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ABSTRACT 

ADVANCED QUANTITATIVE METHODS FOR IMMINENT DETECTION OF CRASH 
PRONE CONDITIONS AND SAFETY EVALUATION 

 
by  

Zhi Chen 

 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Xiao Qin 

 

Crashes can be accurately predicted through reliable data sources and rigorous statistical models; 

and prevented through data-driven, evidence-based traffic control strategies.  Both predictive 

analysis and analysis to estimate the causal effect of traffic variables of real-time crashes are 

instrumental to crash prediction and a better understanding of the mechanism of crash 

occurrence.  However, the research on the second analysis type is very limited for real-time crash 

prediction; and the conventional predictive analysis using inductive loop detector data has 

accuracy issues related to inconsistently and distantly spaced loop detectors.  The effectiveness 

of traffic control strategies for improving safety performance cannot be measured and compared 

without an appropriate traffic simulation application.  This dissertation is an attempt to address 

these research gaps. 

 First, it conducts the propensity score based analysis to assess the causal effect of speed 

variation on crash occurrence using the crash data and ILD data.  As a casual analysis method, 

the propensity score based model is applied to generate samples with similar covariate 

distributions in both high- and low-speed variation groups of all cases.  Under this setting, the 

confounding effects are removed and the causal effect of speed variation can be obtained.   
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 Second, it conducts a predictive analysis on lane-change related crashes using lane-

specific traffic data collected from three ILD stations near a crash location.  The real-time traffic 

data for the two lanes – the vehicle’s lane (subject lane) and the lane to which that a vehicle 

intends to change (target lane) – are more closely related with lane-change related crashes, as 

opposed to congregated traffic data for all lanes.  It is found that lane-specific variables are 

appropriate to study the lane-change frequency and the resulting lane-change related crashes. 

 Third, it conducts a predictive analysis on real-time crashes using simulated traffic data.  

The purpose of using simulated traffic data rather than real data is to mitigate the temporal and 

spatial issues of detector data.  The cell transmission model (CTM), a macroscopic simulation 

model, is employed to instrument the corridor with a uniform and close layout of virtual detector 

stations that measure traffic data when physical stations are not available.  Traffic flow 

characteristics at the crash site are simulated by CTM 0-5 minutes prior to a crash.  It shows that 

the simulated traffic data can improve the prediction performance by accounting for the spatial-

tempo issue of ILD data.   

 Fourth, it presents a novel approach to modeling freeway crashes using lane-specific 

simulated traffic data.  The new model can not only account for the spatial-tempo issues of 

detector data but also account for heterogeneous traffic conditions across lanes using a lane-

specific cell transmission model (LSCTM). The LSCTM illustrates both discretionary lane-

changing (DLC) and mandatory lane-changing (MLC) activities.  This new approach presents a 

viable alternative for utilizing traffic simulation models for safety analysis and evaluation.   

 Last, it develops a crash prediction and prevention application (CPPA) based on 

simulated traffic data to detect crash-prone conditions and to help select the desirable traffic 

control strategies for crash prevention.  The proposed application is tested in a case study with 
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VSL strategies, and results show that the proposed crash prediction and prevention method could 

effectively detect crash-prone conditions and evaluate the safety and mobility impacts of various 

VSL alternatives before their deployment.  In the future, the application will be more user-

friendly and can provide both online traffic operations support as well as offline evaluation of 

various traffic control operations and methods. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Tremendous efforts have been devoted to improving traffic safety by designing safer roads, 

better managing traffic, and advancing vehicular technologies.  These efforts have led to 

significant decrease in crashes in the last three decades. However, from 2014 to 2015, the 

number of crashes increased by 3.8% (NHTSA, 2016).  The increase in crash occurrence is 

partially due to the lack of variations in safety treatment strategies.  Traditional safety 

improvements such as roadway design improvements through 3R (resurfacing, restoration, and 

rehabilitation) projects are effective, but are reactive and restrictive.  They are implemented after 

crashes have occurred, and only at selected locations where crashes are abnormally high.   

Furthermore, a physical safety improvement is difficult to be alter after it is completed, which 

does not respond timely to the varying vehicle performance, traffic conditions, and driver 

behaviors. 

 Predicting crashes is a common practice to support safety improvement decision-making 

such as hot spot identification, safety performance prediction, and the cost-benefit analysis.  

Crash prediction models (CPMs) are the statistical regression model for the crash frequency 

within a period of time (e.g., one year) developed from predictors including roadway geometries 

and traffic data averaged or aggregated over the same duration.  The culmination of the 

development of CPMs is the release of the Highway Safety Manual (HSM) in 2010 by American 

Association of State Highway and Transportation Officials (AASHTO) where safety 

performance functions and crash modification factors/functions have been developed for all 

types of highway facilities and crash types.  However, the safety studies based on aggregated 

crashes, or crash count, are incapable of identifying the crash-prone situations for individual 
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crashes, which are considered by researchers as more natural and direct measures of safety 

conditions of the traveling population. 

 In light of the new and emerging technologies such as advanced transportation 

information systems (ATIS), connected and autonomous vehicles (CAV), rich and large amount 

of information has been produced to shed the light on the development of more dynamic and 

proactive crash prevention methodologies and techniques.  The increasingly available advanced 

data collection devices began to make a gradual shift in modern safety research with a different 

focus on understanding the unique circumstances of individual crashes.  For instance, sensor 

instrumented vehicles and the onboard devices have been used to collect naturalistic driving data 

such as driver actions and vehicle kinematic data.  These highly specified, granular data sources 

have allowed safety research to reveal crash-prone driving conditions and driver behavior 

pertaining to individual crashes.  Risk factors contributing to crashes can now be identified, and 

their relationships to crash occurrence can be unraveled in detail. 

 At the crash event level, the prevailing traffic circumstances prior to and under which a 

crash takes place are believed to be one of the major contributors.  A driver must constantly 

respond to changes in traffic due to the environment, adjacent vehicles, speed limit, highway 

curve, and pavement conditions.  Increasing driver anxiety and traffic congestion leave little 

room for mistakes.  It is best to use prevailing traffic circumstances to identify the causal factors 

pertaining to crashes and better understand the crash mechanism; as a result, targeted 

countermeasures or strategies can be proposed and implemented to effectively prevent crashes.  

Countermeasures can be both adaptive and proactive.  If the traffic is continuously monitored, 

any traffic anomalies pertaining to crash hazards can be detected at an early stage.  Drivers can 

be informed and/or appropriate traffic control strategies can be applied to mitigate crash risk.  
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Therefore, it is imperative to identify patterns and trends of traffic conditions associated with a 

crash before the crash happens.   

 The wide deployment of ATIS has made the collection, storage, and processing of real-

time traffic data readily available, meaning researchers can now gather real-time information 

pertaining to crash occurrence.  Among all types of traffic sensors, inductive loop detectors 

(ILD) have been a popular data source for real-time crash prediction.  Figure 1-1 illustrates a 

layout of two ILD stations.  Each station consists of two ILDs, one in each lane.  A loop detector 

vehicle detection device is embedded under pavement.  The wired loop is activated by the metal 

part of a passing vehicle, and the activation time is time-stamped and recorded.  After a short 

period of time (e.g., 30 s), traffic volume can be obtained as the number of activations, and 

traffic occupancy can be measured as the proportion of the detector’s on-time in the period.  

There are two types of ILDs, single ILDs and dual ILDs.  Single ILDs record only traffic volume 

and occupancy, while dual ILDs record mean traveling speed and vehicle type in addition to 

volume and occupancy. 

 

 

Figure 1-1 Illustration of a loop detector layout. 

Loop Detectors  

Station A Station B 
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 Figure 1-2 shows a sample of 1-min ILD data in Wisconsin.  Detector ID is a unique ID 

associated with each lane at each ILD station.  Date and Time record when the traffic data is 

recorded.  Three traffic measurements are collected, Volume, Speed, and Occupancy.  For 

example, the first record shows that between 9:00 and 9:01 on 4/16/2014, 20 vehicles passed the 

detector with an average speed of 67.17 MPH and a 5.67% occupancy. 

 

Figure 1-2 Sample ILD data. 

 Figure 1-3 shows sample crash records in Wisconsin.  Each crash has a unique document 

number in the DOCTNMBR field.  The date and time are shown in ACCDDATE and 

ACCDTIME fields, respectively.  The highway one crash happened on is in ONHWY field, and 

the direction is in ONHWYDIR field.  Each crash also has accurate geo-location including both 

the latitude and longitude in WISLR_LATDECDG and WISLR_LONDECDG fields, 

respectively.  The weather condition information is in WTHRCOND field.  For example, the first 

record represents a crash that happens at 20:40 on 1/1/2012 on I94 EB.  Its geo-location is 

(43.0289308, -88.1420277) and it was snowing when the crash happened. 
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Figure 1-3 Sample crash records. 

 Real-time CPMs (RTCPM) can be developed using real-time traffic data collected from 

ILDs near the prospective crashes to identify crash-prone conditions.  The rapid growth of this 

initiative prompts the genesis of a new research direction in real-time crash prediction and road 

safety surrogate methods.  Previous research has investigated a variety of crash scenarios, 

including rear-end crashes (Pande & Abdel-Aty, 2006b), lane-change crashes (Chen, Qin, & 

Shaon, 2017; Lee, Abdel-Aty, & Hsia, 2006; Pande & Abdel-Aty, 2006a), crashes in different 

speed regimes (Mohamed Abdel-Aty, Uddin, & Pande, 2005; Pande & Abdel-Aty, 2006b), and 

visibility-related crashes (M. A. Abdel-Aty, Hassan, Ahmed, & Al-Ghamdi, 2012).  Efforts have 

been continued to improve the prediction performance of RTCPMs through applying rigorous 

study designs (M. Abdel-Aty & Pande, 2005; Mohamed Abdel-Aty & Pemmanaboina, 2006; 

Mohamed Abdel-Aty, Uddin, Pande, Abdalla, & Hsia, 2004; Xu, Liu, Wang, & Li, 2014; Zheng, 

Ahn, & Monsere, 2010) and data quality (Mohamed Abdel-Aty et al., 2004; Lee, Hellinga, & 

Saccomanno, 2003; Zheng et al., 2010).  Many attempts have been made to utilize sophisticated 

modeling techniques (Hossain & Muromachi, 2012; Pande & Abdel-Aty, 2006c; Jie Sun & Sun, 

2015; Jian Sun, Sun, & Chen, 2014; Xu, Wang, & Liu, 2013). 
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1.2 Problem Statements 

All previous studies on RTCPMs carried out predictive analysis that aims to predict crash 

probability but lacks the the focus on assessing the causal effect of individual traffic factors.  

According to a predictive analysis, traffic factors could appear significantly related to crash 

occurrence, but the relationship can be spurious due to the confounding factors that are related to 

both crash probability and the traffic variables of interest. 

 Predictive analysis in previous studies have temporal issues that may undermine the 

validity of their findings.  Temporal proximity says that the traffic conditions a vehicle 

experiences immediately prior to or at the time of a crash are more relevant than the traffic 

conditions happening earlier or later.  This phenomenon has been supported when comparing 

prediction accuracy from ILD data based on different crash lead times (Mohamed Abdel-Aty et 

al., 2004).  However, many studies did not consider the traffic conditions that occur right before 

a crash (e.g., 0-5-min period) because of the assumption that preventative actions may take extra 

time in a real-time crash identification, notification, and prevention system.  Most studies use 

traffic data from earlier time periods (e.g., the 5-10-min period before a crash) (Mohamed Abdel-

Aty et al., 2004; Hossain & Muromachi, 2012; Pande & Abdel-Aty, 2006c; Jie Sun & Sun, 

2015).  Utilizing data in this manner ignores the fact that a crash can be abrupt and caused by 

traffic conditions occurring right before or during the crash, which can only be reflected with a 

closer temporal proximity (e.g., 0-5-min).  Even if the crash is not a sudden event, crash-prone 

situations can intensify as approaching the crash occurrence time.  Real-time traffic conditions in 

a closer temporal proximity may be more effective in distinguishing true crash-prone situations 

from false crash-prone situations. 
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 Next, the spacing between ILD stations varies substantially from site to site.  Large 

spacing leads to limited quality control for crashes that occur between stations and casts doubts 

regarding the consistency and transferability of findings in different studies.  Given the 

discrepancies in the spatio-temporal domain, RTCPMs developed with traffic data collected 

directly from ILD stations may be inadequate in unraveling the intrinsic relationship between 

crash risk and traffic conditions.  Such data issues would undermine the prediction power of 

developed models and should therefore be addressed. 

 Furthermore, most studies have focused on the rear-end crashes on the freeway due to the 

prevalence of ATIS on the freeway compared to other roadway types.  Research on sideswipe 

crashes is rather limited when compared with the amount of studies on rear-end collisions 

crashes (Li, Ahn, et al., 2014; Oh, Park, & Ritchie, 2006; Pande & Abdel-Aty, 2006b; Pande & 

Abdel‐Aty, 2008; Qu, Wang, Wang, Liu, & Noyce, 2012). 

 Even when a reliable crash prediction model is available, the issue of selecting effective 

preventative countermeasures remains unsolved.  Compared to the large body of real-time crash 

prediction studies, the research on evaluating the safety impacts of traffic control strategies using 

real-time traffic studies is limited to a few brief reports (Mohamed Abdel-Aty, Cunningham, 

Gayah, & Hsia, 2008; Mohamed Abdel-Aty, Pande, Lee, Gayah, & Santos, 2007; Li, Li, Liu, 

Wang, & Xu, 2014; Li, Liu, Wang, & Xu, 2014; Li, Liu, Xu, & Wang, 2016).  A performance 

assessment tool is indispensable to evaluate the effectiveness of intervening strategies and 

promote the research findings from well-developed RTCPMs.  A crash prediction and prevention 

application (CPPA) that combines both the RTCPM and the performance assessment tool is 

desirable as it can help detect crash-prone traffic conditions, distribute crash warnings, and 

evaluate traffic control countermeasures before their deployment. 
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 In summary, the issues of current real-time crash prediction and prevention studies 

include: 

1. Previous studies focused on predictive analysis and no rigorous analysis in estimating the 

causal effect of traffic variables has been performed, which would render biased 

estimates of traffic variables due to the existence of confounding factors. 

2. Studies on lane-changing related crashes are limited compared to plentiful studies on 

rear-end crashes or total crashes. 

3. Studies that used ILD traffic data overlooked the spatial and temporal issues associated 

with the ILD data, while those issues would compromise the prediction performance of 

resultant prediction models and undermine the validity of consequent findings. 

4. A systematic safety assessment tool that can effectively measure the impacts of traffic 

control strategies before their deployment does not exist. 

1.3 Research Objectives 

The objective of this dissertation is to assess causal effects of traffic factors, develop an 

advanced methodology to detect crash-prone conditions in real time, and evaluate the 

effectiveness of traffic control strategies to reduce crash risk.  More specifically, this dissertation 

aims to: 

1. Conduct analysis to estimate the causal effect of traffic variables with actual traffic data 

collected from ILD stations and evaluate causal effects of contributing traffic factors; 

2. Conduct predictive analysis with observed lane-specific traffic data collected from ILD 

stations and identify crash-prone traffic patterns for lane-changing related crashes; 
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3. Conduct predictive analysis using simulated traffic data from the output of traditional cell 

transmission models (CTM) to bridge the spatial and temporal gaps introduced by the 

traffic data from ILD stations; 

4. Conduct predictive analysis using simulated traffic data from a lane-specific CTM 

(LSCTM) specifically developed to simulate lane-specific traffic data. 

5. Design a crash prediction and prevention application (CPPA) that combines both the 

RTCPM and the performance assessment tool to help detect crash-prone traffic 

conditions, distribute crash warnings, and evaluate traffic control countermeasures before 

their deployment. 

1.4 Dissertation Organization 

 To achieve all research objectives, the remaining dissertation is organized into seven 

chapters and the organization chart is presented in Figure 1-4: 

 Chapter 2 provides a summary of existing real-time crash prediction studies and relevant 

CTM studies including recent model improvements and their applications in traffic management.  

The chapter reviews the detector data specification, study design, methodology, crash scenarios 

and associated risk factors in real-time crash prediction studies; and the CTM framework and 

simulated safety related traffic control strategies. 

 Chapter 3 presents the analysis to estimate causal effects of traffic variables using actual 

traffic data collected from ILD stations.  The causal effects of speed variations are evaluated 

using the propensity score-based method.  The propensity score-based method estimates the 

propensity score of each case and then generates a weighted sample based on it.  In the weighted 

sample, variables have similar distributions across two speed variation groups.  Then the causal 

effect of the treatments can be impartially estimated without the nuisance due to other variables.   
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Figure 1-4 Dissertation organization. 
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 Chapter 4 presents the predictive analysis on lane-changing related crashes using lane-

specific traffic data collected from ILD stations.  It is anticipated that the real-time traffic data 

for the two lanes – the vehicle’s lane (subject lane) and the lane to which that a vehicle intends to 

change (target lane) – are more closely related with lane-change related crashes, as opposed to 

congregated traffic data for all lanes.  Factors related to the lane-changing frequency and to the 

crash risk are investigated.  The impact of weather conditions on the crash probability is 

explored. 

 Chapter 5 presents the predictive analysis on crashes based on simulated traffic from 

macroscopic traffic simulation CTM to account for the spatial and temporal issues related to 

traffic data from ILD stations.  CTM is employed to instrument the corridor with a uniform and 

close layout of virtual detector stations that measure traffic data when physical stations were not 

available.  Traffic flow characteristics at the crash site are simulated by CTM 0-5 minutes prior 

to a crash.  Then, crash prediction models are developed using the binary logistic regression with 

traffic flow characteristics of simulated traffic data.  The model developed with simulated traffic 

data is compared with that developed with observed traffic data collected from physical stations 

to assess the performance of crash models with simulated traffic.    

 Chapter 6 proposes a lane-specific cell transmission model (LSCTM) to simulate lane-

specific traffic data for crash modeling.  A LSCTM is developed to account for heterogeneous 

traffic conditions across lanes. The LSCTM illustrates both discretionary lane-changing (DLC) 

and mandatory lane-changing (MLC) activities.  A case study is performed to demonstrate the 

method for modeling freeway crashes. 

 Chapter 7 develops a crash prediction and prevention application (CPPA) that combines 

both the RTCPM and the performance assessment tool to help detect crash-prone traffic 
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conditions, distribute crash warnings, and evaluate traffic control countermeasures before their 

deployment.  The proposed application is tested in a case study with variable speed limit (VSL) 

strategies for demonstration. 

 Chapter 8 provides the conclusions and contributions of this dissertation. 

1.5 References 

Abdel-Aty, M., Cunningham, R., Gayah, V., & Hsia, L. (2008). Dynamic Variable Speed Limit 
Strategies for Real-Time Crash Risk Reduction on Freeways. Transportation Research 
Record: Journal of the Transportation Research Board, 2078, 108-116. 
doi:10.3141/2078-15 

Abdel-Aty, M., & Pande, A. (2005). Identifying crash propensity using specific traffic speed 
conditions. Journal of safety research, 36(1), 97-108. doi:10.1016/j.jsr.2004.11.002 

Abdel-Aty, M., Pande, A., Lee, C., Gayah, V., & Santos, C. D. (2007). Crash Risk Assessment 
Using Intelligent Transportation Systems Data and Real-Time Intervention Strategies to 
Improve Safety on Freeways. Journal of Intelligent Transportation Systems, 11(3), 107-
120. doi:10.1080/15472450701410395 

Abdel-Aty, M., & Pemmanaboina, R. (2006). Calibrating a real-time traffic crash-prediction 
model using archived weather and ITS traffic data. IEEE Transactions on Intelligent 
Transportation Systems, 7(2), 167-174. doi:10.1109/TITS.2006.874710 

Abdel-Aty, M., Uddin, N., & Pande, A. (2005). Split models for predicting multivehicle crashes 
during high-speed and low-speed operating conditions on freeways. Transportation 
Research Record: Journal of the Transportation Research Board(1908), 51-58.  

Abdel-Aty, M., Uddin, N., Pande, A., Abdalla, F., & Hsia, L. (2004). Predicting freeway crashes 
from loop detector data by matched case-control logistic regression. Transportation 
Research Record: Journal of the Transportation Research Board(1897), 88-95.  

Abdel-Aty, M. A., Hassan, H. M., Ahmed, M., & Al-Ghamdi, A. S. (2012). Real-time prediction 
of visibility related crashes. Transportation Research Part C: Emerging Technologies, 
24, 288-298.  

Chen, Z., Qin, X., & Shaon, M. R. R. (2017). Modeling Lane-change Related Crashes with Lane-
specific Real-time Traffic and Weather Data. Journal of Intelligent Transportation 
Systems(just-accepted).  

Hossain, M., & Muromachi, Y. (2012). A Bayesian network based framework for real-time crash 
prediction on the basic freeway segments of urban expressways. Accident Analysis & 
Prevention, 45, 373-381. doi:10.1016/j.aap.2011.08.004 



 
 

13 
 

Lee, C., Abdel-Aty, M., & Hsia, L. (2006). Potential real-time indicators of sideswipe crashes on 
freeways. Transportation Research Record: Journal of the Transportation Research 
Board(1953), 41-49.  

Lee, C., Hellinga, B., & Saccomanno, F. (2003). Real-time crash prediction model for 
application to crash prevention in freeway traffic. Transportation Research Record: 
Journal of the Transportation Research Board(1840), 67-77.  

Li, Z., Ahn, S., Chung, K., Ragland, D. R., Wang, W., & Yu, J. W. (2014). Surrogate safety 
measure for evaluating rear-end collision risk related to kinematic waves near freeway 
recurrent bottlenecks. Accident Analysis & Prevention, 64, 52-61.  

Li, Z., Li, Y., Liu, P., Wang, W., & Xu, C. (2014). Development of a variable speed limit 
strategy to reduce secondary collision risks during inclement weathers. Accident Analysis 
& Prevention, 72, 134-145. doi:10.1016/j.aap.2014.06.018 

Li, Z., Liu, P., Wang, W., & Xu, C. (2014). Development of a Control Strategy of Variable 
Speed Limits to Reduce Rear-End Collision Risks Near Freeway Recurrent Bottlenecks. 
IEEE Transactions on Intelligent Transportation Systems, 15(2), 866-877. 
doi:10.1109/TITS.2013.2293199 

Li, Z., Liu, P., Xu, C., & Wang, W. (2016). Optimal Mainline Variable Speed Limit Control to 
Improve Safety on Large-Scale Freeway Segments: Optimal mainline variable speed 
limit. Computer-Aided Civil and Infrastructure Engineering, 31(5), 366-380. 
doi:10.1111/mice.12164 

NHTSA. (2016). 2015 Motor Vehicle Crashes: Overview. Traffic safety facts research note, 
2016, 1-9.  

Oh, C., Park, S., & Ritchie, S. G. (2006). A method for identifying rear-end collision risks using 
inductive loop detectors. Accident Analysis & Prevention, 38(2), 295-301.  

Pande, A., & Abdel-Aty, M. (2006a). Assessment of freeway traffic parameters leading to lane-
change related collisions. Accident Analysis & Prevention, 38(5), 936-948. 
doi:10.1016/j.aap.2006.03.004 

Pande, A., & Abdel-Aty, M. (2006b). Comprehensive analysis of the relationship between real-
time traffic surveillance data and rear-end crashes on freeways. Transportation Research 
Record: Journal of the Transportation Research Board(1953), 31-40.  

Pande, A., & Abdel-Aty, M. (2006c). Comprehensive analysis of the relationship between real-
time traffic surveillance data and rear-end crashes on freeways. Transportation Research 
Record: Journal of the Transportation Research Board, 1953(1), 31-40.  

Pande, A., & Abdel‐Aty, M. (2008). A computing approach using probabilistic neural networks 

for instantaneous appraisal of rear‐end crash risk. Computer‐Aided Civil and 
Infrastructure Engineering, 23(7), 549-559.  



 
 

14 
 

Qu, X., Wang, W., Wang, W., Liu, P., & Noyce, D. A. (2012). Real-time prediction of freeway 
rear-end crash potential by support vector machine. Paper presented at the 
Transportation Research Board 91st Annual Meeting. 

Sun, J., & Sun, J. (2015). A dynamic Bayesian network model for real-time crash prediction 
using traffic speed conditions data. Transportation Research Part C: Emerging 
Technologies, 54, 176-186. doi:10.1016/j.trc.2015.03.006 

Sun, J., Sun, J., & Chen, P. (2014). Use of Support Vector Machine Models for Real-Time 
Prediction of Crash Risk on Urban Expressways. Transportation Research Record: 
Journal of the Transportation Research Board, 2432, 91-98. doi:10.3141/2432-11 

Xu, C., Liu, P., Wang, W., & Li, Z. (2014). Identification of freeway crash-prone traffic 
conditions for traffic flow at different levels of service. Transportation Research Part A: 
Policy and Practice, 69, 58-70. doi:10.1016/j.tra.2014.08.011 

Xu, C., Wang, W., & Liu, P. (2013). A genetic programming model for real-time crash 
prediction on freeways. IEEE Transactions on Intelligent Transportation Systems, 14(2), 
574-586.  

Zheng, Z., Ahn, S., & Monsere, C. M. (2010). Impact of traffic oscillations on freeway crash 
occurrences. Accident Analysis & Prevention, 42(2), 626-636. 
doi:10.1016/j.aap.2009.10.009 

 



 
 

15 
 

CHAPTER 2 LITERATURE REVIEW 

This chapter presents a comprehensive review of real-time crash prediction studies and relevant 

CTM studies that provide information regarding recent CTM improvements and their 

applications in traffic management.  The first section summarizes the characteristics, strengths, 

and deficiencies of the state-of-the-art research efforts that investigate the relationships between 

crash risk and real-time traffic along with operational factors.  The second section explores the 

improvements of CTMs in terms of how they are applied and their ability to generate more 

reliable traffic simulation. 

2.1 Overview of Real-time Crash Prediction 

Oh et al. (Oh, Oh, Ritchie, & Chang, 2001) and Golob and Recker (Golob & Recker, 2001) were 

the first to analyze crash patterns based on real-time traffic flow.  Since the early 2000s, 

substantial research has been devoted to incident detection and traffic management due to the 

emergence of ATIS; however, little research involved incident prevention.  In response, Oh et al. 

(Oh et al., 2001) decided to measure accident likelihood using real-time traffic data from ILDs.  

Their study is based on the assumption that the disruptive traffic, represented by high temporal 

and spatial variation in traffic parameters, contributes to accidents.  Two traffic conditions were 

defined in their study: normal condition (a 5-minute period 30 minutes before a crash) and 

disruptive condition (a 5-minute period right before a crash).  The authors aggregated 10-second 

traffic flow, speed, and occupancy data into 5-minite intervals and derived the mean and standard 

deviation of these three factors as indicators.  Speed variation was found to be the best indicator 

of a disruptive condition that contributes to crash occurrence.  A real-time application that 

dynamically monitors the crash likelihood was proposed, and its performance showed the 

potential for identifying crash-prone conditions using real-time traffic data. 
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 In traditional safety studies, the relationship between crash rates and highly aggregated 

traffic data (e.g., daily or hourly traffic counts) is a common subject.  Golob and Recker (Golob 

& Recker, 2001) proposed research to solve two outstanding problems in such studies – 

argument averaging and function averaging.  Argument averaging is the use of average traffic 

flow over a long period rather than the measure of traffic data just prior to an accident.  Function 

averaging relates to the use of the same functions for all types of collisions under all conditions 

(e.g., weather and lighting conditions).  Nonlinear canonical correlation analysis (NLCCA) was 

applied to investigate the relationship between three sets of variables.  The first set included one 

variable defining the weather and lighting condition at the time of crash; the second set consisted 

of three accident characteristics: collision type, crash location, and crash severity; the third set 

comprised real-time traffic flow variables.  Real-time traffic flow variables were obtained by first 

aggregating 30-s lane-specific volume and speed data collected from the ILD station nearest to 

each crash before the crash occurrence and then applying principal component analysis to the 

aggregated variables.  When controlling for weather and lighting conditions, the authors found 

that collision type is the best-explained accident characteristic related to median speed and left- 

and interior-lane speed variation, and that crash severity is influenced more by volume than by 

speed. 

 Inspired by both aforementioned groundbreaking articles, a large number of studies have 

been conducted to develop RTCPMs that identify real-time crash-prone traffic patterns and 

quantify their effects in crash forecasting.  A preponderance of these studies used traffic data 

collected from ILDs since this data has been proven a useful data source and the stations are 

widely available and accessible.  Other popular data sources utilized in real-time safety studies 

include video surveillance and Automatic Vehicle Identification (AVI) sensors.  Video 
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surveillance traces all vehicles passing the coverage area via video footage, and AVI sensors 

collect the passage time of vehicles with AVI tags passing consecutive AVI tag readers. 

 Video surveillance allows individual vehicle trajectories to be extracted and derived to 

generate disaggregated traffic characteristics such as speed and time headway.  Such data can 

provide a more explicit view of how vehicles interact before the crash occurrence.  ILD data-

based studies relate crash likelihood to aggregated traffic characteristics (e.g., variation in speed), 

whereas video surveillance data research can connect crash propensity to the probability of a 

vehicle failing to make evasive movements in order to avoid a collision based on the vehicle 

kinematics and its surrounding vehicles.  Although several studies based on surveillance videos 

have discovered meaningful findings (Chatterjee & Davis, 2016; Davis & Swenson, 2006; 

Hourdos, Garg, & Michalopoulos, 2008; Hourdos, Garg, Michalopoulos, & Davis, 2006), video 

surveillance has limitations that hinder its wide use.  Due to the high cost of setting up video 

cameras, video surveillance covers only limited segments, making it difficult to collect a 

sufficient size of crashes for analysis.  Moreover, video requires intensive labor to retrieve and 

process vehicle trajectories.  

 AVI sensors collect the travel time of a vehicle equipped with a tag for each AVI 

segment and then derive the average traveling speed.  Traffic data collected by AVI sensors have 

been utilized in several real-time safety studies (M. Abdel-Aty, Pande, Lee, Gayah, & Santos, 

2007; M. A. Abdel-Aty, Hassan, & Ahmed, 2012; Ahmed & Abdel-Aty, 2013; Al-Deek, 

Venkata, & Ravi Chandra, 2004; Hosmer Jr & Lemeshow, 2004; Shi & Abdel-Aty, 2015; Shi, 

Abdel-Aty, & Yu, 2016; Yu & Abdel-Aty, 2013).  However, one critical issue of this data source 

is that the sensors can record only vehicles with AVI tags.  Therefore, the flow rate and speed 

data are derived based on a sample of vehicles, and the sample may not be representative.  In 
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addition, AVI sensors cannot collect the occupancy information which has been proven to be a 

critical variable in predicting crash occurrence in real-time safety studies (M. Abdel-Aty & 

Pande, 2006; M. Abdel-Aty, N. Uddin, A. Pande, F. Abdalla, & L. Hsia, 2004a; Xu, Liu, & 

Wang, 2016).  Hence, RTCPMs developed with AVI data may be biased given unreliable flow 

and speed data and unavailable occupancy data. 

 Due to the limitations of data collected by video surveillance and AVI sensors, ILD data 

are selected as the data source in this dissertation, and only real-time safety studies using ILD 

data are reviewed in the following section.  Various aspects of those studies are discussed, 

including data specification, study design, methodologies, crash type, and risk factors.  The 

concept of crash/non-crash cases was adopted in almost all real-time crash studies.  A crash case 

represents the traffic conditions prior to a crash, while a non-crash case represents normal traffic 

conditions. 

2.1.1 Traffic Detector Data Specification 

ILDs record three indexes: volume, occupancy, and speed within a short period of time (e.g., 10 

s, 20 s, 30 s and 1 min).  Most previous studies have aggregated raw data into a longer period 

(e.g., 2 min and 5 min) and calculated the mean and variation of the three indexes following the 

procedure in (Oh et al., 2001) and (Golob & Recker, 2001).  Time duration and the lead time 

before a crash occurrence define the time interval within which the data is aggregated.  For 

example, the time interval would be the 5-10-min interval before crash occurrence if the time 

duration is 5 min and the lead time is 5 min.  Researchers aim to identify crash-prone patterns 

based on the data within time intervals prior to crashes. 

 As pointed out in a review paper on real-time crash studies by Roshandel et al. 

(Roshandel, Zheng, & Washington, 2015), different time durations for data aggregation would 
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significantly impact the study quality and modeling results; however, a guide for selecting 

appropriate time durations is lacking in most studies.  Similarly, lead time would be of the same 

importance as time duration.   

 The time interval defined by the lead time and duration varies across studies based on 

whether they apply to crash detection or crash prevention.  Crash detection aims to identify the 

most relevant and significant factors in maximizing the success of crash prediction. Crash 

prevention aims to identify crash-prone conditions and prevent crashes, and is more time-

sensitive because it takes time to deploy the measures necessary to avoid negative consequences.  

Some crash detection studies used the time interval right before the crash occurred, or a lead time 

of 0 min (Lee, Hellinga, & Saccomanno, 2003b; Lee, Saccomanno, & Hellinga, 2002; Oh et al., 

2001; Zheng, Ahn, & Monsere, 2010), as the traffic conditions in the period right before the 

crash occurrence is most likely to be associated with the crash occurrence.  This reasoning is 

supported by a study that tested different time intervals (M. Abdel-Aty et al., 2004a).  Lee et al. 

(Lee et al., 2003b) defined the optimal time duration as that which maximizes the difference in 

crash precursor values between crash and non-crash cases.  The authors also found that 2, 3 and 

5 min are the optimal time durations for three crash precursors - longitudinal variation of speed, 

average upstream and downstream speed difference, and average density.  Zheng et al. (Zheng et 

al., 2010) investigated the impact of the traffic oscillation on the crash occurrence and selected 

10 min as the optimal time duration because it was found to be the typical duration of traffic 

oscillation.   

 Crash prevention studies are intended to develop practical RTCPMs that can be applied 

in the real world.  The lead times for these studies are not 0 min to allow enough time for taking 

prevention measures; therefore, both the duration and the lead time need to be determined. Only 
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a few studies have proposed approaches for choosing time intervals.  Abdel-Aty (M. Abdel-Aty 

et al., 2004a) and Xu et al. (Xu, Liu, Wang, & Li, 2012) compared different 5-min slices (i.e., 0-

5-min, 5-10-min, …, 25-30-min) and found that the 5-10-min slice is the most appropriate in 

terms of performance and practicality.  Pande et al. (A. Pande, Abdel-Aty, Hsia, & Trb, 2005) 

compared a 3-min slice (i.e., 0-3-min, 3-6-min,…, 12-18-min) and a 5-min slice (i.e., 0-5-min, 5-

10-min, …, 25-30-min), finding that data aggregated into 5-min slices shows a stronger 

association with crash occurrence than 3-min slices.  Additionally, among 5-min slices, 5-10-min 

and 10-15-min are preferred as they provide superior modeling results and are more practical.  In 

contrast, most of the other studies only arbitrarily selected time duration, most commonly using 

the 5-10-min interval prior to the crash occurrence.   

 Roshandel et al. pointed out that ILD data collected far from crash locations (Roshandel 

et al., 2015) may be limited because although ILD stations can be equally spaced (e.g., 0.5 mi 

apart in some studies) (M. Abdel-Aty & Pande, 2005; M. Abdel-Aty & Pemmanaboina, 2006; 

M. Abdel-Aty et al., 2004a; Anurag Pande & Abdel-Aty, 2006b), spacing can vary significantly 

within and across studies.  For example, the spacing ranges from 0.2 to 1.3 mi with an average of 

0.5 mi in (Xu, Liu, & Wang, 2016), from 0.15 to 1.68 mi with an average of 0.5 mi in (Xu, 

Tarko, Wang, & Liu, 2013) and from 0.34 to 2.37 mi with an average of about 1.06 mi in (Zheng 

et al., 2010).  Studies have shown that the sensor location may affect the estimation of the traffic 

flow (Danczyk & Liu, 2011; Hong & Fukuda, 2012; Kwon, Petty, & Varaiya, 2007; H. X. Liu & 

Danczyk, 2009).  Hong and Fukuda (Hong & Fukuda, 2012) studied the impacts of the ILD 

station count, spacing, and layout on the estimation accuracy of travel speed, finding that even 

with the same station count, one layout provided a balance of under- and over-estimation of 

speed across stations, while a different one reported over-estimated speed at most stations.  The 
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findings also showed that distant sensors could lead to over-estimation of travel speed.  In 

addition, Kwon et al. (Kwon et al., 2007) observed that the accuracy of measuring traffic 

congestion drops as the distance between ILD sensors increases.  Liu and Danczyk (H. X. Liu & 

Danczyk, 2009) found that the sensor location had an impact on the accurate detection of 

bottlenecks, and proposed a method to locate sensors for bottleneck detection optimally.  The 

findings suggest that station spacing and station layout may affect the estimation of traffic flow 

characteristics which are key input variables of RTCPMs.   

 Based on the above discussion, one can conclude that data for real-time safety studies 

involving crash detection and crash prevention are susceptible to both temporal and spatial 

issues.  Temporal issues arise due to a lack of rigor in selecting the appropriate time intervals 

before the crash occurrence. Spatial issues arise due to different spacing between ILD stations 

within studies and varying layouts of ILD stations across studies. 

2.1.2 Study Design of Real-time Crash Prediction 

It takes both crash and non-crash events to develop RTCPMs and identify crash-prone patterns.  

A crash case involves the traffic conditions prior to a crash occurrence and is restricted by the 

crash.  However, a non-crash case involves crash-free traffic conditions and could include any 

traffic conditions during crash-free days.   

 Two primary study designs – matched the case-control design and unmatched design – 

determine how non-crash cases are collected.  The matched case-control design is an efficient 

means of studying rare diseases, and is widely applied in epidemiological studies (Niven, 

Berthiaume, Fick, & Laupland, 2012).  Abdel-Aty (M. Abdel-Aty et al., 2004a) introduced this 

study design to real-time crash studies.  The matched case-control design compares the level of 

risk factors in two similar groups, one that includes the outcome and one that does not (Cornfield 
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et al., 1959).  In a matched case-control design, each crash is considered as a “case”, and non-

crash cases are selected as “controls” by matching confounding factors (i.e., location and time).  

Confounding factors are correlated with traffic conditions and contribute to the crash occurrence.  

One example of a matched case-control design involves a crash occurring at 11:01 a.m. on Jan 

17st, 2012 that uses traffic measurements from 10:56 to 11:01 a.m. (0-5-min period before the 

crash time) on the same day from its immediately upstream and downstream ILD stations. 

Traffic measurements are then collected from the same stations during the same period on crash-

free days in 2012 as controls.  The matched case-control design is constructed to remove the 

noise of confounding factors and investigate the risk factors of interest.  The matched case-

control design is expected to increase the accuracy of variable estimates in RTCPMs by 

controlling the confounding bias.  This study design can greatly reduce the required size of non-

crash cases.  Due to the efficiency of the matched case-control study design, most real-time crash 

studies adopt this design for data collection (M. Abdel-Aty & Pande, 2005; M. Abdel-Aty & 

Pemmanaboina, 2006; M. Abdel-Aty, Uddin, & Pande, 2005; M. Abdel-Aty et al., 2004a; A. 

Pande et al., 2005; Xu et al., 2012; Xu, Liu, Wang, & Li, 2014; Zheng et al., 2010). 

 In an unmatched study design, non-crash cases are randomly selected.  The safety 

impacts of all factors, including risk factors (e.g., traffic flow variables) and confounding factors 

(e.g., geometric design) are estimated based on a large sample.  Compared to the matched case-

control design, the unmatched design does not require matching confounding factors, and it 

therefore requires less effort to identify non-crash cases.  However, a sufficiently large sample 

size is required to ensure accurate estimation, especially when the variable number is high 

(Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996).  This drawback may be the reason why 

only a few studies have employed the unmatched study design (Anurag Pande & Abdel-Aty, 
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2006a, 2006b; Xu, Liu, & Wang, 2016; Xu, Wang, & Liu, 2013).  Unlike the matched case-

control study design, the unmatched design allows for the estimation of both risk factors and 

confounding factors. 

 Although the matched case-control design seems superior, there has been no systematic 

comparison between these two until recently.  Xu et al. (Xu, Liu, & Wang, 2016) proposed a 

measure of the model prediction performance called “predictability” which compared the 

predictability of the two designs.  The authors found that given a predefined specificity (the 

proportion of crash cases that are correctly classified), the predictability of the RTCPM 

developed with unmatched data always outperformed that of the matched case-controlled data.  

This empirical finding is enlightening, but may be data dependent.  Additional research is needed 

to evaluate the two study designs.  

2.1.3 Methodology 

Specific techniques are required to sort out the relationships between the relatively low number 

of crashes and the massive volume of real-time traffic data.  In general, the approaches to real-

time crash prediction can be categorized as either statistical regression models or data mining 

techniques.  Statistical regression models can build clear connections between crash probability 

and traffic flow variables, which is vital to helping develop proactive safety approaches.  Other 

than two early studies which used the log-linear model (Lee et al., 2003b; Lee et al., 2002), 

almost all later studies used logistic models.  The two main types of logistic models are 

conditional logistic and regular logistic.  The conditional logistic model can be applied only to 

the data collected using the matched case-control study, while the regular logistic model can be 

applied even when the data are randomly collected.  The matched case-control study design 

controls the confounding factors of non-crash cases, but the conditional logistic model does not 
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provide estimates of those confounding factors and cannot predict the crash risk of a given traffic 

case.  For a given traffic case, its matched non-crash cases are first selected and then used to 

calculate the predicted odds ratio of crash risk based on the conditional logistic modeling results.  

A threshold value of odds ratio can be established to classify crashes from non-crashes.  A 

regular logistic model gives estimates of all parameters in the model and can be directly applied 

to predict the crash risk of a given case.  Crashes can then be classified based on a pre-

established threshold value.  Since most real-time crash studies adopted the matched case-control 

design, the conditional logistic model is more widely applied (M. Abdel-Aty & Pande, 2005; M. 

Abdel-Aty & Pemmanaboina, 2006; M. Abdel-Aty et al., 2005; M. Abdel-Aty et al., 2004a; A. 

Pande et al., 2005; Xu et al., 2012, 2014; Zheng et al., 2010) than the regular logistic model 

(Anurag Pande & Abdel-Aty, 2006a; Xu, Liu, & Wang, 2016; Xu, Wang, et al., 2013).   

 Contrary to statistical regression models, data mining techniques do not identify explicit 

relationships between crash probability and traffic flow variables.  Various data mining 

techniques such as the support vector machine (SVM) (Jian Sun, Sun, & Chen, 2014; Yu & 

Abdel-Aty, 2013), neural networks (NN) (Anurag Pande & Abdel-Aty, 2006a, 2006b), the 

genetic algorithm (Xu, Wang, et al., 2013) and the Bayesian network (Hossain & Muromachi, 

2012; Jie Sun & Sun, 2015) have been applied in real-time safety studies.  These data mining 

methods treat the crash prediction problem as a classification problem, and their aim is to 

achieve the optimal classification accuracy.  The SVM constructs a high-dimensional space 

based on factors contributing to the crash outcome (e.g., traffic flow variables) and identifies the 

optimal hyperplane to separate crashes from non-crashes (Jian Sun et al., 2014; Yu & Abdel-Aty, 

2013).  The NN is comprised of multiple layers as shown in Figure 2-1, which presents a three-

layer NN.  The first layer represents the vector of contributing factors, and different weight 
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vectors are applied to these factors to get the subsequent layers until the output layer is computed 

to get the classification results (i.e., crash or non-crash) (Anurag Pande & Abdel-Aty, 2006a, 

2006b).  Although data mining methods have high prediction performance (Hossain & 

Muromachi, 2012; Jie Sun & Sun, 2015; Jian Sun et al., 2014; Xu, Wang, et al., 2013) and can 

accommodate correlation within variables for speed, flow, and occupancy (Hossain & 

Muromachi, 2012), they cannot provide explicit connections between crash probability and 

contributing factors.  It is therefore difficult to interpret the crash mechanism and develop 

effective crash prevention countermeasures.   

 

Figure 2-1 Illustration of neural network. 

2.1.4 Crash Scenarios and Risk Factors 

Various crash scenarios involving difference crash types (e.g., rear-end crashes, lane-change 

related crashes) and traffic conditions (e.g., different speed regimes, different traffic states) have 
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been investigated in real-time safety studies.  Table 2-1 summarizes the studies that have 

reviewed different crash scenarios and their associated risk factors. 

 Most real-time crash studies analyze total crashes, and some focus on specific crash 

scenarios.  Table 2-1 shows that risk factors vary across crash scenarios, suggesting that the 

crash mechanism may be different depending on the scenario, and it is therefore better to model 

crash scenarios separately.  The table also indicates that different crash prevention strategies 

should be implemented for different scenarios.  Although different crash scenarios are associated 

with different risk factors, traffic variations such as speed and volume stand out in most 

scenarios, implying that traffic stability is a significant factor contributing to the crash which 

needs to be managed through traffic control strategies.  

Table 2-1 Summary of Real-Time Safety Studies by Crash Scenario 

Crash Scenarios Studies Risk Factors 

Total crashes Oh et al. (Oh et al., 2001), 

Lee et al. (Lee, Hellinga, & 

Saccomanno, 2003a), Abdel-

Aty et al. (M. Abdel-Aty, N. 

Uddin, A. Pande, F. M. 

Abdalla, & L. Hsia, 2004b), 

Abdel-Aty and Pande (M. 

Abdel-Aty & Pande, 2006), 

Abdel-Aty and 

Pemmanaboina (M. Abdel-

Average speed, Speed variation, Speed 

difference between upstream and 

downstream stations, Density variation, 

Average volume 
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Aty & Pemmanaboina, 

2006), Xu et al. (Xu et al., 

2012), Yu and Abdel-Aty 

(Yu & Abdel-Aty, 2013), Xu 

et al. (Xu, Liu, & Wang, 

2016) 

Rear-end crashes Pande and Abdel-Aty 

(Anurag Pande & Abdel-Aty, 

2006b) 

In low-speed regime: Average 

occupancy, Speed variation 

In high-speed regime: Average speed, 

Average volume 

Lane-change 

related crashes 

Lee et al. (Lee, Abdel-Aty, & 

Hsia, 2006), Pande and 

Abdel-Aty (Anurag Pande & 

Abdel-Aty, 2006a) 

Average speed, Speed variation, Volume 

variation, Occupancy difference between 

adjacent lane  

Visibility related 

crashes 

Abdel-Aty et al. (M. A. 

Abdel-Aty, Hassan, Ahmed, 

& Al-Ghamdi, 2012) 

Average speed, Coefficient of variation* 

(CV) in speed 

Secondary 

crashes 

Xu et al. (Xu, Liu, Yang, & 

Wang, 2016) 

Average volume, Average speed, 

Occupancy variation, Volume difference 

between adjacent lanes 

Congestion 

related crashes 

Zheng et al. (Zheng et al., 

2010) 

Speed variation 
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Crashes in 

different speed 

regimes 

Abdel-Aty et al. (M. Abdel-

Aty et al., 2005) 

In low-speed regime: Average 

occupancy, Speed variation, CV in speed 

In high-speed regime: Average 

occupancy, Average volume, Volume 

variation 

Crashes in 

different traffic 

states 

Xu et al. (Xu et al., 2012), Li 

et al. (Z. B. Li, Wang, Chen, 

Liu, & Xu, 2013), Sun and 

Sun (Jie Sun & Sun, 2015) 

F-F**: Average occupancy 

F-C**: Average occupancy, Average 

speed 

C-F**: Average speed, Speed variation 

C-C**: Average occupancy, Speed 

variation 

Crashes in 

different levels 

of service (LOS) 

Xu et al. (Xu et al., 2014) LOS A&B: First order autocorrelation of 

speed, Occupancy difference between 

two periods 

LOS C: Cross correlation of occupancy 

between left- and right-most lane 

LOS D: Cross correlation of occupancy 

between left- and right-most lane, 

Occupancy difference between two 

periods 

LOS E: Average volume, Volume 

variation 
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LOS F: Volume variation, Cross 

correlation of occupancy between left- 

and right-most lane 

* Coefficient of variation = Standard deviation/Average. 

** Represents upstream traffic state-downstream traffic state with F for free flow and C for 

congestion. 

2.2 Cell Transmission Model 

Traffic simulation models have increasingly been used to examine the effects of different 

intelligent transportation systems (ITS) on traffic flow.  Two main types of traffic simulation 

models exist: microscopic simulation models and macroscopic simulation models.  Microscopic 

models simulate the movements of individual vehicles, while macroscopic models simulate the 

evolvement of traffic flows.  Microscopic simulation software such as VISSIM and PARAMICS 

has been applied to evaluate the safety impacts of various traffic control strategies, including 

variable speed limit (VSL) and ramp metering (M. Abdel-Aty, Cunningham, Gayah, & Hsia, 

2008; M. Abdel-Aty, Dilmore, & Dhindsa, 2006; M. Abdel-Aty et al., 2007; Allaby, Hellinga, & 

Bullock, 2007; Lee, Hellinga, & Saccomanno, 2006).  These studies developed RTCPMs using 

ILD data to predict the crash risk before and after the deployment of control strategies to assess 

their safety effects.  However, the ILD data cannot be efficiently used to calibrate microscopic 

simulation models.  Driver behavior parameters like target headway and reaction time are usually 

empirically adjusted through multiple trials with the intent to reflect the real traffic flow as 

accurately as possible.  It is not guaranteed that these parameters are optimal.  Simulated 

microscopic traffic cannot yet be used by RTCPMs after the model is calibrated, as it needs to 

first be aggregated into microscopic traffic flow variables such as the average flow, speed, and 
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occupancy.  The whole procedure reveals a gap between RTCPMs and microscopic simulation 

models.   

 In contrast, macroscopic simulation models are compatible with RTCPMs.  A 

macroscopic simulation model, CTM, has been applied for assessing VSL regarding its safety 

effect (Z. Li, Liu, Wang, & Xu, 2014; Z. Li, Liu, Xu, & Wang, 2016).  In these studies, ILD data 

were used to develop RTCPMs and calibrate the simulation model through an analytical 

approach.  The calibrated simulation model generated simulated macroscopic traffic flow data 

which can be easily used as the input of RTCPMs.  Therefore, the macroscopic simulation 

model, CTM, was selected as the simulation tool in this dissertation.   

 A CTM can take aggregated data (e.g., flow and density) from detector stations as input 

variables to simulate traffic conditions at unmeasured collections.  A highway segment is first 

divided into several user-defined cells.  As shown in Figure 2-2, a segment is divided into four 

cells with two ILD stations at the beginning of Cell 1 and the end of Cell 4.  The CTM takes data 

from these two stations as inputs and estimates traffic conditions of locations without ILD 

stations.  Equivalently, one can consider that the CTM instruments virtual loop detector stations 

function exactly as physical detector stations.  CTM makes it possible for traffic conditions from 

virtual detectors close to the crash location to be used to develop RTCPMs as opposed to those 

from physical detector stations located farther away.  For example, if a crash happens in Cell 2 as 

shown in Figure 2-2, traditional studies would collect traffic data from physical Station A and E, 

which are far away from the crash location.  If the segment is instrumented with virtual stations, 

traffic conditions can be retrieved from virtual Station B, C, and D which are much closer to the 

crash location, and may better reflect the crash-prone traffic conditions.   
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Figure 2-2 Illustration of a CTM setup. 

 Virtual stations can be placed anywhere without any restriction, so one unique layout of 

equally spaced virtual stations can be instrumented in different studies, and the developed 

RTCPMs and findings are comparable across studies.  In this way, the spatial gap in traditional 

real-time safety studies can be resolved.  CTM can also help resolve the temporal gap in 

traditional real-time safety studies.  CTM can also be used to simulate future traffic conditions 

with suitable inputs.  Previous crash detection studies using the period right before the crash 

occurrence cannot be applied to prevent crashes due to the lack of buffer time, but simulated 

future traffic conditions generated by CTM can be used by crash detection studies to predict 

crash likelihood for the period after the current moment.  

 In addition to addressing both the temporal and spatial gaps in traditional real-time safety 

studies, CTM can leverage all the development in the CTM field and develop robust applications 

for traffic planning and operations.  A description of CTM and its improvements for more 

accurate traffic estimation are presented, followed by a summary of applications of safety-related 

traffic control strategies (TCSs) in CTM. 

Crash 

E D C 

Cell 1 Cell 2 Cell 3 Cell 4 

Physical Loop Detectors  

Virtual Loop Detectors  
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2.2.1 CTM for Traffic Estimation 

CTM is a macroscopic traffic flow simulation model first proposed by Daganzo (Daganzo, 

1994).  CTM is a discretized framework for solving the Lighthill-Whitham-Richards (LWR) 

Model (Lighthill & Whitham, 1955; Richards, 1956).  It partitions a highway into a series of 

cells and time into discretized time steps.  The traffic density in each cell follows the law of 

conservation, thus evolving based on the relationship defined by the fundamental diagram.   

 CTM introduces the demand (sending flow) and supply (receiving flow) as functions of 

density in each cell.  The flow entering into one cell is determined as the minimum of the 

demand of its upstream cell and the supply of its downstream cell. 

 In CTM, a fundamental diagram governs the flow-density relationship of each cell, and a 

triangular fundamental diagram (FD) (Drake, Schofer, & May Jr, 1967; Munjal, Hsu, & 

Lawrence, 1971) is often used.  A typical FD is shown in Figure 2-3, where �� is the capacity 

flow, �� is the critical density, �� is the jam density, � is the free-flow speed, and � is the 

shockwave speed.   

 

 

 

Figure 2-3 Triangular fundamental diagram. 
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 The density for Cell i without on- or off-ramps is determined by Equation 2-1: 

��(� + 1) = ��(�) +
�

��
(��(� + 1) − ��(�)) (2-1) 

where � is the time step index, ��(�) is the density of Cell i during the kth time step, � is the 

length of the time step, �� is the length of Cell i, and ��(�) is the flow rate into Cell i during the 

kth time step.  The flow rate is determined by the sending and receiving functions.  For Cell i, the 

sending function ��(�) represents the maximum flow that may be supplied during the kth time 

step, and the receiving function ��(�) represents the maximum flow that may be received.  The 

two functions are determined in Equations 2-2 and 2-3, respectively: 

��(�) = min (����(�), ��,�) (2-2) 

��(�) = min (��,�, ��(��,� − ��(�))) (2-3) 

The entering flow rate into Cell i, ��(�), is determined by: 

��(�) = min (����(�), ��(�)) (2-4) 

 CTM can capture many important traffic phenomena including queue formation and 

dissipation, as well as shockwave propagation (Daganzo, 1994).  CTM can take aggregated data 

such as flow and density as inputs meaning it operates sufficiently with aggregated data 

measured from ILD stations and can be applied to simulate traffic conditions at unmeasured 

locations.  A variety of CTM variants have been developed, based on the original, to improve the 

accuracy of traffic estimation.   

 Muñoz et al. (Muñoz, Sun, Horowitz, & Alvarez, 2003) proposed a piecewise-linearized 

version of CTM, the switching-mode model (SMM).  The SMM switches between five sets of 

linear difference equations, referred to as modes, according to measured mainline boundary data 

as inputs and the congestion status of cells in a roadway section.  Its linear structure simplifies 

the control analysis, design, and data estimation.  A 2-mile section of I-210 West with three 
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mainline ILD stations was used to observe morning rush-hour periods over several days to test 

the performance of both SMM and CTM in traffic data estimation.  The traffic data from the first 

and last stations were used as inputs to both models, and the density at the second station was 

estimated by two models and compared with observed data.  It showed that both models made 

approximately a 13% mean percentage error on average over all test days for estimating density.  

Sun et al. (X. Sun, Muñoz, & Horowitz, 2003) incorporated mixture Kalman filtering into SMM 

to simplify its logical mode-selection rules by considering only two modes instead of five., 

finding that the new model achieved an average of 10% mean percentage error for the density 

estimation. 

 The travel demand can yield some extent of variability, which is regarded as recurrent 

uncertainty or disturbance in traffic flow dynamics (Sumalee, Zhong, Pan, & Szeto, 2011).  

Therefore, CTM needs to be extended to account for those stochastic features of the traffic flow.  

Boel and Mihaylova (Boel & Mihaylova, 2006) proposed a stochastic compositional model 

which extends CTM by defining sending and receiving functions as random variables and 

specifying the dynamics of the average speed in each cell.  The authors considered two extreme 

cases of traffic states - very light traffic and extremely congested conditions.  Vehicles do not 

interact much during very light traffic conditions, so the sending function is defined by a 

binomial distribution.  In contrast, vehicles interact often during extremely congested conditions, 

so the sending function is defined by a Gaussian distribution.  This stochastic model was 

validated with both synthetic data and real data and found to provide a satisfactory performance.  

This model was then improved by incorporating a particle filtering (PF) framework (Mihaylova, 

Boel, & Hegyi, 2007).  Similar to the Monte Carlo simulation, the PF framework can capture the 
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uncertainty of the traffic state by generating multiple samples.  A stochastic component was also 

added to the sending function by Li et al. (Z. Li et al., 2016) to simulate the stop-and-go traffic. 

 Although those CTM variants can handle the uncertain travel demand, they depend on 

determined FDs and therefore fail to capture the uncertain travel supply.  However, it was found 

that the FD can yield large variations due to congestion, driver behavior, and other conditions 

(Kim & Zhang, 2008; J. Li, Chen, Wang, & Ni, 2012; Wang, Li, Chen, & Ni, 2009).  Sumalee et 

al. (Sumalee et al., 2011) proposed the stochastic CTM (SCTM) based on SMM to capture both 

the randomness in travel demand and supply.  In the SCTM, the stochastic demand is 

characterized by random in-flow patterns, and the stochasticity of the sending and receiving 

functions is governed by the random FD parameters such as the free-flow speed, critical density, 

and so on.  In contrast to SMM, the traffic state of each cell in the SCTM is not deterministic but 

stochastic meaning any of the five modes are possible.  The proposed SCTM was validated with 

real data and found to be reliable by achieving an average error rate of approximately 7% error 

rate in density estimation. 

 The CTM variants provide more accurate traffic estimates and reproduce real-world 

traffic phenomena; therefore, these variants can be applied to accurately simulate traffic 

conditions where ILD stations are not available.  As the foundation of simulation data-based 

RTCPMs, accurately simulated traffic data generated by CTM variants warrant the crash 

prediction performance.  CTM can be customized to improve the RTCPMs.  Although weather 

and lighting conditions are not a focus in most CTM improvement studies, these conditions need 

to be taken into account when applying the CTM in real-time safety studies.  Moreover, most 

CTM improvement studies focus on improving the estimation accuracy of the overall traffic such 

as flow or density rather than traffic variation variables (e.g., speed variation and flow variation), 
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which are significant real-time safety-related variables.  The CTM has the potential to consider 

these aspects and better serve real-time safety studies. 

2.2.2 Safety Related Traffic Control Strategies in CTM 

This section summarizes two traffic control strategies (TCSs) – the variable speed limit and ramp 

metering – that have shown promise in improving the safety and have been implemented in the 

CTM framework (including CTM and its variants).  The CTM model is trustworthy in simulating 

TCSs, as it is founded on sound traffic theory (Hadiuzzaman & Qiu, 2013).  It also has other 

attractive features: 1) it is parsimonious as it only needs a few parameters which can be estimated 

both online and off-line; 2) it requires quite low computation effort to predict the traffic variables 

in real-time (Hadiuzzaman & Qiu, 2013). 

 Variable speed limit (VSL) is a traffic control technique that is used to increase mobility 

and reduce crash risks on freeway mainlines.  Unlike typical static speed limit signs, the VSL 

dynamically posts a speed limit based on current traffic, weather, traffic safety level or other 

conditions.  Although the VSL is mainly designed to improve mobility, its effect on safety has 

also been demonstrated. VSL has been reported to reduce the crash risks by 10-80% (M. Abdel-

Aty et al., 2008; M. Abdel-Aty et al., 2006; M. Abdel-Aty et al., 2007; Allaby et al., 2007; Choi 

& Oh, 2016; Hellinga & Mandelzys, 2011; Lee & Abdel-Aty, 2008; Lee, Hellinga, & 

Saccomanno, 2006; Z. Li, Li, Liu, Wang, & Xu, 2014; Z. Li, Liu, et al., 2014; Z. Li et al., 2016).   

 While the effect of VSL on mobility has been extensively evaluated using the CTM 

(Hadiuzzaman & Qiu, 2013; Han, Hegyi, Yuan, & Hoogendoorn, 2017; Han, Hegyi, Yuan, 

Hoogendoorn, et al., 2017; Muralidharan & Horowitz, 2012), limited research has been 

conducted to assess the safety impact of VSL (Z. Li, Liu, et al., 2014; Z. Li et al., 2016).  Li et al. 

(Z. Li, Liu, et al., 2014) developed a VSL control strategy that considers both the travel time and 
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crash risk near freeway recurrent bottlenecks.  The study considered only rear-end collisions, as 

they are the primary crash type on freeways, especially during congestion.  RTCPM was 

proposed to predict the rear-end crash risk using ILD data.  A genetic algorithm (GA) was 

applied to determine the optimal control factors of VSL strategies.  The simulation results 

showed that the VSL control reduced the rear-end crash risk at freeway recurrent bottlenecks by 

approximately 70% in the high demand scenario and approximately 82% in the moderate 

demand scenario.  The same authors (Z. Li et al., 2016) then proposed the VSL control strategy 

in the CTM to reduce both the crash risk and injury severities on large-scale freeway segments.  

The CTM was modified to handle both the capacity drop and the stop-and-go traffic.  Three 

scenarios with various VSL sign placements were evaluated, and the corresponding optimal 

control factors were determined using the GA.  The results showed that the optimal VSL control 

strategy could reduce the crash risk and injury severity by approximately 23% and 15%, 

respectively.     

 Ramp metering is another effective TCS.  It controls the on-ramp vehicle flow allowed to 

enter the freeway to avoid the traffic breakdown due to oversaturation.  Its effectiveness in 

reducing the crash risk has been demonstrated by several studies (Lee, Hellinga, & Ozbay, 2006; 

C. Liu & Wang, 2013; Robinson & Doctor, 1989).  Ramp metering has been proposed in the 

CTM framework, but only its mobility effect has been evaluated (G. Gomes & Horowitz, 2006; 

Gabriel Gomes, Horowitz, Kurzhanskiy, Varaiya, & Kwon, 2008; Muralidharan & Horowitz, 

2012).  Therefore, its safety impact needs to be assessed in the CTM framework using an 

RTCPM. 
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2.3 Summary of Critical Issues 

This chapter provides a summary of existing real-time crash prediction studies and relevant CTM 

studies including recent model improvements and their applications in traffic management.  

Critical issues that need further investigation are summarized below: 

1. Most previous real-time crash studies conducted predictive analysis, and the analysis to 

estimate causal effects of single traffic variables is lacking. 

2. Most previous real-time crash studies did not use the time interval right before the crash 

occurred, though such a time interval has been proven to provide the best prediction 

performance.  The models’ prediction power was further compromised. 

3. Different station layouts within and across real-time crash studies pose doubts on the 

consistency of findings in different studies. 

4. Most studies used traffic data collected directly from loop detector stations nearest to the 

crash location.  However, the distance between the crash location and nearest detector 

stations varies substantially.  It is therefore uncertain how the traffic conditions at stations 

can reflect the actual conditions at the crash location. 

5. Although RTCPMs are more compatible with macroscopic simulation models than 

microscopic simulation models, a very limited number of studies have used macroscopic 

simulation models to evaluate the safety impacts of TCSs.   
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CHAPTER 3 ESTIMATING CAUSAL EFFECTS OF CONTRIBUTING 

FACTORS ON CRASHES  

3.1 Introduction 

The wide deployment of advanced transportation information systems (ATIS) has made the 

collection, storage, and processing of real-time traffic data readily available.  Now researchers 

can gather real-time information pertaining to crash occurrence.  Based on real-time traffic data, 

various real-time crash prediction models (RTCPM) have been proposed to identify the 

contributing factors of crashes.  Crash is usually considered as a binary variable (yes/no) in 

almost all real-time crash prediction studies.  A crash case represents the traffic conditions prior 

to a crash, while a non-crash case represents crash-free traffic conditions.  The traffic condition 

in a short time interval before a crash is determined by reviewing reported crash time and 

location.  Any traffic condition that is unrelated to crashes could be a non-crash case.   

Crashes are rare events and therefore, non-crash cases are large in volume.  Most 

previous studies randomly sampled non-crash cases, either by matched case-control design or 

unmatched design.  The matched case-control design compares the level of risk factors in two 

similar groups, one that includes the outcome and one that does not.  In a matched case-control 

design, each crash is considered as a “case”, and a non-crash case is treated as “control” by 

matching confounding factors that are related to both the crash probability and the traffic 

variables of interest.  The matched case-control design is used to remove the noise of 

confounding factors and investigate the underpinning risk factors.  Although the matched case-

control design is expected to increase the accuracy of variable estimates in a crash prediction 

model, most studies only treated non-traffic variables such as weather, location, and time as 

confounding factors while overlooking the potential confounding effect within traffic variables.  
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Therefore, the true causal effects of one traffic factor would be compromised given the presence 

of other confounding traffic factors.  As a result, the model findings can be biased or inaccurate.   

The objective of this chapter is to measure the causal effects of speed variation on the 

probability of a crash using the propensity score based method.  The propensity score based 

method can eliminate the nuisance of confounding traffic factors related to the traffic factor that 

is being assessed.  This is done by generating a sample of non-crash cases which have similar 

distributions of confounding traffic factors related to the traffic factor of interest.  Then a binary 

logit model will be applied to assess the causal effect of that factor. 

3.2 Literature Review 

3.2.1 Study Design in Traditional Real-Time Crash Studies 

Both crash and non-crash cases are needed to develop RTCPMs and identify crash-prone 

patterns.  A crash case involves the traffic conditions prior to a crash occurrence and is restricted 

by the crash.  A non-crash case involves crash-free traffic conditions and could include any 

traffic conditions during crash-free days.   

 Two primary study designs – matched the case-control design and unmatched design – 

determine how non-crash cases are collected.  The matched case-control design is an efficient 

means of studying rare diseases, and is widely applied in epidemiological studies (Niven, 

Berthiaume, Fick, & Laupland, 2012).  Abdel-Aty (Mohamed Abdel-Aty, Uddin, Pande, 

Abdalla, & Hsia, 2004) introduced this study design to real-time crash studies.  The matched 

case-control design compares the level of risk factors in two similar groups, one that includes the 

outcome and one that does not (Cornfield et al., 1959).  In a matched case-control design, each 

crash is considered as a “case”, and non-crash cases are selected as “controls” by matching 

confounding factors (i.e., location and time).  Confounding factors are correlated with traffic 
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conditions and contribute to the crash occurrence.  One example of a matched case-control 

design involves a crash occurring at 11:01 a.m. on Jan 17st, 2012 that uses traffic measurements 

from 10:56 to 11:01 a.m. (0-5-min period before the crash time) on the same day from its 

immediately upstream and downstream ILD stations. Traffic measurements are then collected 

from the same stations during the same period on crash-free days in 2012 as controls.  The 

matched case-control design is constructed to remove the noise of confounding factors and 

investigate the risk factors of interest.  The matched case-control design is expected to increase 

the accuracy of variable estimates in RTCPMs by controlling the confounding bias.  This study 

design can greatly reduce the required size of non-crash cases.  Due to the efficiency of the 

matched case-control study design, most real-time crash studies adopt this design for data 

collection (M. Abdel-Aty & Pande, 2005; Mohamed Abdel-Aty & Pemmanaboina, 2006; 

Mohamed Abdel-Aty, Uddin, & Pande, 2005; Mohamed Abdel-Aty et al., 2004; A. Pande, 

Abdel-Aty, Hsia, & Trb, 2005; Xu, Liu, Wang, & Li, 2012, 2014; Zheng, Ahn, & Monsere, 

2010).   

 In an unmatched study design, non-crash cases are randomly selected.  The safety 

impacts of all factors, including risk factors (e.g., traffic flow variables) and confounding factors 

(e.g., geometric design) are estimated based on a large sample.  Compared to the matched case-

control design, the unmatched design does not require matching confounding factors, and it 

therefore requires less effort to identify non-crash cases.  However, a sufficiently large sample 

size is required to ensure accurate estimation, especially when the variable number is high 

(Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996).  This drawback may be the reason why 

only a few studies have employed the unmatched study design (Anurag Pande & Abdel-Aty, 

2006a, 2006b; Xu, Liu, & Wang, 2016; Xu, Wang, & Liu, 2013).  Unlike the matched case-
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control study design, the unmatched design allows for the estimation of both risk factors and 

confounding factors. 

 Although the matched case-control design is superior to unmatched study design as it 

requires smaller sample size and would provide more accurate estimates, almost all studies only 

control non-traffic variables such as weather, location, and time while overlooking the 

confounding effect within traffic variables.  However, traffic volume, speed, and density are 

correlated with each other.  Then among derived traffic variables such as the average and 

variance of these traffic measures, there may exist confounding variables for one traffic variable.  

These confounding variables could make that traffic variable appear significantly contributing to 

the crash occurrence, but the relationship could be in fact spurious. 

3.2.2 Causal Effect 

Consider a population of subjects, one subject receives a treatment if it is assigned to the treated 

group; or it is untreated if it is assigned to the control group.  The subject would have a response, 

��, if it had been assigned to the treated group; and a response, ��, if it had been assigned to the 

control group.  The causal effect of this treatment is based on the comparison of �� and ��, i.e., 

�� − �� or ��/�� (Rosenbaum & Rubin, 1983).  In fact, one subject can only be assigned to one 

treatment group, and only one response can be observed.  Therefore, the causal effect of the 

treatment cannot be directly measured. 

 An alternative way is through a randomized experiment that randomly assigns subjects to 

different groups.  In a randomized experiment, the responses of two groups can be compared 

because the subjects are likely to be similar in characteristics across groups.  That means a 

randomized experiment removes the nuisance of confounding factors and yields unbiased 

estimates of average treatment effects (Rosenbaum, 2002; Rosenbuam, 2010).  However, a 
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randomized experiment cannot be achieved in many situations such as in observational studies.  

Observational studies do not have control on the assignments of subjects to a treated group or a 

control group and simply collect after-fact data.  Therefore, subjects in a treat group may be very 

different from those in a control group in observational studies.  The causal effect of the 

treatment could be biased in observational studies if other confounding variables are not properly 

controlled for.  As one type of observational study, real-time crash studies also suffers from this 

issue. 

 One method to reduce confounding is through multivariate regression that regresses the 

outcome on the treatment and other confounding variables.  One critical issue of this method is 

that when groups have different variable distributions, the results are dependent on the specific 

form of the model and are determined by unreliable extrapolations (Rubin, 1997).  The extent of 

unreliability could be exacerbated when many confounding variables lack adequate overlap 

(Rubin, 1997).  Another popular method is the propensity score based method that can mimic 

randomized experiments.  The propensity score, �(� = 1|�), denotes the probability that a 

subject is assigned to the treated group (� = 1) given its characteristics (Rosenbaum & Rubin, 

1983).  The covariate distribution of � may be different across the treated group and the control 

group.  However, conditional on the propensity score, the covariate distribution should be similar 

between the two groups (Rosenbaum & Rubin, 1983).  Therefore, the propensity score based 

method is able to reconstruct the treatment and control group so that they are similar in variable 

distributions.  Compared to multivariate regression, the propensity score based method is less 

sensitive to model misspecification (Drake, 1993).  Moreover, the propensity score based method 

is more robust when outcome (e.g., crash occurrences) are rare and treatment is common 

(Braitman & Rosenbaum, 2002).   
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 The application of propensity score based methods in traffic safety is scarce.  The first 

application in traffic safety by Davis (Davis, 2000) applied the propensity score based method to 

account for the site selection bias in estimating the accident reduction factor of safety treatments.  

Other researchers applied the propensity score based method to estimate the Crash Modification 

Factor (CMF) of signal installation (Aul & Davis, 2006), evaluate the effectiveness of child 

safety restraint (Durbin, Elliott, & Winston, 2009), examine the effectiveness of lighting at 

intersections (Sasidharan & Donnell, 2013) and assess the effects of continuous green T 

intersections (Wood & Donnell, 2016).  The propensity score based method applied in most of 

these studies is the propensity score matching which only matches treated subjects and control 

subjects with similar propensity score to generate a sub-population.   

 Another propensity score based method, inverse probability of treatment weighting 

(IPTW) using the propensity score, has gained popularity in observational studies (Austin & 

Stuart, 2015).  IPTW using the propensity score assigns weights based on the propensity score to 

subjects.  This method can create a synthetic sample in which the covariate distribution is 

independent of treatment assignment (Joffe, Ten Have, Feldman, & Kimmel, 2004).  In a recent 

study, this method has been used to assess the safety effectiveness of 20 MPH zones in London 

(Li & Graham, 2016). 

3.3 Methodology 

In this study, a logit model is used to estimate the propensity score: 

�(� = 1|�) =
��� (��)

����� (��)
  (3-1) 

where � is the vector of explanatory covariates and � is the vector of regression coefficients. 

Based on the estimated propensity score, ��(� = 1|�), the IPTW method assigns weight to each 

subject.  The weight for each subject depends on its propensity score as defined by: 
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���(�, �) =
�

��(���|�)
+

���

����(���|�)
  (3-2) 

Therefore, the weight is 
�

��(���|�)
 for a subject assigned to the treated group and 

�

����(���|�)
 for a 

subject assigned to the control group.  The weight for a subject is equal to the inverse of the 

probability of being assigned to the group that the subject is actually assigned to. 

3.4 Data Description and Processing 

Three data sources were used to develop a comprehensive approach:  

a) 1-min time interval traffic information from the WisTransPortal V-SPOC (Volume, Speed, 

and Occupancy) application suite (Parker & Tao, 2006);  

b) crash data from the web-based query and retrieval facility for Wisconsin Department of 

Transportation crash data and from reports archived in the WisTransPortal data management 

system; and  

c) weather information (e.g. snow, rain) from the Road Weather Information System (RWIS) in 

WisTransPortal. 

 A 4.15-mile corridor on I-94 East in Waukesha, WI was selected as the study site.  The 

site was selected based on the following criteria: spacing of loop detector stations, traffic data 

quality, and crash sample size.  The selected roadway corridor, as shown in Figure 3-1, has three 

lanes with one on-ramp and one off-ramp.  The corridor consists of three segments, ��, ��, and 

��, which are 1.77-mile, 0.79-mile and 1.59-mile long, respectively.  Segment �� starts at the 

end of the off-ramp and ends at the beginning of the on-ramp.  The posted speed limit was 65 

MPH in ��, and 55 MPH in �� and ��.  Other roadway characteristics such as lane width and 

shoulder width did not change along the corridor.   
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 The corridor was instrumented with seven mainline loop detector stations: ��, ��, …, 

��.  The stations are referred to as physical stations so as to differentiate them from the virtual 

detectors introduced in the later chapters.  The seven stations space between 0.50 and 1.00 mile, 

with an average of 0.69 mile and a standard deviation of 0.20 mile.  One loop detector station 

was located on the off-ramp, but no stations exist on the on-ramp.  The traffic flow of the on-

ramp can be imputed based on the conservation of vehicles using the flows from the nearest 

upstream and downstream detector stations.   

 

Figure 3-1 Layout of physical loop detector stations. 

 

 Crashes occurred from 2012 to 2014 were used.  Any crash that happened within one 

hour after a crash occurrence was considered a secondary crash and was subsequently removed 

as indicated in (Hirunyanitiwattana & Mattingly, 2006).  Crashes with missing times were 

excluded, as crash time is required to retrieve the traffic data.   

 A critical component of developing a crash prediction model is the knowledge of the 

traffic conditions experienced by the vehicle right before a crash; therefore, it is important to 

know the exact time in which a crash occurs.  Crash times are sometimes rounded to the nearest 

1.00 mi 

Physical loop detector 

0.50 0.27 0.29 0.50 0.21 0.85 0.53 

��� ���� 

� � �� �� �� �� �� �� �� 

�� 

1.77 mi  0.79 1.59 

�� �� 
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5-minute time stamp, and are therefore not reliable (Golob & Recker, 2003; Kockelman & Ma, 

2010).  Crash times in this study were carefully reviewed, and no rounding issue was found.  

Crashes were randomly sampled and validated with the time when abrupt changes in traffic 

conditions were observed (Mohamed Abdel-Aty et al., 2005; Zheng et al., 2010).  The validation 

result was positive, and the crash times from the database were used as the actual crash 

occurrence times. 

 After crash cases with missing ILD data were removed, a total of 113 crashes remained 

for crash analysis.  For each crash case, its exact location on the freeway was determined based 

on its longitude and latitude information.  Based on the location, its nearest upstream and 

downstream ILD stations were located.  1-minute interval ILD data from one upstream and one 

downstream ILD station from each crash location were collected 0 to 5 minutes prior to the 

crash.  2,260 non-crash cases with a 20:1 non-crash to crash case ratio were randomly selected 

from 1,578,240-min intervals in 2012-2014 (60 min×24 h×1096 days in 2012-2014).  Only the 

non-crash cases that are not within 2 hours from any crash were selected.  The 5-min traffic data 

consisting of data from five 1-min intervals were retrieved from physical stations for non-crash 

cases in the same way that data were retrieved for crash cases.   

 Given the 1-minute interval ILD data from one upstream and one downstream ILD 

station from each crash location, means and standard deviations of flow, speed, and occupancy 

were calculated for all crash and non-crash events at 0 to 5 minutes prior to the crash.  Additional 

non-traffic variables such as curve presence, ramp presence, and weather condition were 

included. Table 3-1 presents the candidate variables for analysis. 

Table 3-1 Candidate Variables 

Variable Description 
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AvgVol_U Average 1-min volume at the upstream station (veh/h) 

AvgDen_U Average 1-min density at the upstream station (veh/mi) 

AvgSpd_U Average 1-min speed at the upstream station (mi/h) 

StdVol_U Standard deviation of 1-min volume at the upstream station (veh/h) 

StdDen_U Standard deviation of 1-min density at the upstream station (veh/mi) 

StdSpd_U Standard deviation of 1-min speed at the upstream station (mi/h) 

AvgVol_D Average 1-min volume at the downstream station (veh/h) 

AvgDen_D Average 1-min density at the downstream station (veh/mi) 

AvgSpd_D Average 1-min speed at the downstream station (mi/h) 

StdDen_D Standard deviation of 1-min density at the downstream station (veh/mi) 

StdSpd_D Standard deviation of 1-min speed at the downstream station (mi/h) 

StdSpd_D Standard deviation of 1-min speed at the downstream station (mi/h) 

Curve 1 = Horizontal curve section; 0 = otherwise  

OnRamp 1 = an on-ramp between upstream and downstream stations; 0 = otherwise 

OffRamp 1 = an off-ramp between upstream and downstream stations; 0 = otherwise 

Rain 1 = if the weather is rainy; 0 = otherwise 

Snow 1 = if the weather is snowy; 0 = otherwise 

3.5 Analysis 

Roshandel (Roshandel, Zheng, & Washington, 2015) conducted a systematic review of real-time 

contributing factors to the crashes across studies.  They found that the speed variation, the 

standard deviation of speed, carries the highest odds ratio among all contributing factors.  In this 

chapter, both speed variation variables, StdSpd_U and StdSpd_D, were tested for their causal 

effects on crash risk. 
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 First, the two speed variation variables need to be converted to two treatment groups, 

high speed variation group (treated group) and low speed variation group (control group) based 

on a cutoff value.  The crash status is plotted against the two speed variation variables as shown 

by black dots in Figure 3-2.  The blue lines are the smooth plots.  The crash probability is higher 

when the blue line is close to the status of 1.  Both blue lines first decrease gently, then increase 

from the value around 4, and decrease from the value around 18.  However, the trend is valid 

when the value is smaller than 15, but it is questionable when the value is above 15.  As the 

value exceeds 15, there are a few isolated non-crash points and some dense non-crash points.  

Those dense points could be outliers that cause the plausible downtrend.  There are 97 out of 

2,260 and 79 out of 2,260 non-crash cases with StdSpd_U and StdSpd_D above 15, respectively.  

It is reasonable to consider these cases as outliers when either StdSpd_U and StdSpd_D is above 

15.  Subsequently, 11 crash cases and 90 non-crash cases were excluded from the sample.  The 

final sample consists of 102 crash cases and 2,170 non-crash cases. 
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(a) 

 

(b) 

Figure 3-2 (a) Crash status against StdSpd_U; (b) Crash status against StdSpd_D. 

 The turning points from which the blue lines start to increase monotonically are set as the 

cutoff values for both speed variation variables.  They are 3.33 for StdSpd_U and 2.19 for 

StdSpd_D, respectively.  Two treatments were considered here, high upstream speed variation 

(HUSV) and high downstream speed variation (HDSV).  HUSV is treated when StdSpd_U is 

above 3.33 and is control otherwise; HDSV is treated when StdSpd_D is above 2.19 and is 

control otherwise.  The distribution of crash/non-crash cases by treatment group is presented in 

Table 3-2. 

Table 3-2 Distribution of Crash Outcomes by Treatment Group 

Crash Outcome HUSV HDSV 
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 Treated Control Treated Control 

1 (Crash) 44 58 68 34 

0 (Non-Crash) 551 1,619 1,081 1,089 

 Then a propensity score model is developed for the two treatments.  According to 

(Brookhart et al., 2006), all variables associated with the outcome should be included into the 

propensity score model regardless of their association with the treatment assignment.  The 

correlation of all variables with the crash outcome was checked, and it was found that only 

Off_Ramp is not significantly related to the crash outcome.  Therefore, all variables except 

Off_Ramp were included into the propensity model. 

 Two propensity models were developed for HUSV and HDSV using the logit.  The 

results are presented in Table 3-3.  Note StdSpd_D was included in the propensity model for HUSV, 

and StdSpd_U was included in the model for HDSV.   

 

 

Table 3-3 Propensity Score Model 

 HUSV HDSV 

Variable Estimate Standard Error P-value Estimate Standard Error P-value 

Intercept -3.194 0.484 <0.001 -3.594 0.492 <0.001 

StdSpd_U 

   

0.161 0.035 <0.001 

StdSpd_D 0.177 0.033 <0.001 

  

 

AvgVol_U -0.00034 0.00012 0.005 0.000115 0.000114 0.314 
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StdVol_U -0.00227 0.00049 <0.001 0.000376 0.000359 0.295 

AvgDen_U -0.00653 0.00540 0.226 0.013 0.005 0.012 

StdDen_U 0.177 0.026 <0.001 -0.043 0.016 0.008 

AvgSpd_U 0.04688 0.00676 <0.001 -0.020 0.004 <0.001 

AvgVol_D 0.00012 0.00012 0.349 -0.001 0.000 <0.001 

StdVol_D -0.00011 0.00038 0.769 -0.002 0.000 <0.001 

AvgDen_D 0.00761 0.00519 0.143 0.013 0.006 0.030 

StdDen_D -0.00197 0.01450 0.892 0.162 0.026 <0.001 

AvgSpd_D -0.022 0.005 <0.001 0.071 0.007 <0.001 

Curve1 -0.476 0.133 <0.001 0.464 0.107 <0.001 

On_Ramp1 0.636 0.134 <0.001 0.252 0.128 0.049 

Snow1 -0.126 0.319 0.692 0.443 0.274 0.106 

 

 Based on Equation 3-1 and 3-2, the estimated propensity score and treatment weight for 

each crash/non-crash case is obtained.  Then a weighted sample is generated.  The balance of 

variables is checked for the unadjusted sample and the weighted sample using the standardized 

mean difference (SMD) between the treated group and the control group.  One variable is 

balanced when it has similar distributions in the treated group and control group.  For a 

continuous variable, the SMD is defined as: 

SMD =
���������������������

�����������
� ���������

�

�

 (3-3) 

where x���������� and x�������� denote the sample mean of the variable in the treated and control 

subjects, respectively, while s���������
�  and s�������

�  are their variance, respectively. 

 For dichotomous variables, the SMD is defined as: 



 
 

60 
 

SMD =
���������������������

�
�����������(�������������)����������(�����������)

�

 (3-4) 

where �̂��������� and �̂������� denote the prevalence or mean of the dichotomous variable in 

treated and control subjects, respectively.  A SMD less than 0.1 indicates that the corresponding 

variable is well balanced (Austin, 2009). 

 Table 3-4 presents the balance check results of the unadjusted and weighted samples for 

the two treatments.  It shows that almost all variables in the adjusted sample have SMD values 

greater than 0.1, indicating they are imbalanced before weighting.  However, all variables have 

SMD values smaller than 0.1 in the weighted sample, indicating they are all balanced after 

weighting.  It implies that all variables have similar distributions in two treatment groups after 

weighting. 

Table 3-4 Balance Check Results of Unadjusted and Weighted Samples 

HUSV 

Variable Unadjusted Sample Weighted Sample 

 
Control  Treated SMD Control  Treated SMD 

N* 1677 595 

 

494.49 507.22  

StdSpd_D 2.43 (1.61)** 3.04 (2.15) 0.321 2.67 (1.99) 2.68 (1.73) 0.005 

AvgVol_U 
2222.4 (1469.1) 2338.5 (1580.8) 0.076 

2102.3 

(1356.1) 2104.5 (1520.7) 0.002 

StdVol_U 
394.54 (254.66) 411.98 (263.95) 0.067 

397.13 

(247.59) 395.69 (259.51) 0.006 

AvgDen_U 35.79 (30.16) 53.64 (58.02) 0.386 37.40 (38.93) 38.29 (39.38) 0.023 

StdDen_U 6.55 (5.40) 11.93 (14.33) 0.497 7.37 (7.44) 7.63 (6.66) 0.037 

AvgSpd_U 62.50 (17.21) 60.24 (17.30) 0.131 65.24 (13.65) 64.77 (12.58) 0.036 

AvgVol_D 2302.9 (1448.1) 2503.2 (1721.7) 0.126 2240.0(1527.9) 2242.8 (1654.2) 0.002 
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StdVol_D 413.93 (253.50) 412.67 (266.59) 0.005 399.9 (265.0) 400.70 (262.59) 0.003 

AvgDen_D 38.56 (31.25) 58.02 (55.99) 0.429 43.05 (41.71) 43.76 (41.86) 0.017 

StdDen_D 7.30 (6.25) 11.11 (12.35) 0.389 8.29 (8.60) 8.41 (8.72) 0.014 

AvgSpd_D 62.41 (14.83) 54.39 (17.01) 0.503 57.72 (17.89) 58.02 (14.67) 0.018 

Curve=1 (%) 505 (30.1) 126 (21.2) 0.206 103.8 (21.0) 108.3 (21.4) 0.009 

On_Ramp=1(%) 233 (13.9) 151 (25.4) 0.292 129.5 (26.2) 132.8 (26.2) <0.001 

Snow=1 (%) 46 (2.7) 20 (3.4) 0.036 14.7 (3.0) 17.0 (3.4) 0.022 

HDSV 

Variable Unadjusted Sample Weighted Sample 

 
Control  Treated SMD Control  Treated SMD 

N 1123 1149 

 

796.04 805.8  

StdSpd_U 2.52 (1.50) 2.88 (1.98) 0.205 2.60 (1.61) 2.62 (1.51) 0.012 

AvgVol_U 2274.5 (1412.2) 2231.4 (1580.8) 0.029 2153.1(1415.4) 2162.4 (1509.1) 0.006 

StdVol_U 407.86 (244.26) 390.56 (269.05) 0.067 388.81(240.07) 390.04 (261.05) 0.005 

AvgDen_U 37.02 (29.12) 43.82 (48.38) 0.17 35.71 (30.69) 36.03 (33.92) 0.01 

StdDen_U 7.23 (6.81) 8.68 (10.66) 0.163 7.02 (7.01) 7.12 (7.66) 0.013 

AvgSpd_U 63.85 (13.74) 60.01 (19.93) 0.225 63.59 (14.45) 63.59 (16.51) <0.001 

AvgVol_D 2390.1 (1519.3) 2321.5 (1533.7) 0.045 2299.7(1413.9) 2294.0 (1508.4) 0.004 

StdVol_D 420.48 (259.39) 406.88 (254.44) 0.053 418.46(239.85) 417.83 (261.82) 0.003 

AvgDen_D 40.33 (31.23) 46.91 (47.10) 0.165 39.11 (31.91) 39.36 (32.44) 0.008 

StdDen_D 7.18 (5.32) 9.39 (10.56) 0.264 7.20 (5.41) 7.31 (5.13) 0.02 

AvgSpd_D 59.15 (16.87) 61.44 (14.66) 0.145 63.25 (10.21) 63.11 (10.28) 0.013 

Curve=1 (%) 236 (21.0) 395 (34.4) 0.302 213.7 (26.8) 211.7 (26.3) 0.013 

On_Ramp=1(%) 186 (16.6) 198 (17.2) 0.018 147.8 (18.6) 148.1 (18.4) 0.005 

Snow = 1 (%) 26 (2.3) 40 (3.5) 0.07 23.7 (3.0) 26.0 (3.2) 0.015 

Note: all SMDs below 0.1 are in bold. 
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* Denotes the subject count.  It should be integers for unadjusted sample, while it could be decimals due 

to decimal weights. 

** Mean with standard deviation in the parentheses. 

 A logit model for the crash outcome is developed on each treatment using the weighed 

sample.  The odds ratio (OR) is obtained from the model as the causal effect and is compared 

with the predictive effect obtained from the unadjusted model.  The OR for the two treatments 

using unadjusted and weighted samples are shown in Table 3-5.  If the 95% confidence interval 

does not include 1, the effect is considered significant.  For both HUSV and HDSV treatment, 

the causal effect is not significant, while it shows spurious significance based on the unadjusted 

sample.   

 Since different cutoff values may result in different assignments of subjects to two 

treatment groups and may yield different causal effects, the sensitivity analysis has been 

conducted to obtain the causal effect and predictive effect based upon different cutoff values.  

Cutoff values from 2 to 6 with 0.1 as the increment for both speed variation variables are tested. 

 

 

Table 3-5 Odds Ratios for Two Treatments 

Treatment Predictive Effect Causal Effect 

HUSV 2.23 (1.48, 3.33)* 0.99 (0.61, 1.61) 

HDSV 2.01 (1.33, 3.10) 1.40 (0.84, 2.33) 

* 95% confidence interval of odds ratio is in parentheses. 

 The sensitivity analysis results are shown in Figure 3-3 and Figure 3-4.  For both 

treatments, the causal effects are almost consistently insignificant while the predictive effects are 
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consistently and spuriously significant.   Moreover, their causal effects are very consistent 

regarding the width of the 95% confidence interval.  In conclusion, neither the upstream nor 

downstream speed variations have significant causal effect on the crash risk. 

 

(a) unadjusted sample 
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(b) weighted sample 

Figure 3-3 Sensitivity analysis of cutoff values for HUSV 

(a) unadjusted sample  
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(b) weighted sample 

Figure 3-4 Sensitivity analysis of cutoff values for HUSV. 

3.6 Conclusions 

In this chapter, the propensity score based method was used to assess the effect of the upstream 

and downstream speed variation on crash occurrence.  The analysis was carried out using the 

crash data and ILD data on a 4.15-mile corridor on I-94 East in WI where both crash and non-

crash associated traffic data were collected.  Speed variation was converted into a binary variable 

(i.e., high/low speed variation) based on cutoff values.  The propensity score method found that 

neither HDSV nor HDSV variable has statistically causal effect on crash occurrence while the 

predictive method found that both HUSV and HDSV variables are statistically significant.  

Although it is difficult to prove which conclusion is correct, the propensity score based method is 

considered superior because of a more rigorous study design.   
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 In a propensity score method, the propensity score for each case was estimated based on 

the propensity model, and inverse probability of treatment weighting (IPTW) method was 

applied to generate a weighted sample.  In the weighted sample, covariates other than HUSV and 

HDSV have similar distributions across treated and control groups.  Therefore, the causal effect 

of HUSV and HDSV between the treated and control group can be impartially estimated.    

 Sensitivity analysis on the cutoff value of speed variation has been performed to test the 

consistency of the findings.  The finding holds with varying cutoff values.  Hence, it is 

concluded with high confidence that speed variation is not one of the causes for a crash.  The 

finding in this chapter demonstrates the necessity of a propensity score based model because it is 

able to obtain the causal effect of a contributing factor with more accuracy, while the predictive 

analysis may yield biased or inconsistent effects. 
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CHAPTER 4 PREDICTIVE ANALYSIS OF CRASH-PRONE CONDITIONS 

OF LANE-CHANGE RELATED CRASHES 

4.1 Background 

The advances and wide deployment of detection technologies have greatly increased the 

transportation agencies’ ability to collect, store, and process large-scale traffic data in a real-tie 

fashion.  The enhanced surveillance has empowered traffic engineers to constantly monitor travel 

conditions and instantly detect accidents, aiding in the comprehensive evaluation of highway 

traffic and safety performance.  ILDs, which are embedded in the pavement, are commonly used 

in the area of detection technology and are a key component of the freeway management and 

operations systems.  Loop detector data have the potential to be used for traffic crash prediction 

and prevention.  For instance, engineers can identify potentially hazardous situations that are 

prone to crashes by investigating the relationship between crashes and traffic flow characteristics 

retrieved from detector data.  Subsequently, preventive countermeasures can be developed and 

implemented to proactively address imminent safety concerns. 

 Rear-end and sideswipe crashes are the most common types of crashes on the freeway.  

Research on sideswipe crashes is rather limited when compared with the amount of studies on 

rear-end collisions crashes (Li et al., 2014; Oh, Park, & Ritchie, 2006; Pande & Abdel-Aty, 

2006b; Pande & Abdel‐Aty, 2008; Qu, Wang, Wang, Liu, & Noyce, 2012); however, sideswipe 

crashes are more prevalent.  Wang and Knipling reported that among all lane change/merge 

crashes in United Sates, rear-end crashes only make up 4.5% (Wang & Knipling, 1994).  

Sideswipe crashes are often caused by the driver’s poor gap judgment and failed gap acceptance 

after initiating a lane change maneuver.  Sideswipe crashes occur when one vehicle changes or 

merges into the other vehicle’s lane and sideswipes (or is sideswiped by) the other vehicle, or 
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when both vehicles change lanes and collide.  Researchers gain more information on how 

different variables (i.e. changes in traffic flow, speed, and density) may affect the odds of a crash 

when the traffic parameters are related to specific crash types (i.e. rear-end, same direction 

sideswipe, etc.), as opposed to the total number of crashes.  Due to the prevalence of and lack of 

research with regard to sideswipe crashes, the focus of this paper is on sideswipe crashes related 

to lane changes.  

 Researchers filtered lane-change related crashes from all other crashes occurring in 2012 

and 2013 on a 62-mile stretch of freeway from I-94 to I-43 in Southeast Wisconsin.  A matched 

case-control study was adopted to mitigate the nuisance of non-traffic flow parameters such as 

time of day and geometric design elements.  The real-time traffic data for crashes and non-crash 

events were extracted for the two lanes associated with lane change crashes.  Statistical models 

were developed using conditional logistic methodology.  The effects of traffic flow factors on 

lane-change related crashes were thoroughly investigated and discussed in a lane-specific 

manner.   

4.2 Literature Review 

A number of studies have addressed the topic of how drivers’ decisions relate to lane changes.  

Gibbs proposed a hierarchical structure of the decision process to model lane changes on urban 

highways (Gipps, 1986), concluding that the driver’s gap acceptance and vehicle speed 

influenced the driver’s decision to change lanes.  Equipped with an instrumental vehicle, 

Brackstone et al. investigated driver behavior at a more detailed level (Brackstone, McDonald, & 

Wu, 1998) and added several microscopic parameters to the list of factors affecting drivers’ lane 

change decisions, such as the size of the available gap perceived by the driver, the distance to the 

preceding vehicle on the same lane, the relative speed, etc.  Hill and Elefteriadou collected data 
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on drivers’ desired speed, lane change duration (time lapse between the initiation and completion 

of lane change), and gap acceptance (Hill & Elefteriadou, 2013), finding that during congested 

conditions, lane change duration is longer and drivers tend to accept smaller lag gaps (the gap 

between the vehicle intending to change lanes and its potential following vehicle in the target 

lane).  In a study performed with Next Generation Simulation (NGSIM) traffic data, relative 

velocity between lanes and relative lead gap (the gap between the vehicle intending to change 

lanes and its potential preceding vehicle in the target lane) had a positive effect on lane change 

probability, indicating that the driver tends to change into lanes that are moving faster or have 

larger lead gaps (J. Lee, Park, & Yeo, 2013).  

 Patterns in driver lane-change behavior tempted researchers to employ real-time traffic 

data in the exploration of the factors behind a lane-change related crash.  Average Flow Ratio 

(AFR), the ratio of flows from one lane to its adjacent lane(s), was first proposed by Chang and 

Gao (Chang & Kao, 1991) who found it to be significantly related to lane change intensity.  Lee 

et al. adopted the idea of AFR to compare the contributing factors to rear-end and sideswipe 

crashes (C. Lee, Abdel-Aty, & Hsia, 2006).  The authors modified the algorithm to calculate the 

AFR variable and computed Overall Average Flow Ratio (OAFR) as the geometric mean of the 

modified AFRs of all lanes.  OAFR was intended to serve as a surrogate measure of the lane 

change frequency on all lanes.  The findings showed that OAFR contributed more to sideswipe 

crashes than to rear-end crashes, and that sideswipe crashes were more likely to occur in 

uncongested traffic conditions.  Pande and Abdel-Aty adopted the modified AFRs and the 

corresponding OAFR proposed by Lee et al. to measure the lane change frequency, and found 

that OAFR was not significant when modeling crashes related to lane changes (C. Lee et al., 

2006; Pande & Abdel-Aty, 2006a).   
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 Lee et al. also estimated the likelihood of a lane change-related crash occurring in the 

center lane compared to the left or right lane, respectively (C. Lee, En, Young-Jin, & Abdel-Aty, 

2009).  The study included real-time traffic flow variables and dichotomy road geometric 

variables, which indicate whether the segment has a curve and whether the segment is close to 

ramps.  Authors used both lane-specific and lane average variables to build models for variables 

related to traffic conditions.  Results showed that flow-related variables rather than speed or 

occupancy-related variables were significant, and that lane-specific variables (as opposed to lane 

average variables) more clearly explained why a crash most likely happened in one lane as 

opposed to another. 

 The relationship between historical crash data and the recorded traffic flow data from 

loop detectors near crash locations can be examined to build prediction models that aid in the 

development of proactive accident prevention approaches.  Several studies have attempted to 

develop prediction models with real-time data using various statistical methodologies and data 

mining techniques such as the matched case-control logistic model, log-linear model, neural 

network, support vector machine (SVM), and stochastic gradient boosting (M. Abdel-Aty, 

Pande, Lee, Gayah, & Santos, 2007; M. Abdel-Aty, Uddin, Pande, Abdalla, & Hsia, 2004; M. 

Ahmed & Abdel-Aty, 2013; C. Lee, Saccomanno, & Hellinga, 2002; Yu & Abdel-Aty, 2013).  

The matched case-control study, an analytical approach commonly used in epidemiological 

research, was introduced in a previous study to increase the accuracy of the predication model 

(M. Abdel-Aty et al., 2004).  The study used key traffic flow information for crash and non-crash 

events while controlling for other external factors such as location, time of day, day of week, etc. 

 The rapid development of vehicle tracking and re-identification technologies as well as 

prolific use of probe vehicle data has allowed researchers to develop crash prediction models 
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using new data sources.  Automatic Vehicle Identification (AVI) sensors collect travel time from 

each AVI segment and can measure the space mean speed (SMS) rather than time mean speed 

(TMS) which is measured from conventional inductive loops detectors.  AVI sensors are 

nonintrusive detection devices which are easier to install and maintain than intrusive loop 

detectors.  AVI sensors also have enhanced reliability compared to loop detectors because of 

their easy maintenance.  Loop detectors can fail due to hard pavement conditions and 

temperature variations.  Additionally, maintenance can be delayed by congested roadways as 

repairs usually involve cutting into the pavement.   

 Ahmed and Abdel-Aty were the first to utilize AVI data to predict real-time crashes (M. 

M. Ahmed & Abdel-Aty, 2012).  The high classification accuracy of their model proves that AVI 

data is promising in predicting crashes on expressways.  But the authors found that loop detector 

data, as opposed to AVI data, is better for predicting visibility-related crashes (M. A. Abdel-Aty, 

Hassan, & Ahmed, 2012).  The authors attributed the loop detector success to the closer spacing 

between detectors (AVI segments were spaced farther apart).  Additionally, AVI sensors record 

only the vehicles with AVI tags, and only about 80% of vehicles using expressways in the study 

area had AVI tags.  Loop detector systems can record data for all vehicles.  Many other traffic 

safety studies implemented AVI data (M. A. Abdel-Aty et al., 2012; M. Ahmed & Abdel-Aty, 

2013; M. Ahmed, Abdel-Aty, & Yu, 2012; M. M. Ahmed & Abdel-Aty, 2012; Yu & Abdel-Aty, 

2014; Yu, Abdel-Aty, Ahmed, & Wang, 2014), but these studies used only the speed data 

recorded by AVI sensors.  Real-time traffic factors including the flow rate and occupancy have 

not been utilized, possibly because of the failure of AVI sensors to capture all traversed vehicles.  

Therefore, if crash type is related to traffic flow, prediction models that use only AVI speed data 

may generate biased results. 
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 Visual surveillance has been widely used in many areas.  Vision-based traffic monitoring 

systems can track individual vehicles and capture the crash process, while loop detectors can 

only record aggregated vehicle behaviors (e.g. flow rate and density).  Loop detectors also fail to 

identify the crash process.  Video recordings of crashes have also been used to identify causal 

factors of crashes.  Davis and Swenson used video recordings to study the causal factors of three 

rear-end crashes (Davis & Swenson, 2006).  Trajectory information for a platoon of vehicles was 

obtained from the recordings, and was used to estimate driver information including initial 

speed, following distance, reaction time, and braking rate.  The reaction time of at least one 

driver ahead of the colliding vehicle was found to be longer than the following time headway of 

the driver in each crash.  Chatterjee and Davis demonstrated this finding in a later study that used 

video recordings of 41 freeway shock waves, five of which resulted in rear-end crashes and ten 

of which resulted in swerving behavior (Chatterjee & Davis, 2016).  However, no studies have 

been found to use video data to develop crash prediction models.  One possible explanation is 

that unlike loop detectors, visual surveillance has not recorded a large enough sample of crashes, 

as crashes are rare events.   

4.3 Methodology 

The effects of traffic parameters and weather conditions would be more accurate if external 

variables were controlled.  The amount of traffic, environmental conditions, and geometric 

characteristics all contribute to the occurrence of lane-change related crashes.  A matched case-

control study can concentrate on specific variables while also controlling for nuisance factors.  

Each crash should be considered a separate case in order to construct an eligible design for this 

methodology.  Several non-crash events were chosen as controls along with their corresponding 

non-traffic-flow variables (location, time, season, etc.) matching with those of crash cases; this 
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way, each case and its corresponding controls constitute a stratum.  The controlled, non-traffic-

flow variables are the same within each stratum, but are different across strata. 

 In a matched case-control logistic regression, the crash probability could be expressed as:  

logit������ =∝�+ ∑ ������
�
���   (4-1) 

where ���� is the kth traffic flow variable for the case (j = 0) or the jth control in the ith 

stratum; � =  1, 2, . . . , �; � =  0, 1, . . . , �; and � =  1, 2, . . . , �.  � is the number of strata, � 

denotes the number of controls, and � represents the number of explanatory variables. 

 The number of parameters increases as more strata are added, as each stratum has its 

corresponding intercept parameter.  It is against the optimality properties of the maximum 

likelihood method which becomes minimum variance unbiased estimator as the sample size 

increases while keeping the number of parameters fixed.  However, if the stratum-specific 

parameters, ∝�, are considered to be nuisance parameters, conditional likelihood could be created 

to yield maximum likelihood estimators which would be expressed as (Hosmer Jr & Lemeshow, 

2004): 

��(�) =
��� (∑ ������)�

���

∑ ��� (∑ ������)�
���

�
���

   (4-2) 

And the full conditional likelihood is the product of the ��(�) over N strata, 

�(�) = ∏ ��(�)�
���  (4-3) 

 Full conditional likelihood is independent of stratum-specific parameters, ∝� , and thus 

cannot be used to estimate those stratum-specific parameters.  Hence, the crash probability in a 

specific case cannot be estimated by using Equation 4-1.  But the slope coefficients � can be 

estimated by Equation 4-3, and can be used to evaluate the effect of each variable. 
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4.4 Data Description 

All data were collected from WisTransPortal, a comprehensive data depository system which 

provides a central source of traffic operations, safety, and intelligent transportation systems (ITS) 

data regarding Wisconsin highways.  The corridor used in this study is a continuous corridor 

stretching from I-94 to I-43 in Southeast Wisconsin, highlighted by black lines in Figure 4-1.   

 

Figure 4-1 Freeway I-94 N-S and I-43 N-S. (One long continuous segment is divided into 

three short ones for clear layout.) 
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 The 62-mile long corridor has 27 loop detector stations in the northbound lanes and 26 in 

the southbound lanes.  The space between detector stations ranges from 1 to 6.5 miles with a 

median of 1.5 miles.  996 crashes were reported on this corridor from 2012 to 2013.  Real-time 

traffic data, including average volume (volume per lane), speed (mile per hour), and occupancy 

(percent of time the loop is occupied) were collected from dual loop detectors in 1-minute, 5-

minute, 15-minute, and 60-minute intervals.  Finer time intervals can reflect more accurate traffic 

condition information; thus, 1-minute detector data was used in this chapter. 

 Sideswipe same direction, sideswipe opposite direction, and angle crashes were removed 

from the total crash dataset in order to obtain the number of crashes related to lane changes.  The 

total number of these crashes was 369.  Sideswipe opposite direction crashes were removed 

because there is no direct conflict between two opposite directions on a freeway; therefore, these 

crashes may be wrongly recorded.  Angle crashes were also kept for further exploration, as a 

previous study (Pande & Abdel-Aty, 2006a) indicated they may be caused by lane change 

activities.  Abnormal crashes such as intersection-related crashes and crashes involving one 

vehicle were discarded.  A total of 310 crashes remained after the aforementioned incidents were 

removed.   

 Original police accident reports of these crashes were carefully reviewed to remove 

ramps or construction zone-related crash events based on the crash location description.  A crash 

was considered to be lane-change related if “changing lanes” was recorded as the driver activity.  

The crash reports offered more accurate crash occurrence times than the crash database, which 

rounded the time to the nearest five-minute interval.  The specific lanes that were involved in 

lane change maneuvers were obtained from the crash diagram and narrative. 
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 As Figure 4-2 shows, the initial lane just before lane change is referred to as the “subject 

lane” and the lane the vehicle is moving into is called the “target lane”.  The subject and target 

lanes were designated by reviewing the crash diagram for each crash.  

 

Figure 4-2 Illustration for subject lane and target lane. 

 After collecting the crash data, the loop detector data for each crash was extracted.  The 

upstream station nearest to the crash location and the two downstream stations nearest to the 

crash location were chosen as the three detector stations from which to gather real-time traffic 

data.  Figure 4-3 illustrates the layout of three stations.  Previous studies have compared traffic 

data in several time periods prior to a crash, concluding that variables occurring within 5 to 10 

minutes of the crash are the most effective variables in modeling lane-change related crashes (C. 

Lee et al., 2006; C. Lee et al., 2009; Pande & Abdel-Aty, 2006a).  Therefore, this study used the 

traffic data in the time period 5 to 10 minutes before crash occurrence.  A crash happening at 

1:00 p.m. would use loop detector data from 12:50 p.m. to 12:55 p.m.  Each crash was associated 

with the three detector station locations (nearest upstream and two nearest downstream) and the 
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crash location, and thus there are three gaps between consecutive locations (see Figure 4-3).  

Any gap that was found to be longer than 5 miles was excluded during data collection for the 

sake of consistence, as most gaps were around 2 miles.  Blank data was a possibility due to 

detector dysfunction. If blank data was found in the traffic data collected from one station, all 

traffic data from that station was excluded.  The number of crashes with traffic data available at 

one station or more was 108.   

 

Figure 4-3 Detector stations. 

 Data from non-crash events also was gathered to conduct a matched case-control 

analysis.  The same time of day and day of the week were adopted for selecting non-crash events 

in order to ensure similar general traffic patterns, such as commuter types, trip purposes, etc.  In 

order to avoid effects of seasonal changes in weather and daylight, only four non-crash events 

with the corresponding time and day were chosen. Two of these events were selected from the 

time period before the crash, while the other two took place after the crash.  For example, if a 

crash happened on Monday, June 4, 2012 at 1:00 p.m., the non-crash event data were taken from 

12:50 p.m. to 12:55 p.m. on the following Mondays in 2012: May 21, May 28, June 11, and June 

18.  It was assumed that the non-crash event location was the same as the crash location; 

therefore, the same set of detector stations was chosen for data collection. 

Gap 1 Gap 2 Gap 3 
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 Loop detectors can encounter random equipment and hardware problems that result in 

erroneous data.  All inaccurate data were eliminated from the raw 1-minute data in this study.  

The inaccurate traffic data include: 1) occupancy < 0 or > 100; 2) speed < 0 or > 100; 3) volume 

< 0 or > 50 in 1 min; 4) volume > 0 with speed = 0 or speed > 0 with volume = 0 (Al-Deek, 

Venkata, & Ravi Chandra, 2004).  63 crash events and 192 non-crash events remained, with 

detector data available at all three stations.   

 Weather information was collected from Weather Underground Inc., which archives 

historical weather information from airports.  Four airports existed along the study segments of I-

94 to I-43, and each event utilized the nearest airport’s historical weather data.  Observations 

from the time stamps before and after the event were collected since weather data are recorded 

hourly.  For instance, if a crash occurred at 1:00 p.m., the weather information at 12:46 p.m. and 

1:46 p.m. would be collected.  The weather conditions observed from the detector stations were 

reclassified as clear, cloudy, rainy, and snowy in order to be consistent with the weather types in 

available crash data.  If a conflict existed between the weather conditions recorded at two time 

stamps, the earlier weather condition was used.  In the dataset, only 4% of non-crash events had 

conflicting weather records.  The weather information collected from the nearest airports was 

compared with the weather information from crash reports for each crash event.   

 Table 4-1 shows the classification results of weather information from both sources.  The 

two weather sources show consistency for a total of 60 out of 63 cases, indicating a 95% 

classification rate.  Only 3 crashes had conflicting weather records.  Therefore, weather 

information retrieved from the nearest airports was considered reliable and was used as the 

weather information source for non-crash events.  Weather conditions recorded in crash reports 

were used as the source for crash events.  The distribution of different weather conditions is 
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shown in Table 4-2.  It was observed that 21% (13/63) of the crashes occurred on snowy days, 

while only 2% (4/192) of non-crashes occurred on snowy days; this indicates that snowy weather 

may influence an increase in lane-change crashes.  This hypothesis was investigated in the 

analysis. 

Table 4-1 Classification of Weather Information from Crash Reports and Nearest Airports 

 Crash Reports 

Normal Rainy Snowy Total 

Nearest 

Airports 

Normal 45 0 0 45 

Rainy 2* 2 0 4 

Snowy 1* 0 13 14 

Total 48 2 13 63 

* It represents the number of crashes with conflicting weather records. 

Table 4-2 Distribution of Weather Factor 

 Crash Status 

Weather Condition 1 0 

Normal 48 (76%) 180 (94%) 

Rainy 2 (3%) 8 (4%) 

Snowy 13 (21%) 4 (2%) 

Total 63 (100%) 192 (100%) 
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4.5 Analysis and Discussion 

Crashes involving lane-change maneuvers occurred when a vehicle attempted to change from the 

subject lane into the target lane when the gap was not large enough for a safe merge.  Lane-

specific traffic characteristics directly reflect the circumstances when a driver initiates and 

performs a lane change movement.  These traffic characteristics can be represented by 

measurable traffic-related parameters such as traffic flow, speed, and density or occupancy.  

Given the 1-minute interval inductive dual-loop detector data from three stations near each crash 

location, means and standard deviations of flow, speed, and occupancy were calculated for all 

crash and non-crash events at 5 to 10 minutes prior to the crash.  The calculations were 

performed for three loop detector stations, the station located immediately upstream from the 

crash, and the two stations immediately downstream.  

 The coefficient of variation, a unitless measure calculated as 100*standard deviation / 

mean, was generated for all three elements to show a relative standard deviation.  The 

information for each detector location is formulated by four letters (see Figure 4-4).  For 

example, ASAF stands for the average flow for the subject lane at the immediate upstream 

detector.  Only the crashes with available data at all three stations were analyzed.  In total, there 

were 63 crash events and 192 non-crash events.   
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Figure 4-4 Nomenclature method for traffic-related variables. 

 It is anticipated that between-lane traffic differentials are critical to lane change 

decisions.  In Gipps’ theory, drivers adopt discretionary lane changes to gain speed advantage 

(Gipps, 1986).  Higher speed in the adjacent lane and available gaps provide opportunities for 

drivers to change lanes.  The ratios of flow, speed, and occupancy are calculated for the three 

detector stations to capture the between-lane traffic-related variable differences by dividing the 

average values of the subject lane by the average values of the target lane at the same detector 

location.  Similar to the lane-specific traffic characteristics, between-lane traffic differences are 

formulated by three letters with the first letter representing detector location, the second letter 

representing traffic variable, and the last letter “R” representing the ratio.  For example, the ratio 

of flow at station A, named AFR, is equal to ASAF/ATAF.  Weather was used as the non-traffic 

variable, and four weather categories were identified: clear, cloudy, rainy and snowy.  In total, 64 

explanatory variables existed (see Table 4-3). 

 

 

X X X X Station locations:  
A for upstream, B for 
first downstream, and C 
for second downstream 

Lanes: S for subject 
lane and T for target 
lane 

Statistics measure: A for 
average, S for standard 
deviation and CV for 
coefficient of variation 

Traffic variables: F for 
flow, S for speed and O 
for occupancy 
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Table 4-3 List of Explanatory Variables 

Variables Description 

ASAF, BSAF, CSAF Average flow in the subject lane at station A, B and C, respectively 

ATAF, BTAF, CTAF Average flow in the target lane at station A, B and C, respectively 

ASAS, BSAS, CSAS Average speed in the subject lane at station A, B and C, respectively 

ATAS, BTAS, CTAS Average speed in the target lane at station A, B and C, respectively 

ASAO, BSAO, CSAO Average occupancy in the subject lane at station A, B and C, 

respectively 

ATAO, BTAO, CTAO Average occupancy in the target lane at station A, B and C, 

respectively 

ASSV, BSSV, CSSV Standard deviation of flow in the subject lane at station A, B and C, 

respectively 

ATSV, BTSV, CTSV Standard deviation of flow in the target lane at station A, B and C, 

respectively 

ASSS, BSSS, CSSS Standard deviation of speed in the subject lane at station A, B and C, 

respectively 

ATSS, BTSS, CTSS Standard deviation of speed in the target lane at station A, B and C, 

respectively 

ASSO, BSSO, CSSO Standard deviation of occupancy in the subject lane at station A, B 

and C, respectively 

ATSO, BTSO, CTSO Standard deviation of occupancy in the target lane at station A, B and 

C, respectively 
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ASCVF, BSCVF, 

CSCVF 

Coefficient of variation of flow in the subject lane at station A, B and 

C, respectively 

ATCVF, BTCVF, 

CTCVF 

Coefficient of variation of flow in the target lane at station A, B and 

C, respectively 

ASCVS, BSCVS, 

CSCVS 

Coefficient of variation of speed in the subject lane at station A, B 

and C, respectively 

ATCVS, BTCVS, 

CTCVS 

Coefficient of variation of speed in the target lane at station A, B and 

C, respectively 

ASCVO, BSCVO, 

CSCVO 

Coefficient of variation of occupancy in the subject lane at station A, 

B and C, respectively 

ATCVO, BTCVO, 

CTCVO 

Coefficient of variation of occupancy in the target lane at station A, 

B and C respectively 

AFR, BFR, CFR Flow ratio at station A, B and C, respectively 

ASR, BSR, CSR Speed ratio at station A, B and C, respectively 

AOR, BOR, COR Occupancy ratio at station A, B and C, respectively 

Weather The weather condition at the crash location 

 

 A matched case-control design was used to collect the data with the purpose of 

eliminating the effects of non-traffic flow variables such as geometric design, pavement 

condition, etc.  However, collecting data with this design makes it impossible to calculate the 

estimates of coefficients using traditional logistic regression analysis.  Therefore, conditional 

logistic regression was adopted to investigate the effects of traffic-related parameters.  
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Proportional hazard regression analysis in SAS was used to calculate the hazard ratios of 

variables.    

 The hazard ratio of each variable describes the ratio of change in the probability of a 

crash with one-unit change in that variable.  A hazard ratio greater than 1 means that the chance 

of a crash increases as the value of that variable increases.  The non-crash events happening at 

the same location and same time on the same day of the week were chosen for data collection.  

Thus, each crash and its corresponding non-crash events form one stratum, and the whole dataset 

are stratified based on the location, time and date of each crash.  This stratification feature 

suggests that it may be questionable to apply popular variable selection methods (e.g. decision 

tree, random forest) to narrow down the number of variables, as they may not be able to handle 

stratified data.   

 A conditional logistic regression was run with one independent variable at a time for all 

64 variables in order to screen for statistically significant variables.  The preliminary results 

showed that BSAF, BTAF, BTSO, CTAF, CTSS, and CVR were statistically significant at a 5% 

confidence level.  “Snowy” was significant at 5% confidence level while “rainy” was not when 

“normal” was the reference level.  After combing rainy and normal conditions, the weather factor 

became the snow indicator, a binary variable, which was found to be statistically significant.  

The six significant traffic variables along with the snow indicator were reviewed further for 

correlation.  Table 4-4 shows three different sets of variables having correlation coefficients 

smaller than 0.5 between any pair of variables.  The stepwise selection procedure was performed 

to obtain the significant variables from each set, and the results are presented in Table 4-5.   
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Table 4-4 Candidate Variable Sets 

Variable Set  Variables 

#1 BSAF, BTSO, CTSS, CFR, Snow 

#2 BTAF, CTSS, CFR, Snow 

#3 CTAF, CTSS, CFR, Snow 

 

Table 4-5 Stepwise Selection Results 

Model Variable Set  Selected Variables AIC* 

1 #1 BSAF, CFR, Snow 148.2 

2 #2 BTAF, CFR, Snow 144.1 

3 #3 CFR, Snow 151.5 

* Akaike Information Criterion 

 The matched case-control study intends to eliminate all factors other than traffic flow 

variables and weather.  While fixing the location, time, and same day of the week helps to 

eliminate most nuisance variables, other variables such as human factors still exist.  Therefore, a 

conditional logistic regression with the random intercept was introduced to help account for the 

heterogeneity among each stratum.  This methodology assumes that the intercept of each event is 

random, and that therefore the intercepts of cases and controls in the same stratum can be 

different (Duchesne, Fortin, & Courbin, 2010).  The R package “mclogit” was applied for all 

three models, and the random intercept was found to be not significant in any of the models; this 

suggests that the heterogeneity between an event and its non-event counterpart has been 

effectively mitigated using the matched case-control method (Elff, 2014). 
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 The snow factor was significant, and its coefficient is positive in all models; this indicates 

that snow increases the likelihood of a crash during a lane-change maneuver.  Model 2 had the 

smallest AIC value and was thus chosen as the best model.  The results of the best model in 

Table 4-6 show that downstream traffic conditions are significantly related to the occurrence of 

lane-change related crashes upstream, as both traffic flow variables were collected from Stations 

B and C.  BSAF has a smaller than 1 hazard ratio, while both CFR and Snow have hazard ratios 

larger than 1; this suggests that a lower traffic flow rate in the target lane at Station B and/or a 

higher traffic flow ratio at Station C under snowy conditions may increase the likelihood of a 

lane-change related crash. 

Table 4-6 Model Results for Model 2 

Variable Description Estimate Pr > χ2 Hazard Ratio 

CFR Flow ratio at Station C 1.307 0.0211 3.694 

BTAF Average flow of the target lane at Station B -0.187 0.0046 0.829 

Snow Snow indicator 2.736 0.0006 15.421 

 

 Like any crash, the risk of a lane-change related crash can be formulated as the ratio of 

crashes to traffic exposure, where exposure is the lane change frequency.  Table 4-6 shows that 

CFR, the flow ratio at the second downstream station, significantly affects the crashes of interest.  

In Chang and Kao’s research, the average flow ratio (AFR) of a specific lane was found to be 

related to lane change frequency (Chang & Kao, 1991).  Later, overall average flow ratio 

(OAFR), the geometric mean of modified AFR across all lanes, was applied to distinguish lane-

change related crashes and rear-end crashes (C. Lee et al., 2006) and to model lane-change 

related crashes by lane (C. Lee et al., 2009).  The lane-specific AFR was also proven to have a 
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similar effect as OAFR by Lee et al.(C. Lee et al., 2009).  The chance of lane changes into the 

center lane(s) from either the left or right lane was assumed to be 50% for freeways with more 

than two lanes.  However, this assumption is questionable in the absence of any solid evidence.  

The flow ratio used in this paper is calculated without making such an assumption.  Using a lane-

specific flow ratio between the subject and target lanes should be more accurate in modeling 

lane-change related crashes as opposed to using an overall flow ratio across all lanes.  

 BTAF, the average flow of the target lane at the first downstream station, was found to be 

significantly associated with lane-change related crashes.  This finding suggests that higher 

volume in the target lane decreases the chances of a crash.  Drivers in the subject lane tend to 

exercise caution or give up discretionary lane changes when few safe gaps exist in the target 

lane.  Caution and discretion lead to a reduced likelihood of a crash occurrence.  On the contrary, 

if the traffic volume in the target lane is low, the speed is usually higher.  Drivers in the subject 

lane may perceive there to be larger gaps due to the low traffic volume, but they may not take 

into account the increased speed in the target lane.  The aforementioned combination could lead 

to more crashes.  

 Almost all of the significant traffic variables in all three models are related to flow; this 

indicates a strong correlation between lane-change related crashes and flow-related variables.  

Lee et al. studied this phenomenon extensively after finding out that only flow-related variables 

were helpful in classifying lane-change related crashes and rear-end crashes, and in predicting 

lane-change related crashes by lane (C. Lee et al., 2006; C. Lee et al., 2009).  The authors 

concluded that lane-change related crashes resulted from drivers’ collective behaviors , i.e., 

traffic flow (C. Lee et al., 2009). 
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 It is not surprising that snowy conditions contribute significantly to the occurrence of 

lane-change related crashes, as snow deteriorates the driver’s visibility making it difficult to 

judge gap sizes and speeds of other vehicles.  Snowy pavement surfaces also have a smaller 

friction coefficient, meaning it is more difficult to control the vehicle in these conditions.  

Furthermore, traffic flow parameters during snowy conditions, such as speed, may be rather 

different from those in non-snowy conditions.  Although speed alone is not significantly related 

to lane-change crash occurrences, it may affect the possibility of crashes on snowy roads.  The 

interaction term between snow and each of the six speed parameters was introduced one at a time 

in Model 2 in order to test this hypothesis.  It was found that the main factor – snow – became 

insignificant when the interaction term was included, while the interaction term itself showed 

statistical significance.  The interaction term remained significant after the snow factor was 

removed from the model, and the model presented better goodness-of-fit when CFR and BTAF 

were also included.  Among six interaction terms, the product of snow and BTAS has the 

smallest AIC value of 140.3, a considerable decrease from 144.1, the AIC value of Model 2.  The 

updated results are shown in Table 4-7. 

Table 4-7 Results of the Model with the Interaction Term 

Variable Description Estimate Pr > χ2 Hazard Ratio 

CFR Flow ratio at Station C 1.421 0.0154 4.141 

BTAF 
Average flow of the target lane at 

Station B 
-0.195 0.0038 0.823 

Snow×BTAS Interaction of snow and the average 

speed of the target lane at Station B 

0.059 0.0016 1.061 
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 The signs of CFR and BTAF are the same as those in Model 2, and the coefficients 

change slightly.  The interaction term reveals some interesting findings: on non-snowy days, 

BTAS (the speed of the target lane at the first downstream station) is not statistically significant; 

however, the crash likelihood on snowy days increases as speed increases.  The finding stresses 

the aggravated impact of inclement weather on lane-change maneuvers that are combined with a 

high travel speed. 

4.6 Conclusions 

A matched case-control analysis was used to investigate the effects of traffic parameters on lane-

change related crashes that took place on a corridor on I-94 to I-43 in Southeast Wisconsin 

during 2012 and 2013.  All lane-change related crashes and specific lanes involved were 

determined by reviewing police crash reports.  Non-crash events were identified for each crash in 

order to eliminate nuisance factors, or variables other than traffic and weather.  In this study, 

traffic data were extracted for each lane related to a crash, and 63 traffic variables were created 

to better represent the prevailing traffic conditions prior to a crash.  In addition, the weather 

information was collected from a historical weather database. 

 The matched case-control logistic analysis produced three models, and the model with 

the smallest AIC value was chosen.  The results suggest that lower traffic flow in the target lane 

and/or a higher traffic flow ratio combined with snowy road conditions may increase the 

occurrence of upstream lane-change related crashes. 

 The effect of speed on crash occurrence was investigated, finding that speed itself had 

little influence on crashes unless snow was present.  After improving the goodness-of-fit model 

to include the interaction of snow and speed (without snow as the main factor), results suggest a 

higher crash propensity when high travel speeds are combined with snowy conditions. 
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 The study did not find any statistically significant variables related to traffic density.  

Intuition suggests that a decision to change lanes is based on the speed differential between the 

two lanes; but the action is contingent upon available gaps, which depend on traffic volume.  

Nevertheless, traffic density can be determined by flow and speed, and more research should be 

devoted to exploring the possible gap between the macroscopic features of lane-change related 

crashes and the microscopic features of driver behavior as they contribute to lane changes.   

 According to the model, the probability of a lane-change related crash under real-time 

traffic conditions can aid in flagging potential crash-prone conditions.  The identified 

contributing factors can help traffic operators select traffic control and management 

countermeasures to proactively mitigate lane-change related crashes.  But the development of 

effective traffic control strategies for crash prevention requires more future research which can 

identify, investigate, and validate the threshold values of the critical variables related to 

predicting lane-change related crashes.   
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CHAPTER 5 PREDICTIVE ANALYSIS OF CRASH-PRONE CONDITIONS 

OF REAL-TIME CRASHES BY ACCOUNTING FOR SPATIAL-

TEMPORAL ISSUE 

5.1 Introduction 

The readily available real-time traffic data from ATIS offer new opportunities for crash 

prediction and prevention in terms of traffic control and operations.  Many studies have used 

real-time traffic data to investigate the relationship between crash risk and prevailing traffic 

conditions.  Among all types of traffic sensors, inductive loop detectors have been widely used 

for real-time crash prediction.   

 The prevailing traffic circumstances prior to and under which a crash takes place are 

believed to be one of the major contributors to a crash.  Additionally, a driver must constantly 

respond to changes in speed and space when driving in traffic, which can be highly stressful.  

Early detection of traffic anomalies that may result in crashes can help inform drivers and/or lead 

to implementation of appropriate traffic control strategies.  It is imperative to identify patterns 

and trends of traffic conditions that lead to crashes so that they can be prevented. 

 Travel conditions can shift rapidly, and the traffic that a vehicle experienced immediately 

prior to or at the time of a crash is more relevant than earlier or later traffic conditions.  The 

phenomenon of temporal proximity has been observed and supported in a study that predicted 

freeway crashes using loop detector data (Mohamed Abdel-Aty, Uddin, Pande, Abdalla, & Hsia, 

2004).  However, many studies did not consider the traffic conditions occurring right before a 

crash (e.g. 0-5 minutes period), citing that preventative actions may take extra time in a real-time 

crash identification, notification, and prevention system.  Therefore, traffic data used in these 
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studies comes from earlier time periods (e.g. 5-10 minutes before a crash) (Mohamed Abdel-Aty 

et al., 2004; Hossain & Muromachi, 2012; Pande & Abdel-Aty, 2006a; Sun & Sun, 2015).   

 The time buffer between traffic data and crash occurrence is also related to the 

consistency between crash modeling and crash prediction, though it has never been explicitly 

discussed in previous studies.  Figure 5-1 illustrates such consistency by considering the 5-min 

period for both crash modeling and crash prediction.  The figure shows that one intends to 

predict the crash risk in the future moment, or the hypothesized crash time, which is 5 min from 

now.  The traffic conditions in the past 5-min period are known, while those in the future 5-min 

period are not known.  One can use only the known traffic information for crash prediction, thus, 

the traffic from the past 5-min period is used.  However, crash modeling needs to be conducted 

in a consistent manner so that resultant crash prediction models can be applied.  Initially, the 

historical crash time is consistent with the hypothesized crash time.  Then the 0-5-min period 

before the crash would be consistent with the future 5-min period, and the 5-10-min period 

before the crash would be consistent with the past 5-min period.  Therefore, the data from the 5-

10-min period before the crash needs to be used for crash modeling so that the developed crash 

prediction models can be applied to predict the crash risk in real time based on the known traffic 

data from the past 5 minutes.   

 

Figure 5-1 Consistent time periods for crash prediction and crash modeling. 
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 The loop detector spacing can also lead to a lack of consistency, as spacings can vary 

substantially from site to site and across studies. For example, in one study the spacing ranges 

from 0.2 to 1.3 mi with an average of 0.5 mi (Xu, Liu, & Wang, 2016); in another it ranges from 

0.15 to 1.68 mi with an average of 0.5 mi (Xu, Tarko, Wang, & Liu, 2013); and one other 

example has a range of 0.34 to 2.37 mi with an average of about 1.06 mi  (Zheng, Ahn, & 

Monsere, 2010).  Studies have shown that the sensor location may affect the estimation of traffic 

flow by producing inconsistently biased traffic data (Danczyk & Liu, 2011; Hong & Fukuda, 

2012; Kwon, Petty, & Varaiya, 2007; Liu & Danczyk, 2009). 

 The discrepancies in the spatial-tempo domain mean that crash prediction models 

developed with traffic data collected directly from loop detector stations may be inadequate in 

unraveling the intrinsic relationship between crash risk and traffic conditions.  Such data issues 

would undermine the prediction power of developed models.  Even when a reliable crash 

prediction model is available, the issue of deploying effective preventative countermeasures 

remains.  A performance assessment tool is needed to evaluate the effectiveness of intervening 

traffic control strategies before their deployment. 

 The objective of this chapter is to develop a method for real-time crash prediction and 

prevention using traffic simulation.  Ideally, the method would be able to identify crash-prone 

conditions by accounting for the spatio-temporal consistency issue of loop detector data.  

Inspired by virtual loops extensively applied for vehicle detection, counting, and signal control, 

the cell transmission model (CTM) was employed to instrument a corridor of highway with 

virtual detector stations and measure traffic data where physical stations were not available.   
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5.2 Literature Review 

Crashes should be more closely related to the traffic conditions occurring during or around the 

same time of the crash, as opposed to those occurring hours before.  One study examined the 

impact of traffic variables on crash risk using five time slices: 0-5 minutes before the crash (time 

slice 1); 5-10 minutes before the crash (time slice 2); and up to 20-25 minutes before the crash 

(time slice 5) (Mohamed Abdel-Aty et al., 2004).  The regression results showed that the traffic 

variables in time slice 1 are the most statistically significant among all five time slices, which 

supports the notion that the traffic conditions occurring right before a crash can best model the 

crash probability.  However, most previous studies did not use this time period, citing that extra 

time was needed to take preventive countermeasures (Mohamed Abdel-Aty et al., 2004; Hossain 

& Muromachi, 2012; Pande & Abdel-Aty, 2006a; Sun & Sun, 2015).  Furthermore, the distance 

between crash locations and detector locations varies from one case to another, making it 

impossible to obtain consistent measurements.  The aforementioned issues regarding time and 

distance could undermine the validity and accuracy of real-time crash prediction models.    

 Ideally, the traffic conditions present at the time of the crash at the crash location should 

be used in studies that attempt to improve prediction accuracy.  Although it is unrealistic to have 

physical detectors located at every crash location, the development of traffic simulation models 

has made the virtual detection possible.  CTM, a macroscopic traffic flow simulation model that 

was first proposed by Daganzo (Daganzo, 1994), partitions a highway into continuous cells with 

user-defined lengths.  Under the law of conservation, the traffic density in each cell within the 

highway evolves and follows the relationships derived from the fundamental diagram.   

 CTM can well accommodate traffic flow data collected from loop detectors, as they have 

shown promising results in predicting traffic flows using loop detector data as inputs (Muñoz, 
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Sun, Horowitz, & Alvarez, 2003, 2006; Sumalee, Zhong, Pan, & Szeto, 2011).  Muñoz et al. 

achieved less than 13% of the mean error when simulating density using both CTM and 

switching-mode model (SMM) (Muñoz et al., 2003), as opposed to density collected from loop 

detectors.  Muñoz et al. improved parameter calibration methods of CTM and SMM (Muñoz et 

al., 2006); calibrated CTM and SMM produced a 13% and 14% error, respectively, in estimating 

density, and a 4% and 5% error in estimating flow.  Sumalee et al. proposed a stochastic CTM 

and achieved a 7.9% error in estimating density (Sumalee et al., 2011).  CTM is therefore a 

reliable simulation tool that can generate trustworthy simulated traffic input for predicting 

crashes.  Moreover, well-established traffic flow theories and emerging simulation algorithms 

provide timely support to the fast development of real-time crash prediction and prevention 

methods.   

 The CTM has the capability of simulating traffic control strategies.  The CTM has several 

attractive features: 1) it is trustworthy in simulating TCS, as it is founded on sound traffic theory; 

2) it is parsimonious, as it needs only a few parameters which can be estimated both online and 

off-line; 3) it requires low computational effort to predict traffic conditions in real-time 

(Hadiuzzaman & Qiu, 2013).  Recently, the CTM has been applied to evaluate the safety effects 

of variable speed limits (VSL).  Li et al. developed VSL in CTM and investigated its control 

strategy to reduce rear-end crash risks near recurrent bottlenecks on a 6-mile long virtual 

segment (Z. B. Li, Liu, Wang, & Xu, 2014).  Later, Li et al. developed a strategy to optimize 

VSLs on a 29-mile freeway corridor in California (Z. Li, Liu, Xu, & Wang, 2016).  In this study, 

VSL strategies were optimized to balance the impact on collision risk, injury severity, and travel 

time. 
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 The relationships between the relatively low number of crashes and the massive volume 

of real-time traffic data can be sorted out through specific techniques.  In general, the approaches 

for real-time crash prediction can be categorized as either statistical regression models or data 

mining techniques such as the Kohonen clustering algorithm, neural networks, and the Bayesian 

network (Hossain & Muromachi, 2012; Pande & Abdel-Aty, 2006a; Sun & Sun, 2015).  

Although data mining methods can accommodate correlation within independent variables for 

speed, flow, and occupancy (Hossain & Muromachi, 2012), they cannot identify explicit 

relationships between crash probability and traffic flow variables.  Therefore, it is difficult to 

interpret the crash mechanism and develop effective crash prevention countermeasures.  

Statistical models, however, can build clear connections between crash probability and traffic 

flow variables, which is crucial for the development of proactive safety approaches.  Among 

various statistical models used in real-time crash prediction studies, the binary logistic regression 

is widely used (Mohamed Abdel-Aty, Uddin, & Pande, 2005; Xu, Wang, & Liu, 2013; Zheng et 

al., 2010) because it can easily predict the crash probability given the explanatory variables.  

5.3 Methodology 

Crash probability prediction began with using CTM to simulate spatial and temporal traffic 

during the time period just prior to a crash.  The crash occurrence probability was then estimated 

with simulated traffic conditions using a binary logistic regression model.   

5.3.1 Cell Transmission Model (CTM) 

CTM is a macroscopic traffic simulation model proposed by Daganzo (Daganzo, 1994).  CTM is 

a powerful simulation technique which can capture many important traffic phenomena including 

queue formation and dissipation and shockwave propagation (Daganzo, 1994).  CTM is more 
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computationally efficient and easier to configure and calibrate than microscopic simulation 

models.  CTM also operates sufficiently with aggregated traffic data from detector stations.  

Figure 5-2 shows the fundamental diagram with and without a capacity drop for developing 

CTM.  

 

Figure 5-2 (a) Triangular fundamental diagram; (b) Fundamental diagram with capacity 

drop. 

 In CTM, a highway segment is divided into a series of cells.  The density of each cell 

evolves following the conservation law of vehicles.  Assuming that Cell i is characterized by the 

triangular fundamental diagram in Figure 5-2(a), where �� is the capacity flow, �� is the critical 

density, �� is the jam density, � is the free-flow speed, and � is the shockwave speed.  The 

density for Cell i without on- or off-ramps is determined by Equation 5-1: 

��(� + 1) = ��(�) +
�

��
(��(� + 1) − ��(�)) (5-1) 

where � is the time step index, ��(�) is the density of Cell i during the kth time step, � is the 

length of the time step, �� is the length of Cell i, and ��(�) is the flow rate into Cell i during the 

kth time step.  The flow rate is determined by the sending and receiving functions.  For Cell i, the 

sending function  ��(�) represents the maximum flow that can be supplied during the kth time 
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step, and the receiving function ��(�) represents the maximum flow that can be received.  The 

two functions are determined in Equations 5-2 and 5-3, respectively: 

��(�) = min (����(�), ��,�) (5-2) 

��(�) = min (��,�, ��(��,� − ��(�))) (5-3) 

The flow rate, ��(�), is determined by: 

��(�) = min (����(�), ��(�)) (5-4) 

 The fundamental diagram changes when the VSL control is deployed, as shown in Figure 

5-2(b).  ��� is the deployed speed limit, and ���� and ��� are the new capacity and critical 

density after activating the VSL control.  A study by Li et al. (Z. B. Li et al., 2014) showed that 

the sending and receiving functions affected by the VSL control are determined by Equations 5-5 

and 5-6, respectively: 

��(�) = min�min (��, ���,�� ∗ ��(�), ����,�) (5-5) 

��(�) = min (����,�, ��(��,� − ��(�))) (5-6) 

 A phenomenon called “capacity drop” represents the discharge flow rate dropping below 

capacity after the congestion forms (Cassidy & Rudjanakanoknad, 2005; Hall & Agyemang-

Duah, 1991).  Accounting for capacity drop helps to better simulate traffic conditions.  Capacity 

drop is accounted for by adopting the fundamental diagram in Figure 5-2(b) where �� is added 

to the triangular fundamental diagram.  The capacity drops from �� to �� at the onset of 

congestion.  Similar to the study by Li et al. (Z. B. Li et al., 2014), the modified sending and 

receiving functions are formulated in Equations 5-7 and 5-8, respectively: 

��(�) = �
����(�),                     �� ��(�) ≤ ��,�

��,�,                           �� ��(�) > ��,�
 (5-7) 
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��(�) = �
��,�, ,                          �� ��(�) ≤ ��,�

�� ���,� − ��(�)� , �� ��(�) > ��,�
 (5-8) 

5.3.2 Binary Logistic Regression Model 

Equation 5-9 shows how the probability of a crash event is formulated in a binary logistic 

regression model: 

�(��) =
�(��)

����(��) (5-9) 

where �(��) represents the crash probability given �� = (��,�, ��,�, … , ��,�) , a set of k 

explanatory variables for sample i, and �(��) is a linear combination of the following variable 

set: 

�(��) = �� + �� ∗ ��,� + �� ∗ ��,� + ⋯ + �� ∗ ��,� (5-10) 

where (��, ��, ��, … , ��) are the corresponding coefficients for (��,�, ��,�, … , ��,�). 

 The parameters � = (��, ��, ��, … , ��) can be estimated by maximizing the following 

log-likelihood function: 

���(�, ��) = ∑ [��� + �� ∗ ��,� + ⋯ + �� ∗ ��,�� − ln (1 + ��������∗��,��⋯���∗��,��]�
���  (5-11) 

5.4 Data Description and Processing 

Three data sources were consulted to develop a comprehensive approach: a) 1-min time interval 

traffic information from the WisTransPortal V-SPOC (Volume, Speed, and Occupancy) 

application suite (Parker & Tao, 2006); b) crash data from the web-based query and retrieval 

facility for Wisconsin Department of Transportation crash data and from reports archived in the 

WisTransPortal data management system; and c) weather information (e.g. snow, rain) from the 

Road Weather Information System (RWIS) in WisTransPortal. 
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5.4.1 Study Site and CTM Setup 

A 4.15-mile corridor on I-94 East in Waukesha, WI was selected as the study site.  The site was 

selected based on the following criteria: spacing of loop detector stations, traffic data quality, and 

crash sample size.  The selected roadway corridor, as shown in Figure 5-3, has three lanes with 

one on-ramp and one off-ramp.  The corridor consists of three segments, ��, ��, and ��, which 

are 1.77-mile, 0.79-mile and 1.59-mile long, respectively.  Segment �� starts at the end of the 

off-ramp and ends at the beginning of the on-ramp.  The posted speed limit was 65 MPH in ��, 

and 55 MPH in ��, and ��.  Other roadway characteristics such as lane width and shoulder width 

did not change along the corridor.   

 The corridor was instrumented with seven mainline loop detector stations: ��, ��, …, 

��.  The stations are referred to as physical stations so as to differentiate them from the virtual 

detectors introduce later.  The seven stations space between 0.50 and 1.00 mile, with an average 

of 0.69 mile and a standard deviation of 0.20 mile.  One loop detector station was located on the 

off-ramp, but no stations exist on the on-ramp.  The traffic flow of the on-ramp can be imputed 

based on the conservation of vehicles using the flows from the nearest upstream and downstream 

detector stations.   

 The corridor was divided into 41 virtual cells for CTM simulation, and the cell length is 

uniform within each of the three segments.  Segment �� has 17 cells with a length of 0.104 mile; 

segment �� has 8 cells with a length of 0.098 mile; segment �� has 17 cells with a length of 

0.099 mile.  A virtual detector station was instrumented at the boundaries of cells, so there were 

42 virtual detector stations and spacing between consecutive virtual stations averaged 0.1 mile 

with negligible variation.  The off-ramp was located at the end of the 17th cell, while the on-

ramp was located at the beginning of the 26th cell.   
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Figure 5-3 Layout of physical loop detector stations. 

 

 The virtual stations were set up at cell boundaries, similar to physical detector stations, to 

measure flow, speed, and density.  Virtual stations were expected to capture traffic conditions at 

locations closer to the crash site.  

 Crashes that occurred at the study site from 2012 to 2014 were included.  Any crash that 

happened within one hour after a crash occurrence was considered a secondary crash and was 

subsequently removed as indicated in (Hirunyanitiwattana & Mattingly, 2006).  Crashes with 

missing times were excluded, as crash time is required to retrieve the traffic data.   

 A critical component of developing a crash prediction model is the knowledge of the 

traffic conditions experienced by the vehicle right before a crash; therefore, it is important to 

pinpoint the exact time in which a crash occurs.  Crash times are sometimes rounded to the 

nearest 5-minute time stamp, and are therefore not reliable (Golob & Recker, 2003; Kockelman 

& Ma, 2010).  Crash times in this study were carefully reviewed, and no rounding issue was 

found.  Crashes were then randomly sampled and compared to the abrupt changes in traffic 
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conditions based on which crash times could be identified (Mohamed Abdel-Aty et al., 2005; 

Zheng et al., 2010).  The validation result was positive, and the crash times from the database 

were used as the actual crash occurrence times. 

5.4.2 CTM Calibration 

A fundamental diagram is required to operate the CTM simulation.  Differing roadway 

characteristics (e.g., horizontal curves, distances to on-/off-ramps, posted speed limits) mean 

different cells could have varying traffic patterns, which lead to different fundamental diagrams.  

Thus, one fundamental diagram was calibrated using the traffic data collected from each 

mainline detector station.    

 The fundamental diagram was based on the flow-density plot.  The flows and speeds 

were collected from the loop detector stations, while the densities were determined by Density =

 
����

�����
.  

 The calibration algorithm in Dervisoglu et al. (Dervisoglu, Gomes, Kwon, Horowitz, & 

Varaiya, 2009) was adopted with modifications to calibrate the fundamental diagram.  The full 

description of the algorithm is summarized as follows: 

1. Estimate the free-flow speed, �, using the least-squared method with flow-density 

pairs in the free-flow conditions.  Since the speed limits of the segments are 65 MPH 

and 55 MPH, data points with speeds exceeding 55 mi/h in segment �� and 45 mi/h in 

segments ��, and �� were deemed to be in free flow conditions.     

2. Find the maximum measured flow rate, ����, as the capacity, ��.  Critical density is 

determined by �� =
��

�
.  Few and unsustainable observations with extremely high flow 

rates, a phenomenon of capacity overestimation, were observed.  The formula to 
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compute the nominal capacity (in veh/h/lane) of freeways in HCM 2010 was adopted, 

as opposed to using the high flow rates (Transportation Research Board, 2010): 

Capacity = �
2400 ,                                           if FFS ≥ 70mi/h

2400 − 10 × (70 − FFS),       if FFS < 70mi/h
 (5-12) 

The capacity was then determined by taking the minimum of �� and the nominal 

capacity given by Equation 5-12. 

3. Estimate the shockwave speed, �, and the jam density, ��, using the least-squared 

method with flow-density pairs exceeding the critical density.  The flow rate after the 

capacity drop was set as the value on the fitted flow-density line at the critical density. 

 Following the modified algorithm, fundamental diagram parameters were obtained for 

each physical detector station as shown in Table 5-1.  Note that ��, ��, �� and �� are for three 

lanes.  The magnitude of the capacity drop is from 2.0% to 6.9% for all physical stations except 

�� which has a 13.9% capacity drop rate.  The set of fundamental diagram parameters calibrated 

for one physical station was assigned to cells near that station.   

Table 5-1 Fundamental Diagram Parameters by Physical Station 

Station � (mi/h) �� (veh/mi) �� (veh/mi) �� (veh/h) �� (veh/h) � (mi/h) 

�� 67.0 106.1 486.0 7111 6890 18.1 

�� 68.4 104.6 588.4 7152 6816 14.1 

�� 66.5 106.7 472.2 7095 6603 18.1 

�� 59.8 97.0 799.0 5796 4989 7.1 

�� 60.8 113.9 779.9 6924 6671 10.0 

�� 58.0 118.0 460.4 6839 6703 19.6 

�� 60.1 114.8 375.5 6903 6683 25.6 
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5.4.3 CTM Simulation 

The simulation time step in CTM needs to be chosen so that the Courant–Friedrichs–Lewy 

(CFL) condition (Courant, Friedrichs, & Lewy, 1967) is fullfilled.  A vehicle cannot travel across 

more than one cell during one simulation step in the CFL condition, i.e., �� ∗ ∆� ≤ �� where vi is 

the free-flow speed, ∆� is the simulation time step, and �� is the cell length.   A 5-second time 

step was used (∆� = 5�) based on the lengths of cells. 

 Entering flow and exiting flow of the highway corridor are required to run the CTM.  The 

four flow inputs were required for the study site, including in-flow, ���, out-flow, ����, off-ramp 

flow, �, and on-ramp flow � (as shown in Figure 5-3).  The 1-min flow data collected from the 

first physical station, ��, and the last physical station, ��, in the 0-5 min period prior to a 

crash/non-crash were used as the in-flow and out-flow of the corridor.  A zeroth-order 

interpolation was applied to generate the 5-s in-flow, out-flow, on-ramp flow and off-ramp flow 

data.  A CTM was then run to simulate how traffic in cells along the corridor evolves at each 

time step within the 5-min time interval.   

 In addition to the flow data, initial densities of cells at the beginning of the simulation 

interval are also needed for the CTM simulation.  The initial density of a cell was obtained from 

the station’s density data as long as the cell had one loop detector station.  Densities of cells 

between two such cells were interpolated using the following approach: 

1. Compute the density change rate as the ratio of the difference in densities of two cells 

with two consecutive loop detector stations and the distance between them: ∇� =

��,����,�

�����
, where ∇� is the density change rate; ��,� and ��,� are densities of cells 

having the downstream and upstream detector stations, respectively; �� and �� are the 
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locations of the beginnings of the two cells, that is, the locations of the two detector 

stations. 

2. Determine the initial density of one cell between those two cells by the following: 

3. ��,� = ��,� + ∇� ∗ (�� − ��), where �� is the location of the beginning of one cell 

between the two cells. 

5.5 Crash Modeling  

The simulated traffic data were collected from the virtual upstream and downstream stations to 

the cell location of each crash/non-crash in the prior 0-5-min period.  The time period of 0-5 

minutes prior to a crash was used in order to account for the temporal issue of physical station 

data, as the simulated traffic data in the future 5-min period would be employed for crash 

prediction.  More details will be illustrated in section 6.  It is worthwhile to test how the location 

of virtual upstream and downstream stations would impact the performance of crash prediction 

models.  Therefore, both 0.2 mi and 0.5 mi distances, were selected as the distance from the 

crash cell location to its upstream and downstream virtual stations.  One virtual upstream station 

and one virtual downstream station that are both 0.2 mi (i.e., two cells) away from the crash cell 

location were identified as stations from which to collect the simulated traffic data.  The spacing 

between virtual upstream and downstream stations is 0.5 mi (2×0.2-mi+0.1-mi including the 

crash cell) in the 0.2-mi distance setting.  Similarly, two virtual stations that are 0.5 mi (i.e., five 

cells) away from the crash location were used in the 0.5-mi distance setting.  The spacing 

between the virtual upstream and downstream stations is 1.1 mi (2×0.5-mi+0.1-mi including the 

crash cell) in the 0.5-mi distance setting.   

 Having two distance settings also makes it possible to test the feasibility of simulated 

traffic data in crash modeling by providing a uniform and close layout of virtual stations to 
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account for spatial issues with physical station data.  In the 0.5-mi distance setting, the spacing 

between virtual upstream and downstream stations is 1.1 mi, which is uniform for all crash and 

non-crash cases.  However, the largest spacing between physical upstream and downstream 

stations is 1.0 mi, so the virtual upstream or downstream station is farther away from most crash 

(non-crash) case cells than the corresponding physical station.  Therefore, the 0.5-mi distance 

setting provides traffic data from virtual stations which are only consistently located from but not 

closer to the crash/non-crash location compared to that from physical stations.  The spacing 

between virtual upstream and downstream stations for the 0.2-mi distance setting, however, is 

0.5 mi, which is not larger than the smallest spacing between physical stations.  Therefore, the 

0.2-mi distance setting provides traffic data from stations with both uniform and short distances 

from the crash (non-crash) location.  The feasibility of uniform and close distances can be tested 

by comparing the performance of three different models: Model V1, which is developed with 

virtual station data in the 0.2-mi distance setting; Model V2, which is developed with virtual 

station data in the 0.5-mi distance setting; Model P, which is developed with physical station 

data.  First, the feasibility of uniform distances can be assessed by comparing the performance of 

Model V2 and that of Model P.  Then, the feasibility of close distances when distances are 

already uniform can be assessed by comparing the performance of Model V1 and Model V2. 

 The 5-s traffic data from the two selected virtual stations were aggregated into the 5-min 

interval for each crash and non-crash case and converted into traffic flow variables in Table 5-2.  

Due to the intercorrelation between the three traffic parameters of flow, density, and speed, 

traffic variables related to density and speed were kept to avoid serious correlations between 

candidate variables.   
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Table 5-2 Candidate Variables  

Variable Description 

AvgDenu Average 5-s density at the upstream station (veh/mi) 

AvgSpdu Average 5-s speed at the upstream station (mi/h) 

StdDenu Standard deviation of 5-s density at the upstream station (veh/mi) 

StdSpdu Standard deviation of 5-s speed at the upstream station (mi/h) 

AvgTsdDenu Average time-series absolute difference in 5-s density at the upstream station 

(veh/mi) 

AvgTsdSpdu Average time-series absolute difference in 5-s speed at the upstream station 

(mi/h) 

StdTsdDenu Standard deviation of time-series difference in 5-s density at the upstream 

station (veh/mi) 

StdTsdSpdu Standard deviation of time-series difference in 5-s speed at the upstream 

station (mi/h) 

AvgDend Average 5-s density at the downstream station (veh/mi) 

AvgSpdd Average 5-s speed at the downstream station (mi/h) 

StdDend Standard deviation of 5-s density at the downstream station (veh/mi) 

StdSpdd Standard deviation of 5-s speed at the downstream station (mi/h) 

AvgTsdDend Average absolute time-series difference in 5-s density at the downstream 

station (veh/mi) 

AvgTsdSpdd Average absolute time-series difference in 5-s speed at the downstream 

station (mi/h) 
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StdTsdDend Standard deviation of time-series difference in 5-s density at the downstream 

station (veh/mi) 

StdTsdSpdd Standard deviation of time-series difference in 5-s speed at the downstream 

station (mi/h) 

AvgDiffDend-u Average difference between 5-s downstream and upstream density (veh/mi) 

AvgDiffSpdd-u Average difference between 5-s downstream and upstream speed (mi/h) 

StdDiffDend-u Standard deviation of difference between 5-s downstream and upstream 

density (veh/mi) 

StdDiffSpdd-u Standard deviation of difference between 5-s downstream and upstream 

speed (mi/h) 

FF 1 = if the location is in the free-flow state; 0 = otherwise 

BN 1 = if the location is in the bottleneck front state; 0 = otherwise 

BQ 1 = if the location is in the back-of-queue state; 0 = otherwise 

CT 1 = if the location is in the congestion state; 0 = otherwise 

Curve 1 = Horizontal curve section; 0 = otherwise  

OnRamp 1 = if there is an on-ramp between upstream and downstream stations; 0 = 

otherwise 

OffRamp 1 = if there is an off-ramp between upstream and downstream stations; 0 = 

otherwise 

Rain 1 = if the weather is rainy; 0 = otherwise 

Snow 1 = if the weather is snowy; 0 = otherwise 
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 Three additional groups of traffic variables were considered aside from mean and 

standard deviation of density and speed, roadway characteristics, and weather factors that have 

been frequently used in previous studies (M. Abdel-Aty & Pande, 2006; Mohamed Abdel-Aty et 

al., 2004; M. A. Abdel-Aty, Hassan, Ahmed, & Al-Ghamdi, 2012; Pande & Abdel-Aty, 2006b; 

Xu et al., 2016; Xu, Liu, Wang, & Li, 2012).  The first group is related to the time-series 

difference in density and speed; the second group is related to the difference between 

downstream and upstream density and speed; the third group is related to the traffic state of the 

location. 

 The first traffic variable group is pertinent to the time-series difference in density and speed.  

The time-series difference is the difference between the density or speed in the next 5-s and that 

in this 5-s.  Variables such as AvgTsdDenu and StdTsdDenu were calculated by Equation 5-13 

and 5-14, and AvgTsdSpdu and StdTsdSpdu were calculated in the same way, 

AvgTsdDen� =
∑ |����,��������,�|��

���

��
  (5-13) 

StdTsdDen� = �∑ [(����,��������,�)�
∑ (����,��������,�)��

���
��

]���
���

����
 (5-14) 

where ����,� is the 5-s upstream density at time step t=1, 2, …, 60 (60 5-s in one 5-min 

interval).  This variable group measures the traffic trend over time.  The average absolute time-

series difference in density or speed measures the traffic stability over time, and a large value 

indicates that the traffic is very unstable.  The standard deviation of time-series difference in 

density or speed measures the consistency of traffic changes, and a large value indicates that the 

traffic changes are very fluctuant over time. 

 The second group is related to the difference between downstream and upstream density 

and speed.  Variables such as AvgDiffDend-u and StdDiffDend-u were computed by Equation 5-15 



 
 

116 
 

and 5-16, and AvgDiffSpdd-u and StdDiffSpdd-u were calculated in the same way, 

AvgDiffDen��� =
∑ (����,������,�)��

���

��
  (5-15) 

StdDiffDen� = �
∑ [�����,������,����������������]���

���

����
 (5-16) 

where ����,�  is the 5-s downstream density at time step t=1, 2, …, 60.  This variable group 

indicates the difference between traffic conditions upstream and those downstream from the 

crash location.  A large value of the average differences in density or speed implies that the 

upstream traffic conditions are very different from the downstream traffic conditions.  A large 

value of the standard deviation of the differences implies that the traffic difference is not very 

consistent.  Although the average absolute difference in upstream and downstream traffic 

parameters appears to have a significant relationship with the crash occurrence in (Xu et al., 

2016; Xu, Liu, Wang, & Li, 2014), the average of the regular difference rather than of the 

absolute difference was considered because the sign may carry crucial information.  For 

example, a positive AvgDiffSpd��� means that the downstream speed is higher than the 

upstream speed, while a negative AvgDiffSpd��� means the opposite condition.  The former 

traffic condition may be more crash-prone, as high-speed vehicles from upstream may rear-end 

the slow-moving vehicles downstream.  Therefore, this variable group is based on the regular 

difference which can reflect very different traffic conditions. 

 The third group is associated with the traffic state at the crash/non-crash location.  The 

average density was used to measure the level of traffic congestion at the virtual upstream and 

downstream station (Yeo, Jang, Skabardonis, & Kang, 2013).  Traffic is congested if the average 

density is greater than the critical density; otherwise, traffic is in free flow.  The traffic state was 

determined based on the combination of the upstream and downstream traffic conditions: 
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1. Free Flow (FF): when both upstream state and downstream state are free flow; 

2. Bottleneck front (BN): when upstream is congested and downstream is free flow; 

3. Back of queue (BQ): when upstream is free flow and downstream is congested; and 

4. Congested traffic (CT): when both upstream and downstream are congested. 

 

 The CTM cannot run for crash cases that have missing physical detector data, so after 

such crashes were removed, a total of 113 crashes remained crash modeling.  2,260 non-crash 

cases with a 20:1 non-crash to crash case ratio were randomly selected from 1,578,240-min 

intervals in 2012-2014 (60 min×24 h×1096 days in 2012-2014) at one out of 41 cells.  Only the 

non-crash cases that are not within 2 hours from any crash were selected.  The 5-min traffic data 

consisting of data from five 1-min intervals were retrieved from physical stations for non-crash 

cases in the same way that data were retrieved for crashes.  The data were employed to generate 

simulated traffic data using the CTM.  Candidate variables for all non-crash cases were obtained 

as well.  The final dataset consists of 113 crash cases and 2,260 non-crash cases.   

 Table 5-3 shows the distribution of crash and non-crash cases by traffic state in two 

different distance settings.  The distribution is different across two distance settings because the 

level of congestion could vary locally.  However, two distributions present consistent patterns.  

Most crashes happened in the FF state for both distance settings, while the fewest happened in 

the BN state.  The ratio of crash cases to non-crash cases indicates the crash probability in each 

state, and a larger ratio suggests a more crash-prone state.  As expected, the ratios in the BN, BQ 

and CT states were considerably higher than those of the FF state. 
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Table 5-3 Case Frequency by Traffic State 

 0.2-mi 0.5-mi 

Traffic State Crash Non-Crash Ratio Crash Non-Crash Ratio 

FF 62 1,978 1:31.9 58 2,037 1:35.1 

BN 5 90 1:18 13 90 1:6.9 

BQ 15 95 1:6.3 19 82 1:4.3 

CT 31 97 1:3.1 23 51 1:2.2 

 

 Traffic patterns may vary in different traffic states, so the traffic flow variables could 

have distinct distributions across traffic states.  For example, Xu et al. (Xu et al., 2012) observed 

varying speed differences between upstream and downstream stations for different traffic states.  

The hypothesis was tested by dividing the whole dataset into subsets by traffic state.  The 

distributions of traffic flow variables across traffic states were compared using a t-test.  The 

comparison results show that none of the traffic variables have significantly similar distributions 

across traffic states, indicating that it would not be appropriate to develop a single model for all 

states without considering the interaction between the traffic variables and traffic states. 

 Crash-prone variables could vary in different traffic states.  Data subsets for different 

states were used to identify statistically significant variables in each state.  In each traffic state, 

the significance of each candidate variable was identified by developing a binary logit model for 

that variable only.  A 10-fold modeling procedure was conducted to avoid spurious significance; 

the dataset for one traffic state was randomly split into ten subsets, and all variables’ significance 

was checked for any nine out of the ten data subsets.  Table 5-4 reports the number of significant 

runs for all candidate variables based on the 10% significance level.  Variables were identified as 
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truly significant and were kept for further modeling as long as one variable was significant in at 

least eight out of ten runs.  Correlations between truly significant variables in each traffic state 

were examined.  Candidate models were developed with a maximum number of uncorrelated 

significant variables for each, and the model with the smallest AIC was selected as the optimal 

model.   

Table 5-4 Number of Significant Runs for Candidate Variables 

 0.2-mi 0.5-mi 

Variable FF BN BQ CT FF BN BQ CT 

AvgDenu 10 0 0 10 9 0 0 0 

AvgSpdu 10 0 0 0 10 0 6 5 

StdDenu 10 0 0 10 0 0 10 0 

StdSpdu 10 0 0 0 5 0 0 5 

AvgTsdDenu 10 1 0 1 10 1 10 0 

AvgTsdSpdu 10 0 1 5 10 0 0 3 

StdTsdDenu 10 0 0 1 10 0 10 2 

StdTsdSpdu 10 0 0 5 9 0 1 7* 

AvgDend 10 0 8 0 10 0 10 1 

AvgSpdd 10 0 9 5 10 0 10 6 

StdDend 10 0 0 0 8 0 1 2 

StdSpdd 10 0 0 0 8 3 5 7* 

AvgTsdDend 10 1 10 2 10 4 0 2 

AvgTsdSpdd 10 1 7 0 10 3 2 6 
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StdTsdDend 10 0 6 5 9 0 1 5 

StdTsdSpdd 10 0 1 1 9 0 8 6 

AvgDiffDend-u 0 0 0 10 4 0 9 0 

AvgDiffSpdd-u 0 0 0 10 0 0 5 0 

StdDiffDend-u 10 0 2 1 10 1 0 0 

StdDiffSpdd-u 10 1 0 2 9 0 0 0 

Curve 10 0 10 0 10 0 6 4 

OnRamp 10 0 0 0 10 0 2 0 

OffRamp 4 0 0 0 0 0 0 0 

Rain 0 0 0 0 0 0 0 0 

Snow 9 0 0 0 9 0 0 0 

* This variable was considered for further modeling because of it has the highest number of significant runs for the 

corresponding traffic state though this number was less than eight. 

 

 Table 5-5 presents the modeling results by traffic states for both distance settings.  The 

table shows that different traffic states have varying contributing variables for each distance 

setting, and that contributing variables are not identical in the same traffic state across two 

different distances.  Significant variables in the 0.2-mi setting were checked first.  The 

coefficients of StdTsdDend and StdTsdSpdd for the FF state are positive, indicating that the crash 

risk increases as density and speed at downstream stations are more fluctuant.  This is a logical 

finding because large variations in time-series changes in density and speed reflect turbulent 

traffic conditions that could increase crash potential.  The negative sign of OnRamp suggests that 

the crash is less likely to happen near the on-ramp.  One possible explanation for this is that 

drivers tend to be more alert when approaching an on-ramp and may therefore be less likely to 
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get involved in a crash.  The Snow indicator has a positive sign, implying that snow contributes 

to crash occurrence in free flow traffic.  However, this is not significant in the other traffic states, 

possibly because drivers tend to drive faster in free flow traffic than in the other states.  No 

variables show significance for the BN state, possibly due to the small sample size.  

The positive signs of StdTsdDend and Curve for the BQ state indicate that the fluctuant 

time-series density at the downstream station near the curve would contribute to crash 

occurrence.  The curve indicator shows significance only in this state; this could be because 

vehicles from the upstream free-flow traffic need to slow down to accommodate slow-moving 

traffic during congestion at downstream stations, and presence of a curve may worsen the 

deceleration.  AvgDenu is significant and has a positive coefficient in the CT state.  The finding 

indicates that crash risk increases with the increase in density at the upstream station.  Upstream 

traffic is already congested at the upstream station in the CT state, which would increase 

upstream density and make the small distance headway even smaller, leading to higher crash 

likelihood. 

Table 5-5 Modeling Results of Crash Prediction Models for Two Distances 

0.2-mi 0.5-mi 

Variable Estimate 

Standard 

Error 

P-

value Variable Estimate 

Standard 

Error P-value 

Traffic State 

FF 

       
Intercept -4.444 0.244 <0.001 Intercept -4.404 0.270 <0.001 

StdTsdDend 0.461 0.082 <0.001 StdTsdDend 0.438 0.091 <0.001 

StdTsdSpdd 0.901 0.257 <0.001 OnRamp -1.509 0.598 0.012 
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OnRamp -1.036 0.473 0.028 Snow* 0.934 0.529 0.078 

Snow 1.159 0.496 0.019     

BN 

       
Intercept -2.415 0.466 <0.001 Intercept -1.935 0.296 <0.001 

BQ 

       
Intercept -3.762 0.912 <0.001 Intercept -4.351 0.935 <0.001 

StdTsdDend 0.425 0.168 0.011 StdTsdDenu 0.406 0.124 0.001 

Curve 2.710 0.842 0.001 AvgDiffDend-u 1.012 0.005 0.016 

CT 

       
Intercept -2.642 0.865 0.002 Intercept -1.445 0.432 <0.001 

AvgDenu 0.00824 0.00391 0.035 StdTsdSpdu 0.613 0.308 0.046 

* Significant at the 90% significance level. 

 Significant variables in the 0.5-mi setting were also checked.  Three out of the four 

significant variables in the 0.2-mi setting for the FF state showed significance and consistent 

signs.  Similar to the 0.2-mi setting, no variables were significant for the BN state possibly due to 

the small sample size.  The positive sign of StdTsdDenu for the BQ state indicates that the 

fluctuant density over time at the upstream station would contribute to a crash occurrence.  

AvgDiffDend-u also has a positive coefficient.  Since the downstream density is higher than the 

upstream density in the BQ state, AvgDiffDend-u is positive.  A positive coefficient suggests that 

the crash risk increases when the downstream traffic gets more congested, while the upstream 

traffic becomes more of a free-flow state.  The findings make sense, as drivers are more likely to 

make mistakes when they travel on a low-density roadway segment immediately followed by a 

high-density segment.  StdTsdSpdu shows a positive sign for the CT state, indicating that the 

fluctuant speed over time at the upstream station would contribute to a crash occurrence.  The 
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finding is logical, as continuous speed changes in already congested traffic would lead to a 

higher rear-end crash risk. 

 Separate models by traffic states were combined into one model for each distance to 

assess the impact of two distances on the prediction performance.  Model V1 and Model V2 both 

include the indicator of BN, BQ, and CT state (FF is the reference state), along with interaction 

terms of traffic states and other variables.  Interaction terms were constructed as the interaction 

of one traffic state and its significant variables, as identified in Table 5-6.  For example, 

StdTsdDend is significant in the FF state, and FF× StdTsdDend is then the interaction term in the 

combined model.  The modeling results show that main effects of both BN and CT states are 

statistically significant, while the main effect of BQ state is not significant.  All interaction terms 

remain significant and their signs remain the same.  

Table 5-6 Results of the Combined Models for Two Distances 

0.2-mi (Model V1) 0.5-mi (Model V2) 

Variable Estimate 

Standard 

Error P-value Variable Estimate 

Standard 

Error P-value 

Intercept -4.406 0.237 <0.001 Intercept -4.400 0.260 <0.001 

BN 1.990 0.523 <0.001 BN 2.465 0.394 <0.001 

CT 1.764 0.897 0.049 CT 2.955 0.505 <0.001 

FF× StdTsdDend 0.452 0.081 <0.001 FF× StdTsdDend 0.438 0.0892 <0.001 

FF× StdTsdSpdd 0.903 0.257 <0.001 FF×OnRamp -1.510 0.598 0.0116 

FF×OnRamp -1.049 0.473 0.026 FF×Snow 0.933 0.529 0.0778 

FF×Snow 1.146 0.495 0.021 BQ×StdTsdDend 0.410 0.0970 <0.001 

BQ×StdTsdDend 0.530 0.083 <0.001 BQ×AvgDiffDend-u 0.0129 0.0033 <0.001 

BQ×Curve 3.111 0.655 <0.001 CT×StdTsdSpdu 0.613 0.308 0.047 

CT×AvgDenu 0.00824 0.00392 0.035     
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 A crash prediction model, Model P, was developed with observed traffic data collected 

from physical stations for comparison with the two models, Model V1 and Model V2, which 

were developed using the simulated traffic data from virtual stations.  The prediction accuracy of 

the three models was checked by conducting the 10-fold cross-validation with selected 

significant variables from each model.  The 10-fold cross-validation method first randomly 

partitions the dataset into ten equally sized subsamples.  A single subsample is used as the 

validation dataset, and the other nine are used as training datasets.  A model was then fitted with 

significant variables given the training dataset, and was then used to predict the crash probability 

of observation in the validation dataset.  This procedure was repeated ten times, with each of the 

ten subsamples used exactly once as the validation dataset.   

 Based on the validation results, ROC (receiver operating characteristic) curves for all 

three models are plotted in Figure 5-4, and the AUC (Area Under Curve) values are presented in 

Table 5-7.  The ROC curve is a plot of sensitivity against 1-specificity for different thresholds of 

predicted crash risk.  The sensitivity represents the proportion of correctly predicted crash cases 

among all crash cases, or the prediction accuracy of crash cases, while specificity represents the 

proportion of correctly predicted non-crash cases among all non-crash cases.  1-specificity is the 

proportion of incorrectly predicted non-crash cases among all non-crash cases, which is also 

called the false alarm rate.  A higher sensitivity along with a lower 1-specificity is preferred.  

The AUC value represents the total prediction accuracy, and a higher value is favored. 

 Model V2 provides a higher AUC than Model P which is developed based on observed 

traffic data from physical stations, though the difference is marginal.  It suggests that for 

modeling real-time crashes, simulated traffic data collected at virtual stations with consistent 

distances is superior to observed traffic data collected from physical stations with inconsistent 
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distances.  Model V1 provides a higher AUC than Model V2, suggesting that close distances are 

better when distances are already consistent.  These two findings prove that simulated traffic data 

collected from uniformly and closely spaced virtual stations can provide better model 

performance by taking into account the spatial issue of physical station data. 

 

Figure 5-4 ROC curves for three models with different data sources. 
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Table 5-7 Area Under Curve (AUC) for Three Models 

Virtual: 0.2-mi (Model V1) Virtual: 0.5-mi (Model V2) Physical (Model P) 

0.800 0.787 0.784 

5.6 Crash Prediction  

In this study, a crash prediction method was proposed to identify crash-prone traffic conditions 

in real time.  The crash prediction method takes the real-time data as the input.  It first simulates 

the traffic in the future 5-min period using CTM and predicts the crash risk for that period based 

on simulated traffic data.   

 In the real-time crash prediction method, traffic conditions during the future 5-min period 

need to first be simulated using CTM.  The initial densities of all cells were estimated with 

densities from the seven physical stations at the current moment.  The flow inputs, including in-

flow, ���, off-ramp flow, �, and on-ramp flow � (as shown in Figure 5-3) in the future 5-min 

period were required for CTM simulation and were estimated using the k-nearest neighbor (k-

NN) approach.  The k-NN approach has been applied in a number of studies to forecast traffic 

flow rates and has shown promising results (Clark, 2003; Habtemichael & Cetin, 2016; Oswald, 

Scherer, & Smith, 2001; Smith, Williams, & Oswald, 2002).   

 The past 30 minutes was considered to be the most recent time period.  Flows in the 

recent time period were considered as the subject flow set.  All flow sets during the same time 

period from last 90 days were considered as candidate flow sets and were matched with the 

subject flow set.  The ten nearest matches with the ten smallest distances were selected.  The 

distance is determined by the following: 

�(��, �) = �∑ (��
� − ��)���

��� , m = 1, … ,90 (5-17) 
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where �� = (��
�, … , ���

� ) is the mth candidate flow set of 30 1-minute flow points; � =

(��, … , ���) represents the subject flow set.  The flow in the future 5-min period is calculated as 

the weighted average of flows in the next 5-min period for those matched flow sets by the 

following: 

�� =
�

��
∑

(��)�

∑ (��)���
���

��
��� ��,� (5-18) 

where �� = (��
�, … , ��

�) represents the estimated flow set in the future 5-min period, �� is the 

kth smallest distance for kth nearest matched flow sets among those 10 nearest matched sets, and  

��,� = (��
�,�, … , ��

�,�) is the flow set in the next 5-min period for kth nearest matched flow sets. 

 After the required flows are estimated, they are used to run the CTM to simulate traffic in 

the future 5-min period.  Simulated traffic is then used to predict the crash risk of each cell.  The 

0.2-mi distance setting shows better crash prediction performance, and is therefore applied to 

data collection and crash prediction.  Simulated traffic data for each cell is collected from its 

upstream and downstream virtual stations, both of which are 0.2 mi away, and is then converted 

into variables as presented in Table 5-6.  The predicted crash risk of Cell i is estimated as  

�� =
��

���� (5-19) 

� = −4.406 + 1.990 ∗ �� + 1.764 ∗ �� + 0.452 ∗ (�� × ����������)  

         +0.903 ∗ (�� × ����������) − 1.049 ∗ (�� × ������) + 1.146 ∗ (�� × ����) 

         +0.530 ∗ (�� × ����������) + 3.111 ∗ (�� × �����) + 0.00824 ∗ (�� × �������) 

 Crash-prone traffic conditions are detected when the predicted crash probability exceeds 

an established threshold, which is 0.0427.  The testing results showed that among the 113 cases, 

104 cases exhibit crash-prone conditions, indicating the effectiveness of proposed crash 

prediction method.    
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5.7 Conclusions 

This study aimed to develop a novel method for crash prediction and prevention which can 

accurately identify crash-prone conditions by accounting for the spatio-temporal issue of loop 

detector data.   

 Conventional real-time freeway crash prediction models identify crash-prone traffic 

conditions based on live feeds from loop detectors.  It is common practice to use traffic data from 

the 5-10-min period prior to a crash, as this ensures sufficient time for taking the proper 

precautions.  However, the phenomenon of time proximity suggests that traffic conditions 

occurring within the 0-5-min period of a crash are more relevant when it comes to predicting 

crashes.  Moreover, a crash can happen between two detector stations where traffic information 

is not available, and the actual traffic conditions at the crash site may deviate from those 

captured by loop detector stations.  Therefore, crash patterns derived from loop detector 

locations, as opposed to crash locations, are inadequate in accounting for varying distances 

between crashes and detectors.  CTM-simulated traffic data were introduced in this study to fill 

the spatial and temporal gaps inherent in the observed traffic data collected from physical loop 

detector stations.  Based on the traffic flow theory, CTM can predict traffic conditions anywhere 

at any time from its virtual detectors.   

 A real-time crash prediction model was developed with data from a corridor of I-94 in 

Wisconsin.  The corridor was divided into a series of 0.1-mi long cells to create a uniform and 

close layout of virtual detector stations.  Traffic data simulated from virtual upstream and 

downstream stations with consistent spacing was used for crash modeling to account for the 

spatial gap in physical station data.  The simulated traffic data in the 0-5-min period prior to the 

crash/non-crash were used for crash modeling, and the traffic in the future 5-min period were 
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simulated for crash prediction.  In this way, the temporal issue of physical station data was also 

taken into consideration.   

 Simulated traffic data collected from one virtual upstream station and one virtual 

downstream station 0.2-mi away were used for crash modeling.  The same process was repeated 

for virtual stations that are 0.5-mi away.  The modeling results showed that varying variables are 

significantly related to the crash occurrence in different traffic states.  Observed traffic data 

collected from physical stations were also employed for crash modeling.  The prediction 

performance of several crash prediction models was compared, showing that the simulated traffic 

data would improve prediction performance by accounting for the spatial-tempo issue of physical 

station data.  It was also found that the 0.2-mi setting is better than the 0.5-mi setting for 

collecting simulated traffic data. 

 A crash prediction and prevention method based on simulated traffic data was proposed 

to detect crash-prone conditions.  Results showed that the proposed crash prediction and 

prevention method could effectively detect crash-prone conditions. 

 The crash prediction and prevention method proposed in this study could be applied in 

ATIS to detect crash-prone traffic conditions and distribute crash warnings.  Further 

improvements of CTM or equivalent simulation models will help to improve the current method. 
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CHAPTER 6 PREDICTIVE ANALYSIS ON FREEWAY CRASHES USING 

LANE-SPECIFIC SIMULATED TRAFFIC DATA 

6.1 INTRODUCTION 

The prevailing traffic conditions are one of the major contributors to crashes. Thus, crash 

causation can be better understood by studying real-time traffic data with regard to speed, 

volume, and density that is collected during the time period leading up to a crash. Studying the 

appropriate data from the most critical time period supports informed decision-making on 

effective traffic operational strategies for improving safety.  

 Inductive loop detectors (ILD) are the most popular type of traffic sensor for real-time 

crash prediction. However, spatio-temporal issue exists in ILD traffic data that may detriment the 

validity of RTCPMs developed based on it as detailed in Section 5.1. 

 The objective of this chapter is to develop a RTCPM using simulated lane-specific traffic 

data generated from macroscopic traffic simulation while accounting for the spatial-tempo issue. 

The rest of the chapter is organized as follows: a lane-specific cell transmission model (LSCTM) 

was developed to instrument a corridor of highway with virtual detector stations on each lane; 

then, different traffic characteristics across lanes as well as lane-change activities between lanes 

were simulated and collected; next, a RTCPM was developed using lane-specific simulated 

traffic data; finally, the lane-specific RTCPM model was compared with models developed from 

field loop detector data. 

6.2 Methodology 

Lane-changing activities are closely related to the heterogeneous traffic conditions across lanes. 

Therefore, a LSCTM is needed to model both discretionary lane-changing (DLC) and mandatory 
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lane-changing (MLC) activities and their impact on lane-specific traffic flow. The LSCTM 

proposed in this study was constructed based on the work by Pan et al. (Pan, Lam, Sumalee, & 

Zhong, 2016). 

6.2.1 Lane Change Probability and Minimum Gaps 

First, lane-specific fundamental diagrams (FD) were applied over lanes, as opposed to a uniform 

FD, to model different traffic flow characteristics. A multilane freeway corridor is divided into a 

series of cell packages, and each cell package includes cells associated with lanes. A lane-

specific triangular FD was adopted:  

��,�(�) = �
��,�,� ∙ ��,�(�),                   �� ��,�(�) ≤ ��,�,�

��,�,� ∙ ���,�,� − ��,�(�)� , �� ��,�(�) > ��,�,�

 (6-1) 

where ��,�(�) (PCE/mile/h) and ��,�(�) (PCE/mile/lane) are the flow and traffic density of cell 

package �, lane � (denoted as cell (i,m) thereafter) during time interval [�∆�, (� + 1)∆�), 

respectively. ��,�,� (mile/h), ��,�,� (PCE/mile/lane), ��,�,� (mile/h), and ��,�,� (PCE/mile/lane) 

denote the free-flow speed, critical density, shockwave speed, and jam density of the FD for cell 

package �, lane �, respectively. 

 It was assumed that a DLC happens in order to gain a speed advantage. According to 

Laval and Daganzo (Laval & Daganzo, 2006), the probability for a vehicle to execute a DLC is 

defined by: 

��,�,���
�

(�) = ��� �1, ��� �0,
��

�(�)���
�(�)

��,�,�∙�
∙ ∆��� (6-2) 

where ��
�(�) and ��

�(�) are the speed of the adjacent lane and the current lane; � is the duration 

of the lane change. 
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MLC was assumed to take place in order to reach the target turning point (e.g., off-ramp, 

accident, lane drop). The MLC probability is governed by: 

��,�,���
� (�, �) = �

�� � �−
(�(�)���)�

(��,�(�))� � , if �(�) > ��

1,                                 if �(�) ≤ ��

 (6-3) 

��,�(�) = �� + �� ∙ ��
�� + �� ∙ �̅�(�) 

where �(�) is the remaining distance to the target turning point; �� is a critical distance to the 

turning point; ��
�� is the number of lanes that the vehicle needs to cross from lane � to terminal 

lane ��; �̅�(�) is the average traffic density of lane �; ��, ��, and �� are associated parameters. 

The MLC probability increases as the driver approaches the turning point. All drivers intending 

to make a MLC make the move once they pass the critical distance. 

 Both MLC and DLC need to consider the available gaps in the target lane in order to 

make a safe lane change.  The lane change might not happen if the minimum gap is not 

guaranteed. According to Yang and Koutsopoulos (Yang & Koutsopoulos, 1996) and Pan et al. 

(Pan et al., 2016), the minimum gap for DLC depends only on the speed difference between the 

subject lane and the target lane, while the minimum gap for MLC also depends on the remaining 

distance to the target turning point (e.g., off-ramp, accident, lane drop). Vehicles intending to 

take a MLC consider the turning point to be remote when the remaining distance is �(�) > ��, 

and close if the distance is  �(�) < ��.  The minimum gap for MLC decreases linearly as the 

vehicle is approaching the turning point when the remaining distance is in the range of �� and ��. 

The minimum gaps for DLC and MLC from lane � to lane �, ��,���
�

(�) (feet) and ��,���
�

(�), 

are governed by: 

��,���
� (�) = �� ∙ ���(�) − ��(�)� + �� ∙ ���(�) − ��(�)� + ����  (6-4) 
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��,���
� (�) =

�

�� ∙ ���(�) − ��(�)� + �� ∙ ���(�) − ��(�)� + ����,    �� �(�) > ��                   

��� ∙ ���(�) − ��(�)� + �� ∙ ���(�) − ��(�)�� ∙
�(�)���

�����
+ ����, �� �� ≤ �(�) ≤ ��

����,                                                                                                   �� �(�) < ��

 (6-5) 

where the symbol ⌊�⌋ is defined by: 

⌊�⌋ = �
�, �� � > 0
0, �� � ≤ 0

  (6-6) 

 ���� denotes the minimum safe gap, and �� and �� are constants related to the extra lead gap and 

extra lag gap. 

 The speed obtained from the triangular FD which is adopted in Pan et al. (Pan et al., 

2016) may not be appropriate for modeling the lane-changing traffic (del Castillo, 2012; Jin, 

2010; Zhong, Pan, Sumalee, & Lam, 2014). A smooth function for estimating the speed (del 

Castillo, 2012; Jin, 2010) is adopted here: 

��,�(�) = ��,�,� �1 − ��� �1 − ��� (
��,�,�

��,�,�
(

��,�(�)

��,�,�
− 1))��  (6-7) 

 The average gap between successive vehicles on lane � of cell package � can be 

calculated as: 

��,�(�) =
����∙�����,�(�)∙��∙��

��,�(�)∙��
  (6-8) 

where �� (mile) is the length of cell package �, and �� is the vehicle length of a passenger car.  

This equation calculates the average gap size between successive vehicles that are in lane � of 

cell package � by excluding the space they occupy. 

 The minimum gaps for DLC and MLC and the average gap are then normalized using the 

following equations: 

���,���
� (�) =

��,���
� (�)

��
 (6-9) 
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���,���
� (�) =

��,���
� (�)

��
 (6-10) 

���,�(�) =
��,�(�)

��
  (6-11) 

6.2.2 Sending Function by Movement 

Consider a multilane freeway segment with three lanes, lane � − 1, �, and � + 1.  As shown in 

Figure 6-1, flows from all three lanes can merge into Cell �, lane � or cell (i, m), and the flow 

from cell (i, m) can diverge into three lanes. The sending and receiving functions can be 

determined by considering the merging and diverging flows.   

 

Figure 6-1 Merging and diverging of traffic flows of different movements. 

 The sending function, which denotes the flow intending to leave cell (i,m), is defined by: 

��,�
���(�) = �

��,�,� ∙ ��,�(�), �� ��,�(�) ≤ ��,�,�

��,�,                     �� ��,�(�) > ��,�,�
 (6-12) 

 The sending function consists of both straight-moving flow and lane-changing flow 

(DLC and MLC), and as defined by: 

��,�
���(�) = ��,�,��

���,�(�) + ∑ (��,�,���
���,� (�) +  ��,�,���

���,� (�))�����,���  (6-13) 

where � = � − 1, � + 1 denotes the two adjacent lanes to lane �; ��,�,��
���,�(�) is the straight-

moving flow; ��,�,���
���,� (�) and ��,�,���

���,� (�) are the sending functions for DLC flow and MLC 

flow, respectively, which can be obtained by Equation 6-14 and 6-15.  ��,�
���(�) is the density of 

��−1,�−1,���
�,� (�) + ��−1,�−1,���

�,� (�) 

��−1,�+1,���
�,� (�) + ��−1,�+1,���

�,� (�) 
��−1

�,� (�) 
��,�,���

�+1,�+1(�) + ��,�,���
�+1,�+1(�) ��,�

���(�) 

Cell i, lane ��,�,��
�+1,�(�) 

��,�,���
�+1,�−1(�) + ��,�,���

�+1,�−1(�) 

��−1,�,��
�,� (�) 
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the MLC demand of cell (i, m).  Note that the MLC demand includes the demand that stay in the 

terminal lane and ramp exiting traffic.  It is assumed that the MLC demand will not make DLC 

when �(�) ≤ �� as approaching the target turning point is a higher priority than gaining a speed 

advantage. 

��,�,���
���,� (�) = �

��,�,� ∙ ��,�
���(�) ∙ ��,�,���

� (�, �), �� ���,���
� (�) ≤ ���,�(�);

0,                                                      �� ���,���
� (�) > ���,�(�) 

 (6-14) 

��,�,���
���,� (�) =

⎩
⎪⎪
⎨

⎪⎪
⎧��,�,� ∙ ��,�(�) ∙ ��,�,���

� (�), �� ���,���
� (�) ≤ ���,�(�)&�(�) > ��;

��,�,� ∙ ���,�(�) − ��,�
���(�)� ∙ ��,�,���

� (�),

 �� ���,���
� (�) ≤ ���,�(�)&�(�) ≤ ��;

0,                          �� ���,���
� (�) > ���,�(�) 

 (6-15) 

 The sending function for straight-moving flow is the remaining portion of the sending 

function after excluding DCL and MLC flows. Straight-moving flow is defined by: 

��,�,��
���,�(�) = ��,�

���(�) − ∑ ���,�,���
���,� (�) + ��,�,���

���,� (�)������,���  (6-16) 

6.2.3 Receiving Function and Flow Propagation 

 The receiving function, which denotes the flow intending to enter cell (i, m), is defined 

by: 

����
�,� (�) =      �

��,�,                                            �� ��,�(�) ≤ ��,�,�

��,�,� ∙ ���,�,� − ��,�(�)� , �� ��,�(�) > ��,�,�
 (6-17) 

The lane-changing flow from adjacent lanes needs to compete with the straight-moving flow in 

the target lane in order to enter the target lane. Consider that a straight-moving vehicle would 

occupy a space of one PCE length, and a lane-changing vehicle would occupy �����,�,���
�,� (�) or 
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�����,�,���
�,� (�) PCE lengths. The sending function is converted to ����

�,�(�) by accounting for 

different movements which require varying amounts of space: 

����
�,�(�) = ����,�,��

�,� (�) + ∑ ������,�,���
�,� (�) ∙ ����,�,���

�,� (�) +  �����,�,���
�,� (�) ∙�����,���

����,�,���
�,� (�)� (6-18) 

The flow that is actually received by cell (i, m) from its current and adjacent lanes is defined by: 

����,�,��
�,� (�) =                  �

����,�,��
�,� (�),                  �� ����

�,�(�) ≤ ����
�,� (�)

����
�,� (�)

����
�,�(�)

∙ ����,�,��
�,� (�), �� ����

�,�(�) > ����
�,� (�)

 (6-19) 

 

����,�,���
�,� (�) =                  �

����,�,���
�,� (�),               �� ����

�,�(�) ≤ ����
�,� (�)

����
�,� (�)

����
�,�(�)

∙ ����,�,���
�,� (�), �� ����

�,�(�) > ����
�,� (�)

 (6-20) 

 

����,�,���
�,� (�) =                 �

����,�,���
�,� (�),               �� ����

�,�(�) ≤ ����
�,� (�)

����
�,� (�)

����
�,�(�)

∙ ����,�,���
�,� (�), �� ����

�,�(�) > ����
�,� (�)

 (6-21) 

 

where ����,�,��
�,� (�), ����,�,���

�,� (�), and ����,�,���
�,� (�) denote straight-moving, DLC, and MLC 

flows received by cell (i, m), respectively. 

 The density of cell (i, m) evolves over time based on the following flow conservation 

equation: 

��,�(� + 1) = ��,�(�) +
∆�

��
�����,�,��

�,� (�) + ∑ �����,�,���
�,� (�) + ����,�,���

�,� (�)������,��� −

��,�,��
���,�(�)   − ∑ ���,�,���

���,� (�) + ��,�,���
���,� (�)������,��� � (6-22) 
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 The density of the MLC demand of cell (i, m) evolves over time based on the MLC flow 

that enters and leaves cell (i, m), as defined by 6-23.   

��,�
���(� + 1) = ��,�

���(�) +
∆�

��
�∑ ����,�,���

�,� (�)���±� − ∑ ��,�,���
���,� (�)���±� � (6-23) 

 When the MLC demand increases due to a downstream bottleneck, a driver stops and 

waits for the chance to take the MLC if necessary. If the MLC demand needs to take the off-

ramp, it is assumed that the portion that cannot reach the terminal lane at the off-ramp proceeds 

rather than stops or slows down as stopping or abruptly slowing down traffic on freeway is a 

hazard. An additional rule is added to guide the MLC demand movement near the off-ramp. As 

shown in Figure 6-2, an off-ramp is located at the end of cell (J, m+1).  It is assumed that the 

MLC demand executes MLC only at the end of its current cell. Curved arrows in Fig. 2 represent 

MLC movements, which show that the MLC demand from cell (J-1, m) can cross one lane to cell 

(J, m+1) and exit. The MLC demand from cell (J-2, m-1) has to go to cell (J-1, m) first, and then 

to cell (J, m+1) to exit. However, the MLC demand from cell (J-1, m-1) can only go to cell (J, 

m) and cannot leave the freeway via the off-ramp. The MLC demand in cell (J, m) is assumed to 

proceed to the next cell.   

 

Figure 6-2 MLC movement near the off-ramp 
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6.3 Case Study 

A case study was conducted to apply the artificial lane-specific traffic data and model freeway 

crashes.  The study site and related data presented in Chapter 4 are used in this case study.  More 

details about the data could be referred to Section 4.4. 

6.3.1 LSCTM Setup and Calibration 

The corridor was divided into 41 uniform 0.1-mile long virtual cells for CTM simulation.  A 

virtual detector station was instrumented at the boundaries of cells, so there were 42 virtual 

detector stations. The spacing between consecutive virtual stations is 0.1 mile.  The off-ramp was 

located at the end of the 17th cell, while the on-ramp was located at the beginning of the 26th 

cell. Similar to physical detector stations, virtual stations were expected to capture traffic 

conditions at locations closer to the crash site.  

 The calibration method detailed in Section 4.4.2 was used to develop lane-specific FDs 

based on the three-year traffic data collected from seven physical detector stations. Table 6-1 

presents the FD parameters by lane. The first column, “Cell”, represents the cells that have the 

same FD.   

Table 6-1 Calibrated Fundamental Diagrams 

Cell Median Lane Middle Lane Shoulder Lane 

�� � �� �� � �� �� � �� 

1-5 68.6 2385.6 15.9 67.3 2372.7 14.0 65.4 2353.8 9.3 

6-12 69.1 2390.5 13.1 66.9 2369.4 12.3 69.4 2393.7 10.8 

13-17 67.1 2370.7 18.3 67.8 2378.2 8.5 65.0 2350.4 10.9 
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6.3.2 LSCTM Simulation 

Due to the data limitation, other parameters including ��, ��, ��, �, ��, �� and ���� are set to be -

55.9, 726.9/lane, 33.7 mile/PCE, 3s, 1.32 feet*h/mile, 1.32 feet*h/mile, 37.7 feet based on 

previous literature (Laval & Daganzo, 2006; Pan et al., 2016; Yang & Koutsopoulos, 1996) 

without calibration.  The PCE length, ��, is set to be 20 feet.  Due to the cell length, �� and �� 

are set to be the length of integer cells. Since the MLC demand behavior is different from the 

median lane and the middle lane, �� is 0.1 mile for the middle lane and 0.2 mile for the median 

lane. �� is 1.0 mile for the middle lane and 1.1 mile for the median lane (Pan et al., 2016). 

 The simulation time step in CTM needs to be chosen so that the Courant–Friedrichs–

Lewy (CFL) condition (Courant, Friedrichs, & Lewy, 1967) can be met. A vehicle cannot travel 

across more than one cell during one simulation step in the CFL condition (i.e., �� ∗ ∆� ≤ ��) 

where vi is the free-flow speed, ∆� is the simulation time step, and �� is the cell length. The 

simulation time is set to be 3s since it cannot exceed �, as pointed out by Laval and Daganzo 

(Laval & Daganzo, 2006). 

 Traffic conditions in the 0-5-min period before a crash are necessary for crash modeling. 

Traffic conditions for this time period can be simulated by collecting density data from seven 

mainline physical detector stations for the 15-min period before the crash occurrence. The data is 

then interpolated to obtain the initial densities of all cells by lane. The initial density of the MLC 

demand is set to be 0.  The in-flow and out-flow in the 0-15-min period before the crash time are 

18-25 60.7 2306.7 8.3 54.3 1932.0 10.2 58.1 2281.3 10.8 

26-31 60.5 2304.8 10.6 62.7 2327.0 11.8 58.5 2284.8 10.1 

32-39 61.2 2312.4 10.7 60.5 2305.3 15.4 52.2 2221.9 18.6 

40-41 64.8 2316.0 12.9 56.6 2256.0 11.5 58.5 1932.0 9.7 
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collected from the first and the last physical detector stations. The average off-ramp flow during 

the same period collected from the off-ramp detector station is the entering MLC demand of the 

corridor during this 15-min period. The proportion of the entering MLC demand distributed over 

three lanes is set to be (1/3, 1/3, 1/3). It is reasonable to assume that MLC activities are likely to 

be evenly distributed across lanes at the beginning of the corridor which is 1.77 miles from the 

off-ramp and much larger than ��. The LSCTM was run for 15 minutes with all necessary data. 

The first 10 minutes was considered a warm-up. The data simulated during the last 5 minutes 

was used as the traffic data for the 0-5-min period before the crash. 

6.4 Crash Modeling 

A total of 113 crashes remained after crashes that had missing physical detector data were 

removed. The crash record has location information that can be used to determine the location of 

the cell where the crash occurred. A total of 2,260 non-crash cases were randomly selected from 

1,578,240-min intervals from 2012-2014 at one out of 41 cells, which is a 20:1 non-crash to 

crash case ratio.   

 Simulated traffic data were collected from the virtual stations upstream and downstream 

from the cell location of each crash/non-crash. One virtual upstream station and one virtual 

downstream station that were 0.2 mi (i.e., two cells) away from the crash cell location were 

identified as stations from which the simulated traffic data were collected. 

 The 3-s lane-specific traffic data in the prior 0-5-min period from the two selected virtual 

stations were aggregated over three lanes for each crash and non-crash case and then converted 

into variables including the average and standard deviation of flow, speed, and density along 

with the traffic state variable. 
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 Additional non-traffic variables such as curve presence, ramp presence, and weather 

condition are included. Table 6-2 presents the candidate variables for developing the RTCPM.   

Drivers may behave differently in different traffic states, and the crash contributing factors may 

vary across states; therefore, one crash model was developed for the sub dataset with only one of 

the four traffic states, and only the significant variables in all four models were kept and 

combined into a single model for the whole dataset.  This method is detailed in Section 4.5. The 

modeling results are presented in Table 6-3. The model includes indicators for BN, BQ, and CT 

states (FF is the reference state), as well as interaction terms for traffic states and other variables. 

The variable FF× AvgDenu, for example, is the average density at the upstream station when the 

traffic state is FF, which is 0 when the traffic state is not FF. 

 The modeling results show that all three traffic states are more crash-prone than the FF 

state. Results also show that contributing factors to the crash occurrence vary across traffic 

states. In the FF state, the estimates of AvgDenu and Snow are positive while that of On_Ramp 

is negative. This suggests that crash risk increases as the average density at the upstream station 

increases in snowy conditions. A higher density equals a smaller headway, which leads to a 

higher crash potential. The crash probability is higher under snowy conditions in the FF state, but 

not for other states. The negative On_Ramp sign suggests that a crash is less likely to happen 

near the on-ramp location. It is plausible that drivers tend to be more cautious when approaching 

an on-ramp. 
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Table 6-2 Candidate Variables 

Variable Description 

AvgDenu Average 3-s density at the upstream station (veh/mi) 

AvgSpdu Average 3-s speed at the upstream station (mi/h) 

StdDenu Standard deviation of 3-s density at the upstream station (veh/mi) 

StdSpdu Standard deviation of 3-s speed at the upstream station (mi/h) 

AvgDend Average 3-s density at the downstream station (veh/mi) 

AvgSpdd Average 3-s speed at the downstream station (mi/h) 

StdDend Standard deviation of 3-s density at the downstream station (veh/mi) 

StdSpdd Standard deviation of 3-s speed at the downstream station (mi/h) 

FF 1 = if the location is in the free-flow state; 0 = otherwise 

BN 1 = if the location is in the bottleneck front state; 0 = otherwise 

BQ 1 = if the location is in the back-of-queue state; 0 = otherwise 

CT 1 = if the location is in the congestion state; 0 = otherwise 

Curve 1 = Horizontal curve section; 0 = otherwise  

OnRamp 1 = an on-ramp between upstream and downstream stations; 0 = otherwise 

OffRamp 1 = an off-ramp between upstream and downstream stations; 0 = otherwise 

Rain 1 = if the weather is rainy; 0 = otherwise 

Snow 1 = if the weather is snowy; 0 = otherwise 
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Table 6-3 Modeling Results 

Variable Estimate Standard Error P-value 

Intercept -4.154 0.380 <0.001 

BN 2.208 0.611 <0.001 

BQ 1.042 0.506 0.040 

CT 3.305 0.766 <0.001 

FF× AvgDenu 0.043 0.015 0.004 

FF× Snow 1.088 0.493 0.027 

FF× On_Ramp -2.019 1.014 0.046 

BQ× StdSpdd 0.133 0.049 0.007 

CT× AvgDenu 0.008 0.004 0.035 

CT× AvgSpdd -0.034 0.011 0.003 

  

 The positive sign for BQ× StdSpdd suggests that for the BQ state, crash risk increases 

with a higher standard deviation of speed at the downstream station. This is logical, as more 

fluctuation in speed would lead to a higher crash potential.  In the CT state, crash risk increases 

when the average density increases at the upstream station; crash risk decreases when the 

average speed increases at the downstream station. The higher average density increases the 

crash risk due to the smaller headway. The higher speed at the downstream station leads to less 

risk of rear-end crashes at the upstream station. 

 Validation results were used to plot receiver operating characteristic (ROC) curves for the 

two models, as shown in Figure 6-3. The ROC curve is a plot of sensitivity against 1-specificity 

for different thresholds of predicted crash risk. The sensitivity represents the proportion of 
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correctly predicted crash cases among all crash cases (prediction accuracy), while specificity 

represents the proportion of correctly predicted non-crash cases among all non-crash cases. 1-

specificity is the proportion of incorrectly predicted non-crash cases among all non-crash cases, 

also referred to as the false alarm rate. A higher sensitivity along with a lower 1-specificity is 

preferred. The Area Under Curve (AUC) value represents the total prediction accuracy. A higher 

AUC value is favored. AUC values are 0.66 for Model V and 0.81 for Model P, respectively. 

The Model V’s AUC is lower than Model P’s, suggesting that simulated traffic data from 

uniformly and closely spaced virtual stations did not perform better.   

 

Figure 6-3 ROC curves for models with different data sources. 

 The less desirable performance of Model P could be due to the inaccurate data simulated 

by the LSCTM. Note that although the LSCTM operated with lane-specific FDs calibrated from 
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filed data, some important parameters were borrowed from other studies rather than fine-tuning 

filed data. Parameters can be carefully calibrated for satisfactory performance when all 

information is available.  With accurate simulated lane-specific data, a RTCPM could be 

developed following the method detailed in Section 5.6. 

6.5 Conclusions 

A novel approach for addressing the spatial discrepancy issues that exist in most real-time crash 

prediction studies has been proposed. A LSCTM was developed to simulate both DLC and MLC 

activities. The method for developing the RTCPM used simulated traffic data and was 

demonstrated through a case study. Although the RTCPM developed from artificial data did not 

outperform the RTCPM developed using physical data, this study presents a viable alternative to 

utilizing macroscopic traffic simulation for safety analysis and evaluation.  

 Variables related to the heterogenous traffic between lanes have been utilized in previous 

studies (Lee, Abdel-Aty, & Hsia, 2006; Lee, En, Young-Jin, & Abdel-Aty, 2009; Xu, Wang, Liu, 

Wang, & Bao, 2018) to analyze crash probability; these studies could be extended using the lane-

specific artificial traffic data. Moreover, the LSCTM can provide artificial lane-changing 

activities which could be very valuable for analyzing crashes related to lane changes. 
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CHAPTER 7 CRASH PREDICTION AND PREVENTION APPLICATION  

7.1 Introduction 

A performance assessment tool is indispensable to evaluate the effectiveness of intervening 

strategies and promote the research findings from well-developed RTCPMs.  A crash prediction 

and prevention application (CPPA) that combines both the RTCPM and the performance 

assessment tool can help detect crash-prone traffic conditions, distribute crash warnings, and 

evaluate traffic control countermeasures before their deployment. 

 Variable speed limit (VSL) is a traffic control technique that is used to increase mobility 

and reduce crash risks on freeway mainlines.  Unlike typical static speed limit signs, the VSL 

dynamically posts a speed limit based on current traffic, weather, traffic safety level or other 

conditions.  Although the VSL is mainly designed to improve mobility, its effect on safety has 

also been demonstrated. VSL has been reported to reduce the crash risks by 10-80% (Abdel-Aty, 

Cunningham, Gayah, & Hsia, 2008; Abdel-Aty, Dilmore, & Dhindsa, 2006; Abdel-Aty, Pande, 

Lee, Gayah, & Santos, 2007; Allaby, Hellinga, & Bullock, 2007; Choi & Oh, 2016; Hellinga & 

Mandelzys, 2011; Lee & Abdel-Aty, 2008; Lee, Hellinga, & Saccomanno, 2006; Li, Li, Liu, 

Wang, & Xu, 2014; Li, Liu, Wang, & Xu, 2014; Li, Liu, Xu, & Wang, 2016).  Due to the 

effectiveness of VSL in reducing the crash risk, a CPPA which aims to evaluate both the safety 

and mobility impacts of VSL is developed in this chapter. 

7.2 CPPA Development 

The CPPA is developed based on a RTCPM within the CTM environment.  The RTCPM 

developed in Chapter 5 which is based on traffic data simulated by traditional CTM 

outperformed the counterpart developed using ILD data, while the model developed in Chapter 6 
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which is based on traffic data simulated by LSCTM fails to provide superior performance than 

that developed using ILD data.  Therefore, the RTCPM developed using CTM simulated data in 

Chapter 5 is selected as the model in CPPA, and the traditional CTM is applied as the simulation 

environment. 

 Figure 7-1 presents the process of CPPA.  The application consists of a crash prediction 

module and a crash prevention module.  The crash prediction module takes the real-time data as 

the input.  It first simulates the traffic in the future 5-min period using CTM and predicts the 

crash risk for that period based on simulated traffic data.  If the predicted crash risk exceeds the 

pre-specified threshold, the crash prevention module will be activated.  Several candidate TCS 

alternatives are considered to reduce the crash risk.  Each TCS alternative will be simulated in 

CTM to produce what traffic conditions would be in the future 5-min period if that TCS is 

deployed.  The predicted crash risk is estimated based on the simulated traffic data, and the 

safety impacts of that TCS are evaluated.  The optimal TCS is chosen based on established 

criteria.    

 In the real-time crash prediction module, traffic conditions during the future 5-min period 

need to first be simulated using CTM.  The initial densities of all cells were estimated with 

densities from the seven physical stations at the current moment.  The flow inputs, including in-

flow, ���, off-ramp flow, �, and on-ramp flow � (as shown in Figure 5-3) in the future 5-min 

period were required for CTM simulation and were estimated using the k-nearest neighbor (k-

NN) approach.  The k-NN approach has been applied in a number of studies to forecast traffic 

flow rates and has shown promising results (Clark, 2003; Habtemichael & Cetin, 2016; Oswald, 

Scherer, & Smith, 2001; Smith, Williams, & Oswald, 2002).   
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Figure 7-1 Process of the crash prediction and prevention application (CPPA). 
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 The past 30 minutes was considered as the most recent time period.  Flows in the recent 

time period were considered as the subject flow set.  All flow sets during the same time period 

from last 90 days were considered as candidate flow sets and were matched with the subject flow 

set.  The ten matches with ten smallest distances were selected.  The distance is determined by: 

�(��, �) = �∑ (��
� − ��)

���
��� , m = 1, … ,90 (7-1) 

where �� = (��
�, … , ���

� ) is the mth candidate flow set of 30 1-minute flow points; � =

(��, … , ���) represents the subject flow set.  The flow in the future 5-min period is calculated as 

the weighted average of flows in the next 5-min period for those matched flow sets by:  

�� =
�

��
∑

(��)�

∑ (��)���
���

��
��� ��,� (7-2) 

where �� = (��
�, … , ��

�) represents the estimated flow set in the future 5-min period, �� is the 

kth smallest distance for kth nearest matched flow sets among those 10 nearest matched sets, and  

��,� = (��
�,�, … , ��

�,�) is the flow set in the next 5-min period for kth nearest matched flow sets. 

 After the required flows are estimated, they are used to run the CTM to simulate traffic in 

the future 5-min period.  Simulated traffic is then used to predict the crash risk of each cell.  The 

0.2-mi distance setting shows better crash prediction performance, and is therefore applied to 

data collection and crash prediction.  Simulated traffic data for each cell is collected from its 

upstream and downstream virtual stations, both of which are 0.2 mi away, and is then converted 

into variables as presented in Table 5-6.  The predicted crash risk of Cell i is estimated as  

�� =
��

���� (7-3) 

� = −4.406 + 1.990 ∗ �� + 1.764 ∗ �� + 0.452 ∗ (�� × ����������)  

         +0.903 ∗ (�� × ����������) − 1.049 ∗ (�� × ������) + 1.146 ∗ (�� × ����) 

         +0.530 ∗ (�� × ����������) + 3.111 ∗ (�� × �����) + 0.00824 ∗ (�� × �������) 
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 Crash-prone traffic conditions are detected when the predicted crash probability exceeds 

an established threshold.  If crash-prone conditions are detected, the crash prevention module 

will be activated.  The safety impacts of various TCS are then evaluated.  The optimal traffic 

control strategy is then deployed to improve the safety condition.    

 The proposed CPPA was applied to the study site for demonstration.  Figure 7-2 presents 

the layout of VSL signs along the study corridor.  Eight coordinated VSL signs are marked from 

VSL 1 to VSL 8 and all spaces between adjacent VSL signs are 0.50 mi.  Each 0.50-mi spacing 

consists of five uniform 0.10-mi cells, so there are 35 cells between VSL 1 and VSL 8.   

 

Figure 7-2 Layout of VSL signs along the corridor. 

 The VSL control strategy proposed in this study was to gradually reduce the posted speed 

limits of activated VSL signs until a target speed drop was achieved.  When the predicted crash 

probability of one cell in the future 5-min interval exceeds the pre-specified threshold, the 

nearest upstream VSL sign will be activated.  The pre-specified crash probability threshold was 

set to be 0.0427 because it provided desirable classification performance with the maximum 

summation of sensitivity and specificity. 

Loop detector 

��� ���� 

� � 

0.27  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.38  

VSL 1 VSL 2 VSL 3 VSL 4 VSL 5 VSL 6 VSL 7 VSL 8 
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 Several parameters need to be decided to develop an effective VSL control, including 

target speed drop, speed change rate, and maximum speed difference between adjacent VSL 

signs.  Two target speed drop alternatives were proposed: 10 MPH speed drop and 20 MPH 

speed drop.  The target speed limit would be 55 MPH with a 10 MPH speed drop and 45 MPH 

with a 20 MPH speed drop, with an initial speed limit of 65 MPH.  The speed change rate 

determines how fast the VSL sign should change the posted speed limit.  A large speed change 

rate may introduce significant traffic disturbances, whereas a small speed change rate could fail 

to achieve the target speed limit in a reasonable time period.  VSL signs were coordinated to 

create smooth speed changes between consecutive links.  The maximum speed difference 

between adjacent VSL signs needs to be satisfied.  The speed change rate was set to be 10 MPH 

per 30 s, meaning that the posted speed limit reduces by 10 MPH and stays for 30 s until the next 

speed change.  The maximum speed difference between consecutive VSL signs was set to be 10 

MPH.  The values for these two parameters have been proven to produce a satisfactory 

performance for the VSL control (Li, Li, et al., 2014).  

 Once the crash prevention module is initiated, the proposed VSL strategy with two speed 

drop alternatives would be simulated in the CTM for 5 min, and then simulated traffic would be 

used to assess the safety effects and mobility effects.  The safety effect is measured as  

� = ∑ ��
�
���  (7-4) 

�� = �
�� − �����,         �� �� > �����

0,                         �� �� ≤ �����
 

where � is the crash risk of the corridor, �� is the crash risk of Cell i, �� is the predicted crash 

probability of Cell i and can be estimated using Equation 7-3 given the simulated traffic flow, 

����� is the threshold of predicted crash probability for crash classification, which is 0.0427.  The 

mobility effects are measured by the Total Travel Time (TTT). 
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 The proposed CPPA was tested on the 113 crash cases that were used for developing 

crash prediction models.  Five minutes before each crash occurrence was equivalent to the 

“current moment”; the 0-5-min interval before its crash time was equivalent to the “future 5-min 

period”; the 30-min interval before the “current moment” was equivalent to the recent time 

period.  The flows were estimated using the k-NN approach and were then applied to simulate 

the traffic in the “future 5-min period”.  The crash risk of each cell was re-predicted using 

Equation 7-3 based on the simulated traffic.  The crash prevention module was activated when 

the crash risk of any cell exceeded the threshold.  One control strategy would be deployed among 

three alternatives: 1) Non-activated VSL, 2) VSL control with 10 MPH drop, and 3) VSL control 

with 20 MPH drop.  The non-activated VSL strategy would not change the traffic conditions and 

therefore would not change the crash risk.  The control strategy that can provide the smallest 

crash risk would be deployed.   

 The effectiveness of the crash prevention module was evaluated based on the relative 

change in �, TTD, and TTT.  The relative change in the three measures is estimated by 

∆� =
∑ ��

��� �,���
�∑ ��

��� �,���

∑ ��
��� �,���

× 100% (7-5) 

where ∆� is the percentage of relative change in one measure (i.e., �, or TTT), ��,��� is the 

measure of case k with the crash prevention module, and ��,��� is the measure of case k without 

the crash prevention module. 

 The testing results showed that among the 113 cases, 104 triggered the crash prevention 

module and different control strategies were then deployed.  Table 7-1 shows the safety and 

mobility effects by deployed control strategy.  It shows that the VSL control strategy was not 

activated for 59 out of 104 cases as it did not lower the crash risk, so ∆� and ∆��� remained the 

same for these cases due to unchanged traffic.  The other 45 (37+8) cases yielded improved 
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safety level with the VSL control being deployed.  Specifically, the VSL with 10 MPH drop was 

deployed for 37 cases and decreased the crash risk by 26.9% while increasing the TTT by only 

7.2%; the VSL with 20 MPH drop was deployed for 8 cases and decreased the crash risk by 

10.5% while increasing the TTT by only 2.5%.  On average, the crash prevention module 

reduced crash risk by 21.2% for the total 104 cases.  Mobility was only slightly compromised, as 

TTT increased by 5.8%.  In general, the proposed CPPA proves to be promising in improving 

safety without sacrificing mobility. 

Table 7-1 Safety and Mobility Effects by Deployed Control Strategy 

Control Strategy Count ∆� ∆��� 

Non-activated VSL 59 0% 0% 

VSL: 10 MPH Drop 37 -26.9% 7.2% 

VSL: 20 MPH Drop 8 -10.5% 2.5% 

Total 104 -21.2% 5.8% 

7.3 Conclusions 

A crash prediction and prevention application (CPPA) based on simulated traffic data was 

proposed to detect crash-prone conditions and help select the desirable TCS for crash prevention.  

The proposed application was tested in a case study with VSL strategies for demonstration, and 

results showed that the proposed crash prediction and prevention method could effectively detect 

crash-prone conditions and evaluate the safety and mobility impacts of various VSL alternatives 

before their deployment. 

 The crash prediction and prevention method proposed in this study could be applied in 

ATIS to detect crash-prone traffic conditions, distribute crash warnings, and evaluate traffic 
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control countermeasures before their deployment.  Further improvements of CTM or equivalent 

simulation models will help to improve the current method.  The CPPA could be applied in the 

LSCTM environment to detect crash-prone conditions with lane-specific traffic data and evaluate 

the effectiveness of TCS by lane.   
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CHAPTER 8 CONCLUSIONS, CONTRIBUTIONS AND FUTURE 

RESEARCH 

Crashes can be accurately predicted through reliable data sources and rigorous statistical models; 

and prevented through data-driven, evidence-based traffic control strategies.  Both predictive 

analysis and analysis on causal effects of traffic variables of real-time crashes are instrumental to 

crash prediction and a better understanding of the mechanism of crash occurrence.  However, the 

research on the latter analysis is very limited for real-time crash prediction; and the conventional 

predictive analysis using inductive loop detector data has accuracy issues related to 

inconsistently and distantly spaced loop detectors.  The effectiveness of traffic control strategies 

for improving safety performance cannot be measured and compared without an appropriate 

traffic simulation application.  This dissertation is an attempt to address these research gaps. 

 Chapter 3 of the dissertation conducts the analysis to assess the causal effect of speed 

variation on crash occurrence using the crash data and ILD data on a 4.15-mile long corridor on 

I-94 East in Wisconsin in 2012-2014.  As a rigorous analysis method to estimate the causal 

effect, the propensity score based model is applied to generate samples with similar covariate 

distributions in both high- and low-speed variation groups of all cases.  Under this setting, the 

confounding effects are removed, and the causal effect of speed variation can be obtained.  

Upstream and downstream speed variations are first converted into binary treatments − high 

upstream speed variation (HUSV) and high downstream speed variation (HDSV) − based on 

cutoff values.  Then, the selected variables are included in the propensity model for treated and 

control groups.  The propensity score for each case is estimated based on the propensity model. 

A weighted sample is generated using the inverse probability of treatment weighting (IPTW) 

method, from which the causal effect of HUSV and HDSV between the treated and control group 



 
 

161 
 

can be impartially estimated.  Sensitivity analysis on the cutoff value of speed variation has been 

performed to test the consistency of the findings.  The results show that the causal effect of 

neither treatment is significant.  Hence, it is concluded with high confidence that speed variation 

is not one of the causes for a crash.  In the future, the propensity score based analysis can be 

extended to other real-time traffic variables and environmental factors, from which crash 

causation prediction models can be developed. 

 Chapter 4 conducts a predictive analysis on lane-changing related crashes using lane-

specific traffic data collected from three ILD stations near a crash location.  The real-time traffic 

data for the two lanes – the vehicle’s lane (subject lane) and the lane to which that a vehicle 

intends to change (target lane) – are more closely related with lane-change related crashes, as 

opposed to congregated traffic data for all lanes.  Lane-change related crash data are obtained 

from a 62-mile long freeway in Wisconsin in 2012 and 2013.  One-minute traffic data from the 5 

to 10-minute interval prior to the crashes are extracted from an immediate upstream detector 

station and two immediate downstream stations from the crash location.  Weather information is 

collected from a major historical weather database.  A matched case-control logistic regression is 

used for analysis.  It is found that the following factors significantly affect the probability of a 

lane-change related crash, including average flow into the target lane at the first downstream 

station, the flow ratio at the second downstream station, and snow condition.  The average speed 

in the target lane at the first downstream station also contributes to the occurrence of lane-change 

crashes during snowy conditions. 

 Chapter 5 conducts a predictive analysis on real-time crashes using simulated traffic data.  

The purpose of using simulated traffic data rather than real data is to mitigate the temporal and 

spatial issues of detector data.  Crash cases and non-crash cases are collected from a 4.15-mile 
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long corridor on I-94 in Wisconsin in 2012-2014.  The cell transmission model (CTM), a 

macroscopic simulation model, is employed to instrument the corridor with a uniform and close 

layout of virtual detector stations that measure traffic data when physical stations are not 

available.  Traffic flow characteristics at the crash site are simulated by CTM 0-5 minutes prior 

to a crash.  Crash prediction models are developed using the binary logistic regression with 

traffic flow characteristics of simulated traffic data.  As a comparison, crash models are 

developed from physical detectors.  The prediction performance of several crash prediction 

models shows that the simulated traffic data can improve the prediction performance by 

accounting for the spatial-tempo issue of ILD data.  It is also found that the 0.2-mi distance 

setting is better than the 0.5-mi distance setting for collecting simulated traffic data regarding the 

distance from the cell location to its virtual upstream/downstream stations.  The crash prediction 

method can be used for detecting crash-prone conditions where the predicted crash probability 

exceeds a predetermined threshold value. 

 Chapter 6 presents a novel approach to modeling freeway crashes using lane-specific 

simulated traffic data.  The new model can not only account for the spatio-temporal issues of 

detector data but also account for heterogeneous traffic conditions across lanes using a lane-

specific cell transmission model (LSCTM). The LSCTM illustrates both discretionary lane-

changing (DLC) and mandatory lane-changing (MLC) activities.  A case study is performed to 

demonstrate the method for modeling freeway crashes.  Although the models developed from the 

simulated traffic does not outperform the models with actual traffic data, this new approach 

presents a viable alternative for utilizing traffic simulation models for safety analysis and 

evaluation.  It is worth noting that the challenge of using traffic simulation lies in model 

calibration.  Uncalibrated parameters of LSCTM are different from actual field values, rendering 
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inaccurate artificial data.  Nevertheless, crash prediction performance will improve despite these 

challenges when traffic simulation produces more realistic traffic data.  Future research will be 

focused on identifying the efficient and effective ways to calibrate traffic parameters in a 

LSCTM that are essential to the improvement of RTCPM.  

 Chapter 7 develops a crash prediction and prevention application (CPPA) based on 

simulated traffic data to detect crash-prone conditions and to help select the desirable traffic 

control strategies for crash prevention.  The proposed application is tested in a case study with 

VSL strategies, and results show that the proposed crash prediction and prevention method could 

effectively detect crash-prone conditions and evaluate the safety and mobility impacts of various 

VSL alternatives before their deployment.  In the future, the application will be more user-

friendly and can provide both online traffic operations support as well as offline evaluation of 

various traffic control operations and methods. 

 The contributions of this dissertation are summarized as follows: 

1. This dissertation demonstrates the need for a propensity score based analysis to obtain 

causal effects of real-time traffic factors on crash occurrence.  Based on the causal effects 

of traffic factors, more effective countermeasures can be deployed to mitigate crash risk. 

2. The dissertation identifies the crash-prone traffic patterns related to lane-changing 

crashes.  The identified crash contributing factors can help traffic operators select traffic 

control and management countermeasures to proactively mitigate lane-change related 

crashes. 

3. This dissertation identifies the spatial-tempo issues of ILD data and proposes a 

macroscopic traffic simulation model − a cell transmission model − to generate traffic 
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data for developing RTCPMs.  RTCPMs developed from the simulated traffic data have 

consistent and comparable performance with different ILD station layouts. 

4. This dissertation proposes a LSCTM to provide lane-specific simulated traffic data for 

crash modeling.  The availability of lane-specific traffic characteristics offers new 

opportunities for modeling more specific crash types such as lane-changing crashes, and 

evaluating active traffic management (e.g., managed lanes, smart lanes). 

5. A crash prediction and prevention application is proposed.  This application can monitor 

real-time crash risk and evaluate traffic control strategies.  Agencies can apply this 

application to detect crash-prone traffic conditions, distribute crash warnings, and 

evaluate traffic control countermeasures before their deployment. 
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