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ABSTRACT 

High speed facilities are considered the backbone of any successful transportation system; 

Interstates, freeways, and expressways carry the majority of daily trips on the transportation 

network. Although these types of roads are relatively considered the safest among other types of 

roads, they still experience many crashes, many of which are severe, which not only affect 

human lives but also can have tremendous economical and social impacts. These facts signify the 

necessity of enhancing the safety of these high speed facilities to ensure better and efficient 

operation. Safety problems could be assessed through several approaches that can help in 

mitigating the crash risk on long and short term basis. Therefore, the main focus of the research 

in this dissertation is to provide a framework of risk assessment to promote safety and enhance 

mobility on freeways and expressways. Multi-level Safety Performance Functions (SPFs) were 

developed at the aggregate level using historical crash data and the corresponding exposure and 

risk factors to identify and rank sites with promise (hot-spots). Additionally, SPFs were 

developed at the disaggregate level utilizing real-time weather data collected from 

meteorological stations located at the freeway section as well as traffic flow parameters collected 

from different detection systems such as Automatic Vehicle Identification (AVI) and Remote 

Traffic Microwave Sensors (RTMS). These disaggregate SPFs can identify real-time risks due to 

turbulent traffic conditions and their interactions with other risk factors. 

In this study, two main datasets were obtained from two different regions.  Those datasets 

comprise historical crash data, roadway geometrical characteristics, aggregate weather and traffic 

parameters as well as real-time weather and traffic data. 
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At the aggregate level, Bayesian hierarchical models with spatial and random effects were 

compared to Poisson models to examine the safety effects of roadway geometrics on crash 

occurrence along freeway sections that feature mountainous terrain and adverse weather. At the 

disaggregate level; a main framework of a proactive safety management system using traffic data 

collected from AVI and RTMS, real-time weather and geometrical characteristics was provided. 

Different statistical techniques were implemented. These techniques ranged from classical 

frequentist classification approaches to explain the relationship between an event (crash) 

occurring at a given time and a set of risk factors in real time to other more advanced models. 

Bayesian statistics with updating approach to update beliefs about the behavior of the parameter 

with prior knowledge in order to achieve more reliable estimation was implemented. Also a 

relatively recent and promising Machine Learning technique (Stochastic Gradient Boosting) was 

utilized to calibrate several models utilizing different datasets collected from mixed detection 

systems as well as real-time meteorological stations.    

The results from this study suggest that both levels of analyses are important, the aggregate level 

helps in providing good understanding of different safety problems, and developing policies and 

countermeasures to reduce the number of crashes in total. At the disaggregate level, real-time 

safety functions help toward more proactive traffic management system that will not only 

enhance the performance of the high speed facilities and the whole traffic network but also 

provide safer mobility for people and goods. In general, the proposed multi-level analyses are 

useful in providing roadway authorities with detailed information on where countermeasures 

must be implemented and when resources should be devoted. The study also proves that traffic 

data collected from different detection systems could be a useful asset that should be utilized 
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appropriately not only to alleviate traffic congestion but also to mitigate increased safety risks. 

The overall proposed framework can maximize the benefit of the existing archived data for 

freeway authorities as well as for road users. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

Transportation is unquestionably one of the most important elements in any successful economy. 

It is the science of safe and efficient movement of people and goods. The safety comes first in 

the definition of the transportation and in reality safety should always be the first to be 

considered in all aspects of life. Traffic safety is one of the most growing researched topics in 

transportation because of not only lives of people are priceless but also because of tremendous 

delays and loss in operation performance that these crashes can cause. According to the National 

Highway Traffic Safety Administration, 37,261 people were killed in 2008 and more than 2.3 

million were injured in traffic crashes on the U.S. roads (NHTSA, 2008). Although the crash-

related fatalities and the total number of crashes seem to be decreasing in the United States in the 

recent years, it is not acceptable that more than thirty seven thousand people are still losing their 

lives every year on roadways of the U.S. and more than two millions are injured. Traffic safety 

research is still in need of great effort to see crashes, deaths and injuries significantly decline in 

the years to come. 

There were 243,342 traffic crashes in Florida in 2008 compared to 256,207 in 2007, other than 

pedestrian and motorcycle crashes Florida saw a decrease in overall crash and injuries from 2007 

and 2008. Also, the number of fatalities on Florida roadways decreased from 2007 by 7.4% 

going from 3,221 to 2,983 in 2008 (1.5 deaths per 100 million vehicle miles traveled) (FHSMV, 

2008). Despite the positive trends of 2008 crash statistics in decreases in fatalities and injuries in 
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Florida, the influence of the slowing economy, increased safety of vehicles, and fewer vehicles 

on the road (Vehicle Mile Traveled (VMT) per registered vehicle is going down) might be the 

reason behind these trends. 

Roadway network comprises different road types, among these types; interstates, freeways, and 

expressways are considered the principal arterial systems that daily carry the majority of people 

and goods on the transportation network. Despite the fact that the frequency of crash occurrence 

is typically lower on interstates, freeways and expressways when compared to other types of 

roads, the highest traffic volume corridors, the longest continuous trips, and the highest 

proportion of vehicle miles traveled take place on these roads. Therefore, crashes on these types 

of roads are significant, where they can affect traffic conditions for hours. These facts signify the 

importance of improving the safety on these high speed facilities of interstates, freeways and 

expressways in order to insure better and efficient mobility. 

Previous effort in freeway safety studies are categorized into two types; 1) aggregate analysis in 

which the frequency of crashes is the number of crashes occurring in some geographical space 

(road segments, intersections, or network) over specific time period (months, seasons or years), 

and 2) disaggregate analysis focusing on relating real-time traffic data and crash occurrence on 

freeways in a proactive safety management framework (Golob et al., 2004).  

Regarding aggregate analysis; although, many researchers have put great effort in innovative 

methodological approaches to account for the formidable problems in data characteristics to 

improve the understanding of the factors that affect crash-frequencies, there is still a room for 
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statistical methodologies that can be introduced to provide superior statistical fit and predictive 

capabilities and overcome these problems (Lord and Mannering, 2010). 

Both aggregate and disaggregate studies are useful, aggregate studies help in providing direction 

for policies and countermeasures to reduce the number of crashes while disaggregate studies 

dealing with real-time data help in efficient, smart and proactive traffic management that will not 

only enhance the performance of the network but also provide safe movement for people and 

goods.  

1.2 Research Objectives 

The work in this study focuses on different levels to assess traffic safety on high speed facilities 

by developing Safety Performance Functions (SPFs) on aggregate and disaggregate levels. To 

develop this multi-level procedure, the following main objectives were achieved;  

1. Identification of main contributing factors of crash frequencies on mountainous freeways 

as well as identification of sites with promise (“hot-spots”) using advanced Bayesian 

statistical technique.  

This objective was achieved by the following:  

a) Modeling crash frequency of freeway to identify the confounding factors of 

geometry, traffic, and weather conditions using Full Bayesian (FB) hierarchical 

approach. 
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b) Asystemfor identifyingand ranking thesiteswithpromise (“hot-spots”)along

the freeways was developed. Bayesian approaches Full Bayesian (FB) 

hierarchical approach was used to accomplish this task. 

2. Investigating the viability of using the automatic vehicle identification (AVI) traffic data 

in identification of freeway real-time “hot-spots” in a proactive traffic management 

framework. Developing and comparing between single generic models for all crashes and 

specific models for rear-end crashes using AVI data.  

The following tasks were implemented to achieve the second objective: 

a) Utilizing classical (frequentist) matched case-control logistic regression to 

examine the viability of using traffic data collected from Automatic Vehicle 

Identification Systems (AVI) on Orlando Orange County Expressway Authority 

(OOCEA) expressway network for real-time safety risk analysis.  

b) Applying Bayesian updating approach in order to achieve reliable crash 

identification.  

c) Calibrating separate models to identify specific crash types (All crashes vs. Rear-

End crashes). 

3. Assessing the interaction between crash occurrence, mountainous freeway geometry, 

real-time weather and AVI traffic data in real-time risk assessment. 



5 

 

Objective three was achieved by the following:  

a) Using Bayesian logistic regression technique to link crashes on Interstate 70 in 

Colorado with real-time space mean speed collected from AVI system, real-time 

weather and roadway geometry data.  

b) Investigating whether the inclusion of roadway and weather factors in real-time 

crash prediction models is required for freeway sections that feature challenging 

geometry and adverse weather. 

c) Investigating various factors affecting crashes in real-time during different 

seasons by estimating separate models for distinctive seasons. 

4. Developing a framework for real-time risk assessment using data from multiple sources 

(i.e. remote traffic microwave sensors, automatic vehicle identification, and real-time 

weather) to achieve reliable and robust prediction performance under different scenarios 

of data availability.  

Final objective was achieved by the following:  

a) Utilizing Stochastic Gradient Boosting (SGB), a relatively recent and promising 

machine learning technique was used to calibrate several models using different 

datasets collected from mixed detection systems as well as real-time weather 

stations.  
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b) Data from different sources were fused to provide the ultimate set of predictors, a 

full model using the whole data was estimated. 

c)   The prediction performance of each model was compared. Depending on on-line 

data availability, a framework was provided for real life application. 

1.3 Dissertation Organization 

The dissertation is organized as follows: following this chapter, a summarized literature review 

on previous studies of aggregate freeway crash analysis highlighting the important factors that 

affect crash frequency as well as discussing the different statistical methodologies used in that 

area, followed by a detailed review of the real-time crash prediction literature. Chapter 3 presents 

data, methodology, and finding of the analysis of crash frequency of 20-mile mountainous 

section in Colorado using Full Bayesian Hierarchical approach. The preparation of OOCEA 

expressways automatic vehicle identification traffic data and crash data, methodologies, and 

viability of using this data in real-time safety risk analysis are provided in chapter 4. Followed by 

chapter 5, estimating separate models for specific crash type (rear-end) and compare it to single 

generic model for all crashes using Bayesian updating approach as well as. Chapter 6 discusses 

the inclusion of geometrical characteristics and weather information in real-time risk assessment. 

A framework for real-time risk assessment using traffic data from mixed detection systems, real-

time weather and geometry is illustrated in chapter 7. The final chapter of this dissertation, 

chapter 8 concludes the findings, and discusses future recommendations. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 General 

The literature review is divided into two main sections. First section summarizes the studies of 

aggregate crash analysis on freeway in which the frequency of crashes is the number of crashes 

occurring in some geographical space (road segments, intersections, or network) over specific 

time period (months, seasons or years), in these studies the traffic flow parameters are 

represented by aggregated measures (e.g. AADT and speed limit). This section also shed the 

light on important factors that affect crash frequency as well as discussing the different statistical 

methodologies used in that area. Second section provides a comprehensive review of previous 

disaggregate studies focused on relating real-time traffic data and crash occurrence on freeways 

in a proactive safety management framework. In these studies the units of analysis are the 

disaggregate crash events and the traffic flow is represented by the corresponding real-time 

traffic data at the same time and location of each crash.  

2.2 Aggregate Analysis of Crashes 

2.2.1 Overview 

The aggregate crash frequency analysis has been an effective way to gain better understanding of 

the contributing factors that affect the likelihood of crashes and identify locations with high crash 

risk potential for many decades. These studies are important to provide directions to officials for 

policies and countermeasures to reduce number of crashes. Crash performance functions were 

conventionally used to establish relationships between the traffic characteristics (e.g. speed limit, 
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ADT, and VMT), roadway geometry (e.g. number of lanes, curvatures, grades, etc.) and 

environmental factors (weather), driver characteristics and behavior (e.g. gender, age, 

acceleration, braking and steering information, driver response to stimuli, etc.) and crash 

occurrence.  

Ceder (1982), Garber and Ehrhat (2000), and Yan et al. (2009) established relationships between 

these variables and crash frequency while Abdelwahab and Abdel-Aty (2002), Al-Ghamdi 

(2002) and Srinivasan (2002) related these variables to the severity of crashes.  

2.2.2 Factors Affecting Crash Frequency 

There are many factors that contribute to crash occurrence, two main categories of these factors 

that affect crash frequency on freeways are; 1) behavioral factors, and 2) non-behavioral factors. 

The data about behavioral factors are typically not available and hence they are less reported in 

the literature. Traffic flow characteristics, weather, and geometry were extensively reported in 

many studies as the main contributing factors that affect crash frequency on freeways. 

The association between roadway geometry and crash occurrence is well documented in the 

literature, Wong and Nicholson (1992), Boughton (1975), National Cooperative Highway 

Research Program (1997), and the Federal Highway Administration (1982) showed strong 

association between adverse geometric elements and high crash frequency. 
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Milton and Mannering (1998) reported that the increase in section length tends to increase crash 

frequency and the effect of section length on expected crash frequency has an exponential non-

linear form. Their study revealed that vertical grades greater than 1 percent produced higher 

crash frequencies. Upgrade slopes were found to slow trucks by 15 km/h for significantly long 

grades and this reduction in speed found to be associated with increased passing and risk taking 

by faster passenger vehicles and increase in crashes. In contrary, downgrades have the effect of 

increasing speeds and this increase in speed results in increase in crash rates. Sharp horizontal 

curves with radii less than 868 m were found to decrease the crash frequency and they explained 

that by the fact that the drivers may be more likely to drive cautiously.  

Chang and Chen (2005) established empirical relationship between freeway crash frequency and 

highway geometric variables, traffic characteristics, and environmental factors. They compared 

between Classification and Regression Tree (CART) and Negative Binomial (NB). They 

concluded that CART model relies more on traffic and environmental variables than geometric 

and location variables to classify crash frequencies on the freeway sections. According to CART, 

the study showed that ADT is the best single variable to classify the crash frequency on the 

freeway having the initial split in node 1 based on the ADT of 20,622 vehicles/lane. This 

indicates that the increase in ADT over 20,622 may increase crash frequency, this finding also 

confirmed from their NB model that the increase in ADT tend to increase crash frequency 

because of the increase of exposure. The second important variable to classify crash frequency 

was the number of rainy days, more crashes was expected with segments with rainy days more 

than 81 days, and even more crashes are expected with bus ADT more than 4,677 buses/day. In 
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general, freeway sections with higher traffic volume (ADT/lanes, bus volume, truck volume, and 

semi-tractor volume), higher precipitation (number of days and amount of rain) are found to be 

more prone to be classified with higher crash rates. Regarding geometric alignment, they found 

that grade greater than 3.85% and degree of horizontal curvature greater than 0.4° have greater 

tendency to be classified with higher crash frequencies. It was indicated from NB model which 

relied more on geometric variables that the presence of degree of horizontal curvature greater 

than 8° can significantly reduce the crash likelihood. 

Carson and Mannering (2001) estimated three separate models for interstate freeways, principal 

arterial, and minor arterial state highways to examine the effect of warning signs on ice-accident 

frequency. They found that spatial factors (e.g. urban), traffic characteristics (e.g. AADT, truck 

percentage), and geometry (e.g. shoulder width, grade) have significant effect on crash frequency 

while ice-warning signs do not have a statistically significant impact on the frequency or severity 

of crashes that involve ice. 

Chang (2005) compared the predication performance of NB model and Artificial Neural 

Network (ANN), the study showed that ANN model is a consistent alternative method to analyze 

the frequency of freeway crash. From both models, it was concluded that ADT, number of lanes, 

vertical and horizontal alignments are significantly influence the freeway crash frequency. 

Accident likelihood increase by increase of each of ADT, number of lanes, sections with steep 

upgrades (3% or more), and sections with steep downgrades. Sections with level grades, severe 

horizontal curve (degree of horizontal curve greater than 6°) have reduced crash likelihood. 
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Moreover, the study showed an increase in likelihood of crashes at ramps area because of the 

impact of merging and diverging maneuvers on crash risk. 

In a recent study by Park et al. (2010), the safety effect of geometric design elements for various 

highway facilities was evaluated. The study revealed that crash frequencies on freeway segments 

were associated with ADT, on-ramp density, degree of curvature, median width, number of 

urban freeways lanes, and spatial factors (urban/rural). 

2.2.3 Statistical Techniques of Analyzing Crash Frequency 

Recently, researches have put many efforts using different statistical techniques in trials of 

revealing the contributing factors that are associated with crash frequency on roadway segments 

over certain period of time. Different modeling techniques that have been ranged from 

conventional regression to data mining techniques such as Artificial Neural Network (ANN) and 

Classification and Regression Trees (CART), and Bayesian statistical techniques such as 

Empirical Bayes (EB) and Full Bayesian (FB) were used to analyze crash frequency data.  

Lord and Mannering (2010) provided a detailed review of the key issues associated with crash-

frequency data as well as an assessment of the strengths and weaknesses of the various 

methodological approaches that have been used to address these problems. They concluded that 

despite the fact that many researchers have put great effort in innovative methodological 

approaches to account for these formidable problems in data characteristics to improve the 
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understanding of the factors that affect crash-frequencies, there is still a room for statistical 

methodologies that can be introduced to overcome these problems. 

The nature of the crash-frequencies of being non-negative count data and the randomness 

discrete distributional property led to use Poisson and negative binomial models (NB) 

extensively. Poisson and NB models known also for their easy estimation (Shankar et al. 1995; 

Hadi et al., 1995; Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Savolainen and 

Tarko, 2005).  

However, Poisson and NB models have their own restrict assumptions, Poisson model for 

example cannot handle over- and under- dispersion while NB can only deal with over- dispersed 

data. In order to overcome different statistical problems in the count data associated with Poisson 

and negative binomial models, other alternations were applied to these models such as using 

zero-inflated (Poisson and negative binomial), and random effect negative binomial (Shankar et 

al., 1997; Carson and Mannering, 2001; Lee and Mannering, 2002; Shankar et al., 1998; Lord 

and Mannering, 2010).  

Moreover, other non parametric models have been used such as Classification and Regression 

Tree (CART) and Hierarchical Tree-Based Regression (HTBR) to predict and classify the crash 

occurrence on freeway (Chang and Chen, 2005; Karlaftis and Golias, 2002).  

Unlike Poisson and NB models, CART and HTBR have an advantage of not requiring a 

specified functional form. However, the CART & HTBR models have their own disadvantages 
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of the risk of over-fitting because of the lack of formal statistical inference procedures and they 

also lack of handling the interactions between risk factors as explained by Harrel (2001).  

Chang (2005) concluded that Artificial Neural Network (ANN) is a consistent alternative of NB 

for analyzing crash frequency on freeway. Similar to CART and HTBR, ANN does not require 

assumptions to relate risk factors to crash frequency and it features additional ability of handling 

the interactions between the predictors. CART, HTBR, and ANN all share another drawback of 

the difficulty of performing elasticity and sensitivity analyses which is important to provide the 

marginal effects of the variables on crash frequency. 

The Full Bayesian (FB) hierarchical approach has gained momentum recently to better account 

for spatial correlation between observations (e.g. crashes) among locations (e.g. roadways 

segments or intersections). The Full Bayesian (FB) has become very common in modeling crash 

frequency because its capability to account for uncertainty in crash data and to provide more 

detailed causal inferences and more flexibility in selecting crash count distributions. Moreover, 

random effects can be easily included with the Full Bayesian (FB) formulation to help address 

individual site differences and prevent regression to the mean bias. It is concluded also that this 

methodology is extendable to any type of crash and different roadways.  

Tunaru (2002) developed a multiple response FB hierarchical model that could support complex 

correlation structure. Two different ranking criteria were used to identify hazardous sites using 

the developed model; ranking by the posterior probability that a site is the worst and ranking by 
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posterior distributions of ranks. He concluded that the first criteria can be used for long term 

projects while the second can be used for short term projects. 

Aguero-Valverde and Jovanis (2007) used Full Bayesian Hierarchical Models with random 

effects to identify road segments with elevated weather-related crash risk. They examined two 

different ranking criteria; “theexpectedexcesscrash frequency (compared to similar sites) and 

the relative risk (the ratio of the expected number of crashes at a site divided by the number 

expectedforsimilarsites)”,they found that the results were consistent from the two methods.  

Huang and Chin (2009) applied Full Bays (FB) hierarchical approach to identify crash hotspot on 

Singapore intersection crash data (1997-2006), they showed that the FB hierarchical models have 

better goodness-of-fit than non-hierarchical models and even more, the hierarchical models 

perform significantly better in safety ranking than the naïve approach using raw crash count.   

2.3 Disaggregate Crash Analysis  

2.3.1 Applications of ITS-archived Data in Traffic Safety  

Safety performance of a transportation facility can be assessed by crash data analysis as one of 

the most frequent used tool (Abdel-Aty, and Pande, 2007). Crash performance functions were 

conventionally used to establish relationships between the traffic characteristics, roadway and 

environmental conditions, driver behavior and crash occurrence. Although these models are 

useful to some extent, the aggregate nature of traffic parameters is not capable to identify the 

real-time locations with high probability of crashes. 
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On the other hand, real-time crash analysis had the researchers’interestrecently in the last one 

decade since it has the capability of identifying crashes in real time and hence being more 

proactive in safety management rather being reactive.  

Madanat and Liu (1995) used traffic flow and environmental conditions measured by 

surveillance sensors to estimate the incident likelihood for two types of incidents related to 

crashes and overheating vehicles. The incident likelihood was estimated to enhance existing 

incident detection algorithms. Using binary logit model, it was concluded that merging section, 

visibility and rain are the most significant factors affecting crash likelihood prediction.  

Loop detectors data were used by Hughes and Council (1999) to explore the relationship 

between freeway safety and peak period operations. They found that the variability in vehicle 

speeds was the most significant measure that affects crash occurrence while macroscopic 

measures as AADT and hourly volume were poor measures in the analysis of safety. They used 

data from single milepost location during the peak periods of the day with assistant of snapshots 

provided by cameras installed on the freeway to examine the changes in system performance as 

it approaches the time of the crash. They concluded that “design inconsistency” is one of the

most important factors of crash causation, they also suggested that “traffic flow consistency”

should be considered in future research as perceived by the driver as an important variable that 

affect human. Moreover, they call for determining of the exact time of crash in order to avoid 

“causeandeffect”fallacy.Also,Feng(2001)suggestedthatthereductionofspeedvariancemay

help in reducing crash occurrence. 
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Oh et al. (2001) was the first to statistically link real-time traffic conditions and crashes. A 

Bayesian model was used with traffic data containing average and standard deviation of flow, 

occupancy, and speed for 10-seconds intervals. It was concluded that the five minutes standard 

deviation of speed contributes the most in differentiating between pre-crash and non-crash 

condition. Although there sample size of 53 crashes is small, they showed the potential capability 

of establishing the statistical relationship. Moreover, the practical application of their finding is 

questionable, since five minutes before the crash is not adequate time for any remedy actions. 

“Crashprecursors”werefirstintroducedbyLeeetal.(2002),theyhypothesizedthatshort-term 

turbulence of traffic flow is significantly affecting the likelihood of crash occurrence. They used 

the log-linear approach to model traffic conditions leading to crashes “precursor”, spatial

dimension was added by using data from upstream and downstream detectors of the crash 

location as well as data across the three lanes at the crash location to represent factors such as 

speed variation along a specific section of the crash location along the roadway and between 

lanes. Also, traffic density was considered at the instant of the crash in addition to other external 

controlling factors such as weather, road geometry and time of crash.  Moreover, they used speed 

profile captured by the detectors to estimate the actual crash time instead of using the reported 

crash time. They refined their analysis in a later study (Lee et al., 2003) and the coefficient of 

temporal variation in speed was found to have a relatively longer-term effect on crash potential 

than density while the effect of average variation of speed across adjacent lanes was found to be 

insignificant. 
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Golob et al. (2003) in later study developed a software tool FITS (Flow Impacts on Traffic 

Safety) to predict type of crashes based on the flow conditions being monitored. They used data 

for more than 1000 crashes from six major freeways in Orange County in California to develop 

the model and applied the tool in a case study on a section of SR55. 

Hourdos et al. (2006) developed on-line crash-prone condition model using 110 live crashes, 

crash-related traffic events, and other contributing factors visualized from video traffic 

surveillance system (e.g., individual vehicle speeds and headways) over each lane in different 

places of the study area. They were able to detect 58% of the crashes successfully with a 6.8 

false decision rate (where 6.8% of the crash cases were detected as non-crash cases). 

Kockelman and Ma (2004) conducted a study using 55 severe crashes that occurred during 

January 1998 for the same area analyzed by Golob et al. (2003). Unlike all previous studies that 

have indicated a relationship between speed variability and crash occurrence, they concluded that 

speeds measured as 30-second time series and their variations are not capable of predicting crash 

occurrence. However, their conclusion is suspected due to the small sample size. 

Similarly, Ishak and Alecsandru (2005) used data for 116 crashes occurred on Interstate 4 in 

Orlando, Florida. They found that it is not possible to separate pre-incident, post-incident, and 

non-incident traffic regimes from each other. Moreover, they indicated that traffic conditions that 

lead to crash might not be discernible in real-time. 
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Abdel-Aty and Pande (2005) were able to capture 70% of the crashes using the Bayesian 

classifier based methodology, probabilistic neural network (PNN) using different parameters of 

the speed only. They found that the likelihood of a crash is significantly affected by the 

logarithms of the coefficient of variation in speed at the nearest crash station and two stations 

immediately preceding it in the upstream direction  measured in the 5 minute time slice of 10-15 

minutes prior to the crash time. 

Park and Ritchie (2004) used individual vehicle trajectories obtained from a state-of-the-art 

vehicle-signature based traffic monitoring technology to relate the lane-changing behavior and 

presence of long vehicles within a freeway section and speed variation. They claimed that using 

section speed variance rather than the point speed variance usually obtained from loop detectors 

data is more efficient in representing traffic changes. They concluded that these factors are 

significantly affecting the section speed variability.  

2.3.2 Real-Time Analysis Based on Traffic Regimes 

Golob et al. (2004) related different traffic regimes to crash occurrence. They used data from the 

six freeways in Orange County in California. They found that about 76% of all crashes occurred 

in four regimes out of total eight regimes of traffic flow that exist on these freeways. This 

indicates that specific regimes of the traffic flow is more correlated with crash occurrence than 

others and hence the key of crash prediction on urban freeways is distinguishing these patterns of 

traffic flow in real-time. 
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Zhang et al. (2005) also established a link between traffic congestion and freeway crashes in 

different weather conditions. They concluded a U-shaped curve relationship between the 

“Relative Risk Ratio” (a measure of crash probability) and congestion. Moderate congestion

resulted in high relative risk ratio while free flow and heavy congestion found to be related with 

low relative risk ratio. 

Matched case-control was used by Abdel-Aty et al. (2004) to link real-time traffic flow variables 

collected by loop detectors and crash likelihood. Matched case-control was selected because it 

has the capability of eliminating the influence of location, time and weather condition. They 

concluded that the average occupancy at the upstream station along with the coefficient of 

variation in speed at the downstream station, both during 5-10 minutes prior to the crash, were 

the most significant factors affecting crash likelihood prediction.  

They extended their work in later study (Abdel-Aty et al. 2005); multi-vehicle freeway crashes 

under high- and low-speed traffic regimes were found to differ not only in terms of severity but 

also in their mechanism. Therefore, these two different distributions of 5-minute average speeds 

obtained from the closest station to the location of the crash suggested using different models 

depending on the freeway operation characteristics. Although, they used similar procedure to 

build low and high-speed models, the parameters entered in the two models are different. They 

concluded that low speed crashes mostly occur in persisting congested conditions where queues 

form and dissipate quite frequently. In contrary, freeway operation was found to be smooth at the 

high-speed crash location before the crash while they argued that some disruptive conditions 
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originating downstream and the propagating backwardswere the causes of drivers’ errors and

hence increasing the crash potential. Also, they found that more parameters came out to be 

significant from the downstream stations in high-speed model at time duration 5-15 minutes 

prior to the time of the crash. 

2.3.3 Identification of Type of Crash Using Real-Time Data 

A detailed study carried out by Golob and Recker (2001) to analyze patterns in crash 

characteristics as a function of real-time traffic flow, non-liner canonical correlation analysis 

(NLCCA) and principal component analysis were used with three different sets of variables. The 

first set defined lighting and weather condition, the second set defined crash characteristics of 

collision type, location and severity and the third set consisted of real-time traffic flow variables. 

It was concluded that some collision types are more common under certain traffic conditions; 

they found that median speed and variation in speed between the left- and interior lanes is related 

to the collision type. In addition, the inverse of the traffic volume has more influence than the 

speed in determining the severity of the crash. Although, the established statistical links between 

environmental factors, traffic flow, and crash occurrence is sound, their findings are limited by 

the fact that the speed was estimated using a proportional variable (volume/occupancy) from 

traffic data that were obtained from single loop detectors. Moreover, their findings are not 

applicable in a real-time proactive management to separate traffic conditions leading to crash 

from normal traffic conditions since non-crash data were not included.  

Modeling crash types was argued by Kim et al. (2006) to be useful for at least three reasons: 
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1) Identification of sites with high crash risk of specific crash types that may not be 

identifiable using total crash types. 

2) Countermeasures are likely suitable for only a subset of all crashes. 

3) Traffic, road geometry, and environmental factors are usually associated with 

different crash types. 

The importance of crash-type analysis was also highlighted by Pande and Abdel-Aty (2006a), 

they suggested that the traffic conditions preceding crashes are expected to differ by type of 

crash and therefore the proactive traffic management should be type-specific. They proposed a 

step by step approach to analyze loop detector data to identify real-time traffic conditions prone 

to rear-end crashes. They found that rear-end crashes may be grouped into two distinct cluster 

based on the average speeds prevailing within 2-mile section around the crash location 5-10 

minutes prior to the crash time.  

Pande and Abdel-Aty (2006b) continued their analysis with different type of crashes on freeway, 

they investigated lane-change related crashes on a freeway using classification tree procedure, it 

was concluded that all sideswipe collisions and the angle crashes that occur on the inner lanes 

(left most and center lanes) of the freeway may be attributed to lane-changing maneuvers. The 

results also revealed that average speeds upstream and downstream of the crash location, 

difference in occupancy on adjacent lanes and standard deviation of volumes and speed 

downstream of the crash location were the significant variables affecting crash occurrence. 
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Chris Lee et al. (2006) investigated the real-time traffic factors related to sideswipe crashes using 

asurrogatemeasureoflanechangecalled“overallaverageflowratio(OAFR)”whichaccounts

for imbalance of lane flow across neighboring lanes during short time periods (5-10 minutes) and 

compared conditions for sideswipe and rear-end crashes based on those factors. They modified 

the original expression of“averageflowratio(AFR)”betweenadjacentlanesthatwasdeveloped

in previous experimental study of lane change by Chang and Kao (1991) by suggesting that a 

geometric mean of ratios of flows between adjacent lanes can be used to indicate the likelihood 

of sideswipe crashes. Four year loop detector data from 36.3-mile on I-4 in Orlando were used.  

They conducted t-test to identify the factors that are contributing more to sideswipe than rear-end 

crashes by comparing the average values (or percentages) of traffic related factors included 

average speed, flow and occupancy – lane average of 30-second speed, coefficient of variation of 

speed, coefficient of variation of flow, and peak/off-peak period and road geometric factor 

included only the curvature of road section. They found that the OAFR is a good surrogate 

measure of lane change as they found that the OAFR is generally higher for sideswipe than rear-

end crashes at a 95% confidence level in addition to coefficient of variation of flow and peak/off-

peak period. Simple logistic regression was used to quantify the relationship between these 

potential indicators and sideswipe, and rear-end crashes. They concluded that the odds of 

sideswipe relative to rear-end crashes increases as value of OAFR and coefficient of variation of 

flow increase and when the time period is off-peak period. 
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2.3.4 Crash Prediction Using Archived Weather and ITS Traffic Data 

Many studies showed strong relationship between weather and speed and safety, the effect of 

weather may include reduced visibility, stability, and controllability.  However very few studies 

have investigated crash occurrence using real-time traffic data while controlling for 

environmental and weather conditions. The study by Golob and Recker (2001) was one of the 

earlier studies that examined the relationship between the types of freeway crashes and the traffic 

flow parameters while controlling for weather and ambient lighting conditions. 

Abdel-Aty and Pemmanaboina (2006) used Principal Component Analysis (PCA) and logistic 

regression (LR) to estimate a weather model that determines a rain index based on the rain 

readings at the weather station in the proximity of the I-4 corridor in Orlando. The archived rain 

index was used with real-time traffic loop data to model the crash potential using matched case-

control logit model. They concluded that the 5-minute average occupancy and standard deviation 

of volume observed at the downstream station and the 5-minute coefficient of variation in speed 

at the station closest to the crash, all during 5-10 minutes prior to the crash occurrence along with 

the rain index were found to be the most significant factors to affect crash occurrence. 

Hassan et al. (2010) used real-time traffic data to explore visibility related crashes on I-4 and I-

95 freeways in Orlando; the main hypothetical testing was to compare between traffic flow 

characteristics that lead to visibility related crash with non-crash cases at reduced visibility 

conditions. Random Forest (RF) was used to identify significant traffic flow factors affecting 

visibility related crash occurrence. The identified factors were then used to examine the effects 
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of traffic flow characteristics on visibility related crashes using matched case-control logistic 

regression to control for the effect of other confounding variables such as the geometric design 

and crash time. They found that the 5-minutes average occupancy observed at the nearest 

downstream station during 10-15 minutes before the crash along with the average speed 

measured at the downstream and upstream stations 5-10 minutes before the crash increase the 

probability of having visibility related crash. 

2.3.5 Transferability of Real-Time Crash Potential Models 

Although many studies have been conducted to statistically link real-time crash risk and traffic 

data collected from loop detectors, few studies addressed how the results from one freeway 

might transfer to another. Abdel-Aty et al. (2008) used Random Forests and multilayer 

perception neural network (MPNN) to test the transferability between different freeway 

corridors. Their model was successfully transferable from I4 in Orlando to Dutch motorways.  

Pande et al. (2010) tried to explicitly address the transferability issue in a recent study, using 

MPNN on loop detector data collected from I-4 and I-95 in Orlando they found that while the 

model developed for one direction of I-4 eastbound worked reasonably for the I-4 westbound the 

performance was not acceptable for the I-95 sections concluding that the same model for crash 

risk prediction may only work for corridors with very similar travel patterns. 
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2.3.6 Real-Time Crash Risk Prevention 

Variable Speed Limit (VSL), ramp metering, and route diversion are the main ITS and traffic 

management strategies that were used to increase the capacity of freeways and alleviate the 

congestions without costly lane additions or major redesigns of the geometry. These 

management strategies have also a potential application in the field of traffic safety for example; 

using VSL in speed harmonization by reducing speed limits at congested downstream areas helps 

to maintain better traffic flow and reduce the risk of mainly rear-end collisions.  

Park and Yadlapati (2003) used the minimum safe distance equation as a measure of safety to 

compare the actual following distances with minimum recommended following distance at work 

zone area; they found that implementing VSL reduces the speed variation between successive 

vehicles throughout the work zone area and the number of  rear-end crashes should be reduced as 

well. 

Lee et al., (2004) proposed the application of the developed log-linear models by estimating real-

time crash potential. They focused in this study on how to reduce the crash potential using 

Advanced Travel Management (ATM) systems through different strategies of variable speed 

limits (VSL). Microscopic simulation tool PARAMICS was used to mimic responses from the 

drivers to changes in speed limits. VSL was found to significantly reduce the crash potential of 

the simulated data. 
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Abdel-Aty et al. (2006) showed that using VSL helps to reduce the real-time crash risk on 

freeway when the freeway was operating at high speed conditions. 

Allaby et al. (2006) showed that VSL is more beneficial for traffic scenarios that experiencing 

higher congestion on freeway corridors since VSL helps in reduction in the frequency and 

severity of shockwaves in the congested traffic (i.e. damping of the stop and go oscillations). 

However, they concluded that for less congested conditions, areas upstream of VSL response 

zones are more likely to experience negative relative safety benefits. 

Ramp metering is widely used in the U.S. states and European countries to reduce the turbulence 

caused at on-ramp merge areas where slower moving vehicles try to enter into faster moving 

traffic stream (Bohenberger and May 1999) and hence helps to reduce speed variation and the 

length of queues on the mainline which has remarkable safety potential as well (Abdel-Aty and 

Dhindsa 2007).  

Lee et al. (2006) investigated the potential of using ramp metering on an urban freeway to reduce 

crashes. Although their study was limited to only single ramp and the network used was not 

calibrated using real traffic flow data, they showed that crash prevention could be achieved using 

ramp metering. 

Dhindsa (2006) examined larger network calibrated with real traffic data. The study found that 

ramp metering used on seven ramps was successful in lowering the overall real-time crash risk 
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along the freeway corridor when operating at low speed conditions and that the safety 

performance was increased with the number of ramps that were metered. 

Abdel-Aty et al. (2007) compared the effects of VSL and ramp metering on traffic safety, 

concluded that variable speed limit strategies reduced the crash potential under moderate to high 

speed conditions while ramp metering were found to be effective in reducing the crash potential 

during the low-speed conditions. 

Abdel-Aty and Gayah (2010) showed that ramp metering successfully reduce both rear-end and 

lane change crash risks along the freeway. They examined two ramp metering strategies to 

reduce real-time crash risk along urban freeway. Both uncoordinated ALINEA and the 

coordinated Zone ramp metering algorithms successfully reduced the real-time crash risk and 

provided good overall safety benefits. 

The main idea of route diversion in proactive traffic safety management is diverting vehicles 

from areas that have a high real-time likelihood of crash occurrence. The diversion will result in 

reduction in traffic demand in these areas and hence reduce the real-time crash risk. 

Abdel-Aty and Gayah (2008) examined the ability of route diversion for reducing the real-time 

crash risk along urban freeway. On one hand they found that route diversion is an effective 

active crash prevention strategy during uncongested conditions on freeway which helped to 

decrease the crash risk between the locations where vehicles were diverted from and where the 

diverted vehicles re-enter the freeway. However, the crash risk was increased near location 
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where vehicles re-enter the freeway due to the additional volume of merging vehicles. On the 

other hand route diversion found to be not effective during heavy congestion situations due to 

excessive crash risk migration to the locations where the diverted vehicles re-enter the freeway. 

Although a great effort has been performed in analyzing real-time data collected from inductive 

loop detectors in safety framework, no safety analysis has been carried out using traffic data 

from one of the most growing surveillance system; the tag readers on toll roads (AVI). In this 

study, for the first time, the identification of freeway locations with high real-time crash potential 

has been examined using real-time speed data collected from AVIs. Various issues related to the 

viability of using AVI data in real-time crash prediction are discussed and presented in chapters 

4, 5, 6, and 7.   
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CHAPTER 3. AGGREGATE ANALYSIS: SAFETY PERFORMANCE 

FUNCTIONS FOR MOUNTAINOUS FREEWAY 

3.1 Introduction 

While rural freeways generally have lower crash rates, interactions between driver behavior, 

traffic and geometric characteristics, and adverse weather conditions may increase the crash risk 

along some freeway sections. The analysis presented in this chapter is exploring the safety 

effects of roadway geometrics on crash occurrence along a 20-mile freeway section (Interstate 70 

in Colorado) that features mountainous terrain and adverse weather.  

The main objective of this analysis was to gain more understanding of the effects of roadway 

geometrics and weather on crash frequencies of mountainous freeways. The results from this 

analysis represents an essential step preceding the disaggregate crash analysis. 

This research attempted an exploratory safety analysis on this section of the freeway by; 1) 

examining the effect of mountainous highway geometrics and traffic characteristics in adverse 

weather on the frequency of crashes, 2) identifying hazardous road segments and crash-prone 

time periods for more focus within an Advanced Traffic Management strategy.  

The section of interest features mountainous road geometry and frequent severe weather. As a 

result of this mountainous terrain, this section of the interstate highway features steep slopes up 

to 7%. Moreover, climate with all its aspects of temperature, humidity, precipitation and wind is 

dramatically impacted by the considerable high elevations. This section experienced relatively 
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higher fatality rate, a 0.48 per 100 million vehicle miles traveled (MVMT), compared to the 

entire interstate system in 2004 (fhwa.dot).  In order to come up with an effective ITS upgrade, it 

is vital for a preliminary evaluation of the contributing factors to crash occurrence and 

identification of hot-spots. 

To achieve the abovementioned objectives, vehicle crash data from I-70 in the state of Colorado 

were obtained for 6 years (2000-2005) together with roadway geometry, traffic characteristics, 

and adverse weather represented in the snow and dry season. A series of Negative Binomial 

(NB) models were fitted as a preliminary analysis to examine the significant factors that 

contribute to crash occurrence; the grades and weather were found to significantly affect the 

crash occurrence on this mountainous freeway. Full Bayesian Hierarchical models with random 

effect were used to fully account for the uncertainty associated with parameter estimates and 

provide exact measures of uncertainty on the posterior distributions of these parameters and 

henceovercomethemaximumlikelihoodmethods’problemofoverestimatingprecisionbecause

of ignoring this uncertainty (Goldstein, 2003; Rao, 2003). Application of random effects models 

will help also in pooling strength across sets of related units and hence improve the parameter 

estimation in spare data (i.e. crash frequency models) (Aguero-Valverde and Jovanis, 2007). 

Moreover, since the crash risk might be spatially correlated among adjacent roadway segments, 

Bayesian spatial models were also examined. Finally, Bayesian ranking techniques were used to 

effectively rank the hazard levels associated with the roadway segments of analysis.  
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3.2 Description of Roadway Section 

3.2.1 General Description 

The freeway section under consideration is a 20.13 miles long of I-70 starting at Mile Marker 

(MM) 205.673 at Silverthorne and ends at MM 225.80 at Silver Plume in Colorado. The section 

encompasses three main parts; the Eisenhower Memorial Tunnel of 1.69 miles long starting at 

MM 213.18 and ending at MM 214.87, about 7.5 miles of the west side of  the tunnel  and 11.60 

miles of the east side. The Eisenhower Tunnel is a twin bore tunnel with 26 feet of travel width 

(two lanes of 13 feet each). The tunnel is the highest point along the interstate highway system 

with an elevation of 11,158 ft and an average grade of 1.7 percent rising toward the west 

(Coloradodot.info). 

3.2.2 Road Alignment  

The section passes through extreme mountainous terrain. The horizontal alignment of this 

sectionhasrelativelyseveralsharphorizontalcurves’radii.Inadditiontothesteepgradesonthe

west and east sides of the tunnel, as shown in Figure 3-1, the west side has grades up to about 7% 

while the east side has grades that vary from 1.3% to 6%. 
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Figure 3-1: Longitudinal Profile 

3.2.3 Climate 

The section has a quite complex climate compared to most of the U.S. highways. The elevations 

in the vicinity of the area vary from 8,700 feet to more than 14,000 feet on the highest peaks 

above the Eisenhower tunnel. The climate within this section is affected by the high altitudes and 

typically results in variations of all aspect of climate such as temperature, humidity, precipitation 

and, wind within short distance and time. The crash report identifies the weather and pavement 

conditions when a crash occurs. The plots of crash frequencies vs. weather and road conditions 

(see Figure 3-2) conform to the metrological data (climate.colostate.edu), suggesting that there 

are two main seasons: snow season from October through April and the dry season from May 
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through September which experience small amount of rain, this can explain the small percentage 

of rain related crashes of 6% that occurred almost exclusively within the dry season. Regarding 

the distribution of weather-related crashes over the 6 years, 47% of the total crashes occurred 

within snowy weather where the pavement condition was icy, snowy or slushy, about 6% of the 

total crashes occurred in rain where the pavement was wet while all other 47% occurred within 

clear weather and dry pavement conditions. It is worth mentioning that small percentage of snow 

related crashes occurred within the defined dry season (about 2%) while a negligible number of 

rain related crashes occurred within the defined snow season (only 2 crashes on WB in the month 

of October within the 6 years). Classifying the climate into two main seasons will help us 

understand if there is a significant difference between crashes occurring within seasons that 

feature snow versus dry and the underlying seasonal effect on the roadway segments. Careful 

examination of the trends depicted in Figure 3-2 produced these two main seasons. Although, all 

crashes related to weather and pavement conditions are aggregated within the two seasons to 

develop the data structure needed for the modeling effort of this study, the likelihood of crash 

occurrence in normal weather and dry pavement conditions remains constant in both seasons. 

Moreover, modeling the crash frequency of each specific weather condition (to account for a 

third rain season) would result in zero inflated problems associated with the short segments of 

the mountainous road section and the low crash frequency. Thus we were constrained by the data 

to use 2 main seasons, although more seasons might be possible on other freeways with higher 

crash frequencies and more distributed crashes per season. 
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Figure 3-2: Distribution of the Monthly Crashes  by  Weather and Pavement Conditions for 

Aggregated 6 Years 

3.3 Data Preparation and Preliminary Crash Analysis 

There are many factors that contribute to crash occurrence, including driver behavior, traffic and 

geometric characteristics, weather conditions and interrelationships between these different 

factors. Unfortunately, the driver behavior factors are usually not available. Therefore, the 

available roadway, traffic and weather conditions factors were used in this study. There were two 

sets of data used in the study; roadway data and crash data. The roadway data were collected 

from CDOT, Roadway Characteristics Inventory (RCI) and Single Line Diagrams (SLD). The 

crash data were obtained from the road crash database maintained by CDOT. 

A first but essential step in data preparation is road segmentation. Given the variation of road 

geometry, a major criterion employed for segmentation in this study was homogeneity in 

roadway alignment. According to the RCI data, both horizontal and vertical alignments were 
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scrutinized. Moreover, a minimum-length criterion was set to 0.1 mile to avoid the low exposure 

problem and the large statistical uncertainty of the crash rate per short segment (Miaou 1994). 

Segments shorter than 0.1 mile were combined with adjacent segment with similar geometrical 

characteristics as much as possible. For example, a 0.021 mile long straight segment was 

combined with the preceding segment with smooth curve of 39755 feet radius, rather than the 

subsequent sharp-curved segment with 1813 feet radius. With this approach, 20 less-than-0.1mile 

segments from 104 homogeneous segments were combined with their adjacent segments, 

resulting in 84 segments for each direction. Table 3-1 illustrates the definitions and descriptive 

statistics of traffic, road geometrics, and weather characteristics for the segments.  

Segment length and AADT are multiplied to estimate daily VMT to reflect the crash exposure 

for each segment. Among risk factors, of most interest are road alignment factors. The 

longitudinal grades are defined as a categorical variable with 8 categories gradually from 

upgrade (being positive) to downgrade (being negative), categorizing grades within 2% 

according to the American Association of State Highway and Transportation Officials 

(AASHTO 2004) classification would help in reducing the number of short segments by 

combining the segments that share all other geometrical characteristics and fall within the same 

grade range and hence avoiding excessive zero frequency within short segments without losing 

interpretable useful information about grades. For segments with multiple grades, the equivalent 

grade for those segments was calculated in accordance with the Highway Capacity Manual 

(HCM 2000) (Highway Capacity Manual 2000). Specifically, an overall average grade was 

calculated in case of no single portion of the grade is steeper than 4 percent or the total length of 
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the grade is less than 0.75 mile. For some sub segments steeper than 4 percent, the HCM (2000) 

(Highway Capacity Manual 2000) composite grade procedure was used to determine an 

equivalent grade.  

Defining variables for horizontal alignment is more complicated. The basic parameters, 

including curve radius, deflection angle, and degree of curvature, are parameterized for the curve 

contained in each segment. The curve direction is also monitored as safety effect may be 

different between left-side and right-side curves. Other variables speed limit, median width, 

shoulder width, number of lanes, and truck percentage, are also included as control variable 

although there are no much variation for these factors at the 20-mile freeway section. 
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Table 3-1: Summary of Variables Descriptive Statistics 

Variables Description Mean Stdev Min Max 

Response Variable     
Crash Frequency Frequency of all crashes per segment 5.45 7.37 0 55 

Exposure Variables     

Segment Length Length of the road segment (mile) 0.24 0.16 0.099 0.92 

AADT Average Annual Daily Traffic 27626 1889 25500 29300 

Daily_VMT Daily Vehicle Mile Traveled 6582 4419 2267 23409 

Risk Factors       

Season Rainy = 0, Snowy = 1  - - - - 

Grade Longitudinal grade, eight categories:  

Upgrade: 0-2%=1, 2-4%=2, 4-6%=3, 6-8%=4; 

Downgrade: 0-(-2)%=5, (-2)-(-4)% =6, (-4)-(-

6)% =7, (-6)-(-8)% =8 

- - - - 

Curve Radius Curve radius (ft) 4396 6356 1348 39755 

Deflection Angle Deflection angle of curve 21.07 13.43 1.02 48.90 

Degree of Curvature Degree of the curve per segment with curves 2.39 1.13 0.14 4.25 

Curve Length Length of the curve per segment with curves 0.17 0.09 0.01 0.48 

Curve Length Ratio Percentage of curve length to total segment length 0.53 0.46 0 1 

No of Lanes Number of lanes: 2 lanes=0, 3 lanes =1 - - - - 

Median Width Width of median (ft) 20.67 15.88 2 50 

Outside Shoulder Outside shoulder width (ft) 6.80 3.20 1 20 

Inside Shoulder Inside shoulder width (ft) 3.99 1.83 0 12 

Speed Limit Posted speed limit  60.95 4.8547 50 65 

Truck Percentage Percentage of Trucks 10.35 0.39 10 10.8 

 

In the study area, a total of 1877 crashes were reported over 6 years of the study period (2000-

2005), 804 and 1057 crashes occurred on the East and West bounds, respectively. Sixteen 

crashes were not assigned to any of the East or West directions and they were excluded from this 

study. Four Hundred were rear end crashes, 234 turn over crashes and 370 were collision with 

guard rail or median barrier while the side swipe crashes were 223 on the mainline. Twenty five 

percent of the crashes occurred on curves with steep grades, about 60% occurred on straight 

segments with steep grades and the remaining 15% occurred on either curve or straight with flat 

grades. 
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Figures 3-3 and 3-4 depict a preliminary crash distribution for east and west bound respectively. 

In the figures, each of the east and west bound sections are divided into 3 miles long sub-

sections. Each of these sub-sections has different number of homogenous segments according to 

roadway geometry as explained above (e.g. first section at MM 207 has 13 homogenous 

segments, starts at MM 206 and ends at MM 208). 

As shown in Figure 3-3, although the section that starts at MM 215 and ends at MM218 at the 

east bound has the second least number of 9 segments, it has the highest mean of the crash 

frequency of 6 and 18 for dry and snowy seasons, respectively. It is worth mentioning that the 

sub-section at MM 216 on east bound is located after the tunnel with average downgrade of 

6.5%.  

Generally, west bound has higher crash frequency within the 3 miles sub-sections than the east 

bound in both seasons. Similarly, the 3 miles section centered at MM 216 has the highest mean 

of the crash frequency of 5.56 followed by the sub-section at MM 213 having 5.30 in dry season 

while the sub-section at MM 213 experienced a mean of the crash frequency of 18 in the snow 

season. 
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Figure 3-3: East Bound Crash Frequencies in Dry and Snowy Seasons 

 

 
Figure 3-4: West Bound Crash Frequencies in Dry and Snowy Seasons 

 

Segment freq. / 3 miles  Snow Season Rain Season 

 

Dry Season 

Season 

Segment Freq. / 3 miles                   Dry Season                                Snow Season  Rain Season Snow Season Segment freq. / 3 miles  



40 

 

3.4 Bayesian Hierarchical Approach 

The factors affecting the occurrence of crashes could be conceptually categorized into two 

groups, associated with crash exposure and crash risk, respectively.  

riskCrash   exposureCrash  ~   occurrenceCrash    

While exposure factors account for the amount of opportunities for crashes which traffic systems 

or drivers experience, the risk factors reflect the conditional probability that a crash occurs given 

unit crash exposure. Statistically, the stochastic crash occurrence is rationally assumed to be 

Poisson process, which justifies the popular use of the Poisson distribution to model crash 

frequencies (Jovanis and Chang, 1986).   
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in which, 
it

y isthecrashcountatsegmenti(i=1,…,168(84segmentsoneachdirection))during

season t (t = 1 for dry season, 2 for snow season) with the underlying Poisson mean 
it

 .  
it

 and 

it
e , contributing to

it
 , denote risk factors (covariates 

it
X and the coefficients β ) and exposure 

factors, respectively. Based on parameter estimation, the Incidence Rate Ratio (IRR) is generally 

computed to more conveniently understand the impact of covariates, say k, on the expected crash 

frequency for one unit change of continuous variables or binary effect for dummy variables 

(Haque et al., 2010).  



41 

 

)exp(
),|(

)1,|(
k

kit

kit

k
xyE

xyE
IRR 




it

it

X

X

       

(3.2) 

In this current study, daily VMT, the product of AADT and length of road segment, is employed 

to reflect crash exposure associated with each road segment. Moreover, a time exposure 

coefficient (1 for dry season, log(5/7) for snow season) is used to offset the unbalanced design of 

seasons (5 month for dry season and 7 month for snow season). As shown in Table 1, risk factors 

include road alignment (grade and curve), road design (number of lanes, median width, and 

shoulders), traffic characteristics (speed limit and truck percentage), and the environmental 

factor (season).  

In regard to model structure, given the “variance = mean” constraint of Poisson model, the

Negative Binomial model (NB), a parent model of Poisson model, has been extensively 

employed to deal with the over-dispersion problem, which is generally observed in crash data 

(Miaou and Song, 2005; Persaud et al., 1997, 2001; Harwood et al., 2000; Hauer et al., 2002; 

Hovey and Chowdhury, 2005;  Shankar et al., 1995). Nevertheless, as ordinary NB models only 

provides a blind account for individual heterogeneity, numerous techniques have recently been 

proposed to more specifically accommodate for various crash data features, for example, zero-

inflation model for excess zeros (Shankar et al., 1997; Carson and Mannering, 2001; Lee and 

Mannering, 2002; Lord et al., 2005,2007), a two-state Markov switching count-data model to 

overcome the drawbacks of the traditional zero-inflated Poison (ZIP) and zero-inflated negative 

binomial (ZINB) (Malyshkina et al., 2009), spatial and time series model for spatiotemporal data 

(Aguero-Valverde and Jovanis, 2006; Quddus, 2008a, 2008b, Huang et al., 2010), hierarchical 
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model for multilevel data structure (Huang and Abdel-Aty, 2010). Furthermore, the use of 

variable dispersion parameters in negative binomial models have been reported useful to improve 

the model-fitting (Heydecker and Wu, 2001; Miaou and Lord, 2003; Miranda-Moreno et al., 

2005; El-Basyouny and Sayed, 2006; Mitra and Washington, 2007; Lord and Park, 2008). 

Multivariate count models have also been applied to jointly model crash frequency at different 

levels of injury severity (Tunaru, 2002; Park and Lord, 2007; Ma et al., 2008; Ye et al., 2009; 

Aguero-Valverde and Jovanis, 2009; El-Basyouny and Sayed, 2009a). More recently, a more 

flexible random parameter modeling approach, including random intercept and/or random slope, 

is emerging in the literature, in which model parameters are allowed to vary from site to site (Li 

et al., 2008; Anastasopoulos and Mannering, 2009; Huang et al., 2008, 2009; El-Basyouny and 

Sayed, 2009b; Huang and Chin, 2010). Lord and Mannering (2010) provided a detailed review 

of the key issues associated with crash-frequency data as well as an assessment of the strengths 

and weaknesses of the various methodological approaches that have been used to address these 

problems.  

Despite the availability of various statistical model selection measures, selection of appropriate 

crash prediction models should be dependent on the characteristics of the specific crash data. 

Specifically, we have three basic observations for the current crash data: (a) Over-dispersion: the 

data may be highly over dispersed as the overall mean and variance equal to 5.45 and 54.32, 

respectively, as shown in Table 3-1; (b) Site-specific structure: each segment has two 

observations; crash count during each of the dry and the snow seasons. Hence, random effects 

may be appropriate to account for the global site-specific effects; (c) Spatial distribution: as road 
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segments are mutually connected, spatial heterogeneities, resulting from spatial confounding 

factors, may exist for adjacent segments.  

Based on these observations, two alternative models are suggested, i.e. random effect model 

(also called hierarchical Poisson model) and spatial model, both of which are modified from the 

basic Poisson model.  
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Clearly, the random effect model is actually a slight modification of the ordinary NB model, in 

which the two observations associated with one same segment share an equal extra error 

component. In the spatial model, the extra variance component consists of two parts, i for site-

specific random effects, denoting the global extra-Poisson variability, and i  
for spatial 

correlation with the Gaussian Conditionally Autoregressive prior (CAR model, Besag, 1974). It 

is noted that i is assumed to be Normal distribution rather than the Gamma distribution in the 

random effects model. This is because the multivariate normal distribution is more convenient 

computationally while combining with the Gaussian spatial component ( i ) than the multivariate 
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version of Gamma distribution (Huang et al. 2010), This also is suggested by the literature that 

Poisson Lognormal PLN was found to provide the best statistical fit for the spatial model (Milton 

et al. 2008; Anastasopoulos and Mannering, 2009; Li et al., 2008; El-Basyouny and Sayed 

2009a). Regarding  , the proximity matrix, a 0-1 adjacency weight is employed. In other words, 

each segment is specified an equal weight to its adjacent segment(s).  With the model 

specification,  denotes the proportion of variability in the random effects that is due to spatial 

heterogeneity, in which, sd is the empirical marginal standard deviation function.  

Although the most common CAR model is employed in this study to model spatial effects, there 

are other techniques available in the literature such as Simultaneous Autoregressive (SAR), 

Moving Average (MA) (Congdon, 2007), and Multiple Membership (MM) (Goldstein, 1995; 

Goldstein et al., 1998; Langford et al., 1999). El-Basyouny and Sayed (2009c) compared CAR, 

MM and Extended Multiple Membership (EMM) to the traditional PLN model, they concluded 

that EMM provided the best fit with a little better performance than CAR and both EMM and 

CAR outperformed the MM and PLN. 

The candidate models could be estimated conveniently by Bayesian inference using the freeware 

WinBUGS package (Lunn et al., 2000). The CAR model is embedded in the function 

“car.normal” in GeoBUGS, an add-on to WinBUGS that fits spatial models. The DIC, a 

Bayesian generalization of AIC, is used to measure the model complexity and fit (Spiegelhalter 

et al., 2003). DIC is a combination of the deviance for the model and a penalty for the 

complexity of the model. The deviance is defined as                   . The effective number 
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of parameters, pD, is used as a measure of the complexity of the model,             , 

where      is the posterior mean of the deviance, and      is a point estimate of the deviance 

for the posterior mean of the parameters. DIC is given by DIC = Dhat + 2 pD. In addition, a R
2
 -

type Bayesian measure is developed to evaluate the model fitting, 
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which estimates the proportion of explained sum of squares to total sum of squares. It could be 

regarded as a global model-fitting measurement. 

3.5 Results and Discussion 

3.5.1 Model Estimation and Diagnostics 

In model estimation, with no prior knowledge of the likely range of values of the parameters for 

mountainous freeway section, non-informative priors were specified for parameters. For each 

model, three chains of 20,000 iterations were set up in WinBUGS based on the convergence 

speed and the magnitude of the dataset. All the models were converged reasonably through 

visual inspection on the history plots and confirmed by the Brooks-Gelman-Rubin (BGR) 

convergence diagnostics (Brooks and Gelman, 1998). After ensuring the convergence, first 

10,000 samples were discarded as adaptation and burn-in. To reduce autocorrelation, only every 

tenth samples of the rest were retained for parameter estimation, calculation of DIC and 

Bayesian R
2
, as well as site rankings.  
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Exploratory modeling indicated that the crash frequencies are not significantly associated with 

Speed Limit, Truck Percentage, Percentage of Curve Length in all the three models. This was 

expected since there is a little variation in those variables between segments; the speed limit and 

the truck percentage are almost identical along the considered section and hence they were 

excluded from the final models. Results of model estimation with the remaining factors are 

summarized in Table 3-2. 

Comparisons among the three candidate models imply very interesting findings. On one hand, 

the over-dispersion observed in crash data is confirmed by the extra variance components of the 

random effect model and the spatial model. Specifically, significant dispersion parameter is 

identified in the random effect model (k = 0.418, 95%CI (0.305, 0.561 )).  In the spatial model, 

variance components from spatial correlation and site-specific random effects are 0.469 

(95%CI(0.297, 0.710)) and 0.584 (95%CI(0.481, 0.686)), respectively, which apparently indicate 

the proportion of the over-dispersion accounted by the spatial clustering is 44.1% (α=0.441,

95%CI(0.330, 0.560)). Moreover, model diagnostic measures confirmed that the random effect 

and spatial models outperform the Poisson model by accounting for over-dispersion. 

Specifically, DIC is substantially reduced from 1903 in Poisson to 1456 in the random effect 

model and 1468 in the spatial model. The Bayesian R
2
 is increased from 0.61 to 0.88.  

On the other hand, however, while all the parameters are significant in the Poisson model except 

of Degree of curvature, some of them come out to be insignificant in the random effect model 

(Grade(4), and Median Width). This phenomenon becomes more remarkable especially in the 
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spatial model where almost all the variables turn out to be insignificant despite having the same 

sign as in the basic Poisson model. Another interesting observation from the parameter 

coefficients is that the safety effects of most of the geometry-dependant factors fade away 

gradually from Poisson through the other two, e.g. Grade, Degree of curvature, and Percentage 

of Curve Length etc. But the non-geometry-dependant factor (Season) remains constant (0.600 in 

Poisson, random effect model and spatial model).  

Furthermore, based on estimation of pD (the number of effective variables in Bayesian model) 

and R
2
, we found that, compared to the random effect model, the spatial model has equal R

2
 

(0.88) and has only an increase of 5 effective variables (pD from 117.3 to 122.3). With all these 

observations, we argue that the spatial model does not actually outperform the random effect 

model. This may be reasoned that the spatial heterogeneity mostly depends on road geometries 

among adjacent segments, which have been accommodated for by the well-defined geometry-

dependent factors in the models. In other words, with explicit consideration for various road 

geometric factors in the model, the specification for spatial effect becomes redundant and hence, 

may reduce the significance of the geometric factors instead. We further confirmed this argument 

by calculating an R
2
 which does not include residual terms for crash expectations (i.e. 

it
 ), as 

shown by R
2
 (without error terms) in Table 3-2. Clearly, results indicate that the inclusion of 

error terms reduced the model-fitting proportion explained by the risk factors, especially in the 

spatial model.  
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In summary, the over-dispersion problem in Poisson model is effectively addressed by the 

random effect and spatial models, but the spatial model may have the problem of redundantly 

accounting for geometry-dependant effect. Therefore, the random effect model, which has the 

least DIC, is selected for further model inference and site ranking. The adequacy of the random 

effects assumption may be assessed with lack-of-fit statistics, although these statistics test the fit 

of the model as a whole rather than the specific random effects assumption. This random effects 

assumptionmaybemadelessrestrictiveifθisallowedtovarywithspecificsiteeffects. 

Season wasfoundtosignificantlyaffectcrashoccurrence(β=0.600,95%CI(0.499,0.702)),the

IncidentRateRatios(IRR)areobtainedbyexponentiationoftheregressioncoefficientsexp[β].

IRR value shows that the risk of crashes during snow season was approximately 82% higher than 

the crash risk in dry season, given all other variables constant. The increased crash risk within 

the snow season may be explained by the confounding effect of the snowy, icy, or slushy 

pavement conditions during the snow season, and exacerbated by the steep slopes. This finding is 

important for officials to pay more attention and devote more resources during snow season than 

in dry season for traffic management.  
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Table 3-2: Parameters Estimates 

Model Poisson  Random Effect Spatial  

  Credible interval  Credible interval  Credible interval 

 Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% 

Season [snow]  0.600 0.501 0.698 0.600 0.499 0.702 0.600 0.498 0.710 

Season [dry] (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Grade[1] -1.302 -1.538 -1.072 -1.287 -1.797 -0.778 -1.041 -1.950 -0.097 

Grade[2] -0.855 -1.026 -0.685 -0.870 -1.322 -0.422 -0.458 -1.400 0.534 

Grade[3] -0.786 -0.949 -0.617 -0.907 -1.285 -0.516 -0.316 -1.251 0.679 

Grade[4] -0.530 -0.735 -0.328 -0.297 -0.845 0.277 0.237 -0.745 1.286 

Grade[5] -1.193 -1.421 -0.981 -1.167 -1.674 -0.657 -0.663 -1.374 0.047 

Grade[6] -0.888 -1.084 -0.704 -0.857 -1.322 -0.386 -0.434 -1.095 0.244 

Grade[7] -0.698 -0.884 -0.515 -0.672 -1.175 -0.185 -0.281 -0.886 0.342 

Grade[8] (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Degree of curvature -0.032 -0.066 0.003 -0.048 -0.131 0.035 -0.050 -0.132 0.029 

Three road lanes -0.484 -0.620 -0.346 -0.509 -0.846 -0.157 -0.435 -1.119 0.321 

Median width -0.007 -0.010 -0.003 -0.006 -0.015 0.003 -0.012 -0.027 0.002 

k (dispersion parameter) - - - 0.418 0.305 0.561 - - - 

Sd(Φi):Spatialcorrelation - - - - - - 0.469 0.297 0.710 

Sd(θi): 

site-specific random effect 
- - - - - - 0.584 0.481 0.686 

α - - - - - - 0.441 0.330 0.560 

pD: no of effective variables 11.9 - - 117.3 - - 122.3 - - 

DIC 1903 - - 1456 - - 1468 - - 

R
2
 (with error terms)

 
0.61 0.59 0.62 0.88 0.86 0.90 0.88 0.86 0.90 

R
2 
(without error terms) - - - 0.52 0.32 0.60 0.39 0.02 0.56 

3.5.2 Interpretation of Risk Factors 

Road alignment factors, i.e. slope and curve, are the other key variables of interest. Preliminary 

analysis on the data indicates that more than 85% of the total crashes occurred on steep grades 

(Grade <-2% or >2%). Steep grades are often considered implausible in design, and all design 

manuals recommend avoiding or keeping minimal the use of steep slopes. Nevertheless, this is 
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not the case with mountainous terrain highways since the steep grades cannot be easily avoided. 

Longitudinal slope comes out to be significant as indicated in Table 3-2. The effects of various 

slopes are compared to Grade[8] (reference condition, steep slope ranges from -6% to -8%). 

Figure 3-5 shows the slope coefficients and their 95% credible intervals, it can be noted that in 

order, Grade[8] is the most hazardous slope followed by Grade[4], Grade[7], Grade[2], 

Grade[6], Grade[3], Grade[5]  then Grade[1].Generally, trends in the results indicate that the 

steeper the slope, the higher the crash risk; and segments with upgrade slope are safer than 

corresponding downgrades in the same slope range. These results are consistent with the 

preliminary analysis and complementary to existing findings that the steep grades may increase 

the likelihood of crash occurrence (Shankar et al., 1995; Chan and Chen 2005). 

 
Figure 3-5: Grade Coefficients 
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In regard to the curve effect, although not statistically significant, the result implies that a unit 

increase in Degree of Curvature (β= -0.048, 95%CI(-0.131,0.035), IRR = 0.95) is associated 

with a 5% decrease in the crash risk, with all other factors equal. Actually, it is not uncommon 

that high degree of curvature was found to be associated with decrease in crash likelihood 

(Shankar et al., 1995; Anastasopoulos et al., 2008; Change and Chen, 2005). Previous studies 

argued that the feeling of danger along sharp curves might make the drivers compensate by 

driving more cautiously, leading to lower crash rate instead.  

Other variables included in the models are Number of Lanes and Median Width. Results revealed 

that segmentswith three lanes (β=-0.509, 95%CI(-0.846, -0.157), IRR = 0.6) are 40% less in 

crash risk than two-lane segments, with all other factor being equal. This finding conforms to the 

study by Park et al. (2010). The increase of safety due to the increase in number of lanes is 

plausible since this freeway has a high percentage of trucks which could be confined to the 2 

right lanes providing more space for other vehicles, contributing to easier maneuvers and less 

speedvariance.Medianwidthisassociatedwithatinypositiveeffect(β= -0.006, 95%  CI (-

0.015, 0.003), IRR = 0.99), which is only significant in the Poisson model. The increasing safety 

associated with wide median is well known as median works as division for traffic in opposite 

directions and a recovery area for out-of-control vehicles (Anastasopoulos et al., 2008; Shankar 

et al., 1998).  
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3.5.3 Ranking of Sites 

The ranking of sites is important to enable officials to pay more attention to those sites with high 

crash risk. Sites can be ranked by the probability that a site is the worst or by posterior 

distribution of ranks (Tanaru, 2002). The separate rankings for dry and snow seasons were 

produced based on the estimation on it  
, the estimated rankings are presented graphically in 

Figures 3-6 and 3-7. The results confirmed that sites with steep grades are drastically affected 

during snow season and those segments received significantly higher risk ranks than in the dry 

season. Moreover, an overall site ranking is developed by rating the weighted average of crash 

expectationsinthetwoseasons(λi1 fordryseasonandλi2 for snow season), i.e.,  

21 58.042.0_ iiiSiteSafety    to offset the unbalanced design of seasons (5 month for dry 

season and 7 month for snow season) as explained in the model specification section. 

For illustration, the overall site rankings for the 84 segments are plotted on the longitudinal 

profile for eastbound and westbound, as shown in Figures 3-6 and 3-7, respectively. Sites with 

high rank values are more dangerous while sites with low rank values are safer. The results 

appear to be in good agreement with results from the preliminary analysis that the steep 

downgrade sections received the high risk ranks in general. The segments at Eisenhower tunnel 

seem to be safer in both east and west bounds. However, the segments just before and after the 

tunnel received relatively high rank on the eastbound. On the westbound, the downgrade 

segments received most of the high ranks.  
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Figure 3-6: East-Bound Segment Ranking 

 
Figure 3-7: West-Bound Segment Ranking 
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3.6 Conclusion 

This chapter presents an exploratory investigation of the safety problems of a mountainous 

freeway section of unique weather condition. Hierarchical Full Bayesian models were developed 

to relate crash frequencies with various risk factors associated with adverse weather, road 

alignments and traffic characteristics. Using the calibrated model, the sites were ranked in term 

of crash risk for further safety diagnostics and mitigation. 

In modeling, it was found that while the random effect and spatial models outperform the 

Poisson model, the spatial model may have the problem of redundantly accounting for the 

geometry-dependant effect. Therefore the random effect model is selected for model inference. 

Crash risk during snow season was estimated to be approximately 82% higher than the crash risk 

in dry seasons. Results also identified clear trends associated with the effect of slopes, i.e. the 

steeper the slope, the higher the crash risk; and segments with upgrade slope are safer than 

downgrades in the same slope range. The degree of curvature is negatively correlated with crash 

risk, which is consistent with previous studies that some visual variation of the road alignment 

may help with drivers’ alertness increase and hence decrease crash risk. Median width and 

number of lanes also showed to be effective in affecting crash risk. Segments with three lanes are 

40% less in crash risk than two-lane roads.  

Based on site ranking, segments succeeding the tunnel in both east and west bounds received the 

highest rank of hazardous sites. These segments feature steep slopes and reduction in number of 



55 

 

lanes for the east bound. In particular sites with steep slopes should receive more attention from 

officials and decision makers during snow season to control the excess of crash rate during this 

season. Also, the identified sites could be included in the strategy for choosing the location of 

future Variable Speed Limits. 

  



56 

 

CHAPTER 4. THE VIABILITY OF USING AVI DATA IN REAL-TIME 

RISK ASSESSMENT 

4.1 Introduction 

The main objective of this chapter is examining the viability of using Automatic Vehicle 

Identification (AVI) data for real-time safety risk assessment.  

Traffic detection technology is the main spine of any Intelligent Transportation System (ITS); 

there are a wider range of vehicle detection devices in use than ever before on highways, starting 

from the popular inductive loops and magnetometers to video and radar-based detectors. It is 

known that the history of loop detector extends to 50 years ago when it was first developed in 

1960s, the inductive loop detectors have become the most widely utilized sensors in traffic 

management systems.  

The inductive loop detector remained unchallenged for more than 30 years because of its simple 

design, until less intrusive detection options became technologically advanced enough to offer a 

relief from some of the inherent challenges of the loop detectors.  

The main problem of the loops is the reliability, since loop detectors tend to fail due to the very 

hard environment of the pavement, the temperature variation, and the resulted shifts in the 

pavement which can break the wires and the loop detector would no longer be functioning. 

According to the Traffic Detector Handbook (2006), the actual loop detectors failure rates differ 

from agency to agency because of the large number of variables that contributes to the failure. 
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This failure rate found to be consistent with failure rate literature for different states and it varies 

from between 24% and 29% at any given time. The secondary problem of the loop detectors is 

the maintenance, since cutting into pavement to repair the defective loops may shorten the 

lifetime of the pavement or result in pavement damage. Moreover, maintenance sometimes is 

limited or not possible on congested roadways. 

During the last decade, new non-intrusive detection devices were deployed as alternatives to 

inductive-loop detectors such as video, microwave and laser radar, passive infrared and 

ultrasonic and acoustic sensors. Nowadays, non-intrusive detection devices improved in terms of 

accuracy, cost and ease of use. The installation and maintenance are relatively easy than the loop 

detectors since the non-intrusive detection devices can be mounted above or alongside the 

roadway and hence enhance and increase the reliability. While the inductive loops are expected 

to continue to function for several years, many transportation agencies seem to be shifting 

attention to non-intrusive alternatives. 

The AVI is among other systems such as satellite positioning and mobile communications using 

GSM/GPRS that contributed in the advancement of the Electronic Toll Collection (ETC) systems 

by first introducing the dedicated ETC lanes where the vehicles slow down into channeled toll 

lanes and recently the express ETC lanes operated at highway speeds also known as Open Road 

Tolling (ORT). Open Road Tolling with ETC technology nowadays are widely utilized 

worldwide to automate the payment process, increase system throughput and reduce congestion, 

improve customer service, enhance safety, apply congestion pricing, increase toll revenues and 
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reduce environmental impacts. ETC systems are composed of Automatic Vehicle Identification 

(AVI) that determines the ownership of the vehicle to be charged to the corresponding customer, 

Automatic Vehicle Classification to charge different fair rates to different vehicle types, and 

Video Enforcement Systems to capture images of the violator and/or license plate that pass 

through the ETC lanes without a valid transponder. The structure of the ETC systems depends on 

two main factors; 1) the tolling system and 2) the number of access points on the freeway in case 

of travel time estimation is incorporated within an ATIS system. It is worth mentioning that the 

spacing between access points is about 1 mile or less for urban freeways and can exceed 3 miles 

forruralones.BeforeETCsystems,therewerethreemaintollingsystems;1)the“closedticket

system,”2)the“closedbarriersystem”and3)the“openbarriersystem”.Theadventofthenew

ETC systems changed the way toll roads are designed and operated. ETC systems have the 

ability to easily support other value-added services on the same technology platform. These 

services might include but not limited to fleet and engine management systems, emergency 

response services, congestion pricing, pay-as-you-drive insurance services and navigation 

capabilities. The aspect of tolling (a distance-base, a flat-rate or a congestion-base) and the type 

of facility and access (freeway, expressway, or conventional road) play an important role in the 

structure and the spacing of the tag readers.   

The Central Florida Expressway System utilizes Automatic Vehicle Identification (AVI) system 

for Electronic Toll Collection (ETC) as well as for the provision of real time information to 

motorists within the ATIS. This system estimates the segment travel time by monitoring the 

successive passage times of vehicles equipped with E-Pass, O-Pass or Sun-Pass, electronic Radio 
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Frequency Identification (RFID) tags at expressway Open Road Tolling (ORT) plazas as well as 

at exits. Data are gathered using AVI tag readers that are installed for the purpose of toll 

collection and additional tag readers installed solely for the purpose of estimating travel times. It 

is worth to mention that there are no specific guidelines for the design of the ETC systems in the 

U.S. 

Commonly deployed inductive loop detectors (ILDs) measure time-mean-speed (TMS), whereas 

AVIs measure space-mean-speed (SMS). TMS is defined as the arithmetic mean of the speed of 

vehicles passing a point during a given time interval. Hence, TMS only reflects the traffic 

condition at one specific point. On the other hand, SMS which is defined by Gerlough and 

Huber,1975as“themeanofthespeedsofthevehiclestravelingover a given length of road and 

weightedaccordingtothetimespenttravelingthatlength” (there are several definitions of SMS 

depending on how it is calculated; the mentioned definition is the best to describe theAVI’s

SMS). Since not all the vehicles are equipped with the transponders, the accuracy of travel time 

estimation would depend on the percentage of the vehicles that are equipped with the 

transponders. The penetration of E-Pass users reached above 80% on Central Florida’s

expressway system. While traffic flow data collected from ILDs were a good safety measure in 

real-time proactive safety management, data collected from AVI have not been investigated 

before in any safety related study.  

As discussed in the review of literature chapter that a great effort has been performed in 

analyzing real-time data collected from inductive loop detectors in safety framework, there are 
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no safety analysis studies have been carried out using traffic data from one of the most growing 

surveillance system; the tag readers on toll roads (AVI). In this study, for the first time, the 

identification of freeway locations with high real-time crash potential has been examined using 

real-time speed data collected from AVIs. A stratified matched case-control logistic regression is 

used to classify the real-time traffic conditions measured by AVI into either leading or not 

leading to a crash. Matched case-control is used to control for the variability of different factors 

such as crash site, time, season, day of the week, etc. To select significant variables associated 

with the crash vs. no-crash target variable, Random Forest (RF) is utilized. Random Forest 

showed robustness in variable selections recently in transportation studies due to its stability over 

using single decision tree (Abdel-Aty et al. 2008 and Harb et al. 2008) 

4.2 Description of Roadway Network 

4.2.1 General Description 

The network studied is about 78 miles of freeways consisting of three toll roads in Orlando, 

Florida. State Road 408 (SR408), SR417 and SR528. SR408 is nearly 23-mile that extends from 

Florida’s Turnpike in west Orlando to Challenger Parkway in the east. Traffic on SR408 is 

almost commute traffic since it connects the east and the west of Central Florida, and passes 

through the down town area. SR417 and SR528are 33-mile and 22-mile, respectively. SR417 

connects Sanford to East Orlando with high percentage of non-commuters travelling between the 

Orlando-Sanford International Airport, the Orlando International Airport and the attraction areas, 

however it also includes many commuters from North Orlando State Road 528 provides a crucial 

connection for residents and tourists between the attractions area, the Orlando International 



61 

 

AirportandtheEastCoastbeachesandCapeCanaveral.AsmentionedearlierCentralFlorida’s

expressways are equipped with an AVI system for toll collection and travel time estimation, in 

the study,  Figure 4-1 illustrates the expressway network as well as the AVI segments, the AVI 

segment  tag readers are spaced according to toll plazas locations and location of exits of interest 

to provide the travel time. 

Table 4-1 provides summary statistics of the AVI segments on each of the studied freeways, 

SR408 has 23 AVI segments on the eastbound and 24 on the westbound of average length of 0.9-

mile, SR417 has 21 AVI segments on both directions while SR528 has 8 and 9 AVI segments on 

the eastbound and westbound, respectively, SR528 has longer AVI segments that vary from 

1.07-mile to 7.56-mile with an average length of approximately 3 miles. 

Table 4-1: Summary Statistics for AVI Segments 

Freeway Automated Vehicle Identification Segments 

State Road ID 
Length 

(mile) 

Number of 

AVI 

Segments 

Length (mile) 

Min.  Mean Max.  S.D. 

SR408 
EB 

23 
23 0.15 0.92 2.31 0.56 

WB 24 0.14 0.88 2.28 0.55 

SR417 
NB 

33 
21 0.21 1.49 2.98 0.75 

SB 21 0.25 1.46 2.87 0.70 

SR528 
EB 

22 
8 1.27 2.96 7.56 2.24 

WB 9 1.07 2.80 7.56 2.20 
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(Source:OOCEASystem’sTollFacilityReferenceManual) 

Figure 4-1: Expressway Network in Orlando.  
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4.3 Data Description and Preparation 

There were two sets of data used in the study; expressway AVI archived data from SR408, 

SR417 and SR528 in Orlando and the corresponding crash data for year 2008. The Orlando-

Orange County Expressway Authority (OOCEA) archives and maintains only the processed 1-

minute space mean speed and the estimated average travel time along the defined road segments. 

The unprocessed original time stamps of the tag readings are not available; this data is typically 

discarded after the travel time is processed due to privacy issues. The crash data were obtained 

from the road crash database maintained by FDOT for year 2008. 

The crashes have been assigned on each segment; three upstream segments and three 

downstream segments were identified to be considered in the preliminary analysis. The first 

upstream and downstream segments were named US1 and DS1, respectively. The subsequent 

upstream segments were named US2 and US3, respectively while the subsequent segments in 

downstream direction were named DS2 and DS3, respectively. The data structure is illustrated in 

Figure 4-2.  

US3 US2 US1 
Crash 

Segment 
DS1 DS2 DS3 

       
       

D E F G H I J 

 Travel Direction 
                     

Figure 4-2: AVI Segment Scheme 

AVI data corresponding to each crash case were extracted in the following process; for example 

a crash occurred on February 7, 2008 (Thursday) at 2:00PM, SR408 eastbound, the crash 
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segment G was identified using Geographic Information System (GIS) software, in addition to 

other six segments (three in the upstream and three in the downstream directions) from 1:30PM 

to 2:00PM (30 minutes). Five randomly non-crash cases were also determined for the same 

location and time for different Thursdays where no crashes were observed within 1 hour of the 

original crash time.  

The extracted 1-minute speed data were aggregated to different aggregation level of 2, 3, 5, and 

10 minutes to investigate the best aggregation level that will give better accuracy in the modeling 

part. Five-min aggregation level was found to be the best in terms of statistical fit and model 

accuracy. The 30 minutes speed data were divided into six time slices, time slice 1 represents the 

period between the crash time and 5-min prior to the crash time until time slice 6 which 

represents the interval between 25min and 30-min prior to the crash occurrence. Time slice 1 was 

discarded in the analysis since it will not provide enough time for successful intervention to 

reduce crash risk in a proactive safety management strategy. Moreover, the actual cash time 

might not precisely known, Golob and Recker (2004) discarded the 2.5 minutes of traffic data 

immediatelyprecedingeachcrash’sreportedtimetoavoiduncertaintyoftheactualcrashtime. 

In general with the proliferation of mobile phones and CCTV cameras on Freeways, crash time is 

almost usually immediately identified. 

In the modeling part; letters were assigned to each segment in accordance with the crash location 

to define the location of the crash segment with respect to the upstream/downstream segments. 

The assigned letters are D, E, F, G, H, I, and J with G being the segment that the crash occurred 

on, segments F, E, and D are in order the closest segments to the crash segment in the upstream 
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direction while segments H, I, and J are in order the closest segments to the crash segment in the 

downstream direction as illustrated in Figure 4-2. 

Average speeds, standard deviations of the speed and logarithm of coefficient of variation of the 

speed were calculated over the 5-min time intervals. The nomenclature takes the following form 

XYS_Zβ.XYtakesthevalueofAV,SD,orCVforaverage,standarddeviationorcoefficientof

variation, respectively. S stands for speed. Z represents AVI segments and takes values of D to J 

whileβtakesthevaluesfrom2to6whichrefertothetimeslices. 

Unlike ILDs data which are known to suffer from high percentage of missing observations or 

bad reading, AVI data have less than 5% missing observations with no unreasonable values of 

speeds. The missing data for the speed were imputed by preserving the distribution of the 

original data and then the coefficient of variation was calculated. The final data set had a total of 

105 variables consisting of 3 speed parameters for each of the 7 AVI segments at 5 time intervals 

(time slices).   

To examine the effect of short-term turbulence of traffic speed only; crashes involving driving 

under influence of alcohol or drugs and distraction related crashes were excluded from crash data 

set. A total number of 670 crashes were considered in the analysis and 2680 non-crash cases; 

Table 4-2 provides the number of crash/non-crash cases used in the study for the studied 

freeways. 
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Table 4-2: Number of Crashes on Freeway Corridors 

State Road ID Number of crash cases 
Number of 

non-crash cases 

SR408 

EB 180 720 

WB 160 640 

Both Directions 340 1360 

Total 1700 

SR417 

NB 96 384 

SB 69 276 

Both Directions 165 660 

Total 825 

SR528 

EB 82 328 

WB 83 332 

Both Directions 165 660 

Total 825 

Sub Total 670 2680 

Total Observation 3350 

4.4 Methodology 

4.4.1 Random Forest and Important Variable Selection  

Random forest is an ensemble classifier that consists of many decision trees and outputs the class 

that is the mode of the class's output by individual trees. The method combines Breiman's 

"bagging" idea and the random selection of features, introduced independently by Ho (1998), and 

Amit and Geman (1997) in order to construct a collection of decision trees with controlled 

variation. RF has the capability of handling thousands of variables without deletion or 

deterioration of accuracy. Using ensembles of predictors for classification has proved to give 

more accurate results than the use of a single predictor. Moreover, RF has an advantage over the 

traditional classification trees of obtaining unbiased error estimates with no need for a separate 

cross-validation-test data set, when a particular tree is grown from a bootstrap sample, one third 

of the training cases are left out and not used in the growing of the tree, the left-out cases are 
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called out-of-bag (OOB) data. Abdel-Aty et al., and Harb et al. showed that RF may be used as a 

robust data mining technique to determine important variables in the transportation field. 

The basis of the RF algorithm is first to choose the number of the trees to grow and the number 

of m variables that would be selected to split each node to produce stable results and minimum 

out-of-bag (OOB) error rate. The OOB error rate depends on two main components; the 

correlation between any two trees in the forest and the strength of each individual tree in the 

forest. The correlation between any two trees in the forest increases the error rate; where as 

increasing the strength of the individual trees decreases the forest error rate. Reducing m reduces 

both the correlation and the strength and increasing it increases both. Somewhere in between is 

an optimal range of m that can be found using OOB. Alternatively, a default value of the number 

of the candidate variables that will be selected randomly at each split m can be used for 

classification m=(p)
1/2

 where p is total number of variables. RF is monitoring the error rate for 

observations left out of the bootstrap sample out-of-bag (OOB) for each grown tree on a 

bootstrap sample. Fig. 3 shows the OOB error rate against different tree numbers, it is noted that 

1000 trees is enough to achieve a constant minimum error rate and hence produce stable 

estimates.  

Usingthepackage“randomforest”inthe“RSoftware”, the RF model was estimated; using m=6 

variables that randomly sampled as candidates at each split, the OOB error rate was found to be 

minimum of 0.183 and 65.24 % of variance explained by the model. Important variables 

selectionbasedonthemeandecreaseGini‘IncNodePurity’,asthenodepurityvalueincreasethe

importance of the variable increase (Kuhn et  al. 2008). 
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Figure 4-3: Variable Importance and OOB Error. 

 

Examining RF with each data set for the three roadway corridors, most of the important variables 

were related to the segment that the crash occurred on, first upstream and downstream segments 

for SR408 and SR417, while SR528 did not return any reasonable results, SR408 and SR417 

showed similar results in variable selection. Therefore, the combined data were considered in the 

final run.  

Figure 4-3 shows the important variables from the RF produced for the combined data of SR408 

and SR417 in both directions. The logarithm of coefficient of variation of the speed at the crash 

segment G at time slice 2 from 5 to 10 minutes before the crash time (log_CVS_G2), average 
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speed on downstream segment H in time slice 2 (AVS_H2) and the standard deviation of speed 

of the upstream segment between 5 to 10 minutes before the crash (SDS_F2) were found to be 

the most important variables according to Node Purity. 

Hence, only variables related to the crash segment and the nearest upstream and downstream 

segments were included in matched case-control modeling procedure. 

4.4.2 Matched Crash-Non-Crash Analysis  

The study design utilized a matched case-control methodology, a simple and robust way of 

examining the crash precursors accounting for confounding factors such as time of crash, 

seasonal effect and location including all related geometric characteristics. Case-control studies 

are expected to provide more accurate results as they eliminate confounding factors by matching 

(Breslow and Day, 1980). For each selected crash case, a randomly selected m controls (non-

crash cases) were selected on account of matching factors of location, time of day, day of week, 

and season (Orlando has 2 distinct weather seasons and matched non crash cases are taken from 

the same season for each crash case). Different m: 1 ratios have been examined, m=4 was found 

to give slightly better results. Previous studies show that negligible power is gained through 

adding controls beyond 3 to 1 matching (Breslow and Day, 1980). Finally the matched set 

(stratum) was formed of m (4) +1 observations. The modeling is performed under the conditional 

likelihood principle of statistical theory accounting for within stratum differences between crash 

and non-crash speed parameters. Use of the conditional likelihood eliminates the parameters 

associated with the covariates used for matching (e.g. crash time and location). 
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Matched case-control studies are based upon the classical prospective logistic regression model, 

with binary outcome Y (case-control status), covariate (X), stratum level N. Suppose  that there 

are N stratum with 1 crash and m non-crashcases instratumj,where j=1,2,3……N.The

probability pj (xij) that the ith observation in the jth stratum being a crash; where the vector of k 

speed parameters x1, x2,…….,xk  can be noted as xij = (x1ij , x2ij ,…xkij);i=0,1,2…….mandj

=1, 2,….N.This crash probabilitymaybemodeled by the following linear logistic regression 

model as described in a study by Abdel-Aty et al. (2004): 

 
kijkijijjijj
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2211       

(4.1) 

The logistic regression model for matched case-control studies differs from unmatched studies in 

thatitallowstheintercepttovaryamongthematchedunitsofcasesandcontrols.Theinterceptα

summarizes the effect of variables used to form strata on the crash probability and it is different 

for different stratum.  

In order to account of the stratification in the analysis, a conditional likelihood is constructed. It 

should be noted that the crash probabilities cannot be estimated using Equation (4.1) since the 

conditional likelihoodfunctionL(β)is independentof theintercept termsα1,α2,……….,αN

and hence, the effects of matching variables cannot be estimated. This conditional likelihood 

function is expressed as follows: 
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However,thevaluesofβparametersthatmaximizetheconditionallikelihoodfunctiongivenby

Equation (4.2) arealsotheestimatesofβcoefficientinEquation(4.1). These estimates are log 

odds ratio and may be used to approximate the relative risk of a crash.  

In this analysis, procedure PHREG in SAS 9.2 is utilized. PHREG provides the hazard ratio 

which is another term for relative risks used in SAS. In addition, a prediction model can be 

developed using the log odds ratios under this matched crash-non-crash analysis. This can be 

demonstrated by considering two observation vectors x1j = (x11j, x21j, x31j……..,xk1j) and x2j = 

(x12j, x22j, x32j……..,xk2j) from the j
th

 strata on the k speed parameters. Using Equation (1), the 

log odds ratio of crash occurrence due to speed parameters vector x1j relative to traffic flow 

vector x2j will have the following form: 
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The right hand side of Equation (4.3) is independent of αj and can be calculated using the

estimatedβcoefficients.Thus,theaboverelativelogoddsratio(lefthandsideofEquation(4.3)) 

may be utilized for predicting crashes by replacing X2j with the vector of values of the traffic 

flow variables in the j
th

 stratum of non-crash cases. One may use simple average of all non-crash 

observations within the stratum for each variable. Let ),......,,,( 23222122 jkjjjj xxxxx  denote the 

vector of mean values of non-crash cases of the k variables within the j
th

 stratum. Then the log 

odds ratio of crash relative to non-crash cases may be approximated by the following equation: 
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And hence, the log odds ratio can be used for predicting crashes by establishing a threshold value 

that attain the desirable crash classification accuracy. 

As mentioned earlier, important variables were found to be related to the crash segment and two 

adjacent segments in the upstream and downstream directions at time slice 2 and 3 according to 

the results obtained in RF. These 18 variables only of AVS, SDS, and CVS were considered for 

further analysis using the matched case-control. 

4.5 Results and Discussion 

In the preliminary analysis, a model was built for the combined datasets for all freeway sections. 

A univariate analysis was conducted first to check the significance of each variable. Different 

automatic search techniques of stepwise, forward and backward were attempted to identify 

significant variables in multivariate analysis. These procedures were implemented to identify 

which terms were still statistically significant in the presence of other factors. Since variables not 

significant at 0.05 may still be associated with the response after adjusting for other covariates, 

any variable with P < 0.25 in the univariate results were considered eligible to enter into the 

multivariate model. There was an agreement between the three search techniques that the log of 

the coefficient of variation of speed of the crash segment at time slice 2 (Log_CVS_G2) is the 

only significant variable. This variable has positive beta coefficient, which mean that the odds of 

a crash increase as the variation in speed increase and the average speed decrease at the segment 

of the crash at 5-10 minutes before the crash occurrence. Table 4-3 shows the hazard ratio for the 

significant variable. Hazard ratio is the exponent of the beta coefficient and it represents an 

estimate of the expected change in the risk ratio of having crash versus non-crash per unit change 
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in the corresponding factor, the hazard ratio of 1.234 means that the risk for a crash increases 

1.234 times for each unit increase in Log_CVS_G2. It should be noted that the hazard ratio is 

multiplicative in nature for the continuous variables, this means that a two units increase in 

Log_CVS_G2 changes the risk by 1.234^2 or 1.52. 

 

Table 4-3: Overall Model Estimates and Fit Statistics 

Analysis of Maximum Likelihood Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error Chi-Square Pr > ChiSq 

Hazard 

Ratio 

Log_CVS_G2 1 0.21018 0.08901 5.5763 0.0182 1.234 

Model Fit Statistics 

Criterion 

Without 

Covariates 

With 

Covariates 

-2 LOG L 3255.499 3249.915 

AIC 3255.499 3251.915 

SBC 3255.499 3256.253 

 

Since the combined data sets were collected from different populations, it was worth 

investigating each of the three freeway corridors separately. Therefore, other models were 

developed for each of the three freeways individually; univariate as well as multivariate analysis 

using automatic search techniques have been conducted. 

 

All speed parameters related to SR528 were found to be statistically insignificant. It is worth 

mentioning that using toll tag readers to estimate travel times introduces a delay in generating 

observed travel times, for example if a travel time of T minutes is observed, then that travel time 

applies to a vehicle that entered the segment T minutes ago. The length of the AVI segment plays 
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a significant role in the space mean speed estimation, for example if a number of vehicles 

entered a segment of 1 mile length, then it should be expected to have them exit the segment 

within 1 minute in a normal traffic condition given that the speed is 60 mph, on the other hand if 

the length of AVI segment is 7 miles then the estimated travel time applies to vehicles that 

entered the segment 7 minutes ago. Moreover, during times of rapid change in the segment travel 

time, this delay on long segments can reduce the usefulness of AVI data since the estimated 

measures will not be able to capture the variation in the space mean speed. In particular, this 

delay may mean that toll tag readers along long segments are ineffective tools for incident 

prediction. 

Table 4-4: SR408 Model Estimates and Fit Statistics 

Analysis of Maximum Likelihood Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error Chi-Square Pr > ChiSq 

Hazard 

Ratio 

Log_CVS_G2 1 0.27305 0.11513 5.6254 0.0177 1.314 

Model Fit Statistics 

Criterion 

Without 

Covariates 

With 

Covariates 

-2 LOG L 1536.143 1530.482 

AIC 1536.143 1532.482 

SBC 1536.143 1536.310 

The final model for SR408 resulted in one significant variable as shown in Table 4-4: 

LogCVS_G2 (log of the coefficient of variation of speed) from segment G (crash segment) at 

time slice 2 (5-10 minutes before the crash). The variable has positive beta coefficient, which 

means that the odds of a crash increase as the variation of the speed increase at the crash 

segment. This also could be explained that on average of one mile AVI segment, the increase of 
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the standard deviation coupled with decrease of the average speed 5-10 minutes before the crash 

(since the coefficient of variation of speed includes the standard deviation as the nominator and 

the average speed as the denominator) may increase the likelihood of crash occurrence. This 

indicates an increase in the turbulence of traffic. The hazard ratio is found to be 1.314 which 

means that the crash risk increases 1.314 times for each unit increase in Log_CVS_G2. 

Moreover, the hazard ratio increased from 1.234 in the overall model to 1.314, this indicates that 

the risk for a crash increased by 8% for each unit increase in Log_CVS_G2 when SR528 and 

SR417 data sets were excluded from the model. 

Table 4-5 provides the estimates and fit statistics for the model for SR417; two variables came 

out to be significant: SDS_G2 and AVS_H2.  Standard deviation of speed of the crash segment 

at time slice 2 has a positive beta coefficient while the average speed of the adjacent downstream 

segment at time slice 2 has a negative beta coefficient. This means that high variation in the 

speed at the crash segment with decrease in the average speed in the downstream segment may 

increase the risk of having crash at this location. Decrease in speed downstream might represent 

queue build up. 

The results from both models suggest that the real-time crash prediction models are not 

transferable from one road to another due to the differences in the driver population as well as 

the structure of the AVI system; it is noteworthy that both roads have different type of road users 

as stated before in the data description part. However, transferability might be possible for 

roadways with similar AVI system spacing and population, these findings were depicted by 

Pande et al. (2011), although the data they used were collected from very similar loop detector 



 

76 

 

structure in Central Florida (I-4 and I-95), they found that it may not be advisable to use the 

same model for two freeways with different driver population or travel pattern. 

Table 4-5: SR417 Model Estimates and Fit Statistics 

Analysis of Maximum Likelihood Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error Chi-Square Pr > ChiSq 

Hazard 

Ratio 

SDS_G2 1 0.12163 0.05649 4.6357 0.0313 1.129 

AVS_H2  -0.05683 0.02336 5.9183 0.0150 0.945 

Model Fit Statistics 

Criterion 

Without 

Covariates 

With 

Covariates 

-2 LOG L 654.827 643.355 

AIC 654.827 647.355 

SBC 654.827 653.295 

In order to implement the estimated model in real-time application, sensitivity analysis is 

conducted. Table 4-6 and 4-7 show sensitivity and the specificity for the final models. Sensitivity 

is the proportion of crashes that are correctly identified as crashes while specificity is the 

proportion of non-crashes that are correctly identified as non-crashes by the model (Agresti, 

2001). The sensitivity and the specificity can be calculated using the odds ratio given by 

Equation (4.4). For example, the mean of the two variables SDS_G2 and AVS_H2 of all 4 non-

crash cases for SR417 model were calculated within each matched set. The estimated vector of 

these non-crash means replaced the vector in Equation (4.4) for the j
th

-matched set. The odds 

ratio can be estimated by utilizing the beta coefficients from the model in Equation 4 where the 

vector is the actual observation in the data set. The sensitivity was found to be 67.94% and 

69.09% while the two models achieved specificity of 53.53% and 54.85% for SR408 and SR417, 
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respectively at a threshold equal to 1. The classification accuracy is considered good for all crash 

types, and the accuracy would be expected to increase when evaluating specific crash types 

(Pande and Abdel-Aty, 2006). 

Both models have relatively high false positive rates, at threshold of 1, about 46% were 

classified as crashes incorrectly while the false negative rates were low, about 32% of crashes 

were classified as non-crashes. Different classification accuracy can be obtained by changing the 

threshold depending on the management strategy. The threshold should be chosen carefully in 

the real-world application; large number of false alarmsmight affect the drivers’ compliance

with the system and hence reduce the effectiveness of the system. Nevertheless, Advanced 

Traffic Management (ATM) objectives of reducing turbulence to improve operation can still be 

achieved even with high percentage of false alarms. ITS strategies such as variable speed limits 

couldbeintroducedwithoutthedrivers’knowledgeoffalsealarmornot. 

Table 4-6: Classification Results SR408 

 SR408 

Frequency 

Percent 

Row % 

Column% 

Predicted 

Total 
0 1 

A
ct

u
al

 

0 

728 

42.82 

53.53 

86.98 

632 

37.18 

46.47 

73.23 

1360 

80.00 

 

 

1 

109 

6.41 

32.06 

13.02 

231 

13.59 

67.94 

26.77 

340 

20.00 

 

 

Total 
837 

49.24 

863 

50.76 

1700 

100.00 
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Table 4-7: Classification Results SR417 

 SR417 

Frequency 

Percent 

Row % 

Column% 

Predicted 

Total 
0 1 

A
ct

u
al

 

0 

362 

43.88 

54.85 

87.65 

298 

36.12 

45.15 

72.33 

660 

80.00 

 

 

1 

51 

6.18 

30.91 

12.35 

114 

13.82 

69.09 

27.67 

165 

20.00 

 

 

Total 
413 

50.06 

412 

49.94 

825 

100.00 

 

4.6 Conclusion and Recommendations 

While the most common application of the AVI is electronic toll collection and travel time 

estimation, there is a promising traffic safety application in the context of ATM. This study 

implemented for the first time data collected from the AVI in a real-time traffic safety analysis. 

AVI data were found to be promising in providing a measure of crash risk in real-time. The 

operation-based management of expressways can benefit from the collected AVI traffic data not 

only to ease the congestion and enhance the operation but also by providing warnings of increase 

risk situation on the crash risk measures identified in this study to increase safety on freeways 

and expressways. 

Travel time and space mean speed data, collected from tag readers (AVI) of a total of 78-miles 

on the Central Florida expressway network in Orlando in 2008. Historical crash data were 

collected for the same period and study road sections. Utilizing random forest for significant 
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variable selection and stratified matched case-control to account for the confounding effects of 

the location and time, the log odds of crash occurrence may be obtained and hence a proactive 

safety management system may be incorporated with existing ATIS. 

The estimated speed collected from the AVIs is different than the one collected from ILDs, AVIs 

measure the arithmetic mean of the speed of all the vehicles occupying a given length at a given 

instant whereas ILDs measure the arithmetic mean of the speed of vehicles passing a point 

during a given time interval.  Therefore, the AVI segment length plays an important role in 

estimating the space mean speed that will be used in any traffic safety management strategy. On 

one hand, the results suggest that the AVI data could only be useful if the AVI segments are 

within 1.5 mile on average, on the other hand, it has been found that the model is not easily 

transferrable from one road to another unless the AVI structure and driver population are similar. 

The coefficient of variation in speed at the crash segment during 5-10 minutes prior to the time 

of the crash is found to be the most significant factor affecting the crash likelihood on a freeway 

with tag readers spaced 1-mile on average and mostly commute drivers while the standard 

deviation of the speed at the crash segment and the average speed at the adjacent downstream 

segment were found to be the most significant on another freeway section with AVI segments 

length of an average of 1.5-mile with mixed type of road users.  

All speed parameters obtained from AVIs spaced on average at 3-mile apart were found to be 

statistically insignificant to identify crash prone conditions.  Although, this study shows that AVI 

segments within 1.5 mile may be useful in real-time crash analysis, further investigation is 
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needed to determine the exact cut off and threshold values of the appropriate length of the AVI 

segment in order to be used as a guideline in ITS applications. 
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CHAPTER 5. REAL-TIME RISK ASSESSMENT FOR SPECIFIC CRASH 

TYPE (ALL CRASHES VS. REAR-END CRASHES) 

5.1 Introduction 

As discussed in the previous chapter and reviewed from the literature (Chapter 2) that Intelligent 

Transportation Systems (ITS) rely heavily on detection systems to collect data that are essential 

to manage traffic, ease congestion and provide motorists with travel time information. In the last 

decade, traffic safety studies showed that traffic safety could be incorporated in real-time traffic 

management systems as well as providing warnings of the increase in risk situation to promote 

safety on freeways and expressways (Madanat and Liu, 1995; Hughes and Council, 1999; Oh et  

al., 2001;Lee et  al. 2002, 2003; Golob and Recker, 2001; Abdel-Aty et  al. 2004, 2005, 2007, 

2008; Pande and Abdel-Aty 2006a, 2006b; Hourdos et  al. 2006). These efforts have been 

devoted to statistically link real-time traffic conditions to crash occurrence. Most of this real-time 

crash prediction research attempted the use of data collected from inductive loop detectors 

(ILDs) (Hughes and Council, 1999; Oh et  al., 2001;Lee et  al. 2002, 2003; Golob and Recker, 

2001; Abdel-Aty et  al. 2004, 2005, 2007, 2008; Pande and Abdel-Aty 2006a, 2006b), however, 

there is a lack of traffic safety studies that investigated data collected from Automatic Vehicle 

Identification (AVI) Systems (Ahmed and Abdel-Aty, 2011; Ahmed et  al. 2011). 

It is difficult to delineate from fundamental notions of time mean speed and space mean speed 

the measure of safety risk without detailed analyses and hence, better understanding of these 

systems is essential in the safety context. Key question therefore are whether AVI can be used to 

predict crash risk in real time, as demonstrated in the previous chapter and concluded by Ahmed 

and Abdel-Aty, 2011; and Ahmed et  al., 2011 that AVI data are useful in real-time risk 
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assessment, another questions arises of what level of accuracy could be achieved for specific 

type of crash vs. predicting all crashes, and if that prediction performance can be improved by 

targeting the specific single most frequent type of crashes, the rear-end collisions. Rear-end 

collisions are one of the frequently occurring types of crashes on freeways and expressways 

(National Highway Traffic Safety Administration, 2007). Their impact on operation is the most 

noticeable since most of them occur during congested time periods (Abdel-Aty et al., 2005). 

In this chapter, a generic semi-parametric Bayesian matched case-control model was calibrated 

for all crash types and another model for rear-end crashes. We investigate also if prior 

knowledge about the covariates from previous years at the same location can provide better fit 

and enhance the capability of the model to predict crashes more accurately. In order to examine 

this approach as in real-life applications; one year of data (2007) were used to calibrate the 

model using classical (frequentist) matched case-control logistic regression, then the coefficients 

estimates were used as prior in Bayesian Matched Case-Control to update the coefficients using 

another year of data (2008) and different year of data from (2009) were used for validation.  

Unlike other studies that were limited by the availability of data in which the sensitivity analysis 

was carried out using the same data that were used to calibrate the model, in this study we use a 

separate dataset for validation and scoring the model.  
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5.2 Data Collection and Preparation 

The expressway section under consideration is 33 miles long of SR417 where AVI data were 

available. Central Florida’sexpresswaysareequippedwithanAVIsystemfortollcollectionand

travel time estimation; there are 22 AVI tag readers along the 33-mile section on both directions 

with an average spacing of 1.47-mile. 

There were two sets of data used in the study; expressway AVI archived data from SR417 in 

Orlando and the corresponding crash data for three years 2007 through 2009. The Orlando-

Orange County Expressway Authority (OOCEA) archives and maintains only the processed 1-

minute space mean speed and the estimated average travel time along the defined roadway 

segments. The unprocessed original time stamps of the tag readings are not available; this data 

are typically discarded after the travel time is processed due to privacy issues. The crash data 

were obtained from the Crash Analysis Resource (CAR) maintained by FDOT for the same 

years. 

 

As shown in the previous chapter and illustrated by Ahmed and Abdel-Aty, 2011 that crash 

occurrence was mostly related to the AVI crash segment, one segment in the upstream and 

another segment in the downstream directions and therefore these segments were considered in 

the data extraction process and modeling parts. The crashes have been assigned on each segment; 

upstream and downstream segments were identified to extract their corresponding AVI data. The 

upstream, crash, and downstream segments were named U, C and D, respectively. The AVI 

segment scheme is illustrated in Figure 5-1.  
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Figure 5-1: AVI Segment Scheme 

 

AVI data corresponding to each crash case were extracted in the following process; for example 

a crash occurred on February 7, 2008 (Thursday) at 2:00PM, SR417 eastbound, the crash 

segment C was identified using Geographic Information System (GIS) software, in addition to 

other two segments (one in the upstream and one in the downstream directions) from 1:30PM to 

2:00PM (30 minutes). Four non-crash cases were also determined for the same season (to control 

for weather conditions), location and time for different Thursdays. It is worth mentioning that the 

crash and the none-crash cases were only extracted where no crashes were observed within 1 

hour of the original crash time at the same AVI segment. There were 4 crashes that occurred 

within the crash segment few minutes after the first crash; these crashes were not considered 

because all speed parameters would be affected by the first crash event. 

As discussed earlier, the extracted 1-minute speed data were aggregated to different aggregation 

level of 2, 3, 5, and 10 minutes to investigate the best aggregation level that will provide better 

accuracy in the modeling part. Five-min aggregation level was found to provide better statistical 

fit (smaller DIC) and relatively higher classification accuracy. The 30 minutes speed data were 

divided into six time slices, time slice 1 represents the period between the crash time and 5-min 
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prior to the crash time until time slice 6 which represents the interval between 25min and 30-min 

prior to the crash occurrence. Time slice 1 was discarded in the analysis since it would not 

provide enough time for successful intervention to reduce crash risk in a proactive safety 

management strategy. Moreover, the actual crash time might not be precisely known, Golob and 

Recker, 2001 discarded the 2.5 minutes of traffic data immediately preceding each crash reported 

time to avoid uncertainty of the actual crash time. In general with the proliferation of mobile 

phones and CCTV cameras on expressways, crash time is almost usually immediately identified. 

Average speeds, standard deviations of the speed and logarithm of coefficient of variation of the 

speed (standard deviation of speed divided by the average speed) were calculated over the 5-min 

time intervals. The measure notations take the general formXY_Zβ.Where XY takes the value 

of AV, SD, or CV for average, standard deviation or coefficient of variation of speed, 

respectively. Z represents AVI segments and takes values of U, C, and D for upstream, crash, or 

downstream segments whileβtakesthevaluesfrom2to6whichrefertothetimeslices. 

Unlike ILDs data which are known to suffer from high percentage of missing observations or 

bad reading, AVI data have less than 5% missing observations with no unreasonable values of 

speeds. The missing data for the speed were imputed by preserving the distribution of the 

original data and then the coefficient of variation was calculated. The final dataset had a total of 

45 variables consisting of 3 speed parameters for each of the 3 AVI segments at 5 time intervals 

(time slices). 
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Although crashes involving driving under the influence of alcohol or drugs and distraction 

related crashes were less than 2% of total crashes, they were excluded from the crash dataset to 

examine the effect of short-term turbulence of traffic speed only. Hence, the analysis presented 

in this study is based on 447 total crashes in which 171 were rear-end crashes. 

5.3 Methodology 

5.4 Bayesian Updating Approach  

This study utilizes the Bayesian semi-parametric Cox proportional hazards model (PHM) to 

explain the relationship between an event (crash) occurring at a given time and a set of risk 

factors in matched case-control design and to mainly control for the confounding factors of time, 

location, and season. Cox PHM model is used commonly for survival analysis; an important 

distinction in survival analysis is how the time-dependency in the event process (the baseline 

hazard in theabsenceofanycovariateeffects) isparameterized.Cox’ssemi-parametric model 

assumes a parametric form for the effects of the covariates, but it allows an unspecified form for 

the baseline hazard. Therefore, Cox PHM can be utilized regardless of whether the survival time 

is discrete or continuous. The Cox PHM is performed with the SAS® (BAYES PROC PHREG) 

(SAS Institute Inc., 2011) by forming a stratum for each matched set, a dummy variable for the 

survival time is created in the dataset such that all the crash cases in a matched set have the same 

event time value, and the corresponding non-crash cases (controls) are censored at the later 

times.  
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TheclassicalCox’ssemi-parametric model estimates the coefficients of parameters solely based 

ontheinformationfromtheobserveddatawhereastheBayesianCox’ssemi-parametric makes 

use of the combined information of the prior as well as the observed data to estimate the 

parameters’ coefficients. In the Bayesian framework, the data is used to update beliefs about 

the behavior of the parameter to assess its distributional properties as well as possible. PROC 

PHREG with BAYES option generates a Markov chain that contains the approximate posterior 

distribution samples by Gibbs sampler, using the adaptive rejection sampling algorithm (Gilks et  

al. 1995 and Gilks and Wild, 1992). The DIC, a Bayesian generalization of AIC, is used to 

measure the model complexity and fit. The Deviance Information Criterion DIC, a Bayesian 

generalization of Akaike Information Criterion AIC, is used to measure the model complexity 

and fit. DIC is a combination of the deviance for the model and a penalty for the complexity of 

the model. The deviance is defined as                   . The effective number of parameters, 

pD, is used as a measure of the complexity of the model,             , where      is the 

posterior mean of the deviance, and      is a point estimate of the deviance for the posterior 

mean of the parameters. DIC is given by DIC = Dhat + 2 pD (Spiegelhalter et  al. 2003). 

Moreover, receiver operating characteristic (ROC) curve analysis was used to assess the 

prediction performance. In addition, a sensitivity analysis is conducted to measure the accuracy 

of each of the estimated models using different validation dataset from year 2009. 
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5.5 Results and Discussion 

5.5.1 Model Estimation and Diagnostics (All Crashes vs. Rear-End Crashes) 

As mentioned earlier, frequentist matched case-control model was estimated for all crashes that 

occurred in 2007 on the expressway section, the dataset is comprised of 690 observations (138 

crash cases and 552 non-crashes (control)). With prior knowledge of the likely range of values of 

the parameters from 2007, informative priors were specified for parameters for all crashes that 

occurred in 2008 (165 crashes and 660 non-crashes) to avoid using the same data in the updating 

process. It is noteworthy to mention that using non-informative prior in Bayesian estimation 

resulted in the same estimate obtained from frequentist model. In Bayesian update, one chain of 

20,000 iterations were set up in SAS based on the convergence speed and the magnitude of the 

dataset, before drawing inferences from posterior sample, the trace, autocorrelation and density 

plots should be examined for each parameter to be content that the underlying Markov chain has 

converged. Following Brooks-Gelman-Rubin (BGR) convergence diagnostics (Brooks and 

Gelman, 1998), the trace, autocorrelation, and density plots for the two significant parameters 

shown in Figure 2 suggest that the mixing in the chain is acceptable with no correlation. After 

ensuring the convergence, the first 2,000 samples were discarded as adaptation and burn-in.   

A univariate analysis was conducted first to check the significance of each variable. Different 

automatic search techniques of stepwise, forward and backward were attempted to identify 

significant variables in multivariate analysis. These procedures were implemented to identify 

which terms were still statistically significant in the presence of other factors. Since variables not 

significant at 0.05 may still be associated with the response after adjusting for other covariates, 
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any variable with P < 0.25 in the univariate results were considered eligible to enter into the 

multivariate model (SAS Institute Inc., 2011). There was an agreement between the three search 

techniques that there are two significant variables associated with crash occurrence, Table 5-1 

provides the estimates of beta coefficients, credible interval, hazard ratio and fit statistics for the 

(All Crashes) Model; two variables came out to be significant: SD_C2 and AV_D2.  Standard 

deviation of speed of the crash segment at time slice 2 (5-10 minutes prior the crash time) has a 

positive beta coefficient while the average speed of the adjacent downstream segment at time 

slice 2 has a negative beta coefficient. This means that high variation in the speed at the crash 

segment with decrease in the average speed in the downstream segment may increase the risk of 

having crash at this location. Decrease in speed downstream might represent queue build up. 

Hazard ratio is the exponent of the beta coefficient and it represents an estimate of the expected 

change in the risk ratio of having crash versus non-crash per unit change in the corresponding 

factor, the hazard ratio of 1.13 means that the risk for a crash increases by 13% for each unit 

increase in SD_C2. It should be noted that the hazard ratio is multiplicative in nature for the 

continuous variables, this means that a two units increase in SD_C2 changes the risk by 1.132 

=1.28 (28% increase). 
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Figure 5-2: Diagnostics Plots (All Crashes Model) 

 

Following the same methodological updating approach as explained before, a Bayesian matched 

case-control model was estimated for rear-end crashes only from 2008 using informative priors 

from the frequentist model that was estimated using data for rear-end crashes only from 2007. 

The dataset for 2007 have 280 observations (56 rear-end crash cases and 224 non-crashes 

(control)) while the 2008 dataset used to update the model coefficients have total of 305 

observations (61 rear-end crashes and 244 non-crashes). Similarly, the convergence was assessed 

using plots for trace, autocorrelation and density, the model has converged reasonably. Table 5-2 

shows the coefficient estimates, credible interval, hazard ratio and fit statistics. SD_C2 and 

AV_D2 came out to be significant, however, the hazard ratio increased for the standard deviation 

of speed of the crash segment at time slice 2 for rear-end crashes model by more than twice the 

hazard ratio for all crashes model while the hazard ratio decreased for the average speed of the 

downstream segment at time slice 2 by about 20 percent. This may indicate that the increase in 

variation of the speed at any given segment coupled with decrease in average speed in the 

downstream segment may result in rear-end crash more than any other type of crashes.  
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Table 5-1:  SR417 (All Crashes 2008) Model Estimates, Hazard Ratio, and Fit Statistics 

Posterior Summaries Hazard Ratios 

Parameter Mean 

Standard 

Deviation 

Credible 

Interval 

Mean 

Standard 

Deviation 

Credible 

Interval 

2.5% 97.5% 2.5% 97.5% 

SD_C2 0.1256 0.0639 0.00312 0.2562 1.1362 0.0729 1.0031 1.2920 

AV_D2 -0.0614 0.0257 -0.1167 -0.0153 0.9408 0.0241 0.8899 0.9848 

Fit Statistics 

DIC (smaller is better) 647.695 

pD (Effective Number of Parameters) 2.149 

 

One limitation however in the current AVI archiving system is that the system does not record 

the percentage of lane change per segment, this percentage can be calculated by developing an 

algorithm to compare the unique tag ID for each individual vehicle at the beginning and end of 

each segment. Moreover, the algorithm can process the original raw AVI data in a way that 

provides space mean speed by lane and hence a better picture can be comprehended about not 

only the longitudinal speed variation at the AVI segment but also the variation across the lanes. 

It is to be noted that by having detailed lane speed data may help to identify other types of 

crashes such as sideswipe and angle crashes. 

It should be noted that using the informative prior slightly enhanced the model fit; the DIC 

decreased from 652.371 to 647.695 for all crashes model and from 111.278 to 106.097 for rear-

end crashes. 
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Table 5-2: SR417 (Rear-End Crashes 2008) Model Estimates, Hazard Ratio, and Fit Statistics  

Posterior Summaries Hazard Ratios 

Parameter Mean 

Standard 

Deviation 

Credible 

Interval 

Mean 

Standard 

Deviation 

Credible 

Interval 

2.5% 97.5% 2.5% 97.5% 

SD_C2 0.9151 0.3852 0.1986 1.7065 2.6949 1.1318 1.2197 5.5096 

AV_D2 -0.2627 0.1520 -0.6147 -0.0313 0.7776 0.1124 0.5408 0.9692 

Fit Statistics 

DIC (smaller is better) 106.097 

pD (Effective Number of Parameters) 1.611 

 

5.5.2 Classification Accuracy of the Models (All Crashes vs. Rear-End Crashes) 

In order to implement the estimated models in real-time application, sensitivity analyses are 

conducted. Table 5-3 and Table 5-4 show sensitivity and the specificity for the final models. 

Sensitivity is the proportion of crashes that are correctly identified as crashes while specificity is 

the proportion of non-crashes that are correctly identified as non-crashes by the model (Agresti, 

2002). The sensitivity and the specificity can be calculated using the odds ratio as explained in 

chapter 4, given by Equation (4.4). For example, the mean of the two variables (SD_C2, standard 

deviation of speed of the crash segment at time slice 2 (5-10 minutes prior the crash time)) and 

(AV_D2, average speed of the downstream segment at time slice 2) of all 4 non-crash cases were 

calculated within each matched set. The estimated vector of these non-crash means replaced the 

vector in Equation (4.4) for the j
th

-matched set. The odds ratio can be estimated by utilizing the 

beta coefficients from the updated model using 2008 dataset in Equation (4.4) where the vector is 

the actual observation in the 2009 dataset for all crashes and rear-end crashes.  
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The sensitivities were found to be 69.44% and 72.22% for all crashes and rear-end crashes, 

respectively using Bayesian matched case-control model with non-informative priors while it 

increased to 72.92% and 75.93% using Bayesian updating approach with specified informative 

priors from year 2007. Both models have reasonable false positive rates, at threshold value of 

unity, about 42% and 46% were classified as crashes incorrectly for all crashes and rear-end 

crashes, respectively. Different false positive rates can be obtained by changing the threshold 

depending on the management strategy. The threshold should be chosen carefully in real-world 

application; largenumberof falsealarmsmightaffect thedrivers’compliancewith thesystem

and hence reduce its effectiveness. Nevertheless, Advanced Traffic Management (ATM) 

objectives of reducing turbulence to improve operation can still be achieved even with high 

percentage of false alarms. ITS strategies such as variable speed limits could be introduced 

withoutthedrivers’knowledgeoffalsealarmornot. 

Table 5-3: Classification Results (All Crashes) 
 All Crashes 

Frequency 

Percent 

Row Percent 

Col Percent 

Predicted 

Total 
0(Non-Crash) 1(Crash) 

A
ct

u
a

l 

0(Non-Crash) 

334 

46.39 

Specificity 57.99 

89.54 

242 

33.61 

False Positive Rate 42.01 

69.74 

576 

80.00 

1(Crash) 

39 

5.42 

False Negative Rate 27.08 

10.46 

105 

14.58 

Sensitivity 72.92 

30.26 

144 

20.00 

Total 
373 

51.81 

347 

48.19 

720 

100.00 
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Table 5-4: Classification Results (Rear-End Crashes) 

 Rear-End Crashes 

Frequency 

Percent 

Row Percent 

Col Percent 

Predicted 

Total 
0(Non-Crash) 1(Crash) 

A
ct

u
a

l 

0(Non-Crash) 

117 

43.33 

Specificity 54.17 

90.00 

99 

36.67 

False Positive Rate 45.83 

70.71 

216 

80.00 

 

 

1(Crash) 

13 

4.81 

False Negative Rate 24.07 

10.00 

41 

15.19 

Sensitivity 75.93 

29.29 

54 

20.00 

 

 

Total 
130 

48.15 

140 

51.85 

270 

100.00 

 

5.6 Conclusions 

While traffic flow data collected from ILDs were a good safety measure in real-time proactive 

safety management, there were no studies that attempted the use of AVIs data in real-time safety 

risk assessment. AVI data were found to provide reasonably comparable measure to ILDs of 

crash risk in real-time, the operation-based management of expressways can benefit from the 

collected data not only for toll collection and travel time estimation but also to provide warnings 

of increased risk situations. Few studies conducted crash prediction by type using real-time 

traffic data collected on freeways/expressways. In contrast, explicitly in this study we classify 

and compare the generic model for all types of crashes with specific crash type (rear-end) model 

using data collected from tag readers (AVI) systems on expressways. 

The chapter presents a Bayesian updating framework to identify real-time traffic conditions 

prone to crashes using expressway AVI data. Using 3 years of crash data and the corresponding 

AVI data on SR417 in Orlando, a classical (frequentist) matched case-control model was 
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estimated using data from 2007. With prior knowledge of the likely range of values of the 

parameters from 2007 at the same expressway corridor, informative priors were specified for the 

parameters in a semi-parametric Bayesian matched case-control framework to avoid using same 

data in the updating process. This approach was applied one time on all crashes and another time 

on rear-end crashes. By contrasting AVI data preceding all crash types and rear-end crashes with 

non-crashes, it is concluded that the hazard ratio increased for the standard deviation of speed of 

the crash segment at 5-10 minutes before the crash time for the rear-end crash model by more 

than twice the hazard ratio for the overall crash model while the hazard ratio decreased for the 

average speed of the downstream segment at 5-10 min before the crash time. This may indicate 

that the increase in variation of the speed at any given segment coupled with decrease in average 

speed in the downstream segment may result in rear-end crash more than any other type of 

crashes. 

The classification accuracy for the rear-end crashes model is more than that achieved by the 

generic all crashes model, 72.22% of the rear-end crashes may be identified correctly while the 

generic all crashes model identified only 69.44%. Moreover, the proposed Bayesian updating 

approach showed better fit in the form of relatively lower DIC values using informative priors, 

also the accuracy of both models increased to achieve 75.93% and 72.92% for rear-end and all 

crashes, respectively. 

The proposed methodology leads to much more efficient estimation of risk than does ordinary 

frequentist matched case-control logistic regression. Bayesian updating approach is strongly 
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recommended as a robust technique to reduce uncertainty in the parameters and increase the 

accuracy of the model fit.  

Although the AVI system can provide measures about percentage of lane change per segment by 

comparing the unique tag ID for each individual vehicle at the beginning and end of the segment 

as well as providing space mean speed for each lane to estimate the variation in speed across 

lanes, the AVI algorithm and the archiving system in its current form do not report these 

information and hence the expressway authorities are encouraged to update their archiving 

system.  

This study suggests that AVI data in the current form can provide an acceptable real-time safety 

risk assessment for all crash types in general and rear-end crashes in particular, and with minor 

modifications of how tag readers are structured and how the AVI data are processed and 

archived, it is possible to enhance the prediction accuracy and extend the proposed methodology 

to other crash types. 
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CHAPTER 6. INCORPORTAING ROADWAY GEOMETRY AND REAL-

TIME WEATHER DATA IN REAL-TIME RISK ASSESSMENT 

6.1 Introduction 

In previous studies, weather data were estimated from crash reports for crash cases and from 

airports weather stations in the vicinity of the freeway section for non-crash cases (Abdel-Aty 

and Pemmanabonia, 2006; Hassan and Abdel-Aty, 2010). It should be noted that none of these 

studies had access to actual weather information on the roadway section itself. In this chapter, 

real-time weather data are gathered by weather stations installed on the roadway solely for the 

purpose of collecting real-time information about the adverse weather conditions. Moreover, 

roadway geometrics were considered in few studies (Abdel-Aty and Abdalla, 2004; Abdel-Aty et  

al., 2007), and their effects were controlled for by a matched case-control framework in other 

studies (Abdel-Aty et  al. 2004, 2005, 2007, 2008; Abdel-Aty and Pande, 2004, 2005; Pande and 

Abdel-Aty 2006a, 2006b; Hassan and Abdel-Aty, 2010; Ahmed and Abdel-Aty, 2011). These 

studies were mostly conducted on freeways/expressways that feature normal roadway geometry 

and hence the traffic flow parameters were found to be the most dominant factors that contribute 

to crash occurrence. Since the roadway section under study features mountainous terrain of 

relatively steep grades and sharp horizontal curves’ radii, the geometrical characteristics were 

considered to examine how the interaction between all these factors contributes to crash 

occurrence. This chapter investigates the identification of freeway locations with high crash 

potential using traffic data collected from AVI, real-time weather information and geometric 

features. 
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According to the Federal Highway Administration (Goodwin, 2002), weather contributed to over 

22% of the total crashes in 2001. This means that adverse weather can easily increase the 

likelihood of crash occurrence. Several studies, in fact, concluded that crashes increase during 

rainfall by 100% or more (Brodsky and Hakkert, 1988; National Traffic Safety Board, 1980), 

while others finding more moderate (but still statistically significant) increase (Andreescu and 

Frost, 1998; Andrey and Olley, 1990).  

Automatic Vehicle Identification (AVI) system has been widely used in real-time travel time 

estimation (Tam and Lam, 2011; Dion and Rakha, 2006). While few studies used traffic data 

from AVI in real-time traffic safety application (Ahmed and Abdel-Aty, 2011; Ahmed et al. 

2012a, 2012b), in this study, AVI data, real-time weather data, and roadway geometry are 

implemented to assess the safety risk on a freeway section that features mountainous terrain.  

6.2 Data Preparation 

This study involves four datasets; roadway geometry data, crash data, and the corresponding 

AVI and weather data. The crash data were obtained from CDOT for a 15-mile segment on I-70 

for three years (2007 to 2009). Traffic data consists of space mean speed captured by 20 AVI 

detectors located on each east and west bounds along I-70. We obtained from CDOT the 

processed 2-minute space mean speed and the estimated average travel time for each AVI 

segment. Although the tag readers have the capability of collecting lane by lane data, the 

processed and archived AVI data included only the combined travel time and space mean speed 

for all lanes. It is worth mentioning that ATIS was developed and implemented without 

consideration for safety applications. Weather data recorded by three automated weather stations 



 

99 

 

along I-70 for the same time period were also provided by CDOT. The roadway data were 

collected from Roadway Characteristics Inventory (RCI) and Single Line Diagrams (SLD). 

AVI data corresponding to each crash case were extracted in the following process; the location 

and time of occurrence for each of the 301 crashes were identified. Since the space mean speeds 

were archived on 2-minute intervals, the speeds were aggregated to different aggregation level of 

2, 4, and 6-minute level to obtain averages and standard deviations and to investigate the best 

aggregation level that will give better accuracy in the modeling part. Six-min aggregation level 

was found to provide better fit.  Three time slices of the 6-minute prior the crash time were 

extracted. For example if a crash happened on Sep 16, 2007 (Sunday) at 14:00, at the milepost of 

205.42. The corresponding 18-min window for this crash of time intervals (13:42 to 14:00) 

recorded by AVI segment 34 (Mile marker starts at 200.8 and ends at 205.55). Time slice 1 was 

discarded in the analysis since it would not provide enough time for successful intervention to 

reduce crash risk in a proactive safety management strategy. Moreover, the actual crash time 

might not precisely be known. Golob and Recker (2004) discarded the 2.5 minutes of traffic data 

immediately preceding each reported crash time to avoid uncertainty of the actual crash time. In 

general with the proliferation of mobile phones and CCTV cameras on Freeways, crash time is 

almost usually immediately identified. One-hour speed profiles were also generated (about 30 

minutes before and 30 minutes after the crash time) to verify the reported crash time. The 

modeling procedure required non-crash data, a random selection from the whole remaining AVI 

dataset where there was no crash within 2-hour before the extraction time was utilized in the 

study to represent the whole population of different traffic patterns, weather conditions and 

roadway characteristics. 
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Similarly, weather data for crash cases and non-crash ceases were extracted. Automated weather 

stations monitor the weather conditions continuously and the weather parameters are recorded 

according to a specific change in the reading threshold and hence they do not follow a specific 

time pattern. The stations report frequent readings as the weather conditions change within short 

time; if the weather conditions remain the same the station would not update the readings. 

However, these readings were aggregated over certain time periods to represent the weather 

conditions. For example; precipitation described by rainfall amount or snowfall liquid equivalent 

for ten minutes, one hour, three hours, six hours, twelve hours and twenty-four hours and the 

estimated average hourly visibility which provides an hourly measure of the clear distance in 

miles that drivers can see. Visibility in general can be described as the maximum distance (in 

mile) that an object can be clearly perceived against the background sky, visibility impairment 

can be result of both natural (e.g., fog, mist, haze, snow, rain, windblown dust, etc.) and human 

induced activities (transportation, agricultural activities, and fuel combustion). The automated 

weather stations do not directly measure the visibility but rather calculate it from a measurement 

of light extinction which includes the scattering and absorption of light by particles and gases.  

A total number of 301 crashes and 880 non-crashes were finally considered in the analysis in 

which 70 and 231 crashes and their randomly selected 256 and 624 non-crashes occurred during 

the dry and the snow seasons, respectively. 
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6.3 Preliminary Analysis and Results 

From the preliminary analysis, it can be found that the environmental conditions have a strong 

effect on crash occurrence within that section. According to the meteorological data, the study 

section has two distinct weather seasons; dry season from May through September which 

experience small amount of rain, and snowy season from October through April. The crash 

frequencies during the snowy season months were found to be more than double the frequencies 

during the dry season months. Figure 6-1 shows the 3-year aggregated crash frequency by month 

and weather for the 15-mile freeway section.  

 
Figure 6-1: Crash Frequency by Month 

To compare between the traffic and environmental factors for crash and non-crash cases as well 

as between snow and dry seasons, a series of statistical tests were conducted. F-test showed that 
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the crash cases and non-crash cases have equal variance and hence t-tests for equal variance were 

used. The results showed that there is a significant difference between each of the mean of the 

average speed and the mean of the average 1-hour visibility of crash-cases and non-crash cases. 

For example, the 6-min average speed 6-12 min prior to the crash cases for both the snowy and 

the dry seasons was found to be 48.21 mph while it was found to be 55.71 mph prior to the non-

crash cases with a resulted t-test p-value of 6.7×10-8.  The mean of the estimated visibilities one 

hour before the crash cases/non-crash cases was found to be significantly higher for non-crash 

cases than crash-cases, the mean of the estimated visibility for non-crash cases was found to be 

1.22 miles while it was found to be 0.95 mile for crash-cases. These results depicts that there is a 

significant difference between the crash-cases and non-crash cases at the 95% confidence level 

for the speed and different weather related factors. Similarly, t-tests were used to evaluate 

weather condition factors in different seasons (dry and snow). The t-test results showed that the 

dry season had a higher visibility and significantly lower precipitation rate. For visibility, the dry 

season had a visibility of 1.29 miles while the snow season has 1.09 miles; for ten-minute 

precipitation, the dry season had a precipitation only as 0.000543 inch while the snow season had 

0.057 inch. Average speed for different seasons has also been compared; t-test result shows that 

in the dry season the average speed is significantly higher than the snow season and with a 

smaller standard deviation. These observations also suggest that different active traffic 

management strategies should be implemented for each season. 

6.4 Bayesian Logistic Regression 

The study utilized a Bayesian logistic regression approach to estimate the probability of crash 

occurrence in each of the dry and the snow seasons. Bayesian logistic regression has the 
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formulation of a logistic equation and can handle both continuous and categorical explanatory 

variables. The classical logistic regression treats the parameters of the models as fixed, unknown 

constants and the data is used solely to best estimate the unknown values of the parameters. In 

the Bayesian approach, the parameters are treated as random variables, and the data is used to 

update beliefs about the behavior of the parameters to assess their distributional properties. The 

interpretation of Bayesian inference is slightly different than the classical statistics; the Bayesian 

derives updated posterior probability of the parameters and construct credibility intervals that 

have a natural interpretation in terms of probabilities. Moreover, Bayesian inference can 

effectively avoid the problem of over fitting that occurs when the number of observations is 

limited and the number of variables is large. 

The Bayesian logistic regression models the relationship between the dichotomy response 

variable (crash/no-crash) and the explanatory variables of roadway geometry, real-time weather 

and traffic. Suppose that the response variable y has the outcomes y=1 or y=0 with respective 

probability p and 1-p. The logistic regression equation can be expressed as: 

log  
p

1 p
 =β

0
 βX                                                                                                                                            

where    is the intercept,    is the vector of coefficients for the explanatory variables, and   is 

the vector of the explanatory variables,. The logit function relates the explanatory variables to the 

probability of an outcome y=1.  The expected probability that y=1 for a given value of the vector 

of explanatory variables   can be theoretically calculated as: 
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One advantage of the Bayesian approach over the classical model is the applicability of choosing 

the parametric family for prior probability distributions. There are three different priors that can 

be used; 1) informative prior distributions based on the literature, experts’ knowledge or

explicitly from an earlier data analysis, 2) weak informative priors that do not supply any 

controversial information but are strong enough to pull the data away from inappropriate 

inferences, or 3) uniform priors or non-informative priors that basically allow the information 

from the likelihood to be interpreted probabilistically. In this study, uniform priors following 

normal distribution with initial values for the estimation of each parameter from the maximum 

likelihood method was used. Different types of prior distributions using the results from this 

study as prior could be considered for further research once more data become available to 

update the estimated models. 

As discussed earlier in the preliminary section that Colorado has two distinct weather seasons 

and hence two models for the snow and dry seasons were considered, these models were 

estimated by Bayesian inference using the freeware Winbugs (Lunn et  al., 2000). For each 

model, three chains of 10,000 iterations were set up in Winbugs based on the convergence speed 

and the magnitude of the dataset. The Deviance Information Criterion DIC, a Bayesian 

generalization of Akaike Information Criterion AIC, is used to measure the model complexity 

and fit. DIC is a combination of the deviance for the model and a penalty for the complexity of 

the model. The deviance is defined as                   . The effective number of parameters, 

pD, is used as a measure of the complexity of the model,             , where      is the 
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posterior mean of the deviance, and      is a point estimate of the deviance for the posterior 

mean of the parameters. DIC is given by DIC = Dhat + 2 pD (Spiegehalter et  al., 2003). 

Moreover, receiver operating characteristic (ROC) curve analysis was used to assess the 

prediction performance. 

6.5 Results and Discussion 

6.5.1 Model 1 (Dry Season) 

The dry season model was estimated using real-time weather, AVI data and roadway geometry 

for crashes that occurred during May to September for years 2007 through 2009 and the 

randomly selected non-crashes with their corresponding data. Before drawing inferences from 

posterior sample, the trace, autocorrelation and density plots were examined visually to ensure 

that the underlying Markov chains have converged. Following Brooks-Gelman-Rubin (BGR) 

convergence diagnostics (Brooks and Gelman, 1998), the mixing in the chains was found to be 

acceptable with no correlation for all included variables in the final model. After ensuring the 

convergence, first 2,000 samples were discarded as adaptation and burn-in. Table 1 provides the 

estimates of beta coefficients, credible interval, hazard ratio and fit statistics for the (Dry Season) 

model; all included roadway alignment factors, i.e. median width, longitudinal grade and 

horizontal curve were found to be significant. Preliminary analysis on the data indicates that 

more than 85% of the total crashes occurred on steep grades (grade <-2% or >2%). Steep grades 

affect the operation and the braking of the vehicles on both upgrade and downgrade, the results 

indicates that the crash likelihood increases as the grade increases, the effect of various grades 

are compared to Grade[Flat] (reference condition, flat grade ranges from 0% to ±2%). It can be 
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noted that in order, Grade[Very Steep] (grade (>6% to 8%)and(<-6% to -8%)) is the most 

hazardous followed by Grade[Steep] (grade (>4% to 6%) and (<-4% to -6%)), and 

Grade[Moderate] (grade (>2% to 4%) and (<-2% to -4%)). Generally, trends in the results 

indicate that the steeper the grade, the higher the crash risk. Table 6-1 shows the hazard ratio for 

the significant variables. Hazard ratio is the exponent of the beta coefficient and it represents an 

estimate of the expected change in the risk ratio of having crash versus non-crash. The 

interpretation of the hazard ratio depends upon the measurement scale of the explanatory 

variable; for interval variables it represents the change in the risk ratio per unit change in the 

corresponding factor while for categorical variables it represents the change in the risk ratio 

compared to the base case, e.g. the hazard ratio of 5.63 for the categorical variable Grade[Very 

Steep] means that the likelihood of a crash at very steep grades is 5.63 times the likelihood at the 

base case of flat grades Grade[Flat].  

A binary variable Grade Index was created to represent the direction of the grade at the crash 

segment, [1=upgrade] as a reference and [2=Downgrade], the grade index was found to be 

significant at the 90% credible interval with a positive coefficient which implies that the positive 

road grades are slightly safer than the negative ones. These results are consistent with the finding 

from the aggregate models in the literature that the steep grades may increase the likelihood of 

crash occurrence (Shankar, 1995; Chang and Chen, 2005; Ahmed et  al., 2011).  

TheresultsimplythattheDegreeofcurvature(β=-0.246, 95%CI(−0.484,-0.024), hazard ratio = 

0.78) is significantly associated with crash risk, a unit increase in degree of curvature is 

associated with 22% decrease in crash likelihood, with all other factors remain constant. High 
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degree of curvature was found to be associated with decrease in crash likelihood in previous 

studies, it may be explained that the discomfort feeling along sharp curves might make the 

drivers compensate by driving more cautiously, leading to lower probability of involvement in a 

crash (29,30,31,32).Medianwidth(β=-0.046,95%CI(−0.075,-0.019) has a negative coefficient 

meaning that a wider median is safer since it works as a recovery area for out-of-control 

vehicles. 

The 6-minute average speed of the crash segment during 6-12 minutes prior the crash time as 

well as the average visibility during the last hour before the crash time were found to be 

significant during the dry season. Both variables have negative beta coefficients, which mean 

that the odds of a crash increase as the average speed decreases at the segment of the crash at 6-

12 minutes before crash occurrence and the average visibility decreases during one hour prior the 

crash time. The hazard ratio of 0.926 means that the risk for a crash increases 7.4 percent for 

each unit decrease in the six minutes average speed, and the hazard ratio of 0.211 means that the 

risk for a crash increases 79% for each unit mile decrease in the average Visibility measured over 

one hour before the crash time. 

  



 

108 

 

Table 6-1: Parameters and Hazard Ratio Estimates (Dry Season Model) 

Variables Parameters Estimates Hazard Ratio 

 Credible interval Credible interval 

 Mean S.D. 2.5% 97.5% Mean S.D. 2.5% 97.5% 

Intercept  2.070 1.37 -0.599 4.830 - - - - 

Grade[Flat (0-2)%](reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Grade[Moderate >2-4%] 0.510 0.554 -0.565 1.640 1.950 1.210 0.568 5.150 

Grade[Steep >4-6%] 1.120 0.485 0.201 2.120 3.470 1.860 1.220 8.330 

Grade[Very Steep >6-8%] 1.540 0.604 0.373 2.740 5.630 3.840 1.450 15.600 

Grade Index[1=Upgrade](ref.) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Grade Index[2=Downgrade] 0.658 0.354 -0.023 1.350 2.060 0.755 0.977 3.860 

Degree of curvature -0.246 0.116 -0.484 -0.024 0.787 0.091 0.616 0.976 

Median width           -0.046 0.014 -0.075 -0.019 0.955 0.014 0.928 0.981 

Average Speed -0.076 0.020 -0.115 -0.037 0.926 0.019 0.891 0.964 

Visibility -1.750 0.636 -3.070 -0.568 0.211 0.141 0.046 0.566 

pD: no of effective variables 9.803 - - - - - - - 

DIC 297.762 - - - - - - - 

ROC
 

0.783 - - - - - - - 

Sensitivity 75.71 - - - - - - - 

Summary statistics (Mean, S.D.): Degree of curvature (1.33, 1.49), Median Width (ft) (25.96, 15.11), 

Average Speed (mph) (56.4, 7.94), and Visibility (mi) (1.29, 0.95). 

 

6.5.2 Model 2 (Snow Season) 

Another model was estimated for crash no-crash cases in the snow season to examine whether 

the same variables have the same effect on crash likelihood as in the dry season. Comparisons 

between the two models imply very interesting findings. On the one hand, same geometric 

variables came out to be significant; on the other hand, it is noticeable that all the coefficients 

increased yielding to the fact that the hazard ratios increase due to the interaction between the 

snowy, icy, or slushy pavement conditions during snow season, and exacerbated by the steep 

grades. The hazard ratio for Grade[Very Steep] (grade (>6% to 8%)and(<-6% to -8%)) during 
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snow season increased to 9.67 compared to 5.63 in the dry season which means that the change 

in risk ratio almost doubled during the snow season.  Similar findings were concluded for Degree 

of Curvature and Median Width. Another interesting observation from the parameter estimate for 

Grade Index is that the hazard ratio decreased and the variable became insignificant which may 

indicate that steep grades become hazardous during snow season in both the upgrade and 

downgrade directions. 

While only the 1-hour Visibility was significant in the dry season model, in the snow season 

model both 1-hour Visibility and the ten-minute Precipitation described by rainfall amount or 

snowfall liquid equivalent came out to be significant. These results are consistent with the 

preliminary analysis that the precipitation rates are significantly higher during the snow season 

than in the dry season, one unit increase in the Precipitation increases the risk of the crash by 

165%. Moreover, it can be implied from the results that one unit decrease in the Visibility during 

the snow season increases the crash likelihood by 88% compared to 79% in the dry season.  

Logarithm of the coefficient of variation in speed at the crash segment at time slice 2 (6-12 

minutes before the crash) came out to be significant. Log COV Speed has positive beta 

coefficient, which means that the risk of a crash increases as the variation of the speed increases. 

The increase in the standard deviation coupled with the decrease in the average speed 6-12 

minutes before the crash (since the coefficient of variation of speed includes the standard 

deviation as the nominator and the average speed as the denominator) may increase the 

likelihood of crash occurrence. 
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Table 6-2: Parameters and Hazard Ratio Estimates (Snow Season Model) 

Variables Parameters Estimates Hazard Ratio 

 Credible interval Credible interval 

 Mean S.D. 2.5% 97.5% Mean S.D. 2.5% 97.5% 

Intercept  1.596 0.510 0.600 2.541 - - - - 

Grade[Flat (0-2)%](reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Grade[Moderate >2-4%] 0.820 0.354 0.147 1.533 2.420 0.905 1.158 4.631 

Grade[Steep >4-6%] 0.927 0.341 0.279 1.612 2.691 0.952 1.261 4.951 

Grade[Very Steep >6-8%] 2.203 0.361 1.533 2.928 9.671 3.730 4.634 18.69 

Grade Index[1=Upgrade](ref.) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Grade Index[2=Downgrade] 0.009 0.188 -0.369 0.381 1.031 0.191 0.688 1.456 

Degree of curvature -0.301 0.067 -0.434 -0.175 0.742 0.049 0.648 0.839 

Median width  -0.053 0.008 -0.069 -0.038 0.948 0.008 0.933 0.963 

Precipitation 0.881 0.418 0.149 1.774 2.652 1.268 1.161 5.892 

Visibility -2.207 0.342 -2.862 -1.533 0.117 0.041 0.057 0.216 

Log COV Speed  0.501 0.225 0.056 0.944 1.693 0.388 1.058 2.576 

pD: no of effective variables 9.506 - - - - - - - 

DIC 802.028 - - - - - - - 

Area under ROC Curve
 

0.84 - - - - - - - 

Sensitivity 80.09 - - - - - - - 

Summary statistics (Mean, S.D.): Degree of curvature (1.39, 1.52), Median Width (ft) (24.50, 15.45), 

Visibility (mi) (1.09, 0.47), Precipitation (in) (0.05, 0.29), and Log COV Speed (0.24, 0.38). 

 

In order to implement the estimated model in real-time application, sensitivity analysis is 

conducted. Tables 6-3 and 6-4 show sensitivity and the specificity for the dry and snow models 

respectively. Sensitivity is the proportion of crashes that are correctly identified as crashes while 

specificity is the proportion of non-crashes that are correctly identified as non-crashes by the 

estimated Bayesian logistic regression models (Agresti, 2002). The sensitivity was found to be 

75.71% and 80.09% while the models achieved specificity of 66.41% and 67.79 at cutoff points 

equal to 0.20 and 0.25 for the dry and the snow seasons, respectively.  The cutoff was chosen for 

each model to reduce the false positive rate; about 33.59% and 32.21% for the dry and snow 

seasons were classified incorrectly as crashes, respectively. 
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As mentioned earlier that different classification accuracy can be obtained by changing the 

threshold depending on the management strategy. The threshold should be chosen carefully for 

application; large number offalsealarmsmightaffectthedrivers’compliancetothesystemand

hence reduce the effectiveness of the system. Nevertheless, Advanced Traffic Management 

(ATM) objectives of reducing turbulence to improve operation can still be achieved even with 

high percentage of false alarms. False alarm conditions are still non ideal, and reducing the flow 

turbulence could lead to operation benefits although it might not have lead to a crash. As 

discussed earlier, ITS strategies such as variable speed limits could be introduced without the 

drivers’knowledgeoffalsealarmornot. 

 
Figure 6-2: Receiver Operating Characteristic (ROC) (Dry and Snow Seasons Models) 

The Receiver-Operating Characteristic (ROC) curves were also generated as another way to 

assess themodels’performance.Theareaunder theROCcurve showshowwell themodel is

discriminating between the crash (y=1) and no-crash (y=0) cases in the response variable. This is 
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similar to the misclassification rate, but the ROC curve calculates sensitivity (true positive rate) 

and 1-specificty (false positive rate) values for many cutoff points.  The exact areas under the 

ROC curves were found to be 0.783 and 0.840 for the dry and the snow seasons, respectively 

which indicate that the models can provide good discrimination. 

Table 6-3: Classification Results (Dry Season Model) 

 Dry Season Model 

Frequency 

Percent 

Row Percent  

Column Percent 

Predicted 

Total 
0 (Non-Crash) 1 (Crash) 

A
ct

u
a

l 

0 (Non-Crash) 

170 

52.15 

 Specificity 66.41 
90.91 

86 

26.38 

False Positive Rate 33.59 
61.87 

256 

78.53 

 

 

1 (Crash) 

17 

5.21 

False Negative Rate 24.29 
9.09 

53 

16.26 

Sensitivity 75.71 
38.13 

70 

21.47 

 

 

Total 
187 

57.36 

139 

42.64 

326 

100.00 

 

Table 6-4: Classification Results (Snow Season Model) 

 Snow Season Model 

Frequency 

Percent 

Row %  

Column% 

Predicted 

Total 
0 (Non-Crash) 1 (Crash) 

A
ct

u
a

l 

0 (Non-Crash) 

423 

49.47 

Specificity 67.79 
90.19 

201 

23.51 

False Positive Rate 32.21 
52.07 

624 

72.98 

 

 

1 (Crash) 

46 

5.38 

False Negative Rate 19.91 
9.81 

185 

21.64 

Sensitivity 80.09 
47.93 

231 

27.02 

 

 

Total 
469 

54.85 

386 

45.15 

855 

100.00 
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6.6 Conclusion 

Real-time crash prediction models that depend only on traffic parameters are useful for freeways 

with normal geometry and at locations that do not encounter severe weather conditions. Most of 

the previous studies found that the traffic turbulence (e.g., speed variance) defined by the traffic 

parameters is more dominant to discriminate between crash and non-crash cases and hence the 

matched case-control design was an adequate technique to account for the small variability in 

roadway geometry and weather. In this study we illustrate that the same traffic turbulence could 

affect the driver differently on roadway sections with special geometry and at different weather. 

Mountainous roadway geometry and adverse weather could exacerbate the effect of traffic 

turbulence and hence the inclusion of these factors is vital in the context of active traffic 

management systems. 

Although all previous studies used loop detectors data (which provide time mean speed, flow and 

lane occupancy) we showed in this study that traffic data collected from AVI and real-time 

weather data were found to provide good measure of crash risk in real-time.  

Preliminary analysis on the data and findings discussed in earlier study (Ahmed et  al., 2011) 

indicate that the crash risk during snow season is 82% higher than the crash risk in dry season 

and hence two models were considered in this study to examine the effect of the interaction 

between geometric features, weather and traffic data on crash occurrence. While all included 

geometric factors were significant in the dry and snow seasons, the coefficient estimates indicate 

that the crash likelihood could be doubled during the snow season because of the interaction 

between the snowy, icy, or slushy pavement conditions during snow season and the steep grades. 
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The hazard ratio for the very steep grades (grade (>6% to 8%) and (<-6% to -8%)) during snow 

season increased to 9.71 compared to 5.63 in the dry season. Same conclusion can be implied for 

the visibility, reduction of one unit in the visibility was found to increase the crash risk by 88% 

in the snow season compared to 79% in the dry season. The 10-min. precipitation prior the time 

of the crash was significant in only the snow season model; one unit increase in the precipitation 

increases the risk of the crash by 169%. The logarithms of the coefficient of variation in speed at 

the crash segment during 6-12 minutes prior to the time of the crash is found to be significant in 

the snow season while the 6-minute average speed at the crash segment 6-12 minutes prior to the 

crash time was found to be significant in the dry season.  

The results from this study suggest that the inclusion of roadway and weather factors in real-time 

crash prediction models is essential; in particular with roadways that feature challenging 

roadway characteristics and adverse weather conditions. Also, different active traffic 

management strategies should be in place during these two distinctive seasons and more 

resources should be devoted during the snow season.  

This study also depicts that traffic management authorities can benefit from the AVI and real-

time weather data not only to ease congestion and enhance the operation but also to mitigate 

increased safety risk.  
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CHAPTER 7. A DATA FUSION FRAMEWORK FOR REAL-TIME RISK 

ASSESSMENT ON FREEWAYS 

7.1 Introduction 

Accurate and reliable estimation of increased risk of crashes is critical to the success of proactive 

safety management strategies on freeways. In recent years, the advances in electronics have had 

a tremendous impact on enhancing and improving detection systems, new non-intrusive traffic 

detection devices are in use more these days because of their easiness of installation and 

maintenance in addition to their accuracy and affordable cost. Moreover, some freeways have 

multiple non-intrusive detection systems in place such as the Automatic Vehicle Identification 

(AVI) and Remote Traffic Microwave Sensor (RTMS). AVI is used mainly for toll collection 

and for travel time estimation purposes along freeways while RTMS are used mostly for 

operation and incident management. Research in the field of freeway traffic management has 

utilized extensively traffic data collected from inductive loop detectors in real-time proactive 

traffic management (Oh et  al., 2001; Abdel-Aty et  al., 2004; Abdel-Aty and Pande, 2005; Pande 

and Abdel-Aty, 2006a, 2006b; Hourdos et  al., 2006). Recently, the usefulness of the collected 

traffic data from AVI has been investigated in real-time safety assessment (Ahmed and Abdel-

Aty, 2011; Ahmed et al., 2011, 2012a, 2012b). 

Traffic data from AVIs and RTMSs as well as weather data are collected on 15-mile of 

mountainous Interstate-70 in Colorado to provide roadway users with important information 

about travel time, congestion, adverse weather conditions and lane closure due to occasional 

avalanche danger, maintenance on the road and/or road crashes. This information is provided as 

a part of an Intelligent Transportation System (ITS) and is dynamically disseminated in real time 
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to road users via Dynamic Message Signs (DMS). This system utilizes AVI to estimate the 

segment travel time by monitoring the successive passage times of vehicles equipped with 

electronic tags at designated locations. Main traffic flow parameters are collected using RTMS. 

It is worth mentioning that the AVIs and RTMSs are providing different measures of speeds; 

AVIs measure space-mean-speed (SMS), which is definedbyGerloughandHuber,1975as“the

mean of the speeds of the vehicles traveling over a given length of road and weighted according 

tothetimespenttravelingthatlength”,whereasRTMSsmeasuretime-mean-speed (TMS) which 

is the arithmetic mean of the speed of vehicles passing a point during a given time interval. 

Hence, TMS only reflects the traffic condition at one specific point.  On the other hand, SMS is 

the average speed of all the vehicles occupying a given stretch of the road over some specified 

time period (there are several definitions of SMS depending on how it is calculated (Hall, 1996); 

the definition in this dissertation isthebesttodescribetheAVI’sSMS).  

Weather condition is considered one of the most important factors that can contribute to crash 

occurrences. In previous studies weather data are always estimated from crash reports, in this 

study real-time weather data are gathered by weather stations located on the roadway section. 

Although in previous chapters, it was found that classical statistical models provide interpretable 

models and acceptable accuracy of crash prediction using AVI and real-time weather data 

(Ahmed et  al. 2011, 2012a); in this study a framework was proposed to augment even more 

traffic data from multiple sources, weather and geometry data using an advanced machine 

learning (ML) technique. Machine learning methods are known for their superior performance 

over the classical statistical ones. In order to enhance the accuracy and increase the reliability of 
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the real-time crash prediction, Stochastic Gradient Boosting (SGB), a recent and promising 

machine learning technique is attempted to uncover previously hidden patterns preceding a crash 

relative to non-crash conditions from the large amounts of roadway geometry, weather and AVI 

and RTMS traffic data. 

The following sections illustrate the procedures of preparing the data, modeling technique, 

interpretation and evaluation, risk assessment framework and the conclusions.  

7.2 Data Description and Preparation 

There were five sets of data used in this study; roadway geometry data, crash data, and the 

corresponding AVI, RTMS and weather data. The crash data were obtained from CDOT for a 

15-mile segment on I-70 for 13 months (from October 2010 to October 2011). Traffic data 

consists of space mean speed captured by 12 and 15 AVI detectors located on each east and west 

bounds, respectively along I-70. Volume, occupancy and time mean speed are collected by 15 

RTMSs on each direction. AVI estimates SMS every 2-minute while RTMS provides traffic flow 

parameters every 30-second. Weather data were recorded by three automated weather stations 

along the roadway section for the same time period. The roadway data were extracted from 

Roadway Characteristics Inventory (RCI) and Single Line Diagrams (SLD). 

In a previous study (Ahmed and Abdel-Aty, 2011), it was found that crash occurrence was 

mostly related to the AVI crash segment, one segment in the upstream and another segment in 

the downstream directions and therefore these AVI segments and their respective RTMS stations 

were considered in the data extraction process and modeling parts. The crashes have been 
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assigned to the AVI segment and to the closest RTMS station; upstream and downstream AVI 

segments as well as 3 RTMSs in the upstream and downstream were identified to extract their 

corresponding traffic data. The upstream, crash, and downstream segments were named U, C and 

D, respectively while the upstream and downstream RTMSs were named US and DS 

respectively and assigned numbers in order from the closest to the farthest ones. It is worth 

mentioningalsothatmostof theRTMSsarelocatedexactlyat thesamelocationof theAVIs’

tag readers. The arrangement of RTMS and AVI segments and their spacing are illustrated in 

Figure 7-1. 

AVI and RTMS data corresponding to each crash case were extracted in the following process; 

the location and time of occurrence for each of the 186 crashes were identified. Traffic data were 

aggregated to 6-minute level to obtain averages, standard deviations, and logarithm of coefficient 

of variations (standard deviation divided by the average of the traffic parameters) of 2-minute 

space mean speed obtained from AVIs and 30-second time mean speed, volume, and occupancy 

raw data obtained from RTMSs. The 6-minute aggregation level was chosen to have consistent 

time periods between AVIs and RTMSs.   
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Figure 7-1: Arrangement of RTMS and AVI Segments 

Three time slices of the 6-minutes prior to the crash time were extracted. For example if a crash 

happened on Sep 16, 2010 (Sunday) at 14:00, at the milepost of 210.1 EB. The corresponding 

18-min window for this crash of time intervals (13:42 to 14:00) recorded by AVI segment 6 

(Mile marker starts at 209.79 and ends at 210.60), upstream AVI segment 5 and downstream 

AVI segment 7 as well as 3 RTMSs in the upstream and 3 in the downstream were extracted. 

Time slice 1 was discarded in the analysis since it would not provide enough time for successful 

intervention to reduce crash risk in a proactive safety management strategy. 

Moreover, the actual crash time might not precisely be known. Golob and Recker, 2004 

discarded the 2.5 minutes of traffic data immediately preceding each reported crash time to avoid 

uncertainty of the actual crash time. In general with the proliferation of mobile phones and 

CCTV cameras on Freeways, crash time is almost usually immediately identified. One-hour 

speed profiles were also generated (about 30 minutes before and 30 minutes after the crash time) 

to verify the reported crash time. The modeling procedure required non-crash data, a random 

selection from the whole remaining AVI and RTMS datasets where there was no crash within 2-

hour before the extraction time was utilized in the study to represent the whole population of 
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different traffic patterns, weather conditions and roadway characteristics. A total of 18 (3 

parameters x 3 AVI segments x 2 time slices) and 108 (9 parameters x 6 RTMSs x 2 time slices) 

input variables are prepared from AVI and RTMS raw data respectively. 

Similarly, weather data for crash cases and non-crash ceases were extracted. Automated weather 

stations monitor the weather conditions continuously and the weather parameters are recorded 

according to a specific change in the reading threshold and hence they do not follow a specific 

time pattern. The stations report frequent readings as the weather conditions change within short 

time; if the weather conditions remain the same the station would not update the readings. 

However, these readings were aggregated over certain time periods to represent the weather 

conditions. For example; precipitation described by rainfall amount or snowfall liquid equivalent 

for ten minutes, one hour, three hours, six hours, twelve hours and twenty-four hours and the 

estimated average hourly visibility which provides an hourly measure of the clear distance in 

miles that drivers can see. Visibility in general can be described as the maximum distance (in 

mile) that an object can be clearly perceived against the background sky, visibility impairment 

can be the result of both natural (e.g., fog, mist, haze, snow, rain, windblown dust, etc.) and 

human induced activities (transportation, agricultural activities, and fuel combustion). The 

automated weather stations do not directly measure the visibility but rather calculate it from a 

measurement of light extinction which includes the scattering and absorption of light by particles 

and gases. 
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The basic parameters that define the geometrical characteristics of the roadway section for each 

crash and non-crash cases were considered in this study, these parameters include longitudinal 

grade, curve radius, deflection angle, degree of curvature, number of lanes, and width of median.  

Multiple Stochastic Gradient Boosting models were calibrated for each dataset separately as well 

as for fused data from all sources. Each of these data were partitioned into 70% for training, 30% 

for validation using random sampling, in random sampling every observation in the data set has 

the same probability of being written to the sample. For example, the 70% of the population that 

is selected for the training data set, then each observation in the input data set has a 70% chance 

of being selected. Partitioning provides mutually exclusive datasets; two mutually exclusive 

datasets share no observations with each other. Partitioning is needed for machine learning (ML) 

models to have part of the data set for training in order to fit a preliminary model and find the 

best model weights using this training data set, and since ML techniques have the capacity for 

overtraining, validation data set will be used to retreat to a simpler fit than to calibrate the model 

based only on the training dataset. Validation part of the original data set is used for ML models 

fine-tuning to assess the prediction accuracy of each model. A total number of 186 crashes and 

744 non-crashes were finally considered in the analysis. 

7.3 Exploratory Comparison between AVI and RTMS Data 

Interstate-70 in Colorado is equipped with both Automatic Vehicle Identification (AVI) and 

Remote Traffic Microwave Sensor (RTMS) Systems as part of the Intelligent Transportation 

System (ITS). Data from AVI are mainly used for toll collection and travel time estimation. It 

provides information about the space-mean-speed. RTMS is mostly used as a tool for operation 
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and incident detection. It offers more detailed information on fundamental traffic parameters as 

time-mean-speed, volume and occupancy of each travel lane on the roadway. 

Except that RTMS system keeps record of other traffic parameters that AVI system does not (i.e. 

volume and occupancy). It is also crucial to recognize that two types of speed are actually 

collected by the two systems and they differ with each other naturally. As discussed earlier, AVI 

measures space-mean-speed, which means that it reflects the average speed of all the vehicles 

occupying the detected road segment over a given time period (basically 2 min interval). RTMS 

measures time-mean-speed, the arithmetic mean of the speed of vehicles passing a point during 

specific time slice (normally 30 sec).  

Moreover, due to the speed data from AVI are aggregated together without considering for inner 

or outer lanes, further attention should be paid on the potential difference between AVI speed 

data and RTMS speed data. For example, the outer lanes are more often travelled by trucks that 

could result in significantly lower average speed value for outer lane than inner lanes. However, 

this distinction could not be seen from the AVI speed data.  

Therefore it is of great importance as well as interest to look into the data and check on the 

comparability of these two types of data. If they are comparable, then a useful alternative data 

source can be used when either one of them is not available. 

Data are recorded at each RTMS station and each AVI segment. Two tables have been developed 

to give a clear view of the two data collection system along the 17-mile roadway section. Table 
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7-1 shows that RTMS locations are spaced on an average distance of 1.19 mile for both direction 

with standard deviation of 0.82 mile and 0.77 for eastbound and westbound. AVI segments have 

similar average length as the RTMS system, namely 1.16 mile and 1.15 mile for east and west 

bound but a little bit smaller standard deviation. Also, a majority of the starting and end points of 

AVI segment and RTMS stations are located at the same or close milepost. The spatial 

distribution of these stations facilitates the comparison between speed data from RTMS stations 

to those collected from corresponding AVI segments. 

Table 7-1:  RTMS Station Segment 

 

Eastbound Segment Westbound Segment 

Starting 

RTMS 

Station 

Ending 

RTMS 

Station 

Segment 

Length (mi) 

Starting 

RTMS 

Station 

Ending 

RTMS 

Station 

Segment 

Length (mi) 

1 205.7 208 2.3 205.7 207.1 1.4 

2 208 208.7 0.7 207.1 208.9 1.8 

3 208.7 209.79 1.09 208.9 209.79 0.89 

4 209.79 210.8 1.01 209.79 210.6 0.81 

5 210.8 211.8 1 210.6 211.8 1.2 

6 211.8 213.3 1.5 211.8 213.3 1.5 

7 213.3 216.7 3.4 213.3 216.7 3.4 

8 216.7 217.4 0.7 216.7 217.4 0.7 

9 217.4 217.85 0.45 217.4 217.85 0.45 

10 217.85 218.1 0.25 217.85 218.1 0.25 

11 218.1 218.7 0.6 218.1 218.7 0.6 

12 218.7 219.7 1 218.7 219.7 1 

13 219.7 221.1 1.4 219.7 221.1 1.4 

14 221.1 222.36 1.26 221.1 222.36 1.26 

 

Average Segment Length 1.19 Average segment length 1.19 

Minimum Segment Length 0.25 Minimum segment length 0.25 

Maximum Segment Length 3.4 Maximum segment length 3.4 

Standard Deviation of 

Segment Length 
0.82 

Standard Deviation of 

Segment Length 
0.77 
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Table 7-2:  AVI Segments  

 

Eastbound Westbound 

Starting 

AVI Station 

Ending AVI 

Station 

Segment 

Length (mi) 

Starting 

AVI Station 

Ending AVI 

Station 

Segment 

Length (mi) 

1 205.05 207 1.95 205.7 205 0.7 

2 207 208 1.0 207.1 205.7 1.4 

3 208 208.7 0.7 208.9 207.1 1.8 

4 208.7 208.79 0.09 209.79 208.9 0.89 

5 209.79 210.8 1.01 210.6 209.79 0.81 

6 210.8 211.8 1.0 211.8 210.6 1.2 

7 211.8 213.4 1.6 213.4 211.8 1.6 

8 213.4 215.3 1.9 215.3 213.4 1.9 

9 215.3 216.7 1.4 216.57 215.3 1.27 

10 216.7 217.85 1.15 217.4 216.57 0.83 

11 217.85 218.7 0.85 218.1 217.4 0.7 

12 221.1 222.4 1.3 218.7 218.1 0.6 

13 
   

219.7 218.7 1.0 

14 
   

221.1 219.7 1.4 

 

Average Segment Length 1.16 Average Segment Length 1.15 

Minimum Segment Length 0.09 Minimum Segment Length 0.6 

Maximum Segment Length 1.95 Maximum Segment Length 1.9 

Standard Deviation of 

Segment Length 
0.52 

Standard Deviation of 

Segment Length 
0.42 

 

In order to compare between AVI and RTMS data, three scenarios were considered: 

1. Normal traffic condition (no crash reported within 2-hour); 

2. Crash with property damage only; 

3. Crash with injury or fatality.  

For each case, an AVI segment is selected and the RTMS stations within this segment are also 

included. RTMS data are processed according to each lane at each station. Two-hours' records 

are studied. 
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Normal condition is defined as the traffic without interruption of crashes.  Figure 7-2 represents a 

typical normal traffic flow condition. Though having variation, the speed curves are mild and 

without values of sudden drops or rises. The RTMS data give more detailed description about the 

speed distribution on each lane. From Figure 7-2 below it is shown that at the same station, 

speeds on inner lanes are higher than that on outer lanes. This can be explained by that outer 

lanes are designated for truck with lower speed limit. The AVI and RTMS give two different 

types of speed. Therefore it is not the focus on the direct comparison of the speed profiles. 

However, from Figure 7-2, it is clear that their patterns are alike.     

 
Figure 7-2:  Westbound Dry Season Normal Condition 

Figure 7-3 shows the occurrence of property-damage-only crash. Speed profile is from one hour 

before the crash to one hour after the crash. The figure is self-explanatory, when a crash happens 

on the roadway section, temporary congestion will be generated and vehicles upstream to the 
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crash location will slow down. Once they pass the site, the speed will recover to some extent. So 

no significant change in speed from RTMS stations downstream after the crash happens shown 

in the figure has been expected. Figure 7-3 also demonstrates that speed from stations upstream 

can experience sudden rise, due to the removal of the vehicles involved in crash from the 

roadway. In this scenario, the AVI and RTMS give very comparable speed profiles.  

 
Figure 7-3:  Snow Season Eastbound PDO Crash 

When more severe crash occurs, as in Figure 7-4, both AVI and RTMS data show that the speed 

drops deeply. Different from the case of property damage only crash, when injury or fatality 

result from traffic crashes, intuitively, it takes longer time for the traffic flow to recover. In this 

crash happened at 12:30 pm on milepost 217.5, the congestion caused by it lasts more than one 

hour. Similar with PDO crash, AVI and RTMS still represent consistent pattern of speed.   
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Figure 7-4:  Dry Season Eastbound Injury/Fatal Crash 

With the comparability of these two types of speed data in mind, variation of the speed from data 

collected from AVI and RTMS systems was also explored. From Figure 7-3 and 7-4, it can be 

seen that the existence of significant turbulence in speed prior to the occurrence of traffic crash 

on road. In order to get better insight about these two types of data, it is to be believed that it is 

necessary to look into the standard deviation of the speed before the crash occurrence. The 5 

minutes' data just prior to the crash are discarded to the possible bias of the reported crash time. 

The standard deviation of the speed was determined on 2 minutes' interval basis from 1 hour to 5 

minutes prior to the reported crash time. And only the inner lanes of RTMS stations upstream to 

the crash location are studied.  

The standard deviation of the speed profiles indicate that AVI system records relatively higher 

speed variation than RTMS system does.  Looking more closely to the 20 minutes period prior to 

crash, AVI data still provides higher variation.  

S
p
e
e
d
 (

m
p
h
)

0

10

20

30

40

50

60

70

80

90

Time (min)

11:30:00 11:40:00 11:50:00 12:00:00 12:10:00 12:20:00 12:30:00 12:40:00 12:50:00 13:00:00 13:10:00 13:20:00 13:30:00

Crash Location: Milepost 217.5

AVI:216.7-217.85 RTMS: 217.4 Lane1 RTMS: 217.4 Lane2 RTMS: 217.85 Lane2



 

128 

 

 

 
Figure 7-5:  Speed Variation in Crash with Property Damage Only 

 
Figure 7-6:  Speed Variation in Crash with Injury/ Fatality 
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Exploratory analysis and comparison of RTMS and AVI speed data reveals that they are highly 

comparable in recording the speed trends in normal traffic condition, crash with property damage 

only and more hazardous conditions involving injury and fatality. The data collected from each 

system could strengthen one another's credibility when traffic data are missing. RTMS system 

provides more detailed information in respect of speed. Lane by lane information is provided by 

RTMS while AVI in its current archiving system provides lane aggregated speed data.  On the 

other hand, AVI system is more sensitive to higher speed variation, which has been attributed as 

a factor to the occurrence of crash. The examination of two systems suggests that combining 

them together in the modeling process might help with more accurate crash prediction.  

7.4 Stochastic Gradient Boosting 

The Stochastic Gradient Boosting (SGB) is a machine learning technique that was introduced by 

(Friedman, 2001). This technique which is also known under other names such as Multiple 

Additive Regression Trees (MART), and TreeNet is technically suitable to be used for all data 

mining problems including regression, logistic regression, multinomial classification and 

survival models. The general idea of boosting is to create a series of simple learners known as 

“weak” or basic learners, i.e. a classifier that has a slightly lower error rate than random

guessing. Most of the boosting algorithms use binary trees with only two terminal nodes as the 

basic learner (Hastie et al., 2001). Boosting these simple trees forms a single predictive model. 

The gradient boosting trees method has been proposed as a recent advancement in data mining 

that combines the advantages of the non-parametric tree-based methods and the strengths of 

boosting algorithms. It showed outstanding prediction performance in different fields including; 

real-time credit card fraud detection and terrorism culpability. The fraud detection application 
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has some similarity to real-time crash prediction; with thousands of credit, debit and online 

transactions taking place every minute; the probability of a fraud transaction is very small and 

the variables space is relatively high, the mechanism that is deployed to monitor all transactions 

in real-time may be adopted in traffic safety applications. 

Some of the key features of Stochastic Gradient Boosting are its ability of handling large number 

of mixed predictors (quantitative and qualitative) without preprocessing of rescaling or 

transformation which allows real-time traffic and weather data to be directly fed into the SGB 

algorithms without any time consuming processes. Moreover, by using CART as the basic 

learner, SGB can automatically handle the missing values which can still yield an accurate 

prediction in case of missing one of the important variables with no need to consider prior data 

imputation (Breiman et al, 1983). SGB has the capability of resisting the outliers in predictors 

and it can perform well with partially inaccurate data, therefore any erroneous traffic data can be 

handled easily without cleaning. Additional advantage of tree-based models is the robustness of 

variable selection; tree models have the capability of excluding irrelevant input variables. The 

main disadvantage however of single tree models is instability and poor predictive performance 

especially for larger trees which can be mitigated by other techniques that can improve model 

accuracy such as boosting, bagging, stacking, model averaging and ensemble which merges 

results from multiple models. Stochastic gradient boosting is uniquely advantageous over other 

merging techniques because it follows sequential forward stagewise procedure. The process of 

boosting is an optimization technique to minimize a loss function by adding a new simple learner 

(tree) at each step that best reduces the loss function, first tree is selected by the algorithm that 

maximally reduces the loss function. The residuals are the main focus for each following step by 
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performing weighted resampling to boost the accuracy of the model by giving more attention to 

observations that are more difficult to classify. As the model enlarges, the existing trees are left 

unchanged; however, fitted value for each observation is to  be re-estimated at each new added 

tree. The sampling weight is adjusted at the end of each iteration for each observation with 

respect to the accuracy of the model result. Observations with correct classification receive a 

lower sampling weight while incorrectly classified observations receive a higher weight. In the 

next iteration, a sample with more misclassified observations would be drawn.  

SGB was used for classification in which, traffic, weather, and geometry variables are used as 

independent variables x to identify the binary crash         , by using a “training” sample

        
  of known       values. The goal of estimating the function that maps the traffic, 

weather and geometry features to crashes is to be used for prediction of the increased risk for 

future observations, where only x is known.  As explained in Friedman (2001) we need to obtain 

an approximation      of the function       linking x to y, that minimize the expected value of 

a loss function           over the joint distribution of all       values 

                                                                                        (7.1) 

As mentioned earlier, the boosting idea is to build an additive model on a set of basic functions 

(weak classifier). In case of using a single tree as the individual classifier, the boosted tree model 

will be a sum of many simple trees: 

                    
                                                            (7.2) 
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where 

                         
  
                           (7.3) 

where                are disjoint regions that collectively cover the space of all joint values 

of X.     is a constant that is assigned to each such region.    is the  th 
terminal node in tree m 

with fitted value of    . Ideally,     and    are fitted by minimizing a loss function;                   

   
        

 
   

                       
                                              (7.4) 

Commonly used loss function for classification is given by; 

                       -                                                      (7.5) 

Where, 

      
 

 
      

          

          
                                                              (7.6) 

The solution can be approximated by iteratively adding a single tree at each step without 

adjusting the parameters of the existing trees as mentioned earlier. Therefore, by adding tree k+1, 

the following equation can be minimized 

    
                                         

 
                                  (7.7) 

as a function of      and     , holding   ,…,    and   ,…,   fixed. After M iterations (7.7) 

will achieve (7.4). 
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7.5 Results and Discussion 

7.5.1 Model Estimation, Interpretation and Diagnostics 

 

This section explains how the calibration, interpretation and evaluation processes were 

performed.  

In this study, Stochastic Gradient Boosting models were fitted in SAS Enterprise Miner 6.1. The 

SGB was iterated 50 times with different random samples in the validation dataset to stabilize 

the error rate. The optimization parameters were set at SAS default values; shrinkage (learn rate) 

=0.1, train proportion (different training observations are taken in each iteration) =60, maximum 

branch=2 (binary tree), and the maximum depth (number of generation) =2. 

In machine learning applications, the data may include easily hundreds of variables; a key 

question therefore whether or not all these variables actually lead to true information gain? The 

answer is obviously, no, since there are a lot of redundant variables that may increase the 

performance of the learning data set but they do not necessarily increase the performance on the 

actual validation dataset which can be easily controlled for by keeping an eye on the over-fitting. 

Many data mining techniques such as neural networks, near-neighbor, kernel methods, and 

support vector machines perform worse when extra irrelevant predictors are added, and therefore 

variable selection technique should always precede the modeling. On the other hand tree-based 

models are highly resistant to the inclusion of irrelevant variables; tree-based models perform 

automatic variable subset selection. 
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One of the main advantages of tree-based models is their simple interpretability. Single tree 

model can be graphically illustrated by two-dimensional figure that is easily interpreted. On the 

other hand, boosted trees are formed of linear combination of many trees (hundreds and in some 

cases thousands of trees), and therefore forfeit this important feature. The main two components 

of interpretation are identifying the variables importance and understanding their effect on the 

classification problem which are provided in all conventional regression models. 

Fortunately, unlike other black-box machine learning techniques, SGB can be summarized and 

interpreted. Relative importance of predictor variables can be conveniently calculated, the 

variable importance is based on the number of times a variable is selected for splitting rule and 

weighted by the squared improvement to the model as a result of each split, and averaged over 

all trees as explained in Friedman and Meulman (2003). Table 7-3 provides the selected variable 

subsets and their relative importance for each of the calibrated models. The input variables 

characterized by a relative importance smaller than 25% have been discarded in the SGB models. 

Stochastic Gradient Boosting models were estimated for four different datasets; Model-1 was 

calibrated using all available data collected from AVI, RTMS and weather stations as well as 

geometrical characteristics for crash/non-crash cases. In order to examine the prediction accuracy 

that can be achieved depending only on one dataset at a time and to account for any interruption 

of the data flow from any source, another three models were calibrated; Model-2 based only on 

RTMS data, Model-3 based only on AVI data, and Model-4 based on real-time weather data. 
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It may be observed from Model-1 results that the most important variables are traffic data 

collected from RTMS such as Average occupancies from US2 and US3 sensors during time slice 

two and three respectively (time slice 2: 6-12 minutes before the crash and time slice 3: 12-18 

minutes before the crash), followed by logarithm of the coefficient of variation of speed from 

AVI crash segment at time slice 2 and average speed from AVI downstream segment at time 

slice 2, other RTMS and AVI variables were selected but with less relative importance. Weather 

related variables are relatively important; 1-hour visibility is shown at the top of the list just after 

some traffic variables. The ten-min precipitation variable was also selected among the important 

variables. Other site-related variables came out to be important including longitudinal grade, 

number of lanes, absolute degree of curvature and width of median.  

Comparison between models performance is subjective and depends on different criteria; 

misclassification rate and the area under the Receiver Operating Characteristics (ROC) were 

used as the main performance criteria in this analysis. The area under the ROC curve shows how 

well the model is at discriminating between the crash and non-crash cases in the target variable.  

This is similar to the misclassification rate, but the ROC curve plots sensitivity vs. 1 – specificity 

values for many cutoff points.  The area under the curve seems to be large for the best selected 

model in red color (model) as shown in Figure 7-7.  The exact areas under the ROC curves for all 

models validation datasets are listed in Table 7-4.  



 

 

 

 

 

Table 7-3: Variable Importance 

Model-1 Model-2 Model-3 Model-4 

Variables Variable 

Importance 
Variables Variable 

Importance 
Variables Variable 

Importance 
Variables Variable 

Importance 

Avg. Occ. Upstream1_Time 

Slice _2 
1.000 

Avg. Occ. Upstream 2_Time 

slice_3 
1.000 

Log. Coef. of Var. of Speed 

Crash Segment Time Slice_2 
1.000 

1-Hour 

Visibility 
1.000 

Avg. Occ. Upstream 2_Time 

slice_3 
0.887 

Log. Coef. of Var. of Speed 

Upstream 1_Time Slice_2 
0.997 

Avg. Speed Downstream 

Segment Time Slice_2 
0.899 

10-Minute 

Precipitation  
0.459 

Log. Coef. of Var. of Speed 

Crash Segment Time Slice_2 
0.798 

Avg. Speed Upstream 

2_Time Slice_2 
0.804 

Avg. Speed Downstream 

Segment Time Slice_3 
0.741 

1-Hour 

Precipitation 
0.324 

Avg. Speed Downstream 

Segment Time Slice_2 
0.742 

S.D. Occ. Upstream 2_Time 

Slice 2 
0.541 

Avg. Speed upstream Segment 

Time Slice_2 
0.537   

1-Hour Visibility 0.684 
Avg. Speed Downstream 

1_Time Slice_2 
0.457     

Grade 0.661 
Avg. Speed Downstream 

2_Time Slice_2 
0.391     

S.D. Occ. Upstream 3_Time 

Slice 2 
0.642 

Avg. Occ. Upstream1_Time 

Slice _2 
0.374     

No. of Lanes 0.521 
Avg. Occ. Upstream2_Time 

Slice _2 
0.348     

Avg. Speed Upstream 1_Time 

Slice_2 
0.519 

Log. Coef. of Var. of Volume 

Downstream 2_Time Slice_2 
0.249     

Avg. Speed Downstream 

Segment, Time Slice_3 
0.431       

Abs. Deg. of Curve 0.337       

10-Minute Precipitation 0.335       

Log. Coef. of Var. of Volume 

Downstream 2_Time Slice 3 
0.334       

Log. Coef. of Var. of Speed 

Upstream Segment_Time Slice 3 
0.329       

Med. Width 0.278       
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Generally, Model-1 is consistently superior in term of classification accuracy and area under the 

ROC curve. Model-2 and Model-3 are relatively ranked lower than Model-1 but still providing 

satisfactory performance. Model-4 is ranked the lowest on these measures.  Area under the ROC 

curves as shown in Figure 7-7 and listed in Table 7-4 was found to be 0.946 for Model-1 

validation dataset, 0.762 and 0.721 for Model-2 and Model-3, respectively while Model-4 

achieved only ROC of 0.675 all for the validation datasets. 

 
Figure 7-7: Receiver Operating Characteristics Chart 

Unlike previous studies that only reported accuracy and misclassification rate at one cutoff value, 

in this study the accuracy and misclassification rates are graphically illustrated for many cutoff 

values as shown in Figures 7-8 to 7-11. In terms of accuracy and misclassification rate, also 

Model-1 outperformed all other individual models in all classification measures. Sensitivity 

analysis is important for the implementation of the proposed system in real-life application; 

while the overall classification rate can provide some insight of the model performance, 

sensitivity which is defined as the proportion of crashes (event cases) that are correctly identified 
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as crashes (known also as true positive rate) is usually the most important measure of accuracy. 

Othermeasurethatmayaffectdrivers’compliancetothemanagementsystemandshouldbekept

as minimum as possible is the proportion that is incorrectly classified as crashes (false positive 

rate). As shown in Figures 7-8 to 7-11 that different false positive rates can be obtained by 

changing the cutoff value. In order to fairly compare across the four calibrated models, cutoff 

values have been chosen that achieve the highest possible sensitivity while preserving false 

positive rates at low values ranging between 5 to 8 percent, specificity (the proportion of 

correctly identified non-crashes) and overall classification. As illustrated in Figures 7-8 to 7-11 

and summarized in Table 7-4 for the chosen cutoff values, Model-1 identified about 89% of 

crashes correctly while only about 6.5% of non-crash cases were incorrectly identified as 

crashes; Model-1 also achieved the highest overall accuracy of about 92%. Model-2 and Model-3 

ranked the second in term of overall accuracy with Model-2 performed slightly better than 

Model-3 to the respect of true positive rate and area under ROC curve as mentioned earlier. 

Model-4 achieved the lowest overall accuracy and true positive rate in the same range of false 

positive rate defined above. 

Table 7-4: Validation: Classification Rates and ROC Index 

Model 
Model 

Description 

Overall 

Classification 

Rate 

True 

Positive 

Rate 

False 

Positive 

Rate 

True 

Negative 

Rate 

ROC Index 

Model-1 All Data 92.157% 88.889% 6.481% 93.519% 0.946 

Model-2 RTMS 87.879% 73.333% 7.154% 92.845% 0.762 

Model-3 AVI 87.653% 70.192% 6.393% 93.607% 0.721 

Model-4 Weather 84.364% 55.714% 5.854% 94.146% 0.675 
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Although Model-4 (weather only based model) performed not as good as the other 3 models, 

inclusion of weather information is essential in risk assessment framework; drivers need to have 

localized real-time information especially during adverse weather, including pavement 

conditions, visibility level, lane closure, snow, heavy rain and fog. The weather information 

would be more relevant if provided at segment level rather than regional level. According to the 

Federal Highway Administration (Goodwin, 2002), weather contributed to over 22% of the total 

crashes in 2001. This means that adverse weather can easily increase the likelihood of crash 

occurrences. Several studies, in fact, concluded that crashes increase during rainfall by 100% or 

more (Brodsky and Hakkert, 1988; NTSB, 1980), while others founnd more moderate (but still 

statistically significant) increases (Andreescu and Frost, 1998; Andrey and Olley, 1990). Model-

4 may provide an adequate measure of risk in scenarios where weather information is only 

available and may help toward more weather responsive traffic management. 
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Figure 7-8: Model-1 Classification Rates 

 

 

 

 

 
Figure 7-9: Model-2 Classification Rates 
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Figure 7-10: Model-3 Classification Rates 

 

 

 

 

 
Figure 7-11: Model-4 Classification Rates 
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7.6 Risk Assessment Framework 

The collected data on the study roadway section is one of the greatest assets that should be 

utilized appropriately to maximize the benefit for the roadway authority as well as for the road 

users. Buried within this vast amount of data is useful information that could make significant 

difference in how these roads are managed and operated. Figure 7-12 illustrates a framework to 

assess the increased real-time risk depending on the availability of on-line data. The idea behind 

the proposed framework based on the fact that although the traffic detection and meteorological 

stations became advanced enough to overcome hardware failures and malfunctions, the 

challenging weather conditions may interrupt the flow of the data in real-time at some point. 

Therefore, a reliable and robust framework should be in place at all times. Moreover, another 

issue that was discussed but not explicitly addressed in previous studies is how different the 

prediction accuracy of traffic data that are collected from different sources at the same location 

in identifying hot spots on freeway sections in real-time.  

There are 4 main models calibrated in the proposed framework; Model-1 based on all available 

data collected from AVI, RTMS, weather stations and roadway geometry, Model-2 based only 

on RTMS data, Model-3 based only on AVI data, and Model-4 based on real-time weather data. 

As shown in the flowchart in Figure 7-12, in case of the availability of all traffic and weather 

data at the same time, these data would be fused together to provide the most comprehensive 

data and then Model-1 can be calibrated. If a hazardous traffic condition is detected, this section 

would be flagged, otherwise, the section would be operated under normal condition. The other 3 

models are calibrated for each data separately to examine how each model performs and to 

substitute the full model in case of absence of other data as mentioned earlier. Based on Model-2, 
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a roadway section can be flagged if unsafe traffic condition was encountered otherwise Model-4 

needs to be checked. If a critical visibility or adverse weather encountered from Model-4 then an 

advisory/warning messages have to be issued to inform drivers about the situation. It should be 

noted that some specific traffic regimes would not be affected by inclined weather; however, 

drivers may still need some advisory messages to help them in selecting the safe operating speed. 

In case that the real-time weather is not available, advisory messages can be issued depending on 

the forecasted weather. The same logic can be followed by Model-2 using data collected from 

AVI. 
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Figure 7-12: Framework of the Real-Time Risk Assessment 
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7.7 Conclusion 

The recent advances in data collection technologies for traffic and weather on freeway sections 

provided valuable asset that should be utilized properly to increase safety and mobility and in 

order to maximize the benefit for highway authorities as well as for road users. These valuable 

data can be utilized to provide a framework for real-time risk assessment on freeways and 

expressways.  

By fusing data from two different detection systems (AVI and RTMS), real-time weather and 

geometrical characteristics, the database created in this analysis are by far the most 

comprehensive database created for a real-time crash prediction study. 

In this chapter, a relatively recent machine learning technique known under different names such 

as Stochastic Gradient Boosting (SGB), Multiple Additive Regression Trees (MART), and 

TreeNet was used to analyze 186 crashes occurred on 15-mile mountainous freeway section (I-

70) in Colorado. The analyses were set up as a binary classification problem in which traffic, 

geometry, and weather variables are used as independent variable to identify crashes in real-time. 

The proposed learning machine methodology seems to provide all advantages that are needed in 

a real-time risk assessment framework. The Stochastic Gradient Boosting inherited all key 

strengths from tree-based models of their ability of selecting relevant predictors, fitting 

appropriate functions, accommodating missing values without the need for any prior 

transformation of predictor variables or elimination of outliers while overcoming the unstable 
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prediction accuracy of single tree models. Boosting is considered unique among other popular 

aggregation methods; while ensemble, bootstrap or bagging, bagged trees and random forest can 

improve single tree models performance. Bagged trees and random forest can reduce variance 

more than single trees, however unlike boosting; they cannot achieve any bias reduction (Prasad 

et  al., 2006).  

The proposed methodology has brought considerable advantage over classical statistical 

approaches. In particular, it has provided outstanding performance. On the other hand, machine 

learning techniques are being argued against for being black boxes; there are no P values to 

indicate the relative significance of model coefficients and there is no simple model with fewer 

variables. The proposed methods of interpretation (variable importance) and evaluation (ROC 

and classification) can be regarded as functional equivalence to many conventional regression 

techniques, thus addressing the criticisms against machine learning techniques.   

Another issue that has been explicitly addressed in this study is how different the prediction 

accuracy of traffic data that are collected from different sources at the same location in 

identifying hot spots on freeway sections in real-time; the results showed that crash prediction 

from AVI is comparably equivalent to RTMS data. Moreover, the accuracy of the main model 

that is augmenting information from multiple traffic detectors (AVI and RTMS), weather, and 

geometry performed the best in terms of classification rate and area under the ROC curve. The 

overall model (Model-1) identified about 89% of crash cases in the validation dataset with only 

6.5% false positive.  
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This study proposed a framework for real-time risk assessment using data from multiple sources 

that can achieve reliable and robust prediction performance under different scenarios of data 

availability. The results depict that traffic management authorities as well as road users can 

benefit from the wealth of collected data from multiple sources not only to alleviate traffic 

congestion but also to mitigate increased safety risk. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

This dissertation comprised a multi-level safety assessment for freeways and expressways. The 

study utilized comprehensive databases from different regions to examine the applicability of 

such functions on different freeway/expressway types (i.e. geometrical characteristics and 

environmental conditions). Classical (frequentist), Full Bayesian and Machine Learning 

statistical approaches were implemented to achieve the objectives discussed in this dissertation. 

This chapter discusses key findings, conclusions and future recommendations for 

freeways/expressways safety analysis on the aggregate and disaggregates levels. 

8.1 General 

The main objectives of the developed multi-level Safety Performance Functions (SPFs) are 1) to 

assess constant hazards (site-specific static risks) as well as 2) to identify real-time risks due to 

turbulent traffic conditions and interactions with other risk factors. To achieve these objectives, 

SPFs were developed at the aggregate level using historical crash data and the corresponding 

exposure and risk factors in which the unit of analysis was the crash frequency. Additionally, 

other SPFs were developed for individual crashes at the disaggregate level to identify crash 

prone conditions in real-time. Both levels of aggregate and disaggregate analyses were found to 

be important, the first helped in providing good understanding of different safety problems, 

ranking the hazardous sites, and developing policies and countermeasures to reduce the number 

of crashes in total. Also, hazardous sites (hot spots) were identified and hence resources can be 

allocated more appropriately. In order to assess and enhance the performance of freeways and 
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expressways in real-time, the SPFs based on the disaggregate level can be implemented. This 

approach may be utilized to provide more proactive traffic management system that will not only 

enhance the performance of the high speed facilities in particular and the whole traffic network 

in general but also provides safer mobility for people and goods.       

In this dissertation, the most comprehensive data were prepared. There were two main datasets 

prepared from two different regions; 78-mile on the expressway network in Orlando city, 

Florida, and a 20-mile mountainous interstate roadway-section west of Denver, Colorado. These 

datasets comprise of historical crash data, roadway geometrical characteristics, real-time weather 

and traffic data. The traffic flow parameters were collected from various types of advanced 

detection systems such as Automatic Vehicle Identification (AVI) and Remote Traffic 

Microwave Sensors (RTMS). 

8.2 Bayesian Hierarchical Approach for Developing SPFs  

The safety effects of roadway geometrics on crash occurrence along a freeway section that 

features mountainous terrain and adverse weather were explored using Poisson models, Bayesian 

hierarchical models with spatial and random effects were developed to efficiently model the 

crash frequencies for six years at the roadway section. Furthermore, a Bayesian ranking 

technique was implemented to rank the hazard levels of the roadway segments. It was found that 

while the random effect and spatial models outperform the Poisson model, the spatial model may 

have the problem of redundantly accounting for the geometry dependent effect. Therefore the 

random effect model was selected for model inference. Estimation of the model coefficients 
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indicates that roadway geometry is significantly associated with crash risk; segments with steep 

downgrades were found to drastically increase the crash risk. Moreover, this crash risk could be 

significantly increased during the snow season compared to dry season as a confounding effect 

between grades and pavement condition. Additionally, sites with higher degree of curvature, 

wider medians and an increase of the number of lanes appear to be associated with lower crash 

rate. Based on Bayesian ranking technique; the results confirmed that segments with steep 

downgrades are more crash prone along the study section. These identified sites should receive 

more attention from officials and decision makers especially during the snow season. This 

aggregate level of analysis provided good understanding of the effects of roadway geometrics 

and weather on crash frequencies on mountainous freeways. Furthermore, the results depict that 

this step should be considered before proceeding to disaggregate level analysis. 

In the future, the Bayesian Hierarchical approach could be extended to utilize informative prior 

employing real-time traffic and weather data. Instead of using aggregate traffic measure (e.g. 

ADT and speed limit), and aggregate weather information (e.g. number of rainy days), the mean 

and the distribution of the archived real-time traffic characteristics of volume, speed and 

occupancy and real-time weather of visibility, precipitation and temperature could be 

implemented to provide more certain prior information. Furthermore, with the availability of 

more crash and risk factors data, the analysis could be expanded to analyze specific crash types 

(e.g. single-vehicle crashes and multi-vehicle crashes) and different severity levels (e.g. property 

damage only, injury and fatal crashes). This can shed more light on the different mechanisms for 

each crash type and identify the different factors that affect different severity levels.  
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In segment-based SPFs studies, it is believed that crashes are not randomly distributed, but are 

usually associated with underlying geometrical characteristics, environmental and traffic 

conditions. In this study a homogeneous segmentation method was adopted, it is worth to 

investigate different segmentation methods and compare across them to better understand how 

the segmentation method can affect the analysis results. 

8.3 The Viability of Using AVI Data in Real-Time Risk Assessment 

Real-timeindividualcrashanalysiscapturedtheresearchers’ interest in thelastdecadesinceit

has the capability of identifying crashes in real time and hence being more proactive in safety 

management rather than being reactive. The real-time risk assessment research attempted the use 

of data from inductive loop detectors; however, no safety analysis has been carried out using 

traffic data from an increasingly prevalent non-intrusive surveillance system; the tag readers on 

toll roads known as Automatic Vehicle Identification (AVI). In this dissertation, for the first 

time, the identification of freeway locations with high crash potential has been examined. 

Explicitly three main issues were tackled in this study; 1) utilizing matched case-control logistic 

regression to examine the viability of using AVI data in crash prediction, 2) comparing between 

the prediction performance of a single generic model for all crashes and a specific model for 

rear-end crashes using AVI data, 3) applying Bayesian updating approach to generate full 

probability distributions for the coefficients and to examine the estimation efficiency of the 

Semi-parametric Bayesian modeling over the frequentist matched-case control logistic 

regression.  
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AVI data were found to be promising in providing a good measure of crash risk in real time. The 

operation-based management of expressways can benefit from the collected AVI traffic data not 

only to ease congestion and enhance the operation but also to provide warnings of increased risk 

situations to promote safety on freeways and expressways. By contrasting AVI data (collected on 

OOCEA expressway network in Orlando) preceding all crashes and rear-end crashes with 

matched non-crash data, it was found that rear-end crashes can be identified with a 72% accuracy 

while the generic all crash model achieved accuracy of only 69% using different validation 

datasets, moreover, using the Bayesian updating approach increased the accuracy of both models 

by 3.5%. 

The current AVI archiving system has some limitations that can be easily addressed, one 

limitation is that the system does not record the percentage of lane change per segment; this 

percentage can be calculated by developing an algorithm to compare the unique tag ID for each 

individual vehicle at the beginning and end of each segment which will add a unique feature to 

AVI systems over the ILD. Moreover, the algorithm can process the original raw AVI data in a 

way that provides space mean speed by lane and hence a better picture can be comprehended 

about not only the longitudinal speed variation at the AVI segment but also the variation across 

the lanes. It is to be noted that by having detailed lane speed data may help to identify other types 

of crashes such as sideswipe and angle crashes. Another limitation is that AVI does not provide 

other traffic parameters such as volume and occupancy. These data can be easily estimated and 

archived, for example, volumes can be calculated from number of transponders reading and 

weighted to the total transactions from other payment methods, it could also be provided by lane. 
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Headways also could be estimated by analyzing time stamps for individual successive vehicles at 

each tag reader by lane, which can provide a measure of density. 

8.4 Incorporating Roadway Geometry and Weather in Real-time Risk Assessment 

The effect of the interaction between roadway geometric features, and real-time weather and 

traffic data on the occurrence of crashes on a mountainous freeway was investigated. The 

Bayesian logistic regression technique was used to link a total of 301 crash occurrences on I-70 

in Colorado with the real-time space mean speed collected from the Automatic Vehicle 

Identification (AVI) system, real-time weather and roadway geometry data. The results suggest 

that the inclusion of roadway geometrics and real-time weather with AVI data in the context of 

active traffic management systems is essential, in particular with roadway sections characterized 

by mountainous terrain and adverse weather. The modeling results showed that the geometric 

factors are significant in the dry and the snow seasons and the crash likelihood could double 

during the snow season because of the interaction between the pavement condition and steep 

grades. The 6-minute average speed at the crash segment during 6-12 minutes prior to the crash 

time and the 1-hour visibility before the crash time were found to be significant in the dry season 

while the logarithms of the coefficient of variation in speed at the crash segment during 6-12 

minutes prior to the time of the crash, 1-hour visibility as well as the 10-minute precipitation 

prior to the time of the crash were found to be significant in the snow season. The results from 

the two models suggest that different active traffic management strategies should be in place 

during these two distinctive seasons. 
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8.5 A Framework for Real-Time Risk Assessment Using Mixed Detection Systems 

The increased deployment of non-intrusive detection systems such as automatic vehicle 

identification (AVI) and remote traffic microwave sensors (RTMS) provided an access to real-

time traffic data from multiple sources. The data that are collected from such systems is one of 

the greatest assets that should be utilized appropriately to maximize the benefit for the roadway 

authority as well as for the road users. Buried within this vast amount of data is useful 

information that could make a significant difference in how these roads are managed and 

operated. Data mining and Machine Learning techniques are known for their capability of 

extracting the useful hidden information from the massive archived data as well as their superior 

performance in classification and prediction. Stochastic Gradient Boosting (SGB), a relatively 

recent and promising machine learning technique was used to calibrate several models utilizing 

different datasets collected from mixed detection systems as well as real-time meteorological 

stations (collected on I-70 in Colorado). The results showed that crash prediction from AVI is 

comparably equivalent to RTMS data, crash prediction model utilizing RTMS data only 

identified 73% of crash cases with 7% false positive while AVI only model identified 70% with 

about 6.5% false positive rate. Moreover, the accuracy of the full model that is augmenting 

information from multiple traffic detectors (AVI and RTMS), weather, and geometry performed 

the best in terms of classification rate and area under the ROC curve. The full model identified 

about 89% of crash cases in the validation dataset with only 6.5% false positive.  

Based on the results from the machine learning procedure, a framework for real-time risk 

assessment on freeways was proposed. The proposed framework assesses the increased real-time 
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risk depending on the availability of on-line data. The idea behind the proposed framework based 

on the fact that although the traffic detection and meteorological stations became advanced 

enough to overcome hardware failures and malfunctions, the challenging weather conditions may 

interrupt the flow of the data in real-time at some point. Therefore, a reliable and robust 

framework should be in place at all times. The proposed framework is considered a good 

alternative for real-time risk assessment on freeways because of its high estimation accuracy, 

robustness and reliability. 

Overall, the proposed multi-level analyses are useful in providing roadway authorities with 

detailed information on where countermeasures must be implemented and when resources would 

be devoted. The study also proves that traffic data collected from different detection systems 

could be a useful asset that should be utilized appropriately to not only alleviate traffic 

congestion but also to mitigate increased safety risk in order to maximize the benefit of an 

existing archived data for freeways/expressways authorities as well as for road users. 

The multi-level safety analyses demonstrated in this study are considered as the primary element 

of a proactive traffic management system. The secondary but vital element would be the traffic 

control techniques (proactive intervention systems) that will be used to achieve the safer 

operation conditions. Route diversion, ramp metering, Variable Speed Limit (VSL), and 

Dynamic Message Signs (DMS) can be used as intervention strategies. Among those strategies, 

VSL systems are proven to reduce recurrent congestion and speed variation, and maintain higher 

operating speeds on freeways. Integrating VSL and dynamic safety messages based on the 
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estimated risk level within existing Advanced Traveler Information Systems (ATIS) would be a 

cost-effective added value to these systems. A good message at the right time is the key to gain 

drivers’ trust andcompliance to the systemwhich in returnwill improve the reliability of the 

system and increase the revenue on toll roads. Micro-simulation could be used to evaluate 

different scenarios of route diversion, ramp metering, and VSL. In order to come up with the 

most appropriate dynamic message(s), based on the findings from the statistical models, tailored 

sets of messages have to be tested at different traffic and weather conditions. Driving simulator 

and user preference survey could be used as an effective way to achieve such target. In the near 

future, with the accelerated development of intelligent vehicle technology, the results from this 

study could be extended to enable even more advanced proactive traffic management systems 

utilizing IntelliDrive (vehicle-to-vehicle and vehicle-to-infrastructure communication) that will 

alleviate congestion and promote safety on roadways. 
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