
1. INTRODUCTION 
 
Road crashes are events that depend on a variety of 
factors characterising human behaviour, weather, 
road pavement, vehicle stability and performance. 
Crash events show different magnitudes when eval-
uated with respect to the effects on road users (crash 
severity), and the knowledge of the contributing fac-
tors that affect the severity should be used to im-
prove road safety through the action of transport pol-
icy makers, designers and road agencies. 

Traffic volume, weather conditions, and road 
characteristics affect crash severity in a multifaceted 
way (Wang et al. 2013). Specifically, Theofilatos & 
Yannis (2014) pointed out that the few papers avail-
able mainly deal with roads operating under uninter-
rupted flow conditions, and recur mainly to logit 
modelling (Al-Ghamdi 2002, Golob et al. 2008, 
Christoforou et al. 2010, Jung et al. 2010, Xu et al. 
2013, Yu & Abdel-Aty 2013). Earlier, Shankar et al. 
(1996) stated that crash severity investigations had 
been historically limited to the localization of fatali-
ties, even though the estimation of the other severity 
levels (i.e., property damage only – PDO –, possible 
injury, non-incapacitating injury) could help in un-
derstanding the benefits of safety-improvement pro-
jects. Seventeen years later, Xu et al. (2013) again 
underlined that most of the research studies have 
been focused on the likelihood of a crash without 
considering the crash outcome severity. 

One of the main obstacles to investigations of this 
type is the limited availability of comprehensive 
crash databases, and associated robust weather and 
traffic databases. Nowadays, however, a continuous 
flow of environmental and traffic data is collected 
by local road agencies with sensors of increasing 
quality and performance (Chong & Kumar 2003, 
Nekovee 2005). Contrary to what happened in the 
past, data are now frequently collected in intervals of 
shorter duration. Hence, available databases can be 
associated and merged with others containing data 
collected over several years of observations, thus 
supporting new robust inferences (El Faouzi et al. 
2011). 

To obtain reliable models and convincing results, 
the availability of high quality data representing the 
characteristics of drivers, together with traffic, 
weather, and pavement conditions is fundamental. 
Unfortunately, data describing every significant fac-
tor affecting crashes needs work to associate the 
available contrasting information that could be long, 
arduous, and sometimes unproductive. 

The paper tries to bridge these gaps. The aim is to 
provide knowledge on factors contributing to crash 
severity in an urban road network, considering only 
those influencing crashes along road segments.  

To the scope, data on crashes, traffic and the 
weather database of Turin’s road network (Italy) 
were collected and used to calibrate and validate 
predictive models of crash severity. Specifically, the 
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back propagation neural networks (BPNN), a robust 
tool used to investigate complex phenomena without 
assuming any preliminary hypotheses on the model, 
was used. But BPNN cannot give an analytical for-
mulation of the mathematical functions linking the 
variables that significantly affect a certain phenome-
non, thus only a sensitivity analysis of the model 
was performed. To overcome this limitation, a gen-
eralized linear mixed model (GLMM) was also used 
to compare and assess results with those obtained by 
BPNN. 

2. DATABASE FORMATION 

2.1 Crash classification 

Crash data were provided by the Istituto Nazionale 
di Statistica (National Statistics Institute, ISTAT). 
The ISTAT database contains details on crash dy-
namics and location, on the vehicles, and on gender 
and age of people involved, in accordance with cur-
rent Italian legislation, specifically articles number 
582, 583 and 590 of the Italian Penal Code 2015 
(Repubblica Italiana 2015). The Italian law consid-
ers a road accident to be a crash when it results in at 
least one injury, and crash consequences are classi-
fied into the following five severity levels (SL): 
 very slight injuries (VSI), when the most seriously 

injured person has a prognosis of less than 20 
days; 

 slight injuries (SLI), when the prognosis is be-
tween 21 and 40 days; 

 severe injuries (SEI), if the event causes an illness 
that endangers the life of the injured party, and/or 
the event results in permanent damage to the 
brain or any body organ;  

 guarded prognosis (GPR), if the doctor cannot de-
termine the disability, and issues a report of 
"guarded prognosis" (pending resolution of prog-
nosis, the road crash must be considered and 
treated as a determining factor); and 

 fatalities (FAT), including injured persons who 
die within 30 days of the crash. 
 
The dearth of information in the ISTAT database 

was overcome by including crash data collected by 
Turin’s Municipal Police (TMP). All the records of 
the ISTAT database were matched up to the TMP 
database and implemented with the following infor-
mation: (a) historical data (time, nearest minute, day, 
month and year of the crash event); (b) locality data 
(street name, house number); and (c) generic infor-
mation concerning crash SL. 

Table 1 shows the number of crashes per year and 
SL, and evidences the decrease in all the SL classes 
between 2006 and 2012. Assuming the year 2006 as 
a reference, the following years witnessed a decrease 
in crash occurrence across all severity classes.  

Table 1. Injury crash records along segments of the urban road 

network of Turin (Italy, 2006 – 2012). 

Year VSI  SLI SEI GPR  FAT  Total 

2006 1317 173 36 33 22 1581 

2007 1303 205 69 42 29 1648 

2008 1128 152 41 33 12 1366 

2009 1061 160 34 27 21 1303 

2010 1198 169 46 31 19 1463 

2011 1037 171 51 18 18 1295 

2012 917 141 44 13 14 1129 

2006-‘12 7961  1171 321  197 135 9785 

2.2 Traffic data 

Traffic data were provided by the 5T Company 
(Telematics, Technologies for Traffic and Transport 
in Turin), which monitors and controls over 300 ur-
ban traffic lights in Turin, and collects traffic data. 
5T uses induction-loop traffic sensors located along 
the exiting lanes of the monitored intersections to 
collect vehicle flow data at 5 minute intervals. It is 
worth noting that from 2006 to 2012, the number of 
traffic sensors available varied from 662 to 1051 due 
to the installation of new ones and the elimination of 
some of the damaged ones. Figure 1a shows the por-
tion of the road network monitored by 5T in 2006. 

2.3 Weather data 

The Environmental Protection Agency of the Pied-
mont Region (ARPA Piedmont) provided data on 
weather conditions. The Turin weather station con-
sidered in the paper is located in the city centre 
(238 m a.s.l., 1.5 m off the ground, latitude 
45°.066667, longitude 7°.683333), and collects tem-
perature, atmospheric pressure, wind speed and di-
rection, solar radiation, and rainfall intensity data on 
an hourly basis. The maximum distance between the 
weather station and the farthest crash location in-
cluded in the database was 9.6 km. Each crash rec-
ord was associated with the weather data recorded at 
the time of the crash. 

2.4 Database formation 

Only crashes that occurred along segments provided 
with valid and reliable traffic data were extracted 
from the main database and used. The database 
adopted for modelling is a subset (and a random 
sample) of the total number of crashes that occurred 
and were recorded in the official database. Figure 1b 
shows all the crash records in 2006, while Figure 1c 
shows only crashes associated with traffic flow data. 
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Figure 1. (a) Turin’s traffic monitoring network operated by 5T 
in 2006 (highlighted in black); (b) spatial distribution of road 
crashes that occurred in 2006; and (c) crashes which were as-
sociable to 5 min traffic flow (487 in total). 

3. DATA ANALYSIS AND TREATMENT 

3.1 Variables  

Table 2 lists the independent variables, their num-
bering and labels, the type of variable, the unit of 
measurement, and the range. The variables referring 
to the road are: 
 road type (C1), which indicates the organization 

of the carriageways and the directions served (0 = 
unknown; 1 = one carriageway, one way; 2 = one 
carriageway, two ways; 3 = two carriageways, 
two ways; 4 = more than two carriageways, two 
ways);  

 pavement conditions (C2), which have been dis-
tinguished with a numerical variable indicating 
the presence of water, snow or ice (0 = unknown, 
1 = dry, 2 = wet, 3 = slippery, 4 = icy/frozen, 
5 = snowy); and 

 the road signage (C3), which indicates if it was 
absent (0), if it was composed of vertical signs 
only (1), horizontal markings only (2), if both 
were present (3), or if a temporary construction 
signage was present (4).  
 
The variables that reflect the characteristics of 

vehicles A and B involved in the crash are: 
 vehicle type (C4 and C6), ranging from 0 (passen-

ger cars) to 20 (quad), also including the case of 
vehicles that fled the crash scene (19); and 

 vehicle category (C5 and C7), from 0 to 8, in 
which 1 represents cars, 2 buses, 3 trams, 4 heavy 
vehicles, 5 industrial vehicles, 6 bikes, 7 motor-
cycles, 8 vehicles that fled the crash scene and 0 
unclassified vehicles. 
 
In modelling, variables describing roads and ve-

hicles were assumed as categorical. The variables 
describing drivers involved in the crashes were as-
sumed as numerical. They are: 
 age (C8 and C11), which ranges from a minimum 

of 10 (driver B) to a maximum of 89 (driver A); 
this variable also assumed the null value in cases 
of unknown/unrecorded age; 

 age class (C9 and C12), which groups the ages in-
to 6 intervals ranging from 0 to 5: 0 in the case of 
unknown/unrecorded data, 1 for very young driv-
ers (15-19 years old), 2 for young drivers (20 24 
years old), 3 for adults (25-64 years old), 4 for el-
derly drivers (from 65 to 79), and finally 5 for 
very old drivers (over 80); and  

 sex of drivers (C10 and C13), which assumes the 
value 0 in cases of unknown/unrecorded data, 1 
for males, and 2 for females. 

 
In Table 2, the lowest values for ‘age of driver A’ 

refer to scooter drivers, while those for driver B re-
fer to pedestrians or cyclists. Air temperature (C14), 
wind speed (C15), solar radiation (C16), and rainfall 
precipitation (C18) were assumed as numerical with 
values that correspond to the measured values. The 
lighting condition (C17) was assumed as a Boolean 
variable (0 = dark, 1 = light). The traffic flow (TF) 
variables (C20÷C25) are numerical and represent the 
volume of vehicles per hour (veh/h) measured every 
5 min across the crash event, according to the time 
scale reported in Figure 2. Finally, the standard de-
viation (C26) for the seven flow values was added to 
the list to take into account flow fluctuations for the 
35 min period before and after the crash. Finally, the 
output variable indicating the SL (C27) was assumed 
numerical and ranging from 2 (VSI) to 6 (FAT). 

 



Table 2. Number and labels of variables  

# code Description Type u.m. 
Range  

min max 

1 C1 Road type C - 0 4  

2 C2 PC C - 0 5 

3 C3 Road signage C - 0 4 

4 C4 Veh. A type C - 0 20 

5 C5 Veh. A cat. C - 0 8 

6 C6 Veh. B type C - 0 20 

7 C7 Veh. B cat. C - 0 8 

8 C8 Dr. veh. A age N - 16 89 

9 C9 Dr. veh. A cl. age N - 0 5 

10 C10 Dr. veh. A sex N - 0 2 

11 C11 Dr. veh. B age N - 10 86 

12 C12 Dr. veh. B cl. age N - 0 5 

13 C13 Dr. veh. B sex N - 0 2 

14 C14 Air temp. N °C -7.5 +35.3  

15 C15 Wind speed N m/s 0 9.95  

16 C16 Light radiation N W/m
2
 0 996  

17 C17 Light/dark  B - 0 1 

18 C18 Rainfall N mm/h 0 12.8  

19 C19 TF1 (*) N veh/h 0 730  

20 C20 TF2 (*) N veh/h 0 750 

21 C21 TF3 (*) N veh/h 0 765 

22 C22 TF4 (*) N veh/h 0 775 

23 C23 TF5 (*) N veh/h 0 570 

24 C24 TF6 (*) N veh/h 0 565 

25 C25 TF7 (*) N veh/h 0 494 

26 C26 Flow st. dev. N veh/h 0 193 

27 C27 SL  N - 2 6 

Notes: PC = pavement conditions, TF = traffic flow, 

Dr. = driver, veh. = vehicle, cl. = class, N = numerical, 

B = Boolean, C = categorical. 
 

Figure 2. Time scale used to aggregate traffic flows (TF) across 
the crash event 

 
A criticism may be made of the use of all seven 

flow values (TF1-TF7). In fact, some of these values 
(in particular those from TF5 to TF7) refer to inter-
vals after the crash and therefore were caused by the 
crash itself. Nevertheless, the reason for using them 
is that they belong to the same time series and the in-
terrupted nature of flow in urban roads makes each 
interval (though not as long as 5 minutes) a story 
apart, even when there is no crash. In addition, re-
sults will show that they play a different role in the 
models. 

3.2 Database information content 

The Principal Component analysis (PCA) (Lebart et 
al. 1977) was used to investigate the information 
content of the database. Table 3 reports the variance 
explained by the first eight components. They ac-
count for about 81% of the total variance for both 
databases, while the first two components account 
for about 61%.  

The variables most linked to the first component 
are road type, road signage, and age of driver A, 

whereas those linked to the second component are 
light/dark, light radiation, and air temperature. Traf-
fic flows (TF1-TF7) are mainly linked to the third 
component. This means that the set of variables re-
lating to road and driver can explain about 45% of 
the variance; those related to meteorological condi-
tions about 16%, and those related to flow about 8%. 
 
Table 3. Percentage of variance explained by the first eight 

components in PCA 

Component Simple value Cumulative value 

1 44.72 44.72 

2 16.34 61.06 

3 8.32 69.38 

4 6.72 76.10 

5 4.91 81.01 

6 4.38 85.38 

7 3.49 88.88 

8 2.28 91.16 

3.3 Data treatment 

According to Table 1, the five SLs contained in the 
database were not equally represented and the da-
taset resulted imbalanced. This is not a problem for 
modelling approaches such as logistic regression, 
but it is for machine learning tools, and especially 
artificial neural networks (ANN). With imbalanced 
datasets, ANN could not find the correct relation-
ships between input and output for all categories 
present in the dataset. Over-sampling (with data du-
plication) or under-sampling (with data cancellation) 
techniques present advantages and disadvantages: 
under-sampling can remove important data and 
over-sampling can lead to over-fitting problems. 
Studies on imbalanced datasets have shown over-
sampling to be more advantageous and useful than 
under-sampling (Chawla 2010). 

The “focused re-sampling” method (Japkowicz 
2000), which consisted of an oversampling of those 
examples that occurred in the minority classes (spe-
cifically FAT, GPI, and SEI), was used. This ap-
proach implies duplication of the entire subset of da-
ta until their count is of the same magnitude as the 
most populated class. This approach avoids other 
possible biases in re-sampling data. 

Another task performed was data normalization. 
Feature scaling, also called unity based normaliza-
tion, was used for its simplicity. Let Xmin and Xmax 
be the two extreme values (minimum and maximum) 
of a variable X, the normalized variable X’ (accord-
ing to feature scaling) is: 

min
X

max
X

min
XX

'X



  (1) 

All the input variables were then normalized ac-
cording to eq. 1, hence with values falling within the 
range [0,1]. The output variable (the output) is nu-
merical, ranging from 2 to 6. 



4. DATA MODELLING AND RESULTS 

4.1 Back-Propagation Neural Networks (BPNN) 

The BPNN used in this work is an example of an Ar-
tificial Neural Network (ANN) model, ANN models 
have a classical multilayer topology with feed-
forward connections. Cybenko (1989), and Hornik 
(1991), described the capability of ANN in approx-
imating any function belonging to the Lebesgue two 
space (L

2
 space) with minimum error. Applications 

regarding transport, planning, control fields, and 
crash analysis are numerous starting from the 90’s 
(Dougherty 1995, Mussone 1999, Mussone et al. 
1999). Other contributions have faced the problem 
of crash prediction or severity (Abdelwahab & Ab-
del-Aty 2001, Chong et. al. 2004, Delen et al. 2006, 
Baluni & Raiwani 2014). 

The downside in using the BPNN approach is that 
the relationships between variables are in a black 
box (the hidden layer of Figure 3), and no analytical 
formulation between input and output can be directly 
obtained. The effects of independent (input) varia-
bles can be interpreted only through a sensitivity 
analysis of the model. 

The BPNN models were calibrated and validated 
with the Levenberg-Marquardt training algorithm. 
Performances were evaluated according to Mean 
Squared Errors (MSE) through the three phases of 
train, test, and validation. The model was construct-
ed with an input layer including the 26 independent 
variables listed in Table 2, the hidden layer, and the 
output layer corresponding to the SL, tested with one 
neuron. All categorical variables are coded in binary 
format to reduce connection between their values. 
Finally, the best model was found to be made up of 
25 neurons in the hidden layer for the model. It has a 
MSE lower than 0.08, which means that there are 
only 8 errors to each 100 classifications. 

4.2 Generalized Linear Mixed Model (GLMM) 

For the analysis of multilevel data, random clusters 
and/or subject effects should be included in the re-
gression model to account for the correlation of data. 

Figure 3. Back-propagation Neural Network structure for SL 
modelling adopted in this investigation. 

 

The resulting model is a mixed model including 
fixed and random effects. Mixed models for contin-
uous normal outcomes have been proposed for non-
normal data and are generically classified as general-
ized linear mixed models (GLMMs). The extension 
of the methods from dichotomous responses to ordi-
nal response data was actively pursued in the re-
views of Agresti & Natarajan (2001). 

The GLMM model is a regression model of a re-
sponse variable that contains both fixed and random 
effects and comprises data, a model description, fit-
ted coefficients, co-variance parameters, design ma-
trices, residuals, residual plots, and other diagnostic 
information. Fixed-effects terms usually refer to the 
conventional linear regression part of the model. 
Random effects terms are associated with individual 
experimental units taken at random from a popula-
tion, and account for variations between groups that 
might affect the response. The random effects have 
prior distributions, whereas the fixed effects do not.  

The GLMM model structure is: 
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where, yi = the i-th element (dependent variable) of 
the y response vector, b = the random-effects vector 
(complement to the fixed β), Distr = a specified con-
ditional distribution of y given b, μ = the conditional 
mean of y given b, and  is its i-th element, 

2
 = the 

variance or dispersion parameter, w = the effective 
observation weight vector (wi is the weight for ob-
servation i), g(μ) = link function that defines the re-
lationship between the mean response μ and the lin-
ear combination of the predictors, X = fixed-effects 
design matrix (of independent variables), β = fixed-
effects vector, Z = random-effects design matrix (of 
independent variables), and δ = model offset vector 
(residuals). The model for the mean response μ is: 

 
 ˆ

1
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where g
-1

 = inverse of the link function g(μ), and    
̂= linear predictor of the fixed and random effects 
of the generalized linear mixed-effects model: 

 bZX  (5) 

According to the Wilkinson notation, the GLMM 
model has the following structure: 

y ~ fixed + (random1|group1) + ... + (random N| group N) (6) 

where, “fixed” and “random” are associated with in-
dependent variables and contain fixed and random 
effect terms, and N = number of grouping variables 
in the model. Grouping variables are utility variables 
used to group, or categorize, observations, and are 
useful for summarizing or visualizing data by group. 

 

One hidden layer  

Output  

Level of severity  
Input  

(26 variables) 



For the SL output, a log link function and the 
probability mass function (PMF) for the Poisson dis-
tribution was used. The fit method was the ‘Laplace’ 
one. Finally, the best performance was calculated 
through the maximization of the log-likelihood in-
dex; other indexes (i.e., Akaike's information criteri-
on - AIC, Bayesian information criterions - BIC, and 
the Deviance parameter) were also estimated to con-
trol the maximization process. 

According to eq. 6 notation, the GLMM model 
that gives the best performance was: 

C27 ~ 1 + C8 + C9 + C11 + C14 + C16 + C18 + C21 + C24 + 

+ C25 + (1 | C1) + (1 | C2) + (1 | C3) + (1 | C4)  (7) 

where Cx identifies the x-th variable (Table 2). In 
Table 4 the fixed effect coefficients are drawn with a 
95% confidence interval. The p values are lower 
than 0.001, with the exception of C9 (driver vehicle 
A age) and C18 (rainfall intensity) which are lower 
than 0.05. The standard error of estimates (SE) is 
generally much lower than the estimates, and lower 
and upper bonds of CI never include zero. Table 4 
also reports the estimates for random parameters. 

The effect of flows (C21, C24, C25) on SL has a 
different sign, positive for C21 (TF4), which antici-
pates the crash event, and for C24 (TF6), and nega-
tive for C25 (TF7).When flow after the crash (C25) 
increases, it is more likely that the SL decreases. The 
grouping variables are road type (C1), pavement 
condition (C2), road signage condition (C3) and ve-
hicle A type (C4). The driver vehicle A age (C9) as 
well as the class age of vehicle B driver (C11) are 
negatively related to the SL. Furthermore, also light 
radiation (C16) and rainfall intensity (C18) are in-
versely related to the SL. 

 
Table 4. Fixed effects coefficients estimates and Random ef-

fects covariance parameters at 95% CIs for the GLMM model. 

Variable Estimate SE p-value Lower Upper 

Intercept 1.24210 0.2019 <10
-3

 0.84629 1.63790 

C8 0.00594 <10
-3

 <10
-3

 0.00428 0.00759 

C9 -0.06953 0.018 <10
-3

 -0.10540 -0.03367 

C11 -0.00620 <10
-3

 <10
-3

 -0.00707 -0.00534 

C14 0.00497 <10
-3

 <10
-3

 0.00318 0.00675 

C16 -0.00016 <10
-4

 <10
-3

 -0.00023 -0.00010 

C18 -0.07152 0.0203 <10
-3

 -0.11142 -0.03163 

C21 0.00056 <2·10
-4

 0.002 0.00020 0.00092 

C24 0.00111 <3·10
-4

 <10
-3

 0.00062 0.00161 

C25 -0.00242 <3·10
-4

 <10
-3

 -0.00284 -0.00199 

Group variable Estimate    

C1 (Intercept) 0.13646    

C2 (Intercept) 0.38224    

C3 (Intercept) 0.19893    

C4 (Intercept) 0.11375    

Indexes  

LogLikelihood  -11465    

AIC 22959    

BIC 23053    

Deviance 22931    

R
2
 adjusted 0.3107    

5. DISCUSSION 

5.1 Sensitivity analysis of BPNN 

In the case of the BPNN model, a sensitivity analy-
sis was carried out to assess how output changes by 
varying input normalized variable values in the 
range [0,1] one by one. With this aim in mind, a first 
set of scenarios, referring to a particular set of input 
variables, was prepared. In addition to basic scenari-
os where variables are all zero or 1, another six sce-
narios were considered to study particular combina-
tions of variable values (in Figure 4, from 4a to 4f). 
These scenarios aim to consider some possible and 
typical crash situations involving male or female 
drivers, during daytime or at night-time, with rainy 
weather or dry road surface, or with elder drivers. 

The effect of flow varies a lot for scenario and 
flow itself. When TF4 is high (figure 4a), the SL is 
generally high for most of the scenarios, except for 
elderly drivers. On the other hand, the effect of TF7 
(figure 4b) depends very much on the particular sce-
nario, though, generally, a higher SL is related to a 
higher flow. Low light radiation (night-time to 
dawn) has a strong effect on young male drivers 
with dry pavement, while middle radiation has a 
strong effect on young female drivers in rainy condi-
tions. Generally, a low radiation is more related to 
high SL than a high radiation. 

 

(a) 

(b) 

Figure 4. Effect of TF4 (a) and TF7 (b) (variables 22 and 26) 
on SL (BPNN model) for different flow values (0.1, 0.5, 0.9). 

 



5.2 Model Output Comparison 

According to Powers (2011), the two model outputs 
were evaluated by confusion matrixes representing, 
for each output, the number of predicted cases (aij) 
on the reference databases. In this case, the output 
coincides to the SL, and aij are calculated on the 
resampled databases obtained according to what re-
ported in Section 3.3. 

There is s also interest in the measurement of its 
precision (the percentage of correct data predicted in 
respect of the total predicted) and its recall (the per-
centage of corrected data predicted in respect of the 
total to be predicted) capability. The main goal of 
learning is to improve the recall measurement with-
out hurting the precision one. Tables 5 and 6 include 
the percentage of the predicted crashes to the total 
predicted for each SL, the “a priori” rate (PR), which 
expresses the complement of the recall rate, and the 
“a posteriori” rate (PO) which is the complement of 
the precision rate, according to the following equa-
tions (n is the matrix dimension):  

PRi = 1 - aii/(ai1+…+ain)             (8) 

POi = 1 - aii/(a1i+...+ani)                  (9) 

Furthermore, comments on results are supported 
by the estimation of their accuracy (A):  

A = (a11+a22+ …+ann)/aij             (10) 

Table 5 reports the confusion matrices for the 
model calibrated through the BPNN. SL values low-
er than 2 (corresponding to the PDO crash type) and 
greater than 6 (which are unrealistic values) have al-
so been included in the tables considering that the 
model output can fall outside the range of numerical 
values associated with each SL. The accuracy of 
90% is certainly very high for BPNN model. PR and 
PO rates are low with the exception of SL 2 and 3. 
SL 2 is the more difficult to predict while SL 3 has 
the largest number of wrong cases assigned to it.  

Table 6 contains the confusion matrices for the 
GLMM model. In this case, the capacity of SL pre-
diction is significantly lower than the one for BPNN 
as indicated by the accuracy of 33%. GLMM has a 
superior capacity to provide results within the SL 
limits of 2 and 6, as confirmed by the absence of 
values that fall outside of the two limits. PR and PO 
rates are lower than the corresponding values for 
BPNN, showing a greater difficulty in predicting SL 
than the neural network modelling approach.  

Comparisons with GLMM show a marked supe-
riority of BPNN modelling as regards performance 
measured through confusion matrices. GLMMs, on 
the other hand, clearly show what variables are sig-
nificant and their effect (sign and value of coeffi-
cients) though this is limited to the linear effect of 
variables without considering their possible recipro-
cal interaction.  

 

Table 5. BPNN model confusion matrix (row percentage val-

ues in brackets), and “a priori” (PR) and “a posteriori” (PO) 

rates. 

Real 

SL 

Predicted SL 
CD PR (%) 

< 2 2 3 4 5 6 > 6 

2 
21 

2% 

859 

65% 

257 

20% 

71 

5% 

39 

3% 

60 

5% 

7 

0% 
1314 35% 

3 
18 

1% 

150 

12% 

1056 

86% 

6 

1% 
0 0 0 1230 14% 

4 0 0 0 
1250 

94% 
0 0 0 1250 0% 

5 0 0 0 0 
1287 

100% 
0 0 1287 0% 

6 0 0 0 0 0 
1311 

100% 
0 1311 0% 

PO - 15% 20% 6% 3% 4% - - - 

Notes: CD = crash data in the resampled database 

 
Table 6. GLMM model confusion matrix (row percentage val-

ues in brackets), and “a priori” (PR) and “a posteriori” (PO) 

rates. 

Real 

RSL 

Predicted PSL 
CD 

PR 

(%) <2 2 3 4 5 6 >6 

2 0 
79 

52% 

534 

41% 

593 

45% 

100 

8% 

8 

1% 
0 1314 94% 

3 0 
72 

48% 

444 

36% 

588 

48% 

102 

8% 

24 

2% 
0 1230 64% 

4 0 0 
300 

24% 

850 

68% 

100 

8% 
0 0 1250 32% 

5 0 0 
39 

3% 

702 

55% 

507 

39% 

39 

3% 
0 1287 61% 

6 0 0 0 
483 

37% 

621 

47% 

207 

16% 
0 1311 84% 

PO - 48% 66% 74% 65% 26% - - - 

6. CONCLUSIONS 

The paper aims to achieve two goals: the evaluation 
of the crash severity level (SL) on urban road seg-
ments using environmental variables (some of 
which, like short-term flow, are innovative for this 
type of research), and the comparison of two differ-
ent techniques for calculating SL, the back-
propagation neural network model (BPNN) and the 
generalized linear mixed model (GLMM). 

The results presented here provide new insights 
into urban roads and fill a gap in the knowledge ac-
quired from the number of studies on rural freeways 
and expressways reported in literature.  

From the use of the confusion matrixes technique, 
BPNN models evidenced their superiority in the 
prediction of the SL when compared to the GLMMs. 
This is attributable to their greater capability of ac-
curately approximating any continuous and non-
linear function. On the other hand, GLMMs (like 
any analytical model) allow a readier interpretation 
of model results. Other pros and cons in their use de-
rive from the intrinsic characteristics of statistical 
and neural network methods, as clearly underlined 
by Karlaftis and Vlahogianni (2011). The authors 
suspect that the most significant limit of GLMMs for 



these applications is related to the constrained linear-
ity of their functions. In addition, missing data may 
have contributed to the fact that the BPNNs, which 
are known to be capable of overcoming this prob-
lem, achieved better results. 

However, both approaches (BPNN and GLMM), 
though with significant differences, indicate that 
flows have a relevant role in predicting severity: this 
role is not limited to the flow when the crash oc-
curred (TF4), but also involves other flow data rec-
orded before (TF1-TF3) and after (TF5-TF7) the 
crash. GLMM model shows the relevance of TF3, 
TF6, and TF7 only, but the BPNN model evinces 
more complex relationships for all seven variables. 
Weather variables also (i.e., rainy condition and 
light radiation) show a strong relation in some sce-
narios. 

In future research, generalized non-linear models 
will be used to consider the higher order effects and 
the interaction between variables. Moreover, a 
mixed approach using both short-term flow and 
AADT values will be investigated to derive models 
over a mid-to-long term period and investigate the 
relationship between them. 

ACKNOWLEDGEMENTS 

The authors thank Polizia Municipale di Torino, and 
the Città Metropolitana di Torino for having provid-
ed crash data. Thanks are also due to Consorzio 5T 
s.r.l. for providing short-term flow data, and to the 
Environmental Protection Agency of the Regione 
Piemonte (ARPA Piemonte) for providing weather 
data. 

REFERENCES 

Abdelwahab, H. T. & Abdel-Aty, M. A. 2001. Development of 
artificial neural network models to predict driver injury se-
verity in traffic accidents at signalized intersections. 
Transp. Res. Rec. 1746, 6–13. 

Agresti, A. & Natarajan, R. 2001. Modelling clustered ordered 
categorical data: a survey. Int. Stat. Rev. 69, 345–371. 

Al-Ghamdi, A.S. 2002. Using logistic regression to estimate 
the influence of accident factors on accident severity. Ac-
cid. Anal. Prev. 34, 729–741. 

Baluni, P. & Raiwani, Y. P. 2014. Vehicular accident analysis 
using neural networks. Int. J. of Emerg. Tech. and Adv. 
Engin. 4 (9), 161-164. 

Chawla, N.V. 2010. Data mining for imbalanced datasets: an 
overview. Data Mining and Knowledge Discovery Hand-
book, Springer US, 875-886. 

Chong C-Y. & Kumar, S.P. 2003. Sensor networks: evolution, 
opportunities, and challenges. Proceedings of the IEEE 91 
(8), 1247 – 1256. 

Chong, M.M., Abraham, A. & Paprzycki, M. 2004. Traffic Ac-
cident analysis using decision trees and neural network. 
arXiv preprint cs/0405050. 

Christoforou, Z., Cohen, S. & Karlaftis, M. 2010. Vehicle oc-
cupant injury severity on highways: an empirical investiga-
tion. Accid. Anal. Prev. 42, 1606–1620. 

Cybenko, G. 1989. Approximation by superpositions of sig-
moidal functions. Math. Control Signals Syst. 2(4), 303–
314. 

Delen, D., Sharda, R. & Bessonov, M. 2006. Identifying signif-
icant predictors of injury severity in traffic accidents using 
a series of artificial neural networks. Accid. Anal. Prev. 38, 
434–444. 

Dougherty, M. 1995. A review of neural networks applied to 
transport. Transp. Res. Part C: Emerg. Tech. 3(4), 247-260.  

El Faouzi, N-E., Leung, H. & Kurian, A. 2011. Data fusion in 
intelligent transportation systems: progress and challenges 
– a survey. Inform. Fus. 12(1), 4-10. 

Golob, T.F., Recker, W.W. & Pavlis, Y. 2008. Probabilistic 
models of freeway safety performance using traffic flow 
data as predictors. Saf. Sci. 46, 1306–1333. 

Japkowicz, N. 2000. The class imbalance problem: significance 
and strategies. Proc. of the 2000 Intern. Conf. on Art. Intel. 
(IC-AI’2000), Las Vegas, Nevada. 

Jung, S., Qin, X. & Noyce, D.A. 2010. Rainfall effect on sin-
gle-vehicle crash severities using polychotomous response 
models. Accid. Anal. Prev. 42, 213–224. 

Karlaftis, M. G. & Vlahogianni, E.I. 2011. Statistical methods 
versus neural networks in transportation research: differ-
ences, similarities and some insights. Transp. Res. Part C: 
Em. Tech., 19(3), 387-399. 

Lebart, L., Morineau, A. & Tabard, N. 1977. Techniques de la 
description statistique: méthodes et logiciels pour l’analyse 
des grands tableaux, Dunod, Paris. 

Mussone, L. 1999. A review of feedforward neural networks in 
transportation research, e&i Elektrotechnik und Infor-
mationstechnik 116(6), 360-365. 

Mussone, L., Ferrari, A. & Oneta, M. 1999. An analysis of ur-
ban collisions using an artificial intelligence model. Accid. 
Anal. Prev. 31, 705-718. 

Nekovee, M. 2005. Sensor networks on the road: the promises 
and challenges of vehicular ad hoc networks and vehicular 
grids. Proc. Work. on Ubiq. Comp. e-Res., Edinburgh, Scot-
land, UK. 

Powers, D.M. 2011. Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and correla-
tion. J. Mach. Learn. Technol. 2, 37–63. 

Repubblica Italiana, 2015. Codice Penale (in italian). Testo 
coordinato del Regio Decreto 19 ottobre 1930, n. 1398, ag-
giornato con le modifiche apportate dalla L. 28 aprile 2015, 
n. 58, dalla L. 22 maggio 2015, n. 68 e dalla L. 27 maggio 
2015, n. 69. 

Shankar, V., Mannering, F. & Barfield, W. 1996. Statistical 
analysis of accident severity on rural freeways. Accid. Anal. 
Prev. 28 (3), 391-401. 

Theofilatos, A. & Yannis, G. 2014. A review of the effect of 
traffic and weather characteristics on road safety. Accid. 
Anal. Prev. 72, 244–256. 

Wang, C., Quddus, M.A. & Ison, S.G. 2013. The effect of traf-
fic and road characteristics on road safety: a review and fu-
ture research direction. Saf. Sci. 57, 264–275. 

Xu, C., Tarko, A.P., Wang, W. & Liu, P. 2013. Predicting 
crash likelihood and severity on freeways with real-time 
loop detector data. Accid. Anal. Prev. 57, 30–39. 

Yu, R. & Abdel-Aty, M. 2013. Using hierarchical Bayesian bi-
nary probit models to analyze crash injury severity on high 
speed facilities with real-time traffic data. Accid. Anal. 
Prev. 62, 161-167. 


