24,606 research outputs found

    The Utility of Phase Models in Studying Neural Synchronization

    Full text link
    Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator theory is the phase response curve (PRC), which describes the impact of a perturbation to the phase of an oscillator. In neural terms, the perturbation represents an incoming synaptic potential which may either advance or retard the timing of the next spike. The phase response curves and the form of coupling between reciprocally coupled oscillators defines the phase interaction function, which in turn predicts the synchronization outcome (in-phase versus anti-phase) and the rate of convergence. We review the two classes of PRC and demonstrate the utility of the phase model in predicting synchronization in reciprocally coupled neural models. In addition, we compare the rate of convergence for all combinations of reciprocally coupled Class I and Class II oscillators. These findings predict the general synchronization outcomes of broad classes of neurons under both inhibitory and excitatory reciprocal coupling.Comment: 18 pages, 5 figure

    Mathematical analysis and simulations of the neural circuit for locomotion in lamprey

    Get PDF
    We analyze the dynamics of the neural circuit of the lamprey central pattern generator. This analysis provides insight into how neural interactions form oscillators and enable spontaneous oscillations in a network of damped oscillators, which were not apparent in previous simulations or abstract phase oscillator models. We also show how the different behavior regimes (characterized by phase and amplitude relationships between oscillators) of forward or backward swimming, and turning, can be controlled using the neural connection strengths and external inputs

    Mathematical Analysis and Simulations of the Neural Circuit for Locomotion in Lamprey

    Full text link
    We analyze the dynamics of the neural circuit of the lamprey central pattern generator (CPG). This analysis provides insights into how neural interactions form oscillators and enable spontaneous oscillations in a network of damped oscillators, which were not apparent in previous simulations or abstract phase oscillator models. We also show how the different behaviour regimes (characterized by phase and amplitude relationships between oscillators) of forward/backward swimming, and turning, can be controlled using the neural connection strengths and external inputs.Comment: 4 pages, accepted for publication in Physical Review Letter

    Hierarchical Temporal Representation in Linear Reservoir Computing

    Full text link
    Recently, studies on deep Reservoir Computing (RC) highlighted the role of layering in deep recurrent neural networks (RNNs). In this paper, the use of linear recurrent units allows us to bring more evidence on the intrinsic hierarchical temporal representation in deep RNNs through frequency analysis applied to the state signals. The potentiality of our approach is assessed on the class of Multiple Superimposed Oscillator tasks. Furthermore, our investigation provides useful insights to open a discussion on the main aspects that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian Workshop on Neural Networks, WIRN 201

    Finding downbeats with a relaxation oscillator

    Get PDF
    Abstract.: A relaxation oscillator model of neural spiking dynamics is applied to the task of finding downbeats in rhythmical patterns. The importance of downbeat discovery or 'beat induction' is discussed, and the relaxation oscillator model is compared to other oscillator models. In a set of computer simulations the model is tested on 35 rhythmical patterns. The model performs well, making good predictions in 34 of 35 cases. In an analysis we identify some shortcomings of the model and relate model behavior to dynamical properties of relaxation oscillator

    Pattern Formation in a Two-Dimensional Array of Oscillators with Phase-Shifted Coupling

    Full text link
    We investigate the dynamics of a two-dimensional array of oscillators with phase-shifted coupling. Each oscillator is allowed to interact with its neighbors within a finite radius. The system exhibits various patterns including squarelike pinwheels, (anti)spirals with phase-randomized cores, and antiferro patterns embedded in (anti)spirals. We consider the symmetry properties of the system to explain the observed behaviors, and estimate the wavelengths of the patterns by linear analysis. Finally, we point out the implications of our work for biological neural networks

    Oscillator neural network model with distributed native frequencies

    Full text link
    We study associative memory of an oscillator neural network with distributed native frequencies. The model is based on the use of the Hebb learning rule with random patterns (ξiμ=±1\xi_i^{\mu}=\pm 1), and the distribution function of native frequencies is assumed to be symmetric with respect to its average. Although the system with an extensive number of stored patterns is not allowed to get entirely synchronized, long time behaviors of the macroscopic order parameters describing partial synchronization phenomena can be obtained by discarding the contribution from the desynchronized part of the system. The oscillator network is shown to work as associative memory accompanied by synchronized oscillations. A phase diagram representing properties of memory retrieval is presented in terms of the parameters characterizing the native frequency distribution. Our analytical calculations based on the self-consistent signal-to-noise analysis are shown to be in excellent agreement with numerical simulations, confirming the validity of our theoretical treatment.Comment: 9 pages, revtex, 6 postscript figures, to be published in J. Phys.

    Analysis of Oscillator Neural Networks for Sparsely Coded Phase Patterns

    Full text link
    We study a simple extended model of oscillator neural networks capable of storing sparsely coded phase patterns, in which information is encoded both in the mean firing rate and in the timing of spikes. Applying the methods of statistical neurodynamics to our model, we theoretically investigate the model's associative memory capability by evaluating its maximum storage capacities and deriving its basins of attraction. It is shown that, as in the Hopfield model, the storage capacity diverges as the activity level decreases. We consider various practically and theoretically important cases. For example, it is revealed that a dynamically adjusted threshold mechanism enhances the retrieval ability of the associative memory. It is also found that, under suitable conditions, the network can recall patterns even in the case that patterns with different activity levels are stored at the same time. In addition, we examine the robustness with respect to damage of the synaptic connections. The validity of these theoretical results is confirmed by reasonable agreement with numerical simulations.Comment: 23 pages, 11 figure

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage
    corecore