2,059 research outputs found

    Sensor-fault tolerance using robust MPC with set-based state estimation and active fault isolation

    Get PDF
    In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (MPC) and set theoretic fault detection and isolation (FDI) is proposed. The MPC controller is used to both robustly control the plant and actively guarantee fault isolation (FI). In this scheme, fault detection (FD) is passive by interval observers, while fault isolation (FI) is active by MPC. The advantage of the proposed approach consists in using MPC to actively decouple the effect of sensor faults on the outputs such that one output component only corresponds to one sensor fault in terms of FI, which can utilize the feature of sensor faults for FI. A numerical example is used to illustrate the effectiveness of the proposed scheme.Postprint (author’s final draft

    Zonotopic fault detection observer design for Takagi–Sugeno fuzzy systems

    Get PDF
    This paper considers zonotopic fault detection observer design in the finite-frequency domain for discrete-time Takagi–Sugeno fuzzy systems with unknown but bounded disturbances and measurement noise. We present a novel fault detection observer structure, which is more general than the commonly used Luenberger form. To make the generated residual sensitive to faults and robust against disturbances, we develop a finite-frequency fault detection observer based on generalised Kalman–Yakubovich–Popov lemma and P-radius criterion. The design conditions are expressed in terms of linear matrix inequalities. The major merit of the proposed method is that residual evaluation can be easily implemented via zonotopic approach. Numerical examples are conducted to demonstrate the proposed methodPeer ReviewedPostprint (author's final draft

    Zonotopic fault estimation filter design for discrete-time descriptor systems

    Get PDF
    This paper considers actuator-fault estimation for discrete-time descriptor systems with unknown but bounded system disturbance and measurement noise. A zonotopic fault estimation filter is designed based on the analysis of fault detectability indexes. To ensure estimation accuracy, the filter gain in the zonotopic fault estimation filter is optimized through the zonotope minimization. The designed zonotopic filter not only can estimate fault magnitudes, but it also provides fault estimation results in an interval, i.e. the upper and lower bounds of fault magnitudes. Moreover, the proposed fault estimation filter has a non-singular structure and hence is easy to implement. Finally, simulation results are provided to illustrate the effectiveness of the proposed method.Postprint (published version

    Interval Observer Design for Actuator Fault Estimation of Linear Parameter-Varying Systems

    Get PDF
    International audienceThis work is devoted to fault estimation of discrete-time Linear Parameter-Varying (LPV) systems subject to actuator additive faults and external disturbances. Under the assumption that the measurement noises and the disturbances are unknown but bounded, an interval observer is designed, based on decoupling the fault effect, to compute a lower and upper bounds for the unmeasured state and the faults. Stability conditions are expressed in terms of matrices inequalities. A case study is used to illustrate the effectiveness of the proposed approach

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Zonotopic unknown input observer of discrete-time descriptor systems for state estimation and robust fault detection

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper studies a set-based unknown input observer based on zonotopes for discrete-time descriptor systems affected by uncertainties with application to state estimation and robust fault detection. In this paper, two types of uncertainties are considered: (i) disturbances and noise both bounded by zonotopes; (ii) unknown inputs that can be decoupled. In terms of different applications, the observer gain for state estimation is designed to minimize the effects of unknown-but-bounded disturbances and noise as well as state estimation errors. On the other hand, for robust fault detection, in addition to attenuating uncertainties, the designed observer gain is also expected to be sensitive to faults. To achieve this goal, we propose an iterative algorithm to design the fault detection gain. Finally, some illustrative results in an application example show the effectiveness of the proposed algorithms.Peer ReviewedPostprint (author's final draft

    Fault detection and isolation using viability theory and interval observers

    Get PDF
    This paper proposes the use of interval observers and viability theory in fault detection and isolation (FDI). Viability theory develops mathematical and algorithmic methods for investigating the viability constraints characterisation of dynamic evolutions of complex systems under uncertainty. These methods can be used for checking the consistency between observed and predicted behaviour by using simple sets that approximate the exact set of possible behaviour (in the parameter or state space). In this paper, FDI is based on checking for an inconsistency between the measured and predicted behaviours using viability theory concepts and sets. Finally, an example is provided in order to show the usefulness of the proposed approachPeer ReviewedPostprint (author's final draft

    Detection and Mitigation of Biasing Attacks on Distributed Estimation Networks

    Full text link
    The paper considers a problem of detecting and mitigating biasing attacks on networks of state observers targeting cooperative state estimation algorithms. The problem is cast within the recently developed framework of distributed estimation utilizing the vector dissipativity approach. The paper shows that a network of distributed observers can be endowed with an additional attack detection layer capable of detecting biasing attacks and correcting their effect on estimates produced by the network. An example is provided to illustrate the performance of the proposed distributed attack detector.Comment: Accepted for publication in Automatic

    Non-linear estimation is easy

    Get PDF
    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint
    • …
    corecore