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ABSTRACT
This paper proposes the use of interval observers and viability theory in fault detection and isolation
(FDI). Viability theory develops mathematical and algorithmic methods for investigating the viabil-
ity constraints characterisation of dynamic evolutions of complex systems under uncertainty. These
methods can be used for checking the consistency between observed and predicted behaviour by
using simple sets that approximate the exact set of possible behaviour (in the parameter or state
space). In this paper, FDI is based on checking for an inconsistency between the measured and pre-
dicted behaviours using viability theory concepts and sets. Finally, an example is provided in order
to show the usefulness of the proposed approach.

1. Introduction

Conventional feedback control systems are vulnera-
ble to malfunctions in sensors, actuators or other sys-
tem components. Therefore, diagnosing which kind of
faults are developing is an important task to prevent
physical damage and performance degradation. Fault
detection and isolation (FDI) could also lead to more
reliable and efficient systems (Mohajerpoor, Abdi, &
Nahavandi, 2015). In this area of study, a lot of differ-
ent methods have been proposed in the literature (Gao,
Cecati, & Ding, 2015) including observer-based methods
(Mondal, 2017; Wang, Yang, & Liu, 2007), parity space
(Blesa, Puig, Saludes, & Fernández-Cantí, 2016; Ghaniee
Zarch & Aliyari Shoorehdeli, n.d.), parameter estimation
(Iurinic, Herrera-Orozco, Ferraz, & Bretas, 2016) and
artificial intelligence methods (Li & Yang, 2014).

Set theory has been started to be used in fault detec-
tion and fault tolerant context since more than one
decade (Puig, 2010). A system can switch among sev-
eral modes (a healthy one and at least a faulty one).
Using set-theoretic methods, it is possible to calculate
sets which define healthy and faulty functioning. As
long as there exists a (partial) separation between these
sets, a FDI scheme can be designed (Stoican & Olaru,
2013). There are two main approaches that use set the-
ory for fault detection: the set-membership (Blesa et al.,
2016; Fernández-Cantí, Blesa, Puig, & Tornil-Sin, 2016)
and the set-invariance approach (Hanafi, Seron, & De
Dona, 2015). One of the most used techniques in the
set-membership approach is based on interval observers.

Interval observer-based fault detection (FD) consists in
generating adaptive intervals for system outputs by con-
sidering the bounds of uncertainties, propagating their
effect through the mathematical models of the system
and testing the consistency between the predicted output
intervals and the corresponding output measurements
(Mazenc & Bernard, 2011; Meseguer, Puig, & Escobet,
2017). The main advantage of using interval observers
in FDI is the inclusion of uncertainties of the system in
the computations, which provides a robust method. The
problem with this type of analysis is that the feasibility
of FDI cannot be guaranteed a priori for all future time
instants. This is because the sets are estimated at each
iteration and they may conduct to empty sets (Stoican
& Olaru, 2013). Another challenging issue is the compu-
tational burden of this approach that limits its practical
implementation (Xu, Stoican, Puig, Ocampo-Martinez, &
Olaru, 2013).

Another set-theoretic FDI approach is to consider
invariant sets that can overcome difficulties with inter-
val observer approach. In this approach, for each mode
(healthy or faulty), an invariant set for the residual can be
obtained (Olaru, De Doná, Seron, & Stoican, 2010). Once
the system operates in steady state, it is possible to confine
the residual to one of these invariant sets and, as long as
all the invariant sets are disjoint, FDI can be performed.
Most importantly, in the case that the invariant sets inter-
sect, FD can still be done whenever the residual exits
its healthy invariant set (Olaru et al., 2010; Seron, Zhuo,
De Doná, & Martínez, 2008). Although both approaches
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follow a similar FDI principle, set-invariance methods
are more conservative in the size of sets as they con-
sider uncertainties in off-line set computations. Also to
the authors’ best knowledge, the usage of invariant sets in
transient state has not been reported in the literature until
now. A detailed comparison between interval observer
and set-invariance approaches has been presented in Xu
et al. (2013).

Viability theory develops mathematical and algorith-
mic methods for investigating the viability constraints
characterisation of dynamic evolutions of complex sys-
tems under uncertainty (Aubin, Bayen, & Saint-Pierre,
2011). Viability is a theory that until now hasmostly been
used in safety verification of control systems (Maidens,
Kaynama, Mitchell, Oishi, & Dumont, 2013). It provides
some concepts that are actually more general than those
used in set theory for fault detection. Viability kernel is an
acceptable tool for safety verification. However, the prob-
lem with this theory is how to compute the involved sets.
Nowadays, some algorithms have been proposed that can
approximate these sets (namedkernels in viability theory)
effectively. Viability theory has already been used in dif-
ferent areas of study as e.g. economics or biology (Aubin,
2013; Deffuant & Gilbert, 2011). Adapting the use of the
viability concepts to address the FDI problem is themajor
goal of this paper.Moreover, these conceptswill be related
with those used of set theory that are already used for
FDI.

The main contribution of this paper is to propose the
combined use of interval observers and viability theory
in FDI. Fault detection is based on checking for an incon-
sistency between the measured and predicted behaviours
using viability theory concepts and sets. Fault isolation
will be based on checking the faulty system into which
faulty invariant kernel is evolving. The main advantage
of combining interval observers with viability theory is
that FDI can be guaranteed. Actually, by computing ker-
nels in different modes of system operation (one healthy
and at least one faulty mode) and showing their separa-
bility in offline computations, it can be guaranteed that
the faults can be detected and isolated in online imple-
mentation. Another contribution of this study is to pro-
vide algorithms to find viability sets for non-linear sys-
tems that can be expressed in linear parameter varying
(LPV) form. These algorithms are the extension of the
idea proposed in Maidens et al. (2013) to LPV systems
using zonotopic set representation.

Although the fault diagnosis problem in LPV systems
has been studied widely, the proposed method has some
advantages over existing approaches:

� A method for generating an adaptive threshold
for evaluating the residual in different modes (one

healthy and at least one faulty mode) dealing explic-
itly with uncertainties in the model.

� Fault detectability and isolability properties can be
guaranteed as the separability of predefined healthy
and faulty sets can be obtained offline.

� Set-based methods can provide a framework for
fault recovery. In this case, the system can be anal-
ysed if the fault condition has been eliminated and
the system works in healthy mode. This can be done
by set definition in healthy and faulty situations
(Seron, De Doná, & Olaru, 2012).

A preliminary form of the results presented in this
paper appeared in a conference paper (Zarch, Puig, &
Poshtan, 2017). In this paper, some improvements have
been done to clarify the approach: First, the detailed algo-
rithms for finding kernels in LPV systems have been pre-
sented in Section 3. Also, more results and comparisons
are provided in Section 6 to show the effectiveness of the
approach.

This paper is organised as follows. In Section 2, some
definitions and preliminary concepts of viability theory
and zonotopic sets are recalled. The algorithms for find-
ing associated sets (kernels) are proposed in Section 3.
The way how viability theory can be used in FDI is a
task that is discussed in Section 4. In Section 5, the
viability-based FDI approach is integrated with the inter-
val observer approach. An illustrative example is pro-
vided in Section 6 in order to illustrate the proposed
approach. In Section 7, concluding remarks are drawn.

2. Preliminary concepts

2.1. Concepts definition

In control engineering, a state space representation is a
mathematical model of a physical system in the form of
set of first-order differential equations represented by

⎧⎪⎪⎨
⎪⎪⎩

L (x(t )) = f (x(t ), u(t ), w(t ))
x(t ) ∈ X
u(t ) ∈ U
w(t ) ∈ W

(1)

where x are the state variables, u are the inputs and w are
the disturbances. The time t ranges throughout a time
range [0, N] that can be either continuous or discrete.
L is the differential operator corresponding to the given
time domain (differentiation in the case of a continuous-
time system and differencing in the case of a discrete-time
system). It is assumed that the above system is defined in
a proper open set O ⊆ R

n and that there exists a globally
defined solution for every initial condition x(0)�O. The



dynamic evolution of the system:

S : X → C (0, +∞;X ) (2)

maps any initial state x � X to the set S(x) of evolutions
x(.) starting from x(0) and governed by Equation (1).

Viability theory goal is to prove if the dynamical sys-
tem evolution (1) can be maintained inside a viability
constraint set K ⊆ R

d . Any trajectory of system (1) that
leaves the set K at some point in time is considered to be
no longer viable.
Definition 2.1 Viability Kernel (Aubin et al., 2011): The
viability kernel ofKunder the evolutionary system S is the
set ViabS(k) of initial states x(0) � K from which starts at
least one evolution x(t) � S(x) viable in K for all times
t � 0:

ViabS (K) �
{

x (0) ∈ K|∃x (.) ∈ S (x)
such that ∀t � 0, x(t ) ∈ K

}
(3)

That is, from any point x0 in the viability kernel starts
at least one evolution that stays inside K forever. It is
equivalent to say that all evolutions starting from a state
belonging to the complement of the viability kernel of K
leave the environment in finite time. Sometimes, from the
engineering point of view, the existence of at least one
solution in S is not enough, since nothing is said about
all other possible solutions. Therefore, another important
concept is defined known as the invariance kernel.
Definition 2.2 (Invariance Kernel; Aubin et al., 2011):
Let K�X be an environment and C�K be a target. The
subset InvS(K, C) of initial states x(0) � K such that all
evolutions x(t) � S(x) starting at x(0) are viable in K for
all t � 0 or viable in K until they reach C in finite time is
called the invariance kernel of K with target C under S.

InvS (K) � { x (0) ∈ K|∀x (.) ∈ S (x) ,∀t � 0, x(t ) ∈ K}(4)

A state x0 belongs to the invariance kernel of the envi-
ronment K under an evolutionary system if all the evo-
lutions starting from it are viable in K forever. In spite
of viability kernel, invariance kernel can guarantee that
every system trajectorywill remain in the set forever. This
concept is widely accepted as a useful tool for FDI (Seron
& De Doná, 2015). Positive invariance in set theory has
the same definition as invariance kernel. Viability kernel
and weak positive invariance are also equivalent defini-
tions in viability and set theories, respectively (Blanchini
&Miani, 2008). Capture basin is another concept that has
a wide range of applications, for example, in process con-
trol (Spiteri, Pai, & Ascher, 2000) and economics (Saint-
Pierre, 2004).
Definition 2.3 Capture Basin(Aubin et al., 2011): The
capture basin of C (viable in K) under the evolutionary

Figure . A sample of: (a) viability kernel; (b) invariance kernel; (c)
capture basin.

system S is the set CaptS(K, C) of initial states x(0) � K
from which starts at least one evolution x(t)� S(x) viable
in K on [0, N) until the finite time N when the evolution
reaches the target at x(N) � C.

From a state x0 in the capture basin of the target C
viable in the environment K starts at least one evolution
viable in K until it reaches C in finite time. It is equivalent
to say that, starting from a state belonging to the comple-
ment of the capture basin, all evolutions remain outside
the target C until they leave the environment K.

Development of the methods for obtaining these three
sets is still an important area and not an easy task (Maid-
ens et al., 2013). A schematic diagram of these kernels is
shown in Figure 1.



2.2. Zonotopic sets

There exist several families of geometric shapeswhich can
be used to describe sets used in the viability theory with
varying degrees of accuracy. An important limiting factor
is the numerical reliability of their representation. That
is, a particular family may be able to represent a great
number of shapes but due to computationally expensive
manipulations will be useless in practice. Usually there
exists an inverse relation between flexibility of a given
type of approximating sets and the numerical cost of the
representation.

Zonotopes represent a particular class of polytopes
which exhibit symmetry with respect to their centre. In
realistic situations, often the constraints that are given in
polytopic form have enough symmetry to be described
as zonotopic sets. Even when this is not the case, zono-
topic approximations may be constructed. For polytopic
sets, Alamo, Bravo, and Camacho (2005) give the tight-
est approximations in fixed directions and Dang (2006)
discusses an iterative algorithm. In Linhart (1989), it is
proven that any Euclidean ball can be approximated arbi-
trarily close, in the sense of the Hausdorff distance, by a
zonotope.

Definition 2.4 (Minkowski sum; Le, Stoica, Alamo,
Camacho, & Dumur, 2013): The Minkowski sum of two
sets X and Y is defined by

X ⊕Y = {
x + y : x ∈ X, y ∈ Y

}
Definition 2.5 (Zonotope; Le et al., 2013): An m-order
zonotope Z is defined as

Z = c ⊕ Hβm

where c and H are called the centre and segment matrix
(also generator matrix), respectively.

Definition2.6 (Interval hull; Le et al., 2013):The interval
hull �X of a closed set X is the smallest interval box that
contains X.

Given a zonotope X = π ⊕ Hβmz , its interval hull can
be easily computed by

�X = {x ∀i = 1, . . . , n : |xi − πi| � ‖Hi‖1}

where xi andπ i are the ith components of x andπ , respec-
tively, and Hi is the ith row of H. ‖Hi‖p is the p-norm of
vector Hi = [Hi, 1,… , Hi, n] that is defined by

‖Hi‖p :=
⎛
⎝ n∑

j=1

∣∣Hi, j
∣∣p
⎞
⎠

1/p

Zonotopes have a lot of appealing properties (Le et al.,
2013). Some properties that have been used in the
Section 3 are introduced in Appendix.

3. Computing viability kernels using zonotopes

3.1. Problem set-up

In this section, the way how the viability kernels recalled
in previous section can be computed using zonotopes is
presented.

The proposed approach considers that the non-linear
system (1) can be transformed to the (quasi-)LPV form
in discrete-time

x (t + 1) = A (ρ(t )) x(t ) + B (ρ (t )) u(t ) + E (ρ(t )) w(t )
(5)

where x(t) � X is state, u(t) � U is control input and
w(t) � W are unknown inputs (disturbances). The
bounding sets X, U andW are defined as

X = {
x ∈ R

n :
∣∣x − xc

∣∣ � x̄, xc ∈ R
n, x̄ ∈ R

n}
U = {

u ∈ R
m :

∣∣u − uc
∣∣ � ū, uc ∈ R

m, ū ∈ R
m}

W = {
w ∈ R

q :
∣∣w − wc∣∣ � w̄, wc ∈ R

q, w̄ ∈ R
q}

where xc, uc, wc, x̄, ū and w̄ are constant vectors. The sets
X, U andW can be rewritten as zonotopes

X = xc ⊕ Hx̄βn

U = uc ⊕ Hūβm

W = wc ⊕ Hw̄βq

whereHx̄ ∈ R
n×n,Hū ∈ R

m×m andHw̄ ∈ R
q×q are diag-

onalmatrices with their diagonal entries composed of x̄, ū
and w̄, respectively. It must be noted that the parameters
of the sets X and U have been determined using physi-
cal constraints of the system, but the parameters of the
uncertainties setW have been determined using obtained
data from the system (Alamo et al., 2005; Brito, 2009).
The parameter ρ is a time-varying parameter whosemea-
surement is available online and that is used to hide
non-linear terms in Equation (5). Due to several pos-
sibilities of assignment, the result of the transformation
is non-unique. The number of the associated schedul-
ing variables increases rapidly with the system order.
As it involves no approximation of the system dynam-
ics, efficient modelling solutions can be achieved in
many applications (Gáspár, Szabo, & Bokor, 2007; Tóth,
2010).



3.2. Invariance and viability kernel

Reachability analysis identifies the set of states backward
(forward) reachable by a constrained dynamical system
from a given target (initial) set of states. The notions of
maximal and minimal reachability analysis were intro-
duced inMitchell (2007). Their corresponding constructs
differ in how the time variable and the bounded input are
quantified. In the formation of the maximal reachability
construct, the inputs try to steer as many states as pos-
sible to the target set. On the other hand, in the forma-
tion of the minimal reachability construct, the trajecto-
ries reach the target set regardless of the input applied.
Based on these differences, the maximal and minimal
reachable sets and tubes (the set of states traversed by the
trajectories over the time horizon (Mitchell, 2007)) are
formed.
Definition 3.1 (Forward maximal reachable set): The
forward maximal reachable set at time instant t is the set
of states for which there exists an input such that the tra-
jectories emanating from initial states in T reach that set
exactly at time instant t:

ReachFt (t ) �
{
x(t ) ∈ R

n|∃u (.) ∈ U[0,t], x (0) ∈ T
}
(6)

Definition 3.2 (Backward maximal reachable set): The
backward maximal reachable set at time instant t is the
set of initial states for which there exists an input such
that the trajectories emanating from those states reach T
exactly at time instant t:

ReachBt (t ) �
{
x(0) ∈ R

n|∃u (.) ∈ U[0,t], x(t ) ∈ T
}

(7)

The forward reachable set over a single time step is
computed as

ReachF1 (X ) = A (ρ(t ))X ⊕ B (ρ(t ))U ⊕ E (ρ(t ))W

Following computation algorithm in Montes de Oca,
Puig, and Blesa (2012), we can find this reachable set
using zonotopes by

Xt+1 = ReachF1 (Xt ) = xct+1 ⊕ Hx̄
t+1β

r (8)

where

xct+1 = mid (A (ρ(t ))) xct + mid (B (ρ(t ))) uc

+mid (E (ρ(t )))wc

Hx̄
t+1 = [

J1 J2 J3 J4 J5 J6
]

J1 = seg
(♦A (ρ(t ))Hx̄

t
)

J2 = diam (A (ρ(t )))
2

xct

Algorithm 1. Invariance kernel computation

K0 ← X
t← 
while t� N do

if Kt = ∅ then
KN ← ∅

break
end if
if Kt = Kt−  then
KN ← Kt
break
end if
Kt ← ReachF1

(
Kt−1

)
t← t + 

end while
return (KN) KN = Inv(X)

J3 = seg
(♦B (ρ(t ))Hū)

J4 = diam (B (ρ(t )))
2

uc

J5 = seg
(♦E (ρ(t ))Hw̄

)
J6 = diam (E (ρ(t )))

2
wc (9)

where ‘mid’ denotes the centre and ‘diam’ the diameter
of the interval, ♦ is zonotope inclusion introduced in
the Appendix (Property A.1.) and seg(Q) = H consid-
ering that Q = π + Hβr is a zonotope (Montes de Oca
et al., 2012). To compute the invariance kernel, this for-
ward reachable set is calculated step by step. This reach-
able tube will finally converge toward the invariance ker-
nel

Inv (X ) = ∞⊕
t=0

ReachF1 (Xt )

It is important to note that the set of estimated states using
this method has an increasing number of segments gen-
erating the zonotope ReachF1 (X ). In order to control the
domain complexity, a reduction step is thus implemented.
Here, we use the method proposed in Combastel (2003)
to reduce the zonotope complexity. Algorithm 1 is pro-
posed in order to calculate invariance kernel based on
above discussion.

In Maidens et al. (2013), the following iterative
approach is proposed to approximate viability kernel
using maximal reach sets and such that the sequence
defined in Equation (10) will converge to viability kernel
as t goes to infinity

K0
h = K

Kt+1
h = K0

h ∩ ReachB1
(
Kn
h
)

(10)



Algorithm 2. Viability kernel computation

K0 ← X
t← 
while t� N do

if Kt = ∅ then
KN ← ∅

break
end if
if Kt = Kt−  then
KN ← Kt
break
end if
L ← ReachB1

(
Kt−1

)
(see Equation ())

Kt +  ← K�L (see Property A..)
t← t + 

end while
return (KN) KN = Viab(X)

Algorithm 3. Capture basin computation

K0 ← C
t← 
while t� T do

if Kt = ∅ then
KT ← ∅

break
end if
Kt ← ReachB1

(
Kt−1

)
t← t + 

end while
KN = KT�X
return (KN) KN = Capt(X, C)

The backward reachable set for system (5) over a single
time step is computed as

ReachB1 (X ) = A(ρ(t ))−1{X ⊕ (−B (ρ(t )))U
⊕ (−E (ρ(t )))W} (11)

Here A−1(.) denotes the pre-image of a set under the
mapA : R

n → R
n. Note that we consider thatA is invert-

ible. This is a fair assumption because we are mainly con-
cerned with discrete-time systems that arise from the dis-
cretisation of continuous time systems. Such systems have
a dynamics matrix of the form A = exp(Ac) which is
always invertible (Maidens et al., 2013). Following the
computation algorithm in Montes de Oca et al. (2012),
we can find this reachable set using zonotopes as

ReachB1 (Xt ) = Xt−1 = xct−1 ⊕ Hx̄
t−1β

n (12)

where

xct−1 = mid
(
A(ρ(t ))−1) xct + mid

(−A(ρ(t ))−1B (ρ(t ))
)
uc

+mid
(−A(ρ(t ))−1E (ρ(t ))

)
wc

Hx̄
t−1 = [

J1 J2 J3 J4 J5 J6
]

J1 = seg
(♦A(ρ(t ))−1Hx̄

t
)

J2 = diam
(
A(ρ(t ))−1)
2

xct

J3 = seg
(♦ − A(ρ(t ))−1B (ρ(t ))Hū)

J4 = diam
(−A(ρ(t ))−1B (ρ(t ))

)
2

uc

J5 = seg
(♦ − A(ρ(t ))−1E (ρ(t ))Hw̄

)
J6 = diam

(−A(ρ(t ))−1E (ρ(t ))
)

2
wc (13)

where ‘mid’ denotes the centre and ‘diam’ the diameter of
the interval, ♦ is zonotope inclusion (Property A.1.) and
seg(Q) = H considering that Q = π + Hβr is a zonotope
(Montes de Oca et al., 2012). For the computation of via-
bility kernel, using this backward reachable set in Equa-
tion (10), the reachable tube is calculated step by step.
This tube will finally converge toward the viability ker-
nel. Here, a similar algorithm (Algorithm 2) for comput-
ing viability kernel for system (5) based on Equations (10)
and (12) is presented.

3.3. Capture basin

Finally, for computation of the capture basin, we can find
backward reachable tube using Equation (12) for desired
time steps. Final reach set is the capture basin. Actu-
ally, we must find backward reachable tube for each time
instant. In this manner, Algorithm 3 is proposed.

4. FDI using viability theory

4.1. Principles of FDI using set theory

A fault in a dynamical system is a deviation of the sys-
tem structure or the system parameters from the nominal
situation. The principle of model-based fault detection is
to test whether the measured system inputs and outputs
are consistent with the system behaviour described by a
faultlessmodel. If themeasurements are inconsistentwith
the model of the healthy system, the existence of a fault is
proved.

For a dynamical system (1), consider that the output
y(t) is the reaction of the plant to the input u(t). The
pair (u, y) is called input/output (I/O) pair. (U, Y) is the
set of all possible I/O pairs. Faults lead to deviations of
the dynamical input/output (I/O) properties of the plant
from the nominal ones, and hence, change the perfor-
mance of the closed-loop system which further results in
a degradation or even the loss of the system function.

A fault changes the system behaviour as illustrated in
Figure 2. If the system works in set A, it is working in
healthy mode. The system behaviour can be moved by a
fault towards the set B. If a common input u is applied to
the healthy and faulty systems, then both systems answer



Figure . System behaviour with and without fault.

Figure . Basic idea of fault detection using sets (Stoican, ).

with different outputs A = (u, yA) and B = (u, yB). This
change in the system behaviour makes the detection of
the fault possible, unless the faulty I/O pair lies in the
intersection of A and B.

For isolation of more than one fault, in each faulty sit-
uations, a proper set must be determined. For example, in
Figure 2, there are two faulty cases, f1 and f2. If the I/Opair
lies in the set B, our suggestion is that the system is work-
ing in faulty mode f1. But, if the I/O pair lies in set C, it is
more probable that the system works in the faulty mode
f2. If the I/O pair is in the intersection and outside of these
predefined sets, nothing can be said about the system sta-
tus. The basic idea of using sets in fault diagnosis is to find
a predefined set that can assure safety if the system works
on that set (see Figure 3) and the different faulty situations
(sets) could be separated.

In the framework of the analytical redundancy con-
cept, the process model that is driven by the same pro-
cess input will run in parallel to the process. It is rea-
sonable to expect that, in the fault-free case, both process
and its model shows similar behaviour. Comparing out-
puts leads to a signal that can be used for fault detection.
The difference between the measured process variables
and their estimates is called residual. This residual signal
carries information about faults that have occurred in the
system.

Residual signal information is generally affected by
model uncertainties and unknown disturbances. More-
over, fault isolation and identification techniques need
additional residual analysis. Hence, the main problem
with the application of model-based fault diagnosis tech-
niques can be expressed as extracting the needed and use-
ful information about the faults of interest from resid-
ual signal. This step is called residual evaluation and
can be performed using set-based approaches (Puig,
2010).

4.2. Interval observer approach

Consider that the system to be monitored (1) can be
described by an LPV uncertain dynamicmodel in a state-
space form as follows:

x (t + 1) = A(ρ)x(t ) + B(ρ)Fu(t )u(t ) + w(t )

y(t ) = C(ρ)Fy(t )x(t ) + η(t ) (14)

where x(t) are the states, y(t) are the plant measured out-
puts, u(t) are the control inputs, w(t) are the disturbances
and η(t) are the measurement noises. Disturbances and
noises are both assumed to be unknownbut bounded, i.e.

wi ∈ [δ−i, δ̄i], ηi ∈ [σ− i, σ̄i
]

The bounds of the disturbances and noises are obtained
from practical data. If these bounds are very large, it
means that the system can go far away from steady
state. Therefore, it may lead to misdetection of small
faults. This is the drawback with all set-based methods
(Puig et al., 2006). This problem has been addressed in
someother references by computingminimumdetectable
faults (Pourasghar, Puig, & Ocampo-Martinez, 2016).
Fu(t) and Fy(t) are actuator and sensor faults, respectively.
Their values can range in the interval [0,1) in failuremode
to 1 in healthymode. The state, input, outputmatrices are
A(ρ) , B(ρ) andC(ρ) , respectively. The parameter ρ is a
time-varying parameter that can be measured/estimated
and whose value belongs to � that is a bounded set (of
interval box type) such that for each component

[
ρ
i
, ρ i

]
. This is why the resulting model is known as an interval
model (Montes de Oca et al., 2012). The set� contains all
possible values of ρ when the system operates normally.
Note that when the parameters θ are scheduled with the
operating point using some known scheduling function
and variable then system (14) is known as a linear parame-
ter varying (LPV) system (Rugh & Shamma, 2000). Inter-
vals for uncertain parameters can also be inferred from
real data as discussed in Puig (2010).



Figure . A general fault detection scheme.

The residual vector, known also as analytical redun-
dant relation, defined as the difference betweenmeasured
y(t) and predicted system outputs ŷ(t )

r(t ) = y(t ) − ŷ(t ) (15)

is usually used to check the consistency. Ideally, the resid-
uals should only be affected by the faults. However, the
presence of disturbances, noise and modelling errors
causes the residuals to become non-zero and thus inter-
feres with the detection of faults. Therefore, the fault
detection procedure must be robust against these unde-
sired effects (Chen & Patton, 2012). In case of modelling
a dynamic system using an interval model, the predicted
output is described by a set that can be bounded at any
iteration by an interval using an observer scheme (Montes
de Oca et al., 2012)

ŷi(t ) ∈ [ŷ
i
(t ),ŷi(t )]

in a non-faulty case. Such interval is computed indepen-
dently for each output (neglecting couplings between out-
puts) as follows:

ŷ
i
(t ) = min

ρ∈�
(ŷi(t, ρ)) and ŷi(t ) = max

ρ∈�
(ŷi(t, ρ))

Such interval can be computed using zonotopes (Alamo
et al., 2005; Montes de Oca et al., 2012). Then, the fault
detection test is based on propagating the parameter
uncertainty to the residual, and checking if

y(t ) ∈
[
ŷ(t ) − σ, ŷ(t ) + σ

]

where σ is the noise bound. Equivalently, previous test
can be formulated in terms of the residual checking if

0 ∈ [r(t ), r(t )] = y(t ) −
[
ŷ(t ) − σ, ŷ(t ) + σ

]

holds or not. In case it does not hold, a fault can be indi-
cated. This test is named as direct test. According to Iser-
mann (2006), parity equations and observer approaches
are more suitable for additive faults while parameter esti-
mation approach is better suited for multiplicative (para-
metric) faults.

4.3. Fault detection using viability theory

In this section, the main results regarding fault detection
using viability theory are derived. The FDI problem pre-
sented in previous section using sets can be addressed
using viability theory concepts introduced in Section 2.
These concepts can be used for evaluating the residual as
it is shown in Figure 4 and illustrated in the following sub-
sections.

... Steady state
As with all the FDI methods based on the set invariance
approach (Stoican, 2011), we can use invariance kernel
for fault detection. Therefore, fault detection criteria in
steady state can be summarised as follows.

Theorem 4.1 (Fault detection criteria in steady state):
Consider system (14) and a residual signal (15). A fault (Fu
or Fy) in the system (14) in steady state can be detected at
time instant tf if

r
(
t f
)

/∈ InvSr (X )

Proof: A systemwithout fault (5) works in the invariance
kernel as discussed in Seron et al. (2008). Hence, resid-
ual signal must lie in the invariance kernel of the system
residual under healthy functioning, i.e.

r(t ) ∈ InvSr (X ) (16)

in which the evolutionary system Sr : X →
C (0, +∞;X ) maps any initial state x � X to the set
Sr(x) of evolutions x(.) starting from x(0) and governed



by Equation (15). If the residual exits its healthy invariant
set, it indicates that a fault has occurred. �
Corollary 4.1: Considering F(t) could be Fu(t) or Fy(t).
Minimum detectable fault in steady state Fss

min(t ) is the
smallest value of F(t) that makes the residual r(t) going out-
side the invariance kernel InvSr (X ).

Fss
min(t ) = min

r(t )/∈InvSr (X )
F(t ) (17)

... Transient
The system behavior in transient mode is different from
steady state and invariance kernel is no longer applicable
for fault detection.
Theorem 4.2 (Fault detection criteria in transient with-
out time constraint): Consider system (14) and a residual
signal (15). A fault (Fu or Fy) in the system (14) in transient
state can be detected at time instant tf if

r
(
t f
)

/∈ ViabSr (X )

Proof: In transient state, because changes in system (14)
states are somewhat unpredictable and also, we do not
know initial state of system,we cannot use invariance ker-
nel in fault detection appropriately. In this situation, the
question to be answered is: Is there any possible action
that brings our system near steady state? Translating this
question to the concepts in viability theory, we can use
viability kernel for fault detection

r(t ) ∈ ViabSr (X ) (18)

That is, while the system is in the viability kernel
means that the system can find a way to be safe. Actu-
ally in this manner, we cannot say anything about con-
vergence of the system toward steady-state. Note that
in the constructing viability kernel, system constraints
are considered. Therefore, being in viability kernel also
means the system do not violate constraints. Satisfying
constraints and having the opportunity to come back to
steady state can ensure us that our system is in healthy
functioning. �
Corollary 4.2: Minimum detectable fault in transient
without time constraint Ft

min(t ) is the smallest value of F(t)
that makes the residual r(t) going outside the viability ker-
nel ViabSr (X ).

Ft
min(t ) = min

r(t )/∈ViabSr (X )
F(t ) (19)

In most practical cases, we have time constraints in
the transient mode, whichmeans systemmust come back
near steady state in finite time. In this situation, we can
use capture basin for fault detection.

Theorem 4.3 (Fault detection criteria in transient with
time constraint): Consider system (14) and a residual sig-
nal (15). A fault (Fu or Fy) in the system (14) in transient
state with time constraint can be detected at time instant tf
if

r
(
t f
)

/∈ CaptSr (X,C)

Proof: If system (14) has a time constraint, it means that
the systemhas a limited timeN to reach the target. Hence,
being in the capture basin means that the system can find
a way to come back to the target in limited time instants.

r(t ) ∈ CaptSr (X,C) (20)

Therefore, working outside this set can raise a fault
alarm.

Note that a target can be chosen arbitrarily according
to the application, which means we can choose as e.g. the
invariance kernel . �
Corollary 4.3: Minimumdetectable fault in transientwith
time constraint Ftt

min(t ) is the smallest value of F(t) that
makes the residual r(t) going outside the capture basin
CaptSr (X,C).

Ftt
min(t ) = min

r(t )/∈CaptSr (X,C)
F(t ) (21)

4.4. Fault isolation using viability theory

Consider that our system can have i( = 0, 1, 2, ..., ns) dif-
ferent states: The first one (i = 0) related to the healthy
mode and the others are different faulty modes to be
detected. Residual equation is written for every fault sce-
nario as follows:

ri(t ) = yi(t ) − ŷi(t ) (22)

In this situation, consider that we can construct a ker-
nel for every types of fault. Faults can be isolated if kernels
are separable.Hence, the condition for faults to be isolable
is that those kernels are separable.
Lemma 4.1 (Guaranteed fault isolability criteria): Con-
sider system (14) and residual signals (22). Faults (Fu or Fy)
in the system (14) are guaranteed to be isolated in different
modes of system operation (steady and transient states) if

InvSr0 (K) ∩ InvSr1 (K) ∩ ... = ∅
(in steady state)

ViabSr0 (K) ∩ViabSr1 (K) ∩ ... = ∅
(in transient state without time constraint)

CaptSr0 (K,C) ∩CaptSr1 (K,C) ∩ ... = ∅
(in transient state with time constraint)



Considering this condition, for example if

r(t ) ∈ InvSr1 (K)

it means that the system works in mode 1 in
steady state, and that is actually a faulty situation. If
InvSr0 ∩ InvSr1 �= ∅, then for every ri(t ) ∈ InvSr0 ∩ InvSr1 ,
nothing can be said about the healthy or faulty function-
ing of the system.

5. Integration with interval observers

5.1. Interval observers

The application of the viability theory to FDI requires
the generation of the residual signal. Residuals can be
generated in many ways as discussed in Blanke, Kin-
naert, Lunze, and Staroswiecki (2006). A particular well-
established way of residual generation is based on the use
of interval observers (Montes de Oca et al., 2012). Via-
bility theory is well suited for dealing with FDI in non-
linear systems sincemost of the concepts have been devel-
oped in this context (see Section 2). Designing observers
for non-linear systems is a difficult problem. A possi-
ble approach to deal with the observer design for non-
linear systems is by approximating them as LPV system
(Seron & De Doná, 2015) and applying LMI-based (Lin-
ear Matrix Inequality) designs. For design purposes, sys-
tem matrices of the LPV model (14) can be expressed in
polytopic form

[A(ρ),B(ρ),C(ρ)] =
N∑
j=1

ζ j(ρ)
[
Aj,Bj,Cj

]

for certain constant matrices Aj, Bj, Cj and continuous
functions ζ j such that ζ j(ρ) � 0 and

∑N
j=1 ζ j(ρ) = 1 for

all ρ. Assume that the pairs (Aj, Bj) are stabilisable and
the pairs (Aj, Cj) are detectable for j = 1, ..., N. An LPV
observer for this system is defined as

x̂ (t + 1) = A(ρ)x̂(t ) + B(ρ)u(t )

+ L(ρ)
(
y(t ) − ŷ(t )

)+ 

w(t )

ŷ(t ) = C(ρ)x̂(t ) + 

η(t ) (23)

where u(t) � U is the measured system input vector,
x̂(t ) ∈ X̂ is the estimated system state vector, ŷ(t ) is the
estimated system output vector, the uncertain variables


w(t ) and 


η(t ) are used to describe the effect of variable
w(t) and η(t) on the plant (14), respectively. The uncer-
tain variables 


w(t ) and 

η(t ) are different from w(t) and

η(t), but are defined to have the same bounds, respectively
(i.e. 


w(t ) ∈ W and 

η(t ) ∈ V ).

According to Montes de Oca et al. (2012), taking into
account uncertainty bounds when obtaining the observer
estimation, intervals that bound the estimated state and
output can be generated. This type of observer is known
as an interval observer and it is a well-accepted approach
in robust FDI.

The next issue to be addressed here is how to find
observer gain in order to stabilise it. The following the-
orem provides the design procedure to stabilise observer
(23).
Theorem5.1: Consider an observer of the form (23) for an
LPV system (5). To guarantee the stability of the observer,
the observer gains Lj can be determined through the follow-
ing LMIs:

[
−rXj aXj + XT

j A j (ρ) −WT
j Cj (ρ)(

a + Aj(ρ)T
)
Xj −Cj(ρ)TWj −rXj

]
< 0

(24)

where L j =
(
WjX−1

j

)T
. Now, the observer gains Lj(ρ)will

be interpolated to obtain the interval LPV observer gain as

L(ρ) =
N∑
j=1

ζ j(ρ)Lj(ρ)

Proof: See Montes de Oca et al. (2012). �

5.2. Interval observers and set invariance

Recently, a lot of efforts have been done in order to
use interval observers and set invariance in FDI; see
for example Mazenc and Bernard (2011), Seron and De
Doná (2015). The principle for FDI in both approaches
is similar. In interval observer based approach, zero
must be inside the residual set to assure healthy func-
tioning. In this approach, zero is fixed but the residual
sets are computed online. They have the advantage of
considering noise and uncertainty in transient phase of
fault detection, which makes this method more robust,
but more computationally demanding. Set invariance
approach is more conservative than the one based on
interval observers, but it provides FDI guarantees. In this
approach, invariant set is fixed and determined offline
but the residual is calculated online. In Xu et al. (2013),
a detailed comparison between these twomethods is pre-
sented. Here, we propose using viability theory in order
to make it possible to detect faults in transient states
combining interval observers for generating residuals and
viability theory concepts for evaluating them in FDI as
described in Section 5. Themainmotivation for this inte-
gration is because viability offers a general framework for
dealing with non-linear systems. Another fact is that in



viability theory, sets can be defined without considering
any specific shape (as e.g. ellipsoids or zonotopes), which
makes it less conservative, and more general implemen-
tation can be carried out.

6. Illustrative example

In this section, the viability theory based FDI approach
developed in previous sections is applied to a two-
tank system described by a continuous non-linear model
(Seron & De Doná, 2015)

ḣ1(t ) = − (s/S)√2g
√
h1(t ) + (

κ
/
S
)
u(t ) + w1(t )

ḣ2(t ) = (s/S)√2g
[√

h1(t ) −
√
h2(t )

]
+ w2(t ) (25)

where u(t) is the voltage applied to the pump, h1(t), h2(t)
are system states,w1(t),w2(t) are bounded state perturba-
tion and the parameters are as follows: S= 15.5179 cm2 is
the cross-sectional area of the tanks; s= 0.1781 cm2 is the
cross section of the tanks outflow orifice; κ = 3.3 cm3 Vs
is the gain of the pump; g = 981 cm s2 is the gravitational
constant. After Euler discretisation with sampling period
τ = 1 s, the whole systemwith considered faults is formu-
lated in its quasi-LPV form throughparameter non-linear
embedding approach

x (t + 1) = A (ρ(t )) x(t ) + BFuu(t ) + Ew(t )
y(t ) = CFyx(t ) + η(t ) (26)

where

x(t ) = [
h1(t ) h2(t )

]T
A (ρ(t )) = I + τ

[−ρ1(t ) 0
ρ1(t ) −ρ2(t )

]

B = τ
[
κ/S 0

]T
C =

[
1 0
0 1

]

E = τ
[
1 1

]T
η(t ) = [

η1 (k) η2 (k)
]T

w(t) is disturbance, η1(t) and η2(t) are measurement
noises that are considered to be bounded by means of
zonotopes

w = 0 ⊕ 0.01β
ηi = 0 ⊕ 0.01β, i = 1, 2

Actuator and sensor faults are modelled by Fu and Fy.
They can have values in the range [0, 1], where one is
related to the healthy operation of the system and zero

is full fault. Any value between these two is considered as
partial fault. The varying parameters can be shown as

ρi(t ) = s
S

√
2g

hi(t )
, i = 1, 2

The system states and parameters are bounded as

hmin
i = 0.5 → ρmin

i = 0.0928 = ρi−

hmax
i = 30 → ρmax

i = 0.7189 = ρ̄i

Hence, an LPV model with convex polytopic description
can be obtained from Equation (26) by taking

A1 = A
(

ρ1−
, ρ2−

)
,A2 = A

(
ρ1−

, ρ̄2

)
,A3 = A

(
ρ̄1, ρ2−

)
,

A4 = A (ρ̄1, ρ̄2)

and

A (ρ(t )) =
4∑

i=1

αiAi

These weights can be computed using following equa-
tions, which is valid for the case of polytopes with four
vertices:

ρ = hmax
1 − h1(t )
hmax
1 − hmin

1

λ = h2(t ) − hmin
2

hmax
2 − hmin

2
α1 = ρλ, α2 = (1 − ρ) λ

α3 = ρ (1 − λ) , α4 = (1 − ρ) (1 − λ)

Here, for the goal of FDI, two residual signals can be
defined. First, output of the system is divided in two parts

y1(t ) = C1Fy1x(t ) + η1(t )
y2(t ) = C2Fy2x(t ) + η2(t )

where

C1 = [
1 0

]
C2 = [

0 1
]

and Fy1 and are first and second output faults, respec-
tively. Based on these two outputs, two residuals are
defined as

r1(t ) = y1(t ) − ŷ1(t ) (27)

r2(t ) = y2(t ) − ŷ2(t ) (28)
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where ŷ1(t ) and ŷ2(t ) are estimated values of y1(t ) and
y2(t ) , respectively. For deriving ŷ1(t ), considering Equa-
tion (23) as observer and using Equation (24), observer
gains are derived as

L1 =
[
0.3532
0.7561

]
, L2 =

[
0.3532
0.7936

]
, L3 =

[
0.9345
0.0924

]
,

L4 =
[
0.9345
0.2042

]

In the same manner, observer gains for the second
observer ŷ2(t ) are

L1 =
[
0.4146
1.1889

]
, L2 =

[
0.4146
1.8150

]
, L3 =

[
1.1435
0.4889

]
,

L4 =
[
1.1435
1.1150

]

Invariance kernel, viability kernel and capture basin
for residual signals (27) and (28) in healthy mode are
shown in Figures 5 and 6, respectively. These figures

are only for comparing the size of the kernels with one-
graded axes. Both residuals in steady state must lie in
[−0.1, 0.1], otherwise fault detection scheme raises a fault
alarm. For transient state, if no time constraint is consid-
ered, then viability kernel must be used for fault detec-
tion. We consider that the residuals start in a box given
by [−30, 30] per each component. In this application, it is
reasonable, because there is always a way to bring the sys-
tem back to steady state as long as the system constraints
are satisfied. For the first residual r1(t), if we consider a
time limitation of four sample times and start from invari-
ance kernel as initial set, the interval [−1.7, 1.7] is capture
basin and can be used for fault detection. It means that if
absolute value of residual becomes more than 1.7, there
is no possibility to come back to steady state in less than
four sample times. For the second residual r2(t) with four
sample times constraint, the interval [−1, 1] can be used
for fault detection.

For FDI, two different cases are considered: full fault
and partial fault.

6.1. Full faults

In this case, three fault scenarios are considered

Fault scenario1 : Fy1 = 0, 100 � t (sec) � 250
Fault scenario2 : Fy2 = 0, 400 � t (sec) � 550
Fault scenario3 : Fu = 0, 700 � t (sec) � 850

In Figure 7, simulation results are presented. The resid-
ual signals r1(t) and r2(t) are depicted in Figures 8 and
9, respectively. It is clear that residual in healthy mode is
inside the invariance kernel. Fault scenarios 1 and 3make
r1(t) going outside invariance kernel, whichmeans a fault
occurs. Only the second fault scenario that is related to
the second output does not change this residual. As it can
be seen fromFigure 8, the third fault alsomakes the resid-
ual going outside the capture basin, which means there is
no possibility to come back to invariance kernel in less
that four sample times. In all situations, when fault disap-
pears, it takes more than 10 sample times to come back
to invariance kernel. But, for the first fault scenario, we
cannot say that there is a fault in transient mode, as long
as it lies in capture basin. During the whole simulation
time, residual lies in viability kernel, whichmeans system
is safe and has the opportunity to come back to invariance
kernel. The same argument can be done about r2(t). Only
first fault scenario does not change it.Here also, third fault
not only makes the residual going outside the invariance
kernel, but alsomakes it to go out of capture basin. There-
fore, a fault alarm can raise in transient mode. It must be
noted that like first residual, r2(t) is also in the viability
kernel.
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It is also worth to note that using both residuals, three
defined faults can be isolated. If r1(t) plotted against r2(t),
as in Figure 10, invariance kernel for the applied faults
can be used for fault isolation. Because invariance kernel
in healthy and faulty modes are separable according to
Section 4.4, the faults can be isolated. In Figure 10, it can
be seen that when fault occurs, residual signal goes from
healthy invariance kernel to one of the faulty invariance
kernels. Based on this analysis, it can be said that first fault
is detected in 102 seconds (2 seconds after its occurrence),
second fault is detected in 410 seconds (10 seconds after
its occurrence) and third fault is detected in 718 seconds
(18 seconds after its occurrence).

6.2. Partial faults

In most practical situations, the size of the fault is not
known a priori. Therefore, it is useful to analyse cases
when faults can change in a range. Here, these three pre-
defined faults are considered to be in a range; i.e.

Fy1 ∈ [0, 0.5]
Fy2 ∈ [0, 0.5]
Fu ∈ [0, 0.5]

An advantage of using viability approach is that in this
case also FDI is possible. Invariance kernels in these three
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Figure . Invariance kernel and capture basin for first residual signal.
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fault scenarios and healthy mode of operation of the sys-
tem are depicted in Figure 11. As it can be seen from
Figure 11, kernels are separable. Therefore, according to
(4.4), considered faults can be isolated. The evolution of
the system is also depicted in Figure 11 according to the
following fault scenarios:

Fault scenario1 : Fy1 = 0.25, 100 � t (sec) � 250
Fault scenario2 : Fy2 = 0.25, 400 � t (sec) � 550

Fault scenario3 : Fu = 0.25, 700 � t (sec) � 850

In this case, first fault scenario is detected after 2 seconds,
second fault scenario after 8 seconds is detected and third
fault scenario is isolated in 6 seconds after its occurrence.
It is clear that faults in this case is detected faster than the
case of full fault, because the size of kernels are bigger than
when a specific value for fault is considered.
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7. Conclusions

In this paper, the application of viability theory to FDI has
been developed regarding its application to non-linear
systems that can be expressed in LPV form. Concepts
of invariance kernel, viability kernel and capture basin
are introduced and adapted to be used in FDI. The main
drawback of viability theory is the difficulty of computing
these kernels. In this paper, this drawback has been over-
come with the use of zonotopes. Then, FDI in steady state
and transient mode can be done using those proposed
viability theory concepts. Moreover, the integration of
the proposed FDI approach with interval observers has
been presented allowing to work in transient mode and
considering noise and uncertainty in residual evalua-
tion phase and achieving robustness in a passive way.
Finally, a well-known application example has been
used in order to show effectiveness of the proposed
approach.

As future work, the proposed approach will be
extended to deal with fault tolerant control.
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Appendix

Some relevant properties of zonotopes used in the algo-
rithms developed in the paper have been reviewed in this
appendix.

Property A.1. (Zonotope inclusion; Alamo et al., 2005):
Consider a family of zonotopes represented by X = π ⊕
Mβmz , where π ∈ R

nz is a real vector andM ∈ R
nz×mz is

an interval matrix. A zonotope inclusion ♦(X) is defined
by

♦ (X ) = π ⊕ [
mid (M) G

] [βmz

βnz

]
= π ⊕ Jβnz+mz

where G ∈ R
nz×mz is a diagonal matrix that satisfies

Gii =
mz∑
j=1

(
diam

(
Mij

)/
2
)
, i = 1, 2, . . . , n

where ‘mid’ denotes the centre and ‘diam’ the diameter
of the interval according to Le et al. (2013). Under this
definition X�♦(X).

Property A.2. (Intersection; Brito, 2009): Given two
zonotopes Z1 = p1 ⊕ H1β

r1 and Z2 = p2 ⊕ H2β
r2 and

matrix E, let us define

p̂ (E) = Ep1 + (I − E) p2
Ĥ (E) = [

EH1 (I − E)H2
]

then,

Z1 ∩ Z2 ⊆ Ẑ (E)

Ẑ (E) = p̂ (E) ⊕ Ĥ (E) βr1+r2
(A1)

Testing whether the intersection of two convex sets is
empty or not can be done by collision detection algo-
rithms. Some collision detection algorithms can thus be
used to test whether a point belongs to a given set. The
GJK (Gilbert–Johnson–Keerthi) algorithm is a robust
and fast collision detection algorithm that is introduced
in Bergen (1999). Alternatively, testing the emptiness of
the intersection between two sets is equivalent to test the
membership of the origin in the Minkowski difference of
the two sets (Lalami & Combastel, 2006).



As previously mentioned, detecting the collision
between Z1 and Z2 can be reformulated as testing the
inclusion of origin in the Minkowski difference between
Z1 and Z2:

0 ∈ Zd = Z1 ⊕ (−Z2) = cd ⊕ Hdβ
md

The proposed solution is to find a separation vector ω

whose direction aims at proving that the 0 is not included
in the zonotope. Indeed,

0 /∈ Zd ⇔ ∃ω, 0 /∈ ωTZd
⇔ ∃ω,

∣∣ωT cd
∣∣ >

∥∥ωTHd
∥∥
1

Therefore, the collision detection can be reformulated as
the maximisation of the criterion J:

ω∗ = max
ω

J (ω)

J (ω) = |ωT cd|
‖ωTHd‖1

(A2)

If |ω*Tcd| > ‖ω*THd‖1 then 0 	 Zd. The problem is
addressed solving Equation (A2) that could be addressed
by an iterative algorithm. In Lalami and Combastel
(2006), a sub-optimal solution based on the optimisation
of a criterion involving the Euclidean norm instead of the
1-norm is proposed:

Jsubopt (ω) =
∥∥ωT cd

∥∥2
2∥∥ωTHd
∥∥2
2
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