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Abstract A relaxation oscillator model of neural spik-
ing dynamics is applied to the task of finding downbeats
in rhythmical patterns. The importance of downbeat
discovery or ‘beat induction’ is discussed, and the re-
laxation oscillator model is compared to other oscillator
models. In a set of computer simulations the model is
tested on 35 rhythmical patterns. The model performs
well, making good predictions in 34 of 35 cases. In an
analysis we identify some shortcomings of the model and
relate model behavior to dynamical properties of relax-
ation oscillators.

Introduction

The term beats refers to sounds that are perceived as
being equally spaced in time. Downbeats are particularly
salient beats that usually occur at a comfortable tapping
rate. When you tap your feet to the radio you are finding
downbeats, a skill called beat induction. Downbeats act
as a unifying force, lending music the feeling of move-
ment by allowing the listener to predict the onset of
important musical events. The process of beat induction
is influenced by many aspects of music including har-
mony, melody and rhythm (Cooper & Meyer, 1960;
Lerdahl & Jackendoff, 1983). Because interactions are
not always simple, it can be difficult to predict the
locations of downbeats. For example, in rock and roll
music, even though chord changes (harmonic compo-
nents) usually occur on the first note of a musical bar,
downbeats are often aligned with the second note due to
syncopated drumming style. Furthermore, although
beats are perceived as being equally-spaced in time,
perfect timing is rarely if ever found on the radio. Both

motor noise and deviations due to expressive timing are
found in performed music.
The task of beat induction can be simplified by con-

sidering only patterns of equal-amplitude beeps or
clicks. This removes the influence of melody and har-
mony (and in addition amplitude and timbre variations).
However, even in this simpler domain, two important
influences compete to decide downbeat location. First,
the grouping of events in the pattern is important. For
example, when three or more events are presented in
rapid succession, the first and last events are more per-
ceptually salient than those in the middle (Povel &
Okkerman, 1981). Second, the meter of the pattern is
important. Meter is the sense of strong and weak beats
that arises from interactions among hierarchical levels in
a pattern having nested periodic components. Such a
hierarchy is implied in Western music notation, where
different levels are indicated by kinds of notes (whole
notes, half notes, quarter notes, etc.) and where bars
establish measures of an equal number of beats. For an
overview see Handel (1989).
Although beat induction is relatively simple for peo-

ple to perform – most of us can tap our feet to a child’s
playground song – it is deceivingly difficult to model
computationally. We address this challenge by present-
ing a dynamical model of beat induction. Our model
uses a nonlinear oscillator characterized by alternating
slow and fast movement. This so-called relaxation
oscillator is used to model a range of biological oscilla-
tory processes, including neural spiking (Hodgkin &
Huxley, 1952) and heartbeat pacemaking (Van der Pol &
Van der Mark, 1928). Here we motivate the use of
relaxation oscillators in the domain of beat induction
and compare our approach to other oscillator ap-
proaches. After describing our model in some detail we
show, through a series of simulations, that a relaxation
oscillator can perform beat induction in a way that (to
an extent at least) mirrors human performance. In an-
alyzing the simulation results we identify some short-
comings of the model and relate model behavior to some
relevant dynamical properties of relaxation oscillators.
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Oscillators and beat induction

Oscillators have been applied to beat induction and
similar rhythm cognition tasks for at least 15 years.
Most have been limit cycle oscillators, meaning that
when perturbed they quickly return to the same path or
cycle in phase space. This is advantageous because it
allows an oscillator to be perturbed by, for example, a
note onset in a rhythm without loss of stability: even
after withstanding a very strong perturbation the oscil-
lator is guaranteed to return to the limit cycle. If the
limit cycle is nonlinear, perturbations at some points in
the limit cycle will have more effect on the oscillator than
others. Using various strategies, this behavior can be
exploited so that perturbations to an oscillator cause it
to align itself with some periodic component. That is,
nonlinear response to perturbations can lead to an
oscillator naturally beating along with driving signals
having compatible frequencies.
Dannenberg (1984) used such an oscillator to find

downbeats in patterns and to track acceleration and
deceleration by modifying oscillator period based on
changes in pattern rate. Torras (1985) used firing
threshold adaptation in limit oscillators similar to those
used here; the task was to find temporal regularities in
simple rhythms. Miller, Scarborough, and Jones (1992)
used a coupled one-dimensional network of oscillators
(BEAT-NET) to resonate with rhythmical patterns.
There are also examples of models where nonlinear
oscillation is a component of a cognitive model of
rhythm, but is not a primary part of the system. For
example, Todd, O’Boyle, and Lee (1999) incorporate an
oscillator model of musculoskeletal movement in a sys-
tem that synchronizes body movements with temporal
regularities in an input signal.
Similar oscillator models by McAuley (McAuley,

1994) and Large (Large & Jones, 1999; Large & Kolen,
1994) are successful at finding downbeats in patterns
even when non-stationary noise (e.g., acceleration) is
present in the patterns. McAuley used the term adaptive
oscillator to describe a limit cycle oscillator that entrains
both its phase and its period to recurring events in a
temporal signal. The McAuley oscillator entrains to a
rhythmical pulse train by discretely resetting its phase to
zero when a pulse is sufficiently strong. This phase
resetting is governed by a cosine-shaped function that is
centered around the zero phase of the oscillator. By
tightening the shape of this function, the system has the
ability to focus on a particular periodic component of
the signal, ignoring all others. The McAuley adaptive
oscillator also attempts to match its period to periodic
components in the signal. This is achieved by a function
that slightly slows the oscillator when phase resetting
consistently occurs early, and slightly accelerates the
oscillator when phase resetting consistently occurs late.
Large and Kolen (1994) proposed a nonlinear limit

cycle oscillator that entrains its phase to a rhythmical
input by means of gradient descent. A smooth function

that crosses zero at phase zero is used to establish a
phase-based attractor. That function is minimized with
respect to the difference between oscillator phase and the
occurrence of input events, resulting in an oscillator that
continually aligns its zero phase with that of events in
the input. The Large oscillator has a second variable
that modifies the slope and width of the gradient descent
function such that the oscillator can sharpen its receptive
field, allowing it to lock onto specific periodic compo-
nents in the signal. Large and Kolen (1994) show that
such an oscillator can form the basis of small connec-
tionist networks that find salient events at multiple levels
of the metrical hierarchy.

Research goals

It is clear, even with this cursory sampling of models,
that many approaches to oscillator beat induction have
already been attempted. Why try another one? Our goal
is not to contribute to a ‘‘wild west’’ situation of diver-
gent models. Instead, we wish to start with a model
having some interesting dynamical properties and
understand the extent to which it can find downbeats in
patterns. In other words, we are not so much building
another oscillator beat tracker, as borrowing an oscil-
lator from neurobiology and applying it to the task.
Our motivation for choosing a relaxation oscillator

stems from research showing that relaxation oscillators
have better synchronization properties than similar sin-
gle-time-scale limit cycle oscillators. Namely, when large
numbers of relaxation oscillators are coupled together,
they readily synchronize their oscillation. Non-relax-
ation oscillators are much less able to achieve this group
synchrony. Somers and Kopell (1993, 1995) describe this
behavior in detail and offer a theory called Fast
Threshold Modulation (FTM) that attributes this
behavior to the modulation of firing thresholds in
response to input voltage. The authors show that
relaxation oscillators exhibit FTM but that non-relax-
ation oscillators in general do not, and they use this
point to argue for the superiority of relaxation oscilla-
tors in tasks requiring robust synchronization. The
details of their argument are not important for our
purposes, and readers are referred to the original sources
for an explanation. What is important is the observation
that relaxation oscillators are very good synchronizers.
This observation is important for two reasons. First,

synchrony is the means by which an oscillator finds
downbeats in a pattern. Thus, it is not unreasonable to
think that an oscillator with good general synchroniza-
tion dynamics may excel at this task. Second, although
only a single oscillator is examined in this study, one of
our goals is to use large networks of coupled oscillators
for storing and retrieving entire rhythmical patterns
(Eck, 1999, 2001). In this case, group synchrony among
many coupled oscillators is vital; without it, a network
would be unstable. In previous attempts at performing
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network learning (Gasser, Eck, & Port, 1999), we noted
that a single-variable limit cycle oscillator similar to
McAuley’s and Large’s oscillator worked well in small
ensembles, but that groups larger than four or five
oscillators did not work because the networks would not
synchronize and so became unstable. Thus, group syn-
chronization seems to be an important consideration
when scaling up to the many oscillators required for
network learning.
One component missing from this study is a compari-

son of several models on the same set of patterns.
Although this was our original goal, in the end we were
unable to achieve success with some other models. We do
not believe this shows our model to be superior. Rather,
we suspect that even by systematically trying different
parameter settings and input encodings, we did not arrive
at the right ones. As our model is very sensitive to certain
parameter values (input amplitude for example), we do
not consider this a criticism of the othermodels. Note that
we made every attempt to clearly define how we encoded
the input pattern set and how we measured performance
of our model. This makes it possible for other researchers
to run comparison simulations if they wish.

A relaxation oscillator model of beat induction

The Fitzhugh-Nagumo relaxation oscillator (Fitzhugh,
1961; Nagumo, Arimoto, & Yoshizawa, 1962) is a two-
variable model of neural action potential. It is a sim-
plification of a more complicated model by Hodgkin and
Huxley (1952). Under a wide range of parameter settings
the Fitzhugh-Nagumo oscillator exhibits the spiking
dynamics of a real neuron: it gradually accrues voltage
until it reaches a threshold; upon reaching that threshold
it fires and quickly releases the energy. With constant
and sufficient driving energy, this results in stable limit
cycle oscillation.
This behavior is achieved by coupling two equations

together, with one modeling slow uptake using a cubic
function and the other modeling fast release using a
linear function. The nullclines for these functions are
seen in Fig. 1 in the phase portrait on the left. These are
computed by setting dv=dt=0 (generating the voltage v
nullcline) and dw=dt=0 (generating the voltage recovery
w nullcline) in the equation for the Fitzhugh-Nagumo
oscillator:

dv
dt

¼ �v v� hð Þ v� 1ð Þ � x þ X

dw
dt

¼ e v� cxð Þ ð1Þ

The variable � is used to control the frequency of oscil-
lation and shape of waveform: a high value yields high-
frequency oscillation with a sinus-like waveform, while a
low value yields low-frequency relaxation oscillation.
The variable W represents driving energy. In the simple
case W is the small amount of constant external voltage

necessary for sustained oscillation. For our purposes we
add to this small amount of voltage a rhythmical input
pattern encoded as voltage spikes. The two remaining
parameters are fixed for all simulations. They include a
firing threshold parameter Q set to 0.2, and a shunting
parameter c set to 1.2.
So that we can easily test model behavior, we modi-

fied the Fitzhugh-Nagumo oscillator so that it generates
a discrete output event with every cycle. These output
events were only used to measure synchrony; they played
no role in simulation. As there is no predefined point in
the limit cycle to mark output, (i.e., no phase zero) we
had to choose one. The value where voltage is equal to
0.4 and rising was used because it lies between the
approximate voltage minimum of –0.2 and voltage
maximum of 1.0 of the oscillator limit cycle. It can be
seen on the right in Fig. 1 that this value did a good job
in marking the onset of a spike, although near values
would have worked as well.
To sum, we started with a relaxation oscillator model

of neural action potential having good synchronization
properties. We modified it so that we could drive the
oscillator with rhythmical patterns. Finally, we marked
a point in the limit cycle corresponding to neural firing
so that we could easily compute the alignment of an
oscillator with events in the input.

Simulations

To test the model we used a set of rhythms from
Experiment 1 of Povel and Essens (1985). These rhythms
are generated by permuting the interval sequence 1 1 1 1

1 2 2 3 and terminating it by the interval 4. These length-
16 patterns all contain nine notes and seven rests, and
are cycled for the oscillator. In Table 1 the patterns are
seen ordered by row. The numbers in the first column
correspond to difficulty rankings (from 1 to 7) based
upon a non-oscillator model of downbeat induction by
Povel and Essens from the same paper.

Method

Input patterns

The patterns in Table 1 were transformed for the oscillator by
generating a vector of zeros and inserting a 1 whenever a note onset
was to occur. So that the oscillator would run in low-frequency
relaxation mode, the base interval between notes was 125 time
steps. Thus, an x in Table 1 was transformed into a 1 followed by
124 zeros. A . was transformed into 125 zeros. The amplitude of the
signal was then modulated so that the input signal started relatively
low and increased evenly throughout the duration of the simula-
tion. This strategy of steadily increasing input amplitude kept the
oscillator from always preferring early notes in the sequence. Early-
note preference may seem like a weakness in our model, but in fact
listeners exhibit the same preference (Garner & Gottwald, 1968).

Two sets of simulations were performed based on input signal
strength. For the first set (low signal strength) the input pulse voltage
started at 0.0625 and increased linearly to a maximum 0.08
(mean = 0.07125).For the second set (high signal strength) the input
pulse voltage started at 0.0625 and increased to 0.09 (mean=0.0775).
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To look at sensitivity to noise in the input signals, two sets of
noisy signals were used in addition to the noise-free ones. Noise
was injected by adjusting the inter-onset interval (IOI) between
pulses. Noise was not injected into the amplitude of the input
signal, although this is an interesting avenue for further simula-
tions. For the low noise set, all IOIs were chosen uniform randomly
from the range –5% to +5% of the base IOI 125 (118.75 to
131.25). For the high noise set, the range was –10% to +10%
(112.5 to 137.5). Non-stationary transformations of the input such
as acceleration and deceleration were not tried, although these are
also of future interest.

Two variations in signal strength and three variations in noise
yielded six separate simulations sets. All simulations were run using
the ordinary differential equation (ODE) solver suite in Matlab 5.3.
Several ODE solvers were tested to ensure that computational er-
rors were not an issue.

Simulation details

Although the oscillator model is a deterministic one, it makes dif-
ferent predictions based on its initial conditions. For example, if the
initial location of an oscillator in phase space (i.e., initial v;wh i
setting) causes alignment with some recurring event in the signal,
the oscillator will phase lock with that event at the expense of
finding other recurring events. For this reason, the best way to
understand the model is to simulate many oscillators having dif-
ferent initial conditions.

For these experiments 20 oscillators were used. To vary per-
formance, starting locations were evenly distributed high on the
left-hand leg of the cubic voltage nullcline (found in the upper left-
hand quadrant of the phase diagram, left in Fig. 1). Because

movement down this nullcline is slow, the oscillators reached the
limit cycle and began oscillating at well-spaced intervals. All 20
oscillators were computed in parallel, but they were not coupled
and had absolutely no effect on one another.

The voltage-to-recovery coupling value (� in Equation 1) for all
oscillators was set such that the period of oscillation was four times
slower than the base IOI of the pattern (125). This yielded a group
of period 500 oscillators (�=0.0015). By setting the period of the
oscillators in this way, the task was simplified because the oscilla-
tors did not need to use period adaptation to find the eigenfre-
quencies in the pattern. However, this choice did not trivialize the
problem because the oscillator must still synchronize with the in-
put. That is, the oscillator must be stable enough to respond to
some notes in the input (those indicating the downbeat), while ig-
noring all others. Furthermore, we believe the issue of period ad-
aptation may perhaps be solved by a group of oscillators having a
range of intrinsic periods rather than by a single oscillator that
continually adapts its own period.

Measurement

Downbeat induction was measured using a binning method that
matched oscillator outputs to locations in the input pattern. After
allowing the system to run for eight pattern repetitions, oscillator
output for two following pattern repetitions were assigned a phase
relative to the input pattern. Since the oscillator was running four
times slower than the base input pattern IOI, there were four
possible phases, numbered 1 through 4 from the beginning of a
pattern (Table 1) in later analyses.

If for a particular oscillator the bins did not match for both
pattern repetitions, that oscillator made no downbeat prediction.
Thus, successful oscillators are those which always fired at the same
phase and so revealed stable periodic oscillation. Through a large
number of simulations, this method was shown to be an effective
measure of beat induction. Namely, using more than eight settling
repetitions did not yield a significant increase in success, while more
than two binning repetitions did not yield a significant increase in
failure.

Table 1 Thirty-five patterns from Povel and Essens (1985) ordered by row. In these patterns, an ‘‘x’’ indicates a note and a ‘‘.’’ indicates a
rest. The difficulty ratings in the left-hand column are from a non-oscillator model in the same paper and range from easy (1) to hard (7)

1 xxxxx..xx.x.x... xxx.x.xxx..xx... x.xxx.xxx..xx... x.x.xxxxx..xx... x..xx.x.xxxxx...
2 xxx.xxx.xx..x... x.xxxx.xx..xx... xx..xxxxx.x.x... xx..x.xxx.xxx... x.xxx.xxxx..x...
3 xxx.xx..xx.xx... xx.xxxx.x..xx... xx.xx.xxxx..x... xx..xx.xx.xxx... x..xxx.xxx.xx...
4 xx.xxxx.xx..x... xx.xxx.xxx..x... xx.xxx..xx.xx... xx..xx.xxxx.x... xx..xx.xxx.xx...
5 xxxxx.xx.x..x... xxxx.x..xxx.x... xxx..xx.xxx.x... x.xxx..x.xxxx... x.x..xxxx.xxx...
6 xxxx.x.x..xxx... xx.xxx.x..xxx... xx.x..xxx.xxx... x.xxxx.x..xxx... x..xxxxx.xx.x...
7 xxxx.xxx..x.x... xxxx..xx.xx.x... xx.xxxx..xx.x... xx.x..xxxxx.x... x.x..xxx.xxxx...

Fig. 1 The phase portrait (left) shows the limit cycle of the
oscillator as it follows the voltage nullcline. The rate of movement
is fast along the horizontal (voltage) axis and slow along the vertical
(recovery) axis. This slow-fast relaxation oscillation is also visible
in the time series (right) showing the oscillator voltage waveform.
Oscillator output events are marked with triangles in both diagrams
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Results

Due to space constraints, the simulation results are
summarized here. The full set of results are available at
www.idsia.ch/ � doug/publications.html. Audio exam-
ples are also found at the same site. Table 2 provides an
overall summary of the performance data from the
simulations.
Beat induction is a perceptual phenomenon that

changes with musical experience and pattern presenta-
tion rate (Duke, 1989; Parncutt, 1994; McAuley &
Semple, 1999). For this reason there is no single correct
downbeat assignment for a given pattern, and perfor-
mance is best measured by comparing model predictions
to a large set of human experimental beat assignments.
Unfortunately, to our knowledge, no such dataset exists.
Povel and Essens (1985) performed several experiments
using these patterns, but the experiments concern pat-
tern learning and recall, not downbeat assignment. For
this analysis we compared the oscillator downbeat
inductions to the predictions made by the Povel and
Essens’ (1985) P&E model (see Eck (in press) for our
treatment of the model). We chose this model because of
its success at predicting errors in learning and recall for
this pattern set.
With P&E downbeat predictions as our criterion for

success, we report that the Fitzhugh-Nagumo oscillator
makes correct downbeat predictions for 34 of 35 pat-
terns, a success rate of 97.1%. Pattern 28 was the only
total failure. In two of the five cases where there were
multiple correct downbeat assignments made by the
P&E model, the oscillator found both of them (patterns
23 and 33). In three cases (patterns 22, 25 and 29), the
oscillator model predicted two different downbeats,
while the P&E model predicted only one. Overall the
performance of the model was very good. However, a
caveat is in order: for some difficult patterns, a large
percentage of oscillators failed to settle into periodic
oscillation. We discarded those oscillators when making
downbeat predictions, in some cases choosing a down-
beat from a very small subset of the 20 oscillators.
Failure rate is discussed in more detail below. Readers
are referred to the full dataset on the website for more
details.
Two examples of the performance of the model are

shown in Fig. 2. The top graph shows the oscillators

tracking pattern 1. All 20 oscillators have settled on the
same solution of Phase 1. The bottom graph shows
pattern 23 where the oscillators have found two plausi-
ble downbeats at Phases 1 and 2.

Discussion

The effects of input signal noise

Injecting noise into signals caused general degradation
in performance but caused neither catastrophic failure
nor differential behavior. In our view, this shows that the
oscillator is robust to noise. For example, even with 20%
noise, the oscillator was able to find 29 of 35 downbeats
(82.9%) with low-amplitude input signals (see Table 2).
Recall that this noise was stationary. Non-stationary
transformations of the input such as acceleration and
deceleration were not investigated but would be good
candidates for future research.

The effects of input signal strength

Although noise did not pose a problem for the model,
variations in input strength did. In Table 2 it can be seen
that success rate drops significantly for the higher am-
plitude, especially with noise. By closely analyzing beat
assignments, it was discovered that the increase in input
strength causes the oscillator to show an over-sensitivity
to early events (i.e., the first event in a series of con-
nected events, as well as isolated events). In Fig. 3,
pattern 15 is used as an example to show this behavior.
With low signal strength (top) all oscillators predict a
Phase 1 downbeat, the correct prediction with respect to
the P&E model. With high signal strength (bottom),
however, 13 of 20 oscillators move to the incorrect Phase
4 solution, with only three oscillators settled on the
Phase 1. Note that in the high strength Phase 4 solution
the oscillator has aligned with three early events, while in
the low strength Phase 1 solution, there is alignment
with only one.
This sensitivity to early events can be explained in

terms of relaxation oscillator dynamics: when signal
strength is very strong, the first event in a series will
cause the oscillator to fire. During recovery, the oscil-
lator is unable to respond to subsequent (perhaps more
rhythmically important) events.

Oscillator failure as predictor of pattern complexity

As was already mentioned, those oscillators which did
not settle into periodic oscillation were treated as fail-
ures by the binning algorithm. The rate of failure was
not the same for all patterns. In fact, it varied consid-
erably. In Fig. 4, failure rate is used as a predictor of
relative pattern complexity, with a high rate of failure
indicating a more complex pattern to track. As can be

Table 2 Summary of simulation results. The values presented are
number and percent of successful downbeat predictions. Success
was measured by comparing oscillator predictions to predictions of
the Povel and Essens’ (1985) P&E model. The columns indicate
signal strength (low and high). The rows indicate noise amount
(none, 10%, 20%)

Simulation summary

Noise Low strength High strength

None 34 (97%) 28 (80%)
10% 32 (91%) 7 (20%)
20% 29 (83%) 8 (23%)
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seen, the failure rates for the oscillator model jump
considerably at Pattern 21. An analysis of pattern
structure reveals that this is the point in the pattern set
where rests become a necessary component in any
downbeat assignment. This is the case because for pat-
terns 1 through 20 at least one period-four downbeat

solution encounters only beats, while for patterns 21
through 35 no period-four downbeat solution encoun-
ters only beats. Recall that all patterns are terminated by
an interval 4 (a note followed by three rests). Thus, for
all patterns, three of four possible period-four downbeat
solutions will encounter a rest. The transition at pattern

Fig. 2 The time series of 20
oscillators tracking pattern 1
(top) and pattern 23 (bottom).
Eight pattern presentations are
shown. The input pattern
(inverted triangle) and oscillator
output (triangle) events can be
seen above the oscillator volt-
age waveforms. For pattern 1,
all oscillators settled on a single
downbeat assignment. For pat-
tern 23, two solutions were
found

Fig. 3 On the top is the pattern
15 presentation with low input
strength. Here, all oscillators
align with the predicted Phase 1
downbeat. On the bottom is the
pattern 15 presentation with
high input strength. Here, some
oscillators settle at Phase 4, a
solution not predicted by the
P&E model (Povel & Essens,
1985). The high input strength
causes the oscillators to be
overly sensitive to early events
in the input

23



21 occurs when a rest is introduced for the remaining
possible solution.
Along with oscillator failure rate, Fig. 4 also shows

two different sets of P&E complexity rankings. The set
that gradually stair-steps up from left to right (dia-
monds) places moderate importance on the presence of
rests. This ranking (P&E importance-of-rests parameter
W=4) provided a good match to subject ability to
memorize and recall the patterns (Povel & Essens, 1985).
The set that drastically increases in complexity at pattern
21 (Xs) is generated using an unrealistically high
(W=10) weighting of the importance of rests. Note that
our oscillator performance more closely matches this
complexity ranking. This is another way of showing that
the oscillator model is overly sensitive to rests in a pat-
tern.
This sensitivity can be explained in terms of relax-

ation oscillator dynamics. An incoming note (an input
voltage spike) perturbs the oscillator, often causing it to
fire. However, a rest has no perturbing energy and so is
unable to force firing to occur. For this reason, an
oscillator synchronized with a particular periodic com-
ponent in a pattern may fire slightly late upon encoun-
tering a rest and fall slightly behind. If an oscillator falls
far enough behind to fire in response to a subsequent
beat, catastrophic failure ensues: the oscillator is now
completely aligned with this new subsequent beat. This
is the case because a relaxation oscillator does not
gradually adjust its phase in response to input but in-
stead fires completely. This is, in part, the same behavior
that makes the oscillator good at synchronizing in
groups. However, in this case it leads to synchronization
behavior that is unfavorable for beat induction.

Future research

First, a good comparison of several oscillator models
needs to be undertaken. Although we remarked that
such a comparison was too difficult for this study, we
believe that with collaboration between researchers such
a survey is possible. Second, we are aware of no com-
prehensive set of listener downbeat assignments for the
Povel and Essens patterns or similar patterns. The col-
lection of such data would be of great value. Further-
more, we believe that if such a study is undertaken,
additional patterns should be included that explicitly test
the relative salience of early versus late beats (e.g., the
first in a series of three notes versus the last in the series).
Our model predicts that early events should be more
salient, a prediction we currently have not tested.
Recent experiments show that the observed over-

sensitivity to rests is less severe in coupled networks of
relaxation oscillators. These early results suggest that
oscillator-to-oscillator coupling makes the network
more stable and able to ‘keep the beat’ even in the
presence of rests (see Eck, 2001 for these results). We
believe more research is necessary in this direction.
Finally, the current study has been concerned only

with synchronization. It ignores ‘continuation phase’
behavior; that is, the behavior of the beat induction
mechanism when the input pattern is removed. In fact, it
could be said that the oscillator is only ‘following’ be-
cause it never generates predictions in the absence of an
input signal but rather only responds to it. We believe
that the oscillator is doing a very special kind of fol-
lowing by synchronizing with downbeats, while ignoring
less salient events in the signal. However, we agree that
this question of relaxation oscillator behavior in con-
tinuation deserves attention.

Conclusions

This study, we believe, establishes a relaxation oscilla-
tor as a good candidate for beat induction. It is able to
find downbeats in a number of patterns, many of them
reasonably complicated. In this way we have shown
that a relaxation oscillator is able to focus on a single
periodic component in a complicated pattern (the
downbeat), while ignoring all others. Many previous
oscillator approaches have required special input fil-
tering functions to achieve the same success. Although
more research is clearly needed, we believe that the
current study has successfully extended the findings on
robust relaxation oscillator synchrony (Somers &
Kopell, 1995) into the domain of rhythmical beat in-
duction.

Acknowledgements Thanks to Nancy Kopell, David Somers and
Art Winfree for insights on oscillator theory. Thanks to anony-
mous reviewers for many helpful suggestions. This research was
supported by SNF project 21-49144.96.

Fig. 4 The number of failed oscillators for each pattern is plotted,
along with normalized complexity predictions from the P&E
model. Two P&E weights (W) are shown. This weight adjusts the
relative importance of rests in ranking pattern complexity. The
performance of the oscillator model is more in accordance with
P&E when weightW is unrealistically high (W=10). This indicates
that the oscillator mechanism is over-sensitive to the presence of
rests, a weakness in the model
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