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Abstract: In this paper, an observer-based fault-tolerant control (FTC) method is proposed for a class of

networked control systems (NCSs) with transfer delays. Markov chain is employed to characterize the transfer

delays. Then, such kind of networked control systems are modelled as markovian jump systems. An observer-

based FTC scheme using the delayed state information and the estimated fault value is presented to guarantee

the stability of the faulty systems. An inverted pendulum example is used to illustrate the efficiency of the

proposed method.
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1 Introduction

With the rapid development of communication networks, recently, a great amount of effort has been

devoting to the problems of networked control systems. NCSs are control systems in which controller

and plant are connected via a communication channel. The defining feature of an NCS is that in-

formation (reference input, plant output, control input, etc.) is exchanged using a network among

control system components (sensors, controller, actuators, etc.). The primary advantages of NCSs are

low cost, simple installation and maintenance, increased system agility and reduced system wiring [1].

Many models have been established to represent the NCSs with its specific features, such as discrete

model with delay [1], Markovian jump model [2], T-S model [3], hybrid model [4] and so on. Therefore,

some method proposed for these models, such as [5]-[8], can be modified to use in NCSs. Meanwhile,
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corresponding methods [9]-[12] for these models are proposed to design and analysis NCSs. The faults

in NCSs are similar to that in the conventional systems, which can lead to the performance degradation

and even instability. Fault detection and diagnosis (FDD) and fault tolerant control (FTC) procedures

can be designed to guarantee that the system goal is still achieved in spite of the faults (see[13]; [14]

for details).

In the past years, there have existed some results about the FDD and FTC for NCSs. For some

representative work on this general topic, to name a few, we refer the readers to [15, 16] and the

references therein. In [17], fault detection method was proposed for a class of continuous-time Net-

worked control systems (NCSs) with non-ideal network Quality of Service (QoS), which was described

by an integrated index related to the network-induced delay, data dropout and error sequence. In [18],

NCSs with with random but bounded delays were considered. Using augmented state-space method

and improved V-Kiteration algorithm, a class of reliable controllers were designed to make systems

asymptotically stable under several stochastic disturbances and actuator failure. Among these litera-

tures, many fruits are about fault detection and passive FTC. For passive FTC, the system is made

“robust” against faults by assuming them as uncertainties [19]. In active FTC, a new control system

is redesigned with (hopefully) all of the desirable properties of performance and robustness when the

faults occur. Thus, it can be seen that the same controller utilized in the passive FTC systems before

and after the occurrence of the fault, cannot insure the good performance of both the healthy and

faulty systems. To the best of our knowledge, until now, few result has been reported about active

FTC for NCSs. This motivates us to study this interesting and challenging problem, which has great

potential in practical applications.

Based on our previous work [20]-[22], we present an active FTC method for NCSs with large transfer

delays. We employ the multirate sampling technique to model the large random delay NCSs as

Markovian jump systems with input delays. Under this model, an observer-based fault diagnosis

method is proposed, which can provide accurate estimations of states and faults after faults occur.

Based on the fault estimation and delayed state information, an active fault-tolerant control is designed

to achieve the system stability. Finally, an inverted pendulum example is used to demonstrate the

effectiveness of the theoretic results obtained.

The rest of this paper is organized as follows. Section 2 gives the system description and the definition

of the design problem. An observer-based fault estimation method is derived in Section 3. Section

4 proposes the design method of the FTC with input delays. Application to an inverted pendulum

example is presented in Section 5, followed by some concluding remarks in Section 6.
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2 System description and problem formulation
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Figure 1: The block of the networked control system with FTC

Consider the NCSs as shown in Fig. 1. The continuous-time, state-space model of the linear time-

invariant plant dynamics can be described by the following standard form:

ẋ(t)=Ax(t) + Bu(t) + Ef(t) (1)

y(t)=Cx(t) (2)

where x ∈ Rn is the state vector, u ∈ Rm is the control input vector, y ∈ Rr is the measurable output

vector. The matrices A, B, C, E are real matrices of appropriate dimensions, C is of full row rank.

The failure f(t) = β(t−T )f0 ∈ Rq can be regarded as an additive signal, where the function β(t−T )

is given by β(t − T ) =





0, t < T

1, t ≥ T
. That is, f(t) is zero prior to the failure time (t < T ) and is a

constant vector f0 ∈ Rq after the failure occurs (t ≥ T ).

For this NCS, we introduce the following assumptions:

Assumption 1: The sampling period of the NCS is T , sensor is time-driven, controller and actuator

are time-division-driven. The data sampled from the sensor are packed with the time-stamp, thus as

this data arrived at the controller, the sensor-controller transfer delay can be known.

We use τsc < d1T , d1 ∈ Z and τca < d2T , d2 ∈ Z to represent the sensor-controller and controller-

actuator delay, respectively, and net delays τ , τsc + τca < (d1 + d2)T = dT .

Assumption 2: The sampling interval [kT, (k + 1)T ] is divided into N .

From Assumption 2, we can obtain that the delays τsc belongs to the set ϕ = {s̄ T
N } with s̄ =

0, 1, . . . , d1N and τs belongs to the set ψ = {s T
N } with s = 0, 1, . . . , dN . Further, we have ϕ ⊂ ψ.

Remark 1: We choose the same division for controller and actuator here. To more general case, the

divisions can be different, we can also get the set of the delays. For example, the pieces are chosen as p
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and q to the controller and actuator, respectively. Then the delay sets are defined as {iT
p }, {iT

p + j T
q },

where i = 0, 1, . . . , d1p, j = 0, 1, . . . , d2q.

Denote τs, s̄ = 0, 1, . . . , d1N and τs̄, s = 0, 1, . . . , dN as the sensor-controller and net delays, respec-

tively. Then, under the Assumptions 1 and 2, considering the sampling period and the affect of delays,

in one sampling period, the above plant’s model is transformed into (the local model):

x(k + 1)=Acx(k) +
m∑

s=0

Bsu(k − τs) + Ecf(k) (3)

y(k)=Cx(k − τs̄) (4)

where x(k) = x(kT ), y(k) = y(kT ), f(k) = f(kT ), Ac = eAT , Bs =
∫ T−τs

T−τs−1
eAtBdt, Ec =

∫ T
0 eA(T−t)Edt.

It is easy to show that the terms Bs are variable and defined by the upper and lower bound of the

integral which is about the time delays. It has been proven that the transfer delay sequences τs and

τs̄ are Markov chains, whose probability distribution can be obtained by experiment method [15]. For

the net delays τs, the known one-step transition probability from state i to state j, i, j ∈ ψ is given

by pij , i.e. pij = Prob(Bs(k + 1) = j|Bs(k) = i). Then, the global model of the NCS can be described

as

x(k + 1)=Acx(k) +
m∑

s=0

Bis(k)u(k − s) + Ecf(k) (5)

y(k)=Cx(k − s̄) (6)

where Bis represents the sth input delay of the ith model of the Markovian jump system, i =

0, 1, · · · , d(N + 1) + 1, m = dN .

Now, we formulate the design problem as follows:

• Under the above Markovian jump model, a fault estimation scheme is presented, which can

estimate the NCSs states and faults accurately.

• The proposed active fault-tolerant controller can stabilize the NCSs using the delayed state and

fault estimation information.

3 Observer-based fault estimation

From the analysis of above section, it follows that, due to network, the system output applied to

observer/controller contains the transfer delay. that means the observer/controller only can used the

delayed system output to estimate/control the system state. Therefore the following observer can only

estimate the state value that is not the system current value, but some time before.
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We define a transformation x = N−1z, which can transform the system (5)-(6) into the following form:



z1(k + 1)

z2(k + 1)

z3(k + 1)


=




Ac1

Ac2

Ac3


 z(k) +

m∑

s=0




Bis1(k)

Bis2(k)

Bis3(k)


u(k − s) +




Ec1

Ec2

Ec3


 f(k) (7)

y(k)=


 y1(k)

y2(k)


 =


 0 Ir−q 0

0 0 Iq


 z(k − s̄) (8)

where z1(k) ∈ Rn−r, z2(k) ∈ Rr−q, z3(k) ∈ Rq. Therefore, only z1(k) needs to be estimated in mean

square.

Assumption 3: Rank(CE) = q and Ec3 is nonsingular.

Remark 2: Since C is of full row rank, the first part in Assumption 1 means that the effects of the

faults are independent, which is about the fault detectability. If this condition does not hold, some

fault information cannot be reflected in the system outputs. Other new method should be considered,

which would be our future work.

The time period considered here is between that the data sampled from sensor at time k − 1 and k

have arrived in the controller side after some delays, and the data sampled at time k + 1 have not

arrived in. By pre-multiplying



I 0 −Ec1E
−1
c3

0 I −Ec2E
−1
c3

0 0 I


 (9)

on Eq. (7), one can obtain



z1(k + 1)− Ec1E
−1
c3 z3(k + 1)

z2(k + 1)− Ec2E
−1
c3 z3(k + 1)

z3(k + 1)


 =




Ac1 − Ec1E
−1
c3 Ac3

Ac2 − Ec2E
−1
c3 Ac3

Ac3


 z(k)

+
m∑

s=0




Bis1 − Ec1E
−1
c3 Bis3

Bis2 − Ec2E
−1
c3 Bis3

Bis3


u(k − s) +




0

0

Ec3


 f(k) (10)

Note that only the state z1(k) needs to be estimated. Define

Āc1 ,Ac1 − Ec1E
−1
c3 Ac3, Āc2 , Ac2 − Ec2E

−1
c3 Ac3 (11)

B̄is1 ,Bis1 − Ec1E
−1
c3 Bis3, B̄is2 , Bis2 − Ec2E

−1
c3 Bis3 (12)

Āc1 , [Āc11 Āc12 Āc13], Āc2 , [Āc21 Āc22 Āc23] (13)
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with Āc11 ∈ R(n−r)×(n−r), Āc12 ∈ R(n−r)×(r−q), Āc13 ∈ R(n−r)×q, Āc21 ∈ R(r−q)×(n−r), Āc22 ∈
R(r−q)×(r−q), Āc23 ∈ R(r−q)×q.

Then, the first and second block rows of Eq. (10) can be written as:

z1(k + 1)= Āc11z1(k) + ρ(k + 1) (14)

λ(k + 1)= Āc21z1(k) (15)

where ρ(k + 1) and λ(k + 1) are defined as:

ρ(k + 1), Āc12z2(k) + Āc13z3(k) + Ec1E
−1
c3 z3(k + 1) +

m∑

s=0

B̄is1u(k − j) (16)

η(k + 1),z2(k + 1)− Ec2E
−1
c3 z3(k + 1)− Āc22z2(k)− Āc23z2(k)−

m∑

s=0

B̄is2u(k − j) (17)

When the data sampled from the sensor are packed with the time, the sensor-controller delays are

available, which can determine the current mode of the output. In this case, the observer to estimate

z1 can be designed as

ẑ1(k + 1) = Āc11ẑ1(k) + ρ(k + 1) + Li(k)[η(k + 1)− Āc21ẑ1(k)] (18)

Let us replace the state z2 and z3 to y1 and y2 and assume (Āc11, Āc21) is an observable pair. Then

the observer gain Lij(k) can be chosen such that the following matrix inequality

(Āc11 − LiĀc21)T R̄i(Āc11 − LiĀc21)−Ri < 0 (19)

has positive definite solutions Ri > 0, where R̄i =
m∑

l=1

pj
ijRi.

From above discussion, we can let ẑ = [ẑ1 z2 z3]T , where [z2 z3]T = C−1[y2 y3]T , where ẑ1 is

obtained in (18). Denote z̃1 = ẑ1 − z1, then

z̃1(k + 1)=(Āc11 − LijĀc21)z̃1(k) (20)

Choose the Lyapunov function V (k) = z̃T
1 (k)Riz̃1(k), then one has

E{V (k + 1)|z̃1(k), r(k)} − V (k)

= z̃T
1 (k)

(
(Āc11 − LiĀc21)T R̄i(Āc11 − LiĀc21)−Ri

)
z̃1(k) < 0 (21)

We can conclude that the estimation error z̃1(k) will converge to zero in the mean square if the

inequality (19) is satisfied.

It should be mentioned that the choice of Li and Ri relates to constant matrix Ac, which implies that,

for the proposed Markovian jump system, the observer gain Li and the corresponding matrix Ri is

also invariable denoted by L and R.
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Define ex(k) = x(k)− x̂(k), then we further have

ex(k + 1) = N−1z̃(k + 1) = (Āc11 − LiĀc21)N−1




z̃1(k)

0

0


 = (Āc11 − LiĀc21)




ex1(k)

0

0


 (22)

The third block row in (10) can be written as

y2(k + 1)=Ac31z1(k) + Ac32y1(k) + Ac33y2(k) +
m∑

s=0

Bis3u(k − s) + Ec3f(k) (23)

the system fault can be estimated as follows:

f̂(k)=E−1
c3 [y2(k + 1)−Ac31ẑ1(k)−Ac32y1(k)−Ac33y2(k)−

m∑

s=0

Bis3u(k − s)] (24)

and the fault estimation error

ef (k) = f(k)− f̂(k) = −E−1
c3 Ac31z̃1(k) = −E−1

c3 Ac31Nex1(k) (25)

which will converge to zero in the mean square as long as z̃1(k) converges to zero in the mean square.

Remark 3: From Eq. (24), it can be seen that the faulty signal at time instant k can be estimated

only after the measurements from time instant (k +1) becomes available. It means that there is a one

step delay in the fault estimation, whose effect on the dynamic response can be neglected for practical

application [21]. On the other hand, we can avoid such problem via setting a new vector containing

the y2(k + 1), as in [23].

4 FTC with input delays

In this section, the delayed estimates of states and faults provided by the observer in Section 3 are used

to design the FTC law, so as to maintain the system performance. The main results are summarized

in the following theorem.

Theorem 1: System (5) - (6) can be stabilized by the feedback control of the form

u(k − s)=−Kix̂(k − s)− 1
γ

B+
isEcf̂(k) (26)

where x̂(k − s) = N−1ẑ(k − s) is the estimation value of x(k − s), ẑ(k − s) given by (18), γ is the

number of the non-zero Bis in ith submode of the Markovian jump system, Ki are obtained by the

following Riccati equation, i = 0, 1, · · · , d(N + 1) + 1, s = 0, 1, · · · ,m.

4AT
icP̄iAic − Pi + (m + 1)

m∑

s=0

KT
i BT

isP̄iBisKi < 0 (27)
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where Aic = Ac −Bi0Ki, Pi are symmetric positive definite matrices, and P̄i =
n∑

j=1
pijPj .

Proof: Applying the control (26) to (5) results in the closed-loop dynamics

x(k + 1)=Aicx(k)−
m∑

s=0

BisKix(k − s) +
m∑

s=0

BisKiex(k − s) + Ecef (k)

=Aicx(k)−
m∑

s=0

BisKix(k − s) +
m∑

s=0

BisKiex(k − s)− EcE
−1
c3 Ac31Nex1(k) (28)

where ex(k − s) = [eT
x1

(k − s) 0 0]T .

Consider the Lyapunov-Krasovskii function

V (k)=V1(k) + V2(k) + V3(k) (29)

where

V1(k)=xT (k)Pix(k) + (m + 1)
m∑

s=0

k−1∑

j=k−s

(
xT (j)KT

i BT
ijP̄iBijKix(j)

)

V2(k)=
m∑

s=0

eT
x (k − s)Hiex(k − s)

V3(k)=eT
f (k)Hief (k) (30)

where Hi > 0, Γ > 0, Pi are defined by (27), and H̄i =
n∑

j=1
pijHj .

Then, we obtain

E{V1(K + 1)|x(k), r(k)} − V1(k)

= xT (k + 1)P̄ix(k + 1)− xT (k)Pix(k)

+(m + 1)
m∑

s=0

(
xT (k)KT

i BT
ijP̄iBijKix(k)− xT (k − s)KT

i BT
isP̄iBisKix(k − s)

)

= xT (k)
(

AT
icP̄iAic − P + (m + 1)

m∑

s=0

KT
i BT

isP̄iBisKi

)
x(k)

+
( m∑

s=0

xT (k − s)KT
i BT

is

)
P̄i

( m∑

s=0

BisKix(k − s)
)

−(m + 1)
( m∑

s=0

xT (k − s)KT
i BT

isP̄iBisKix(k − s)
)

+
( m∑

s=0

eT
x (k − s)KT

i BT
is

)
P̄i

( m∑

s=0

BisKiex(k − s)
)

+ eT
f (k)ET

c P̄iEcef (k)

−2xT (k)AT
icP̄i

m∑

s=1

BisKix(k − s) + 2xT (k)AT
icP̄i

m∑

s=0

BisKiex(k − s)

+2xT (k)AT
icP̄iEcef (k)− 2

( m∑

s=0

xT (k − s)KT
i BT

is

)
P̄i

( m∑

s=0

BisKiex(k − s)
)

−2
( m∑

s=0

xT (k − s)KT
i BT

is

)
P̄iEcef (k) + 2

( m∑

s=0

eT
x (k − s)KT

i BT
is

)
P̄iEcef (k) (31)
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It is also easy to show that
( n∑

i=0

xi

)T

P

( n∑

i=0

xi

)
≤ n

( n∑

i=0

xT
i Pxi

)
(32)

Then, using the Eq. (32) and definition ex(k − s) = [eT
x1

(k − s) 0 0]T , the following inequalities are

obtained:

E{V1(K + 1)|x(k), r(k)} − V1(k)

≤ xT (k)
(

AT
icP̄iAic − Pi + (m + 1)

m∑

s=0

KT
i BT

isP̄iBisKi

)
x(k)

+m

( m∑

s=0

xT (k − s)KT
i BT

isP̄iBisKix(k − s)
)

−(m + 1)
( m∑

s=0

xT (k − s)KT
i BT

isP̄iBisKix(k − s)
)

+(m + 1)
( m∑

s=0

eT
x1

(k − s)IT
e KT

i BT
isP̄iBisKiIeex1(k − s)

)
+ eT

f (k)ET
c P̄iEcef (k)

−2xT (k)AT
icP̄i

m∑

s=1

BisKix(k − s) + 2xT (k)AT
icP̄i

m∑

s=0

BisKiIeex1(k − s)

+2xT (k)AT
icP̄iEcef (k)− 2

( m∑

s=0

xT (k − s)KT
i BT

is

)
P̄i

( m∑

s=0

BisKiIeex1(k − s)
)

−2
( m∑

s=0

xT (k − s)KT
i BT

is

)
P̄iEcef (k) + 2

( m∑

s=0

eT
x1

(k − s)IT
e KT

i BT
is

)
P̄iEcef (k) (33)

where Ie = [In−r 0r−q 0q]T . Further, we obtain that

E{V2(K + 1)|ex(k), r(k)} − V2(k)

=
m∑

s=0

eT
x (k − s + 1)H̄iex(k − s + 1)−

m∑

s=0

eT
x (k − s)Hiex(k − s)

=
m∑

s=0

ex1(k − s)T

(
(Āc11 − LiĀc21)T H̄i(Āc11 − LiĀc21)−Hi

)
ex1(k − s) (34)

and

E{V3(K + 1)|ef (k), r(k)} − V3(k)

= eT
f (k + 1)H̄ief (k + 1)− eT

f (k)Hief (k)

= eT
x1

(k + 1)(E−1
c3 Ac31N)T H̄i(E−1

c3 Ac31N)ex1(k + 1)− eT
x1

(k)(E−1
c3 Ac31N)T H̄i(E−1

c3 Ac31N)ex1(k)

= eT
x1

(k)(E−1
c3 Ac31N)T

(
(Āc11 − LiĀc21)T H̄i(Āc11 − LiĀc21)−Hi

)
(E−1

c3 Ac31N)ex1(k)

= eT
f (k)

(
(Āc11 − LiĀc21)T H̄i(Āc11 − LiĀc21)−Hi

)
ef (k) (35)
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Define ξ(k) = [x(k) x(k− 1) · · · x(k− dN) ex1(k− 1) · · · ex1(k− dN) ef (k)]T , Kd = diag{Ki},
P̄d = diag{P̄i}, Id = diag{Ie}, B̃d = [Bi0 Bi1 · · · Bi(dN)], Bd = diag{Bi0, Bi1, · · · , Bi(dN)}.
Considering (29), (33), (34) and (35), one can further obtain that

E{V (K + 1)|x(k), ex(k), ef (k), r(k)} − V (k)

= E{V1(K + 1)|x(k), r(k)} − V1(k) + E{V2(K + 1)|ex(k), r(k)} − V2(k)

+E{V3(K + 1)|ef (k), r(k)} − V3(k)

≤ ξT (k)




Γ11 −AT
icP̄iB̃dKi AT

icP̄iB̃dKiIe AT
icP̄iEc

∗ −KT
d BT

d P̄dBdKd KT
d BT

d P̄dBdKdId −KT
i B̃T

d P̄iEc

∗ ∗ Γ33 IT
e KT

i B̃T
d P̄iEc

∗ ∗ ∗ Γ44




ξ(k)

, ξT (k)Mξ(k)

where

Γ11 =AT
icP̄iAic − Pi + (m + 1)

m∑

s=0

KT
i BT

isP̄iBisKi

Γ33 =(m + 1)IT
d KT

d BT
d P̄dBdKdId + diag{(Āc11 − LiĀc21)T H̄i(Āc11 − LiĀc21)−Hi}

Γ44 =(Āc11 − LiĀc21)T H̄i(Āc11 − LiĀc21)−Hi + ET
c P̄iEc

If M < 0, then E{V (K + 1)|x(k), r(k)} − V (k) < 0, which means the system (28) is stable. It is well

known that for any α > 0 and real vectors a and b that 2aT b ≤ αaT a + 1
αbT b. Setting α = 1, we have

the following inequality

E{V (K + 1)|x(k), ex(k), ef (k), r(k)} − V (k)

≤ c1|x(k)|2 +
m∑

s=0

c2s|x(k − s)|2 +
m∑

s=0

c3s|ex1(k − s)|2 + c4|ef (k)|2

−[√
3AicP̄

−1/2
i x(k) +

m∑

s=0

1√
3
BisKiP̄

−1/2
i x(k − s)

]T

×[√
3AicP̄

−1/2
i x(k) +

m∑

s=0

1√
3
BisKiP̄

−1/2
i x(k − s)

]

−[√
3EcP̄

−1/2
i ef (k) +

m∑

s=0

1√
3
BisKiP̄

−1/2
i x(k − s)

]T

×[√
3EcP̄

−1/2
i ef (k) +

m∑

s=0

1√
3
BisKiP̄

−1/2
i x(k − s)

]
(36)
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where

c1 =λmax(G1), G1 = 4AT
icP̄iAic − Pi + (m + 1)

m∑

s=0

KT
i BT

isP̄iBisKi +
( 1
µ1

+
1
µ2

)
AT

icP̄iAic,

c2s =λmax(G2s), G2s = (−1
3

+
1
µ3

)KT
i BT

isP̄iBisKi,

c3s =λmax(G3s), G3s = (m + 1 + µ1 + µ2 +
1
µ4

)KT
i BT

isP̄iBisKi + ĀT
LiH̄iĀLi −Hi

c4 =λmax(G4), G4 = ĀT
LiH̄iĀLi −Hi + (µ3 + µ4 + 4)ET

c P̄iEc,

ĀLi = Āc11 − LiĀc21. (37)

The constants µ1, µ2, µ3 and µ4 are appropriately chosen such that G1 < 0, G2 < 0, G3 < 0

and G4 < 0. From (31), if ex = 0 and ef = 0, according to Theorem 1, it is easily obtained that

E{V1(K +1)|x(k), r(k)}−V1(k) < 0. Since ex and ef are uniformly bounded, x(k) in (28) is uniformly

bounded as well. Thus the system (28) is input-state stable with considering ex and ef as inputs. 2

Remark 4: The considered fault in this paper is time-invariant, thus as soon as the fault estimation

scheme detects and estimates the fault using the delayed output and estimation value of state, the

fault estimation can be used to design the controller without considering the effect of the delays.

Remark 5: Compare with some existing results on this issue, the good futures of the results obtained

in this paper are in two aspects: 1) It proposes an active fault-tolerant control design method for

networked control systems, which contains a fault estimation scheme. 2) The NCSs are modelled as

Markovian jump systems, so this paper also provides a new active FTC method for Markovian jump

systems.

5 An illustrative example

In this section, a well known inverted pendulum system is used to illustrate a potential application

field of our approach. The continues plant model is described as:

ẋ(t)=




0 1 0 1

0 −4.978 −0.7187 0

0 0 0 1

0 3.7335 7.8959 0




x(t) +




1

0.9756

0.6423

−0.7317




u(t)

y(t)=




1 0 0 0

0 −1 0 0

0 0 1 0


x(t)

11



We choose the sampling period T = 0.01s, the division of the sampling interval N = 2, the max

delay τmax < 2T , then it is easily obtained the delays set ϕ = {0, 0.005, 0.01, 0.015}. The fault

distribution matrix in Eq. (1) and (2) is defined as

E =−B, f(t) =





0; t < 4(sec)

0.4; 4 ≤ t ≤ 30(sec)

According to the modelling method in Section 2, we obtain 7 submodes of the Markovian jump system.

Due to the large number of the submodes, only two of them are illustrated here.

Mode 0 (τ = 0):

ẋ(t)=




1 0.0010 0.0003 0.01

0 0.9514 −0.007012 0

0 0.0002 1 0.01

0 0.03643 0.07884 1




x(t) +




0.01

0.0095

0.0064

−0.0069




u(t)

y(t)=




1 0 0 0

0 −1 0 0

0 0 1 0


x(t)

Mode 3 (τ = 0.01, 0.005):

ẋ(t)=




1 0.0010 0.0003 0.01

0 0.9514 −0.007012 0

0 0.0002 1 0.01

0 0.03643 0.07884 1




x(t) +




0.005012

0.004812

0.003203

−0.00355




u(t− 2) +




0.005012

0.004812

0.003203

−0.00355




u(t− 1)

y(t)=




1 0 0 0

0 −1 0 0

0 0 1 0


x(t− s1)

E =
[
−0.01 −0.0095 −0.0064 0.0069

]T

In fact, rank(CE) = 1. According to the fault estimation and fault-tolerant control method proposed

in this paper, the state estimation is given by (18), then the actuator faults are estimated by (24)

and compensated by Theorem 1. In Fig. 2, the actuator fault estimation with satisfactory accuracy

is shown. Fig. 3 depicts the output trajectories of the closed-loop system. It can be seen that the

dynamic system outputs (states) converge to zero.

12



6 Conclusion

In this paper, we have investigated the problem of observer-based FTC for a class of NCSs with large

delays. The considered NCSs are modelled as Markovian jump systems. Based on this model, an

active fault-tolerant controller is designed, which can guarantee that the system state converges to

zero in the mean square. Simulation results of an inverted pendulum system are included to verify

the effectiveness of the proposed method.

Further research work includes two directions: 1) consideration of time-varying faults; 2) extension of

the proposed approach to nonlinear NCSs.
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Figure 2: Estimation of actuator faults
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