432 research outputs found

    Traffic Accidents: Day vs. Night

    Get PDF
    A comparison of accidents during daylight and darkness was made for both rural and urban roads. Accident rates on all types of rural roads were higher during darkness than during daylight. Critical accident rates during darkness for various types of roads were calculated. In urban areas, a larger percentage of accidents occurred on wet pavements during darkness than during daylight, but there were no significant differences for rural roads. No significant difference was found between average speeds during conditions of daylight and darkness. On rural roads, imposition of the 55-mph (24.6-m/s) speed limit resulted in a reduction in accident rates for both daylight and darkness. However, there were changes in the percentages of wet-pavement accidents on rural roads. For the entire rural system, there was a decrease in the percentages of wet-pavement accidents during daylight and an increase during darkness

    Multi-level Safety Performance Functions For High Speed Facilities

    Get PDF
    High speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the safety of these high speed facilities to ensure better and efficient operation. Safety problems could be assessed through several approaches that can help in mitigating the crash risk on long and short term basis. Therefore, the main focus of the research in this dissertation is to provide a framework of risk assessment to promote safety and enhance mobility on freeways and expressways. Multi-level Safety Performance Functions (SPFs) were developed at the aggregate level using historical crash data and the corresponding exposure and risk factors to identify and rank sites with promise (hot-spots). Additionally, SPFs were developed at the disaggregate level utilizing real-time weather data collected from meteorological stations located at the freeway section as well as traffic flow parameters collected from different detection systems such as Automatic Vehicle Identification (AVI) and Remote Traffic Microwave Sensors (RTMS). These disaggregate SPFs can identify real-time risks due to turbulent traffic conditions and their interactions with other risk factors. In this study, two main datasets were obtained from two different regions. Those datasets comprise historical crash data, roadway geometrical characteristics, aggregate weather and traffic parameters as well as real-time weather and traffic data. iii At the aggregate level, Bayesian hierarchical models with spatial and random effects were compared to Poisson models to examine the safety effects of roadway geometrics on crash occurrence along freeway sections that feature mountainous terrain and adverse weather. At the disaggregate level; a main framework of a proactive safety management system using traffic data collected from AVI and RTMS, real-time weather and geometrical characteristics was provided. Different statistical techniques were implemented. These techniques ranged from classical frequentist classification approaches to explain the relationship between an event (crash) occurring at a given time and a set of risk factors in real time to other more advanced models. Bayesian statistics with updating approach to update beliefs about the behavior of the parameter with prior knowledge in order to achieve more reliable estimation was implemented. Also a relatively recent and promising Machine Learning technique (Stochastic Gradient Boosting) was utilized to calibrate several models utilizing different datasets collected from mixed detection systems as well as real-time meteorological stations. The results from this study suggest that both levels of analyses are important, the aggregate level helps in providing good understanding of different safety problems, and developing policies and countermeasures to reduce the number of crashes in total. At the disaggregate level, real-time safety functions help toward more proactive traffic management system that will not only enhance the performance of the high speed facilities and the whole traffic network but also provide safer mobility for people and goods. In general, the proposed multi-level analyses are useful in providing roadway authorities with detailed information on where countermeasures must be implemented and when resources should be devoted. The study also proves that traffic data collected from different detection systems could be a useful asset that should be utilized iv appropriately not only to alleviate traffic congestion but also to mitigate increased safety risks. The overall proposed framework can maximize the benefit of the existing archived data for freeway authorities as well as for road users

    A Comprehensive Review on Risk Factors Affecting the Crash Severity

    Get PDF
    As a matter of growing machinery life, traffic crashes are considered an inevitable source of injuries and costs around the world. Regarding to increasing traffic accident outcomes, controlling the current status is necessary. In this way, identifying risk factors affecting the crash severity is an essential step toward initiating a convincing solution. The core objective of this study was to categorize the risk factors affecting the severity of crashes. Data needed for this study were gathered through searching Web of Science, Google Scholar, and Science Direct databases using the keywords included fatal and crash, injuries and crash, fatal and traffic accident, and injuries and traffic accident. Based on 83 selected studies for review, factors affecting the crash severity divided into five factors and forty-seven sub-factors. The most prevalent sub-factors were age, sex, safety belts, alcohol and drug use, speed, weather conditions, lighting conditions, time of the day and week, vehicle kind, road condition, collision type and crash location. Many risk factors affect crash severity and determination of the most important ones can be a prelude in reducing the effects. Therefore, the conclusion of this review can assist to traffic safety experts, police and contribute to distinguishing and monitoring the risk factors affecting crash severity transportation agencies

    Toolbox of Countermeasures for Rural Two-Lane Curves [updated], TR-579, October 2013

    Get PDF
    The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages

    Toolbox of Countermeasures for Rural Two-Lane Curves

    Get PDF
    The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages. Countermeasures covered are as follows: speed signs, chevrons, widening/adding paved shoulders, reflective barriers, high-friction treatments, raised pavement markers, edge lines, transverse pavement markings, vertical delineation, rumble strips, rumble stripes, on-pavement curve signing, flashing beacons, dynamic curve warning systems, and pavement inset lights

    Advanced Quantitative Methods for Imminent Detection of Crash Prone Conditions and Safety Evaluation

    Get PDF
    Crashes can be accurately predicted through reliable data sources and rigorous statistical models; and prevented through data-driven, evidence-based traffic control strategies. Both predictive analysis and analysis to estimate the causal effect of traffic variables of real-time crashes are instrumental to crash prediction and a better understanding of the mechanism of crash occurrence. However, the research on the second analysis type is very limited for real-time crash prediction; and the conventional predictive analysis using inductive loop detector data has accuracy issues related to inconsistently and distantly spaced loop detectors. The effectiveness of traffic control strategies for improving safety performance cannot be measured and compared without an appropriate traffic simulation application. This dissertation is an attempt to address these research gaps. First, it conducts the propensity score based analysis to assess the causal effect of speed variation on crash occurrence using the crash data and ILD data. As a casual analysis method, the propensity score based model is applied to generate samples with similar covariate distributions in both high- and low-speed variation groups of all cases. Under this setting, the confounding effects are removed and the causal effect of speed variation can be obtained. Second, it conducts a predictive analysis on lane-change related crashes using lane-specific traffic data collected from three ILD stations near a crash location. The real-time traffic data for the two lanes – the vehicle’s lane (subject lane) and the lane to which that a vehicle intends to change (target lane) – are more closely related with lane-change related crashes, as opposed to congregated traffic data for all lanes. It is found that lane-specific variables are appropriate to study the lane-change frequency and the resulting lane-change related crashes. Third, it conducts a predictive analysis on real-time crashes using simulated traffic data. The purpose of using simulated traffic data rather than real data is to mitigate the temporal and spatial issues of detector data. The cell transmission model (CTM), a macroscopic simulation model, is employed to instrument the corridor with a uniform and close layout of virtual detector stations that measure traffic data when physical stations are not available. Traffic flow characteristics at the crash site are simulated by CTM 0-5 minutes prior to a crash. It shows that the simulated traffic data can improve the prediction performance by accounting for the spatial-tempo issue of ILD data. Fourth, it presents a novel approach to modeling freeway crashes using lane-specific simulated traffic data. The new model can not only account for the spatial-tempo issues of detector data but also account for heterogeneous traffic conditions across lanes using a lane-specific cell transmission model (LSCTM). The LSCTM illustrates both discretionary lane-changing (DLC) and mandatory lane-changing (MLC) activities. This new approach presents a viable alternative for utilizing traffic simulation models for safety analysis and evaluation. Last, it develops a crash prediction and prevention application (CPPA) based on simulated traffic data to detect crash-prone conditions and to help select the desirable traffic control strategies for crash prevention. The proposed application is tested in a case study with VSL strategies, and results show that the proposed crash prediction and prevention method could effectively detect crash-prone conditions and evaluate the safety and mobility impacts of various VSL alternatives before their deployment. In the future, the application will be more user-friendly and can provide both online traffic operations support as well as offline evaluation of various traffic control operations and methods

    Review of traffic data collection methods for drivers’ car – following behaviour under various weather conditions

    Get PDF
    Adverse weather conditions have considerable impact on traffic operation and safety as it affects drivers’ car-following behaviour. However, the quality of traffic data and its related methodologies to address these effects are under continuous enhancement. This paper intends to provide an overview of various empirical traffic data collection methodologies widely used to investigate drivers car-following behaviour under various weather conditions. These methodologies include video cameras, pneumatic tubes, floating car data, instrumented vehicle and driving simulator. Moreover, the advantages and disadvantages related to methodologies have been discussed with emphasis on their suitability to work under adverse weather conditions. Furthermore, conclusion also comprises on table format of comparative review of facilities concerned with the methodologies

    Back-propagation neural networks and generalized linear mixed models to investigate vehicular flow and weather data relationships with crash severity in urban road segments

    Get PDF
    The paper deals with the identification of variables and models that can explain why a certain Severity Level (SL) may be expected in the event of a certain type of crash at a specific point of an urban road network. Two official crash records, a weather database, a traffic data source, and information on the characteristics of the investigated urban road segments of Turin (Italy) for the seven years from 2006 to 2012 were used. Examination of the full database of 47,592 crash events, including property damage only crashes, reveals 9,785 injury crashes occurring along road segments only. Of these, 1,621 were found to be associated with a dataset of traffic flows aggregated in 5 minutes for the 35 minutes across each crash event, and to weather data recorded by the official weather station of Turin. Two different approaches, a back-propagation neural network model and a generalized linear mixed model were used. Results show the impact of flow and other variables on the SL that may characterize a crash; differences in the significant variables and performance of the two modelling approaches are also commented on in the manuscript

    TRA-933: EFFECTS OF RAINFALL ON CONTROL DELAY AND QUEUE AT MULTILANE ROUNDABOUT

    Get PDF
    The main thrust of the study is to investigate the extent of delay induced by rainfall at the roundabouts. Traffic flows at roundabout are continuous in one direction around a central island where entry flows yield to circulating flows. Based on the hypothesis that, rainfall will increase roundabout entry delay, ‘with and without’ rainfall studies were carried out at selected roundabouts in Durban, South Africa. Entry and circulating traffic flow data as well as geometric data were collected continuously at three selected sites during rainfall and dry weather conditions. Three classes of rainfall intensity were used: light rainfall with intensity \u3c 2.5mm/h, moderate rainfall with intensity 2.5 – 10mm/h and heavy rainfall with intensity 10 – 50mm/h. Results show that entry delays increased between 11% and 22% during rainy conditions. The study concluded that heavy rainfall has a significant impact on delays and queues at roundabouts. The delay is not responsive to light and moderate rainfall intensity
    corecore