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Abstract

Despite the growing popularity in learning Korean as a foreign language and
the rapid development in language learning applications, the existing
computer-assisted pronunciation training (CAPT) systems in Korean do not
utilize linguistic characteristics of non-native Korean speech. Pronunciation
variations in non-native speech are far more diverse than those observed in
native speech, which may pose a difficulty in combining such knowledge in
an automatic system. Moreover, most of the existing methods rely on feature
extraction results from signal processing, prosodic analysis, and natural
language processing techniques. Such methods entail limitations since they
necessarily depend on finding the right features for the task and the extraction
accuracies.

This thesis presents a new approach for corrective feedback generation in
a CAPT system, in which pronunciation variation patterns and linguistic
correlates with accentedness are analyzed and combined with a deep neural
network approach, so that feature engineering efforts are minimized while
maintaining the linguistically important factors for the corrective feedback
generation task. Investigations on non-native Korean speech characteristics in
contrast with those of native speakers, and their correlation with accentedness
judgement show that both segmental and prosodic variations are important
factors in a Korean CAPT system.

The present thesis argues that the feedback generation task can be

interpreted as a style transfer problem, and proposes to evaluate the idea using



generative adversarial network. A corrective feedback generation model is
trained on 65,100 read utterances by 217 non-native speakers of 27 mother
tongue backgrounds. The features are automatically learnt in an unsupervised
way in an auxiliary classifier CycleGAN setting, in which the generator learns
to map a foreign accented speech to native speech distributions. In order to
inject linguistic knowledge into the network, an auxiliary classifier is trained
so that the feedback also identifies the linguistic error types that were defined
in the first half of the thesis. The proposed approach generates a corrected
version the speech using the learner’s own voice, outperforming the

conventional Pitch-Synchronous Overlap-and-Add method.

Keyword : Computer-Assisted Pronunciation Training (CAPT), Linguistic
Analysis of Non-native Korean, Corrective Feedback Generation for
Language Learning, Cycle-Consistent Generative Adversarial Network
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Chapter 1

Introduction

1.1. Motivation

Since communication ability is a major purpose of learning a foreign
language, precision and fluency in speaking are important goals for language
learning. As described in Figure 1, a particular application of Computer-
Assisted Language Learning named Computer-Assisted Pronunciation
Training (CAPT) uses Automatic Speech Recognition (ASR) technology to
assess and detect mispronunciation, pinpointing where pronunciation error
occurs, and provide corrective feedback.

CAPT system benefits learners in various aspects and is to be
distinguished from conventional pronunciation teaching methods. While a
feedback from a native instructor in a classroom environment is conventional

to acquire spoken proficiency, the number of available native teachers is too



Figure 1. A conventional CAPT system architecture using ASR technology to
automatically assess, detect mispronunciations, and provide corrective
feedback.

Pronunciation Dictionary

anguage Mode ASR
, ) .| Confidence Score 7 -
Learner’s Acoustic Madel g Merger \ Mispronunciation Corrective
Feedback

Speech Detection

low to meet each learner’s needs. One-to-one lessons by a qualified teacher
are ideal to teach pronunciation, compared to the conventional setting in
which there are roughly thirty students per teacher (Bloom, 1984). However,
only few learners can afford one-to-one tutoring and a complementary
approach is to use computer technology to simulate and automate aspects of
human one-to-one tutoring. CAPT allows users to follow personalized lessons,
at their own pace, and practice as often as they like.

This explains why CAPT systems that assist or substitute human tutors
have been attracting considerable attention in recent years (Eskenazi, 2009;
Bernstein et al., 2010; Higgins et al., 2011; Zechner et al., 2009; Qian et al.,
2010), which motivates the current thesis. As an artificially intelligent tutor, a
CAPT software is able to offer individualized tutoring regardless of
constraints in time and place, maximizing learning opportunities at learners’
convenience.

Moreover, the feedback generation in a CAPT system has an advantage
in that it can provide learner’s mother tongue (L1)-specifc individualized
feedback. The ability to address the L1 specifities is an important advantage

because L1 influences the target language production in foreign language



learning, and individualized feedbacks are pedagogically ideal.

Despite the growing popularity in learning Korean as a foreign language
and the rapid growth in language learning applications (Chung, 2018), only
few researches exist in CAPT systems targeting Korean. Moreover, the
existing CAPT applications for Korean tend to be under-researched in terms
of non-native speech phenomenon and rely on recording and playback
functions instead of exploiting the recent advancement in spoken language
processing technologies. The following section surveys the available CAPT

systems for English and Korean.

1.1.1. An Overview of CAPT Systems

In recent years, various CAPT systems enabled by dedicated ASR
technology have become available. Examples of such systems include
“Rosetta Stone” (Rosetta Stone, 2013), “Tell Me More” (Tell Me More, 2013),
“EduSpeak” (Franco et al., 2010), “FLUENCY” (Ezkenazi and Hansma,
1998), “ISLE” (Menzel et al., 2000), and “Talk to Me” (Auralog, 2002).
“FLUENCY?” is an interactive pronunciation trainer with a duration correction
module and user adaptive interfaces. Experiments with the application showed
that it is dependable and well-accepted by students. “ISLE” uses phone error
localization and diagnosis technology, which identifies the mispronunciations
and offers detailed error explanations and specifically tailored follow-up
exercises that are intended to highlight the contrast between the student’s
solution and the target, as well as to reinforce the desired articulatory behavior.
“Talk to Me” features 3D phonetic animations, pronunciation evaluation,

interactive dialogues with progressive learning contents.



For Korean learners of English, CAPT applications have been developed
and commercialized such as “Siwon School,” “Speaking Max,” and “Genie
Tutor.” “Siwon School” provides conversational speech practices using not
only ASR technology, but also multimedia contents, in five different steps:
Watch, Speak, Learn, Quiz and Lecture. “Speaking Max” provides Repeat,
Lecture, Training, Dictation, Quiz, and Speech exercises based on video
interviews of 2,000 native speakers. The Speech exercise includes shadowing
of the native speech and answering spontaneous questions within the context
of the video. “Genie Tutor” is another dialogue-based application using ASR
technology. It provides language proficiency evaluation and accepts free text
input, which increases the interactive capability of the system. Although many
commercial systems aiming at language learning are available, they tend to be
limited in generating feedback that can help learners correct errors (Kim,
2018).

At the research level, CAPT systems have been actively studied with
studies focusing on improving the performances in non-native speech
recognition, automatic assessment, and mispronunciation detection by using
feature engineering and machine learning techniques. Metze (2005) proposed
a speech recognition method that adapts to individual speaker and speaking
styles using articulatory features in order to improve automatic speech
recognition for non-native speech. Automatic assessment technology has been
developed in Miiller (2010) for oral proficiency that is suited for speakers of
South African English, and more generally, in Versant English Test (Berstein
et al.,, 2010) and SpeechRater from ETS (Higgins et al., 2011). These
automatic pronunciation scoring have been widely applied in real test

conditions in TOEIC® and TOEFL® tests (Zechner et al., 2009). Regarding



mispronunciation detection, Doremalen (2014) developed and tested a CALL
(Computer-Assisted Language Learning) application for Dutch as a foreign
language based on vowel pronunciation error pattern analysis for non-native
speakers of Dutch. Peabody (2006) presented a novel method for representing
the acoustic features of vowels to account for non-native variation in vowel
production, which are used as the anchoring method for mispronunciation
detection system. Since the mispronunciations deviate from the canonical
phoneme in many possible directions, recent mispronunciation detection

technology uses unsupervised error pattern discovery (Li, 2018).

1.1.2. Survey of Existing Korean CAPT Systems

Existing CAPT systems for Korean are surveyed here with a view to
analyze the strength and weaknesses of the status quo, and to define the
problem that needs to be addressed. The paragraph below surveys the
applications in terms of the knowledge content, and assessment and corrective
feedback methods.

“Kmaru SPEECH” provides playback of reference and learners’
pronunciation together with the waveform visualization and automatic
evaluation. “Learn Korean,” “Korean Pronunciation Teaching,” and
“Pronunciation Practice” all offer playback of reference and learners’
pronunciation. “Correct Pronunciation LITE” teaches phonological processes
in Korean. However, these applications do not consider Korean phonetic or
phonological error pattern analysis in their read speech design. Because of this,
the learners cannot tell whether or not their pronunciation was correct, and

even if they can hear the difference, it is not able to show the error type.



The automatic assessment methodology in some of these applications use
machine learning models built with handcrafted features, such as Goodness-
of-Pronunciation scores from the acoustic model and articulation rate (Witt,
1999). However, the remarkable success in deep neural network technology in
a variety of machine learning tasks has demonstrated its effectiveness, which
could further benefit the performance. We propose two aspects in which the
existing methodologies used in CAPT systems can be improved.

First, Deep Neural Network (DNN) approaches in CAPT systems have
been only applied and tested in speech recognition, assessment, and
mispronunciation detection tasks so far, and to the best of my knowledge,
there has been no thorough investigation towards corrective feedback
modeling using DNN. Speech correction seems to be a suitable area for
testing the capacity of deep learning because beyond the detection tasks, deep
learning models are found to provide substantial increases in generation and
synthesis abilities. To this end, Chapter 4 in the present thesis introduces a
new methodology using Cycle-consistent Generative Adversarial Network
(GAN).

Second, the unsupervised end-to-end solution that consists of deep neural
network models learns predictive features automatically, which is not
desirable in cases when precise corrections are required for learning. Although
the end-to-end models may show high performance, a disadvantage occurs
when the linguistic knowledge in hand-crafted features cannot be directly
utilized. This is problematic in the formation of corrective feedback
generation for second language learning, because the type of feature learnt by
the neural network model needs to be identified in order to guide the learners

what linguistic information needs to be educated. To this end, Chapter 5 in the



present thesis introduces a new methodology using an Auxiliary-Classifier
based Cycle-consistent GAN that allows both the unsupervised end-to-end
training and an architecture to inject the linguistic knowledge within the

network.

1.2. Problem Statement

The goal of the present thesis is to propose a new approach for a Korean
CAPT system based on linguistic analysis of L2 Korean speech. It is not the
goal of this work to build an entire CAPT system for Korean. Instead, the
problem is to first identify pronunciation variation patterns and utilize the
knowledge in today’s state-of-the-art deep neural network technology for the

task of corrective feedback generation.

1.3. Thesis Structure

The thesis can be divided into two parts. The first part comprises of
Chapters 2 and 3. Chapter 2 introduces basic concepts of phonology and
phonetics and the underlying L2 Korean analysis methods. It discusses these
two-level properties of phonemes and phonology and the differences
occurring between native Korean and Korean produced by Chinese. Chapter 3
concludes the first part by identifying the linguistic factors affecting the
evaluation of L2 Korean, which motivates the use of linguistic features in
corrective feedback research later in Chapter 5.

The second part begins with a survey of related works in corrective

feedback generation in Chapter 4. By interpreting the problem as a style



transfer, it proposes a method using Cycle-consistent generative adversarial
network (CycleGAN) training. This method can serve to generate a corrective
speech by unsupervised learning, as the differences predicted in the speaking
style, i.e. non-native speech vs. native speech, can be modelled by the
generator. In Chapter 5, an auxiliary classifier is trained to model linguistic
domain knowledge identified in Chapters 2 and 3. It combines the knowledge
with the methodology presented in the second part, proposing a linguistically-

motivated auxiliary-classifier CycleGAN.



Chapter 2

Pronunciation Analysis of Korean

Produced by Chinese

Pronunciation variations in non-native speech are far more diverse than
those observed in native speech. This poses a difficulty for CAPT systems to
automatically recognize learners’ speech, detect mispronunciations, and
provide corrective feedbacks. For an effective CAPT system, it is essential to
identify frequent variation patterns based on phonetic and phonological
annotations of the non-native Korean speech. Since these human annotations
serve as the ground-truth and the ultimate goal is to correct mispronunciations,
such annotated corpora is crucial for CAPT system development.

In other L2 languages, many previous studies have analyzed
pronunciation variation patterns. Chen (2013) conducted phonetic and tonal

error analysis in L2 Chinese produced by 305 speakers of European descent



whose first language is non-tonal. Gut (2009) conducted a corpus-based
analysis of phonological and phonetic properties of L2 English and German,
and You (2005) studied pronunciation variations of Spanish-accented English
spoken by young children using dynamic programming-based transcription
alignment on 4,500 words spoken by children. Hong (2014) investigated
variation patterns in English segments produced by Korean learners, capturing
only the most noticeable segmental variations that were not found in smaller-
scale studies.

In L2 Korean, characterization of non-native pronunciation patterns has
been limited, and often descriptive and qualitative in nature. These studies
described typical non-native Korean speech features observed in classrooms,
discussed possible variation patterns using contrastive analysis and language
transfer theory, and collected and analyzed speech recordings. Many of them
focused on the confusion patterns between the three-way distinction in Korean,
which are tense, lenis, and aspirated manners of speech. However, there has
not been a thorough study verifying the proposed hypotheses, as such data is
scarce, especially for non-native speech in Korean. Moreover, one of the well-
known characteristics of Korean speech is its usage of phonological processes,
i.e, changes in pronunciation depending on the phonemic context and the part-
of-speech of the word. Since many of these phonological processes between
syllables may not exist in learners' native languages, variations are likely to
occur. Previous studies discussed possible phonological error patterns, but
there has not been a follow-up corpus-based analysis.

This Chapter designed a new experiment method and analyzed a large-
scale speech corpus of non-native Korean produced by Chinese learners by

annotating the pronunciation and phonological variations. Mandarin Chinese

10



was chosen as the target L1 due to its growing popularity in L2 Korean
learning. Statistics as of November 2018 show that 68,184 out of 142,205
foreign students studying in South Korea are Chinese students, which is the
largest foreign student group (Chung, 2018). The second largest group of
foreign students is 14,614 from Vietnam, followed by 4,358 from Mongolia.
The statistics indicate the increasing demand for Korean language learning,
especially by learners whose mother tongue is Chinese.

Moreover, Korean produced by Chinese is an interesting topic of
research due to the linguistic contrast between the two languages, such as the
manner of speech and phonological processes in the target language. These
distinctions are not required as the standard pronunciation, and this
investigation is expected to provide insights into how we can further develop

spoken language technology in Korean targeted for Chinese learners.

2.1. Comparison between Korean and Chinese

The following sections conduct contrastive analyses of phonemes and
phonology in Korean and Chinese. Then, it reviews the related works and
designs an improved experiment method. Using the improved method, the
salient segmental and phonological variation patterns are presented together
with discussions on potential research directions that can spawn from the

results.

2.1.1. Phonetic and Syllable Structure Comparisons

11



Table 1. Korean and Chinese Consonants (K: Korean, C: Chinese)

Place Bilabial Alveolar all\)/ zf)ll_ar Palatal dental Velar Glottal
s K [c] Kk [clk]c K [c|x]c] kK Jclk]c
Unaspirated P p t t s
Stop Slightly Aspirated b d g
Aspirated p" p" th th kb
Unaspirated ts te”
Affricate Slightly Aspirated dz
Aspirated tgh teh t
Fricative Unasp%rated s= 8 s f h| h
Unaspirated s
Nasal m m n 0 n
Liquid 1 1
Semi-vowel w ] W U
Approximant 1

Table 2. Korean and Chinese Vowels (K: Korean, C: Chinese)

Backness Front Central Back
Height K C K C K
Close 1 iy wu u
Close-mid e o
Mid )
Open-mid €
Open a a A

Since learners' L1 and L2 both influence L2 production, comparing the
phonetic inventories of the two languages helps to predict pronunciation
variation patterns. This method, which is called contrastive analysis, has often
been criticized for its inadequacy in predicting the mispronunciations in actual
learning context. Nevertheless, for L2 phonology, it cannot be denied that
contrastive analysis has a predictive power and that it may be able to explain
the mispronunciation patterns. The following subsections compare the
phonetic inventories, syllable structures, and phonological phenomena in
Korean and Mandarin Chinese.

There are 19 Korean consonants excluding the approximants /w,j,uy/ (Lee,
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1996), and 19 Chinese consonants (Lin, 2007). Chinese language discussed
here refers to Mandarin Chinese. The stops and affricates in Korean are
grouped into lenis, tense, and aspirated by the manner of articulation, while in
Chinese, there are aspirated and unaspirated distinctions. The lenis stops /b, d,
g/ and lenis affricate /dz/ in Korean are slightly aspirated, while the aspirated
stops /ph, th, k" and aspirated affricate /te"/ are heavily aspirated. The tense
stops /p-, t7, k’/ and tense affricate /tc™/ are laryngealized and not aspirated.
Chinese affricates /ts, tsh, ts, tst/ do not exist in the Korean counterpart.
Fricatives are grouped as lenis and tense by the manner of articulation in
Korean, while they are grouped as aspirated and unaspirated in Chinese. The
post-alveolar fricative /s/ and labio-dental fricative /f/ in Chinese do not exist
in Korean. In approximants, Korean has the semi-vowels /w,j,uq/, which are
not individual phonemes in Chinese according to (Lin, 2007). These contrasts
are summarized in Table 1.

For vowels, there are eight and five monophthongs in Korean and
Chinese, each respectively. The two inventories share /i,u,a/ in common.
While /w/ sounds of Korean do not exist in Chinese at phonemic level, /e/
sound of Chinese does not exist in Korean. It should be noted that the scope of
contrastive analysis here is at the phonemic level, and an analysis at
allophonic level may yield different results. These contrasts are summarized
in Table 2.

A syllable in Korean is composed of (C)V(C), a consonant in the onset, a
vowel in the nucleus, and a consonant in the coda. The onset and coda
consonants are optional. A syllable in Chinese is composed of an optional
consonant at the initial and a final, which may be a monophthong or a

diphthong, followed by an optional /n/, /3/ or /y/. The differences in syllable
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structures show that /n/ and /n/ are the only consonants that can be realized as
the syllable coda in Chinese, whereas a Korean syllable allows /g, n, d’ 1, m,

b, 1/ as the syllable coda.

2.1.2. Phonological Comparisons

Phonological processes express systematic phonological sound changes
by mapping the underlying representation and the surface level realization,
describing how a phoneme stored in the speaker's mind yields what the
speaker actually pronounces. For example, in English, intervocalic alveolar
flapping occurs when it is placed in between stressed and stressless vowels,
which changes the letters ‘t” or ‘d’ into a quick flap consonant /c/, in words
such as ‘butter’ in most dialects of American English. A phonological process
that is present in one language may not be present in other languages, which
motivates a contrastive analysis of the phonological processes in Korean and
Chinese.

In Korean, phonological processes are phonemic changes that occur at
syllable boundaries in certain phonemic contexts when producing a sequence
of segments, and are described in Table 3. Surface level pronunciations are
not always realized as the underlying form, but are directed by these processes.
For example, in the word /[illa/, whose pronunciation according to its written
form is /fin"la/, lateralization rule is applied in the third segment. All rules in
the table are required as the standard pronunciation, which means that words
that do not conform to these phonological processes may sound foreign or ill-

formed.
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Table 3. Korean Phonological Processes

Phonologica .
Type 1 Process Description
Forward Tensificatio | When /g/, /d/, /b/, /s/, /dz/ are preceded by /p7,/t7 or /g ] they are
Assimi- X O S .
lati n realized as /k™/, t7/, Ip™/, /s7/, /t¢7/, each respectively
ation
Nasalizatio | When /p7,/t7 or /g7 are followed by /n/ or /m/, they are ~ assimilated
n and realized as /n/ or /m/
Palatalizati | The orthographic sequence /t " i/ is realized as the sequence /d3i/ or
on /tehi/
Subsit| Back-ward Late(r)?lllzatl ;l;?/e orthographic sequence /n ' 1/ and /In/ are realized as the sequence
ti imi- = == = - = =
uhon Alss.lml Bilabializat | The sequences /n b/, /n " p7/,and /n  nv/ are realized as /m " b/, /m
ation . _ - ’
ion p7/, and /m ' m/, each respectively
1 1 h h
Aspiration When /p7,/t7 or /g7 is followed by /h/, they are realized as /p¥/, /tb/,
/kb/, each respectively
Liaison When a coda segment is followed by a vowel in the next syllable, the
coda is resyllabified as the onset of the next syllable
Other Neut;zllzatl All coda endings are realized as /k /,/d7,/b7,/n7,/1/,/m7, or /y/
Del Consonant cluster All orthographic double consonants at the coda are simplified as
t'e e simplification /k7,/d7, /b7, m7, [/, /m7, or ly/
ton /h/ deletion when placed at the coda, orthographic /h/ is not pronounced
htliie;_ Nasal insertion For the compound nouns with inter slots, /n” / is inserted
Table 4. Chinese Phonological Processes
Phonological s
Type Rule Description
Subsit| Backwar | Bilabializatio | The preceding coda is influenced by the following onset segment. For
-ution d n example [Pan marp] is realized as [pam man] and [nan mien] can be
Assimi- realized as [nam mien].
lation
Dele- Segment Deletion occurs when [tg lan] is realized as [tg la].
tion Syllable shortening In fast speech, two consecutive syllables are integrated into one
syllable.
Inser- Linking segment for linking segment (Chao, 1968): Nasal or stop sound insertion before
tion a vowel. For example, when [kan a] is pronounced [kan na], a nasal
sound is copied to the onset position and pronounced as [kan na].

According to (Lin, 2007), phonological processes in Chinese are not

required and may or may not occur. Comparing the Tables 3 and 4 shows that

only bilabilization is common in the two languages, while all other

phonological phenomena are unique to Korean or Chinese.

15



For native Korean speakers, the phonological processes are naturally
acquired at the beginning of language learning. In contrast, for Korean as L2,
in which case grapheme-to-pronunciation education precedes the
phonological acquisition, such conversion rules are explicitly learnt. In this
vein, it should be noted that the term “phonological process" here may be
debatable for L2 phonology because L2 learners do not have the native
phonology by its definition, and inevitably use grapheme context information
to learn the sound change. Although we considered using the term “grapheme-
to-phoneme process," we decided to keep the common English translation
“phonological process" in this paper to maintain consistency with the previous

researches, such as (Jun, 2018).

2.2. Related works

Kim (2008), Qin (2010), Hwang (2012), Leng (2014) have predicted
pronunciation variations using the comparison between Chinese and Korean
phoneme inventories, and verified their predictions with learners' utterances.
For example, they predicted that variations will occur in lenis stops, since
there is no equivalent manner of articulation in Chinese. However, their
corpus-based findings differ, as some found confusions occurring between
lenis and aspirated stops, while others found confusions occurring between
tense and lenis stops. This means that they differ whether the word /§i/ (‘air”)
has the tendency to be realized as /k"/ (‘height”) or /k7i/ (‘talent’), as 48.3% of
lenis stops were realized as aspirated in (Hwang, 2012), while 85.5% of lenis
stops were realized as tense stops in (Qin, 2010).

Moreover, they predicted that variations will occur for alveolar stop /dz/,
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but different results were found whether /dzada/ (‘to sleep') is realized as
/tehada/ ('being cold') or /tcTada/ ('being salty'). For fricatives, different
variation patterns were found between /sada/ ('to buy') and /s7/ (‘cheap'). For
liquids, they predicted that flap will have tendency to be realized as /1/ or /v/
due to L1 influence. For example, /nara/ (‘country') may be pronounced as
/malla/ ('to carry') or /naia/. A survey of these studies shows that the related
works differ in their variation pattern findings.

The differences in the results can be explained by the amount of data
used and the diversity in learner levels. The corpora used in these studies are
small in size, as shown in Table 5, which makes it challenging to obtain
consistent observations in these analyses. Small-scale datasets are more likely
to lead to anecdotal findings that might not easily generalize well to a larger
population. Moreover, Kim (2008) and Cho (2013) analyzed the variation
patterns of intermediate level learners, while Hwang (2012) and Cui (2002)
analyzed those of advanced level learners. It is not surprising to find the
differences in analysis results, as the degree of L1 interference would vary
across different learner levels.

There are three aspects in which the analysis method in the previous
studies can be improved. First, the number of speakers should be larger and
balanced in learner levels so that the observations are not dependent on
individuals’ tendencies. Without such large-scale annotations of speech
corpora, it is challenging to characterize the non-native pronunciation patterns
to further the understanding in L2 Korean acquisition. To tackle this
fundamental challenge, we propose an analysis of a large-scale speech corpus
of non-native Korean with detailed human annotations. The corpus size and

the level of annotation between the previous and the current study are

17



compared (Table 5). The corpus used in the present research possesses the
following aspects that makes it suitable for studying non-native Korean
pronunciation patterns.

e  Large in number of speakers.

e Large in number of utterances.

e Large in number of per-speaker data (300 utterances/speaker).

e Complete in coverage of phonemes and phonological processes.

* Diverse in speaker demographic background: gender and learner

level balanced.
* Detailed in human annotations, which consists of phonetic and

phonological transcriptions.

Second, the learners' variation patterns should be compared with those of
native speakers, so that the patterns unique to the learners can be identified.
Related works assumed that all deviations from the canonical pronunciation
are “errors.” However, deviations from the canonical pronunciation are also
found in native speech (Keating, 1998), and the variations that are observed in
native speech are unlikely to cause miscommunication (Neri, 2006).
Therefore, this study proposes to compare the variation matrices of both
Chinese learners and native Korean speakers, in order to capture only the
salient variation patterns of the learners.

Furthermore, variation patterns should also be analyzed at the
phonological level. Although the previous studies have conducted corpus-
based analyses of the segmental variation patterns, no studies have examined
the patterns occurring at the phonological level, and this Chapter proposes a

two-level analysis both at the segmental and phonological aspects.
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Table 5. Comparison of Korean speech corpora produced by Chinese learners.
(B: Beginner, I: Intermediate, A: Advanced learner levels, Y: Yes, N: No)

Studies Speakers Utterances Annotation
Number Group Type Total | Phonetic Phonology
Leng (2014) 17 A 38 sentences 646 Y N
Qin (2010) 46 I 82 words 3,772 Y N
Kim (2008) 12 I 500 words 6,000 Y N
Hwang (2012) 20 B,LA 50 words 1,000 Y N
Current Study 51 B.LA 300 words 15,300 Y Y

2.3. Proposed Analysis Method

2.3.1. Corpus

This study conducts a larger scale experiment with 51 learners of all
levels, in order to find out the learners' prominent variation patterns. L2KSC
(L2 Korean Speech Corpus), a speech corpus for Korean as a foreign
language is used (Rhee, 2005). The corpus was built to evaluate the
acquisition of phonetic and phonological sounds in Korean language by
foreign learners of various L1 backgrounds. From L2KSC, this study analyzes
read speech of 300 utterances produced by 51 Mandarin Chinese and 51
Korean speakers. For Chinese, there are 17 beginning, 16 intermediate, and 18
advanced level learners, which correspond to the level of class the learner
belongs to in a foreign language institute in Yonsei University in Republic of
Korea. The read speech script is shown in Appendix I of this thesis.

Figure 2 shows the phonetic and phonological distributions in the corpus.

In order to be able to separately examine the segmental and phonological
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variation patterns, the segments that are affected by the phonological
processes listed in Table 3 were manually marked. Figure 3 shows an example
of such process. The top row is the pronunciation according to the written
form of the characters before the phonological processes are applied, whereas
the bottom row is the canonical pronunciation after the correct application of
the rules. The horizontal boxes indicate where phonological errors may occur,
while all the mispronunciations outside the boxes are counted as segmental
errors.

The canonical pronunciation is force-aligned using automatic speech
recognition technology. Then, the auditory pronunciation is phonetically
transcribed using Korean phonemes and six additional phonemes /tg, g, ts, ts",
f, 1/ that are unique to Chinese. All unique Chinese phonemes are added so
that L1 interferences can be analyzed, except /y/, whose perceptual difference
from /i/ in the same manner and place of articulation in Korean were
considered trivial according to the transcribers, and were not perceived as a
‘variation'. When the actual pronunciation is different from the canonical, they
were asked to mark the auditory pronunciation. When there is a mismatch in
the positions where phonological process occurs, it was considered as a
phonological variation, and the error count was increased for the rule. All
other mismatches are considered as segmental variations. In order to quantify
the relation between the canonical and the actual pronunciation, a confusion

matrix is generated.
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Figure 2. Segmental and phonological distribution in L2KSC corpus used in
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Figure 3. The top row is the pronunciation according to the underlying form
of the characters before the phonological processes are applied, whereas the
bottom row is the canonical pronunciation after correct application of the
process. In this example, which means ‘would like to,” three segments are
affected by phonological processes, shown by the horizontal boxes.
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2.3.2. Transcribers and Agreement Rates

The auditory pronunciation is phonetically transcribed by three graduate
students with knowledge in Korean phonetics and phonology in the
Department of Linguistics in Seoul National University. The transcriber

agreement rates are calculated according to the Pairwise Agreement equation.

No. of Phonemes in Agreement

Pairwise Agreement =
J Total No. of Variations

x 100 (1)

The agreement rates for Korean produced by Chinese learners and by native
speakers are 86.0% and 97.0%, each respectively. Comparing these figures
with those of previous studies' rates (Ryu, 2011; Hong, 2014), the reliability

of transcription results in this study is verified.

2.4. Salient Pronunciation Variations in Korean Produced

by Chinese

2.4.1. Segmental Variation Patterns

The average variation rates for consonants and vowels are 13.74% and
3.35%, respectively. The distribution of the variation rates for different
phoneme groups show that the three-way distinctions in lenis, tense, and
aspirated stops cover 28% of the errors (Figure 4). This is followed by coda

substitution and deletion errors.
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Figure 4. Variation rate distribution for different phoneme groups.

The phonemes with variation rates higher than the average are shown in
Table 6. Comparing the “Target Segment” and the “Realized Segment”
columns, 33% of flap /r/ are realized as lateral /I/. 20.2% of /p~/ and 11.9% of
/te™/ are realized as their lenis counterparts, and 7.9% of the lenis affricate /dz/
are realized as a Chinese phoneme with a similar place of articulation, /ts/.

Comparing with those of native variations, we can establish the patterns
unique to the learners. For example, the flap variations tend to be nasalized
for Koreans, while lateralization of flap is unique to Chinese learners' speech.
Native variations also occur in coda stops. However, substitutions are
common and not deletions, which is unique to the learners. For learners,
20.2% of /p7/ and 11.9% of /tc7/ are realized as their lenis counterparts, and
7.9% of the lenis affricate are realized as /ts/, a Chinese phoneme with a

similar place of articulation. These are not observed in native speech.
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Table 6. Salient variation patterns of Korean produced by Chinese.
(del.=deletion)

Target Count | Variation Rate | Realized Target & Rate (%)
Segment
r 1,604 36.10 1 |33.0
C 1 4,969 35.10 del. | 6.6
o p 942 27.49 b 202 p* | 6.9
n te” 613 23.49 ts | 7.2 | teh | 2.9
s d&z 1,694 22.67 ts | 79 | te7 | 6.9 | teh | 3.7
o t 1,792 21.94 del. | 15.6 | k' | 3.8
n 'y 1,607 21.22 g [15.6| kb | 4.7
2 d 3,584 17.75 tt [14.0| th | 3.2
t t 1,840 16.37 d [13.1] t |28
k” 2,086 14.96 del. | 11.0
wi 230 47.16 e |79 | wi |35
J€ 47 25.53 je [ 19.1
WA 240 16.31 u | 4.7
v we 474 14.76 gy | 9.1
o ja 570 9.12 a | 5.1 | ja |37
W i 143 7.69 we | 28 | u | 2.1 | upn | 2.1
R ju 239 7.53 g | 25| u |21 jo [2.1
1 JA 1746 7.1 1 1.8 | jo | 1.6
A 3316 6.12 o | 2.8
WA 573 5.76 we | 1.2
€ 1275 4.94 a | 1.5 ] A |11
w 2078 4.19 A | 1.6

For vowels, natives also show substitution patterns of diphthongs by
monophthongs. Within diphthongs, natives and learners both showed
variations with /w/, and variations in /j/ diphthongs were unique to Chinese
learners. When these patterns are analyzed at the manner and place of
articulation, we find that detensification and coda deletion are the most

frequent segmental variations.
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Table 7. Comparison between literature survey and corpus-based results on
Korean produced Chinese learners

Target Phoneme : Realized Phoneme _
Literature Corpus-based (variation rates %)
r lor 1 1 (33.0)
p- b or pt b (20.2)
te” Reference not available ts (7.2)
1 Reference not available Deletion (6.6)
z te” teh (6.9)
t" Deletion Deletion (15.6)
kK g or kb g (15.6)
t dor tt d (13.1)
d t"or th t~ (14.0)
g kh or k k™ (5.38)
b ptorp” p* (5.63)
wi w e (7.9)
je Reference not available je (19.1)
WA Reference not available u (4.7
we Reference not available gi (9.1)
WE Reference not available (3.4
ja Reference not available a (5.1)
je Reference not available e (4.2)

2.4.1.1. Discussions

Table 7 compares these findings with those in previous works. Regarding
the confusions among the three-way distinctions in these studies, tense stops
are frequently substituted by lenis stops more than aspirated counterparts. In
fact, variations in tense stops were underemphasized in the previous studies,
as four of the top ten most frequent variations were tense phonemes. The
learners also showed coda deletion patterns, replicating previous studies'
results. The findings are consistent with the contrastive analysis hypothesis as

flap sounds do not exist in Chinese, and due to L1 influence, they are often
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realized as lateral. Other frequent variation patterns include deletion of final
consonants, which could be explained by the difference in syllable structures,
as /k, t. p.l/ do not exist in Chinese.

Although not listed in the table, new observations were also made in the
current results, such as stop insertions and retroflex interferences. These may
have been caused by the differences in the syllable structure and mother
tongue influence, as retroflex phonemes in L1 do not exist in L2 and syllable

structures differ.
2.4.2. Phonological Variation Patterns

Errors were likely to occur in the order of nasal coda insertion,
palatalization, lateralization, tensification, nasalization, consonant cluster
simplification, and liaison (Table 8). The variation rates tend to decrease as
the learner levels increase (Figure 5). The error rates persist for tensification,
palatalization, and nasal coda insertions across all learner levels. Some rules

are more learnable than others; lateralization and nasalization rules are

60.00
4000 —— - —
0.00

Consonant Cluster Lenition i Nasal coda
Simplification . ) insertion
M Beginner M Intermediate Advanced

100.00

80.00

Error Rates (%)

Figure 5. Error rates for each phonological process by learner levels.
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Table 8. Frequencies and variation rates of Korean phonological processes in
read words produced by Chinese learners. Examples are shown as Canonical
Pronunciation > Orthographical Form with English meaning.

Phonological Total Error Rate Examples
Process Frequency (%)
Cosr;fgslaigtc gtliléilter 700 38.32 sutak ' > sutalk " (rooster)
Liaison 985 34.72 mogok '~ > mok ok (bath)
Aspiration 1032 45.74 d-ad-wtada > d~ad"wd " hada (warm)
Nasalization 1081 42.46 gadzin al > gadzit al (lies)
Lateralization 610 63.93 nallo > nan lo (heater)
Tensification 3282 51.68 tehot p-ul > tebot bul (candle)
Palatalization 47 76.60 hedodzi > hedodi
Nilalsszlrtci;)ga 47 100.00 namunip_ > namuip  (tree leaf)
Total 7786 47.66 N/A

acquired more easily, as their error rates decrease quickly by 15.4% and
11.6% from the beginner to intermediate groups, each respectively, compared
to the 1.60% decrease and 1.23% increase observed for consonant cluster

simplification and liaison errors.

2.4.2.1. Discussions

The phonological variations in this study verify the error pattern
predictions made by the previous works, which postulated that the Korean
phonological processes that are absent in Chinese language are not easily
acquired. It also quantifies the level of difficulty for each rule. A question can
be then raised; can we explain why lower error rates are observed for
consonant cluster simplification, nasalization, and liaison than others?

Although these processes are not present in Chinese, it is interesting that
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relatively low error rates were observed.

It seems that the positive transfer is a possible explanation for consonant
cluster simplification and nasalization. According to the literature survey,
backward assimilation exists in Chinese in which the preceding coda is
influenced by the following onset. For example, the final /n/ in /nan mien/ is
assimilated by the following /m/ and is realized as /nam mien/. When this
knowledge in the mother tongue is transferred, Korean nasalization rule can
be more easily realized such as in the backward assimilation of pronouncing
/ap'mun/ as /ammun/. In this way, the contrastive analysis can explain why
some phonological processes are more easily acquired. The same
interpretation is possible for the positive transfer of coda deletion in Chinese
when realizing consonant cluster simplification in Korean.

However, the contrastive analysis alone cannot explain why low error
rates are observed for liaison. Liaison process does not exist in Chinese and
contrastive analysis method would predict that since a single syllable forms a
single phonological unit in Chinese, negative transfer can occur. However, in
contrast, liaison process is acquired relatively easily. A possible explanation is
that the high amount of exposure to the process may have resulted in the low
error rate. Liaison occurs more frequently than other processes in Korean
because there are more phonemic contexts that cause liaison than other
processes. It is likely that the learners are more familiar with the more
frequent phonological processes than scarcely-observed cases, contributing to
lower error rates for liaison than what is expected by the contrastive analysis
alone. This may demonstrate a limitation in the predictive ability of
contrastive analysis hypothesis, as not every phonological difference

necessarily causes a problem when learning a new second language. The
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quantified results of the phonological variations not only validate the
predictions made by the previous studies, but also provides positive and
negative evidence on the effectiveness of using linguistic knowledge and

contrastive analysis method for predicting the variations.

2.5. Summary

A corpus-based analysis was conducted with larger number of utterances
and balanced speaker levels. By comparing the actual and the reference
transcriptions, the variation patterns were analyzed at segmental and
phonological levels. Detensification and coda deletion are the most frequent
phonetic characteristics, with 36.41% and 58.08% variation rates, while nasal
coda insertion and non-realization of palatalization are the most frequent
phonological variations. To the best of our knowledge, this is the first large
scale corpus-based analysis to have studied the phonological variations in

non-native Korean.
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Chapter 3

Correlation Analysis of Pronunciation

Variations and Human Evaluation

Much research attention has been directed to identify how native
speakers perceive non-native speakers’ oral accentedness. To investigate the
generalizability of previous findings, this chapter examines segmental,
phonological, accentual, and temporal correlates of native speakers’
evaluation of L.2 Korean accentedness. This is a significant topic in language
learning, since the results direct how L2 learners can achieve successful oral
communication in the language. Indeed, the factors that may interfere with
communication, and the degree to which they determine perceptual
significance need to be identified for second language instructors, curriculum
designers, and language learning software developers, since these standards

will be manifested in the corrective feedback systems in CAPT.
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For instance, accentedness may not always spill over to lack of
intelligibility. In a similar way, whether or not phonological and phonetic
errors should be scored with equal weights in Korean, the context in which
they cause miscommunication and the degree of listeners' perceptual
sensitivity should be investigated. Some types of error influence the overall
accentedness score more than others, and it is pedagogically important to
obtain a better understanding of the correlation among the factors affecting
listeners’ perceptions. For an effective CAPT system, it is not only essential to
identify frequent variation patterns based on phonetic and phonological
annotations of the non-native Korean speech, but it is equally important to
identify what actually matters in native speakers’ intuitive judgements of
accentedness, which measures how much L2 utterances approximate the
native speaker norm.

The following section summarizes previous findings on non-native
speech assessment and proposes an improved experiment design for L2

Korean, followed by the results.

3.1. Related Works

3.1.1. Criteria used in L2 Speech

In second language (L2) acquisition, a growing number of researchers
have emphasized the importance of assessing L2 speech accentedness based
on judgments of comprehensibility, accentedness, and intelligibility (Derwing,
1995; Mumro, 1997; Akiyama, 2017; Strik, 2004; Li, 2016; McBride, 2015).

They considered L.2-dependent factors in English, German, Spanish, Japanese,
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Dutch and Chinese. They have studied what kinds of linguistic properties,
such as phonetic accuracy, fluency, and grammar errors, are relatively crucial
for native speakers’ assessment under various task conditions.

For example, according to Derwing and Munro’s seminal work on
accentedness and native speakers’ comprehensibility (Derwing, 1995; Munro,
1997), utterances that are perceived as heavily accented can be highly
comprehensible. The finding showed that the degree to which learners
approximate the native speaker norm does not necessarily measure how easily
L2 utterances are understood. More empirical studies have examined
phonological, temporal, lexical or grammatical correlates of L2 German
(O'Brien, 2014), Japanese (Akiyama, 2017), Dutch (Strik, 2004), Chinese (Li,
2016) and Spanish (McBride, 2015) comprehensibility.

3.1.2. Criteria used in L2 Korean Speech

The previous studies mentioned above identified the factors affecting
speech accentedness for different languages. It still remains open to question
whether and to what degree the criteria and the findings in these studies can
be generalized to Korean linguistic contexts. The related works considered the
L2-specific linguistic characteristics when designing the evaluation criteria,
such as tonal realization patterns in Chinese (Li, 2016), and pitch accent in L2
Japanese (Akiyama, 2017). In this section, L2-dependent factors for Korean
will be studied in order to identify the linguistic properties of Korean speech
that are perceived as crucial for native evaluators.

The evaluation criteria in previous experiments on L2 Korean are

surveyed (Table 9). They assessed whether or not meaningful correlations can
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be observed between a fixed number of factors and accentedness scores (Jung,
2008; Hong, 2014; Hong, 2016; Lee, 2013; Sayamon, 2016). The
accentedness criterion refers to a holistic measure according to the rater’s
impression of accentedness of an utterance. This holistic measure of
accentedness is distinguished from analytic measures since the raters rely on
comprehensive impression across the entire utterance rather than paying
attention to particular linguistic properties, such as fluency, phonology, or
phonetics (Claphaim, 1996).

The filled circles in Table 9 indicate the factors that are highly
correlated with the overall accentedness score according to the previous
experiment result. There is no filled circle in the columns corresponding to
Kim (2017) and Lee (2016) because these studies did not measure correlations
between variables, but were interested in longitudinal changes across time.
Results in Kim (2017) concluded that fluency score improves for 6 months
and starts degrading, while Lee (2016) found that all learners show different
improvement patterns over time.

All studies measuring fluency as the evaluation criteria agree that it
highly correlates with native listeners’ perception of speech accentedness
(Jung, 2008; Hong, 2014; Hong, 2016). The correlation was shown to be
stronger than segmental accuracy (Jung, 2008; Lee, 2013). However,
segmental accuracies, including all the substitutions, deletions, and insertions,
are more important according to Hong (2014), and the number of juncture

insertion is the most important consideration in Hong (2016).
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Table 9: Evaluation criteria used in previous studies assessing non-native
Korean speech (O= used as a variable, @=used as a variable and found to be
an important feature).

. . Jun Hon Hon Lee Sayamon Kim Lee
Evaluation Criteria (200ng (2014%’ (2016%’ §013’) ( 2}(/)16) ' (2017)’ 2(0163
Pitch °
Juncture ° °
Fluency ) ° ° o o
Segmental
O [ ] O o o
accuracy
Phonological o
accuracy
Complexity o o o
Hesitation o
Comprehensibility o o

The differences in their findings can be explained by the different
experimental design. For example, Ll-dependent factors may cause
disagreements in the correlation tendencies; it may be the case that segmental
accuracy is more predictive of the accentedness for L1 Japanese speakers,
while suprasegmental factors are more predictive for L1 Chinese speakers.
Moreover, for evaluating read speech prompts, accentedness score was used
as a criterion (Jung, 2008; Hong, 2014; Hong, 2016), while comprehensibility
or complexity measures were used for evaluating spontaneous speech (Lee,
2013; Sayamon, 2016; Kim, 2017; Lee, 2016). Whether the material was read
or spontaneous speech would cause differences in the analysis result, as it
introduces orthographical influence and knowledge of the vocabulary.

The disagreements above show the need for an improved experiment
method that can clarify which linguistic property influences native speakers’
judgments of L2 Korean. In this Chapter, we propose to improve the

experiment method in two aspects. First, all possible factors related to
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accentedness will be included. Some variables in the related works of other
L2’s have not been considered in the previous L2 Korean studies, which can
be a limitation. For instance, no L2 Korean experiments assess the effect of
pitch and stress errors, which have been influential factors in other L2
evaluations (Derwing, 1995; Munro, 1997; Akiyama, 2017). The following
section introduces an extended coverage of linguistic factor design proposed
in this study, and thereby enabling a comprehensive consideration of possible
correlations with the accendtedness scores.

Second, we propose to improve the experiment method by including all
types of phonological processes, which is one of the characteristics of Korean
speech, i.e, changes in pronunciation depending on the phonemic context and
the part-of-speech of the word. Several studies have reported that learners of
Korean are pronouncing the segments according to their underlying
representation, and phonological rules are not realized (Yoo, 2012; Chang,
2014; Chung, 2014; Lee, J, 2005). However, in the correlation studies, only
few phonological processes have been included in Jung (2008), and it is
necessary to design an experiment that is comprehensive in scope. The extent
to which phonological accuracy affects the assessment of L2 Korean speech
needs to be thoroughly investigated. The next Section will discuss in more
detail what the missing phenomena were in the previous work, and how we

propose to improve the experiment.
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3.2. Proposed Human Evaluation Method

This section describes the improvements made in the proposed method
compared to the previous studies. It elaborates on the reading prompts,

variables, evaluation method, speakers, and evaluators.

3.2.1. Reading Prompt Design

Fifty speakers were given 100 sentences to read. The sentences are
composed of everyday vocabulary from L2 Korean text books, such as “How
many times have you been to Korea?” and “I usually eat dinner when I go
home.” The entire script is shown in Appendix II of this thesis. Read speech
was used because the canonical pronunciation is predefined, which can be an
advantage for discovering error patterns, and also for conducting a research
with the beginner level speakers, whose canonical form of the utterance are
often impossible to identify.

Moreover, using read speech prompt enables a comprehensive analysis
of phonological accuracy. For this study, 50 sentences were composed of
phonological processes that are balanced in number and types. In total, there
are 264 instances of phonological processes in the prompt (Table 10),
including five common phonological processes occurring both cross and
within-morphemes. For example, tensification rule in the word ‘worry’
(gakz™An) occurs within morpheme, whereas the aspiration rule in the word
‘would like’ (dzokhes umnida) occurs across morpheme. Regarding sentence

types, the 50 sentences consist of 42 statements and 8 questions.
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Table 10: Frequencies of phonological processes occurring in the fifty
sentences used in this experiment.

Phonological Process Cross-Morpheme Within-Morpheme
Liaison 82 5
Tensification 33 13
Nasalization 10 25
Aspiration 26 4
Palatalization 2 3
Total 158 106

3.2.2. Evaluation Criteria Design

The purpose of the current investigation is to examine the
generalizability of previous findings (Jung, 2008; Hong, 2014; Hong, 2016;
Lee, 2013; Sayamon, 2016) and resolve the disagreements in their results.
Since phonological processes were included as the L2-specific characteristic,
we also examine whether and to what degree the correct realization of
phonological processes affects L2 Korean perception. The following five
variables have been defined as the evaluation criteria: segmental accuracy,
phonological accuracy, prosody, fluency, and holistic impression of
accentedness. Upon listening to each sample, the raters used 1-5 Likert scale
(5: perfect, 4: good, 3: acceptable, 2: poor, and 1: very poor) to evaluate.

* Accentedness: As employed in previous studies (Jung, 2008;
Hong, 2014; Hong, 2016), accentedness was rated by the
evaluators’ impressionistic and holistic judgments of the overall

utterance in the scale of 1 to 5, without paying attention to
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specific linguistic features. For example, even if a part of an
utterance digresses from the canonical, they can assign high
scores if it is perceived as acceptable.

*  Fluency: The evaluators rated fluency based on rate of speech,
juncture, pause, and filled pause. For example, novice learners
tend to speak slowly and pronounce each syllable separately,
which is not observed in native speech and such instances
would discount the fluency score.

*  Phonological accuracy: All syllables where phonological rules
occur and their types are marked in advance for the five
different phonological phenomenon. In this way, the raters
know which errors to listen to. They counted the number of
errors and gave scores based on the error rate.

* Segmental accuracy: The raters phonetically transcribed all
segments and rated according to the rate of mismatch between
the canonical and realized pronunciations.

* Prosodic accuracy: The raters judged the appropriateness of
prosody realized at lexical and sentence levels. For example, if
a question is perceived as a statement due to an inappropriate

pitch realization, the utterance will receive a low score.

With the criteria design, the present investigation method improves the
previous methods in the following three aspects. First, it covers a wider range
of evaluation criteria, compared to the two or three variables (Hong, 2014;
Hong, 2016; Lee, 2013; Sayamon, 2016), to five variables. Since the raters

had a prior knowledge of the read prompts and therefore, comprehensibility
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and grammar accuracy were not included as a variable. That is, the degree of
effort required by the raters to understand an utterance could not be
independently measured in this study by the nature of read speech task. This is
also consistent with the previous studies mentioned in Section 3.1.1. that
evaluated read speech by holistic impression of accentedness instead of
comprehensibility.

Second, within the phonological accuracy, the sentences comprise of
higher diversity. Aspiration and palatalization error types have been added, in
addition to lenition, nasalization, and tensification. This is important because
phonological processes are pedagogically meaningful where the learners may
need explicit instruction.

Moreover, the experiment is conducted with speakers from more diverse
L1 backgrounds compared to the related works in L2 Korean. It is possible
that the correlation studies showed differing results because of the diversity in
speakers’ backgrounds. In order to reduce the disagreements arising from L1
effect and gain a better view of the overall tendencies, we designed the
experiment to include speakers of more diverse backgrounds, including
Mandarin Chinese, Japanese, Cambodian, Vietnamese, and Filipino.

Note that only one pronunciation per word was defined as the canonical
form when evaluating the segmental accuracy. There are certainly regional
variations that are also recognized as acceptable pronunciations in standard
Korean, which means that some may not be perceived as an error. However,
predefined standard Korean pronunciation exists according to the National
Institute of Korean Language, and is the form of Korean that is accepted as a
norm. Considering that the purpose of current research is a pedagogical

application, it was desirable to keep the correct reference as the gold standard.
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Therefore, multiple correct answers were not allowed in this experiment. In
addition, there is no consensus on what counts as an ‘acceptable variation,’

and would cause a confusion in the scoring process.

3.2.3. Raters and Agreement Rates

Each utterance was scored by four native Korean graduate students in
Seoul National University with knowledge in Korean phonetics and
phonology. Since phonological accuracy was included in the evaluation
criteria, it was necessary to recruit raters with detailed knowledge in Korean
phonological rules in this evaluation task.

The evaluators practiced scoring with the established guidelines to
ensure inter-rater consistency. Before the four raters could officially start
scoring, we made sure that the inter-rater correlation in Cronbach’s alpha was
at least 0.6 on the first 50 utterances for training purposes. With a view to
utilizing the material for developing an automatic scoring model in a CAPT in
a future study, it was desirable to obtain consistency in scoring. Biweekly
training and discussion sessions were held for monitoring inter-rater
consistency throughout the scoring and annotation period, which took about
five months.

The four raters demonstrated general agreement (o = 0.88) on the
accentedness rating task over 2,500 utterances, suggesting that they share
similar intuitive notion of what it meant by holistic impression of
accentedness in L2 Korean speech. The coefficients reported in the previous
studies confirm that the results are reliable (o = 0.82 (Saito, 2017), 0.88
(Hong, 2014), 0.89 (Hong, 2016), 0.74 (Sayamon, 2016)).
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Table11. Accentedness score distribution for 2,500 utterances, each rated by
four native speakers.

Score 1 2 3 4 5 Total

No. of Utterances | 1,273 | 2,906 | 3,388 | 1,971 462 10,000

3.3. Linguistic Factors Affecting L2 Korean Accentedness

A set of correlation analyses was conducted to examine how
accentedness ratings were related to the four linguistic variables defined in the
previous section. The mean and standard deviation of accentedness scores are
2.94 and 0.98, respectively, and their distribution is summarized in Table 11.
In the following analyses, all raters' scores were averaged to derive a single

score for the perceived accentedness of each utterance.

3.3.1. Pearson’s Correlation Analysis

All variables are strongly correlated with accentedness scores (Figure 6).

Among the variables, accentedness was most strongly correlated with
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Figure 6. Linguistic correlation with Accentedness scores according to
Pearson measure. Correlation is the highest in the order of segmental accuracy
(= 0.81), fluency (r= 0.80), prosody (»= 0.76), and phonological accuracy (r=
0.74).

segmental accuracy (=0.81) and fluency (+=0.80), and relatively weakly
correlated with prosody (=0.76) and phonological accuracy (r=0.74). All

correlations are statistically significant (p<0.0001).

3.3.2. Discussions

The findings indicate that speech with higher accentedness ratings was
comprised of fewer segmental errors, and was fluently spoken with an
appropriate rate of speech. This suggests that the raters similarly relied on
segmental and fluency information during their accentedness judgments.

Similar to the correlation analyses in previous studies, we confirm that
speech rate is a significant predictor of speech accentedness. However, it is a

new finding in this study that segmental accuracy is an even better predictor
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of accentedness than speech rate. Although the difference between them is
small, the finding is significant because most previous studies with L2 Korean
did not consider segmental accuracy to be the most important measure of
accentedness.

Another important finding in this experiment is that prosody is also
correlated with accentedness (r = 0.76). Most studies with L2 Korean did not
include prosody as a variable, which can be partially explained by the fact that
Korean is a syllable-timed language and it is easy to assume that the
difference in prosody would not be perceptually significant. However, the
experimental result in the current study is contrary to the expectation. In fact,
prosody is shown to have an even higher correlation than phonological
accuracy, whose average error rate was higher than those of segmental
accuracy. according to Chapter 2.

One possible explanation is that mispronunciations at the phonological
level do not always spill over to semantic confusion as much as segmental
mispronunciations do. For example, pronouncing the word /tetuk"a/, which
means ‘congratulations’, as the underlying text form /te"ukha/ without
applying the aspiration rule does not change the word into a different meaning.
In contrast, a segmental error pronouncing /nalla/ as /nara/ would cause a
semantic change from ‘to carry’ to ‘country,” and pronouncing /bang/ as
/p-ang/ would cause the change from meaning ‘bread’ to ‘room.” Therefore, it
may have been easier for the raters to be stricter when judging the
accentedness of an utterance with a segmental mispronunciation than those

with phonolgical mispronunciation, resulting in the higher correlation scores.
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3.3.3. Implications for Automatic Feedback Generation

The results indicate that the effects of segmental accuracy, fluency,
prosody, and phonological accuracy are all positively correlated with L2
speakers’ oral proficiency scores obtained from native listeners’ judgements,
in the order of their importances. Using this conclusion in relation to Chapter
2 findings directs which phenomenon deserve higher priority in the corrective
feedback. For consonants, six out of the ten most salient variation patterns
were confusions between tense and lenis stops. For vowels, nine out of twelve
most salient variation patterns were confusions among diphthongs and
monophthongs. Therefore, the results of this study can be used to suggest not
only that teaching accurate articulation is important in L2 Korean speech, but
also that within the phonetic inventory, the manner of articulation of tense and
lenis for consonants, and of mophthongs and diphthongs for vowels are
important.

Another important finding in this experiment is that prosody is also
correlated with accentedness. Most studies with L2 Korean did not include
prosody as a variable, which were partially explained by the fact that Korean
is a syllable-timed language and it is easy to assume that a prosody error
would not spill over to semantically discriminative properties. Both segmental
and prosody accuracies, however, need to be considered with an importance in

the feedback generation system for L2 Korean.
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3.4. Summary

Since certain error types have more perceptual importance than others, it
is necessary to discuss the types of error that deserves more importance than
others, which motivates the experiment in this Chapter. Using the speech
produced by fifty L2 learners of Korean from five L1 backgrounds, the
linguistic correlates of accentedness were identified. According to the results
in the correlational analysis, our findings were generally consistent with the
pervious literature, in that fluency score is a good measure of oral proficiency,
including speech rate, juncture, and other temporal features.

The new finding in this study is that segmental accuracy demonstrates
the highest correlation with accentedness. Moreover, native listeners are more
sensitive to prosody than it was predicted, and may indicate this factor

deserves more attention in L2 Korean learning. The results in this Chapter

will be utilized in the automatic feedback generation system later in Chapter 5.
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Chapter 4

Corrective Feedback Generation for

CAPT

4.1. Related Works

Feedback is a critical component in pronunciation training. For the
learners to speak L2 fluently and accurately, it is important they practice
speaking and receive an appropriate feedback. In traditional classroom
settings, there is generally not enough time for sufficient practice and
feedback on speaking performance, and a CAPT system is often used to
automatically diagnose mispronunciations and offer a corrective feedback for
pronunciation training; generating a corrective feedback is an important issue
in the area of spoken language technology for education.

In the existing Korean CAPT systems with a corrective feedback
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function, according to the survey in Chapter 1, the native pronunciation of the
word is recorded in advance and played to the learners. The process of
recording the reference pronunciation by a human teacher for each word may
be painstaking. With a view to improve the existing methodology, we survey

automatic methods in corrective feedback generation in the following sections.

4.1.1. Prosody Transplantation

The traditional feedback way of CAPT is to show the pairwise
differences between the target speech and the mispronunciation in various
aspects, like the speech wave, speech formant, and articulation (Kawahara,
2002). A number of research efforts have been made to transform foreign-
accented speech into its native-accented counterpart. In previous works,
speech conversion methods for pronunciation teaching have been studied for
Korean and Japanese learners of English, Italian learners of German, Japanese
learners of Italian, and for English learners of Mandarin Chinese (Yoon, 2007;
Ozawa, 1990; Tillmann, 2006; Debora, 2015; Seneff, 2006). These studies
were based on the prosodic transplantation technique (Vitale, 2012), using
PSOLA (Pitch-Synchronous Overlap and Add) algorithm (Moulines, 1989).
Through this technique, the acoustic parameters including pitch, intensity,
articulation rate, and duration of the native speakers are transferred to the
learners’ speech. It allows the manipulation of prosodic cues while keeping
the segmental dimension intact, such as prosody transplantation.

Time-domain PSOLA is most commonly used due to its computational
efficiency (Kortekaas et al. 1997). The algorithm consists of three steps: the

analysis step where the original speech signal is first divided into separate but
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often overlapping short-term analysis signals, the modification of each
analysis signal to synthesis signal, and the synthesis step where these
segments are recombined by means of overlap-adding (Charpentier et al.
1989; Valbret et. al 1991). Short term signals are obtained from digital speech
waveform by multiplying the signal by a sequence of pitch-synchronous
analysis window . (n):

2% (1) = by (L- )X (). )
where tm is the pitch-mark and x(n) consists of a sequence of short-term
signals Xm(n). The windows, Mm(n), which are usually Hanning type, are
centered around the successive instants pitch-marks. These marks are set at a
pitch-synchronous rate on the voiced parts of the signal and at a constant rate
on the unvoiced parts. The used window length is proportional to local pitch
period and the window factor is usually from 2 to 4 (Charpentier 1989; Kleijn
et al. 1998). The pitch markers are determined either by manually inspecting
the speech signal or automatically by pitch estimation methods (Kortekaas,
1997). The segment recombination in synthesis step is performed after
defining a new pitch-mark sequence.

As the manipulation of fundamental frequency is achieved by changing
the time intervals between pitch markers and those of duration is achieved by
either repeating or omitting speech segments, the application is that prosodic
aspects of a native speaker can be imposed on non-native segments, and vice
versa. This makes it possible to maintain intelligible signals while selectively
manipulating prosodic cues.

The algorithm used for foreign accent transplantation has also been
referred to as ‘prosody cloning’ (Yoon, 2007) or ‘prosodic transplantation’

(Gili Fivela, 2012). First of all, the method requires at least two sentences, one
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produced by a native speaker and one by a non-native speaker. The
transplantation of prosody can be applied using a signal manipulation
software, such as Praat (Boersma and Weenink, 2013). It is then possible to
automatically superimpose the duration and f0 of one sentence on the
segments of the other. The segments of the recipient sentence are first
stretched or shrunk in order to match the duration of the donor sentence, and
then the f0 contour of the donor sentence is superimposed on the recipient
segments. This method has been established and adopted as a method for
foreign accent rating in several experimental studies published throughout the
last decade, to rank the importance of the prosodic cues involved in foreign
accent perception.

Since speech intelligibility is affected by both prosodic and segmental
errors, it is beneficial to also achieve segmental transplantations. In Felps et al.
(2009), Frequency Domain-PSOLA was employed to replace the spectral
envelope of the learner with that of the normalized native speech to achieve
the segmental transformation. In this method, the learner’s spectra were
flattened and multiplied by the native speakers’ envelope. In order to reduce
speaker-dependent information in the teacher’s spectral envelope, Vocal Tract

Length Normalization was performed using a piecewise linear function.

4.1.2. Recent Speech Conversion Methods

PSOLA method heavily relies on feature extraction, such as pitch,
duration, and spectral envelop extractions of both native and non-native
speech, and vocal tract length normalization for each speaker, to mention a

few, which require complex pipelines consisting of domain-specific or fine-
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tuned techniques.

More recent work has also addressed speech conversion using deep
neural network and an end-to-end architecture that directly generates the
speech representation without the feature engineering process (Bearman,
2017). Haque (2018) uses an end-to-end model, conditioned on speaker
identities, to transform word segments from multiple speakers into multiple
target voices. Biadsy (2019) introduced an end-to-end-trained speech-to-
speech conversion model that maps an input spectrogram directly to another
spectrogram. The network is composed of an encoder, spectrogram and
phoneme decoders, followed by a vocoder to synthesize a time-domain
waveform. These models succeeded in word and pitch-level transformations
of the voice, many-to-one voice normalization, and atypical speech
normalization. However, the speaker identity is lost in these approaches. In

the section 4.2., we propose a novel feedback generation method.

4.1.3. Evaluation of Corrective Feedback

A handful of studies have suggested methods to evaluate the goodness
and the effectiveness of self-imitative feedback. Those that measures the
goodness consider the linguistic and technological aspects, paying attention to
individual phonemes and sound quality, while those that evaluate
effectiveness measure pedagogical value in corrective feedback. For example,
four pedagogically critical criteria for feedback in CAPT was prescribed
(Hansen, 2006); a feedback should be easy to understand (comprehensible), a
feedback should determine if the correct phoneme was used with the correct

length, and a feedback should suggest actions for improvement (corrective).
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Other studies on automatic speech conversions designed a perceptual
protocol to evaluate the effectiveness of the method along three dimensions:
foreign accentedness, speaker identity, and signal quality (Felps et al., 2009).
More recent studies evaluated whether the converted speech preserves the
linguistic content of the original input signal by reporting the word error rate
as a measure of intelligibility (Biadsy, 2019). They also reported the mean
opinion score (MOS) on the naturalness, voice similarity, accentedness,
background noise and disfluencies. The survey on evaluation criteria
employed in previous studies shows that perceptual tests on accentedness and
sound quality may be used to validate the speech conversion performance in a

CAPT system.

4.2. Proposed Method: Corrective Feedback as a Style

Transfer

We begin by asking the question: what constitutes a foreign accented
speech? A foreign accent can be defined as deviations from the expected
acoustic and prosodic norms of a language. The type of deviations is
influenced by the context of the speech, including the speaker’s mother
tongue background, the sentences or words before and after the utterance,
speaker’s intention, whom the speaker is addressing, and the speaker’s
environment, to mention a few. A foreign accented speech, or a certain style of
speech, is necessarily influenced by its context. All kinds of deviations can be
understood as a particular style, and given a linguistic content for example, I

could imagine a change in the speaking style in my voice from addressing my
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advisor in a meeting, to teaching a group of students in a classroom. Also,
what if I, with a Korean mother tongue, were to impersonate a British-
accented English? A brief listening to such accent makes it possible to
imagine how I would have rendered such sentence: perhaps pronouncing

IR
r

certain vowels and the letter differently. Keeping this accented speech, |
could also speak the sentence while imitating an actress’ voice that I know.

It is possible to imagine the sound despite never having seen a side by
side example of my impersonated speech next to a British-accented English.
Instead, I can learn the style of British-accented English speeches by listening
to speech samples and use my knowledge of the characteristics. We can learn
about the stylistic differences between the speeches, and thereby imagine
what the speech might sound like if we were to “translate” it from one set into
the other.

Recently, GANs (Generative Adversarial Networks) have shown
promising results in image style transfer and researchers have investigated this
problem extensively. The problem can be posed as translating an input image
into a corresponding output image; a scene can be translated into another style,
rendered as an RGB image, a gradient field, an edge map, a semantic label
map, etc. The image community has already taken significant steps in this
direction.

We argue that the style transfer method is also capable of learning a style
of speech and of transferring the style to another domain. Motivated by the
recent successes in GAN'’s ability in the style transfer problem, the current
thesis adopts GAN to convert foreign-accented speech from a non-native
speaker into fluent speech with a native accent. The subsections below further

explain the potential advantages of the proposed method.
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4.2.1. Speech Analysis at Spectral Domain

One way to analyze a speech is by examining their spectrograms, which
visually represent the varying short-term amplitude spectra of the speech
waveform. Spectrograms remain a dominant acoustic representation for both
phoneme and word-level tasks. It carries phonetic information, and inspired
by the process where a human expert “read” a spectrogram, the practice of
using this knowledge for speech recognition tasks is common in the
discriminative setting (Hershey et al., 2017). The machine can be taught on
which cues to focus on in order to identify and learn segmental and supra-
segmental information in the graphical representation of speech.

Being able to identify a speech in the spectral domain also suggests that
native and non-native speech differences are present in the spectral analysis.
This is confirmed by comparing the differences between native and non-
native spectrogram pairs of the same utterances. Figure 7 shows an example
of a spectrogram pair for the word “half a year.” While the left spectrogram
captures the resonances of the vocal tract during a diphthong articulation, the
right spectrogram shows its monophthong version. As a consequence, the two
spectrograms can be differentiated by the number and movements of the
darkness bands, showing that non-native speeches are more likely to
substitute diphthongs by monophthongs than the native speech. By observing
more spectrogram examples, we obtain linguistic differences including final
stop deletions, exhibited by the voiced and unvoiced region contrasts in the
spectrograms, and lenition of tense consonants, which is demonstrated by the

voice onset time in the spectrograms. Moreover, the presence of rhotic vowels
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Figure 7. An example of a spectrogram pair for the word “half a year

(FBd)” in Korean uttered by a native (left) and foreign-accented (right)
speakers. The spectrogram comparison is able to capture linguistic similarity
and differences, which motivates the idea of using CycleGAN.

in the formant frequencies of the non-native spectrograms is not observed for
native counterpart, as the sound does not exist in its phonetic inventory. At the
suprasegmental level, the articulation rate and total duration of the native
speakers tend to be shorter than the learners’ speech. These findings can be
confirmed by analyses of the auditory variation patterns in Yang and Chung
(2015).

These observations indicate that spectrograms contain rich information
that is enough to differentiate the characteristics of native and foreign-
accented utterances in linguistic domains. This motivates the idea for a
spectrogram learning using image-generating GAN, where the latent space in
the audio of non-native linguistic domain is mapped to that of native linguistic
domain.

The examination at the spectral domain also motivates the idea to
introduce cycle consistency loss in GAN. Despite the differences between the

two domains, non-native and native, we also find that they share an
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underlying structure. Since the goal of this work is to generate only speech
sounds and not an arbitrary audio, we hypothesize that training the network to
learn a high level representation of the underlying language serves to bias the
spectrogram decoder predictions toward a representation of the same
underlying speech content. Assuming that there is some underlying spectral
structure shared between non-native and native linguistic domains, the trained
network can be thought of as learning a latent representation of the input that
maintains information about the underlying linguistic content.

The current thesis attempts to accomplish this by adopting CycleGAN,
which enforces forward-backward consistency between two different domains
and is expected to be an effective way to regularize such structured data
(Kalal et al., 2010). This motivates the proposal in the current thesis to
experiment with CycleGAN. The formulation of the algorithms will be shown

in a later section.

4.2.2. Self-imitative Learning

A possible advantage of interpreting the feedback generation problem as
a style transfer is that it allows self-imitative learning. In self-imitative
learning, the characteristics in native utterances are extracted and transplanted
onto the learner’s speech. Listening to the manipulated speech enables
students to compare the differences between the accented utterances and the
native counterparts, both in their own voices, and to produce native-like
utterances by self-imitation. The rational of self-imitating feedback is that, by

stripping away information that is only related to the teacher’s voice quality,
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the students can perceive differences between their accented utterance and
their ideal accent-free counterparts.

The pedagogical benefit of self-imitating learning is that it provides a
form of feedback that is implicit, corrective, and encouraging. A handful of
studies have suggested that it would be beneficial for L2 students to be able to
listen to their own voices producing native-accented utterances (Felps, 2009).
Studies in CAPT also found that the better the match between the learners’
and native speakers’ voices, the more positive the impact on pronunciation
training (Gutierrez-Osuna, 2009), emphasizing the importance of the student
and teacher voice similarity for the enhancement of pronunciation skills.

As studies have hypothesized that self-imitative feedback is
encouraging and effective, they also evaluated the method with an experiment.
For example, one group of students was trained to mimic utterances from a
reference English speaker, whereas a second group was trained to mimic
utterances of their own voices, previously modified to match the prosody of
the reference English speaker (Nagano and Ozawa, 1990). Pre- and post-
training utterances from both groups of students were evaluated by native
English listeners. Post-training utterances from the second group of students
were rated as more native-like than those from the first group.

More recently, the relationship between the student/teacher voice
similarity and pronunciation improvement was investigated (Probst, 2002).
Several teacher voices of the same sentence were recorded in advance and
were played to the students as a corrective feedback. Results showed that
learners who imitated a well-matched speaker improved their pronunciation
more than those who imitated a poor match. Consistent with the findings, a

few CAPT tools have begun to incorporate prosodic-conversion capabilities.
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These tools allow L2 learners to re-synthesize their own utterances with a
native prosody through a manual editing procedure (Martin, 2004).

The studies discussed above indicate that the learner’s own voice with
corrective prosody is more effective than prerecorded utterances from a native
speaker. Assuming that a foreign-accented style of speech can be learnt in the
GAN architecture, we hypothesize that the method will be capable of

generating a corrective feedback that is self-imitative.

4.2.3. An Analogy: CAPT System and GAN Architecture

The previous sections explained the motivations and possible advantages
of using CycleGAN. There is also a higher-level and yet, practical motivation
for the proposal with respect to the ultimate goal of building a CAPT system.

Figure 8 compares the two CAPT system architectures; the traditional
and the GAN-based system. The traditional architecture is the same as Figure
1 in Introduction of the present thesis. The proposed GAN-based CAPT
system has three advantages. First, the proposed architecture, thanks to the
adversarial nature of GANSs, connects speech assessment and corrective
feedback into a single network. While the generator outputs a native speech
feedback. the discriminator’s confidence score on the native-likeness of the
generated spectrogram can be translated into an assessment score in a CAPT
application. One of the difficulties in implementing a CAPT system is the
integration of independent modules into a single architecture. The proposed
adversarial structure of GAN incorporates these individual tasks in a single
network, and thereby improving the connectivity and efficiency.

Second, the traditional architecture relies on ASR performance. For
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example, errors in the acoustic model can result in an incorrect confidence
score, and hence propagating the error to assessment and detection models. In
contrast, the proposed method does not rely on the acoustic model
performance, making the assessment and feedback performance more directly
controllable.

The third advantage is that the feedback and assessment models in the
proposed system are end-to-end without the traditional feature extraction
processes. The traditional automatic speech assessment software uses
combination of 29 or more features (Higgins et al., 2011) in order to predict
the score. In contrast, features are learnt automatically in an end-to-end
method, which allows easier language expansion of the CAPT system with

various L1 and L2 combinations.

4.3. Generative Adversarial Networks

GANs have attracted attention for their ability to generate convincing
images and speeches. The advantage of using GANs for style transfer is that
the model learns a loss function for scoring the quality of the results
automatically, compared to manually designing effective losses.

Gatys (2016) studied artistic style transfer, combining the content of one
image with the style of another. In order to transfer photographic style, Luan
(2017) added semantic segmentation as an optional guidance and imposed a
photorealism constraint in the transformation. Taigman (2016) adopted GAN
and variational autoencoder as the mapping function to enforce the
transformed output to be similar to the source. Isola (2017) explored GANs in

the conditional setting, in which the generator is conditioned on a given image
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in the target domain. Zhu (2017) introduced CycleGAN which uses generative
network together with a cycle consistency loss to encourage the distribution of
the mapped images to be indistinguishable from that of the real images in the
target domain. Chang (2019) introduced variants of cycle consistency losses
as asymmetric functions to ensure the successful transfer high frequency
details.

GANs (Goodfellow, 2014) are generative models that learn a loss that
tries to classify if the output image is real or fake, while simultaneously
training a generative model to minimize this loss. This adversarial learning
process is formulated as a minimax game between G and D, which is

formulated as:

n};in I'%HX V(D’ G) = Ewadata(x)(log D(X))

+ E, p.) (log (1-(G(2)) 2.

where Pdata(x) is the real data distribution, and Pz(z) is the prior

distribution. For a given x, D(x) is the probability x is drawn from Pdata(x),

and D(G(z)) is the probability that the generated distribution is drawn from
Pz(z).

The generator (G) maps the training samples to samples with a prior
distribution by imitating the real data distribution to generate fake samples. G
learns the mapping by means of an adversarial training, where the
discriminator (D) classifies whether the input is a fake G sample generated by
G or a real sample. The task for D is to correctly identify the real samples as
real, and thereby distinguishing them from the fake samples. The adversarial
characteristic is due to the fact that G has to imitate better samples in order to
make D misclassify them as real samples. The misclassification loss is used

for further improvement of the generator. During the training process, D back-
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propagates fake samples from G and correctly classifies them as fake, and in
turn, G tries to generate better imitations by adapting its parameters towards
the real data distribution in the training data. In this way, D transmits
information to G on what is real and what is fake.

In the following two subsections, two variants of GAN used in the

experiment will be introduced.

4.3.1. Conditional GAN

Conditional GANs (cGANSs) translate an image from the source domain
to the target domain conditioned on a given image in the target domain. It
requires that the generated image should inherit some domain-specific
features of the conditional image from the target domain (Isola, 2017). This
makes ¢GANs suitable for image-to-image translation tasks, where we
condition on an input image and generate a corresponding output image. In
this setting, G tries to minimize the objective against an adversarial D that

tries to maximize it, with the following objective function:

Legan (GD) = E, (logD(xy))E, (log(1-D(x,G(x.2))). ~ (3)

Isola (2017) demonstrated that cGANs can solve a wide variety of problems
by testing the method on nine different graphics and vision tasks, such as a

map to satellite image transfer and a product photo generation from a sketch.
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Figure 9. Conditional GAN architecture. The discriminator and the generator
are conditioned on c, an additional input layer with values. The added vector

of features guide G to figure out what to do.

4.3.2. CycleGAN

The adversarial loss alone may not guarantee that the learned function
can map the input to the desired output. In our case, this may result in wrong
corrective feedbacks, which would be highly undesirable for feedback
generation in CAPT. Zhu (2017) introduced cycle consistency loss to further
reduce the space of possible mapping functions. This is incentivized by the
idea that the learned mapping should be cycle-consistent, which is trained by

the forward and backward cycle consistency losses:

Lcyc (G, F) = Exwpdata[x) (HF(G(X) -)CH 1) + EJ’NPdﬂfﬂ(y}(HG(F(y) ‘J/H 1)‘ (4)
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Figure 10. CycleGAN architecture which includes two generators and two

discriminator neural networks. Mapping functions G : A—B and F : B—>A are

associated with discriminators. Discriminator B encourages G to translate A

into outputs indistinguishable from domain B and vice versa for F.

Here, the network contains two mapping functions G : X—Y and F : Y—X.
For each image x from domain X, the translation cycle should be able to bring
x back to the original image, and vice versa. While the adversarial loss trains
to match the distribution of generated images to the data distribution in the
target domain, the cycle consistency losses can prevent the learned mappings
G and F from contradicting each other. In the experiment in the next section,
we explore the generator’s behavior when trained with the conditional loss

and cycle consistency loss.

4.4. Experiment
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In order to test the idea that the task of translating a representation of a
speech into another can be solved as a style transfer task, we compare the
performances of the three algorithms; PSOLA, conditional GAN, and Cycle
GAN on their abilities in translating non-native speech into native speech
while maintaining the learners’ voice identity. PSOLA, the traditional method
in voice conversion will be the baseline. Conditional GAN is adopted as it is
known for its ability in various style transfer tasks, and it would be interesting
to apply it in the spectral domain. Moreover, we hypothesize that cycle
consistency loss will be effective in preserving the global structure of the
input spectrograms. The following section describes their implementations

and the corpus.
4.4.1. Corpus

The proposed model is trained on L2KSC (L2 as Korean Speech Corpus)
(Lee, 2005). The corpus is used because it is a native and non-native speech
database available to the public and fits the experiment settings. We
experiment with 27 hours of speech, consisting of 217 non-native speakers
with 27 mother tongue backgrounds, and 107 native speakers of 54 females
and 53 males. Each speaker read 300 short utterances, which are in average
one second in length. When each spectrogram of non-native recording is
paired with all native recordings of the same utterance, there are 1,357,321
pairs of samples for the conditional GAN training. For cycle-consistent
adversarial training, there are 32,100 and 65,100 spectrograms in the native
and non-native domains, each respectively. The 162 spectrograms for test are

completely held-out.
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4.4.2. Baseline Implementation

Baseline speech samples were generated using PSOLA algorithm,
implemented in Praat (Boersma, 2001). The acoustic parameters of pitch,
intensity, and duration of the native speech of the same utterance are extracted
and transplanted on to the held-out non-native recordings. Its detailed

algorithm is formulated in the previous Chapter.
4.4.3. Adversarial Training Implementation

For ¢cGAN, we adopt the network architecture from Isola (2017). Its
generator is an encoder-decoder network (Hinton, 2006). The input is passed
through a series of layers that progressively downsample, until a bottleneck
layer, at which point the process is reversed. Since there is a great deal of low-
level information shared between the input and output images in style transfer,
such as the location of prominent edges, it would be desirable to shuttle this
information directly across the net, rather than requiring all information flow
pass through all the layers, including the bottleneck. To give the generator a
means to circumvent the bottleneck for information like this, skip connections
were added.

For the discriminator, 70 x 70 PatchGANs are used which aim to classify
whether overlapping image patches are real or fake. Since the training losses
accurately capture the low frequencies (Larsen, 2015), PatchGAN is designed

to restrict the discriminator to only model high-frequency structure. For
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modelling high-frequencies, it is sufficient to restrict our attention to the
structure in local image patches, and PatchGAN only penalizes structure at the
scale of patches. Furthermore, to avoid model oscillation, in which the
generator progress from one kind of sample to generating another kind of
sample without eventually reaching an equilibrium, the discriminators are
updated using a history of generated images rather than the ones produced by
the latest generators, following the strategy in Shrivastava (2017). Adam
optimizer is used (Kingma, 2015) with a learning rate of 0.0002 with a linear
decay to zero after 100 epochs.

For CycleGAN, we adopt the network architecture from Zhu (2017). Its
generator is an encoder-decoder network with two stride-2 convolutions,
several residual blocks (He, 2016), and two fractionally-strided convolutions.
Six blocks are used for 128 x 128 images and nine blocks are used for 256 x
256 higher resolution training images. The architecture is adopted from
(Johnson, 2016), which has shown impressive results for style transfer and

superresolution.

4.4.4. Spectrogram-to-Spectrogram Training

Trainings of the two networks are proceed in five steps: 1) native (N) and
non-native (NN) speech preparation, 2) speech-to-spectrogram conversion, 3)
spectrogram-to-spectrogram training, 4) inversion back into audio signal, and
5) playback of the generated audio. During the second step, audio signals
were converted to spectrograms using Short-Time Fourier Transform (STFT)
with windows of 512 frames and 33% overlap, which were converted to dB

amplitude scale, represented using mel scale, and padded with white noise to
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generate 128x128 pixels images.

Python implementation of the Griffin and Lim algorithm was used to
convert the spectrogram to audio signal by using the magnitude of its STFT. It
performs low-pass filtering of the spectrogram by zeroing all frequency bins
above the preset cutoff frequency, and then uses the Griffin and Lim algorithm
to reconstruct an audio signal from the spectrogram.

GAN is used in the third step and the conversion techniques are used
during the second and the fourth steps. In order to train using GAN, the
prepared samples are fed into the generator, where adversarial training is done
using the discriminator which classifies whether the samples are fake
(generated speech) or real (native speech). The process is shown in Figure 11.
For the cycle-consistent adversarial training, there is no concatenation step,
since it takes unpaired input.

During the inverse process, which is the fourth step, the Griffin Lim
algorithm works to rebuild the signal with STFT such that the magnitude part
is as close as possible to the spectrogram. For high quality output and

minimum loss in transformations, it is run for 1,000 iterations.
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4.5. Results and Evaluation

4.5.1. Spectrogram Generation Results

Figure 12 shows the spectrograms for non-native, generated, and native
speeches at epoch 1 and epoch 3 in the conditional GAN framework. It shows
that the generator quickly learns to imitate the native spectrogram by
generating a fake version of the reference. After more training, the generator
has discovered to generate spectrograms with higher proximity to the native.
Since the test data was completely held out, this means that the model learned
to recognize which word the spectrogram represents, and identified which

native spectrogram should be mapped to the given non-native.

Non-native(input) Generated(fake) Native(target)

Figure 12. Comparison among input, output, and target spectrograms at

epochs 1 and 3 using Pix2Pix framework.
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4.5.2. Perceptual Evaluation

Since the ultimate goal is to produce fluent speech that are corrective,
self-imitative, clean, and intelligible, we measure the ability of human
annotators to label the generated audio. Using our three models, we generate
speech samples on the test set, which amount to 486 waveforms in total. The
four native Korean human raters with knowledge in linguistics were asked to
listen to the original non-native utterance, followed by a generated output
from one of the three models. They assigned subjective values from 1 to 5 for
the following five criteria. The score of 3 was assigned if there is no
difference before and after the manipulation, and 1 or 2 if the feedback

resulted in a wrong correction, and 4 or 5 if the feedback was corrective.

*  Holistic impression of correction: Does the generated speech correct
the overall impression of the accented speech into a standard Korean
accent?

* Degree of segmental correction: Does the generated speech correct
the accented speech into a standard pronunciation?

* Degree of suprasegmental correction: Does the generated speech
correct the accented speech into a standard intonation and prosody?

* Sound quality: Does the generated speech contain any background
noise or artifacts?

*  Speaker voice imitability: How similar is the generated voice to the

speaker’s voice?
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Table 12: MOS values of perceptual test by four human experts on self-
imitation feedback generation (SQ: Sound Quality)

Corrective Ability .

Model Holistic Segmental Supra-segmental Imitability 5Q Ave.
PSOLA 3.118 3.029 3.324 4.029 2.794 3.259
cGAN 1.970 2.485 2.152 2.697 1.636 2.188
CycleGAN 4.000 4.333 4.364 3.515 2.667 3.776

We report MOS (mean opinion scores) values in Table 12. It shows that
our newly proposed CycleGAN-based speech correction method is able to
generate corrective feedback. By the average score, a relative improvement of
16.67% 1is observed compared to the baseline PSOLA transformation.
Linguistic analysis shows that the generator’s corrective ability is effective
both in the segmental and suprasegmental aspects. Since an error in a
feedback setting can be critical in learning applications, we verified that all
corrective ability scores in CycleGAN are 3 or above, which means that there
was no degradation.

In addition to MOS scores, we conducted auditory transcriptions of the
generated utterances on a random subsample of the test set in order to
qualitatively analyze where the correction occurs. Successful cases include

corrections of detensifying errors of /s¥/ in the word “fishing (%A]).”
Moreover, the final rise prosodic error of the statement “It is fast (&2} Q)"

was corrected by the generator. Also, correcting the silence insertions between

syllables, the overall rate of speech tends to be closer to the native.
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PSOLA

cGAN

CycleGAN

Figure 13. Input and generated spectrograms (the baseline and two GAN-

based methods). Each row is a different representation of an utterance.

For the baseline PSOLA method, the evaluators report that there were
numerous cases when the generated results do not make corrections, or make
corrections that are perceptually trivial. On the other hand, the generated
results using conditional GAN often fails to make a correction. The

repositories  https://github.com/sy2358/accent_conversion_GAN  and

https://www.youtube.com/watch?v=vYGOVabV_Y4 enable direct

comparisons with auditory data.

4.5.3. Discussions

At the beginning of this Chapter, we hypothesized that accent conversion

can be interpreted as a style transfer problem, which can be successfully
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solved with a GAN algorithm. We also hypothesized that training the network
with cycle consistency loss will induce the generator to learn a high level
representation of the same underlying speech content, thanks to its forward
and backward consistencies. The results confirm the hypotheses; not only the
intonation, duration, and rate, but also the formant information in the
spectrogram has been learnt and transplanted into the learner’s voice. And
since the generated speech with cycle consistency loss does not degrade the
input, it can be interpreted that the loss serves to preserve the global structure
of the learner’s spectrogram.

The results on self-imitability show that it is able to preserve the
underlying voice information and project away other accent-style information,
as intended. We can ask the following question: does CycleGAN learn to
preserve or project away certain information in the spectrograms? For
example, can it extract the native characteristics from a speech produced by a
male voice and transplant it to a speech produced by a female Chinese learner
while keeping the learner’s voice identity? There are possible exaplanations
how CycleGAN achieves this.

One explanation is that since CycleGAN is able to learn the style of a
domain, it is able to separate voice quality from the linguistic gestures. An
utterance may be understood as the combination of a voice quality carrier with
linguistic gestures. Being able to separate means that the network is able to
deconvolve an utterance into its voice quality carrier and its linguistic filters
and distinguish between-speaker variations in the dimensions of speech, such
as those that are determined by physical factors, e.g. larynx size and vocal
tract length. In this way, a foreign accent may be removed from an utterance

by extracting its voice quality carrier and convolving it with the linguistic
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gestures of a native-accented counterpart.
4.6. Summary

Automatic speech conversion/transplantation method in related works
extract pitch, duration, and spectral features of the native speech and
transplant them onto the learners’ speech. The method allows self-imitation
learning when implemented in a CAPT system, in which the learner improves
the pronunciation by listening to his/her own voice. Since the method is
proven to be pedagogically efficient, PSOLA transformation has been widely
used for automatic corrective feedback systems.

However, most PSOLA-based feedback systems in CAPT rely on
conversions at the suprasegmental level, which only extracts the duration and
pitch information. This is problematic because the proficiency in a second
language is fully attained only if the students have learned to modulate both
the prosodic and segmental parameters equivalent to those of the native
speakers. The segmental accuracy plays an important role in spoken language
communication especially in L2 Korean, which was the conclusion in Chapter
3.

In this Chapter, a new methodology using a GAN that corrects both
segmental and supra-segmental deviations is proposed in order to overcome
this limitation. To synthesize an audio signal from the predicted spectrogram,
the Griffin Lim algorithm was used to estimate a phase consistent with the
predicted magnitude, followed by an inverse STFT. The perceptual evaluation
shows that cycle-consistent adversarial training is a promising approach for

speech correction task.
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Chapter 5

Integration of Linguistic Knowledge in
an Auxiliary Classifier CycleGAN for

Feedback Generation

The previous chapter introduced a new method to generate corrective
feedback using CycleGAN. However, although the generator seems to have
acquired what and how to correct with the adversarial training, it is not
necessarily the case that the information it learnt is shared with the learner.
While this generator-student interaction is desirable, it would not be
meaningful to merely pass the statistical distribution mapping the generator
learns because the kind of information passed to the student should be
linguistically motivated. The relations learnt by the generator should be
linguistically representative so that the generated feedback is pedagogically
meaningful.

Moreover, since it is difficult for the L2 learners to evaluate their own

75



pronunciations (Dlaska and Krekeler, 2008), it is helpful to provide an
informative feedback. That is, it is not guaranteed that the students can
perceive difference in their own speech or self-assess the pronunciation
accurately. Merely listening to the speech playback in the devices with no
structured linguistic content may not lead to a change in the direction closer to
L2-like pronunciation. In order to make sure the feedback brings about a
positive change, it is important to generate a feedback that contains linguistic
information.

This chapter proposes a methodology to inject linguistic knowledge into
the CycleGAN network by building dedicated generators for correction types
using an auxiliary classifier. The classifier is additionally trained to
distinguish three linguistic types, ‘segmental’ and ‘suprasegmental’
corrections, and ‘no correction.” This forms a simple three-class convolutional
neural network (CNN) (Krizhevsky, 2013), added to the feedback generation
model. This Chapter therefore describes the linguistic classes and the

auxiliary classifier training for the task of corrective feedback generation.

5.1. Linguistic Class Selection

The aim of this Chapter is to incorporate linguistic features into a
feedback generation system. The first step in that direction is to select the
linguistic feature classes. Chapter 3 in this thesis conducted an experiment
with segmental, phonological, fluency, and prosody classes to find
linguistically motivated features. These feature sets were designed by
surveying the commonly used criteria in speech evaluation problems and

considering the characteristics of Korean language.
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The results from human evaluators found that all segmental and
suprasegmental variations were significant predictors of speech proficiency in
L2 Korean. In other words, if these human evaluators were classroom tutors,
they would give feedbacks to the students both when segmental and
suprasegmental error occurs. For example, if the short statement /dzada/ was
realized as /tehada/, which would be a segmental error, the learner should
receive a feedback about this segmental variation. Also, if the second syllable
of the word is realized with higher pitch than the first syllable, the student
should receive a feedback regarding the prosody information.

Since the goal of the corrective feedback system is to mimic the human
tutor as close as possible, the direction of the linguistic feedback criteria
selection in this work will be to use the human evaluation results from
Chapter 3. That is, both segmental and suprasegmental features will be

incorporated into the feedback generation system.

5.2. Auxiliary Classifier CycleGAN Design

With the selected linguistic features, we build a classifier in order to
examine whether it is possible to reliably detect the linguistic class from the
generated sample. The classifier is an image classification model which can
be used to classify a given spectrogram as either ‘error present’ or ‘error
absent.” In the case of the former, a linguistic class ‘segmental,” or
‘suprasegmental’ will be assigned. The idea is to add this classifier to
discriminate between the generated spectrogram of each linguistic class.

In the proposed Auxiliary Classifier CycleGAN (AC-CycleGAN), every

generated sample has a corresponding class label in addition to the noise. The
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auxiliary classifier gives a probability score over the class labels to
discriminate between the generated samples. The cycle consistency loss
induces the similarity between the generated and real spectrograms, while the
classification loss induces the discriminability between linguistic classes.

The proposed AC-CycleGAN consists of three CycleGANs, each
corresponding to a linguistic class, and a domain classifier (Figure 14). For
each linguistic class, there is a CycleGAN with two discriminators and two
mapping functions as generators, consistently with the existing CycleGAN.

The auxiliary classifier, as shown in Figure 15, is implemented as a two
CNN layers with residual connections (He, 2016) and MaxPooling (Scherer et
al., 2010). Rectified Linear Unit (Vinod and Hinton, 2010) is used for
activation function, followed by a final linear layer classifying the samples
into the three classes. Dropout of 0.5 (Hinton et al., 2014) and Adam
optimizer is used. The number of epochs is initially set at 1,000 with early

stopping if the model starts overfitting.
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Figure 15. The auxiliary classifier architecture in the proposed AC-CycleGAN.
For the 128 x 128 spectrogram sample input, the feature extractor consists of
2 convolution and pooling layers with residual connections. Then, the
classifier, which consists of two fully connected and an output layer, predicts
the class value between 0, 1, and 2.

5.3. Experiment and Results

5.3.1. Corpus

The proposed model is trained on L2KSC (L2 as Korean Speech Corpus)
(Lee, 2005). The same corpus is used as the CycleGAN training. There are
217 non-native speakers with 27 mother tongue backgrounds, and 107 native

speakers of 54 females and 53 males. Each speaker read 300 short utterances,
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which are in average one second in length.

5.3.2. Feature Annotations

Unlike CycleGAN, the nature of the problem for the CNN classifier is a
supervised discrimination and therefore, requires annotated data. Human
annotators were asked to classify ‘error’ or ‘no error’ upon listening to the
non-native speech, and in case of an error, they had to choose the error type,
‘segmental’ or ‘suprasegmental.” Only one class was available to choose. Out
of the 86.67% cases with error, 75.28% and 24.71% were classified as

‘segmental’ and ‘suprasegmental,” each respectively.

5.3.3. Experiment Setup

The AC-CycleGAN model consists of three CycleGANs and one
classifier. The architecture and the training parameters follows the description
in Section 5.2. above. The CycleGAN implementation follows the description
in Chapter 4. In addition, we tested the performance changes with respect to
the type of loss, pretraining, fine-tuning, layer normalization (Ba et al., 2014),
weight initialization, and data augmentation (Shorten et al., 2019).

First, due to the training data imbalance, weighted loss and data
augmentation technique were implemented. It was mentioned that 75.28% of
the errors are segmental type, and the remaining were labelled as the prosodic
error. The data imbalance can be problematic, causing the model to be biased
towards samples with lager distribution. A weighted loss function can be used

to give more importance to the minority classes by measuring the distribution
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of the data per class.

Another technique to handle the data imbalance is to augment the
minority classes. In this case, the samples in the prosody class were
augmented. Many kinds of augmentation are possible, such as geometric
transformations, color space augmentations, mixing images, random erasing,
and feature space augmentations. Given the temporal nature of the
spectrogram images in this task, we only experimented the impact of spatial
transformation by scaling the spectrograms horizontally by the factor of 1.1,
i.e. other options like flipping or rotating the spectrograms would be less
appropriate. With this scaling option, we seek to augment the data by adding
more samples with higher rate of speech.

Moreover, combinations of pretraining, fine-tuning and weight
initialization parameters were also implemented. Because the pretrained
model from ImageNet (Deng, 2019) is not trained on any spectrogram images,
but on 3.2 million images of everyday objects, animals, food and so on, it is
debatable whether or not these options would contribute to the classification
in this task. Enabling the pretraining and fine-tuning options allows the model
to start training and fine-tune with the pretrained model. When the pretrained
model is not used, the initial weights can be set to an arbitrary value of 0.5

instead of the pretrained weights.

5.3.4. Results

To evaluate the proposed method, the three class classification accuracies
are reported (Table 13). The weighting and augmenting methods were tested

in this experiment, as shown in the columns ‘CE Loss’ and ‘Augmentation’ in
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Table 13. Auxiliary Classifier accuracies comparison of different parameter
variations (CE = Cross Entropy).

Layer  Augmen-

CE Loss Pretrain  Finetune . Precision Recall F1
-norm tation

unweighted No no no no 0.36 0.48 0.46

weighted No no no no 0.49 0.48 0.49

weighted Yes yes no no 0.51 0.46 0.47

weighted Yes no yes yes 0.52 0.52 0.5

weighted  Yes yes yes yes 0.56 0.54 0.55

Table 12. The results show that both methods improve the model performance,
with the weighted loss being slightly more effective. For example, the
confusion matrices show that before the implementations, the model tends to
favor the class with more samples (Figure 16a). In contrast, the model
predictions are more equally distributed after implementation of the
techniques (Figure 16b).

Testing the parameters of pretraining and fine-tuning shows that the
model achieves slightly better performance when the pretrained models is
used both at the start of the training and fine-tuning. The best performing
model is achieved when all the techniques are implemented.

Still, the model performance has a large room for improvement.
Confusion patterns are found between ‘No Error’ and ‘Prosodic’ error groups,
as well as ‘Segmental’ and ‘Prosodic’ error groups, suggesting that the
prosodic error patterns are not easy to distinguish compared to the segmental
errors. Nonetheless, the segmental errors are more easily identified. In the
future work, adding more Korean native speech samples in the ‘No Error’

class is expected resolve the confusion patterns. Moreover, we observe that
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Reference/ Reference/

Predicted No Error Prosody  Segmental Predicted No Error Prosody  Segmental

No Error 0.00% 0.00% 21.74% | No Error 11.11% | 12.35% 6.17%

Prosody 2.17% | 4.35% - Prosody 247% | 17.28% | 14.81%
Segmental | 2.17% 0.00% 30.43% | Segmental | 2.47% 9.88% -

Figure. 15a Figure. 15b

Figure 16. Confusion matrices of the auxiliary classifier before and after the
weighted loss and data augmentation implementations. The training data
imbalance initially causes the model to be biased towards segmental errors
(16a), which is alleviated and more balanced predictions are obtained (16b).

the precision, recall, and F1 in the training data reaches 0.96, 0.97, 0.96, each
respectively. This confirms the ability of the classifier to learn the class
distinctions, although it is more difficult to generalize to unseen data. Since
the foreign language productions are necessarily influenced by the mother
tongue, the performance on the unseen data can be improved by using this
condition. In the future work, we plan to build a L1-dedicated classifier and

test its generalizability

5.4. Summary

Although the generator seems to have acquired how to imitate the native
style, it is not necessarily the case that this information is shared with the
learner. Since it is difficult for the L2 learners to evaluate their own
pronunciations, it is helpful to provide informative feedback on the error types.

In order to enable the generator-student interaction, an auxiliary classifier is
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trained to provide feedback on the linguistic error type.

Motivated by the analysis results in Chapter 3, which found that all
linguistic criteria used for the human evaluation are positively correlated with
human ratings, this chapter proposed an augmented variant of CycleGAN.
With this simple additional 2-layer CNN, the users are expected to benefit
from the knowledgeable feedback. The classifier performance is yet to be
improved by accumulating more data and utilizing L1 background.

One contribution point we wish to mention before closing of this chapter
is the potential of the proposed method of deep learning that preserves domain
knowledge. While it is certainly efficient to let the features be learnt
automatically, being able to control what it can and cannot learn, and to
confirm what it has learnt is an attractive quality, especially for feedback
generation tasks. Using this method that allows to work closely with linguistic
analyses, and future experiments can be conducted with more fine-grained
linguistic distinctions. For example, the method can be applied to a single
focused error type, such as coda deletions or three-way distinctions, which are
common error patterns as observed in Chapter 2. In this way, linguistic
analysis results can be directly used in the automatic system, enabling

individualized feedback opportunities.
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Chapter 6

Conclusion

The present thesis presents a new approach for a CAPT system
development, in which variation patterns and linguistic correlates with
accentedness are analyzed and combined with a deep neural network approach,
so that feature engineering efforts are minimized while maintaining the
linguistically important factors for a corrective feedback generation task.
Learning hierarchy is established by analyzing Chinese speakers’ variation
patterns in contrast with those of native speakers and accentedness judgement
in read speech in Korean. The established priority is then modeled in an

augmented Cycle-consistent generative adversarial framework.

6.1. Thesis Results
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In the first part of the thesis, the pronunciation variation patterns of
Korean produced by Mandarin Chinese learners were analyzed at segmental
and phonological levels. Detensification and coda deletion are the most
frequent phonetic characteristics, with 36.41% and 58.08% variation rates,
while nasal coda insertion and non-realization of palatalization are the most
frequent phonological variations.

Certain types of error deserve more importance than others and it is
necessary to identify the error types that entail more perceptual value than
others. This study designed a method to evaluate linguistic factors affecting
L2 Korean. According to the results in the correlational analysis, segmental
accuracy demonstrates the highest correlation with accentedness, followed by
fluency. The takeaway of these analyses is the learning hierarchy in L2 speech
Korean; coda deletions and non-realization of stress in the three-way
distinctions deserve priorities in corrective feedback design of the CAPT
system, followed by prosodic errors.

In the second part of the thesis, a new deep generative method for an
automatic self-imitating speech correction system was proposed. The
perceptual evaluation comparing PSOLA, cGAN, and CycleGAN
performances shows that cycle-consistent adversarial training is a promising
approach for speech correction task, outperforming the traditional method by
a relative improvement of 16.67%. Then, the CycleGAN model was
augmented by adding a linguistic auxiliary classifier. In addition to the
generated corrected speech, the task of the classifier is to identify the type of
error. The linguistic classes are adopted from the hierarchy and correlation
analyses results obtained in the first part of the study. With this additional 2-
layer CNN, the users are expected to benefit from the knowledgeable
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feedback.

6.2. Thesis Contributions

The experiments presented in this thesis allow the results mentioned in
the previous section, which contribute to the research in CAPT by conducting
a large-scale linguistic analysis of L2 Korean and by proposing a novel
method.

1. To the best of my knowledge, this is the first large scale corpus-based
analysis to have studied the phonological variations in non-native
Korean. A corpus-based analysis was conducted with larger number
of utterances and balanced speaker levels. The results of this study
were used to guide the priorities in teaching Korean speech to
Chinese learners.

2. Generative adversarial training can learn to correct segmental errors,
in addition to pitch and duration errors. The traditional PSOLA
transformation is limited to pitch, duration, and intensity corrections,
which is problematic because the proficiency in a second language is
fully attained only if the students have learned to modulate both the
prosodic and segmental parameters. This work proposed a new
methodology to overcome this limitation by suggesting a model that
corrects both segmental and supra-segmental deviations. automatic
self-imitating speech correction system for pronunciation training.
This is especially meaningful for L2 Korean, in which segmental
accuracy plays an important role.

3. The AC-CycleGAN proposed in this study allows to work closely
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with linguistic analyses and machine learning. In this way, linguistic
analysis results can be directly used in the automatic system, enabling
individualized feedback opportunities. Considering that a possible
criticism of deep neural network learning method is the loss of
domain knowledge, the method can be useful for combining domain
knowledge and the state-of-the-art machine learning approaches and
furthermore, letting the state-of-the-art machine learning discover

what had been unknown in the domain knowledge.

6.3. Recommendations for Future Work

The present work conducted a large-scale linguistic analysis of L2
Korean and by proposed a novel method for CAPT. Yet, there are open issues
within the field of linguistic analysis and speech generation.

The linguistic analysis approach was shown to be helpful in establishing
the learning hierarchy in L2 Korean. In the future work, rater specificities can
be further considered. Although the scores have been averaged per utterance
in order to figure out the overall trends, scores varied among the raters. The
results can be further analyzed independently of the rater-specific factors.

CycleGAN algorithm performed well on the non-native to native speech
transformations. However, there is a room for improvement in CycleGAN’s
sound quality and speaker imitability scores. The former may be related to the
lossy Griffin Lim inversion, and the artifacts produced during the process. A
neural vocoder, such as WaveNet, which has been shown to significantly
improve synthesis fidelity (Oord, 2016), can be tried in the future work.

The speaker voice imitability could be improved by implementing more
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conditioning strategies. This may be due to the diversity in reference styles,
and future work can be expended to better imitate speaker voice
characteristics. For example, the current model had little controlling of the
voice characteristics of input speech, and such situations can be avoided by
introducing another auxiliary classifier and training the encoder and decoder
so that the attribute classes of the decoder outputs are correctly predicted by
the classifier. This in turn may also avoid producing buzzy-sounding speech
by simply transplanting the spectral details of the input speech into its
converted version.

Future experiments can be conducted using AC-CycleGAN with more
fine-grained linguistic distinctions, exploiting its ability to connect linguistic
analysis and machine learning methods. For example, the method can be
applied to a single focused error type, such as coda deletions or three-way
distinctions, which are common error patterns presented in this thesis.

Finally, considering that the purpose of the current work is in view of a
pronunciation training application, the feasibility of a real-time interactive
response generation needs to be tested, including, but not limited to
parallelization techniques using GAN algorithms. By the results of the current
study, which proves both segmental and suprasegmental corrective abilities,

such effort seems worthy of future work.
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Appendix

The appendix provides the supplementary information on the read speech
corpus used in this thesis.
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Appendix L.

List of Read Speech Words in L2KSC Corpus.

1. SACH 24. FOX| 47. HE
2. RE 25, HH| OF th| oF 48, Attt
3. & 26. T+ 49. =%
4. 5t 27. £ 50. AtE
5. 11 28. H+g| 51. 3%
6. Mot 29. 37| 52. =3t
7. H=2 30. 7|< 53. 7710t
8. =QUCt 31. A2 54. WS
9. ofX|O} 32. a0t 55. YRR
10. REIHO|Q 33. EQY 56. = 2i
11. £9 34. Zota 57. &2/
12. 4 35. 7FS5tHE} 58. WaCt
13. AHAY 36. detz=g 59. 7712|712
14, %Ct 37. AIMSICE 60. &
15. & 38. & 61. 2tg
16. M& 39. K|<f 62. & &
17. HECt 40. 2tC| 63. OfILLC}
18. 22| 41, Y= 64. ECt
19. OtH{ K| 42 L 65. ALY
20. =X 43. 3| 66. 71| Ct
21. EACt 44. =atgt|ct 67. HAl
22. &+& 45, =5 LTt 68. Tzt
23. Atmt 46. SESICH 69. Lz}
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Appendix II.

List of Read Speech Sentences used for Accentedness Rating

Task in Chapter 3 of the thesis.
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