-entropy training of accent identification models altogether [18].
This auxiliary task helped by introducing extra accent-specific information, which
augmented general acoustic features.

The CTC algorithm learns accurate acoustic models without time-aligned pho-
netic transcription, but sometimes it fails to converge, especially in resource-

constrained scenarios. We tailored a new set of acoustic landmarks and leveraged



new target label sequences mixed with both phones and manner changes of ar-
ticulation to help CTC training converge more rapidly and smoothly while also
reducing recognition errors. We also investigated the sensitivity of our approaches
to the size of training data on subsets of TIMIT (smaller corpora) and WSJ (a
larger corpus). Consistent performance gain demonstrated that label augmentation
with acoustic landmarks generalizes to larger and smaller training datasets, and we
believe this is the first work that applies acoustic landmark theory to a mid-sized
ASR corpus [19].

1.3 Organization

The rest of this dissertation will describe details of the above contributions. Chap-
ter 2 introduces background knowledge related to acoustic and articulatory phonet-
ics that serves as the foundation for the following chapters. Chapter 3 demonstrates
the impact of speech frames located in the vicinity of acoustic landmarks by
weighting acoustic likelihood scores of speech frames during the decoding process.
Chapter 4, Chapter 5, and Chapter 6 discuss the portability of acoustic landmark
theory to any languages and apply the advantages to the task of pronunciation
error detection. Chapter 7 bridges linguistic mismatches by analyzing the effec-
tiveness of articulatory distinctive feature classifiers across multiple languages.
Chapter 8 explores CTC-based ASR systems on multiple accents by jointly mod-
eling of acoustics and accents. Chapter 9 further explores the benefits of target
label augmentation approaches with acoustic landmarks for rapid and stable CTC
training. Chapter 10 reemphasizes my contributions towards the goal of dealing

with linguistic mismatches for ASR and discusses future directions.



CHAPTER 2

BACKGROUND

2.1 The Quantal Nature of Speech

The human vocal tract is a generator of speech, and likewise, the human auditory
system is a receiver of speech. We are interested in the nature of two kinds of rela-
tions regarding vocal tract, auditory system, and speech—relations between vocal
tract configurations or states and the properties of speech generated from these ar-
ticulations; relations between acoustic parameters of speech and auditory responses
to the speech described by these parameters. Stevens discovered similar nonmono-
tonic transformations for these two kinds of relations: acoustic-articulation [22]
and auditory-acoustic [23].

Acoustic-articulation can be further elaborated schematically in Figure 2.1 which
shows the relationship between some acoustic parameter in speech generated from
the vocal tract and some articulatory parameter controlled by speakers. Region II
represents large changes in the acoustics for small shifts in articulation; Region I
and Region III show two plateaus in the curve indicating that the acoustic parameter
remains relatively stable when small modifications are made in the articulation.
The difference between values of acoustic parameters in Region I and Region III is
large, which indicates that a significant acoustic contrast or a rather abrupt change
between these two regions occurs in their intermediate Region II.

Auditory-acoustic applies the same non-monotonic curve as acoustic-articulation
described in Figure 2.1. In this case, the dependent variable (y-axis) is some
parameter of the auditory response measured by psychophysical procedures or
electrophysiological methods, and the independent variable (x-axis) is some acous-
tic parameter that is controlled by a speaker. Region II here is considered as a
transition band showing that the auditory response shifts from one type of pattern
to another as the acoustic parameter changes across this region.

In summary, some articulatory states or gestures give rise to well-defined patterns



of auditory response from a human listener, so that these patterns are not very
sensitive to small perturbations in the articulation while being distinctive in the
sense that a significant change or qualitative shift occurs in the auditory response
if some articulatory parameter passes through a threshold region. The relation of
acoustic-articulatory or auditory-acoustic posits quantal attributes characterized
by rapid changes in state over some threshold regions while keeping stability over
other regions. Stevens suggested that the quantal relationship is a principal factor
shaping the inventory of articulatory gestures and their acoustic generation that are
used to distinguish phonetic segments in language [24]. The relationship between
articulatory and acoustic attributes captures the acoustic correlates of the distinctive
features. A speech utterance can be represented as a sequence of multi-dimensional
and categorical distinctive features. At the plateau-like regions, some changes
in these features will not result in a significant modification of attributes of the
sound pattern; when one of the distinctive features crosses through the threshold
region, rapid and abrupt changes will occur in the relevant acoustic parameter. In
this context, the time is defined as an acoustic landmark by Stevens et al [25]
when an acoustic event of a rapid change occurs. Furui [26] and Ohde [27] have
made almost the same observations of these relationships when studying Japanese

syllables and children’s speech.

II1

acoustic parameter

"

articulatory parameter

Figure 2.1: Quantal relationships between an articulatory parameter of the vocal
tract and the acoustic output. Regions I and III are acoustically stable with respect
to perturbations in the articulatory parameter, whereas Region II contains
acoustically abrupt changes. This figure is originally from [24].



2.2 Distinctive Features

Distinctive features concisely describe sounds of a language at a subsegmental
level, and they have direct relations to acoustics and articulation. These features are
typically quantized as binary values that encode perceptual [28], phonological [29],
and articulatory [23] speech sounds. A collection of these binary features can
distinguish each phonetic segment from all others in a language. For example, the
vibration behavior of the vocal cord determines if the speech sound is “voiced”
([+periodicGlottalSource]) or “unvoiced” ([-periodicGlottalSource]), and the velum
helps to determine if it is a “nasal” ([+nasal]) or “non-nasal” ([-nasal]) sound.

Distinctive features in a language often have articulatory, acoustic, or perceptual
correlates that are similar to those in other languages. They are sufficient to charac-
terize all sounds in all languages so that phoneme systems can be derived for any
languages in the world. Stevens [30,31] suggested to form a set of approximately
language-independent distinctive features: if an acoustic or articulatory feature is
used to distinguish phonemes in at least one of the languages of the world, then
that feature may be considered to define a language-independent distinctive feature.
Each phoneme of a language is represented by a unique binary vector of language-
independent distinctive features. ASR may distinguish two different allophones
of the same phoneme as distinct phones. In most cases, the distinctions among
phones can be coded using distinctive features borrowed from another language, or
equivalently, from the language-independent set. Table 2.1 describes a collection
of features' suitable for any languages.

The ASR community has explored a number of encodings strategies similar to
distinctive features, such as articulatory features and speech attributes. Articula-
tory features can help to classify sounds of a language, but they take on mostly
digital values (e.g. velum position) or continuous values (e.g. horizontal position of
the dorsum). Generally speaking, distinctive features contains the quantized values
of articulatory features. Many studies have focused on articulatory features mainly
because it has superb advantages for dealing with impacts of noisy and reverber-
ant environment [32-34], providing a compact representation of pronunciation
variability [35], and compensating variabilities across multiple languages [36-38].
Speech attributes, on the other hand, are the superset of distinctive features. they
are deliberately defined to introduce other purposes to speech recognition. For

example, Lee et al [39] defined quite broad speech attributes to bridge the perfor-

'Distinctive features across languages is retrieved from http://phoible.org
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mance gap between ASR and human speech recognition. Those attributes include a
collection of information beyond distinctive features, such as acoustic cues signal-
ing a speaker’s gender, accent, emotional state, and other prosodic, meta-linguistic,

and para-linguistic messages.

Table 2.1: Language-independent distinctive features.

advancedTongueRoot anterior approximant
back click consonantal
constrictedGlottis continuant coronal
delayedRelease distributed dorsal
epilaryngealSource fortis front

high labial labiodental
lateral long low
loweredLarynxImplosive nasal periodicGlottalSource
raisedLarynxEjective retractedTongueRoot  round

short sonorant spreadGlottis
stress strident syllabic

tap tense trill

2.3 Acoustic Landmarks and Its Application on ASR

The name of “acoustic landmarks” was firstly introduced by Stevens et al [25]
in 1992, and its theory originated from experimental results of human speech
perception which demonstrated that perceptual sensitivity to acoustic events is
not linearly correlated in either time or frequency domain. It exploits quantal
nonlinearities in articulatory-acoustic [22] and auditory-acoustic [23] relations to
define instances in time when abrupt changes occur in speech articulation, in the
speech spectrum, or in a speech auditory response. Landmark theory states that
human perception of phonemes corresponds to acoustic cues anchored temporally
in the vicinity of landmarks where salient distinctive features can be detected.
As opposed to modern statistical ASR where each frame is treated with equal
importance, landmark theory proposes that there exist information rich regions
in the speech utterance and that we should focus on these regions more carefully.
These regions of interest are anchored at acoustic landmarks. Landmarks are
instantaneous speech events where distinctive features are most clearly signaled.

Hasegawa-Johnson [40] defined a set of landmarks including consonant releases
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and closures (at phone boundaries) and vowel/glide pivot landmarks (near the center
of the corresponding phones). In contrast, Lulich [41] argued that the center of
vowels and glides are not as informative and should not be considered as landmarks.
He defined, instead, formant-subglottal resonance crossing, which is known to sit
between boundaries of [-back] and [+back] vowels, to be more informative. Wang
et al [42] showed that the latter proposal help to improve performance for automatic
speaker normalization tasks. However, the former definition? of landmarks by
Hasegawa-Johnson [40] is more suitable for ASR tasks and it provides a better
approximation of the typical timing of the spectro-temporal events discovered in
Liu’s earlier work [43]. Later works [17,44] achieved comparable performance
by annotating these landmarks right on phone boundaries. Figure 2.2 illustrates
an example of landmark annotations for the word “symposium” selected from an
utterance on TIMIT?.

0.0907

-0.08533
8000 Hz

grn-e-------5

e
— -
0 Hz| [~ —
s
1M s |1x m fpclf p ow z vyl ik m PHN
2l s fif m p 0 z il i m IPA
Fc FrV Nc MC Sr v . Fc Fr G V  Nc Nr
=3 Symposium LM

Figure 2.2: Acoustic landmark labels for the word “symposium”. The audio is
transcribed using TIMIT phone symbols (PHN) and international phonetic
alphabet symbols (IPA). Landmark positions are labeled in red dashed lines where
landmark types are detailed. Fc and Fr are the closure and release for fricatives; Sc
and Sr are the closure and release for stops; Nc and Nr are the closure and release
for nasals; V and G are the vowel pivot and glide pivot; MC is a manner change.

Many other works have focused on accurately detecting acoustic landmarks.
Some of them assumed that landmarks correspond to the temporal extrema of

speech energy or energy changes in particular frequency bands, such as consonantal

2A small number of the pivot and release landmarks are defined at salient locations where a
time-delay by +33% or a time-advance by -20% of the phone duration exists.
3TIMIT/TRAIN/DRL/FSMAO/SX361.WAV
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landmarks detection [43], vowel landmarks detection [45], consonant voicing
classification [46], and places classification of articulations [47-50]. Support
vector machines (SVMs) demonstrated superb performance on detecting stop
release landmarks over hidden Markov models [51] so that SVMs are further
explored to detect all other landmarks [52, 53]. Qian et al [54] continued to
apply SVMs-based approaches for stop consonant detection by extracting more
expressive acoustic cues using the local binary patterns resulting and achieved the
accuracy above 95%. Xie et al [55] extended Niyogi’s work [51] and discovered
that distinctive feature classifiers are also beneficial to detect landmarks. Our
previous paper [17] attempted to detect consonant voicing, one of distinctive
features, by applying a binary classifier based on a convolutional neural network
with MFCCs and additional energy-based acoustic features. This system was
trained on the English corpus TIMIT [56], but tested on other languages such as
Spanish and Turkish. We achieved around 85% accuracy for all languages.
Acoustic landmarks have been used in a variety of ASR system architectures.
These systems, without considering the mechanism used for landmark detection,
can be clustered into two types. The first type of system, as described in [43,57,58],
computes a lexical transcription directly from a collection of detected distinctive
features. Due to the complexity of building a fully decoding mechanism on
distinctive features, some of these systems only output isolated words. However,
other systems (e.g., work from [57]) have full HMM back-ends that can output
word sequences. The other type of system, as described in [44], conducts landmark-
based re-scoring on the lattices generated by MFCC-based hidden Markov models.
Acoustic likelihoods from the classic ASR systems are adjusted by the output of the
distinctive feature classifiers. Many landmark-based ASR systems demonstrated
the word error rates slightly [44] or even significantly [32] better than the statistical

ASR models, especially in noisy conditions.
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CHAPTER 3

ACOUSTIC LANDMARKS CONTAIN RICH
INFORMATION ABOUT PHONE STRINGS

Most mainstream ASR systems consider all acoustic feature frames equally im-
portant. However, acoustic landmark theory is based on a contradictory idea, that
some frames are more important than others. Acoustic landmark theory exploits
quantal non-linearities in the articulatory-acoustic and acoustic-auditory relations
to define landmark times at which the speech spectrum abruptly changes or reaches
an extremum; frames overlapping landmarks have been demonstrated to be suffi-
cient for speech perception. In this chapter, we conduct experiments on the TIMIT
corpus, with both Gaussian Mixture Model (GMM) and Deep Neural Network
(DNN) based ASR systems and find that frames containing landmarks are more
informative for ASR than others. We find that altering the level of emphasis on
landmarks by re-weighting acoustic likelihood tends to reduce the phone error rate
(PER). Furthermore, by leveraging the landmark as a heuristic, one of our hybrid
DNN frame-dropping strategies maintained a PER within 0.44% of optimal when
scoring less than half (45.8% to be precise) of the frames. This hybrid strategy
out-performs other non-heuristic-based methods and demonstrate the potential of

landmarks for reducing computation.

3.1 Introduction

Ideas from speech science—which may have the potential to further improve
modern ASR techniques—are not often applied to them [2]. Speech science has
demonstrated that perceptual sensitivity to acoustic events is not uniform in either
time or frequency. Most modern ASR uses a non-uniform frequency scale based on
perceptual models such as critical band theory [59]. In the time domain, however,
most ASR systems use a uniform or frame synchronous time scale: systems extract
and analyze feature vectors at regular time intervals, thereby implementing a model

according to which the content of every frame is equally important.
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Acoustic landmark theory [23, 60] is a model of experimental results from
speech science. It exploits quantal nonlinearities in articulatory-acoustic and
acoustic-auditory relations to define instances in time , also knonw as landmarks,
where abrupt changes or local extrema occur in speech articulation, the speech
spectrum, or a speech perceptual response. Landmark theory proposes that humans
perceive phonemes in response to acoustic cues, which are anchored temporally
at landmarks, i.e., that a spectrotemporal pattern is perceived as the cue for a
distinctive feature only if it occurs with a particular timing relative to a particular
type of landmark. Altering distinctive features alters the phone string; distinctive
features in turn get signaled by different sets of cues anchored at landmarks.

The theory of acoustic landmarks has inspired a large number of ASR systems.
Acoustic landmarks have been modeled explicitly in ASR systems such as those
reported by [44,57,58]. Many of these systems have accuracies comparable to other
contemporaneous systems—in some cases, even returning better performance [44].
However, published landmark-based ASR with accuracy comparable to the state of
the art has higher computation than the state of the art; conversely, landmark-based
systems with lower computational complexity tend to also have accuracy lower
than the state of the art. No implementation of acoustic landmarks has yet been
demonstrated to achieve accuracy equal to the state of the art at significantly re-
duced computational complexity. If acoustic landmarks contain more information
about the phone string than other frames, however, then it should be possible to
significantly reduce computational complexity of a state of the art ASR without
significantly reducing accuracy, or conversely, to increase accuracy without in-
creasing computation, by forcing the ASR to extract more information from frames
containing landmarks than from other frames.

We assume that a well-trained frame-synchronous statistical acoustic model
(AM), having been trained to represent the association between Mel-frequency
cepstral coefficients (MFCC) features and triphones, has also learned sufficient
cues and necessary contexts to associate MFCCs and distinctive features. However,
because the AM is frame-synchronous, it must integrate information from both
informative and uninformative frames, even if the uninformative frames provide no
gain in accuracy. The experiments described in this paper explore whether, if we
treat frames containing acoustic landmarks as more important than other frames, we
can get better accuracy or lower computation. In this work, we present two methods
to quantify the information content of acoustic landmarks in an ASR feature string.

In both cases, we use human annotated phone boundaries to label the location of
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landmarks. The first method seeks to improve ASR accuracy by over-weighting the
AM likelihood scores of frames containing phonetic landmarks. By over-weight,
we mean multiplying log-likelihoods with a value larger than 1 (Section 3.2.1).
The second method seeks to reduce computation, without sacrificing accuracy, by
removing frames from the ASR input. Removing frames makes the computational
load decrease, but usually causes accuracy to decrease also; which frames can be
removed that cause the accuracy to drop the least? We searched for a strategy that
removes as many frames as possible while attempting to keep the Phone Error Rate
(PER) low. We show that if we know the locations of acoustic landmarks, and if we
retain these frames while dropping others, it is possible to reduce computation for
ASR systems with a very small error increment penalty. This method for testing
the information content of acoustic landmarks is based on past works [61-63] that
demonstrated significantly reduced computation by dropping acoustic frames, with
small increases in PER depending on the strategy used to drop frames. In this paper
we adopt the PER increment as an indirect measure of the phonetic information
content of the dropped frames.

If the computational complexity of ASR can be reduced without sacrificing
accuracy, or if the accuracy can be increased without increasing the computational
load, these findings should have practical applications. It is worth emphasizing that
this work only intends to explore these potential applications, assuming landmarks
can be accurately detected. Our actual acoustic landmark detection accuracy,

despite increasing over time, has not reached a practical level yet.

3.2 Measures of Information in Acoustic Frames

An acoustic landmark is an instantaneous event that serves as a reference time
point for the measurement of spectrotemporal cues widely separated in time and
frequency. For example, in the paper that first defined landmarks, Stevens proposed
classifying distinctive features of the landmark based on the onsets and offsets of
formants and other spectrotemporal cues up to 50ms before or 150ms after the
landmark [23]. The 200ms spectrotemporal dynamic context proposed by Stevens
is comparable to the 165ms spectrotemporal dynamic context computed for every
frame by the ASR system [64]. Most ASR systems use acoustic features that
are derived from frames 25ms long with a 10ms skip because human speech is

quasi-stationary for this short period [65]. Because spectral dynamics commu-
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nicate distinctive features, however, ASR systems since 1981 ( [66]) have used
dynamic features; since deep neural nets (DNNs) began gaining popularity, the
complexity of the dynamic feature set in each frame has increased quite a lot,
with consequent improvements in ASR accuracy. This trend not only applies to
stacking below 100ms. With careful normalization, features like TRAPs [67] with
temporal windows equal or longer than 500ms continue to demonstrate accuracy

improvement.

Feature
Splicing DM

Feature Context
LDA
Sé\{e\éh- Extraction Splicing - To
P Decoder
wave

GMM AM

Figure 3.1: Stacking of feature frames before the scoring process for DNN AM
(top path) and GMM AM (bottom path). The dark gray, red and green rectangles
indicate frames and stacks of frames.

Experiments reported in this paper are built on a baseline described by [64], and
schematized in Fig. 3.1. In this system, MFCCs are computed once every 10ms,
with 25ms windows (dark gray rectangles in Fig 3.1). In order to include more
temporal context, we stack adjacent frames, three preceding and three succeeding,
for a total of seven frames (a total temporal span of 85ms). These are shown
in Fig 3.1 as the longer, segmented dark gray rectangles, with the red segments
representing the center frames of each stack. The seven-frame stack is projected
down to 40 dimensions using linear discriminant analysis (LDA). For input to
the DNN but not the GMM, LDA is followed by speaker adaptation using mean
subtraction and feature-space maximum likelihood linear regression (fMLLR),
additional context is provided by a second stacking operation afterwards, in which
LDA-transformed features, represented by yellow rectangles, are included in stacks
of 9 frames (for a total temporal span of 165ms), as represented by the top path in
Figure 3.1. It is believed that the reason features spanning longer duration improve
ASR accuracy is that long lasting features capture coarticulation better, including
both neighboring-phone transitions and longer-term coarticulation. The dynamics
of the tongue naturally cause the articulation of one phoneme to be reflected in

the transitions into and out of neighboring phonemes, over a time span of perhaps
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70ms. Longer-term coarticulation, spanning one or more syllables, can occur when
an intervening phoneme does not require any particular placement of one or more
articulators. For example, 6hman [68] demonstrated that the tongue body may
transit smoothly from a vowel to the next without apparently being constrained by

the presence of several intervening consonants.

3.2.1 Re-Weighting Frames

HMM-based ASR searches the space of all possible state sequences for the most
likely state sequence given the observations. Conventional decoding procedure
assumes equal weights for the acoustic likelihoods of all speech frames. However,
paying much more attention to informative frames, such as frames anchored at
landmarks, may be beneficial to the performance of beam searching according to
the suggestion from acoustic landmark theory. We modified the log likelihood of a

state sequence s given the observations o in the following equation,

T
log P (s|o) o Zwt -log P (04]s:) + log P (s¢]s1-1) (3.1)

t=1

where s, and o, represents the senone' state and observed acoustic feature vector at
time ¢, respectively. The transition probability between senone states is denoted as
P (s¢]s¢—1), and the logarithm of the emitting probability log P (o4|s;) is scaled by
the weighting factor w;. If the speech frame vector o, occurs at a landmark, wy 1s
assigned to a larger value?, otherwise, wy is set to 1.

Tuning an optimal value of w;, is in a similar way of finding a suitable scaling
value of acoustic likelihoods over language models. If the frame over-weighted is
a frame that can differentiate the correct state better, the error rate will drop. In
contrast, if the likelihood of a frame is divided evenly across states, or even worse,
is higher for the incorrect state, then over-weighting this frame will mislead the
decoder and increase chances of error. For this reason, over-weighting landmark
frames is a good measure to tell how meaningful landmark frames are compared
to the rest of the frames. If the landmarks are indeed more significant, we should

observe a reduction in the PER for the system over-weighting the landmark.

'Senones are represented as either monophone states or clustered triphone states.
2We defined it as over-weighting in the following context if w; is greater than 1.
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3.2.2 Dropping Frames

The wide temporal windows used in modern ASR, as mentioned in the beginning
of Section 3.2, are highly useful to landmark-based speech recognition: all of the
dynamic spectral cues proposed by [23] are within the temporal window spanned by
the feature vector of a frame centered at the landmark; therefore it may be possible
to correctly identify the distinctive features of the landmark by dropping all other
frames, and keeping only the frame centered at the landmark. Our different frame
dropping heuristics modify the log probability of a state sequence by replacing
the likelihood P (o;|s;) with an approximation function f (-). In terms of log

probabilities, Equation (3.1) becomes

T
log P (s|o) = Zlogf (P (0¢]s¢) ,t) + log P (s¢|s¢-1) (3.2)
t=1

The class of optimizations considered in this paper involve a set of functions

f(P(ot|st),t) parameterized as:

R(o,t), ifg(t)=1
f (P (od]st) 1) = _ (3.3)
P (o¢|s;), otherwise

The method of replacement is characterized by R, and the frame-dropping function
by ¢(t). This work considers multiple methods to verify that the finding with
respect to landmarks is independent of the replacement method. The four possible

settings of the R(o,t) function are as follows:

( RCOPY(

= P(Ot’|3t’)a = maXr<¢, g(r)=0T

/T 34
RFichonst(Oa t) = <H?:1 P(Ot|st)> ( )

Rypsample (0, 1) = exp (Zt’:g(t’):O h(t —t') log P(ot|st)>

\

In other words, the Copy strategy copies the most recent observed value of P(o;|s;),
the Fill O strategy replaces the log probability by 0, the Fill const strategy replaces
the log probability by its mean value, and the Upsample strategy replaces it by
an interpolated value computed by interpolating (using interpolation filter A(t))
the log probabilities that have been selected for retention. The Upsample strategy

will only be used if the frame-dropping function is periodic, i.e., if frames are
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downsampled by a uniform downsampling rate.

The pattern of dropped frames can be captured by the indicator function g,
which is true for frames that we want to drop. Experiments will test two landmark-
based patterns: Landmark-drop drops all landmark frames (¢g(¢) = 1 if the frame
contains a landmark), and Landmark-keep keeps all landmark frames (g(t) = 1
only if the frame does not contain a landmark). In the case where landmark
information is not available, the frame-dropping pattern may be Regular, in which
g(t) = 0( t mod K ) indicating that every K -th frame is to be dropped, or it may
be Random, in which case the indicator function is effectively a binary random
variable set at a desired frame dropping rate. As we will demonstrate later, to
achieve a specific function and dropping ratio, we can sometimes combine output
of different g functions together by taking a logical inclusive OR to their output.

If acoustic landmark frames contain more valuable information than other frames,
it can be expected that experiment setups that retain the landmark frames should
out-perform other patterns, while those that drop the landmark frames should

under-perform, regardless of the method of replacement chosen.

3.3 Hypotheses

This paper tests two hypotheses. The first is that a window of speech frames
(in this case 9 frames) centered at a phonetic landmark has more information
than windows centered elsewhere — this implies that over-weighting the landmark-
centered windows can result in a reduction in PER. The second hypothesis states
that keeping landmark-centered windows rather than other windows causes little
PER increment, and that dropping a landmark-centered window causes greater
PER increment as opposed to dropping other frames. In the study we focused on
PER as opposed to Word Error Rate (WER) for two reasons. First, the baseline
Kaldi recipe for TIMIT reports PER. Second, this study is oriented towards speech
acoustics; focusing on phones allow us to categorize and discuss the experiment
and results in better context.

In order to test these hypotheses, a phone boundary list from the TIMIT speech
corpus [56] was obtained, and the landmarks were labeled based on the phone
boundary information. Table 3.1 briefly illustrates the types of landmarks and their
positions, as defined by the TIMIT phone segments. This marking procedure is
shared by [17,31,44]. It is worth mentioning that this definition disagrees with that

20



Table 3.1: Landmark types and their positions for acoustic segments. Fc and Fr
are closure and release for fricatives; Sc¢ and Sr are closure and release for Stops;
Nc and Nr are closure and release for nasals; V and G are vowel pivot and glide
pivot; ‘start’, ‘middle’, and ‘end’ denote three positions across acoustic segments.

Manner  Landmark Observation in Spectrogram
Vowel V: middle maximum in low- and mid-frequency
Glide G: middle minimum in low- and mid-frequency

Fricative Fc: start, Fr: end
Affricate Sr,Fc: start, Fr: end
Nasal Nc: start, Nr: end
Stop Sc: start, Sr: end

amplitude discontinuity occurs
when consonantal constriction is
formed or released

of [41]. Lulich claims that there is no landmark in the center of Vowel and Glide;
instead, a formant-subglottal resonance crossing, which is known to sit between the
boundaries of [-Back] and [+Back] vowels, contains a landmark. Frames marked as
landmark are of interest. To test hypothesis 1, landmark frames are over-weighted.

To test hypothesis 2, either non-landmark or landmark frames are dropped.

3.4 Experimental Methods

Our experiments are performed on the TIMIT corpus. Baseline systems use stan-
dard examples distributed with the Kaldi open source ASR toolkit®. Specifically, the
GMM-based baseline follows the configurations in the distributed t ri2 configura-
tion in the Kaldi TIMIT example files*. The clustered triphone models are trained
using maximum likelihood estimation of features that have been transformed using
linear discriminant analysis and maximum likelihood linear transformation. For
the DNN baseline, speaker adaptation is performed on the features, and nine con-
secutive frames centered at the current frame are stacked as inputs to the DNN, as
specified in the distributed tri4_nnet example. Respectively, the two systems
achieved PER of 23.8% (GMM) and 22.6% (DNN) without any modification.
We performed a 10-fold cross validation (CV) over the full corpus, by first
combining the training and test sets, and creating 10 disparate partitions for each
test condition. The gender balance was preserved to be identical to the canonical

test set for each test subset, while the phonetic balance was approximately the same

3http://kaldi-asr.org/
“https://github.com/kaldi-asr/kaldi/tree/master/egs/timit/s5
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but not necessarily identical. This is in order to improve the significance of our
PER numbers. The TIMIT corpus is fairly small and the phone occurrence of some
phones, or even phone categories, in the test set is lower than ideal. Conducting
cross validation on the full set allows us partially address this issue.

For the control experiments of our tests, all configurations of feature extraction
and decoding process are retained the same as the baseline. In this case, fair
comparisons are guaranteed, and we can fully reveal the effects of our methods in
the Acoustic Model (AM) scoring process.

3.5 Experimental Results

Experimental results examining the two hypotheses proposed above will be pre-
sented in this section. We will present the results of over-weighting the landmark
frames first. Evaluation of frame dropping will be presented second, and includes
several phases. In the first phase, a comparison of different methods of replacement
is presented, to provide the reader with more insight into these methods before they
are applied to acoustic landmarks. In the second phase, we will then leverage our
findings to build a strategy that both drops non-landmark frames, and over-weights
landmark frames, using the best available pattern of dropped frames and method of
replacement. We open source the code used to carry out the following experiments

online 7.

3.5.1 Hypothesis 1: Over-weighting Landmark Frames

Figure 3.2 illustrates the PER of the strategy of over-weighting the landmark frames
during the decoding procedure, and how it varies with the factor used to weight
the AM likelihood of frames centered at a landmark. The PER for GMM-based
models drops as the weighting factor increases until the factor is 1.5; increasing the
weighting factor above 1.5 causes the PER to increase slightly. When the factor is
increased to greater than 2.5, the PER increases at a higher slope. Similar trends can
be found for DNN models, yet in this case the change in PER is non-concave and
spans a smaller range. If landmark frames are under-weighted, or over-weighted
by a factor of 1.5 or up to 2.0, PER increases. Over-weighting landmark frames by

Shttps://github.com/dihe2/kaldi/tree/master/egs/timit/s5
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a factor of 3.0 to 4.0 reduces PER. In this experiment, Wilcoxon tests [69] have
been conducted, through Speech Recognition Scoring Toolkit (SCTK) 2.4.10, and

tests concluded the difference to be insignificant.
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Figure 3.2: Over-weighting landmark frames for GMM and DNN.

3.5.2 Methods of Replacement for Dropped Frames

Figure 3.3 compares the performance of three methods of replacement. Copy,
Fill 0 and Fill_const when a Regular frame dropping pattern is used. Results show
that Fill_0 and Fill_const suffer very similar PER increments as the percentage of
frames dropped is increased, while Copy shows a relatively smaller PER increment
for drop rates of 40% or 50%. As for the comparison between acoustic models,
DNN-based models outperform GMM-based at all drop rates. Notably, the Copy
approach synergizes well with DNN models, and is able to maintain low PER
increments even up to 75% drop rate; this finding is similar to findings reported in

papers from [62].

Shttps://www.nist.gov/itl/iad/mig/tools
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Figure 3.3: Comparison of Different Methods of Frame Replacement (Copy,
Fill 0 and Fill_const) assuming a Regular pattern of frame replacement.

Figure 3.4 compares the performance between two patterns of dropping frames
— Regular, Random. In both of these the Copy method for replacement was used.
We also provide for comparison, the Regular pattern, but using an Upsample
replacement method. This scheme uses a 17-tap anti-aliasing FIR filter. The
method that offered the lowest phone error rate increment is obtained using a
Regular pattern with a Copy replacement scheme. Results show that Regular-
Copy outperforms other methods by a large margin in terms of PER increment

independent of which AM is used.

3.5.3 Hypothesis 2: Dropping Frames with Regards to Landmarks

At the beginning of this section, experiments that test hypothesis 2 directly are
described. The focus is to subject the ASR decoding process to frames missing
acoustic likelihood scores, and see how the decoding error rate changes accord-
ingly. Obviously we are interested in using the presence vs. absence of an acoustic
landmark as a heuristic to choose the frames to keep or drop. To quantify the im-

portance of the information kept vs. the information discarded, dropping strategies

24



GMM

80 I | I I T T T
5 Regular ‘
® g0 | —
E - - RandOm ,
qJ 4 ““
2 | v Upsample o o i
e 40 “‘
: ’ III“‘
; .........—..f-.....-.
| et _
K T
N B — . L
0 10 20 30 40 o - L |
DNN
g 100 H Regular _
GEJ - = = Random
2 s Jpsample S
-LE) 50 p p a:’ P -
E uuuuuu-uu.-:-’ L
& llllllIIIIIIIIIIIlllllllllllll:ll_ i _ _ -
0 10 20 30 40 o = = |

% of frames dropped

Figure 3.4: Comparison of Different Patterns of Dropping Frames assuming Copy
(Regular and Random) and Interpolation through low-pass filtering (Upsample)
method of replacement.
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(Landmark-keep and Landmark-drop) are compared to the non-landmark-based
Random strategy. Notice the Regular strategy has been shown to be more effective
than Random (e.g., in Fig. 3.4), however, to make the PER result meaningful, the
same number of frames should be dropped across different patterns being com-
pared. When we keep only landmarks (Landmark-keep) or drop only landmarks
(Landmark-drop), the percentage of frames dropped can not be precisely controlled
by the system designer: it is possible to adjust the number of frames retained at
each landmark (thus changing the drop rate), but it is not possible to change the
number of landmarks in a given speech sample. Therefore, precisely adjusting
the drop rate to meet a different pattern is not practical. Depending on the test
set selected, the portion of frames containing landmarks ranges from 18.5% to
20.5%. As opposed to Random, Regular does not give us the ability to select a drop
rate that exactly matches the drop rate of the Landmark-drop or Landmark-keep
strategies. Therefore, it is not covered in the first 2 experiments. However, in
the 3rd experiment, we will compare a frame dropping strategy using landmark
as heuristic against Regular dropping. But that experiment will serve a slightly
different purpose.

As in the over-weighting experiment, two types of frame replacement are tested.
The Fill O strategy is an exact implementation of hypothesis 2: when frames are
dropped, they are replaced by the least informative possible replacement (a log
probability of zero). Figure 3.3 showed, however, that the Copy strategy is more
effective in practice than the Fill_0 strategy; therefore these two strategies are tested
using a landmark-based frame drop pattern. Figure 3.3 showed that the Fill _const
strategy returns almost identical results to Fill 0, so it is not separately tested here.

Experiment results are presented for both the TIMIT default test split, and
for cross-validation (CV) using the whole corpus. The baseline implementa-
tion is as distributed with the Kaldi toolkit. Since no frames are dropped, it
returns the lowest PER. However, likelihood scoring for the baseline AM will
require more computation when compared to a system that drops frames. For CV
we report the mean relative PER increment (APER = 100 x (modified PER —
baseline PER)/(baseline PER)), with its standard deviation in parentheses, across
all folds of CV. Every matching pair of frame-drop systems (Landmark-keep
versus Random) is tested using a two-sample ¢-test [70], across folds of the CV, in
order to determine whether the two PER increments differ. During the ¢-test, we
assume PER numbers from different folds are samples of a random variable. The

two-sample ¢-test intends to find out whether the random variables representing
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PER for different setups (Landmark-keep versus Random) have the same mean.

Keeping or Dropping the Landmark Frames

Table 3.2 illustrates the changes in PER increment that result from a Landmark-
keep strategy (score only landmark frames) versus a Random frame-drop strategy
set to retain the same percentage of frames. For each test set, we count the landmark
frames separately and match the drop rate exactly between the Landmark-keep
and Random strategy. In all cases, the Landmark-keep strategy has a lower PER
increment. A Wilcoxon test, other then the two-sample ¢-test, has been conducted
on the default test set; the differences between all pairs but the DNN Fill0 pair is

significant on this test.

Table 3.2: PER increments for scoring landmark frames only compared to
randomly dropping similar portion of frames. CV stands for cross validation; if the
two increments differ, then the lower of the two is marked with either x (p < 0.05)
or xx (p < 0.001).

Acoustic model GMM DNN

Test regime Default CV Mean (Stdev) Default CV Mean (Stdev)

Metric PER | PERInc | PER PER Inc PER | PERInc | PER PER Inc
(%) (%) (%) (%) (%) (%) (%) (%)

Baseline 23.8 0.0 22.8 0.0 22.7 0.0 20.8 0.0

Fill.0

Landmark-keep | 36.1 51.7 334 | 46.5(1.34)** | 49.6 118.5 49.7 139(10.3)*

Random 423 71.7 42.1 84.6 (8.35) 50.9 124.2 52.8 154 (14.8)

Copy

Landmark-keep | 35.2 47.7 32.3 | 41.5(1.08)** | 29.4 29.3 26.9 | 29.3(0.653)**

Random 44.0 84.9 44.1 | 93.5(0.734) | 38.4 69.3 37.6 80.9 (0.942)

For the next experiment we inverted the setup: instead of keeping only landmark
frames, we drop only landmark frames (call this the Landmark-drop strategy). Ta-
ble 3.3 compares the PER increment of a Landmark-drop strategy to the increment
suffered by a Random frame drop strategy with the same percentage of lost frames.
The Landmark-drop strategy always return higher PER. However, only for the
GMM setup Copy did we obtain a significant p value during cross validation. The
p values for other setups range from 0.13 to 0.17. Again, a Wilcoxon test, other
than the two-sample ¢-test, has been conducted on the default test set, with the
conclusion that only the GMM Copy pair demonstrated significant difference.

The results in Table 3.2 demonstrate that keeping landmark frames is better
than keeping a random selection of frames at the same drop rate, in all but one
of the tested comparison pairs. The results in Table 3.3 demonstrate that random

selection tends to be better than selectively dropping the landmark frames, though
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Table 3.3: PER increments for dropping Landmark frames during scoring
compared to randomly dropping a similar portion of frames (CV stands for cross
validation)

Acoustic model GMM DNN

Test regime Default CV Mean (Stdev) Default CV Mean (Stdev)

Metric PER | PERInc | PER PER Inc PER | PERInc | PER PER Inc
(%) (%) (%) (%) (%) (%) (%) (%)

Baseline 23.8 0.0 22.8 0.0 22.7 0.0 20.8 0.0

Fill 0

Landmark-drop 25.6 7.56 24.0 5.33(1.36) 24.2 6.61 23.1 11.1(1.58)

Random 24.1 1.26 23.4 2.68 (1.23) 23.6 3.96 224 7.53 (1.24)

Copy

Landmark-drop 25.6 7.5 24.1 | 5.83(0.873)* 24.3 7.1 22.1 6.44(0.836)

Random 24.6 33 23.1 1.14 (0.948) 23.6 4.0 21.6 | 3.85(0.760)

the difference is only significant in one of the four comparison pairs. These
two findings support the hypothesis that frames containing landmarks are more
important than others. However, the PER increment in some setups are very large,

indicating the ASR might no longer be functioning under stable conditions.

Using Landmark as a Heuristic to Achieve Computation Reduction

Methods in Tables 3.2 and 3.3 compared the Landmark-keep, Landmark-drop, and
Random frame drop strategies. Table 3.4 illustrates PER increment (%) for the
Landmark-keep and Regular frame-dropping strategies. In this experiment, we
are no longer directly testing Hypothesis 2. Instead, we are trying to achieve high
frame dropping rate subject to low PER increment. As dropped frames need not be
calculated during the acoustic model scoring procedure, a high dropping ratio can
benefit the ASR by reducing computational load. The strategy leveraging landmark
information is a hybrid strategy: on top of a standard Regular strategy, it keeps
all landmark frames and over-weights the likelihoods of these frames as in 3.5.1.
For each acoustic model type (GMM vs. DNN), three different percentage rates
of frame dropping are exemplified. In each case, we select a Regular strategy
with high dropping rate, modify it to keep the landmark frames, measure the
percentage of frames dropped by the resulting strategy, then compare the result to a
purely Regular frame-drop strategy with a similar drop rate. The baseline Regular
strategies have three standard drop rates: 33.3% (one out of three frames dropped,
uniformly), 50% (one out of two frames dropped), and 66.7% (two out of three
frames dropped). Table 3.4 highlights results for one of the setups in bold, as that
setup achieves a very good trade off between high dropping ratio and low PER

increment.
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Table 3.4: PER increments comparison between Landmark-keep and Regular
drop strategies for GMM and DNN.

Copy Default Cross Validation
Drop Rate% | PER Inc% | Drop Rate% | PER Inc% | Inc STD% | Inc pVal
Land 41.0 1.26 44.4 1.84 0.0133 0.962
§ Reg 333 3.78 333 1.81 0.0119
O | Land 54.2 2.94 54.1 2.86 0.0140 0.598
Reg 50 2.1 50 2.58 0.00780
Land 64.3 12.1 65.0 8.10 0.0182 0.159
Reg 66.7 10.1 66.7 6.91 0.0181
Land 41.0 0.44 44.4 1.84 0.0115 0.0011
% Reg 333 3.98 333 4.20 0.0153
A | Land 54.2 0.44 58.4 1.90 0.167 | 0.0029
Reg 50 221 50 4.12 0.0115
Land 64.2 3.08 69.0 5.86 0.0121 0.0391
Reg 66.7 6.17 66.7 7.04 0.0160

Table 3.5: PER increments (%) for Landmark-keeping strategy for DNN with
dropping rate near 54.2% and over-weighting factor near 4 times

Over-weighting Factor
3.5 4 4.5

52.1 1.42 0.84 0.93
54.2 0.88 0.44 0.88
56.3 0.62 0.40 0.40

Drop Rate%

As we can see, for DNN acoustic models, the Landmark-keep strategy results
in lower error rate increment than a Regular strategy dropping a similar number
of frames. Wilcoxon tests demonstrated a statistically significant difference at all
three drop rates. For GMM acoustic models, avoiding landmarks does not seem to
return a lower error rate. In fact, the error rate is higher for 2 out of 3 different drop
rates. The highlighted case in Table 3.4 is intriguing because it the PER increment
is so low, and this row will therefore serve as the basis for further experimentation
in the next section. In this setup for DNN, over 50% of the frames were dropped,
but the PER only increased by 0.44%. This result seems to support the hypothesis
that landmark frames contain more information for ASR than other frames, but in
Table 3.4, this row has the appearance of an anomaly, since the error increment is
so small. In order to confirm that this specific data point is not a special case, we
conducted additional experiments with very similar setups. The results for these
additional experiments are presented in Table 3.5.

Additional results presented in Table 3.5 are obtained through applying an
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over-weighting factor close to 4, which is the optimal value found for DNNs in
Figure 3.2. The first and third rows in this table randomly keep or drop a small
number of non-landmark frames, in order to obtain drop rates of 52.1% and 56.3%
respectively. Since the selection is random, multiple runs of the experiment result
in different PER for the same drop rate; therefore we repeated each experiment 10
times and reported the mathematical mean. Since there is a level of randomness in
these results, we do not intend to evaluate our hypotheses on these data; rather, the
goal of Table 3.5 is merely to confirm that the highlighted case in Table 3.4 is a
relatively stable result of its parameter settings, and not an anomaly. Since good
continuity can be observed across nearby settings, results in Table 3.5 lend support
to the highlighted test case in Table 3.4.

3.6 Discussion

Results in Section 3.5.1 tend to support hypothesis 1. However, the tendency is not
statistically significant. The tendency is consistent for the GMM-based system, for
all over-weighting factors between 1.0 and 3.0. Similar tendencies appeared for
over-weight factors between 3.0 and 5.0 for DNN-based system.

Experiments in Section 3.5.2 tested different non-landmark-based frame drop
strategies, and different methods of frame replacement. It was shown that, among
the several strategies tested, the Regular-Copy strategy obtains the smallest PER.
There is an interesting synergy between the frame-drop strategy and the frame-
replacement strategy, in that the PER of a 50% Regular-Copy system (one out of
every two frames dropped) is even better than that of a 33% Regular-Copy system
(one out of every three frames dropped). This result, although surprising, confirms
a similar finding reported by [71]. We suspect that the reason may be relevant to
the regularity of the 50% drop rate. When we drop 1 frame out of every 2 frames,
the effective time span of each remaining frame is 20ms, with the frame extracted
at the center of the time span. Dropping 1 frame out of every 3 frames, on the other
hand, results in an effective time span per frame of 15ms, but the alignment of each
frame’s signal window to its assigned time span alternates from frame to frame.

It is worth mentioning that our definition of acoustic landmarks differs from
that of [41] — specifically, Lulich claims that there is no landmark in the center of
Vowel and Glide. Instead, formant-subglottal resonance crossing, which is known

to sit between the boundaries of [-Back] and [+Back] vowels, contains a landmark.

30



It is possible that an alternative definition of landmarks might lead to better results.

We can also observe that GMM and DNN acoustic models tend to perform
differently in the same setup. For example, for GMM, randomly dropping frames
results in a higher PER than up-sampling; this is not the case for DNN models.
Results also demonstrate that DNN models perform quite well when frames are
missing. A PER increment of only 6% occurs after throwing away 2/3 of the
frames. GMM models tend to do much worse, especially when the drop rate goes
up.

All experiments on DNN tend to support the strategy to avoid dropping land-
marks. However, the 2 test cases covered in Table 3.3 lack statistical confidence.
Scoring only the landmark frames (the Landmark-keep strategy) out-performs both
Random and Regular frame-drop-strategies. On the other hand, if landmark frames
are dropped (the Landmark-drop strategy), we obtain higher PER when compared
to randomly scoring a similar number of frames.

We find, at least for ASR with DNN acoustic models, that landmark frames
contain information that is more useful to ASR than other frames. In the most
striking case, the highlighted result in Table 3.4 indicates that it is possible to drop
more than 54% of the frames but only observe a 0.44% increment in the PER
compared to baseline (PER increases from 22.7 to 22.8). We conclude, for DNN-
based ASR, that experiments support hypothesis 2 (with statistically significant
differences in two out of the three comparisons). In comparison, we failed to find
support for hypothesis 2 in GMM-based ASR.

3.6.1 How Landmarks Affect the Decoding Results

Having proven that the Landmark-keep strategy is more effective than a Random or
Regular drop strategy, we proceeded to investigate the resulting changes in the rates
of insertion, deletion and confusion among phones. We compared the normalized
increment of each type of error, separately, when the confusion matrices of the base-
line system are subtracted from the confusion matrices of the Landmark-keep and
Random frame-drop systems. Fig. 3.5 compares the normalized error increment,
of different types of errors, for the Landmark-keep and Random strategies. The
numbers reported in the figure are normalized error increment. They are calculated
using error increment divided by the occurrence of each kind of phone. We use this

measure to reflect the increment ratio while avoiding having to deal with situations
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that could lead to division by zero.
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Figure 3.5: The normalized error increment for a) insertion errors and b) deletion
errors (y-axis represent different manners of articulators and x-axis represent
different systems)

Overall, dropping frames causes a minor reduction to the phone insertion rate,
while the phone deletion rate significantly worsens. We suspect that after dropping
frames, the decoder is less effective at capturing transitions between phones, result-
ing in correctly detected phones spanning over other phones. In Figure 3.5b we can
see that the Landmark-keep strategy is more effective than the Random strategy,
since it returns a lower deletion rate increment. We believe this is because the
landmark contains sufficient acoustic information about each phone to force it to be
recognized. However, we do not know why the GMM-Landmark-keep strategy
is less effective at preventing phone deletions than the DNN-Landmark-keep
strategy. A possible reason might be that more frames were stacked together in the
splicing process for the DNN than for the GMM [64]. If we do consider providing
landmarks as extra information to ASR, in order to reduce computation load for
example, the difference between GMM and DNN models should be considered.
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3.7 Conclusions

Phones can be categorized using binary distinctive features, which can be extracted
through acoustic cues anchored at acoustic landmarks in the speech utterance. In
this work, we proved through experiments for DNN-based ASR systems operating
on MFCC features, on the TIMIT corpus, using both the default and cross validation
train-test splits, that frames containing landmarks are more informative than others.
We proved that paying extra attention to these frames can potentially compensate
for accuracy lost when dropping frames during Acoustic Model likelihood scoring.
We leveraged the help of landmarks as a heuristic to guide frame dropping during
speech recognition. In one setup, we dropped more than 54% of the frames while
adding only 0.44% to the Phone Error Rate. This demonstrates the potential
of landmarks for computational reduction for ASR systems with DNN acoustic
models. We conclude that a DNN-based system is able to find a nearly-sufficient
summary of the entire spectrogram in frames containing acoustic landmarks, in
the sense that, if computational considerations require one to drop 50% or more
of all speech frames, one is better off keeping the landmark frames than keeping
any other tested set of frames. GMM-based experiments return mixed results, but
results for the DNN are consistent and statistically significant: landmark frames

contain more information about the phone string than frames without landmarks.
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CHAPTER 4

MULTI-TASK LEARNING WITH
ACOUSTIC LANDMARKS FOR
LOW-RESOURCED LANGUAGE

Furui first demonstrated that the identity of both consonant and vowel can be
perceived from the C-V transition; later, Stevens proposed that acoustic landmarks
are the primary cues for speech perception, and that steady-state regions are
secondary or supplemental. Acoustic landmarks are perceptually salient, even in
a language one doesn’t speak, and it has been demonstrated that non-speakers of
the language can identify features such as the primary articulator of the landmark.
These factors suggest a strategy for developing language-independent automatic
speech recognition: landmarks can potentially be learned once from a suitably
labeled corpus and rapidly applied to many other languages. This chapter proposes
enhancing the cross-lingual portability of a neural network by using landmarks
as the secondary task in multi-task learning (MTL). The network is trained in a
well-resourced source language with both phone and landmark labels (English),
then adapted to an under-resourced target language with only word labels (Iban).
Landmark-tasked MTL reduces source-language phone error rate by 2.9% relative,
and reduces target-language word error rate by 1.9%-5.9% depending on the
amount of target-language training data. These results suggest that landmark-
tasked MTL causes the DNN to learn hidden-node features that are useful for

cross-lingual adaptation.

4.1 Introduction

In the early 1980s, Furui [26] demonstrated that the identity of both consonant
and vowel can be perceived from a 100ms segment of audio extracted from the
C-V transition; in 1985, Stevens [23] proposed that acoustic landmarks are the
primary cues for speech perception, and that steady-state regions are secondary
or supplemental. Acoustic landmarks produce enhanced response patterns on the

mammalian auditory nerve [72], and it has been demonstrated that non-speakers of
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a language can identify features such as the primary articulator of the landmark [73].
Automatic speech recognition (ASR) systems have been proposed that depend
completely on landmarks, with no regard for the steady-state regions of the speech
signal [74], and such systems have been demonstrated to be competitive with
phone-based ASR under certain circumstances. Other studies have proposed
training two separate sets of classifiers, one trained to recognize landmarks, another
trained to recognize steady-state phone segments, and fusing the two for improved
accuracy [44] or for reduced computational complexity [12]. It has been difficult
to build cross-lingual ASR from such systems, however, because very few of
the world’s languages possess large corpora with the correct timing of consonant
release and consonant closure landmarks manually coded. In this chapter we
propose a different strategy: we propose to use reference landmark labels in
only one language (the source language). A landmark detector trained in the
source language is ported to the target language in two ways: (1) by automatically
detecting landmark locations in target language test data, and (2) by using landmark
detection as a secondary task for the purpose of training a triphone state recognizer
that can be more effectively ported cross-lingually. The neural network is trained
with triphone state recognition as its primary task; landmarks are introduced as a
secondary task, using the framework of multi-task learning (MTL) [75].

MTL has shown the ability to improve the performance of speech models,
especially those based on neural networks [18,76—78]. MTL is a mechanism for
reducing generalization error. A single-task neural net is provably optimal, for
large enough training datasets: as the size of the training dataset goes to infinity, if
the number of hidden nodes is set equal to the square root of the number of training
samples, the difference between the network error rate and the Bayes error rate
goes to zero [79]. MTL is useful when the training dataset is too small to permit
zero-error learning [76], or when the training dataset and the test dataset are drawn
from slightly different probability distributions (e.g., different languages). In either
case, MTL proposes training the network to perform two tasks simultaneously. The
secondary task is not important during test time, but if the network is forced to
perform the secondary task during training, it will sometimes learn network weights
(and consequently, hidden layer activation functions) that are either (1) less prone
to over-fitting on the training data than a single-task network, or (2) generalize
better from the distribution of the training data to the distribution of the test data.
Landmark detection could potentially be an ideal secondary task for automatic

speech recognition (ASR; Fig 4.1), since it detects instantaneous events that are
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informative to phone recognition. Because landmarks have been demonstrated
to correlate with non-linguistic perceptual signals (e.g., enhanced response on
the auditory nerve [72]) and because features of a landmark can be classified by
non-speakers of the language [73], it is possible that the secondary task of landmark
detection and classification will force a neural net to learn weights that are more
useful for cross-language ASR adaptation [17] than those of a single-task network.
These characteristics are especially helpful for under-resourced languages: in an
under-resourced language, training data may be limited, e.g., there may be little or
even no transcribed speech. A Landmark-based system trained on a well-resourced
language might be adapted to an under-resourced language, thus improving ASR

accuracy in the under-resourced language.

Input .
Hidden layers
(speech features) T
(phone states)
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. ::>|:| Secondary output

Figure 4.1: MTL Neural Network Jointly Trained on Phone States and Landmark
Types

The key contributions of this work are experimental findings supporting the
hypothesis that landmark-task MTL reduces the word error rate of a cross-lingually
ported ASR. After we review some background in Sec. 4.2, key methodology and
techniques used to apply the Landmark theory to MTL are explained in Sec. 4.3.

Results are presented in Sec. 4.4, and the chapter concludes in Sec. 4.5.

4.2 Background

Before we talk about our methodology, we would like to briefly review MTL as a
neural network training method and talk about the under-resource corpus we used

in this study.
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4.2.1 Multi-task Learning

Multi-task Learning (MTL) [75] has shown the ability to improve statistical model
performance by jointly training a single model for multiple purposes. The multiple
tasks in MTL share the same input, but generate multiple outputs predicting
likelihoods for a primary and one or more secondary tasks. When the multiple
tasks are related but not identical, or (in the ideal case) complementary to each
other, MTL models offer better generalization from training to test corpus [76]. A
number of works [76—78] have proved MTL to be effective on speech processing
tasks. Among them [78] proved MTL effective at improving model performance
for under-resourced ASR.

When we conduct MTL, for the same input x, we prepare two sets of labels.
The label ¥ h specifies the phone or triphone state associated with a frame, while
lé-“ encodes the presence and type of acoustic landmark. The network is trained
in order to minimize, on the training data, a multi-task error metric as shown in
Eq. 4.1, where P""(z) (1 < i < C"") is the probability of monophone or triphone
state ¢ at frame x as estimated by the neural network, le“(x) (1 < j < C'")is the
probability of landmark label j at frame x as estimated by the network, and « is a
trade-off value we use to weight the two sets of labels. We sweep through a small
list of candidate s to find the value that returns the best result on development
test data.

Lo = (1= 0) S (0" log(P" @) +a Y (U log(P(a)  (4.1)

4.2.2 The Iban Corpus

The under-resourced language studied in this chapter is Iban [80]. Iban is a language
spoken in Borneo, Sarawak (Malaysia), Kalimantan and Brunei. The Malay phone
set is similar to English, e.g., the two languages have the same inventory of stop
consonants and affricates; Malay also has a relatively transparent orthography, in
the sense that the pronunciation of a word is usually well predicted by its written
form. If Iban orthography is as transparent as Malay, and if its phone set is as
similar to English, then it is possible that a landmark detector trained on English
may perform well in Malay. Iban is also selected for these experiments because

of the recent release of an Iban training and test corpus with particularly good
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quality control [80]. The Iban corpus contains 8 hours of clean speech from 23
speakers. Seventeen speakers contributed 6.8/ of training data, and the test-set
contains 1.18% of data from 6 speakers. The language model was trained on a
2M-word Iban news dataset using SRILM [81].

4.3 Methods

We trained an ASR on the TIMIT corpus using the methods of multi-task learning
(Sec. 4.2.1), using the detection and classification of landmarks (Sec. 4.3.1) as a
secondary task. The same ASR is then adapted cross-lingually to the Iban corpus
(Sec.4.2.2)

4.3.1 Defining and Marking Landmarks

Landmark definitions in this chapter, listed in Table 4.1, are based primarily on
those of [43], with small modifications. Modifications include the elimination of
the +33% and -20% offsets after the beginning or before the end of some phones,
reported in [43] and [40], in favor of the simpler definitions in Table 4.1.

Table 4.1: Landmark types and their positions for acoustic segments, where ‘c’,
and ‘r’ denote consonant closure, and release; ‘start’, ‘middle’, and ‘end’ denote
three positions across acoustic segments, respectively.

Manner of Articulation Landmark Type and Position

Vowel V: middle
Glide G: middle
Fricative Fc: start, Fr: end
Affricate Sr,Fc: start, Fr: end
Nasal Nc: start, Nr: end
Stop Closure Sc: start, Sr: end

We extracted landmark training labels by referencing the TIMIT human anno-
tated phone boundaries. An example of the labeling is presented in Fig 4.2. This

9]

example from [12] illustrates the labeling of the word “symposium”’. The figure is

generated using Praat [82].

I'selected from audio file: TIMIT/TRAIN/DR1/FSMAQ/SX361.WAV
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Figure 4.2: Acoustic landmark labels for the pronunciation of word “symposium”.

Landmarks are relatively infrequent compared to phone-state-labeled speech
frames: every frame has a phone label, but fewer than 20% of frames have a
Landmark label. Because of the sparsity of Landmark-labeled frames, we explored
different ways to adjust the Landmark labels to achieve the best MTL performance.
We found, expanding the range of a Landmark to include the nearby 2 frames
returns the highest accuracy for the primary task.

To further address the imbalance among different Landmark classes, the training
criterion was computed using a weighted sum of training data, with weights

inversely proportion to the class support.

4.3.2 Cascading the MTL to Iban

After we trained a landmark detector on TIMIT, we ran the detector on Iban. The
English-trained landmark detector output is used to define reference labels for the
secondary task of the Iban acoustic model MTL. An example of the detector output
on an arbitrary utterance? in Iban is given in Fig 4.3. We found that the results
are good at outlining fricative landmarks. The detector can also find stop closure
landmarks near the correct locations, but with less precision than the fricative

landmarks. The performance on vowel and glide landmarks is only fair: the

2ipban/data/wav/ibm/003/ibm_003_049.wav

39



detector often mixes up the two classes, and incorrectly labels sonorant consonants

as vowels.

& ;

s s|f
el fc e frlg v g el & || sc el sc nc fg| nr g vielv st e fc sc

0.372042 ) 0.411708
0.150458 Visible part 0.783750 seconds 0.
Total duration 1.045000 seconds

Figure 4.3: Landmark Detection Result on Iban for utterance ibm_003_049,
pronouncing selamat tengah ari (s-aa-1-a-m-a-t t-aa-ng-a-h a-r-i in Iban phone
set). Transcription labels: e=empty (no Landmark); fr, fc, sr, sc, nr, nc, v, g are as
in Table 1.

When applying the landmark detector to Iban, we are concerned with the error
generated by the detector. The automatically detected landmark labels are treated
as ground truth for MTL in landmark-task MTL in Iban, therefore it is possible that
erroneously detected landmarks may mis-lead the network training. To minimize
the effect of these mistakes, we introduce an extra weighting factor in the MTL
training criterion based on the confidence of the landmark detector output, as

shown in Eq. 4.2.

Cph Cla

L,=(1-ac))y (("log(P"(x)) +ac, Y (I log(Pf*(x)))  (4.2)

i=1 j=1

where c, is a confidence value derived based on the landmark detector output for

feature frame z based on Eq 4.3.

cla

er = P (a) — —C,al_ 7 k:%m(Pé“d%x)) (4.3)

where P/*-%(x) is the softmax output for landmark class i. The class index

m = argmax™" Pl*4(z), which is also the index for the class the landmark
detector predicted.

The intuition behind this extra layer of weighting is to assign a penalty, during

training of the ASR, that is proportional to our certainty of its error. If the detector

is not confident separating the output class from other classes, then we reduce the
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loss it generates in the MTL process.

We experimented with multiple ways to initialize the landmark detector and the
phone recognizer in the second language. We found that using a network trained
through MTL in TIMIT to initialize the MTL network in the second language yields
the best results. We found the technique marginally but consistently outperforms

other initializations including DBN.

4.4 Results

We extracted an acoustic feature vector using the same algorithm and parameters
as [77]. The acoustic model (AM) is a deep neural network with 4 hidden, fully-
connected layers, 2048 nodes/layer. The same features and network structure were
used for both the landmark detector, the MTL model and the baseline. The baseline
is initialized using a DBN [83]. No speaker adaptation is used in any of the ASR
systems in this chapter.

Results are reported in Table 4.2 for both English (TIMIT) and Iban. TIMIT
results are reported to indicate the performance of Landmark-based MTL in the
source language, prior to cross-language adaptation.

On development test sets in both corpora, the value v = 0.2 returned the lowest
error rate (with little variability in the range 0.1 < o < 0.3), and was therefore
used for evaluation. The landmark detector achieves 80.11% frame-wise accuracy
in validation. Phone error rate (PER) was reasonably good: 20.6% for the baseline
system, and 20.0% for the MTL system, as compared to 22.7% for the open-source
Kaldi tri4_nnet recipe.

Decoding results for Iban are reported using Word Error Rate (WER), because
the Iban corpus is distributed with automatic but not manual phonetic transcrip-
tions. The comparison between PER in TIMIT and WER in Iban permits us to
demonstrate that Landmark-based MTL can benefit PER in a source language
(English), and WER in an adaptation target language (Iban). Triphone-based ASR
trained without MTL on TIMIT, then adapted to Iban, achieves 18.4% WER; a
system that is identical but for the addition of landmark-task MTL can achieve
17.93% WER. Neither system includes speaker adaptation, and therefore neither
system is better than the 17.45% state of the art WER for this corpus® with the

3nttps://github.com/kaldi-asr/kaldi/blob/master/egs/iban/s5/
RESULTS
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same language model.

Table 4.2: Decoding Error Rate for mono-phone (Mono) and tri-phone (Tri) on
TIMIT and Iban.

Corpus AM Baseline MTL MTL w/ Confid
TIMIT (PER) MTOr : 53:2 33;3 ]
Tban-full (WER) MTOr + ?g:ig ?gé; ?3:52
than-25% (WER) “0t0 M 00T e
oan-10% (WER) "1 050 DG e

As we can see in Table 4.2, in all cases, regardless of AM and corpus, the ASR
system jointly trained with landmark and phone information returns lower error
rate. The setups “Iban-25%” and “Iban-10%” train the AM on only 25% (100
minutes) and 10% (40 minutes) of the training data uniformly selected at random
from the Iban training set (maintaining speaker and gender ratio), but evaluates
the error rate on the full test set. As the amount of training data decreases, the
benefits of MTL increase. When only 10% of training data is available, simulating
a very low resource case, MTL reduces the word error rate by the greatest margin:
8.7% for monophone ASR and 6.17% for triphone ASR. Weighting the MTL loss
according to confidence results in a small but consistent error rate reduction. All
systems use the same language model, and all systems use acoustic models with
the same network architecture and feature set; the error rate change we observe is

caused entirely by the use of landmark-task MTL.

4.5 Discussion

This demonstrates that landmark-task MTL results in a neural network that can
be more effectively ported cross-lingually. As the amount of training data in the
under-resourced language is reduced (from 400 minutes to 100 or 40 minutes), the
benefits of landmark-task MTL increase. In addition, introducing a loss weighting
according the landmark detector confidence seems to reduce the effect of landmark

detector error as it consistently produces lower error rate.
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While a cross-language Landmark detector provides useful information com-
plementary to the orthographic transcription, visual inspection indicates that a
cross-language landmark detector is not as accurate as a same-language landmark
detector. Future work, therefore, will train a more accurate landmark detector,
using recurrent neural network methods that do not depend on human-annotated
phone boundaries, and that can therefore be more readily applied to multi-lingual

training corpora.
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CHAPTER 5

PRONUNCIATION ERROR
IDENTIFICATION ON CHINESE
LEARNING

This chapter explores a novel approach of identifying pronunciation errors for the
second language (L.2) learners based on the landmark theory of human speech
perception. Earlier works on the selection method of distinctive features and the
likelihood-based “goodness of pronunciation” (GOP) measurement have gained
progress in several L2 languages, e.g. Dutch and English. However, the improve-
ment of performance is limited due to error-prone automatic speech recognition
(ASR) systems and less distinguishable features. Landmark theory posits the
existence of quantal nonlinearities in the articulatory-acoustic relationship, and
provides a basis of selecting landmark positions that are suitable for identifying
pronunciation errors. By leveraging this English acoustic landmark theory, we
propose to select Mandarin Chinese salient phonetic landmarks for the Top-16 fre-
quently mispronounced phonemes by Japanese (L1) learners, and extract features
at those landmarks including mel-frequency cepstral coefficients (MFCC) and for-
mants. Both cross validation and evaluation are performed for individual phonemes
using support vector machine with linear kernel. Experiments illustrate that our
landmark-based approaches achieve higher micro-average f1 score significantly
than GOP-based methods.

5.1 Introduction

Pronunciation error identification, as an essential technology in computer assisted
pronunciation training systems that provide an effective way of enhancing the
speaking skills for the second language (I.2) learners, attracts considerable attention
from research communities of speech signal processing and applied linguistics.
With the advance in automatic speech recognition (ASR) research, solutions that
identify pronunciation errors have made great progress recently. These systems

typically detect segmental (phone level) mispronunciations from L2 learner’s read
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speech using an ASR decoder, and pinpoint salient pronunciation errors, such as
insertions, substitutions, or deletions of specific pronunciation units [84]. More
specifically, two types of ASR-based mispronunciation detection techniques have
been widely applied. Rule-based approach uses extended pronunciation confusion
networks that include both canonical pronunciations and their mispronounced
variants [85—-87]; Confidence-based approach measures the similarity between
native speaker’s canonical pronunciation and its corresponding realization by
L2 learners [88—90]. ASR utilizes hidden Markov models (HMMs) to capture
temporal information of phones, however, HMMs are still not powerful enough to
discriminate sounds that are spectrally similar and differ mainly in duration [91].
For example, HMMs are not quite suitable to distinguish fricatives from plosive
release segments since the difference of these two sounds is subtle in the amplitude
envelope [92].

Therefore, another line of this research, as illustrated in this chapter, will cast
pronunciation error identification as a binary classification task that improves
discrimination power by detecting distinctive feature errors known to occur with
high frequency. Acoustic landmark theory [60] by exploiting quantal nonlinear
articulatory-acoustic relationships provides a basis of selecting distinctive features
that are suitable for speech recognition [44]. We will leverage this theory further

for the task of identifying pronunciation errors.

5.2 Related Works

The factors that cause high-frequency errors differ for L2 learners from different
native language backgrounds. For example, the single biggest pronunciation
problem for Spanish-speaking learners of English is that Spanish does not have a
distinction between short and long vowels [93], while Japanese-speaking learners
can mitigate the affects of vowel duration [94].

Acoustic cues that distinguish error minimal pairs include standard ASR fea-
tures, such as mel-frequency cepstral coefficients (MFCC) and perceptual linear
prediction (PLP), but also include many specialized cues that have been found to be
useful for particular binary contrasts. Voice onset time (VOT) features are proposed
to detect Mandarin Chinese (L2) phonetic errors of aspirated consonants (/p/, /t/,
/k/) pronounced by Japanese native speakers [95]. Rate of Rise (ROR) values that

are calculated by determining the derivative of the logarithm of root-mean-square
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energy succeed to discriminate the voiceless velar plosive /k/ from the voiceless
velar fricative /x/ in Dutch, since the release of the burst of the plosive causes an
abrupt rise in amplitude [91]. As for the mispronounced Dutch vowels, formants
(F1-F3) have been used with ASR-based confidence measures are exploited fur-
ther [96]. Goodness of speech prosody (GOSP) has also been defined [97] in terms
of several features including FO, duration, parameters of Fujisaki model, rPVI, and
nPVL

Among these feature representations of mispronounced sounds, statistical models
are also explored with the purpose of selecting distinctive features. Stouten et
al [98] applied artificial neural network models to extract distinctive features from
MFCC features in the context of learning English. Lee et al [99] tried to identify
error sounds by leveraging features that are learned from neural networks in an
unsupervised manner. Hacker et al [100] achieved promising performance based on
top-15 distinctive features using the AdaBoost algorithm for the task of detecting
English errors made by German children.

Recent application of landmark-based distinctive features in ASR motivated
researchers to further explore their utility in pronunciation error detection problems.
Quantal nonlinearities in articulatory-acoustic relations provide a theoretical basis
for selecting distinctive features, complementary to the empirical foundations of
most L2 research [60]. Acoustic landmark theory, first described in [23], has been
successfully applied in identifying English pronunciation errors produced by Ko-
rean speakers [101,102]. This guidance of selecting distinctive features is probably
suitable for a larger pool of languages other than English only. In the context
of Chinese learning as a foreign language, Zhang et al [103, 104] developed a
Mandarin Chinese distinctive features system based on the knowledge of acoustics
and physiology. Wang et al demonstrated the capability of discrimination between
several phonemes on that system by comparing the parameters of perceptual linear
prediction (PLP), MFCC and linear prediction cepstral coefficients (LPCC) [105].
However, determining the acoustic landmark positions that best represent categori-
cal phonological distinctions remains a difficult problem, since the acquisition of
this knowledge requires large scale experiments of human speech perception [105].
The lack of this knowledge hinders the progress of the application on identifying
pronunciation errors.

In this chapter, we provide two alternative methods for selecting acoustic land-
mark positions in L2 Chinese. First, we directly mapped well-founded English

landmark theory into Mandarin Chinese, since there exists similar phonetic char-
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acteristics between these two languages; second, we define Chinese landmark
positions and corresponding distinctive features and acoustic cues by analyzing a

large scale corpus of pronunciation error pairs.

5.3 Description of Data

This large scale corpus of Chinese (L2) speech, referred to as BLCU inter-Chinese
speech corpus [106], has collected data from more than 100 speakers. Each speaker
read a sentence from 301 daily use sentences. This corpus consists of 64,190
phonemes and 4,631 utterances. The continuous speech of 17 Japanese native
speakers (8 males and 9 females) has been phonetically annotated at segment
level. The annotators are 6 post-graduate students majoring in phonetics, divided
into two groups. The speech data were annotated twice independently by the two
groups, with each annotator labeling a continuous 200 utterances on a rotating
basis. The speech data were manually transcribed and were automatically aligned
into phonetic segments of “initials” and “finals” with human transcriptions using
HTK Speech Recognition Toolkit [107]. The absolute agreement (in percentage of
matching values) between annotators ranges from 77.0% to 84.3% with the average
agreement 80.7%. The correlation coefficients are computed for the phoneme
based mispronunciation rates for the two groups with the average correlation ratio
0.78. 65 kinds of pronunciation error tendencies (PETs) based on articulation-
placement and articulation-manner are annotated to represent general erroneous
articulation tendencies, including raising, lowering, advancing, backing, lengthen-
ing, shortening, centralizing, rounding, spreading, labio-dentalizing, laminalizing,
devoicing, voicing, insertion, deletion, stopping, fricativizing, nasalizing, and
retroflexing [106].

In this study, we only considered consistent utterances where two annotators
are in agreement, and select Top-16 frequent PETs to perform experiments on
identifying pronunciation errors, while ignoring other very rare PETs. These
16 PETs were divided into four categories: spreading, backing, shortening and
laminalizing. The final corpus consists of 7,837 phones (error: 1,524, correct:

6,313). The error rate across 16 phones ranges from 6% to 44.1%.
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5.4 Methodology

In the context of pronunciation error identification, confidence-based approaches
still maintain better performance than rule-based methods due to the “coverage of
confusion networks” trade-offs [108]. The goodness of pronunciation (GOP) [89]
algorithm is probably the most widely used measure in this scope. Our baseline for
testing landmark-based pronunciation error detections is GOP using deep neural

network triphone acoustic models trained on our large scale corpus [109].

5.4.1 Goodness of Pronunciation (GOP)

The aim of GOP is to provide a confidence score for each phone in a speech
utterance. Given the orthographic transcription and acoustic models that determine
the likelihood P(O?]q) where O denotes the acoustic segment aligned with phone
q € @, the GOP score can be calculated by normalizing the log likelihood ratio of
phone p compared to its strongest competitor over the number of frames N F'(p) in

log( P(O?|p) )

max,eq P(0q)

phone p,

GOP(p) = /NF(p) (5.1)

We applied maximum mutual information (MMI) estimation to adapt acoustic
models using Japanese native speaker’s speech. The numerator and denominator in
Eq. (5.1) are computed by forced alignment with orthographic transcription and an

unconstrained phone loop, respectively.

5.4.2 Acoustic Landmark Theory

Stevens proposed [25, 60] four different candidate landmark locations for English,
including vowel peak landmark, oral closure landmark, glide valley landmark
in glide-like consonants, and oral release landmark. These four landmark cat-
egories were proposed by Stevens to be language-universal, but our studies of
Mandarin Chinese suggest other signal events that may have a better claim to be
both perceptually salient and phonologically distinctive.

In the task of pronunciation error identification, we could explore error pairs
from the development corpus in order to define the acoustic landmark positions and
distinctive features. We conduct speech perception experiments in collaboration

with experts at BLCU Department of Linguistics, and discovered the distinctive
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Chinese landmark positions for 16 phones with high error frequencies in the corpus.
As an alternative to these perceptually-based Chinese landmark candidates, we find
correspondences of articulatory-manner and articulatory-place between English
and Mandarin Chinese after applying Stevens theory. Table 5.1 lists the landmark
positions signaling 16 Chinese phonemes according to these two different methods

of landmark definition.

Table 5.1: Acoustic landmark positions obtained by Chinese phonetics and
English phonetics theory. Phone symbols are IPA (pinyin in parens). The fraction
number denotes the relative time stamp in the duration.

Phone  Chinese Landmark English Landmark

s (sh)  following vowel fricative: start, end
dz (zh) coda of consonant affricate: start, end
fs (ch)  onset of consonant affricate: start, end

¢ (X) following vowel fricative: start, end

dz (j)  following vowel affricate: start, end
an (an) onset (14/30) of vowel nasal: start,end

y (V) onset of vowel vowel: middle

ay (ang) onset (14/30) of vowel nasal: start, end
iy (ing) onset (17/30) of vowel nasal: start, end

u (u) onset of vowel vowel middle

f ) onset of consonant fricative: start, end
oy (eng) onset of vowel vowel: start, end

te (@)  onset, nucleus, coda affricate: start, end

k (k)  following vowel stop: start

1(r) whole consonant fricative: start, end

uw (uo) onset, nucleus, coda glide: middle

5.5 Experiments and Results

We compared acoustic landmark features (see Table 5.1) with GOP-based features
in this section using 10-fold stratified cross validation. Evaluations were then

performed using a held-out test set.
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5.5.1 Setup

In all experiments, MFCC appended by its acceleration, delta coefficients, and CO
coefficients are extracted. Cepstral mean normalization is applied to compensate
long-term spectral effects'. Formants? (F1 - F5) are computed from the signal
up to 5500Hz since all test-takers are female. A Hamming window of 25ms was
used to chunk short-term stationary signals as frames, and the default frame rate is
10ms. However, many Chinese phones have short durations, and many segments
therefore contain less than four frames (e.g. /u/ and /i/ often have one frame).
To address the issues of insufficient number of frames, MFCC were recomputed
using a frame rate adjusted as necessary between 2ms and 10ms. 20% of the whole
corpus was held out as a test set that holds the same proportions of class labels.
Taking into account the imbalanced nature of the training set, we applied sup-
port vector machine (SVM) with linear kernel, and assigned weights inversely

proportional to the class frequencies as suggested in [21].

5.5.2 Cross Validation

Figure 5.1 illustrates the micro-average f1 scores for each individual phones over
six different features. Red bars denote GOP baseline models that hold reasonable
performance for most of the phones except /ar/(ang) and /k/(k). In comparison to
GOP baseline, all acoustic cues at landmarks outperform GOP measure significantly
except for the phones /f/(f), /tg/(ch), and /1/(r) due to large overlaps of error bars.

From the comparisons between MFCC features at Chinese landmarks (blue)
and English landmarks (green), we observed that for the nasal phones /ar)/(ang),
/in/(ing), and /an/(an) with backing errors, English landmarks outperform Chinese.
According to the landmarks definition for these phones as shown in Table 5.1,
Chinese landmarks fall on the onset of vowels while English landmark considered
beginning and end of the consonant, which seems to be a better position for
discriminating tongue backing errors in both the vowel and the consonant. For
the fricative phones /[/(sh), /¢/(x), and /dz/(j), Chinese landmarks located at
the following vowel perform worse than English consonant-boundary landmarks,
despite the perceptually salient vowel difference that co-occurs with the consonant

distinction in Chinese.

"HCopy config parameter: MFCC_0_A_ D_Z
http://www.fon.hum.uva.nl/praat/
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Formants features (light and cyan) that are literally expected to disambiguate
vowels, seem not to contribute for discriminations for all phones except for the
phones /in/(ing) and /1/(r). The aspirated stop phone /k/(k) expresses an interest-
ing pattern that the Chinese landmark (the following vowel) achieves a better 1
score than English (only considering the start of the stop release segment). Aggre-
gating all features together as shown in yellow bars made limited improvements
particularly in the case that both Chinese and English landmarks compensate with

each other, e.g. fricative phone /s/(sh).

1.0

Baseline: GOP

Chinese Landmark: mfc

English Landmark: mfc

Chinese Landmark: mfc+formant

English Landmark: mfc+formant

Chinese and English Landmark: mfc+formant

Mean Value Over 10 fold cross validation

j uo ang X u f v k g eng ch zh an ing sh r

Figure 5.1: 10-fold cross validation performances of GOP baseline and acoustic
features at Chinese and English landmarks. Y-axis shows the micro-average values
of f1 scores for each individual phones. The sequence of phones is sorted by the

error percentage in the training set.

The observation in Figure 5.1 indicates that acoustic cues beyond the basic
MFCC may still be redundant or irrelevant for the classification tasks. For example,
formants at the onset of consonant could be irrelevant feature for the affricative
phone ts(ch), and may need to be removed. While for the affricative /dz/(j) and
glide type /uo/(uo), the performance remains unchanged after applying MFCC

and formants features at Chinese and English landmarks. Besides of the landmark
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positions and corresponding acoustic cues, various frame rates are also applied
on 16 phones. We empirically choose the best acoustic cues for each individual
phones based on the best micro-average f1 scores (see Table 5.2). Seven phones
/an/(ang), /y/(v), /t¢/(@), /on/(eng), /dz/(zh), /in/(ing), s(sh) can achieve the
best performance by using large frame rate (10ms), while the smaller frame rate
(4ms) are suitable two phones /ud/(uo) and /k/(k).

Table 5.2: Best acoustic cues selected for individual phones.

Phone FrameRate (ms) Landmark AcousticCues Flscore

dz () 6 Chn+Eng mfc+formant 0.949
ud (uo) 4 Eng mfc+formant  0.945
arg (ang) 10 Eng mfc+formant  0.967

¢ (%) 6 Eng mfc+formant  0.977

u (u) 8 Chn mfc+formant 0.890

f () 8 Chn+Eng mfc+formant 0.902

y (v) 10 Chn+Eng mfc+formant 0.887

k (k) 4 Chn mfc 0.872

te (q) 10 Eng mfc 0.970
9y (eng) 10 Eng mfc 0.908
ts (ch) 8 Eng mfc 0.861
dz (zh) 10 Eng mfc+formant  0.855
an (an) 6 Eng mfc 0.844
iy (ing) 10 Eng mfc+formant  0.919

s (sh) 10 Eng+Chn mfc+formant  0.902

r (1) 8 Chn mfc+formant 0.832

5.5.3 Acoustic Cues for Evaluation

Cross validation experiments demonstrate that the performances for individual
phones under micro-average f1 score were highly correlated with the combinations
of landmark positions, frame rates, and acoustic cues. We continued to explore
the generalization power of these models on our 20% held-out test data. In this
study, the best frame rate for each phone was frozen as shown in Table 5.2, and
six models including GOP baseline were evaluated. In the context of identifying
pronunciation errors, L2 learners expect to receive more feedbacks of pinpointing
salient errors rather than false alarms. Receiver Operating Characteristic (ROC)

metric that formulates the relationship between true positive rate (TPR) and false
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Figure 5.2: ROC curves of evaluations on held-out test set for each phone.
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Figure 5.2: (cont.) ROC curves of evaluations on held-out test set for each phone.

54



positive rate (FPR) can mitigate L2 learner’s concerns. Error classes was assigned
as positive labels. Figure 5.2 illustrates the curves of comparison results on 16
phones. TPR is on Y-axis, and FPR is on X-axis. This means the top left corner
of the plot is the ideal point (TPR=1, FPR=0). Namely, larger area under curve
(AUC) indicates better performance. The steepness is also an important sign since
the TPR is maximized while keeping FPR minimized.

GOP model (yellow) proved to be a strong baseline for most of the phones, par-
ticularly for the phones /uo/(uo) and /y/(v) that outperformed all other landmark-
based models (AUC>0.9). However, for the phones /¢/(x) and /u/(u), the ROC
curves of GOP have intercepts with dashed “chance” line, and TPR remains to be
zero even when FPR decreases. All other landmark-based models achieved the
performance above the “chance” line except for the combined acoustic cues of
MFCC and formants at Chinese landmarks on the phone /{s/(ch).

5.6 Conclusions

In this chapter, we proposed two approaches to select Mandarin Chinese salient
phonetic landmarks for Top-16 frequently mispronounced phonemes by Japanese
learners, and extract features at those landmarks including mel-frequency cepstral
coefficients (MFCC) and formants. One is to directly map well-founded English
landmark theory into Chinese language since there exists correspondences of
articulatory-manner and articulatory-place between English and Mandarin Chinese
after applying Stevens theory. Second, we defined distinctive Chinese landmarks
for Top-16 frequent pronunciation errors by conducting human speech perception
experiments in collaboration with linguists.

In order to make fair comparison, we selected a strong baseline model using
goodness of pronunciation (GOP). Experiments including 10-fold cross validation
on the training set and evaluation on the held-out test set illustrated that acoustic
cues of MFCC and formants at both Chinese landmarks and English landmarks
led a better performance significantly. When comparing the performance between
these two landmark theory, English landmarks locating at both the start and end
of phonetic segments for most of the 16 phones slightly outperformed Chinese
landmarks that was defined by the empirical analysis of error pairs in the large
scale corpus. Chinese landmarks might lose some significant information on

discriminating pronunciation errors especially for the nasal phones and fricative
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phones. We expected to get access to even larger corpus that are suitable for us to

consolidate our Chinese landmark theory.
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CHAPTER 6

LANDMARK DETECTION BASED ON
CTC AND ITS APPLICATION TO
PRONUNCIATION ERROR DETECTION

Acoustic features extracted in the vicinity of landmarks have demonstrated their
usefulness for detecting mispronunciation in our recent work [14, 110]. Traditional
approaches of detecting acoustic landmarks rely on annotations by linguists with
prior knowledge of speech production mechanisms, which are laborious and ex-
pensive. This chapter proposes a data-driven approach of connectionist temporal
classification (CTC) that can detect landmarks without any human labels while
still maintaining consistent performance with knowledge-based models for stop
burst landmarks. We designed an acoustic model to predict phone labels based
on a recurrent neural network (RNN) with bidirectional long short-term memory
(BLSTM) units, which is trained by CTC loss. We found that the positions of
spiky phone outputs of this model are consistent with the landmarks annotated
in the TIMIT corpus. Both data-driven and knowledge-based landmark models
are applied to detect pronunciation errors of second-language Chinese learners.
Experiments illustrate that data-driven CTC landmark model is comparable to
knowledge-based model in pronunciation error detection. The fusion of them can

further improve performance.

6.1 Introduction

Computer-assisted pronunciation training (CAPT) systems provides a flexible and
efficient way for the second language (L2) learners to enhance their speaking skills.
Pronunciation error detection, as an indispensable part of CAPT systems, has
attracted much more attention from different research fields [111].

A number of approaches have been presented to detect pronunciation errors at
segmental level in the last few decades. Most of them are based on automatic speech
recognition (ASR) frameworks [89,109,112], and they have advantage of predicting

pronunciation errors easily and flexibly in same way for all phonemes. However,
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they are heavily limited by the size of training data and language backgrounds [113].
And for specific error detection, their detection accuracy need to be improved in
order to give learners more precise feedbacks. For L2 learners, the challenge in
learning foreign language pronunciation lies in realizing phonetic contrasts since
they do not exist in the mother tongue of L2 learners or they do exist but are
not phonologically distinctive [96]. For instance, due to the lack of /r/ sound
in Japanese, native speakers of Japanese are usually prone to pronounce /r/ as
/1/ when they are speaking Chinese. Comprehensive diagnosis of pronunciation
errors, such as phonetic minimal pairs, is beneficial for language learners, while the
feedback of common ASR errors, i.e. insertions, deletions, or substitutions, only
provides limited help. Pronunciation erroneous tendency [109] defined a set of
incorrect articulation configurations regarding manners and places of articulation.
Several studies have developed classifiers using acoustic-phonetic features in order
to capture the subtle distinctions in minimal pairs. Gao et al [114] proposed to
detect aspirated stops (/p/, /t/, /k/) in Mandarin Chinese pronounced by native
speakers of Japanese on voice onset time features using support vector machines.
Strik et al [91] employed the linear discriminant analysis to discriminate a plosive
(/k/) from a fricative (/x/) in Dutch using energy-based features with duration
information, such as the rate of rise values. The substitution pronunciation errors
of Dutch vowels were identified using the first three formants and intensity of
segments [96].

It remains difficult to find prominent features for all kinds of phonetic contrasts
although aforementioned features took effect in some tasks. Acoustic landmark
theory [60] explores underlying regions of quantal nonlinear correlates between
articulators and acoustic attributes, and therefore, could provide a cue for choosing
distinctive features that are suitable for automatic speech recognition [115] and
pronunciation error detection [14, 101,102, 110]. However, annotating accurate
positions of acoustic landmarks is laborious and expensive since it requires solid
prior knowledge of speech production mechanism and needs thorough experiments
of human speech perception [43, 110]. In order to efficiently obtain accurate
annotations of landmarks, we propose an alternative approach by investigating the
correlations between acoustic landmarks and locations of spiky phone predictions
from connectionist temporal classification (CTC). Recent progress on the end-to-
end modeling with CTC [116] has achieved outstanding performance in ASR [117]
and keyword spotting [118]. CTC introduced an additional blank symbol to
represent the frame-wise phone predictions with very low confidence, so that
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RNN-based acoustic models that are trained with the CTC loss ultimately predict
pronunciation units with pulse signals, i.e. spikes or peaks. The locations where
such spiky predictions occur look similar to the locations of acoustic landmarks in
that both underlying acoustic events are assumed to be randomly distributed in the
speech signals.

In this chapter, we would verify the consistence between manual annotations of
acoustic landmarks and the automatic machine annotations from the data-driven
approach using CTC. The landmark annotations from both approaches are applied
to the task of pronunciation error detection for Mandarin Chinese learners. Sec-
tion 6.2 briefly overviews CTC algorithm, the peak detection algorithm, and our
framework of pronunciation error detection. Experimental analysis is illustrated in

Section 6.3, followed by the conclusion in Section 6.4.

6.2 Methods

6.2.1 Connectionist Temporal Classification

Automatic speech recognition transcribes a sequence of acoustic features into a
sequence of words. The sequence of acoustic feature is usually much longer than its
corresponding word sequence, therefore, training such models really needs accurate
time-alignments of phones in advance. Connectionist Temporal Classification
(CTC) relaxes the constraints of needs of prior alignment knowledge, and directly
optimizes such sequence to sequence problem by introducing an additional blank
symbol which helps to represent predictions of pronunciation units with very low
confidence. CTC absorbs ambiguous boundaries between two modeling units and
allows repeated labels to appear. Recurrent neural networks (RNNs) are usually
applied before CTC calculation, and the softmax output layer computes posteriors
probability distributions over all target symbols including phones and the blank at
each time step. CTC sums up the probabilities of all possible alignments between
labels and input frames by using a forward-backward algorithm. These alignments
are implicitly inferred and all lead to the same target label sequence by removing
blank symbols and merging repetitions. Figure 6.1 demonstrated the frame-wise

phone predictions using CTC.
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Figure 6.1: Label posteriors estimated by RNN acoustic model trained by CTC on
a held-out utterance from “we’ve done our part”.

6.2.2 Peak Detection Algorithm

As shown in Figure 6.1, the BLSTM-RNN acoustic model trained by CTC tech-
nique can estimate spiky label posteriors separated by blank labels. CTC utilizes
one frame (key frame) with highest posteriors to represent the modeling unit at
last. This characteristic is similar to landmark. We assume that the positions of key
frames are landmarks. To verify this hypothesis, we should consider to locating
the positions of these key frames in an utterance. Palshikar [119] proposed a peak
detection algorithm in time-series. We extend it to this work. An utterance is

selected as a processing unit. Steps in the algorithm are as follows.

1. Decode each utterance using BLSTM-RNN acoustic model.

2. Extract posteriors of phones detected at each time step. Consequently, it
forms a one-dimensional sequence sorted by time index.

3. Compute the peak function value a; of each point z; at each time steps.
Select the function of s(-) as peak function which computes the average
of the maximum distances between £ left neighbors and right neighbors of

x;. The left neighbors k is set to 4 time steps—a half of phone duration
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estimated on the corpus.

1
s(kyi,z;, T) = 3 (1I<nn%§k{xl — Tim )+ lrg?z(k{xz — an})

4. Compute the mean and standard deviation of all positive values of a;.

5. Remove small local peaks in global context according to Chebyshev Inequal-

ity and store their temporal information.
6. Order peaks again by their temporal index.

7. Post-processing is to remove adjacent pair of peaks within £ time steps.

6.2.3 CTC-Based Landmark Detection

We evaluated the performance of CTC-based landmark detection on TIMIT English
corpus because it defined a mature labeling convention of landmarks and provided
accurate landmark annotations as well. Miller et al [120] shows that it reaches
highest annotation accuracy about stops among the manually annotated phones.
Stop burst is realized by a sequence of two coherent events: a closure and a
release, and it provides a salient distinctive cue to identify stop consonant. We
implemented a ASR system based on CTC, and a greedy search method was
applied to predict phone labels from their posterior distribution in each utterance.
And then aforementioned peak detection algorithm was implemented to locate the

candidate landmarks.

6.2.4 Pronunciation Error Detection

Figure 6.2 illustrates the overall framework of pronunciation error detection. It
is divided into two stages. In the first stage, the BLSTM-RNN acoustic model is
trained with a large native corpus. And the acoustic model estimates posteriors
of phones which are used as the canonical sounds to estimate landmarks. A peak
detection algorithm is used to determine the positions of spiky posteriors of phones
in an utterance. Further, to get landmark of one phone, a transcription with time
alignments for each phone is used to determine the offset to the onset of this phone.
We used the relative positions of landmarks to compare with our previous work [14].
Each relative position is defined as the value of offset divided by the duration of that

phone. Finally, the mean value of all landmarks for each kind of phone is calculated.
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In the second stage, we construct classifiers for each binary phonetic contrast—
mispronunciation and its canonical sound—by extracting acoustic features in the

vicinity of landmarks determined at the first stage.
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Figure 6.2: The overall framework of pronunciation error detection.

6.3 Experiments and Results

6.3.1 CTC-Based Landmark Detection

Corpora

We first developed a CTC-based ASR system for English phone recognition. We
selected the portion of 100 hours of LibriSpeech corpus [10] which consisted of
251 speakers including 126 males and 125 females. There were 28539 labeled
utterances. 4000 utterances were selected as the validation set and the rest for
training. The TIMIT [121] corpus was selected as the test set, which contained
5040 utterance (except the dialect utterances SA) and 630 speakers (438 males and
192 females). Since landmark annotations in the TIMIT transcriptions were based
on abrupt acoustic changes, if no acoustic evidence existed for a certain phone, then
no label was put there. About 68% of the total number of landmarks in the corpus

are acoustically abrupt landmarks which are associated with consonantal segments,
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e.g., a stop closure or release. Therefore, we chose stops (/p/,/t/, /k/,/bl,/d/,/g/) to
verify our hypothesis. Their landmarks are at the beginning of release of stops
(marked with /pcl/, /tcl/, /kcl/, /bcl/, /dcl/, /gcl/) or at the end of closure. We

extracted 31256 stop burst landmarks from the transcriptions.

Experimental Setup

Experiments were conducted for phone recognition using EESEN [122]. The
BLSTM-RNN acoustic model was trained by CTC loss. The fliterbank features
(40-dimention) with their first and second order derivatives were extracted. Each
speech frame span across 25ms window and it shifted by every 10ms to the input
layer of BLSTM-RNN. Speaker normalization was applied to the speech features.
Four BLSTM layers contained 320 cells in each direction. We employed the CMU
dictionary' as the lexicon while ignoring the stresses. We extracted 43 labels from
CMU dictionary including phones, noise marks, and the additional blank. The
weights of the model were initialized uniformly from the range [—0.1,0.1]. The
model was trained by back-propagation through time with the initial learning rate
0.0004.

Evaluation Metrics

Three evaluation metrics are used to compare consistency [123]. If a detected
landmark falls in the region of hand-labeled landmarks with a certain time tolerance,

it is considered as a hit.

e Recall: The ratio of the number of hits to the number of hand-labeled

landmarks.

e Precision: The ratio of the number of hits to the number of total landmarks
detected.

e F-measure: The harmonic mean of recall and precision.

Results

We conducted different time tolerances from 10ms to 50ms. Performance of

detection process for six stops is listed in Table 6.1.

"http://www.speech.cs.cnu.edu/cgi-bin/cmudict
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Table 6.1: Detection results (%) of four stop burst landmarks

Time Tolerance (ms)

10 20 30 40 50

Evaluation Metrics

Recall 742 814 83.8 85.6 87.2
Precision 61.8 67.8 698 713 72.6
F1 score 674 740 762 77.8 79.2

As shown in Table 6.1, we can see that CTC-based method can detect most
of landmarks in certain time tolerance for six stops. The slightly low precision
values indicate relatively high insertion errors. According to our statistics, there
are many cases such as co-articulation and allophones in the running speech where
there are no labels or labeled by allophones. For example, there is “but didn’t” in
the transcription train/dr2/fajw0/sx273.phn. /t/ is in the final position of ‘but’
and /d/ is in the initial position of “didn’t”. There is no release of /t/ and there is
no closure of /d/. For allophones, sometimes /t/ can also be realized as a glottal
stop annotated as /g/, such as in “cotton”. A flap labeled with /dx/ can either be
an underlying /t/ or /d/. Many of /t/ and /d/ may not manifest obvious obstruction
in the running speech, therefore, no corresponding landmarks are annotated. It is
very difficult to locate the landmarks in the running speech, so that CTC-based
method almost generates a peak for each phone, resulting in increases of insertion
errors. But in any case, this method may help linguists annotating landmarks in
some complicated cases, and it could be a good tool of front-end processing for

pronunciation error detection.

6.3.2 Landmark-Based Pronunciation Error Detection

Corpora

The Chinese National Hi-Tech Project 863 corpus [124] of approximate 100 hours
was used to train acoustic model, which consisted of 82735 utterances. 4000
utterances were selected from the training data as the validation set. 6 native
Chinese speakers from Chinese part of BLCU inter-Chinese speech corpus [106]
were used for estimating landmarks. Their utterances were firstly force-aligned by
HTK [107] and then the phonetic boundaries were corrected by human transcribers.

For the purpose of CAPT, we collected a large scale of Chinese inter-language
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corpus read by Japanese native speakers, which is referred to as the BLCU inter-
Chinese corpus [106]. We select 7 Japanese females who read 1899 utterances.
80% of the data was selected as the training set and the rest as the test set. 16 most
frequent PETs [109,112] and their canonical sounds constituted 16 binary phonetic

contrasts. Their training set and test set were selected from above partition.

Experiment Setup

A CTC-based speech recognition system was built firstly. The architecture of
network was identical to the description in the last experiment. There were 60
labels (including Chinese phones, noise marks and blank) in the softmax layer.
Stevens proposed that distinctive features obtained from landmark regions should
be universal across languages. By applying this theory, Yang et al [14] found the
correspondence between English and Mandarin Chinese from the perspective of
manner and place of articulations, and English phones were mapped to Chinese
phones with the guidance of international phonetic alphabet (IPA). Both knowledge-

based landmarks and our data-driven landmarks are summarized in Table 6.2.

Table 6.2: Data-driven and knowledge-based landmarks.

Phone  English Landmark CTC Landmark

s (sh)  start, end onset (0.307) of consonant
dz (zh) start, end onset (0.271) of consonant
fs (ch)  start, end onset (0.217) of consonant

¢ (X) start, end onset (0.356) of consonant

dz (j)  start, end onset (0.310) of consonant
an (an) start,end onset (0.073) of vowel
y (V) middle onset (0.030) of vowel
ay (ang) start, end onset (0.058) of vowel
iy (ing) start, end onset (0.055) of vowel

u (u) middle onset (0.194) of vowel

f () start, end onset (0.401) of consonant
oy (eng) start, end onset (0.079) of vowel

te (q)  start, end onset (0.284) of consonant

k (k) start onset (0.253) of consonant

1(r) start, end onset (0.392) of consonant
uw (uo) middle onset (0.342) of vowel

According to this table, three frames from the landmarks were selected. We used

13-dimentional Mel-frequency cepstral coefficient (MFCC) features with their first
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and second derivatives to obtain a total of 39 feature values per frame. To capture
subtle variations and to address the issues of insufficient number of frames, 6ms
frame shift was selected. The MFCC features of 3 frames from landmarks were
concatenated to form a 117-dimensional vector. We used SVMs with linear kernel

as a classifier.

Detection Results

We compared two kinds of landmarks, data-driven and knowledge-based, and
combined them at last. We used F-measure to evaluate their performance. Table 6.3
shows that CTC landmark system is better or comparable to knowledge-based
landmark system when detecting seven phones (/an/, /f/, /ing/, /j/, /k/, I/, IV/).
The performance of the former is reduced more than 5% in comparison to the
latter when detecting five phones (/ch/, /q/, /t/, Ish/, /zh/). This is because different
positions and amounts of landmarks may affect the results. The fusion of them

further improves the performance (except /an/).

Table 6.3: Performance of landmark-based pronunciation error detection.

Phone English Landmark CTC Landmark Fusion

s (sh) 0.784 0.894 0.883
dz (zh)  0.844 0.940 0.928
ts(ch)  0.817 0.876 0.886
¢ (x) 0.940 0.975 0.958
dz (j) 0.982 0.982 0.982
an (an) 0.864 0.864 0.851
y (V) 0914 0.893 0.903
ay (ang) 0.956 0.981 0.981
ig (ing) 0.824 0.820 0.880
u (u) 0.929 0.929 0.929
£ 0.935 0.919 0.946
oy (eng) 0.932 0.959 0.959
te (q) 0.854 0.973 0.968
k (k) 0.905 0.905 0.905
1 (1) 0.889 0.941 1.000
w (uo)  0.964 0.967 0.969

We also compared our system with the hybrid DNN/HMM in our previous
work [109] by considering overall detection results. According to [109], three
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kinds of metrics were used to evaluate the detection performance as shown in the

following:

e False Rejection Rate (FRR): The percentage of correctly pronounced phones
that are erroneously rejected as mispronounced.

e False Acceptance Rate (FAR): The percentage of mispronounced phones
that are erroneously accepted as correct.

e Detection Accuracy (DA): The percentage of detected phones that are cor-
rected recognized.

Table 6.4 shows that CTC-based landmark system exhibits slightly poor perfor-
mance compared with knowledge-based landmark system and hybrid DNN/HMM.
Knowledge-based landmark system performs better than hybrid DNN/HMM. Two
kinds of landmarks are combined further to improve the overall detection perfor-

mance.

Table 6.4: The results of landmark-based system and DNN/HMM hybridsystem.

System FRR FAR DA

CTC+Landmark+SVM 14.0 304 844
English+Landmark+SVM 9.1 16.1 89.9
Landmarks Combination+SVM 9.0 16.1 90.0
DNN/HMM+MFCC 6.7 359 87.6

6.4 Conclusions

In this chapter, we firstly verify the hypothesis that the positions of spiky phone
posterior outputs of the model trained by CTC loss are consistent with the stop
burst landmarks annotated in the TIMIT corpus. As a result, we think these peaks
evaluated by CTC-based acoustic model are similar to landmarks and they can
be generalized to other phones. Then we propose a pronunciation error detection
framework on Chinese learning based on landmarks and SVMs, and the landmarks
can be predicted automatically from BLSTM-RNN acoustic model. CTC-based
data-driven method and knowledge-based method are all considered to locate land-
marks. Experiments illustrate that data-driven CTC landmark model is comparable

to knowledge-based model in pronunciation error detection. Their combination
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further improves the performance which outperforms DNN/HMM hybrid system
with MFCC features.
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CHAPTER 7

CONSONANT VOICING DETECTION ON
MULTI-LINGUAL CORPORA

This chapter tests the hypothesis that distinctive feature classifiers anchored at
phonetic landmarks can be transferred cross-lingually without loss of accuracy.
Three consonant voicing classifiers were developed: (1) manually selected acoustic
features anchored at a phonetic landmark, (2) MFCCs (either averaged across the
segment or anchored at the landmark), and (3) acoustic features computed using
a convolutional neural network (CNN). All detectors are trained on English data
(TIMIT), and tested on English, Turkish, and Spanish (performance measured using
F1 and accuracy). Experiments demonstrate that manual features outperform all
MEFCC classifiers, while CNN features outperform both. MFCC-based classifiers
suffer an overall error rate increase of up to 96.1% when generalized from English
to other languages. Manual features suffer only an up to 35.2% relative error rate
increase, and CNN features actually perform the best on Turkish and Spanish,
demonstrating that features capable of representing long-term spectral dynamics
(CNN and landmark-based features) are able to generalize cross-lingually with

little or no loss of accuracy.

7.1 Introduction

In contrast to the conventional data-driven speech recognition model, acoustic
correlates of distinctive features are found in an acoustics phonetic recognizer [31]
so as to extract interpretable acoustic information. There are two types of distinc-
tive features in this model: articulator-free feature and articulator-bound feature.
Articulator-free features determine phone manner class, while articulator-bound
features specify the phone identity. Since features in this model depend on the
properties of the vocal tract, they are, to some extent, universal and independent of
the language being spoken. For obstruent consonants in English, such as fricatives,

affricates, and stops, three articulators ([lips], [tongue body] and [tongue blade])
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can form the constriction to produce consonants. Obstruent consonants are further
categorized by consonant voicing which can be described by the articulator-bound
feature [stiff vocal folds] [125].

Much related work has been done about consonant acoustic and voicing. Sha-
dle [126] studied fricative consonants using mechanical models, theoretical models,
and acoustic analysis, and found that the most important parameters for fricatives
are the length of the front cavity, the presence of an obstacle and the flow rate.
Speech production mechanism differences between voice and voiceless stops are
mainly due to muscle activity, which relaxes the tongue root during voiced stops,
altering aerodynamics near the vocal folds in order to maintain voicing during
closure [127]. Vowel cues, such as vocalic duration and F1 offset frequency, are
also the correlates of consonant voicing [128]. A module for detecting consonant
voicing based on these acoustic correlates [46] first determines acoustic properties
according to consonant production, then extracts acoustic cues, and classifies them
to detect consonant voicing.

One of the traditional methods to detect consonant voicing uses MFCCs [129,
130]—voicing can be detected with 74.7% to 80% overall accuracy [53, 131].
Achieving good performance of MFCC-based method on consonant voicing is
possible, however, MFCCs are less efficient in capturing information about the
voice source because MFCCs mostly codify the “filter” information in the source-
filter theory of speech production.

In contrast, much of the consonant voicing information can be captured in the
characteristics of the vocal fold vibration patterns, therefore capturing acoustic
phonetic features indicative of vocal fold vibration has the potential to measure
consonant voicing. Though voicing does not continue uninterrupted during ob-
struent closure in English, there are striking differences near consonant closure
and release landmarks. Landmarks [31] identify times when the acoustic patterns
of the linguistically motivated distinctive features are most salient; acoustic cues
extracted in the vicinity of landmarks may therefore be more informative for the
classification of distinctive features than cues extracted from other times in the
signal. To the best of our knowledge, the highest accuracy for voicing classification
of obstruents uses acoustic features extracted with reference to phonetic landmarks,
with accuracies of 95% and 96% [132, 133] for stops and fricatives respectively.

The choice of data representation is essential for the performance of detection
or classification tasks. Discriminative information from raw data can be extracted

by taking advantage of human perceptual ingenuity and human prior knowledge.
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However, the process of designing these manual features is laborious and time-
consuming. Deep learning techniques transform raw data into multiple levels of
abstraction by stacking multiple layers with non-linearities, thus learning complex
features automatically [134]. Though the accuracy of speech recognizers built
from deep networks is high [135], results on the cross-language portability of
deep networks include both positive and negative outcomes. We propose that deep
networks trained to classify distinctive features should be cross-language portable,
because of the universality of the features they are trained to classify.

In order to test the hypothesis that distinctive features anchored at phonetic
landmarks can be transferred cross-lingually, we train models on an English corpus
and evaluate them on voicing detection tasks for three different languages including
English, Spanish, and Turkish.

In the following sections, acoustic landmark theory and the definition of its
regions are described in Section 7.2. Within these landmark regions, Section 7.3
illustrates acoustic feature representations that help to improve the performance
of voicing detection, consisting of manually designed acoustic cues and features
learned from deep neural networks. Experiments and analysis are described in

Section 7.4 and Section 7.5, followed by conclusions in Section 7.6.

7.2 Acoustic Landmarks and Distinctive Features

Landmarks are defined as points in an utterance where information about the
underlying distinctive features may be extracted. Four types of landmarks were
proposed in [31]: vowel (V), consonant release (Cr), consonant closure (Cc), and
glide (G). Cr and Cc landmarks are further specialized by manner classes—stop
(S), fricative (F), and nasal (N). For example, nasal release and closure can be
defined as Nr and Nc respectively.

We assume that accurate landmark positions in a speech signal are provided, so
that TIMIT phonetic transcriptions can be converted into landmark transcriptions
under the following rules. Each stop release segment has a Sr landmark at its start
time; each stop closure segment has a Sc landmark at its start time; each affricate,
fricative, or nasal has a Cc landmark at its start time and a Cr landmark at its end
time, specifically, each affricate and fricatives has a Fc and Fr, and each nasal
has a Nc and Nr; each vowel and glide has a landmark located at the midpoint

of its duration. TIMIT transcriptions specify the time-alignments of each phone
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with its acoustic signal, therefore, computing and generating landmark labels is
pretty straightforward by applying the aforementioned rules. Table 7.1 illustrates
examples of acoustic landmarks extracted from TIMIT. The first column denotes
the time when landmarks exist; the second column displays detailed landmark
types accordingly. For example, a fricative closure (Fc) landmark happened at the

time 0.1916s as shown in the first row in the table.

Table 7.1: Examples of landmark transcription from TIMIT.

Time (s) Landmark type

0.1916 Fc
0.2839 Fr
0.3213 v
0.3864 G

Stevens [31] proposed that distinctive features obtained from closure and release
landmark regions should be universal across languages. Motivated by this theory,
landmark positions across multiple languages can be labeled by the same rules.
In this chapter, we consider corpora in three languages—English, Spanish, and
Turkish. Landmark regions are further defined in the following way once landmark

positions are pinpointed.

e [f a Cc landmark happens at the start of a phone, acoustic cues are extracted

at the time when 20ms is delayed from the start (+20ms).

e If a Cr landmark happens at the start of a phone, acoustic cues are extracted

at the time when 20ms is advanced from the start (-20ms).

Acoustic cues correlate with manners of articulation so that they determine the
activation of distinctive features. Distinctive features are the concise description of
subsegmental attributes of a phone with a relatively direct relationship to acoustics
and articulation. These features typically take on binary values and form a minimal
set which can help to distinguish each segment from all others in a language.
The phonetic transcription of an utterance is thereby obtained if a collection of
categorical distinctive features can be detected. In this chapter, we are interested in

detecting consonant voicing, one of distinctive features.
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7.3 Acoustic Feature Representations

This section would describe the extraction of expressive acoustic features that
help to distinguish voiced consonants from unvoiced ones. We would elaborate

hand-crafted acoustic cues as well as self-learned features by deep neural networks.

7.3.1 Hand-Crafted Acoustic Cues

We explored several acoustic features using conventional speech signal processing
techniques, and a summary of these features is shown in Table 7.2.

Voice onset time (VOT): The duration between a consonant release and the
onset of voicing is demonstrated to carry voicing information for English stops,
fricatives, and affricates [131]. The voiced consonants are usually signaled in a
shorter duration than unvoiced ones.

Peak of normalized cross-correlation (PNCC): The value of cross-correlation
will be increased whenever the voicing of stops, fricatives, and affricates is pro-
duced [31]. For the voiced speech, the glottal period usually varies by only a
small percentage from one period to the next; the vocal tract filter varies slowly
in comparison to the glottal inter-pulse interval so that adjacent periods of the
speech signal tend to have similar shapes. Talkin [136] discovered a generator of
candidate estimates for the true period of speech signals based on the normalized
cross-correlation function (NCCF). We retain the peak of NCCF to capture the
value transitions of cross-correlation.

Amplitude of fundamental frequency (H1): Amplitudes of the speech signal
varies in time, however, observations between voiced and unvoiced segments show
that the amplitude of unvoiced speech is usually smaller than voiced speech. We
extract the amplitude of fundamental frequency as another feature in order to
account for the strength of vocal fold vibration.

Formant transitions: The behaviors of formant transitions are different between
voiced and unvoiced consonants [137]. We can observe an obvious formant
transition appearing right after the voice onset in voiced obstruents, while on the
contrary, there is not obvious similar behavior happened for unvoiced obstruents.
The transition behavior is significant for stops, and is also observable for other
obstruents.

Energy: The energy distribution over frequency bands deviates between voiced

and unvoiced consonants. It is observable for voiced consonants that most energies
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spread on low and relavtive high frequencies, while most energies are concentrated
at high frequencies for unvoiced consonants. Movitivated by the observation, we
extract energy-based features including root-mean-square (RMS) energy, energy
between 0-400Hz (E1), energy between 2000-7000Hz (E2), and the ratio of E1
and E2.

Table 7.2: Hand-crafted acoustic features in landmark regions.

Acoustic Feature ‘ Motivation

RMS energy

Energy between 0-400Hz (E1) Energy distributions over frequency bands are different
Energy between 2000-7000 Hz (E2) between voiced and unvoiced consonants

Ratio of E1 and E2
Peak of normalized cross-correlation (PNCC) | PNCC increases when vocal folds are vibrating

Amplitude of fundamental frequency (H1) Amplitude of voiced speech is larger than unvoiced speech

Voice onset time (VOT) Duration between release and voicing onset is shorter for
voiced segments than unvoiced segements

Formants transition Voiced obstruents have obvious formant transitions while un-

voiced ones do not have

7.3.2  Self-Learned Features by Convolutional Neural Networks

Common feature representation of speech signals as inputs to deep neural networks
is the spectrograms—magnitudes of log-Mel filter banks over time. However,
this feature may not be suitable for our task. We are looking into the features
extracted within a landmark region that is typically too short to contain multiple
speech frames. Therefore, we instead only perform the convolution operators along
frequency band.

Figure 7.1 illustrates the architecture of convolutional neural networks (CNN)
that consist of three types of layers—convolutional, max-pooling, and fully con-
nected layers. In a convolutional layer, each neuron takes as inputs local patterns
in the previous layer. All neurons in the same feature map share the same weight
matrix. A max-pooling layer is stacked following each convolutional layer that
similarly takes local patterns as inputs, and down-samples to generate a single
output for that local region. Multiple fully connected layers are concatenated
after multiple building blocks of convolutional-pooling pairs. A softmax layer
with a single neuron is taken as the output that capture the posterior probability
of the positive label (consonant voicing). During back-propagation, a first-order
gradient-based optimization method based on adaptive estimates of lower-order

moments (Adam) [138] is used.
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Figure 7.1: Convolutional neural networks for speech signals

7.4 Experiments

7.4.1 Multilingual Corpora

We consider three languages including American English, Spanish, and Turkish.
American English corpus is used for model training, and all other languages are
used for model evaluation. Table 7.3 shows the basic statistics of corpora for three

languages.

Table 7.3: Data statistics for consonant voicing detection across three languages.

Voiced consonant Unvoiced consonant

TIMIT (train) 56,269 40,475
TIMIT (test) 20,769 14,214
Spanish (test) 68,946 24,529
Turkish (test) 13,179 4,722

American English Corpus: TIMIT [56] corpus contains broadband recordings
of 630 speakers of eight major dialects of American English, each reading ten
phonetically rich sentences and includes time-aligned orthographic, phonetic, and
word transcriptions. Each utterance is recorded as a 16-bit and 16kHz speech
waveform file.

Spanish corpus: The phonetic Albayzin corpus of Spanish, initially developed
to train speech recognition engines, is selected. It was further divided into training

and testing subsets. The training data is made of 200 phrases; 4 speakers produced
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all 200 phrases and 160 speakers produced 25 out of these 200, so the set of 200
phrases is produced 24 times. The phrases are acoustically balanced according to a
statistical study of the frequency of each sound in Castillian Spanish.

Turkish corpus: Middle East Technical University Turkish Microphone Speech
Corpus (METU) [139] was selected as Turkish test set. 120 speakers (60 male
and 60 female) speak 40 sentences each (approximately 300 words per speaker),
which makes around 500 minutes of speech in total. The 40 sentences are selected

randomly for each speaker from a triphone-balanced set of 2462 Turkish sentences.

7.4.2 Feature Extraction

This section illustrates details of calculation of acoustic features including hand-
crafted acoustic features anchored at phonetic landmark regions, MFCCs that are
either averaged across the phonetic segment or anchored at the landmark region,
and self-learned CNN features in landmark regions.

MFCCs: A Hamming window is applied on the duration of the landmark region
or of the whole phone. The windowed signal is then transformed to compute Mel-
frequency cepstral coefficients (MFCC). We calculate static coefficients (MC13)
and their combination with dynamic coefficients (MC39).

VOT, formant transition, PNCC and HI: A robust RAPT [136] algorithm for
pitch tracking that is based on normalized cross-correlation and dynamic program-
ming is applied using Wavesurfer'. The fundamental frequency, probability of
voicing (1.0 means voiced and 0.0 means unvoiced), local error of the pitch, and
the peak of normalized cross-correlation are obtained. After getting the pitch for
each landmark segment, FFT amplitude at the pitch frequency was measured, and
FFT spectra were used to measure formant transitions.

Energy: Butterworth filter is used to design a bandpass filter with < 3dB of
passband ripple and > 40dB attenuation in the stopbands. Energies of filtered
signals are then computed in the frequency bands between 0-400Hz and between
2000-7000Hz, respectively.

Self-learned CNN features: 1024 point magnitude FFT is performed. Mel-scale
filterbank features are calculated by multiplying frequency response with a set of
40 triangular bandpass filters equally spaced in Mel frequency. In order to apply
the early stopping strategy during training procedure, a held-out development set

'http://www.speech.kth.se/wavesurfer/
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(10%) 1is stratified sampled from training set. The training will stop when the

validation loss is not decreasing anymore within 10 consecutive epochs.

7.5 Results

Consonant voicing is detected using MFCCs, hand-crafted acoustic cues, and
self-learned CNN features. These models are all trained in English, and tested on
English, Spanish, and Turkish, respectively. Support vector machine with radial
basis function kernel is used as the binary classifier based on acoustic features,
while CNNs are used as an end-to-end classifier. The F1 score of voicing consonant
(positive sample) and overall accuracy are used as metrics. Due to the imbalanced
nature of training set, the CNN is trained with each sample weighted inversely
proportional to class frequency. Relative error rate increment of performance over
English has been calculated when models are applied on other languages.

MFCCs: When calculating average MFCCs across the whole phonetic segment,
MFCCs with dynamic coefficients (MC39) achieved better accuracy and F1 score
than MFCCs with only static coefficients (MC13) as shown in the first and third
columns of Figure 7.2(a) and 7.2(b). However, F1 and accuracy for MFCCs
dropped by 5-20% absolutely when these models were evaluated on Spanish and
Turkish. When calculating MFCCs anchored at landmark regions, MC39 obtained
slightly better F1 score than its averaged model across the whole segment.

Acoustic Cues vs MFCCs: Acoustic cues demonstrated the superb performance
over MFCCs on all three languages as shown in Figures 7.2(a) and 7.2(b). Models
with acoustic cues trained on English suffered much smaller reductions of accuracy
and F1 score than MFCCs based models when tested on the other two languages:
MFCCs models achieved up to 96.1% accuracy relative reduction while acoustic
cues model only achieved up to 35.2%.

CNNs vs Feedforward NNs: The filterbank used to compute MFCCs can be
viewed as a type of pre-determined convolutional network; conversely, CNNs
extract local patterns with trainable but fixed-length convolutional windows. The
last two columns in Figure 7.3(a) reveal that CNNs can hold stable performance
for each language, using either FFT or filterbank features as inputs. When applied
to Spanish and Turkish, CNNs show little drop in accuracy, while their F1 score is
higher in the test languages than in the training language as shown in Figure 7.3(b);

the difference between overall accuracy and F1 score is apparently an artifact of
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Figure 7.2: Performance for three different features (“MC”, “AC”, and “CNN”)
on three test languages (English, Spanish, and Turkish), where “MC” denotes
MEFCC, “AC” denotes acoustic cues, “CNN” denotes acoustic features extracted by
CNN, “LR” denotes landmark region, “whole” denotes whole duration of a phone.
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the highly non-uniform class distribution in Turkish and Spanish, both of which
have twice as many voiced as unvoiced obstruents (see Table 7.3).

CNNs vs Acoustic Cues: Since the evaluation on two models—CNN+FFT and
CNN+FB—results in similar accuracy scores, we consider CNN+FFT as the best
CNN model. The right most points in Figures 7.2(a) and 7.2(b), and the number in
the last row in Table 7.4 illustrate that the best CNN model outperforms acoustic
cues across three languages, in both metrics, and that it generalizes well to cross-

lingual corpora.

Table 7.4: Relative accuracy reductions (%) over English for all other languages.

Turkish  Spanish

MFCC(13) (whole utterance) 59.3 54.8
MFCC(13) (Landmark Region) 40.9 44.5
MFCC(39) (whole utterance) 59.1 96.4
MFCC(39) (Landmark Region)  50.0 91.7
Acoustic cues 31.3 35.2
CNN 16.2 19.0

7.6 Conclusion

In this work, three different features are applied to build consonant voicing de-
tectors, in order to test the theory that distinctive feature-based classes are robust
over multilingual corpora. MFCCs (in landmark region, and averaged over the
whole phone utterance duration), acoustic features extracted from the landmark
region, and features learned by a convolutional neural network (CNN) were tested
as features. Classifiers based on these features are all trained on English and tested
on English, Spanish, and Turkish. Results show that MFCCs could not capture
voicing in either the training language or test languages. Manual acoustic fea-
tures generalize better to novel languages than MFCC. Acoustic features learned
by a CNN obtain best performance, both on training languages and non-training
languages. We conclude that features capable of representing long-term spectral
dynamics relative to a phonetic landmark (CNN and landmark-based features) are

able to generalize cross-lingually with little or no loss of accuracy.
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CHAPTER 8

JOINT MODELING OF ACOUSTICS AND
ACCENTS

The performance of automatic speech recognition systems degrades with increasing
mismatch between the training and testing scenarios. Differences in speaker accents
are a significant source of such mismatch. The traditional approach to deal with
multiple accents involves pooling data from several accents during training and
building a single model in multi-task fashion, where tasks correspond to individual
accents. In this section, we explore an alternate model where we jointly learn an
accent classifier and a multi-task acoustic model. Experiments on the American
English Wall Street Journal and British English Cambridge corpora demonstrate
that our joint model outperforms the strong multi-task acoustic model baseline. We
obtain a 6.86% relative improvement in word error rate on British English, and
11.34% relative improvement on American English. This illustrates that jointly

modeling with accent information improves acoustic model performance.

8.1 Introduction

Recent breakthroughs in automatic speech recognition (ASR) have resulted in a
word error rate (WER) on par with human transcribers [2, 3] on the English Switch-
board benchmark. However, dealing with acoustic condition mismatch between
the training and testing data is a significant challenge that remains unsolved. It
is well-known that the performance of ASR systems degrades significantly when
presented with speech from speakers with different accents, dialects and speaking
styles than those encountered during system training [8]. We specifically focus on
acoustic modeling for multi-accent ASR in this Chapter.

Dialects are defined as variations within a language that differ in geographical
regions and social groups, which can be distinguished by traits of phonology,
grammar, and vocabulary [140]. Specifically, dialects may be associated with the

residence, ethnicity, social class, and native language of speakers. For example,
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in British and American English, same words can have different spellings, like
Javour and favor; or different pronunciations, such as fedju:l in UK English vs.
skedzul in US English for the word schedule; in Spanish, vocabulary may evolve
differently between dialects, like for the phrase cell phone, Castilian Spanish uses
movil while Latin American use celular [141]; in English, same phoneme may be
realized differently, phoneme /¢/ in dress is pronounced as /¢/ in England and /e/
in Wales; in Arabic, dialects may also differ in intonation and rhythm cues [142].
In this chapter, we focus on the issue of differing pronunciations, while eschewing
considerations of grammatical and vocabulary differences.

Acoustic modeling across multiple accents has been explored for many years,
and various approaches can be summarized into three categories - Unified models,
Adaptive models, and Ensemble models. A unified model is trained on a limited
number of accents, and can be generalized to any accent [143, 144]. An adaptive
model fine-tunes the unified model on accent-specific data assuming that the accent
is known [145-147]. An ensemble model aggregates all accent-specific recognizers,
and produces an optimal model by selection or combination for recognition [141,
148, 149]. Experiments have revealed that the unified model usually underperforms
the adaptive model, which in turn underperforms the ensemble model [143, 144].

We note that these prior approaches do not explicitly include accent information
during training, but do so only indirectly, for example, through the different
target phoneme sets for various accents. This contrasts sharply with the way
in which humans memorize the phonological and phonetic forms of accented
speech: “mental representations of phonological forms are extremely detailed,”
and include “traces of individual voices or types of voices” [150]. In this chapter,
we propose to link the training of ASR acoustic models and accent identification
models, in a manner similar to the linking of these two learning processes in
human speech perception. We show that this joint model not only performs well
on ASR, but also on accent identification when compared to separately-trained
models. Given the recent success in end-to-end models [11, 122, 151-159], we use
a bidirectional long short-term memory (BLSTM) recurrent neural network (RNN)
acoustic model trained with the connectionist temporal classification (CTC) loss
function for acoustic modeling. The accent identification (AID) network is also
a BLSTM, but includes an average pooling layer to compute an utterance-level
accent embedding. We also introduce a joint architecture where the lower layers of
the network are trained using AID as the auxiliary task while multi-accent acoustic

modeling remains the primary task of the network.
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Next, we use the AID network as a hard switch between the accent-specific
output layers of the CTC AM. Preliminary experiments on the Wall Street Journal
American English and Cambridge British English corpora demonstrate that our
joint model with the AID-based hard-switch achieves lower WER when compared
with the state-of-the-art multi-task AM. We also show that the AID model also

benefits from joint training.

8.2 Related Work

The most closely related work to ours is from [144], which illustrated that hi-
erarchical grapheme-based AM with auxiliary phoneme-based AMs in four En-
glish dialects trained with CTC significantly outperformed accent-specific AMs
and grapheme-based AM, respectively, while achieving competitive WER with
phoneme-based multi-accent AM. Similarly, Yi et al [147] also trained a multi-
accent phoneme-based AM with CTC loss, but instead, adapted accent-specific
output layer using its target accent.

Other relevant work compared the performance of training accent or dialect
specific acoustic models and joint models. These approaches predicted context-
dependent (CD) triphone states using DNNs, and used a weighted finite state
transducer (WFST)-based decoder. For example, senones on accents of Chinese
are predicted by assuming all accents within a language share a common CD
state inventory [145, 146]. Elfeky et al [143] implemented a dialectal multi-task
learning (DMTL) framework on three dialects of Arabic using the prediction of a
unified set of CD states across all dialects prediction as the primary task and dialect
identification as the secondary task. DMTL model deviated from ours in that it
directly predicted CD states using convolutional-LSTM-DNNs (CLDNN), and was
trained with either cross-entropy or state-level minimum Bayes risk, while ignoring
the secondary dialect identification output at recognition time. This DMTL model
was trained on all dialectal data and underperformed the dialect-specific model.
Dialectal knowledge distilled (DKD) model was also designed in [143], which
achieved results competitive to, but below, dialect-specific models.

The effectiveness of dialect-specific models motivated investigations into how to
use ensemble methods on multiple dialect-specific acoustic models for recognition.
Soto et al [141] explored approaches of selecting and combining the best decoded

hypothesis from a pool of dialectal recognizers. This work is still different from
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ours in that we make perform selection directly using predicted dialect. Huang et
al [8] used a similar strategy to ours by identifying accent first followed by acoustic

model selection, however, this work only considered GMMs as the classifier.

8.3 Method

Our proposed system consists of multiple accent-specific acoustic models and
accent identification model. We will describe these components and their joint
model in this section. Acoustic model selection based on the hard-switch between

accent-specific models is illustrated in Section 8.3.4.
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Figure 8.1: Proposed accent identification (AID) model with BLSTMs and
average-pooling.
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8.3.1 Accent Identification

Accurate identification of a speaker’s accent is essential to the pipelined ASR sys-
tems, since accent identification (AID) errors can cause large mismatch to acoustic
models. Given the hypothesis that accents can be discriminated by spectral features,
researchers have attempted to model the spectral distribution of each accent using
GMMs. Recently, DNNs have been explored as a much more expressive model
compared to GMMs, especially in modeling probability distributions.

We implemented an independent AID that summarizes low-level acoustic fea-
tures of an utterance by a stack of bidirectional LSTMs (BLSTMs) and DNN
projection layers. An average-pooling layer is applied on top of transformed
acoustic features, because the acoustic realization of a speaker’s accent may not
be observable in each frame. Applying average-pooling gives us a more robust
estimate of accent-dependent acoustic features. We note that we assume that the
speaker’s accent is fixed over the entire utterance.

Figure 8.1 depicts details of this AID model. A single sigmoidal neuron is used at
the output layer for classification because we are only classifying between accents

of English—US and UK. We trained the AID network using the cross-entropy loss.

8.3.2 Multi-Accent Acoustic Modeling

Recently, end-to-end (E2E) systems have achieved comparable performance to
traditional pipelined systems such as hybrid DNN-HMM systems. These E2E
systems come with the benefit of avoiding time-consuming iterations between
alignment and model building. RNNs using the CTC loss function are a popular
approach to E2E systems [151]. The CTC loss computes the total likelihood of
the output label sequence given the input acoustics over all possible alignments.
It achieves this by introducing a special blank symbol that augments the label
sequence to make its length equal to the length of the input sequence. Clearly,
there are multiple such augmented sequences, and CTC uses the forward-backward

algorithms to efficiently sum the likelihoods of such sequences. The CTC loss is

pAlx) = > plalx) (8.1)

meB~1(1)

where 1 is the output label sequence, x is the input acoustic sequence, 7 is a blank-

augmented sequence for 1, and B7(1) is the set of all such sequences. During
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decoding, the target label sequences can be obtained by either greedy search or a
WEST-based decoder.

Our multi-accent acoustic model combines two CTC-based AMs, one for each
accent. We applied multiple BLSTM layers shared by two accents to capture
accent-independent acoustic features, and placed separate DNNs for each AM
to extract accent-specific features. Figure 8.2 describes the structure of multi-
accent acoustic model. Both AMs are jointly trained with an average of the two

accent-specific CTC losses.

American British
| CTCloss | | CTCloss |
T T
| Blank | phones | | Blank | phones |

| BLSTM | BLSTM |~ BLSTM |—{ BLSTM |

Fracusncy (Hzy

prn e

Figure 8.2: This figure shows the multi-accent acoustic model.

At test time, this multi-accent model requires knowledge of the speaker’s accent
to pick out of the two accent-specific targets. We experimented with both the oracle

accent label, and using a trained AID network to make this decision.

8.3.3 Joint Acoustic Modeling with AID

The previous multi-accent model assumes that multi-tasking between the phone sets

of the two accents is sufficient to make the network learn accent-specific acoustic
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information. An alternate approach is to explicitly supervise the network with
accent information. This leads us to our joint model, with multi-accent acoustic
modeling as primary tasks at higher layers, and with AID as an auxiliary task
at lower level layers, as shown in Figure 8.3. This joint model aggregates two
modules with the same structures to the aforementioned models in Section 8.3.1
and Section 8.3.2, and can be jointly trained in an end-to-end fashion with the

objective function,
m@in Lioint(©) = (1 — @) * Lam(O) + % Lap(O)

where « is an interpolation weight balancing between CTC loss of multi-accent
AMs and the cross-entropy loss of AID, and © is the model parameters. CTC loss
L am sums up the probabilities of all possible paths corresponding to Equation (8.1),
while AID classification loss Layp is cross-entropy. The two losses are at different

scales, so the optimal value of o needs to be tuned on development data.

American British
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3 e Lhi vor sy

MMMMM

Figure 8.3: Proposed joint model for accent identification and acoustic modeling.
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8.3.4 Model Selection by Hard-Switch

Given a trained CTC-based multi-accent acoustic model and AID classifier, we
apply maximum likelihood estimation to switch between the accent-specific output
layers yys and yyk. Let Pap (US|x) denote the probability of the US accent
estimated by AID. We threshold this probability at 0.5 to obtain the accent hard-
switch sp;p (US|x). Hence, we pick the output layer as Equation (8.2) shows. We

note that this strategy applies to both the multi-accent model and the joint model.

y = {YUS if SAID(US|X) =1 8.2)

Yuk else

8.4 Experiments

We perform experiments on two dialects of English corpora—Wall Street Journal
American English and Cambridge British English. They contain overlapping
but distinct phone sets of 42 and 45 phones respectively. Both corpora contain
approximately 15 hours each of audio. We held-out 5% of the training data
as a development set. The window size of each speech frame is 25ms with a
frame shift of 10ms. We extracted 40-dimensional log-Mel scale filterbanks and
performed per-utterance cepstral mean subtraction. We did not use any vocal
tract length normalization. We then stacked neighboring frames and picked every
alternate frame to get a 80-dimensional acoustic feature stream at half the frame
rate. Various models are compared in terms of phone error rate (PER) and word
error rate (WER). Particularly, we obtain the PER after simple frame-wise greedy
decoding from the DNN projection outputs after removing repeated phones and
the blank symbol. The Attila toolkit [160] is used to report WER by applying
WFST-based decoding. Evaluation is performed on eval93' American English
and si_dt5b? British English.

Our joint model uses four BLSTM layers where the lowest layer is attached
to the AID network and the highest single layer connects to two accent-specific
softmax layers. A single DNN layer with 320 hidden units is used for each task.
The weights for all models are initialized uniformly from [—0.01,0.01]. Adam

optimizer [138] with initial learning rate 5e—4 is used, and the gradients are clipped

lcatalog.ldc.upenn.edu/ldc93s6a
2catalog.ldc.upenn.edu/LDC95524
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to the range [—10, 10]. We discard the training utterances that are longer than 2000
frames. New-Bob annealing [161] on the held-out data is used for early stopping,
where the learning rate is cut in half whenever the held-out loss does not decrease.
For the purpose of fair comparison, we used a four layer BLSTM for the baseline
acoustic models as well.

Various models are briefly described as follows:

e ASpec: phoneme-based accent-specific AMs that are trained separately on
mono-accent data.
e MTLP: phoneme-based multi-accent AMs that are jointly trained on two

accents.

e Joint: proposed phoneme-based joint acoustic model with AID.

8.4.1 Empirical weights for balancing different losses

Our joint model is sensitive to the interpolation weight o between the AM CTC
loss and AID cross-entropy loss. We tuned « on development data. Figure 8.4
depicts relationship between overall PER of two accents and different « values.
When « goes larger, overall PER increases but with small fluctuations, especially
at o of 0.01 and 0.2. The PER tends to be the largest if « is 1.0, which is expected
since the weights of neural networks are updated only using the AID errors. We
found the optimal value of « to be 0.001, which achieved minimum PER of 12.02%.
Figure 8.5 illustrates the trend of AID accuracy over different o values. Weights
between 0.001 and 0.8 all perform well with accuracies greater than 92%, while
tail values lead to even worse performance. When « is 0.5 and 0.005, the best

performance is achieved with 97.77% accuracy.

8.4.2 Oracle performance for multi-accent acoustic models

We first evaluate the oracle performance of various models in Table 8.1. These
results assume that the correct accent of each utterance is provided for all models. In
other words, the acoustic model corresponds to the correct accent, i.e. the relevant
target accent-specific softmax layer is used. It can be seen that the proposed joint
model significantly outperforms the accent-specific model (ASpec) by 14.98%
relative improvement in WER, and multi-task accent model (MTLP) by 8.81%.
This observation indicates that deep BLSTM layers shared with multiple accent
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AMs can learn expressive accent-independent features that refine accent-specific
AMs. The auxiliary task, accent identification, also helps by introducing extra
accent-specific information. The advantage of augmenting general acoustic features
with specific information both implicitly learned by our joint model is observed
in natural language processing [162] tasks as well. The value of implicit feature

augmentation is a rich area for future investigation.

Table 8.1: Oracle performance that assumes that the true accent ID is known in
advance. PER is phone error rate computed by greedy decoding; WER is word
error rate after decoding with a WFST-graph incorporating a LM.

ASpec MTLP Proposed Model
PER WER PER WER PER WER

British 17.68 11.20 17.29 10.20 14.48 9.50
American 1595 950 1475 9.10 11.93 8.10

corpus

8.4.3 Hard-switch using distorted AID

The oracle experiments in Section 8.4.2 demonstrate the value of our proposed
joint model and the MTLP model when the AID classifier operates perfectly. This
section demonstrates the impact of imperfect AID on the performance using hard-
switch. Table 8.2 shows the results. Given a well-trained independent AID (ind.
AID), our joint model still significantly outperforms the two baseline models, and
MTLP achieves better WER than ASpec. In comparison to oracle WERs of all
models, British WERs are relatively constant without any distortion, however,
American English WERs deteriorate accordingly. This is because independent
AID has 100% recall for British English utterances on the test data.

It is interesting to note that the biggest improvement over ASpec in WER
comes when using the joint model (16.35%) instead of the MTLP model (6.73%)
with an independent AID model. The improvement upon further using the AID
from the joint model itself is still larger (17.31%). This indicates that the joint
model has already learned sufficient accent-specific information through the accent

supervision in the lower layers.
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Table 8.2: WERs of hard-switch using distorted AID. The rel. shows the relative
improvement over ASpec; ind. AID applies an independent neural AID trained
separately. Our Proposed Model applies the AID jointly learn with multi-accent
AMs.

Pipelines with ind. AID

Corpus Proposed Model (rel.)
ASpec MTLP (rel.) Joint (rel.)
British  11.2  10.2 (-8.93) 9.5 (-15.18) 9.5 (-15.18)
American 104 9.7 (-6.73) 8.7 (-16.35) 8.6 (-17.31)

8.5 Conclusion

This chapter studies state-of-the-art approaches of acoustic modeling across mul-
tiple accents. We note that these prior approaches do not explicitly include ac-
cent information during training, but do so only indirectly, for example through
the different phone inventories for various accents. We propose an end-to-end
multi-accent acoustic modeling approach that can be jointly trained with accent
identification. We use BLSTM-RNNSs to design acoustic models that can be trained
with CTC, and apply an average pooling to compute utterance-level accent em-
bedding. Experiments show that both multi-accent acoustic models and accent
identification benefit each other, and our joint model using hard-switch outperforms
the state-of-the-art multi-accent acoustic model baseline with a separately-trained
AID network. We obtain a 6.86% relative improvement in WER on British English,
and 11.34% on American English.
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CHAPTER 9

WHEN CTC TRAINING MEETS
ACOUSTIC LANDMARKS

Connectionist temporal classification (CTC) provides an end-to-end acoustic model
training strategy. CTC learns accurate AMs without time-aligned phonetic tran-
scription, but sometimes fails to converge, especially in resource-constrained
scenarios. In this chapter, the convergence properties of CTC are improved by
incorporating acoustic landmarks. We tailored a new set of acoustic landmarks
to help CTC training converge more rapidly and smoothly while also reducing
recognition error. We leveraged new target label sequences mixed with both phone
and manner changes to guide CTC training. Experiments on TIMIT demonstrated
that CTC based acoustic models converge significantly faster and smoother when
they are augmented by acoustic landmarks. The models pretrained with mixed
target labels can be further finetuned, resulting in a phone error rate 8.72% below
baseline on TIMIT. Consistent performance gain is also observed on WSJ (a larger
corpus) and reduced TIMIT (smaller). With WSJ, we are the first to succeed in

verifying the effectiveness of acoustic landmark theory on a mid-sized ASR task.

9.1 Introduction

Automatic speech recognition (ASR) is a sequence labeling problem that trans-
lates a speech waveform into a sequence of words. Recent success of hidden
Markov model (HMM) combined with deep neural networks (DNNs) or recurrent
neural networks has achieved a word error rate (WER) on par with human tran-
scribers [3, 163]. These hybrid acoustic models (AMs) are typically optimized by
cross-entropy (CE) training which relies on accurate frame-wise context-dependent
state alignments pre-generated from a seed AM. The connectionist temporal classi-
fication (CTC) loss function [116], in contrast, provides an alternative method of
AM training in an end-to-end fashion—it directly addresses the sequence labeling

problem without prior frame-wise alignments. CTC is capable of learning to con-
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struct frame-wise paths implicitly bridging between the input speech waveform
and its context-independent target, and it has been demonstrated to outperform
hybrid HMM systems when the amount of training data is large [11, 122, 152].
However, its performance degrades and is even worse than traditional CE training
when applied to small-scale data [164].

Training CTC models can be time-consuming and sometimes models are apt
to converge to even a sub-optimal alignment, especially on resource-constrained
data. In order to alleviate such common problems of CTC training, additional
tricks are needed, for example, ordering training utterances by their lengths [11]
or bootstrapping CTC models with models CE-trained on fixed alignments [165].
The success of bootstrapping with prior alignments indicates that external phonetic
knowledge may help to regularize CTC training towards stable and fast convergence.
Furthermore, another investigation [16] reveals that the spiky predictions of CTC
models tend to overlap with the vicinity of acoustic landmarks where abrupt
manner changes of articulation occur [31]. The possible coincidence of CTC peaks
overlapping acoustic landmarks suggests a number of possible approaches for
reducing the data requirements of CTC, including cross-language transfer (using
the relative language-independence of acoustic landmarks [15]) and informative
priors.

Many efforts have been attempted to augment acoustic modeling with acoustic
landmarks [12, 13, 15] which are detected by accurate time-aligned phonetic tran-
scriptions. To the best of our knowledge, only TIMIT [56] (5.4 hours) provides
such fine-grained transcriptions. The value of testing these approaches are limited
since the only available corpus is very small. It is worth further exploring the power
of landmark theory when scaled up to large corpus speech recognition.

In this chapter, we propose to augment phone sequences with acoustic landmarks
for CTC acoustic modeling and leverage a two-phase training procedure with
pretraining and finetuning to address CTC convergence problems. Experiments on
TIMIT demonstrate that our approaches not only help CTC models converge more
rapidly and smoothly, but also achieve a lower phone error rate, up to 8.72% phone
error rate reduction over CTC baseline with phone labels only. We also investigate
the sensitivity of our approaches to the size of training data on subsets of TIMIT
(smaller corpora) and WSJ [166] (a larger corpus). Our findings demonstrate that
label augmentation generalizes to larger and smaller training datasets, and we
believe this is the first work that applies acoustic landmark theory to a mid-sized

ASR corpus.
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9.2 Background

9.2.1 Connectionist Temporal Classification

Recent end-to-end systems have attracted much attention, for example, because they
avoid time-consuming iterations between alignment and model building [116, 151].
The CTC loss computes the total likelihood of the target label sequence over
all possible alignments given an input feature sequence, so that the computation
is more expensive than frame-wise cross-entropy training. A blank symbol is
introduced to compensate for the difference in length between an input feature
sequence and its target label sequence. Forward-backward algorithms are used to
efficiently sum the likelihood over all possible alignments. The CTC loss is defined

as,

Lee = —logp(ylx) = —log > p(w|x)

weB1(y)

where x is an input feature sequence, y is the target label sequence of x, 7 is one
of blank-augmented alignments of y, and B~ (y) calculates the set of all such
alignments. During decoding, the n-best list of predicted label sequences can be
achieved by either a greedy search or a beam search based on weighted finite
state transducers (WFSTs). In the following experiments, our acoustic models are
trained by the phoneme CTC loss, and we report phone error rates on TIMIT (a
smaller corpus) through an one-best greedy search and word error rates on WSJ (a

larger corpus) through an one-best WFSTs beam search, respectively.

9.2.2 Acoustic Landmarks

Acoustic landmark theory originates from experimental studies of human speech
production and speech perception. It claims there exist instantaneous acoustic
events that are perceptually salient and sufficient to distinguish phonemes [31].
Automatic landmark detectors can be knowledge-based [43] or learned [44].
Landmark-based ASR has been shown to slightly reduce the WER of a large-
vocabulary speech recognizer, but only in a rescoring paradigm using a very
small test set [44]. Landmarks can reduce computational load for DNN/HMM
hybrid models [12, 13] and can improve recognition accuracy [15]. Previous
works [12, 13, 15, 17] annotated landmark positions mostly following experimental

findings presented in [25,40]. Four different landmarks are defined to capture
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positions of vowel peak, glide valley in glide-like consonants, oral closure and oral

release.

9.3 Methods

9.3.1 Distinctive Features and Landmark Definition

Distinctive features (DFs) concisely describe sounds of a language at a sub-
segmental level, and they have direct relations to acoustics and articulation. These
features take on binary encodings of perceptual, phonological, and articulatory
speech sounds [167]. A collection of these binary features can distinguish each seg-
ment from all others in a language. Autosegmental phonology [168] also suggests
that DFs have an internal organization with a hierarchical relationship with each
other. We follow these linguistic rules to select two primary features—sonorant
and continuant—that distinguish among the manner classes of articulation, re-
sulting in a four-way categorization shown in Table 9.1. We define landmarks
as the changes in the value of one of these two distinctive features where the
TIMIT phone inventory is applied. The standard phoneme set used by WSJ ignores
detailed annotations of oral closures, for example /bcl/, so that we merge together
[-,+continuant] features under [-sonorant] column in Table 9.1, resulting in a

three-way categorization for WSJ experiments instead.

Table 9.1: Broad classes of sounds on TIMIT.

Manner -sonorant +sonorant

-continuant | bcldcl gcl kel  em en eng m n ng
pcl q tel

+continuant | bd gk ptchjh aaae ah ao aw ax ax-h

dhfhhhvssh axraydxeheleyihix

th v z zh iy 1 nv ow oy r uh uw
ux wy er
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9.3.2 Augmenting Phone Sequences With Landmarks

We defined two methods of augmenting phone label sequences with acoustic
landmarks. Mixed Label 1 only inserts landmarks between two broad classes of
sounds where manner changes occur; Mixed Label 2 inserts landmarks between
phones even if manner changes don’t exist. Figure 9.1 demonstrates an example of
our two augmentation methods.

13 .
¥ K >
4 ¥
: -3 !
- 5,
- 4
= ——
phone label pcl p | | | ey S
. -+cont ++cont ++cont
mixed label 1 cl e S
P --S0no -+S0N0 Y +-sono
mixed label 2 pcl -+cont ++cont | ++cont ey ++cont s
--sono -+S0N0___ ++S0N0 +-S0N0

Figure 9.1: Examples of target label sequences for the word “PLACE”. The audio
clip is selected from SI792 on TIMIT.

CTC only requires a single target label sequence, so that augmenting phone
sequences with landmarks can relax the need for time-aligned phone transcriptions.
With a blank label present between two phones in the training target sequence, the
vanilla CTC training can be considered as already experimenting with the scenario
where a dedicated phone boundary label is added to the label set. CTC is thus an

ideal baseline for our experiments.

9.3.3 Acoustic Modeling using CTC

We follow a pretraining and finetuning procedure to train our CTC models. At the

phase of pretraining, the AM initializes weights randomly and is trained by one of
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our mixed label sequences until convergence; at the phase of finetuning, the AM
initializes weights from the pretrained model and continues to be trained by a label
sequence with only phones. These two phases of training take the same acoustic
features. Figure 9.2 briefly illustrates the whole procedure. The top output layer
calculates a posterior distribution over symbols combined with both phones and

landmarks, while the bottom output layer calculates it over only phones.

Input
(speech features)

Output layer for mixed
label sequence
(phones & landmarks)

] Output layer for phone
label sequence
(phones alone)

Hidden layers

Figure 9.2: Two-phase acoustic modeling: top output layer pretrains with mixed
labels and bottom output layer finetunes with phone labels only.

9.4 Experiments

9.4.1 Configurations

We conducted our experiments on both the TIMIT [56] and WSJ [166] corpora.
We used 40-dimensional log mel filterbank energy features computed with 10ms
shift and 20ms span. No delta features or frame stacking were used. The recurrent
neural networks stacked two layers of bidirectional LSTMs, each with 1024 cells
(512 cells per direction), capped by a fully connected layer with 256 neurons.
Weights are initialized randomly from Xavier uniform distribution [169]. New-Bob
annealing [170] is used for early stopping after a minimum waiting period of
two epochs. The initial learning rate is 0.0005. The TIMIT baseline is trained
on 61 phones. The WSJ baseline is trained on 39 phones' defined in the CMU

pronunciation dictionary. One-best greedy search is applied to calculate the phone

1https://qithub‘com/Alexir/CMUdict/blob/master/cmudict—oJb.phones
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error rate (PER). We did not map TIMIT phones to CMU phone set (39 phones).
In order to make a fair comparison, all baselines went through the same two-phase
training with pretraining and finetuning. One-best beam search based on WFSTs is
applied to calculate the word error rate in WSJ experiments using decoding graphs
with a primitive trigram (tg) and pruned trigram (tgpr) from EESEN?. We use the
same train/dev/test split from Kaldi Recipes for TIMIT and WSJ.

9.4.2 Experiments on TIMIT

Figure 9.3 presents the development set PER as a function of training epoch. The
PER for mixed sequence represented by the red and yellow lines in Figure 9.3 is
calculated after landmark labels have been removed from the output sequence. In
the pretrain phase, models trained on augmented labels do not seem to have any
advantage in terms of error rate. However, the models converge much more rapidly
and smoothly. After pretraining, both the baseline and mixed-label systems are
finetuned; the mixed-label system (purple line in Fig. 9.3) returns a model that is

more accurate.

100 ‘ ‘
Baseline
————— Random init mixed 1 ]
Random init mixed 2
Refine on mixed 2

80 -

60 -

Phone Error Rate %

20 | | | | | | |
0 5 10 15 20
epoch #

Figure 9.3: PER as a function of training epoch. PER is calculated against only
phones after landmarks are removed.

The exact PERs for different setups on the TIMIT test set are reported in
Table 9.2. Our baseline achieved a PER of 30.36%, which was not improved
by finetuning. This is higher than PER reported elsewhere (e.g., [116]), because
nobody else calculates PER on the full TIMIT set of 61 phones. As shown

in Table 9.2, if we train with mixed labels and strip away landmarks from the

2https://github.com/srvk/eesen/blob/master/asr_egs/wsj/run_ctc_phn.sh
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hypothesis sequence, landmarks provide little benefit. However, the Mixed 1 and
Mixed 2 systems achieved lower PERs after the finetuning stage by 4.64% and
8.72% relative reduction, respectively. Apparently, a phone sequence augmented
with landmarks can be learned more accurately than a raw phone sequence, perhaps
because the acoustic features of manner transitions are easy to learn, and help to
time-align the training corpus. The Mixed Label 2 set outperforms Mixed Label 1,
apparently because the extra boundary information in Mixed Label 2 is beneficial

to the training algorithm.

Table 9.2: Comparison between baseline and our proposed models with
augmented target labels in PER (%). The number in the parentheses denotes the
relative reduction over baseline.

Baseline Mixed 1 Mixed 2

random init 30.36 30.98 29.10
finetuned 30.36  28.96 (4.64%) 27.72 (8.72%)

It is not clear why a finetuning stage is needed in order for Mixed I to beat the
baseline. One possibility is that landmark labels are helpful for some tokens, and
harmful for others; pretraining uses the helpful landmarks to learn better phone
alignments, then finetuning permits the network to learn to ignore the harmful
landmark tokens. We looked into the prior distribution on TIMIT, presented in
Figure 9.4, of both phones (top subplot, with phones ordered in the same way as
they occurred in Table 9.1) and landmarks (bottom subplot, Mixed Label 2 ordered
in category permutation using continuant as the first variable and sonorant as
the second). The table reveals that the distribution of landmarks is not balanced.
Most labels indicate a transition related to the [+continuant, +sonorant] phones. A
skewed landmark support is not ideal for augmenting phone recognizer training as

it tends to provide the same and redundant information for many training sequences.

9.4.3 Datasets Smaller and Larger than TIMIT

To solidify our findings, we further investigated the sensitivity of our approaches
to the size of training data on subsets of TIMIT (smaller corpora) and WSJ (a
larger corpus). In this section, we only demonstrate the experiments using Mixed

Label 2 augmentation method since it outperforms Mixed Label 1 in the previous
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Figure 9.4: Prior distributions of phones and acoustic landmarks.

discussion. We report PER/WER results for finetuned models.

Figure 9.5 shows the PER results by stretching the amount of training data
on TIMIT. Both the proposed model and baseline fail to converge when 75% of
the training data is used. We observe that both models start to predict a constant
sequence (usually made up of two to three most frequent phones) for all utterances.
Scheduled reducing the learning rate by New-Bob annealing can’t help to converge
to an optimal. Increasing the amount of training data helps both models converge.
The baseline needs 90% of TIMIT to converge, while the proposed system only
needs 80% of TIMIT.

100 x w x : T
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== \ixed Label 2 Refine
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Phone Error Rate %
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o

Il Il Il Il Il

60 70 80 90 100
Percetage of Training Data Used
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Figure 9.5: PERs by stretching the amount of training data on TIMIT.

When scaling up to a even larger corpus on WSJ, the proposed Mixed Label 2
system could achieve better performance over the baseline consistently in terms
of all metrics as shown in Table 9.3. Our baseline system slightly under-performs
the results published in EESEN [122] because our network is shallower and the
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acoustic inputs do not include any dynamic (delta) features, but the benefit of the
proposed landmark augmentation method still applies. To our knowledge, this is
the first work to show that manner-change acoustic landmarks reduce both PER
and WER on a mid-sized ASR corpus.

Table 9.3: Label Error Rate (%) on WSJ, where tg and tgpr denote decoding
graphs with primitive and pruned trigrams.

PER WER ( tgpr/tg )
eval92 dev93 eval92 dev93

Baseline 8.70  12.38 8.75/8.17 13.15/12.31
Mixed2 812 11.49 8.35/8.19 12.86/12.28

9.5 Conclusion

We proposed to augment CTC with acoustic landmarks. We modified the classic
landmark definition to suit the CTC criterion and implemented a pretraining-
finetuning training procedure to improve CTC AMs. Experiments on TIMIT and
WSJ demonstrated that CTC training becomes more stable and rapid when phone
label sequences are augmented by landmarks, and achieves a significantly lower
(8.72% relative reduction) asymptotic PER. The advantage is consistent across
corpora (TIMIT, WSJ) and across metrics (PER, WER). CTC with landmarks
converges when the dataset is too small to train the baseline, and it also converges
without the need of time alignments on a mid-sized standard ASR training corpus
(WSJ).
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CHAPTER 10

CONCLUSION

10.1 Summary

This dissertation investigated both knowledge-gnostic and knowledge-agnostic
approaches about acoustic and articulatory phonetics in order to address the issues

of linguistic mismatches for current automatic speech recognition systems.

o Knowledge-gnostic approaches: acoustic landmarks exploit quantal non-
linear articulator-acoustic relationships which identify times when acoustic
patterns of linguistically motivated distinctive features are mostly salient.
Acoustic cues extracted in the vicinity of landmarks are demonstrated to
contain more information for identification of articulator manner changes
and for classification of distinctive features than the cues extracted from
other times in the signal. Further ASR decoding experiments were con-
ducted on TIMIT by a heuristic method of weighting acoustic likelihood
scores for speech frames, and we observed that landmark speech frames
are more informative for recognition than other frames as expected. In
consideration of the superb property of informative landmark frames, we
also validated the power of portability of English landmark theory to other
languages, for example, Chinese, in the application of pronunciation error
detection tasks. In order to deal with scarce landmark transcripts in any
languages other than English, two landmark detectors—deep neural model
and spiky CTC model—are implemented so that accurate landmark tran-
scripts are accessible to any languages. Acoustic landmark knowledge also
benefits end-to-end acoustic modeling using CTC, such that CTC training
could converge more rapidly and smoothly and achieve a lower word error
rate. These contributions provide a solid foundation for many applications:
segmenting phonemes in low-resourced languages for fine-grained analysis;

predicting more accurate manner and place of articulators that can bridge
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mismatches across languages; altogether moving further toward the holy

grail of language-independent acoustic phonetic speech recognizer.

e Knowledge-agnostic approaches: human listeners can well perceive voices
with linguistic mismatches although they may not have any backgrounds
relevant to acoustic and articulatory phonetics. Human typically memorize
detailed mental representations of phonological forms and traces of individ-
ual voices or type of voices implicitly. Imitation learning directly from the
ability of human perception rely on a large scale recordings while disregards
any background knowledge. We proposed to link the training of acoustic
and accent altogether in a manner similar to the learning process in human
speech perception. We showed that this joint model not only performed
well on ASR with multiple accents, but also on accent identification when

compared to separately-trained models.

10.2 Future Directions

Recent success on automatic speech recognition attracts many experts with diverse
backgrounds including speech science, machine learning, and deep learning, and
they help to push the progress of ASR techniques to a new cutting edge. Re-
searchers are so obsessed with statistical modeling methods (e.g. word-pieces
end-to-end CTC framework and attention-based encoder-decoder modeling) on
large scale speech recordings that less efforts have been made to leverage the
benefits of acoustic and articulatory phonetics knowledge. One of my work on
knowledge-agnostic joint modeling of acoustics and accents falls in this category
as well, however, it is still a long row to hoe for commercial products deployment
in real-world tasks since the training data can’t guarantee to enumerate all possible
varieties of dialects or languages. Collecting enough data is an ideal solution but
it is way too expensive and time-consuming. This dissertation re-visited classic
theories relevant to linguistic prior knowledge, and experiments on speech tasks
demonstrated the potentials that distinctive feature classifiers anchored in the vicin-
ity of landmarks could help to build a bridge for dealing with mismatches across
different local or global varieties in a dialect continuum. The discoveries in these
contributions indicate another promising research direction, that is to combine both

acoustics and articulatory phonetics knowledge into the state-of-the-art statistical
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ASR models. It is the time for the oft-quoted statement to change: “Every time I

fire a linguist, the performance of the speech recognizer goes up”.
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