13,187 research outputs found

    Measurement of body temperature and heart rate for the development of healthcare system using IOT platform

    Get PDF
    Health can be define as a state of complete mental, physical and social well-being and not merely the absence of disease or infirmity according to the World Health Organization (WHO) [1]. Having a healthy body is the greatest blessing of life, hence healthcare is required to maintain or improve the health since the healthcare is the maintenance or improvement of health through the diagnosis, prevention, and treatment of injury, disease, illness, and other mental and physical impairments in human beings. The novel paradigm of Internet of Things (IoT) has the potential to transform modern healthcare and improve the well-being of entire society [2]. IoT is a concept aims to connec

    Building Combined Classifiers

    Get PDF
    This chapter covers different approaches that may be taken when building an ensemble method, through studying specific examples of each approach from research conducted by the authors. A method called Negative Correlation Learning illustrates a decision level combination approach with individual classifiers trained co-operatively. The Model level combination paradigm is illustrated via a tree combination method. Finally, another variant of the decision level paradigm, with individuals trained independently instead of co-operatively, is discussed as applied to churn prediction in the telecommunications industry

    Multi-label classification using ensembles of pruned sets

    Get PDF
    This paper presents a Pruned Sets method (PS) for multi-label classification. It is centred on the concept of treating sets of labels as single labels. This allows the classification process to inherently take into account correlations between labels. By pruning these sets, PS focuses only on the most important correlations, which reduces complexity and improves accuracy. By combining pruned sets in an ensemble scheme (EPS), new label sets can be formed to adapt to irregular or complex data. The results from experimental evaluation on a variety of multi-label datasets show that [E]PS can achieve better performance and train much faster than other multi-label methods

    A supervised clustering approach for fMRI-based inference of brain states

    Get PDF
    We propose a method that combines signals from many brain regions observed in functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus achieved by feature agglomeration, and the constructed features now provide a multi-scale representation of the signal. Comparisons with reference methods on both simulated and real data show that our approach yields higher prediction accuracy than standard voxel-based approaches. Moreover, the method infers an explicit weighting of the regions involved in the regression or classification task

    Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine or Not to Combine?

    Get PDF
    To combine or not to combine? Though not a question of the same gravity as the Shakespeare’s to be or not to be, it is examined in this paper in the context of a hybrid neuro-fuzzy pattern classifier design process. A general fuzzy min-max neural network with its basic learning procedure is used within six different algorithm independent learning schemes. Various versions of cross-validation, resampling techniques and data editing approaches, leading to a generation of a single classifier or a multiple classifier system, are scrutinised and compared. The classification performance on unseen data, commonly used as a criterion for comparing different competing designs, is augmented by further four criteria attempting to capture various additional characteristics of classifier generation schemes. These include: the ability to estimate the true classification error rate, the classifier transparency, the computational complexity of the learning scheme and the potential for adaptation to changing environments and new classes of data. One of the main questions examined is whether and when to use a single classifier or a combination of a number of component classifiers within a multiple classifier system

    Morphological feature extraction for statistical learning with applications to solar image data

    Get PDF
    Abstract: Many areas of science are generating large volumes of digital image data. In order to take full advantage of the high-resolution and high-cadence images modern technology is producing, methods to automatically process and analyze large batches of such images are needed. This involves reducing complex images to simple representations such as binary sketches or numerical summaries that capture embedded scientific information. Using techniques derived from mathematical morphology, we demonstrate how to reduce solar images into simple ‘sketch ’ representations and numerical summaries that can be used for statistical learning. We demonstrate our general techniques on two specific examples: classifying sunspot groups and recognizing coronal loop structures. Our methodology reproduces manual classifications at an overall rate of 90 % on a set of 119 magnetogram and white light images of sunspot groups. We also show that our methodology is competitive with other automated algorithms at producing coronal loop tracings and demonstrate robustness through noise simulations. 2013 Wile

    Random Forests for Big Data

    Get PDF
    Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to "divide-and-conquer" approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations

    Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability

    Get PDF
    In this paper a combination of neuro-fuzzy classifiers for improved classification performance and reliability is considered. A general fuzzy min-max (GFMM) classifier with agglomerative learning algorithm is used as a main building block. An alternative approach to combining individual classifier decisions involving the combination at the classifier model level is proposed. The resulting classifier complexity and transparency is comparable with classifiers generated during a single crossvalidation procedure while the improved classification performance and reduced variance is comparable to the ensemble of classifiers with combined (averaged/voted) decisions. We also illustrate how combining at the model level can be used for speeding up the training of GFMM classifiers for large data sets
    • 

    corecore