4,721 research outputs found

    Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization

    Full text link
    [EN] Promoting sustainable urbanization and limiting land consumption is a local and regional priority policy target in Europe. Monitoring and quantifying urban growth supports decision-making processes for the prevention of ecological and socio-economic consequences. In this work, we present a methodology based on spatio-temporal metrics and a new index (PUGI), that quantifies the inequality of growth between population and urban areas, to analyze and compare urban growth patterns at different levels. We computed an exhaustive set of spatio-temporal metrics at local level in a testing sample of six urban areas from the Urban Atlas database, then un-correlated metrics were selected and the data were interpreted at various levels. Results allow for a differentiation of growing patterns, discriminating between compact and sprawl trends. The index proposed complements the analysis by including demographic dynamics, being also useful for assessing the growing imbalance between the progression on residential areas and the population change at local level. The analysis at various levels contributes to a better understanding of urban growth patterns and its relation to sustainable policies not only within urban areas, but also for the comparison across Europe.This research has been funded by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the project CGL2016-80705-R and the Fondo de Garantia Juvenil contract PEJ-2014-A-45358.Sapena Moll, M.; Ruiz Fernández, LÁ. (2019). Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization. Computers Environment and Urban Systems. 73:27-39. https://doi.org/10.1016/j.compenvurbsys.2018.08.001S27397

    Analyzing links between spatio-temporal metrics of built-up areas and socio-economic indicators on a semi-global scale

    Get PDF
    [EN] Manifold socio-economic processes shape the built and natural elements in urban areas. They thus influence both the living environment of urban dwellers and sustainability in many dimensions. Monitoring the development of the urban fabric and its relationships with socio-economic and environmental processes will help to elucidate their linkages and, thus, aid in the development of new strategies for more sustainable development. In this study, we identified empirical and significant relationships between income, inequality, GDP, air pollution and employment indicators and their change over time with the spatial organization of the built and natural elements in functional urban areas. We were able to demonstrate this in 32 countries using spatio-temporal metrics, using geoinformation from databases available worldwide. We employed random forest regression, and we were able to explain 32% to 68% of the variability of socio-economic variables. This confirms that spatial patterns and their change are linked to socio-economic indicators. We also identified the spatio-temporal metrics that were more relevant in the models: we found that urban compactness, concentration degree, the dispersion index, the densification of built-up growth, accessibility and land-use/land-cover density and change could be used as proxies for some socio-economic indicators. This study is a first and fundamental step for the identification of such relationships at a global scale. The proposed methodology is highly versatile, the inclusion of new datasets is straightforward, and the increasing availability of multi-temporal geospatial and socio-economic databases is expected to empirically boost the study of these relationships from a multi-temporal perspective in the near future.Sapena Moll, M.; Ruiz Fernández, LÁ.; Taubenböck, H. (2020). Analyzing links between spatio-temporal metrics of built-up areas and socio-economic indicators on a semi-global scale. ISPRS International Journal of Geo-Information. 9(7):1-22. https://doi.org/10.3390/ijgi9070436S12297Zhu, Z., Zhou, Y., Seto, K. C., Stokes, E. C., Deng, C., Pickett, S. T. A., & Taubenböck, H. (2019). Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sensing of Environment, 228, 164-182. doi:10.1016/j.rse.2019.04.020Wentz, E. A., York, A. M., Alberti, M., Conrow, L., Fischer, H., Inostroza, L., … Taubenböck, H. (2018). Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landscape and Urban Planning, 179, 55-62. doi:10.1016/j.landurbplan.2018.07.007Wentz, E., Anderson, S., Fragkias, M., Netzband, M., Mesev, V., Myint, S., … Seto, K. (2014). Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing. Remote Sensing, 6(5), 3879-3905. doi:10.3390/rs6053879Allen, L., Williams, J., Townsend, N., Mikkelsen, B., Roberts, N., Foster, C., & Wickramasinghe, K. (2017). Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: a systematic review. The Lancet Global Health, 5(3), e277-e289. doi:10.1016/s2214-109x(17)30058-xBelsky, D. W., Caspi, A., Arseneault, L., Corcoran, D. L., Domingue, B. W., Harris, K. M., … Odgers, C. L. (2019). Genetics and the geography of health, behaviour and attainment. Nature Human Behaviour, 3(6), 576-586. doi:10.1038/s41562-019-0562-1Villeneuve, P. J., Jerrett, M., G. Su, J., Burnett, R. T., Chen, H., Wheeler, A. J., & Goldberg, M. S. (2012). A cohort study relating urban green space with mortality in Ontario, Canada. Environmental Research, 115, 51-58. doi:10.1016/j.envres.2012.03.003Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., … Epstein, J. (2004). Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environmental Health Perspectives, 112(10), 1092-1098. doi:10.1289/ehp.6877Wilkinson, D. A., Marshall, J. C., French, N. P., & Hayman, D. T. S. (2018). Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. Journal of The Royal Society Interface, 15(149), 20180403. doi:10.1098/rsif.2018.0403Zohdy, S., Schwartz, T. S., & Oaks, J. R. (2019). The Coevolution Effect as a Driver of Spillover. Trends in Parasitology, 35(6), 399-408. doi:10.1016/j.pt.2019.03.010Watmough, G. R., Atkinson, P. M., Saikia, A., & Hutton, C. W. (2016). Understanding the Evidence Base for Poverty–Environment Relationships using Remotely Sensed Satellite Data: An Example from Assam, India. World Development, 78, 188-203. doi:10.1016/j.worlddev.2015.10.031Duque, J. C., Patino, J. E., Ruiz, L. A., & Pardo-Pascual, J. E. (2015). Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landscape and Urban Planning, 135, 11-21. doi:10.1016/j.landurbplan.2014.11.009Venerandi, A., Quattrone, G., & Capra, L. (2018). A scalable method to quantify the relationship between urban form and socio-economic indexes. EPJ Data Science, 7(1). doi:10.1140/epjds/s13688-018-0132-1Arribas-Bel, D., Patino, J. E., & Duque, J. C. (2017). Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning. PLOS ONE, 12(5), e0176684. doi:10.1371/journal.pone.0176684Faisal, K., Shaker, A., & Habbani, S. (2016). Modeling the Relationship between the Gross Domestic Product and Built-Up Area Using Remote Sensing and GIS Data: A Case Study of Seven Major Cities in Canada. ISPRS International Journal of Geo-Information, 5(3), 23. doi:10.3390/ijgi5030023Liang, H., Guo, Z., Wu, J., & Chen, Z. (2020). GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Advances in Space Research, 65(1), 481-493. doi:10.1016/j.asr.2019.09.035Weigand, M., Wurm, M., Dech, S., & Taubenböck, H. (2019). Remote Sensing in Environmental Justice Research—A Review. ISPRS International Journal of Geo-Information, 8(1), 20. doi:10.3390/ijgi8010020McCarty, J., & Kaza, N. (2015). Urban form and air quality in the United States. Landscape and Urban Planning, 139, 168-179. doi:10.1016/j.landurbplan.2015.03.008Hankey, S., & Marshall, J. D. (2017). Urban Form, Air Pollution, and Health. Current Environmental Health Reports, 4(4), 491-503. doi:10.1007/s40572-017-0167-7Olsen, J. R., Nicholls, N., & Mitchell, R. (2019). Are urban landscapes associated with reported life satisfaction and inequalities in life satisfaction at the city level? A cross-sectional study of 66 European cities. Social Science & Medicine, 226, 263-274. doi:10.1016/j.socscimed.2019.03.009Sapena, M., Ruiz, L. A., & Goerlich, F. J. (2016). ANALYSING RELATIONSHIPS BETWEEN URBAN LAND USE FRAGMENTATION METRICS AND SOCIO-ECONOMIC VARIABLES. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 1029-1036. doi:10.5194/isprsarchives-xli-b8-1029-2016Stokes, E. C., & Seto, K. C. (2019). Characterizing and measuring urban landscapes for sustainability. Environmental Research Letters, 14(4), 045002. doi:10.1088/1748-9326/aafab8De Leeuw, J., Georgiadou, Y., Kerle, N., De Gier, A., Inoue, Y., Ferwerda, J., … Narantuya, D. (2010). The Function of Remote Sensing in Support of Environmental Policy. Remote Sensing, 2(7), 1731-1750. doi:10.3390/rs2071731Taubenböck, H., Ferstl, J., & Dech, S. (2017). Regions Set in Stone—Delimiting and Categorizing Regions in Europe by Settlement Patterns Derived from EO-Data. ISPRS International Journal of Geo-Information, 6(2), 55. doi:10.3390/ijgi6020055Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences, 108(21), 8589-8594. doi:10.1073/pnas.1017031108Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS International Journal of Geo-Information, 6(9), 288. doi:10.3390/ijgi6090288Oldekop, J. A., Sims, K. R. E., Karna, B. K., Whittingham, M. J., & Agrawal, A. (2019). Reductions in deforestation and poverty from decentralized forest management in Nepal. Nature Sustainability, 2(5), 421-428. doi:10.1038/s41893-019-0277-3Sims, K. R. E., Thompson, J. R., Meyer, S. R., Nolte, C., & Plisinski, J. S. (2019). Assessing the local economic impacts of land protection. Conservation Biology, 33(5), 1035-1044. doi:10.1111/cobi.13318Lobo, J., Alberti, M., Allen-Dumas, M., Arcaute, E., Barthelemy, M., Bojorquez Tapia, L. A., … Youn, H. (2020). Urban Science: Integrated Theory from the First Cities to Sustainable Metropolises. SSRN Electronic Journal. doi:10.2139/ssrn.3526940Seto, K. C., Golden, J. S., Alberti, M., & Turner, B. L. (2017). Sustainability in an urbanizing planet. Proceedings of the National Academy of Sciences, 114(34), 8935-8938. doi:10.1073/pnas.1606037114Cities (Urban Audit)https://ec.europa.eu/eurostat/web/cities/backgroundMetropolitan Areas, OECD Regional Statistics [Database]http://dx.doi.org/10.1787/data-00531-enEurostat, Geographical Information and Mapshttps://ec.europa.eu/eurostat/web/gisco/gisco-activities/integrating-statistics-geospatial-information/geostat-initiativeNASA Socioeconomic Data and Applications Center. U.S. Census Gridshttps://sedac.ciesin.columbia.edu/Esch, T., Taubenböck, H., Roth, A., Heldens, W., Felbier, A., Thiel, M., … Dech, S. (2012). TanDEM-X mission—new perspectives for the inventory and monitoring of global settlement patterns. Journal of Applied Remote Sensing, 6(1), 061702-1. doi:10.1117/1.jrs.6.061702GHS-BUILT R2018A—GHS Built-Up Grid, Derived from Landsat, Multitemporal (1975-1990-2000-2014). European Commission, Joint Research Centre (JRC) [Dataset]http://data.europa.eu/89h/jrc-ghsl-10007Chen, J., Cao, X., Peng, S., & Ren, H. (2017). Analysis and Applications of GlobeLand30: A Review. ISPRS International Journal of Geo-Information, 6(8), 230. doi:10.3390/ijgi6080230Land Cover CCI Product User Guide Version 2http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfBechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., … Stewart, I. (2015). Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information, 4(1), 199-219. doi:10.3390/ijgi4010199Cao, W., Dong, L., Wu, L., & Liu, Y. (2020). Quantifying urban areas with multi-source data based on percolation theory. Remote Sensing of Environment, 241, 111730. doi:10.1016/j.rse.2020.111730Qiu, C., Schmitt, M., Geiß, C., Chen, T.-H. K., & Zhu, X. X. (2020). A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 152-170. doi:10.1016/j.isprsjprs.2020.01.028The Metropolitan Database. Metadata and Release Noteshttp://stats.oecd.org/wbos/fileview2.aspx?IDFile=4aed3009-6020-48f3-8eeb-e01a8e5f61c4Gross Domestic Product (GDP) (Indicator)https://doi.org/10.1787/dc2f7aec-enIncome Inequality (Indicator)https://doi.org/10.1787/459aa7f1-enAir pollution Exposure (Indicator)https://doi.org/10.1787/8d9dcc33-enEmployment Rate (Indicator)https://doi.org/10.1787/1de68a9b-enRedefining “Urban”: A New Way to Measure Metropolitan Areas, OECD Publishinghttps://doi.org/10.1787/9789264174108-enMeijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., & Schipper, A. M. (2018). Global patterns of current and future road infrastructure. Environmental Research Letters, 13(6), 064006. doi:10.1088/1748-9326/aabd42Sapena Moll, M., & Ruiz Fernández, L. Á. (2015). Descripción y cálculo de índices de fragmentación urbana: Herramienta IndiFrag. Revista de Teledetección, (43), 77. doi:10.4995/raet.2015.3476Urban morphological zones 2006. European Environment Agencyhttps://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2006-1Taubenböck, H., Wiesner, M., Felbier, A., Marconcini, M., Esch, T., & Dech, S. (2014). New dimensions of urban landscapes: The spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Applied Geography, 47, 137-153. doi:10.1016/j.apgeog.2013.12.002SCHUMM, S. A. (1956). EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY. Geological Society of America Bulletin, 67(5), 597. doi:10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2Sapena, M., & Ruiz, L. Á. (2019). Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization. Computers, Environment and Urban Systems, 73, 27-39. doi:10.1016/j.compenvurbsys.2018.08.001Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16(3). doi:10.1214/ss/1009213726GONZALEZ, J., & LEBOULLUEC, A. (2019). Crime Prediction and Socio-Demographic Factors: A Comparative Study of Machine Learning Regression-Based Algorithms. Journal of Applied Computer Science & Mathematics, 13(1), 13-18. doi:10.4316/jacsm.201901002Paul, S. S., Coops, N. C., Johnson, M. S., Krzic, M., Chandna, A., & Smukler, S. M. (2020). Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation. Geoderma, 363, 114177. doi:10.1016/j.geoderma.2020.114177Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324How to Normalize the RMSEhttps://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/Probst, P., Wright, M. N., & Boulesteix, A. (2019). Hyperparameters and tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3). doi:10.1002/widm.1301Salvati, L., & Carlucci, M. (2015). Patterns of Sprawl: The Socioeconomic and Territorial Profile of Dispersed Urban Areas in Italy. Regional Studies, 50(8), 1346-1359. doi:10.1080/00343404.2015.1009435Weilenmann, B., Seidl, I., & Schulz, T. (2017). The socio-economic determinants of urban sprawl between 1980 and 2010 in Switzerland. Landscape and Urban Planning, 157, 468-482. doi:10.1016/j.landurbplan.2016.08.002Huang, J., Lu, X. X., & Sellers, J. M. (2007). A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landscape and Urban Planning, 82(4), 184-197. doi:10.1016/j.landurbplan.2007.02.010Angel, S., Arango Franco, S., Liu, Y., & Blei, A. M. (2020). The shape compactness of urban footprints. Progress in Planning, 139, 100429. doi:10.1016/j.progress.2018.12.001Bechle, M. J., Millet, D. B., & Marshall, J. D. (2011). Effects of Income and Urban Form on Urban NO2: Global Evidence from Satellites. Environmental Science & Technology, 45(11), 4914-4919. doi:10.1021/es103866bMeneses, B., Reis, E., Pereira, S., Vale, M., & Reis, R. (2017). Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability, 9(3), 351. doi:10.3390/su9030351Corbane, C., Pesaresi, M., Kemper, T., Politis, P., Florczyk, A. J., Syrris, V., … Soille, P. (2019). Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data, 3(2), 140-169. doi:10.1080/20964471.2019.162552

    Spatio-temporal dynamics along the terrain gradient of diverse landscape

    Get PDF
    Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth’s terrestrial surface according to its use and provides the intricate information for effective planning and management activities.  LULC changes are stated as local and location specifc, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the signifcant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identifed and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensifcation, deforestation, pasture expansion, and urbanization as the causal factors for LULC change

    Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis

    Full text link
    [EN] The spatial pattern of urban growth determines how the physical, socio-economic and environmental characteristics of urban areas change over time. Monitoring urban areas for early identification of spatial patterns facilitates assuring their sustainable growth. In this paper, we assess the use of spatio-temporal metrics from land-use/land-cover (LULC) maps to identify growth patterns. We applied LULC change models to simulate different scenarios of urban growth spatial patterns (i.e., expansion, compact, dispersed, road-based and leapfrog) on various baseline urban forms (i.e., monocentric, polycentric, sprawl and linear). Then, we computed the spatio-temporal metrics for the simulated scenarios, selected the most informative metrics by applying discriminant analysis and classified the growth patterns using clustering methods. Two metrics, Weighted mean expansion and Weighted Euclidean distance, which account for the densification, compactness and concentration of urban growth, were the most efficient for classifying the five growth patterns, despite the influence of the baseline urban form. These metrics have the potential to identify growth patterns for monitoring and evaluating the management of developing urban areas.This work was supported by the the Spanish Ministerio de Economia y Competitividad and FEDER [CGL2016-80705-R].Sapena Moll, M.; Ruiz Fernández, LÁ. (2021). Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis. International Journal of Geographical Information Science. 35(2):375-396. https://doi.org/10.1080/13658816.2020.181746337539635

    Defining the Peri-Urban: A Multidimensional Characterization of Spatio-Temporal Land Use along an Urban−Rural Gradient in Dar es Salaam, Tanzania

    Get PDF
    Highly dynamic peri-urban areas, particularly in the Global South, face many challenges including a lack of infrastructure, ownership conflicts, land degradation, and sustainable food production. This study aims to assess spatial land use characteristics and processes in peri-urban areas using the case of Dar es Salaam, Tanzania. A mixed-method approach was applied, consisting of expert interviews and spatial data analysis, on a local scale along an urban–rural gradient. Expert interviews were conducted during a field study and analyzed regarding the characteristics and processes of peri-urban land development. A GIS-based analysis of land use patterns was applied using satellite imagery and Open Street Map data to identify a number of variables, such as building density and proximity to environmental features. Results show specific patterns of land use indicators, which can be decreasing (e.g., house density), increasing (e.g., tree coverage), static (e.g., house size), or randomly distributed (e.g., distance to river), along a peri-urban gradient. Key findings identify lack of service structures and access to public transport as major challenges for the population of peri-urban areas. The combination of qualitative expert interviews and metrics-based quantitative spatial pattern analysis contributes to improved understanding of the patterns and processes in peri-urban land use changes.Peer Reviewe

    PEMODELAN POLA DISPERSI SPASIAL PERTUMBUHAN KAWASAN METROPOLITAN SEMARANG

    Get PDF
    Dinamika Kawasan Metropolitan Semarang (KMS) yang merupakan salah satu Kawasan Metropolitan terbesar di Indonesia semakin sulit terkendali dan sangat erat kaitannya dengan fenomena urban sprawl. Perlu adanya pemantauan secara berkala secara cepat dan akurat sebagai upaya dalam menjaga kesesuaian arah perkembangan kota terhadap perencanaan tata ruang KMS. Tujuan dari penelitian ini adalah untuk melakukan pemodelan pola dispersi spasial pembangunan KMS tahun 2010-2020 melalui penggunaan Algoritma SVM. Penelitian ini menggunakan metode kuantitatif eksperimental dengan bantuan software QGIS 3.10 untuk melakukan deteksi perubahan tutupan lahan serta dengan bantuan software Terrset untuk melakukan analisis pola dispersi spasial KMS

    Un panorama de la télédétection de l'étalement urbain

    Get PDF
    The objective of this review paper is to provide an overview of remote sensing based research tackling urban sprawl issue. 113 articles were indexed and analyzed after research on bibliographical databases. These 113 articles are presented in the form of summary table giving highlights of the listed publications. Articles are divided into 6 categories (F, A, B, C, D, E) according to whether they are articles of methodology, characterization, prospective modeling-simulation, retrospective modeling-simulation, analysis of impacts or monitoring of urban sprawl. The summary table is conceived as a tool which can help researchers interested by the measurement and the analysis of urban sprawl.Cette note rend compte d'une recherche bibliographique dont l'objectif est de fournir un panorama des recherches utilisant la télédétection pour aborder la problématique de l'étalement urbain. 113 articles ont été répertoriés et analysés à la suite de recherches dans des bases de données bibliographiques. Ces 113 articles sont présentés sous forme de tableau récapitulatif donnant un aperçu général des publications recensées. Les articles sont répartis en 6 catégories (F, A, B, C, D, E) suivant qu'il s'agit d'articles de méthodologie, de caractérisation, de modélisation-simulation prospective, de modélisation-simulation rétrospective, d'analyse d'impacts ou de monitorage de l'étalement urbain. Le panorama est conçu comme un outil d'aide aux chercheurs qui s'intéressent à la mesure et à l'analyse de l'étalement urbain

    Spatio-temporal analysis of the urban–rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)

    Get PDF
    Abstract. The most recent and significant transformations of European landscapes have occurred as a consequence of a series of diffused, varied and often connected phenomena: urban growth and sprawl, agricultural intensification in the most suitable areas and agricultural abandonment in marginal areas. These phenomena can affect dramatically ecosystems' structure and functioning, since certain modifications cause landscape fragmentation while others tend to increase homogeneity. Thus, a thorough comprehension of the evolution trends of landscapes, in particular those linked to urban-rural relations, is crucial for a sustainable landscape planning. In this framework, the main objectives of the present paper are: (a) to investigate Land Use/Land Cover (LULC) transformations and dynamics that occurred over the period 1955–2006 in the municipality of Serra San Bruno (Calabria, Italy), an area particularly representative of the Mediterranean mountainous landscape; (b) to compare the settlement growth with the urban planning tools in charge in the study area; (c) to examine the relationship between urban–rural gradient, landscape metrics, demographic and physical variables; (d) to investigate the evolution of urban–rural gradient composition and configuration along significant axes of landscape changes. Data with a high level of detail (minimum mapping unit 0.2 ha) were obtained through the digitisation of historical aerial photographs and digital orthophotos identifying LULC classes according to the Corine Land Cover legend. The investigated period was divided into four significant time intervals, which were specifically analysed to detect LULC changes. Differently from previous studies, in the present research the spatio-temporal analysis of urban–rural gradient was performed through three subsequent steps: (1) kernel density analysis of settlements; (2) analysis of landscape structure by means of metrics calculated using a moving window method; (3) analysis of composition and configuration of the urban–rural gradient within three landscape profiles located along significant axes of LULC change. The use of thematic overlays and transition matrices enabled a precise identification of the LULC changes that had taken place over the examined period. As a result, a detailed description and mapping of the landscape dynamics were obtained. Furthermore, landscape profiling technique, using continuous data, allowed an innovative and valuable approach for analysing and interpreting urban–rural gradient structure over space and time

    Analyzing spatial patterns and dynamics of landscapes and ecosystem services – Exploring fine-scale data and indicators

    Get PDF
    In den vergangenen Jahrzehnten hat der Einfluss des Menschen auf Ökosysteme stark zugenommen. Tendenzen der Landnutzungsänderung, darunter die Ausdehnung von Städten und die Intensivierung der Landwirtschaft als Folge des Bevölkerungsanstiegs und damit des Nahrungsmittel- und Energiebedarfs, führen zu Umweltproblemen wie dem Verlust von Lebensraum und biologischer Vielfalt. Die zunehmende Verfügbarkeit von Daten mit feiner räumlicher Auflösung kann die Analyse von Merkmalen und Prozessen in Landschaften mit Hilfe von räumlichen Metriken unterstützen. Das Ziel dieser Arbeit ist es, feinskalige Daten und räumliche Metriken zu integrieren, um Indikatoren zur Messung und Bewertung von Landnutzung, Ökosystemdienstleistungen und deren räumlichen Mustern zu entwickeln und folgende Fragen zu beantworten: Wie können Landnutzungsänderungen und Ökosystemleistungen einer Landschaft beschrieben und analysiert werden? Und, wie kann die Landschaftsperspektive zu unserem Verständnis von Landsystemen beitragen? In zwei verschiedenen Weltregionen werden Landschaften mit Hilfe von Hexagonen als räumliche Einheiten untersucht. Diese dienen zur Analyse von räumlichen Mustern und Beziehungen zwischen verschiedenen Indikatoren (z. B. Ökosystemdienstleistungen) und die Konzeptualisierung von Prozessen auf Landschaftsebene. Obwohl sich einige Phänomene auf feinen räumlichen Skalen manifestieren, ist es für die Operationalisierung und Überwachung dieser Prozesse notwendig, ‚herauszuzoomen‘. Der Landschaftsansatz im Zusammenhang mit Ökosystemleistungen bietet wichtige Perspektiven im Hinblick auf Umweltauswirkungen, die durch Landnutzungsänderungen verursacht werden. Dabei können Indikatoren, die die ökologische, ökonomische und soziale Dimension verknüpfen, dazu beitragen, regionalspezifisches Wissen über Landschaftsdynamiken zu erlangen und dieses Wissen an Entscheidungsträger weiterzugeben, um gezielte Maßnahmen für ein nachhaltiges Landmanagement zu entwickeln.Over the last decades, anthropogenic pressures on ecosystems have been increasing. Trends of land use change including urban expansion and agricultural intensification driven by population increase, and hence food and energy demand, cause environmental challenges including habitat and biodiversity loss. Analyzing major trends of land use change requires additional metrics to capture local processes on a landscape spatial scale. Increasing fine-scale data availability can support analyses of characteristics and processes of landscapes with the help of spatial metrics, e.g. distance or density measures. The aims of this thesis are to incorporate fine-scale data and spatial metrics to develop indicators to measure and assess land-use, ecosystem services (ESS) and their spatial patterns to answer the following questions: How can land use change and ecosystem services of landscapes be described and analyzed? And how can the landscape perspective contribute to our understanding of land systems? The thesis includes three case studies in two different world regions: 1) characteristics of land use within a peri-urban gradient in Dar es Salaam, Tanzania, 2) characteristics of agricultural landscapes in Brandenburg, Germany, and 3) ecosystem service relationships at different spatial units and scales. In both regions, landscapes are investigated with hexagons as spatial units for the analysis of spatial patterns and relationships among different indicators (i.e., ESS) and conceptualize processes on a landscape level. The landscape approach in context with ecosystem services offers important perspectives regarding environmental impacts caused by land use change. Thereby, metrics integrating the ecological, economic, and social dimensions can support obtaining region-specific knowledge on landscape dynamics and transferring this knowledge to decision-makers to design targeted measures towards sustainable land management
    corecore