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ABSTRACT

This thesis reports the investigations into the task of phone-level pronun-

ciation error detection, the performance of which is heavily affected by the

imbalanced distribution of the classes in a manually annotated data set of

non-native English (Read Aloud responses from the TOEFL Junior Pilot

assessment). In order to address problems caused by this extreme class im-

balance, two machine learning approaches, cost-sensitive learning and over-

sampling, are explored to improve the classification performance. Specifi-

cally, approaches which assigned weights inversely proportional to class fre-

quencies and synthetic minority over-sampling technique (SMOTE) were ap-

plied to a range of classifiers using feature sets that included information

about the acoustic signal, the linguistic properties of the utterance, and word

identity. Empirical experiments demonstrate that both balancing approaches

lead to a substantial performance improvement (in terms of f1 score) over

the baseline on this extremely imbalanced data set. In addition, this thesis

also discusses which features are the most important and which classifiers

are most effective for the task of identifying phone-level pronunciation errors

in non-native speech.
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CHAPTER 1

INTRODUCTION

Computer-assisted pronunciation training system (CAPT), as an interactive

medium for non-native speakers to learn the second languages (L2), has at-

tracted considerable attention from research communities of speech signal

processing and applied linguistics in recent years [1]. This multidisciplinary

research aims to develop such an effective way of enhancing the speaking

skills of L2 learners that provides an accurate assessment of the pronuncia-

tion proficiency of L2 learners as well as detailed diagnostic information on

segmental mispronunciations such as insertion, substitution or deletion of a

specific pronunciation unit (phoneme), and suprasegmental errors such as

pitch, duration, syllable stress.

In the context of pronunciation training systems, most previous work has

focused on pronunciation error detection. Specifically, the goal of such sys-

tems would be to identify persistent errors in a non-native speaker’s speech

and to suggest directions for further training. In this thesis, on the other

hand, we consider the task of pronunciation error detection in the context

of large-scale assessment of English proficiency. While both assessment and

training ultimately pursue similar aims, there are several restrictions posed

by language assessment that need to be taken into account while designing

the error detection system. For example, fairness considerations require that

the system should not apply different criteria to test-takers with a different

native language (L1). This means that assessment systems may not use the

information about test-takers’ L1 to determine prior probabilities of error

patterns as is frequently done in pronunciation training systems.

For our system, we cast the task of pronunciation error detection as a bi-

nary classification problem based on a set of features consisting of acoustic

information, word identity and linguistic information. In nearly all cases,

the number of phones labeled as pronunciation errors in the corpus is very

small in comparison to the number of phones labeled as correct; this heavily
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skewed class distribution leads to challenges in modeling and evaluation. We

investigate two common approaches (cost-sensitive learning and sampling)

to mitigate problems caused by the extremely imbalanced distributions. We

also analyze the robustness of classifiers across different phones and discuss

which classifiers would be most effective in the context of a practical CAPT

or language assessment system. Besides the performance of phone-level error

detection, we concern ourselves with word-level pronunciation errors as well,

which would be triggered when any one of the phones in canonical pronun-

ciation of the word is identified as an error.

The remainder of this thesis is organized as follows: Chapter 2 describes

related works and state-of-the-art techniques in pronunciation error detection

research, and introduces the problems of imbalanced learning. Chapter 3

describes the corpus with manual annotations of pronunciation errors that

is used in this study. Chapter 4 presents the features that are extracted for

identifying pronunciation errors, details of imbalanced learning approaches,

and a searching algorithm of best feature selection for individual phones.

Experiments of pronunciation error detection at both phone-level and word-

level are illustrated in Chapter 5. This thesis concludes with discussions and

future works in Chapter 6.
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CHAPTER 2

RELATED WORKS

With the recent advance in automatic speech recognition (ASR) research,

pronunciation error identification techniques based on ASR frameworks have

been proposed for computer-assisted language learning (CALL) systems.

These systems typically detect segmental mispronunciations (or say phone-

level errors) from the second language (L2) learner’s read speech of prompted

texts with the help of an ASR decoder, and then they provide detailed diag-

nostic feedbacks to L2 learners [2].

For the pronunciation training purposes, two types of ASR-based pronunci-

ation error detection techniques have been widely applied recently. The rule-

based approach uses extended pronunciation confusion networks that include

both canonical pronunciations and their mispronounced variants to capture

the possible error types [3–7]. The other is the confidence score-based ap-

proach that measures the similarity between the realization of a given phone

by L2 learners and its canonical pronunciation by native speakers [8–12].

It is well known that hidden Markov models (HMMs) are not powerful

enough to discriminate sounds that are spectrally similar and differ mainly in

duration. Besides, HMMs are also not quite suitable to distinguish fricatives

from plosives, for example, since the difference between these two sounds is

subtle in the amplitude envelope of the sound [13]. Therefore, another line

of this research is casting the identifying pronunciation errors as a binary

classification task [14–17].

2.1 Rule-Based Approach

One common rule-based approach is to utilize prior knowledge of mispro-

nunciation patterns extracted from a large corpus of L2 speech (see [18]).

Based on rules and statistical generalizations extracted from these mispro-
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nunciation patterns, the system’s pronunciation dictionary can be extended

to include mispronunciations, and prior probabilities can be added for their

variants. The pronunciation error detection task then consists of identifying

which realization of a given word occurred in a speaker’s response. This can

be done by using algorithms built into the automatic speech recognition en-

gine to select the most probable variant [2]. For this method with extended

pronunciation networks, the performance largely depends on the capability

of capturing all possible errors made by L2 learners. If the coverage of the

network is too small, any error that is not included in the lexicon will never be

detected. Studies also show that the detection results by simply comparing

the acoustic likelihoods among pronunciation variants do not have good con-

sensus with human evaluators [19, 20]. Therefore, too large a network could

significantly increase phone recognition errors and thus causes many false

alarms that could confuse L2 learners. Nevertheless, this approach can still

produce the best results when the predicted error patterns are customized

to a specific combination of L1 and L2. However, as mentioned in Chapter

1, in case of a global and large-scale language assessment with many diverse

L1 populations, such a customization may not be possible or desirable.

2.2 Confidence Measure

Another line of research is to identify pronunciation errors based on the

similarity between a speaker’s realization of a given phone and its target

pronunciation based on a native-speaker acoustic model. This method mit-

igates the effects of confusions raised in the rule-based approach because it

simply computes a score for each pronunciation to judge if this realization of

the sound is correct or not. In many cases, the similarity metrics are based

on ASR confidence scores: the lower the confidence score is, the higher the

chance that the sound was mispronounced. Various types of confidence mea-

sures have been studied in [8]. For instance, the most widely used measure is

probably the goodness of pronunciation (GOP) algorithm [11, 21], which has

also been adopted in other studies [22, 23]. GOP algorithm calculates the

duration-normalized log of the posterior probability that a speaker uttered a

specific phone given the acoustic observations.

For the purposes of providing detailed diagnosis information on mispro-
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nunciations such as insertion, substitution or deletion of a specific phone,

some methods have been proposed to improve the performance of mispro-

nunciation detection with both rule-based approach and confidence measures

together. For example, Harrison et al. [4] use context-sensitive phonologi-

cal rules to generate an extended lexicon that better characterizes language

transfer from L1 to L2. Doremalen et al. [24] improve confidence score-

based misappropriation detection by taking consideration of non-native error

patterns.

2.3 Pronunciation Error Detection as a Classification

Task

Recent work on pronunciation error detection has approached the task as a

supervised learning problem by training a classifier based on various acoustic

parameters which are likely to differ between predicted realizations [25, 26].

While earlier work on GOP algorithms [2, 11, 21] aimed to establish appro-

priate thresholds for different phones and speakers, subsequent studies have

re-cast it as a classification task in which GOP-like measures were combined

with additional acoustic and suprasegmental features using different machine

learning algorithms. Some of the machine learning methods used in previ-

ous studies include logistic regression [27], linear discriminant analysis [25],

support vector machines [28], and decision trees [29]. These studies mostly

focused on comparing the performance of the same machine learning algo-

rithm on different feature sets, and seldom provided insights into how to

choose the most appropriate classifier for the specific task. Yet other work

in the field of machine learning has demonstrated that the choice of which

classifier to use may have substantial effects on the system’s performance due

to task-specific strengths and weaknesses of various classifiers [30]. In this

thesis, we compare different machine learning algorithms using the same set

of features to evaluate whether and to what extent the choice of classifier

may affect the performance of the pronunciation error detection models.
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2.4 The Problem of Imbalanced Learning

Classification problems involving real-world data are often imbalanced, and

have a highly skewed distribution of classes. Despite this, most standard

learning algorithms assume a balanced class distribution or equal misclassi-

fication costs. Once such algorithms are applied to (extremely) imbalanced

data sets, the false acceptance rate tends to increase, because the model

does not adequately estimate the true distribution of the classes [31]. Two

common approaches that have been investigated to address the problems

caused by extremely imbalanced data sets are cost-sensitive learning and

sampling methods [31]. Cost-sensitive learning methods assign a relatively

high cost to misclassifications of minority class instances and minimize the

overall cost, while sampling methods attempt to balance the class distribu-

tions by adjusting the relative proportion of instances in the distribution.

These sampling-based methods, however, have some potential drawbacks:

specifically, under-sampling (removing instances from the majority class)

may cause the classifier to ignore important information pertaining to the

majority class, whereas an over-sampling approach (duplicating instances

from the minority class) may cause “tied” issues and lead to overfitting [32].

The synthetic minority over-sampling technique (SMOTE) [33] was proposed

to overcome these issues by generating artificial data based on similarities in

the feature space across instances in the minority class.

Pronunciation error detection, cast as a binary classification task, also

faces the standard problems that are caused by an imbalanced distribution

of classes in the corpus. The number of phones which are labeled as errors

by expert annotators is extremely small in relation to the overall number of

phones. For example, Doremalen et al. [27] note that they were not able

to train classifiers well for a number of phones because of the low percent-

age of annotated errors for those phones. In this thesis, we investigate the

two previously mentioned approaches to mitigate the affects raised by imbal-

anced data sets, and compare the performance of assigning weights inversely

proportional to the class frequencies (Auto-Weighting) and the SMOTE over-

sampling methods across a range of different classifiers. In the end, we also

empirically evaluate the quality of different classification decisions and sug-

gest the most effective classifier for the task of identifying mispronounced

phones.
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CHAPTER 3

DESCRIPTION OF THE DATA

This thesis work utilizes the data provided by Educational Testing Service

(ETS) that is derived from non-native spoken responses to Read Aloud items

during the Test of English as a Foreign Language (TOEFL R©) Junior pilot

administration.1 In this chapter, we will describe the development of this

corpus and corresponding statistics.

3.1 Corpus Preparation

The corpus of spoken responses used in this study was collected during the

pilot administration of an international assessment of English proficiency

targeted at middle-school students aged from 11 to 15. It consisted of 178

responses and included native speakers of Korean, Arabic, Spanish and Viet-

namese. All speakers were learners of English as a foreign language and

resided in non-English speaking countries. Each speaker was asked to read

one of the four texts out loud (45 responses for each text). The responses

were manually transcribed and were automatically aligned with human tran-

scriptions using the HTK-based Penn forced aligner [34].

This corpus was annotated for pronunciation errors by two linguists who

annotated pronunciation errors following the approach from [35] in which

raters were asked to identify “the most serious errors to be corrected in the

subject’s speech”. The annotators used their own judgment about what

errors should fall under this category; they were provided with the phonetic

dictionary (ARPABET symbols [36] are used) transcriptions of each word

and were asked to modify the transcriptions for errors that they considered

serious enough to break communication. For each text, six files were selected

1Disclaimer: The opinions set forth in this publication are those of the author(s) and
not ETS. Copyright c© 2014-2015 ETS. www.ets.org
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for double annotation to test inter-annotator agreement. The remaining files

were split between the two annotators using stratified sampling so that each

annotator was assigned a similar number of responses for each L1. The files

selected for double annotation were interspersed with the other responses,

and the annotators were not aware which responses were selected for double

annotation.

3.2 Human Inter-Annotator Agreement

On average the annotators corrected about 7% of all phones. This number

varied between the phones: for example, 29% of all occurrences of /D/(DH)2

were marked as mispronounced, while for /m/(M) this number was just

0.01%.

For the doubly annotated responses, we aligned the transcriptions using

edit distance and computed the absolute agreement (% of matching values)

and Cohen’s kappa (κ) on the phone level for each response. The inter-

annotator agreement on the localization of errors varied between items with

an average κ = 0.52 and an average absolute agreement 92%. In addition,

the two annotators agreed strongly on the relative number of mispronounced

phones in each response with Pearson’s r = 0.9 (p = 3× 10−6, N = 24) for

the number of phones corrected by each annotator per response.

These results compare favorably with inter-annotator agreement results

reported in previous studies. For example, [29] reported 80.2% agreement

for the localization of phone-level pronunciation errors in a corpus of Span-

ish. For English, Bonaventura et al. [37] reported 67% agreement on the

localization of phone-level errors. Intraclass Correlation Coefficients (ICC)

values between 0.29 and −0.56 were reported in [38]. The annotation proce-

dure used in this study consistently produced agreement above these reported

values.

To evaluate the validity of our annotations, we computed correlations be-

tween the number of words corrected by the annotator and the holistic pro-

ficiency score assigned by the first human rater (this holistic score was based

on an evaluation of several aspects of English speaking proficiency, including

2Phone symbols are IPA (CMUdict in parens), where CMUdict: http://svn.code.
sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-0.7b.phones
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delivery, vocabulary, grammar, and content, and was not limited solely to

an evaluation of pronunciation). For responses that were annotated by both

annotators we used the mean value of the number of corrections from the two

annotations. The overall correlation between the number of corrections and

the holistic proficiency score was r = −0.57 (p = 3.02× 10−22, N = 175).
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CHAPTER 4

METHODOLOGY

In this chapter, we will describe the details of feature extraction includ-

ing acoustic information, linguistic information and word identity. Machine

learning methods consisting of both linear and non-linear classifiers will be

introduced. In order to address the issues raised by the imbalanced na-

ture of the training data set, two balancing approaches (Auto-Weighting and

SMOTE) are also illustrated. At the end of this chapter, an exhaustive

search algorithm of feature selection will explain how to find the optimal

feature subset for individual phones in order to maintain similar or better

performance of classification.

4.1 Automatic Speech Recognition

Automated assessment of non-native speech relies on automatic speech recog-

nition (ASR) to convert the spoken response to a text transcription [39]. For

this study, we used a hidden Markov models (HMMs) based ASR system to

recognize the speech from the target corpus. The triphone acoustic mod-

els are trained on approximately 800 hours of non-native adult speech and

adapted to 137.2 hours of children’s speech. The language model adaptation

is also applied using in-domain data [40]. The word error rate (WER) on the

read aloud evaluation set1 is 9.7%.

In this study, we only used the words where the ASR hypothesis was in

agreement with the human transcription (14,302 out of 20,772 words). The

purpose of this procedure is to ensure that our system should be capable of

identifying actual pronunciation errors rather than ASR systematic errors.

The final training corpus consists of 50,261 phones (error: 3,665, correct:

1The test-taker reads one of 684 paragraphs (containing approximately 90 - 100 words)
presented on the screen out loud.
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46,596), and evaluation corpus consists of 24,346 phones (error: 1,755, cor-

rect: 22,591). The distributions of two class labels (“error” and “correct”)

for individual phones (39 unique phones) on the training set and evaluation

set are illustrated in Figure 4.1(a) and 4.1(b), and details of numbers are

listed in Appendix A.1(a) and A.1(b), respectively.

4.2 Feature Extraction

We select three different kinds of feature representations for potential pro-

nunciation errors—acoustic features, word identity, and linguistic features.

Individual features as well as their combinations are applied to train predic-

tion models. (See Table 4.1 for details.)

Table 4.1: Feature candidates.

Model Feature Description

ac am raw acoustic likelihood
am dur duration-normalized acoustic likelihood
cs raw acoustic confidence score
cs dur duration-normalized confidence score
logcs log-scale confidence score
logcs dur duration-normalized log-scale confidence score

ling str primary stressed syllable vs unstressed syllable
onset syllable structures: (onset, nucleus) vs. coda
wrdIn further segment between onset and nucleus: word-

initial or word-medial syllable
full syllable with full vowel or reduced vowel

wi word identity

4.2.1 Acoustic Features

For each phone we extracted the six acoustic features listed in Table 4.1.

Acoustic likelihood scores correspond to raw likelihoods [41]. Confidence

scores are raw posterior probabilities computed based on the phone lattice.

For each measure we also used a duration-normalized version computed by

11
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dividing the raw or posterior probability for each phone by the number of

frames in the phone.

4.2.2 Word Identity

Each speaker in this study read one of four texts. Preliminary analysis of

human annotations showed that some words were more likely to contain

errors than others [17]. Similar patterns have also been observed in previous

work on pronunciation error detection [38]. For instance, 75% of speakers

mispronounced the word “barley”. To ensure that our models identify actual

mispronunciations rather than simply learn difficult words, we also trained

models using a word identity feature and used these models as a baseline.

4.2.3 Linguistic Features

We may still need to consider several types of phonological knowledge to

further improve the performance for each phone.

Vowel reduction (full) is relevant to changes in stress, duration and

position in the word. Usually vowels are uttered shorter for L2 English

learners. So full vowel or reduced vowel may be a good representation of

error pronunciations.

Lexical stress (str) is the stress placed on a given syllable within a word.

The stress is always on a vowel. Here we only choose primary stress as the

indicator of stress. Native speakers of English use lexical stress naturally,

while for non-native speakers, it is often a challenge to imitate the force or

strength of each syllable. Some languages, such as Japanese and French,

pronounce each syllable with equal stress. This may result in the error pro-

nunciations for those L2 learners. For example, the vowels in “photograph”,

“photographer” and “photographic” have different pronunciations caused by

the stress.

Syllable structures consists of three segments: onset, nucleus and coda.

Most often, onset and coda are consonants, while nucleus segments are vow-

els. Meanwhile, the segment between onset and nucleus can be further di-

vided into initial and medial.
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4.3 Classifiers and Imbalanced Learning

We trained and evaluated separate models for each one of the 39 phones

rather than general models for all phones together, since previous work has

found that the distribution of acoustic features differs across phones [21,

42]. Six classifiers2 are selected to distinguish pronunciation errors on the

imbalanced corpus—decision trees, random forest, gradient boosting, support

vector machines with linear kernel (LinearSVC) and radial basis function

kernel (SVC), and binomial logistic regression.

To address the issues caused by the imbalanced distribution of class labels

in the training corpus, we performed experiments using the two approaches

as described in Section 2.4. First, we increased the cost of misclassifying

instances from the minority class by assigning weights inversely proportional

to class frequencies (Auto-Weighting). Due to practical limitations, this pro-

cedure was only explored for three classifiers: SVC, LinearSVC and Logistic

Regression. Second, we also applied the synthetic minority oversampling

method (SMOTE) to all six classifiers. Table 4.2 summarizes these available

combinations.

Table 4.2: Available classifiers and approaches for balancing the data.

Classifier Auto-Weighting SMOTE-3 SMOTE-6

SVC X X X
LinearSVC X X X
Logistic Regression X X X
Decision Tree X
Random Forest X
Gradient Boosting X

The SMOTE algorithm creates artificial data based on the feature space

similarities between existing minority examples. More formally, for subset

Sminority ∈ S, consider the K-nearest-neighbors (KNN) for each example

xi ∈ Sminority, where i ∈ [1, |Sminority|] and K is a predefined integer. In n-

dimensional feature space Xn, KNN is defined as the K examples in Sminority

that hold the Top-K smallest Euclidean distances between itself and xi. Fig-

ure 4.2 (captured from [31])demonstrates the procedure of creating a new

example whose target label belongs to minority class. One of K examples is

2SKLL package: https://github.com/EducationalTestingService/skll.git
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selected randomly, which is denoted as x̂i and then a new instance is inserted

between two vectors xi and x̂i by multiplying some random number δ ∈ [0, 1],

namely,

xnew = xi + (x̂i − xi) ∗ δ (4.1)

(a) K-near-neighbors of xi (b) xnew is generated

Figure 4.2: Demonstration of synthesizing a new example in original feature
space. xi is the example in Sminority; x̂i is one of the K-near-neighbors; xnew
is the synthesized example; K = 6.

All models were evaluated using stratified 10-fold cross validation. For the

balanced data sets, the oversampling was applied only to the folds used for

training while the fold used for evaluation remained unchanged. Our goal

is to analyze differences in mean scores under more than three conditions,

therefore, we use a repeated measures analysis of variance (rANOVA) [43]

for the studies of comparing the performances of the classifiers and models

for individual phones.

4.4 Feature Selection

Section 4.2 creates new features from prior knowledge of acoustic-phonetics,

phonology, and word identities, however, from the feature engineering point

of view, these features are commonly either redundant or irrelevant for the

tasks of machine learning [44]. For example, one relevant feature may be

redundant when there exists another relevant feature that is strongly cor-

related with it [45, 46]. Therefore, those features may need to be removed
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without incurring much loss of information. In our study, we applied mul-

tiple acoustic likelihood scores to distinguish the pronunciation errors from

corresponding canonical pronunciations. Although these score features uti-

lized different normalization techniques, the redundant information remains

due to the possible correlations between their nature characteristics of speech

sounds.

More formally, the algorithm of feature selection is predefined as a problem

of searching an appropriate subset of features, such that the score on this

feature subset is maximized in terms of some evaluation metric. The most

straightforward solution is an exhaustive search in the hypothetical subset

space, such that we can find one of them that minimizes the classification

errors. This algorithm is computational intractable for large feature set,

however, it is tractable for our small feature set as mentioned in Table 4.1.
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CHAPTER 5

EXPERIMENTS

In this chapter, we will illustrate details of experiments on four different

tasks: cross validation on the training set, evaluation on the held-out test

set, 1-best feature subset selection and word-level pronunciation error iden-

tification. In order to make clear explanation, this chapter will make use

of several variables defined in Chapter 4, including three different features

(word identity, acoustic information, linguistic information and their combi-

nations), six classifiers (LinearSVC, SVC, logistic regression, decision tree,

random forest, and gradient boosting), and two approaches (Auto-Weighting

and SMOTE) for balancing the training data (see Table 4.2 and Table 5.1).

All experiments are performed using the tool of SciKit-Learn Laboratory

(SKLL) [47] that is a wrapper library of the Python machine learning toolkit

Scikit-learn [48].

5.1 Cross Validation on Training Set

We performed 10-fold cross validation on both the original training set (im-

balanced data) and its balancing improvements (balanced data). In experi-

ments on imbalanced data, we compared the performance between acoustic

features (ac), word identity (wi) and their combination (ac+wi), and found

that the correlation between average f1 score and pronunciation error rate

of individual phones revealed that insufficient training data in a minority

class might be one of reasons leading to bad performance. Motivated by this

observation, further experiments on two approaches of balancing the data

are conducted.
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5.1.1 Imbalanced Data

Figure 5.1(a) shows the box plot of f1 score over all classifiers for each phone

for ac model. Red dots indicate the average performance for the baseline wi

model over all classifiers. For two phones /A/(AA) and /j/(Y), the baseline

wi achieved an f1 score greater than 0.55. In most other cases the baseline

model performed at chance level, whereas the ac model generally performed

above chance level. However, for four phones /p/(P), /2/(AH), /A/(AA), and

/j/(Y), the ac model did not outperform the baseline wi. The performance

for most phones remained relatively low: f1 score was below 0.1 for 32 out

of the 39 phones with an average f1 score of 0.09 across all phones. (See

the first row in Table 5.1.)

Table 5.1: Mean value of f1 score for different models (columns) and
methods of balancing the data (rows). SMOTE-3 includes the three
classifiers where we also applied Auto-Weighting, and SMOTE-6 includes
all six classifiers. (See Table 4.2.)

wi ac ac+wi

Imbalanced 0.05 0.09 0.16
SMOTE-6 0.22 0.20 0.23
SMOTE-3 0.22 0.22 0.25
Auto-Weighting 0.21 0.24 0.27

Combining together both acoustic features and word identity ac+wi leads

to a further increase in f1 score as shown in Figure 5.1(b). The performance

across all phones, however, remains low, with an average f1 score of 0.16

(see Table 5.1).

Besides, from Figure 5.2(b) we also observed that the average f1 score

for ac+wi model was correlated with the percentage of errors for each phone:

r = 0.509 (p < 0.001). Model ac also held similar correlation with error rates

although it did not outperform the combination model. In other words, both

models performed better for phones with a larger percentage of errors, thus

confirming our initial intuition that the imbalanced nature of the training

data affects the performance of binary classifications for identifying pronun-

ciation errors.
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Figure 5.1: f1 score over all six classifiers for different models on original
imbalanced data. Boxes show f1 score across six classifiers for individual
phones given a model (ac or ac+wi); red dots indicate the mean f1 score

across six classifiers for the baseline model (wi) on word identity.
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Figure 5.2: Linear correlations between average f1 score and error rates
on training set. For ac+wi model, r = 0.509 (p < 0.001).

5.1.2 Balanced Data

In this section, we conducted a study on balancing the training data by

leveraging two approaches, Auto-Weighting and SMOTE, in order to alleviate

the affects of imbalance nature of data. Similar with previous section, the

combined model ac+wi was compared with baseline model wi.

(a) Auto-Weighting and SMOTE over All Classifiers

Figure 5.3 shows the ranked f1 score over all phones and all classifiers for dif-

ferent combinations of features and imbalanced learning approaches. We see

large increases in performance over the baseline model wi.Imbalanced when

the two approaches wi.SMOTE and wi.Autoweighting are applied; and simi-

larly, moderate increases are observed in performance over ac+wi.Imbalanced

model in original imbalanced data set (p = 6× 10−7 for model, p = 2× 10−16

for the sampling method, p = 2× 10−16 for interaction) when ac+wi.SMOTE

and ac+wi.Autoweighting are applied. Table 5.1 shows that the mean value

of f1 score achieved by the Auto-Weighting approach increased from 0.16

on the imbalanced data to 0.27.

Considering a more fine-grained comparison across all 39 phones, we also

illustrate f1 score over all six classifiers for each phone with respect to both

ac and ac+wi models. Figure 5.4 and Figure 5.5 show the box plot for two

approaches, respectively. The sequence of phones in these two figures are
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Figure 5.3: Ranked f1 score across all classifiers and all phones. Segment
lines inside boxes denote median.

sorted by the average f1 score over all six classifiers. In comparison to Figure

5.1, both approaches help to increase the performance by a large margin

for all models of wi, ac, ac+wi. Besides, Auto-Weighting approach holds

relatively more narrow variations of training samples for individual phones

than SMOTE approach. This observation indicates that this over-sampling

method indeed helps to distinguish the pronunciation errors in comparison to

the experiment on original data, however, it also brings more noisy samples

that could affect the general performance in comparison to sample-weighting

approaches.

(b) Comparison between Classifiers

We further explored the difference among the six classifiers by comparing

the average f1 score over all phones for the combined model ac+wi. Figure

5.6 illustrates that on imbalanced data, decision trees and a support vector

machine with a non-linear kernel (SVC) outperformed the two linear classi-

fiers (logistic regression and linearSVC), but linear classifiers outperformed
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(b) Auto-Weighting: ac+wi vs. wi

Figure 5.4: f1 score over all six classifiers for different models when
applying Auto-Weighting. Boxes show f1 score across six classifiers for
individual phones given a model (ac or ac+wi); red dots indicate the mean
f1 score across six classifiers for the baseline model (wi) on word identity.

22



N
G M K F B

O
W

H
H P

A
W

E
H S

A
E

A
H W

O
Y V

D
X

U
H

A
O

E
R R Z

IH IY N
T

H
U

W
L

S
H

A
Y D

J
H T

E
Y G

D
H

A
A

C
H Y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F−score

(a) SMOTE-6: ac vs. wi

N
G M K F B

O
W

H
H P

A
W

E
H S

A
E

A
H W

O
Y V

D
X

U
H

A
O

E
R R Z

IH IY N
T

H
U

W
L

S
H

A
Y D

J
H T

E
Y G

D
H

A
A

C
H Y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F−score
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Figure 5.5: f1 score over all six classifiers for different models when
applying SMOTE. Boxes show f1 score across six classifiers for individual
phones given a model (ac or ac+wi); red dots indicate the mean f1 score

across six classifiers for the baseline model (wi) on word identity.

23



the other classifiers after applying SMOTE. When using Auto-Weighting

approach, three classifiers, SVC, LinearSVC and logistic regression, achieved

similar performance (the classifier effect on f1 score within each phone: p =

0.00162 after controlling for model and oversampling method).
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Figure 5.6: Classifier performance for the ac+wi model.

In a fine-grained comparison, the performance of classifiers varied substan-

tially across individual phones. We choose LinearSVC and logistic regression

to make analysis. Even these two classifiers achieved almost the same overall

performance, the performances for the models on imbalanced data perturbed

severely across phones (see Figure 5.7(a) and 5.7(c)). We observed that there

is a big difference in the f1 score for /D/ (DH) when applying these two clas-

sifiers.

(c) Comparison between Auto-Weighting and SMOTE on LinearSVC

Since both the logistic regression and the LinearSVC obtained almost the

same f1 score as shown in Figure 5.6, we will choose LinearSVC as a

representative classifier to further explore the comparisons between two ap-
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Figure 5.7: f1 score comparison between LinearSVC and Logistic
Regression across individual phones.
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proaches in a fine-grained level. Figure 5.8 illustrates the performance of the

support vector classifier with a linear kernel using two different imbalanced

learning approaches across different phones for both the wi baseline and its

improved model ac+wi. It shows that both approaches for the combined

model ac+wi achieved almost similar f1 score in a fine-grained phone level

that is consistent with the coarse-grained performance (see the last column

in Figure 5.6), outperformed the baseline wi model for all phones except

/A/(AA) and /j/(Y) that were observed in Section 5.1.1.
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Figure 5.8: Comparison of Auto-Weighting and SMOTE imbalanced
learning approaches for support vector machine with a linear kernel.

5.2 Evaluation on Test Set

In this section, we will further explore the generalization power of models

by leveraging different combinations of two classifiers (LinearSVC and logis-
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tic regression) and two balancing approaches (Auto-Weighting and SMOTE)

based on acoustic features and word identity (ac+wi). Figure 5.9 illustrates

the f1 score for all different combinations of classifiers and balancing ap-

proaches across all phones, where the sequence of phonemes is ordered by

error rates on training set.

5.2.1 Comparison between Classifiers

When applying SMOTE approach, LinearSVC and logistic regression achieved

almost the same performance for each phone (see two dashed lines with col-

ored circle markers), while Auto-Weighting approach did not obtained consis-

tent f1 score between these two classifiers, particularly for the phones with

error rate less than 4.48% (see solid red and blue curves between /h/(HH)

and /p/(P)). Nevertheless, when the error rate of pronunciation goes be-

yond 4.48% (after /p/(P)), consistent performance between two classifiers

is obtained, except for the vowel /A/(AA). Generally, the combinations of

logisticRegression and SMOTE, logisticRegression and AutoWeighting,

LinearSVC and SMOTE maintained the same mean value of f1 score = 0.25,

while LinearSVC and AutoWeighting achieved better performance. (See Ta-

ble 5.2.)

5.2.2 Comparison between Balancing Approaches

When applying logistic regression classifier, two balancing approaches achieved

consistent f1 score for all 39 phones (see blue line and dashed line with yel-

low circle markers). After applying LinearSVC (see red line and dashed

line with purple circle marker), inconsistent performance falls in the vowel

/A/(AA) and phones /m/(M), /k/(K), /w/(W), /b/(B) with extremely low

error rates (less than 2.38%). For the phones /m/(M), /k/(K), and /w/(W),

synthesizing samples in the minority class did not improve the performance

of classification, while weighting inversely proportional to the frequency of

classes lead to a significant increase in f1 score. Table 5.2 shows the mean

values of f1 score for different combinations of classifiers and approaches

of balancing the training data. The values indicate that the combination of

LinearSVC and Auto-Weighting is suggested for solving the task of general
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classification of pronunciation errors.
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Figure 5.9: Performance of different setups on held-out test set: LinearSVC
vs. Logistic Regression, Auto-Weighting vs. SMOTE, where the sequence
of phones is ordered by error rates on training set.

Table 5.2: Mean value of f1 score over 39 phones for different classifiers
and methods of balancing the data.

Imbalance SMOTE Auto-Weighting

Logistic Regression 0.129 0.254 0.250
LinearSVC 0.164 0.253 0.262

5.3 Feature Selection

From Section 5.1.2(c), we see that there still exists a large range of f1 score

for individual phones from 0.02 to 0.6, even though we applied the relatively

best configuration (LinearSVC and Auto-Weighting) based on acoustic fea-

tures and word identity (ac+wi) as mentioned in Table 4.1. All current con-

figurations of distinguishing error pronunciations from canonical ones rely

on the domain knowledge of phonetics, as measured by acoustic likelihood

scores calculated by automatic speech recognizer. We may still need to con-

sider other phonological knowledge to further improve the performance for

each individual phone. In this section, we continue to explore the procedure

of feature selections that may provide more insights on identifying pronun-

ciation errors for individual phonemes. Concisely, the various types of prior
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phonological knowledge is denoted as linguistic features (ling) in the follow-

ing sections.

5.3.1 Exhaustive Search for 1-best Feature Subset

Considering linguistic features, the whole feature set is expanded as illus-

trated in Table 4.1. We conduct feature selection experiments for each phone

based on best configuration (LinearSVC and Auto-Weighting) as suggested

in Section 5.2.2. Ablation operation is applied on the whole feature set in

order to select best subset for each phone. A 10-fold cross validation is per-

formed on the training set. Figure 5.10 illustrates the performances of the

best feature subset and baseline ac+wi. As expected, the best feature subset

achieved a better f1 score for individual phones than the baseline. Specifi-

cally, for those phones /h/(HH), /k/(K), /b/(B), /f/(F), /g/(G), /OI/(OY),

/U/(UH), the performances are improved by a large margin. These selected

best feature subset for each individual phones is shown in Table 5.3.
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Figure 5.10: Comparison between the best feature subset and ac+wi

baseline on the training set using LinearSVC and the Auto-Weighting
approach, where the f1 score is averaged over all 10 folds. The sequence of
phones is sorted by the percentage of pronunciation errors.

29



Table 5.3: The 1-best feature subset for individual phones.

am raw am dur cs raw cs dur logcs raw logcs dur onset full str wrdIn word score

HH x x x x x 0.203571
M x x x x x x 0.254393
K x x x x x x 0.267527
W x x x x 0.330476
B x x x x x x 0.316667
F x x x x x x x x 0.252222
NG x x x x x x 0.130207
AW x x x x 0.361905
P x x x x x x x x x x 0.175151
N x x x x x x x 0.364656
S x x x x x 0.296779
AE x x x x x 0.232980
AH x x x x x x x 0.250278
OW x 0.209761
EH x x x x x 0.235892
V x x x x x 0.276525
UW x x x 0.397157
AO x x 0.308145
IH x x x x x x x 0.304873
IY x x x x x x 0.317590
AY x x x x 0.448871
G x x x x x 0.598413
AA x x x x x 0.566037
T x x x x x x x x x 0.385360
EY x x x x x 0.421666
SH x x x x x x x 0.447554
SH x x x x x x x 0.447554
SH x x x x x x x 0.447554
Z x x x x x x x x x 0.339440
R x x x 0.316642
DX x x x x 0.346059
L x x x 0.358340
ER x x x x x x x 0.313118
ER x x x x x x x 0.313118
D x x x x 0.376115
OY x x x 0.511905
JH x x x x x 0.423563
Y x x x x x x 0.685754
CH x x x x x 0.606472
CH x x x x x 0.606472
UH x x 0.500000
TH x x x x x 0.407279
DH x x x x x x 0.452019
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5.3.2 Evaluation with 1-best Feature Subset

Based on the 1-best feature subset for each phone which achieved the best

f1 score on the training set, we trained a separate LinearSVC classifier for

each phone using the Auto-Weighting approach. Thereafter, experiments on

the held-out test set are performed to analyze the generalization power. As

shown in Figure 5.11, most phones obtained better score than the baseline

ac+wi except /m/(M), /f/(F), /N/(NG), /s/(S) and /R/(DX). Table 5.4 illus-

trates the mean values of the f1 score over all phones for the 1-best feature

in comparison to the ac+wi model. The performance of the 1-best feature

model dropped 1.07% from 0.2623 on the ac+wi model, however, it remains

57.85% better than the baseline (imbalanced data).
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Figure 5.11: Comparison of performances on evaluation set based on 1-best
feature subset and ac+wi baseline using LinearSVC as classifier, where the
sequence of phones is sorted by the percentage of pronunciation errors.

Table 5.4: Mean values of f1 score for different setups.

ac+wi 1-best feature
Imbalance SMOTE Auto-Weighting Auto-Weighting

LinearSVC 0.1644 0.2529 0.2623 0.2595
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5.4 Word-Level Pronunciation Error Identification

Previous sections in this chapter studied the task of identifying pronunciation

errors at phone level. We are also interested in detecting those pronunciation

errors at the word level using models similar to those selected in phone level

experiments. In this section, we continue to conduct word level experiments

on different feature models by leveraging two balancing approaches, and make

evaluation on the held-out test set. LinearSVC is the only classifier to be

applied. The word level pronunciation error is triggered if any one of phones

in this word pronunciations is mispronouned.

5.4.1 Cross Validation on Training Set

The 10-fold cross validations are performed using different combinations of

feature set and balancing approaches. Table 5.5 lists the mean values of

f1 score over all phones. At word level, word identity feature that represents

the difficulty level of words provides a reasonable baseline since we expect

our models to identify mispronunciations rather than learn difficulty words.

For each feature model (see the headers of Table 5.5), the scores increases

by a large margin when applying balancing approaches, and Auto-Weighting

method achieves the best performance all the time. Adding linguistic features

(ac+wi+ling) does not make improvement while leads to drop by 1% in

comparison to model ac+wi. As expected, 1-best model achieves the best

performance on the training set.

Table 5.5: Comparison of 10-fold cross validation among different feature
sets in terms of f1 score. This table only shows the results of the
LinearSVC classifier.

wi ac ac+wi ac+ling ac+wi+ling 1-best

Imbalance 0.3173 0.1520 0.3392 0.1953 0.3300 NaN
SMOTE 0.3695 0.3730 0.4179 0.3750 0.4176 NaN
Auto-
Weighting

0.3746 0.3749 0.4276 0.3834 0.4233 0.4457
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5.4.2 Evaluation

In this evaluation task on held-out test set, we take into account two models:

ac+wi and 1-best in comparison along with two balancing approaches. Table

5.6 illustrates that these two models hold competitive scores when applying

Auto-Weighting approach.

Table 5.6: Comparison on held-out test set in terms of f1 score. This
table only shows the results of the LinearSVC classifier.

ac+wi 1-best

Imbalance 0.3468 NaN
SMOTE 0.4190 NaN

Auto-Weighting 0.4229 0.4282
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Discussion

In this thesis, we compared the performance of different machine learning

algorithms and approaches to handling imbalanced data sets in the con-

text of the task of pronunciation error detection in a large-scale language

assessment. We found that the best performance could be achieved by com-

bining information about word identity and the acoustic properties of the

word, although the performance of the models varied across phones. We

note that a simple model based solely on the word identity achieved rela-

tively high performance, especially on the balanced data set (for /A/(AA),

f1 score = 0.55). Despite this high performance, such a model has little

use in assessment or training: it only distinguishes difficult and easy words

without regard to the correctness of a particular pronunciation. Nonethe-

less, this potential effect of word identity has been often ignored in previous

studies. We recommend that a model based on word identity should be used

as one of the baselines in all future studies on pronunciation error detection

to ensure that the model performance is not limited to the identification of

difficult words. Besides word identity and acoustic features, we also observed

that linguistic factors contributed to the improvement of the performance for

each individual phones, which suggested a promising future work on further

exploring linguistic features.

Both cost-sensitive (Auto-Weighting) and sampling (SMOTE) approaches

substantially improved the performance of the model in comparison to the

baseline trained on the original imbalanced data. For some classifiers, the

Auto-Weighting approach outperformed SMOTE. Since the Auto-Weighting

approach only considers the cost associated with misclassifying samples,

while the SMOTE approach synthesizes artificial data, the lower performance
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of the SMOTE method may be due to the fact that the synthetic data was

generated from only the minority class and may have led to an increased

overlap between classes.

Finally, we found that support vector classifiers and logistic regression ob-

tained better classification performance than decision trees, random forest

and gradient boosting classifier. We also observed that classification perfor-

mance differed by phone.

6.2 Conclusion

This thesis investigates the task of phone-level pronunciation error detection

as a binary classification problem, of which the performance is highly affected

by the imbalanced distribution of classes (error vs. correct) in the data set.

We explored the use of a word identity feature as a baseline, and acoustic

features combined with it improved the overall classification performance on

both imbalanced and balanced data. Meanwhile, two imbalanced learning

approaches (Auto-Weighting and SMOTE) were applied and both achieved a

better average f1 score by a large margin. In the end, empirical experiments

were also performed for different machine learning classifiers, among which

support vector machines with a linear kernel and logistic regression were

the most effective classifiers on the general task of identifying pronunciation

errors.

6.3 Future Works

6.3.1 Context Feature of Each Phone

Current experiments considered acoustic features, word identity and a few

phonological characteristics of phones. We expect to explore more features

that could contribute to enhance the error identification power.

For the task of identifying pronunciation errors for each individual phone

by training a robust classifier, the variation within the same phone is also

useful information to help classifiers discriminate error from canonical pro-

nunciations. Take Allophones for example. Allophones are defined as one of
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two or more variants of the same phoneme. For instance, two pronunciations

/l/ and /@l/ for the letter “l” in the word “little”, or /p/(P) in “pin” and

“spin”, each pair has different pronunciation. These pronunciation variants

of the same phone at different positions within a word may lead to differ-

ent error types. In other words, such errors may result from the context of

each phone. Motivated by this observation, triphone identity may have good

potential for further exploration.

6.3.2 Acoustic Landmark Theory

Recent application of landmark-based distinctive features in ASR motivated

researchers to further explore the features’ utility in pronunciation error de-

tection problems. Quantal nonlinearities in articulatory-acoustic relations

provide a theoretical basis for selecting distinctive features, complementary

to the empirical foundations of most L2 research [49]. Stevens [50, 51] pro-

posed four different candidate landmark locations for English, including the

vowel peak landmark, oral closure landmark, glide valley landmark in glide-

like consonants, and oral release landmark. These four landmark categories

were proposed by Stevens to be language-universal.

In the field of identifying English pronunciation errors, acoustic land-

mark based distinctive features have gained great success for detecting six

phonemes for which Korean (L1) speakers made frequent pronunciation errors

in previous work [15, 16]. In the field of Mandarin Chinese mispronunciation

detection, we explored two approaches [52] to select Mandarin Chinese salient

phonetic landmarks for the Top-16 frequently mispronounced phonemes by

Japanese (L1) learners, and extracted features at those landmarks including

mel-frequency cepstral coefficients (MFCC) and formants. One approach is

to directly map well-founded English landmark theory into Chinese language

since there exists correspondences of articulatory-manner and articulatory-

place between English and Mandarin Chinese after applying Stevens theory.

Second, we defined distinctive Chinese landmarks for the Top-16 frequent

pronunciation errors by conducting human speech perception experiments

in collaboration with linguists. Experiments showed that acoustic cues of

MFCC and formants at both Chinese landmarks and English landmarks led

significantly better performance over the strong GOP baseline.
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However, determining the acoustic landmark positions that best repre-

sent categorical phonological distinctions remains a difficult problem, since

the acquisition of this knowledge requires large-scale experiments of human

speech perception [53]. The lack of this knowledge hinders the progress of

the application on identifying pronunciation errors. The discovery of acoustic

landmark theory and its success on identifying Chinese and English pronun-

ciation errors shed light on our future research of detecting pronunciation

errors in the context of large-scale assessment of English proficiency.

37



APPENDIX A

STATISTICS OF CORPUS

A.1 Error Distributions on Training Set and

Evaluation Set

38



Table A.1: Error distributions on the training set and evaluation set.

(a) Training Set

Correct Error Rate (%)

AA 514 47 8.378
AE 1625 83 4.859
AH 5874 309 4.998
AO 887 73 7.604
AW 165 7 4.070
AY 1042 90 7.951
B 376 9 2.338
CH 172 36 17.308
D 1906 228 10.684
DH 1385 462 25.014
DX 430 44 9.283
EH 955 52 5.164
ER 1175 136 10.374
EY 969 90 8.499
F 857 22 2.503
G 228 20 8.065
HH 728 9 1.221
IH 1618 137 7.806
IY 1513 129 7.856
JH 252 41 13.993
K 1782 28 1.547
L 1908 214 10.085
M 1499 23 1.511
N 3259 153 4.484
NG 636 22 3.343
OW 744 40 5.102
OY 100 15 13.043
P 1470 68 4.421
R 2066 208 9.147
S 2123 108 4.841
SH 237 23 8.846
T 3336 305 8.377
TH 217 54 19.926
UH 31 7 18.421
UW 635 51 7.434
V 1241 91 6.832
W 707 16 2.213
Y 335 57 14.541
Z 1599 158 8.993

Total 46596 3665 7.292

(b) Evaluation Set

Correct Error Rate (%)

AA 251 18 6.691
AE 738 28 3.655
AH 2889 156 5.123
AO 425 42 8.994
AW 74 5 6.329
AY 520 44 7.801
B 196 4 2.000
CH 91 8 8.081
D 923 112 10.821
DH 683 203 22.912
DX 221 21 8.678
EH 460 36 7.258
ER 594 69 10.407
EY 493 30 5.736
F 398 7 1.728
G 121 6 4.724
HH 367 3 0.811
IH 765 82 9.681
IY 715 54 7.022
JH 115 26 18.440
K 850 9 1.048
L 891 136 13.242
M 740 8 1.070
N 1564 70 4.284
NG 319 18 5.341
OW 372 23 5.823
OY 53 4 7.018
P 687 49 6.658
R 990 101 9.258
S 1003 48 4.567
SH 128 5 3.759
T 1630 128 7.281
TH 108 30 21.739
UH 14 0 0.000
UW 310 19 5.775
V 620 45 6.767
W 332 4 1.190
Y 170 24 12.371
Z 771 80 9.401

Total 22591 1755 7.209
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matic pronunciation scoring of words and sentences independent from
the non-native’s first language,” Computer Speech & Language, vol. 23,
no. 1, pp. 65–88, 2009.

[39] D. Higgins, X. Xi, K. Zechner, and D. Williamson, “A three-stage ap-
proach to the automated scoring of spontaneous spoken responses,”
Computer Speech & Language, vol. 25, no. 2, pp. 282–306, 2011.

43



[40] K. Evanini and X. Wang, “Automated speech scoring for non-native
middle school students with multiple task types,” in 14th Annual
Conference of the International Speech Communication Association
(INTERSPEECH), 2013, pp. 2435–2439.

[41] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying
for high accuracy acoustic modelling,” in Proceedings of the Workshop
on Human Language Technology. Association for Computational Lin-
guistics, 1994, pp. 307–312.

[42] M. Benzeghiba, R. D. Mori, O. Deroo, S. Dupont, T. Erbes, D. Jou-
vet, L. Fissore, P. Laface, A. Mertins, C. Ris, R. Rose, V. Tyagi, and
C. Wellekens, “Automatic speech recognition and speech variability: A
review,” Speech Communication, vol. 49, no. 1011, pp. 763–786, 2007.

[43] B. J. Winer, D. R. Brown, and K. M. Michels, Statistical Principles in
Experimental Design. McGraw-Hill New York, 1971, vol. 2.

[44] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer,
2009.

[45] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning. Springer, 2013.

[46] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-
tion,” The Journal of Machine Learning Research, vol. 3, pp. 1157–1182,
2003.

[47] D. Blanchard, N. Madnani, M. Heilman, N. M. Llerena, D. M.
Napolitano, A. Cahill, K. Evanini, and C. W. Leong, “Scikit-
learn laboratory (SKLL) 1.0.0,” 2014. [Online]. Available: http:
//dx.doi.org/10.5281/zenodo.12825

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[49] K. N. Stevens, Acoustic Phonetics. MIT Press, 2000, vol. 30.

[50] K. N. Stevens, “Evidence for the role of acoustic boundaries in the per-
ception of speech sounds,” in Phonetic Linguistics: Essays in Honor
of Peter Ladefoged, V. A. Fromkin, Ed. Orlando, Florida: Academic
Press, 1985, pp. 243–255.

44



[51] K. N. Stevens, S. Y. Manuel, S. Shattuck-Hufnagel, and S. Liu, “Imple-
mentation of a model for lexical access based on features,” in Second In-
ternational Conference on Spoken Language Processing (ICSLP), vol. 1,
Banff, Alberta, 1992, pp. 499–502.

[52] X. Yang, X. Kong, M. Hasegawa-Johnson, and Y. Xie, “Landmark-
based pronunciation error identification on Chinese learning,” submitted
in Speech Prosody, 2016.

[53] M. Wang and Z. Meng, “Classification of Chinese word-finals based on
distinctive feature detection,” Third International Symposium on Elec-
troAcoustic Technologies (ISEAT), vol. 35, no. 9, pp. 38–41, 2011.

45


