
Building Combined Classifiers

Mark Eastwood, Bogdan Gabrys

Computational Intelligence Research Group,
School of Design, Engineering and Computing,
Bournemouth University
Email: {meastwood,bgabrys}@bournemouth.ac.uk

Abstract. This chapter covers different approaches that may be taken when building an
ensemble method, through studying specific examples of each approach from research
conductded by the author. A method called Negative Correlation Learning illustrates a
decision level combination approach with individual calssifiers trained co-operatively. The
Model level combination paradigm is illustrated via a tree combination method. Finally,
another variant of the decision level paradigm, with individuals trained independently
instead of co-operatively, is discussed as applied to churn prediction in the
telecommunications industry.

Keywords. Ensemble Methods, Combining, Classification, Negative correlation learning,
churn prediction.

1 Introduction

Classifying and recognising patterns is an important part of many areas of human
endeavour, and our brains are excellently adapted to this task. However some such tasks,
particularly very repetitive ones, we would much rather automate. This is the problem
pattern recognition deals with. We can define a general pattern recognition problem as
follows.

Define an input space X and output space Y . The input space may be categorical or
continuous, and is the space of features that will be used to describe the objects of interest
for a given problem. The output space is categorical for a classification problem, and will be
a segment of the real line for a prediction problem. Objects are given as pairs),(YX
distributed according to some unknown distribution D over the space YX . We have a

sequence of observations),(ii YX from this distribution, and from these we wish to

construct a function YX :g which will predict Y from X. In building this function we

aim to achieve the lowest possible error on unseen examples (generalisation error). This is
usually done by choosing a model, from some class of models, which minimises the error on
a training set. To increase the chances of the chosen model generalising well, the class of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/75800?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

models should not be too large (there are various measures of the 'size' of a class of models
which will not be discussed here, but can be found in [1]). Some form of regularisation may
also be used, i.e a modification of the error to penalise some measure of model complexity.
A good introduction to statistical learning theory can also be found in [1]. There are many
ways to construct this function, each resulting in a slightly different mapping. Given these
many different functions that can be built, which one should be chosen for best
performance?

Rather than choosing just one, another option is to acknowledge that they may all provide
useful, complementary information. We may instead try to use them all, combining them in
some way (see [2, 3] for examples).

The combination of classifiers has been shown to be an effective way of reducing
generalisation error in both the classification [4] and prediction [5] domains. There are many
experimental examples illustrating this, though there is less often a solid theoretical
explanation of a methods success. Some methods with by now a fairly solid theoretical basis
are the very successful bagging [6], boosting [7] and random forests [8] (see these also for
experimental examples). However given a set of classifiers it is not clear how they should
best be combined, or what properties they must have to be combined effectively. Intuitively
we would expect the combined performance to depend on the accuracy of the individuals,
and the extent and nature of the differences between the predictions of the classifiers. For
anything more than ad-hoc ideas however, what is needed is a concrete theoretical
framework identifying the parameters of an ensemble which control performance, and
quantifying the dependence of the performance on these parameters. Understanding of how
well these parameters will generalise if we enforce them on a training set is also essential for
relating any theory to generalisation errors. Ideally we would like the framework to be so
well defined and reliable that we could encapsulate it in a computer program thus
automating the selection/combination/tuning procedure.

The goal of this work is to take a few more steps towards this ideal, along these lines:

 • Developing the framework to predict the ensemble parameters that will result
in a well-performing combined system. We will see later that the relevant

parameters are the individual error rates i , size of the ensemble N and some

parameter describing the correlations between or complementary nature of
individual error distributions.

 • Developing the algorithms which will create ensembles whose parameters
match those specified by the framework.

 • Combining these in a suitable manner.

There are a few differing approaches that can be taken with respect to the second of these
points. The ensemble can be generated by selecting from a large pool of classifiers which

were generated completely independently of each other, with differences induced in some
random manner. This will be referred to as the 'independent' ensemble generation paradigm.
We can find a complementary subset for combination via a search using some criterion. Or,
we can incrementally build an ensemble taking into account properties of the classifiers
already in the ensemble in order to directly generate complementary classifiers for
combination. This can be done either by training in parallel or sequentially, and will be
referred to as the 'co-operative' paradigm.

There are also two approaches to the third point. Combination of classifiers is usually
performed at the decision level; that is the decisions of each classifier in the ensemble are
obtained separately and independently, and then some function of the individual decisions is
calculated to give a final ensemble decision. A review of some of these methods can be
found in [2, 3]. These methods have the disadvantage of needing multiple (often many)
different models to be stored and evaluated to give a decision. This often results in greater
computational requirements and loss of interpretability (especially important in the business
environment).

Another possibility for combining multiple classifiers is model level combination (MLC).
The decisions of a classifier are calculated according to some model, and often the model
will have a structure such that parts of it can be removed, modified or aggregated. A good
example of this is a tree classifier. Pruning of a tree classifier involves the removal of a
subtree rooted at a certain node, or equivalently of aggregating the component nodes of that
subtree into one node with a single label. This opens up the possibility of combining parts of
a multitude of models into a single model. The hope is that by combining components from
a number of models into a single model of similar type, some of the benefits of combination
methods can be gained, while retaining most of the simplicity and interpretability of a single
model.

There has been much less work on model level combination, in comparison to decision
level combination. One of the reasons for this is that different classification methods usually
give models with differing internal structure, so while decision-level combination methods
can usually be used on any base classifier, model level methods are much harder to
generalize and will often only apply to one particular base method. What then is the
advantage of model level combination? The main advantage is the fact that a single
classifier is output at the end, with the advantages of smaller memory requirements and
faster implementation over calculating the decisions of a large ensemble of classifiers, with
subsequent combination. The decisions of a single classifier are also much more
understandable, an advantage especially in a business setting. Thus there has been a little
work in this area, which we will review below.

In [9] trees are converted into rulesets, and these rules are combined into a single ruleset
by merging similar rules, and resolving conflict between competing rules. Another method
that is worth mentioning which, while not a model level combination method, achieves a
similar goal (ie combining many models to give a single model of the same type) is [10].
Here a voted ensemble of trees classifies many synthetic examples and then a single tree is
trained on these synthetic examples. This has the advantage that it can also be used with any

base classifier, but has the disadvantage that many artificial points would need to be
generated to approximate well a given ensemble, especially in problems with high
dimensionality. This would have an impact on performance, possibly making such an
approach infeasible for some problems.

There are other model classes which are amenable to MLC schemes too, which we will
briefly mention below. A class of models, such as the parzen classifier, which approximates
the class posterior probabilities through the sum of a collection of functions could be
combined in an MLC scheme. In this case the individual components are functions defined
on the input space, often gaussians. Radial basis function networks also fall into this
category of model. It is also possible to combine kernels within Support Vector Machines,
as shown in [11, 12].

A similar representation, hyperbox fuzzy sets, also has potential for model level
combination. The individual components are hyperboxes, together with the membership
function describing how quickly membership drops off with distance from the hyperbox of
full membership. Hyperbox Fuzzy Sets have been combined at the model level [13], in a
way similar in some respects to the rule-combination method for decision trees described
above. Overlaps between hyperboxes are found and the conflict resolved by contracting one
of the boxes, and similar boxes may be aggregated.

Neural networks also hold some potential for model level combination. In this case the
individual components are the nodes of the network, and nodes can be added or removed, or
have their weights modified. In this case however it is difficult to localise the effects of a
given node to one area of the input space, and thus it is difficult to associate two nodes from
different networks in order to meaningfully combine them. However the possibility is still
worth considering. One piece of work which tries to do this is the method in [14], which
gets around the problem of associating nodes by training a single network partially, and then
building an ensemble using this as a base, with a small amount of additional training on
resampled data. The resulting networks are peturbations of the base network, and thus the
nodes can be expected to be still doing a similar job in each network allowing an averaging
of the weights to be performed to give a final combined network.

The goal of this chapter is to give an overview of the work done towards these goals
within the current project. This includes a neural network based method called Negative
corellation Lerning (Section 3), a model level combination technique for decision trees
(Section 4), and a fairly simple industrial application of a combination method to telecom
churn prediction (Section 5). The first of these, NCL, is an example of the the second 'co-
operative' approach to ensemble generation, i.e. the other members of the ensemble are
constantly taken into account during training of each network in order to directly generate a
complementary ensemble. The combination method used there is simple averaging, an
example of decision level combination. In last two the ensemble members are generated
independently of each other, the second illustrating the concept of MLC. The third is
another example of a decision level combination scheme, and also stands as an example of
the potential use in industry of ensemble methods, and pattern recognition in general. The
next section will give some very brief theoretical background which will be useful,

especially for our discussion of NCL in Sect. 3.

2 Some Theoretical background

There is still no theory which tells us how the ensemble error depends on the correlation
between the individuals for general loss functions. There has been much progress made in
the case of squared error, and much work has also been invested in the very important case
of zero-one loss (this is generally the loss function used in classification problems). The
problem in this case has turned out to be much harder however. Classification problems can
always be re-expressed as a regression problem, so we will take a look at the theoretical
error decompositions available for squared loss.

2.1 Bias-Variance Decomposition

Starting with a single predictor, we have the bias-variance decomposition [15]. Assume

our training data },{= ii YXT is sampled from an underlying distribution D . We want the

average error of our predictor, not an error for one particular sampling, so we consider the

expectation)(TE over all possible training sets T sampled from D .

22

22

2

2

))(())((=

)])())((2())(())([(=

))()((=

)(=)(

fEfEdfE

dfEfEfdfEfEfE

dfEfEfE

dfEE

TTT

TTTTT

TTT

TT









The first term is the bias, indicating the loss when using the expected value of f to

predict d . The second term is variance, and gives us the expected added loss of using one

particular f whose average squared deviation from)(fET is the variance. When we have

an ensemble of N predictors, f becomes ii

N

i
f 1=

, a weighted average of the outputs of

the predictors. For an unweighted average
Ni

1
= the expression reduces to:

covar
N

var
N

biasdf
N

E i
i







 
















  1
1

1
=

1 2
2

with

))((
1

= dfE
N

bias i
i



2))((
1

= ii
i

fEfE
N

var 

))}())(({(
1)(

1
= jjii

iji

fEffEfE
NN

covar 
 



Thus we have a decomposition which is dependent on the components of the individual
errors, and an interaction term (the covariance). The first term is the ensemble bias, the other
two terms together are the ensemble variance. If the predictions of all the ensemble
members are independent the interaction term is zero. In this case the variance component

of the ensemble error is reduced by a factor of
N

1
 compared to the average variance of the

individuals. For dependent (correlated) predictors the variance is reduced by a different
factor which has been shown [16] (assuming a common variance for all classifiers) to be:







 

N

N
EE add

ave
add

1)(1
=



Where  is the average correlation between predictions over all pairs of predictors. The
implication of this is that if we have predictors whose error is dominated by variance, then
by combining we can potentially gain large improvements over any one individual. Larger
improvements are gained for smaller  (lower correlations) and higher N . The difficulty

of course is the generation of uncorrelated predictors. We can attempt to generate N
uncorrelated predictors while maintaining individual accuracy, but this gets more difficult as
N increases. Some methods of trying to do this will be covered in later sections.

Unfortunately, in classification tasks decomposing the error is not so easy. Here the final
output of a classifier is one of a few discrete class labels. It is either the right label, or not.
There is no concept of `distance'. The labels could be numbers, but could just as easily be
strings or anything else, so it is not clear how to define bias and variance. Certainly the
standard definitions are of no use as they assume the space of possible output is closed
under addition/multiplication/division. This is not true for the classification case even if we

use numeric labels (which we can always do). In cases where the output label is based on
some continuously varying value with a specific target value, such as classifiers which
approximate the posterior probabilities of the classes, progress can be made. As Tumer and
Ghosh have shown [17], the squared error of the posterior estimates can be linearly related
to the squared error of the classifier decision boundary in approximating the true boundary.
This is done by assuming that the posterior probabilities are monotonic in the boundary
region, and that the approximated boundary is close to the true boundary. Under these
assumptions, the estimated posteriors at the point where they are equal (on the estimated
boundary) can be linearly expanded around the true boundary. This results in:

)()(

)()(
=

** xpxp

xx
b

ij

bjbi




where b is the distance between bx the estimated boundary, and *x the true boundary.

The denominator is a constant over different training sets and so does not need to be known.

In turn 2b can be shown to be directly proportional to the classification error rate. Thus the
framework described above can be used in this case as we have related the misclassification
rate to a squared error. Many classifiers (such as the decision tree classifier) cannot
approximate the posterior probabilities in this way. Definitions of bias and variance suitable
for use with general loss functions do exist, for example [18-20], but there are many
different definitions and it is not clear at the moment which, if any, would be of use in
guiding the building of a classifier ensemble.

2.2 The Ambiguity Decomposition

Another extremely important result due to Krogh and Vedelsby [21] for combining
predictors in the regression context is the ambiguity decomposition:

222)()(=)(ensii
i

ii
i

ens ffdfdf   

This gives us a direct decomposition of the ensemble error into the average of the
individual errors and a second term containing all interactions, called the ambiguity. It is
reached via similar manipulations to the bias-variance decomposition. Because the second
term is positive definite, in the case of regression problems we are guaranteed an
improvement over the average of the individual errors when combining. It also shows us
that, keeping the average error of the predictors in the ensemble constant, we can improve
ensemble error simply by increasing the second term, making our predictors spread as
widely about the ensemble mean as possible. The negative correlation learning (NCL)
method described in the next section is grounded in this decomposition of the error.

3 Decision level combination: Negative Correlation Learning

In the NC method [22], an ensemble of M MLP neural networks are trained in parallel
using back-propagation. The error function for each network, in addition to the usual

squared error term, contains a penalty term ip proportional to the correlation of the

network predictions with those of all the other networks, making the error for a network:

 )(
1

)()(
2

11
=

)(
1

=

1=

2

1=

1=

np
N

ndnf
N

nE
N

E

i

N

n
i

N

n

i

N

n
i






(1)

 where the sum is over the N training examples, if is an individual output, and d is the

target. For simplicity of notation we will consider the error function at just a single point
from now on, removing the necessity for the index n and the sum over points. The penalty
term is:

)()(= ffffp j
ij

ii  


(2)

 where f is the ensemble output. This measures and penalises correlations between

predictors. In fact, if as in [23] we use the fact that the sum of a set of values around their

mean is zero, 0=)(ffii
 , we can write:

2)(=)]()[(= ffffffp iiii  (3)

 which is the ambiguity [21] of the predictor, making the error function

.)()(
2

1
= 22 ffdfE iii   (4)

 From the expression for the ambiguity decomposition of the ensemble error with equal
weights, we have:





   222)(

2

1
)(

2

11
=)(

2

1
ffdf

M
df ii

i

(5)

 so we can see that if we set
2

1
= in ((4)) then the error function we are using to train

each network is actually its contribution to the ensemble error as given in the ambiguity
decomposition. This is the theoretical grounding of the method; it works because it takes the
whole of the contribution of the network to the ensemble error into account, not just the
component due to the individual error but that due to the correlations also. It allows us to
adjust the relative importance of the two terms, though we will argue later that this freedom
should not be exercised as the form of the ambiguity decomposition decides the optimal
choice of lambda.

NC has been quite successful in both regression and classification problems [22, 24], and
is an attractive method due to its explicit link with the ambiguity decomposition. The
success of NC has led to the proposal of some variations of the method using different
penalty terms in ((1)). One method in particular, called root quartic negative correlation
learning [24], has been shown capable of outperforming NC on some problems. The penalty

term in this method is 4

1=
)(

1
= ji

M

ji ff
M

p  , however the choice of penalty term

has little grounding in theory at the moment, and its success is not well understood.
An elaboration of NC in [25], called constructive neural network ensembles (CNNE)

extends the NC framework to allow the number of hidden nodes in each network to be
determined by the algorithm. Differing numbers of training epochs may also be used for
different networks.

These derivative methods are valuable contributions, however some aspects of the
behaviour of the original NC algorithm have not been well understood, particularly the
behaviour as  is varied. This has made it difficult to know without exhaustively trying

many different settings what a good setting of  is likely to be for a particular problem.
When building an NC ensemble, an important choice for good performance is the setting

of  . As we can see from ((4)) a larger (smaller) value of  corresponds respectively to a
greater or lesser emphasis of the ambiguity term resulting in a larger (smaller) emphasis on
the spread of the predictions compared to individual accuracy. A greater understanding of
the behaviour of NC is needed in order to guide the choice of  , which we will look at in
the next section.

3.1 Setting the  Parameter

An initial contemplation of the expression for the error in ((4)), may suggest that a natural

choice of  would be
2

1
. With this choice, the sum of the error functions of the individuals

is the error of the ensemble as a whole, expressed in its ambiguity decomposition:

i
i

ii
i

ens

E
M

ffdf
M

dfE

 



 



1
=)(

2

1
)(

2

11
=

)(
2

1
=

22

2

 and the individual error functions are simply the contribution of each member to the
ensemble error. This turns out not to be the case, but we will come back to this thought later.
If we seek to minimise these error functions by gradient descent, it is the gradient of the
error function and not its actual value that is important as it is this that informs the
algorithm. This was noted in Liu's paper [22], where for 1= it was shown that

i

ens

i

i

f

E

f

E








, i.e the gradient of an individuals error function w.r.t if is proportional to

the gradient of the ensemble error w.r.t if . The calculation leading to this however relies on

an incorrect assumption, as pointed out in [23]. The original calculation assumed that the

ensemble output i

M

i
f

M
f  1=

1
= was constant w.r.t any single individual output if ,

which is not true and in the context used could not even be assumed for large M . Taking
this correction into account, the calculation proceeds as follows. Starting from the individual
error,

).(
1

12)(=

)(12)(=

)()(
2

1
= 22

ff
M

df

ff
f

f
df

f

E

ffdfE

ii

i
i

i
i

i

iii







 
























 To gain a better understanding of this, we will re-arrange the above to give

).(
1

121)(= ff
M

df
f

E
i

i

i 













 


  (6)

 From here on, we will write the expression in square brackets as

.
1

121= 













 

M
 When performing gradient descent, the first term causes an

individual output to move to reduce the ensemble error (regardless of the direction of the
individual error), and the second term acts to move the individual output away or towards
the ensemble mean depending on the sign of  . We will look at the effects of this in more
detail later.

We also have)(
1

= df
Mf

E

i

ens 



, so we see from ((6)) that in order to achieve

i

ens

i

i

f

E

f

E








 we have to choose  such that 0.= This leads to a choice

.
1

1
2

1
=

1
*









 

M
 (7)

 With this setting, by performing gradient descent on the individual error functions, we
perform gradient descent on the ensemble error, which is a highly desirable situation. At

each iteration we are updating the if to decrease the ensemble error ensE even if individual

accuracy may suffer. It is the ensemble error that is the important quantity, so it is clear that
this is a situation we should aim for. For any other choice of  we are not minimising the

ensemble error. Finally, we note that as M ,
2

1*  , the value our initial intuition

would suggest from the form of the ambiguity decomposition. For smaller M , the extra

multiplicative term reflects the fact that when adjusting if , f will also track the

adjustment to some extent. This provides an explanation of the empirical observation in [23]
that the optimal setting of  decays to 0.5 as we add more networks (note our  is
equivalent to  as used in their paper).

We will also show that the main effect of choosing *=  is to maximise the complexity
of the algorithm, and show empirically that as in all such cases the increased complexity is
only useful if the model underlying the data is complex too. Otherwise we simply get over-
fitting. We will therefore argue that  provides us with an easy way in which to vary the
complexity of the network without changing the architecture itself.

We can see this by looking at the effect of changing jf on the other error functions iE

for ji  . The error function for individual i is

22)()(
2

1
= ffdfE iii  

so we have







 




M
ffdf

f

E
ijiiji

j

i 1
)(2)(= 

where ij is the dirac delta function. For ji = we have

.
1

1)(2)(= 





 




M
ffdf

f

E
ii

i

i  (8)

we can just note (as in the previous section) that)(= df
f

E

i





 and choose *=  to

make
ii

i

f

E

f

E







= . We showed that * is the value giving maximum co-operation and

diversification between the individual networks. We can gain insight into what it is we are

actually doing in choosing *=  by realising that each jf is present in each error

function iE , so we should re-consider the way we are training the networks and consider

the effects of changing if on all the error functions when training. For ji  we have

)(
2

= ff
Mf

E
i

j

i 

 

(9)

 and so for
2

1
= we have from (8) and (9)

*=

=)(=
i

i

j

i

i f

E
df

f

E








as of course we must have because by the ambiguity decomposition when
2

1
= we

have ii
EE = . When we consider training in this alternate way, we see that choosing

2

1
= as our intuition would suggest is equivalent to choosing *=  with training

performed in the traditional way for NC. Thus choosing *=  in the individual error

functions is equivalent to including the information about the gradient w.r.t if of the error

functions jE for ji  into the single error function iE .

When this is done we are simply using the ensemble error E during training, treating the
ensemble as a single network as shown in Fig. 1 to be trained by back-propagation. The
other extreme, of 0= , corresponds to treating the ensemble as individual networks as
shown by the dotted lines in Fig. 1, each trained independently by back-propagation and
then combined. This latter case is equivalent to diversifying the individuals simply via
different weight initialisations. Thus we can see that  provides a convenient way of
adjusting the complexity of the network between these two extremes without the need for
changes in the architecture of the network.

Figure 1. An illustration of the architecture of an NC network.

The weights shown as
M

1
 are fixed. For 0= the networks are trained as individuals as

indicated by the dotted lines. For
*=  the network is trained as a whole.

Apart from this theoretically optimal setting (in terms of maximising complexity), we can
also try to set limits on the value a sensible choice of  would take. A negative value
would defeat the point of NC learning, and of an ensemble method in general as it would
encourage the individuals to be very similar, thus removing all advantage from combining.

We can also show, by looking at the dynamics of the if (i.e how they change over time)

during training, that *  is needed for stability of the algorithm. Further details, which
will not be covered here, can be found in [26]

As an illustration of this, we can look at some results from a well-known dataset from the
UCI database, the synthetic dataset. The results are shown in Fig. 2.

Figure 2. MSE and MCR on both training and testing sets as  increases on the synthetic dataset

The experimental setup was as follows. An ensemble of three MLP neural networks was
used, each with 5 hidden nodes with the tansig transfer function. Linear output nodes were
used, and the networks were trained for 5000 epochs at learning rate 0.05= . Weights

and biases are initialized via the Nguyen-Widrow algorithm. The targets are in one-of-k

form. * for this setup is 0.75. A decrease in the generalisation error can be seen up to * ,

with a large increace beyond that due to instability. The choice * is optimal in the sense
that for this value the individual networks will co-operate, and their outputs be de-
correlated, to the greatest extent compatible with stability. This co-operative adjustment of
the weights allows more complex functions to be fit, leading to improved performance if
greater complexity is needed (as in the example above) but also increasing the potential for
overfitting if it is not. In some sense the value of  acts to control the complexity of the

ensemble classifier. Thus our choice of * is not optimal in an absolute sense but must be

chosen in conjunction with a suitable number of hidden nodes and ensemble size.
This sort of combination method has the disadvantage that it is very hard to interpret the

resulting model. A single neural network is not easily interpretable; with multiple networks
(or other models more generally) combined at the decision level interpretability is
completely lost. The approach to building an ensemble method covered in the next section is
one possible way of returning interpretability into an ensemble method.

4 Model level combination: A tree pruning method

The model class we will look at as an illustration of a MLC method are decision trees, as
these have an easily decomposable substructure which can be decomposed in a variety of
ways. Firstly, a decision tree can always be viewed in terms of its terminal nodes, which
gives a decomposition into a number of labeled hyper-boxes. These can equivalently be
considered as rules. Secondly, subtrees rooted in given nodes can be considered as separate
entities, and can be pruned or grafted onto a similar node in another tree. A tree could also
be decomposed into a number of hyper-planes defining the decision surface. This is
illustrated in 2-D in fig. 3, where the leaves of the tree can be seen as distinct rectangles, or
alternately the lines along which splits have been made can be seen.

Figure 3. An illustration of the individual leaves into which a tree can be decomposed

The MLC scheme we will present here is an extension of bottom-up pruning which allows
the operation of grafting a subtree from one tree onto another tree, in addition to the usual
operations of pruning a subtree and leaving a subtree as is. The grafting operation will be
described in more detail below. Firstly the method will be described verbally, followed by
some psuedocode.

The first stage of the process involves initializing the N trees using any standard decision
tree induction method (We used the functions from prtools and from the matlab stats
toolbox). The trees can be diversified by any of the usual methods, such as resampling,
feature resampling, and use of different bases. As such it is an example of the independent
ensemble generation paradigm.

The nodes of the trees are converted to hyperboxes, and are ordered according to their
volume (an alternative is to order according to number of points contained within the

hyperbox). For each node  and each tree i , a node)(i is found such that it is the

smallest node in tree i which contains  . A node can be defined as containing another

node if the volume of the first node contains the entire volume of the second node, or if the
first node contains all the points of the second node.

Pruning/combination proceeds from the bottom up, in the heuristic sense of smallest to
largest hyperboxes, regardless of which tree they belong to, or what level in the tree they
are. At a node, there are three possible actions for the algorithm:

 • Prune the node to a leaf

 • Do nothing, and leave the subtree rooted at the node unchanged

• Replace the subtree rooted at that node with the subtree rooted at one of the nodes

)(i

The decision will be based on a pruning criterion which will be calculated for each. Any
pruning criterion which can be calculated for a subtree can be used, for example the
pessimistic pruning criterion [27]. The pessimistic pruning criterion penalises complexity of
a subtree in terms of the number of leaves in the subtree as follows:

let)()(
2

1
=)(*  ele  , and)(n be the number of points in node  , and calculate

the pruning criterion for the subtree rooted at  as follows (dropping the  's):

n

ene
ec

)(
=

**
* 


the pruning criterion for the leaf is:

leafec 
2

1
=

Other possibilies are, for example, the criterion defined in [28]. When considering a node
with a depth of d and which is the root of a subtree of size n , this criterion is a function of
the VC dimension of a subtree with size n , and the VC dimension of the set of paths to a

node of depth d . An error bound is also given for this criterion. The error of a subtree on a
test set, or any other criterion which can be used to rate the 'quality' of a subtree can also be
used. The pessimistic pruning criterion and testset pruning can both be used in our
implementation.

The output of the algorithm is a single tree, with the advantages of a single tree classifier -
small memory requirements, fast calculation of predictions, and understandable decisions.

4.1 Psuedocode

For N trees
Diversify {via bootstrap resampling, feature resampling, or differing bases};
Train tree;

end

concatenate nodes of trees;
fix child node indices;
order nodes by size;
fix child node indices;

for each tree i
for each node n in tree i

for each other tree j
find smallest node in j containing {in terms of points or
volume} node n (itself if i=j);

end
end

end

for each node (starting at smallest)
for each tree

extract subtree defined on node by tree;
calculate pruning criterion for subtree {pessimistic pruning criterion or

testset error};
end

calculate criterion for pruning node to leaf;

if min(criteria) is for leaf
prune to leaf;

elseif min(criteria) is subtree already rooted at node
leave unpruned;

else
replace subtree with winning subtree;

end
end

extract and return final tree;

4.2 Discussion

The performance of this method is very little better than a single tree pruned using the
same criterion, and certainly much less than decision level combination schemes using the
same base classifiers, such as boosting. However it serves as an interesting example of how
a number of models may be synthesized into a single model. Future attempts may provide
more of a performance boost. It may be that the performance of this method is limited by the
quality of the pruning criterion used. The extension to allow multiple trees to be used as the
base with which to build the final pruned tree allows a much more diverse range of trees to
be built, however the quality of tree that is actually built will depend heavily on the
suitability of the pruning criterion used. This criterion was taken from the single-tree
pruning literature, future work could be to use a different criterion more geared towards this
sort of model level combination scheme.

To illustrate the ideas presented so far and put them in a context of real-world pattern
recognition applications, the next section will give an example of an ensemble method
applied to a real industrial problem. The chosen problem domain is churn prediction, an
important problem in the telecommunications industry.

5 Pattern Recognition and Ensemble Methods in industry: Churn
Prediction

In the telecommunications industry, it has been estimated [29] that on average it can cost
between 5-8 times more to gain a new customer than it would to keep an existing customer
(for example by offering a small incentive). However this incentive is wasted if it is not
offered to someone who, in the near future, is likely to churn. The high churn rate prevalent
in this area means that fairly small improvements in the accuracy of churn prediction can
mean significant cost savings. Thus the problem of predicting customer churn is an
important one.

It is a very difficult problem, for a number of reasons. Firstly, people do not always make
decisions logically or motivated by any easily definable reason. It may simply be an
'impulse' decision to switch providers. Even those decisions motivated by an easily
understandable reason can be very difficult to predict, because people are individuals and
react to events in different ways. Secondly, we have only limited data, and many possible
reasons for churn will likely leave no imprint in this data, for example competitor's offers, or
changes in personal circumstances.

We can expect, however, that in some cases the reason for the decision to churn will leave
an imprint in the data prior to the event. This could be in the form of certain patterns of
complaints, or repairs, or other warning signs in the pattern of customer behaviour. In these
cases we may be able to model and therefore detect situations which will likely result in
churn.

Historical data concerning a customer can be considered as a sequence of events (such as
repairs, orders, complaints etc) each associated with some features describing that event. An

issue which has to be considered when building models for prediction based on historical
data is the concept of a relevance 'horizon'. How far back can one go before the historical
data becomes obsolete and irrelevant as regards to prediction? This is one question we will
attempt to address in this section.

One class of method that has seen wide use and success on sequential data are Hidden
Markov Models (HMMs) (see for example [30]). For a review of machine learning methods
for sequential data see [31]. This class of models will be described in more detail later. The
most basic form of HMM assumes each event in the sequence is described by discrete
features, and this type of model has been applied to the churn prediction problem in [32].
However many of the features describing the events (for example time periods) are more
naturally expressed as real numbers. They can of course be discretised, but at the cost of
losing some information.

A more sophisticated type of HMM model allows for continuous features via a mixture of
gaussians approach. This has the advantage of allowing us to retain and use all the
information available to us. The majority of this section will look at the application of this
sort of HMM to the problem of churn prediction. HMMs can be used to predict the future
state probabilities of the system, and can also be used to give probabilities of membership of
different classes of sequences. Information gained using HMMs in both of these ways can
be used to predict churn.

The focus of this section will be on a combination scheme that while simple provides a
significant performance boost. The main reason for using a combination method is to free
the resulting model from the details of any specific initialization, as performances can vary
quite widely over different initializations for the same model parameters. The combined
method should be a little more robust. In terms of the bias-variance decomposition described
in section 2 we aim to reduce the variance term using this scheme.

Hidden Markov Models (HMMs) are a form of finite state machine, i.e. the system is
assumed to be at any time in one of a finite number of distinct states, and the system may
undergo transitions between these states. A sequence of observations is produced over time,
and the distribution of these observations depends on the state the system was in at the time
the observation was made. They are highly suitable for problems in which the data is
essentially sequential in nature, and have been used widely in the areas of speech and
handwriting recognition, and in some areas of medical research [33, 34]. We will first
describe this class of models in an informal way, and give a more formal definition
afterwards. The simplest form of HMM assumes discrete outputs. For each event only
certain discrete outputs can be produced, with the probability of each output depending only
on the hidden state of the system. As the data we have consists of four continuous features
and one categorical feature, it is more naturally represented in a continuous space so a more
flexible model called Mixture of Gaussians HMM (or MGHMM) which allows for this is
more useful. The basic assumptions of the model are as follows:

 • At each time-step t of the sequence the system in question is in one of a

limited number of states },...,{ 1 Qt qqq  . It cannot be observed directly which

state the system is in.

 • The state the system is in at time t depends only on the state at time 1t .
There are extensions to the HMMs which allow dependence on the state at other
times too, but we will not consider these.

 • Observed are a time-ordered sequence of feature vectors tx , one for each

timestep.

 • The distribution of the values of the observed output features depends only
on the state of the system at that time.

Each state is associated with a mixture of M gaussians, and the feature vector output is
distributed over the continuous feature space according to the mixture of the state at that
time-step.

A little more formally, define Q states, and a matrix A of transition probabilities ija

giving the probability of a transition from state i to state j , with iaijj
 1= .

Each state has associated with it a mixture of M gaussians, of the same dimensionality

as the feature space. These gaussians have means and covariance matrices qm and qmΣ .

A mixture matrix B gives the probability qmb , with 1=qmm
b for all Qq 1,...,= ,

that given the system is in the thq state the observed feature vector will be generated from

the gaussian with parameters qm and qmΣ .

HMM's of this form will be generated from the customer data, trained iteratively via the
usual EM (expectation maximisation) algorithm [35]. In order to have a dataset suitable for
the application of this method, we have taken raw data about customer events and, for each
unique customer, have constructed a sequence of time-ordered events. Each event is
described by 5 features. One of these features is more naturally categorical; it denotes the
event as one of four different types one of these being churn. These categories have been
expressed numerically for use in the MGHMM, whereas the other features are naturally
real-valued.

When constructing these sequences for the churn prediction problem, we can take a
variety of approaches depending on how much historical information we include. One
intuitive way of doing it is to extract every subsequence (starting at t=1) of these sequences

of greater length than three events. So, for each sequence of events },...,{= 1 TssS , we

will extract the 2T sequences },...,{= 21 jj ssS for 21,...,= Tj . This form of

training data could be considered appropriate, because over a customers lifetime it would be
exactly these sequences that would become available. It is more likely, however, that only
the more recent events are really relevant in predicting future events. In order to discover the
timeframe over which it is best to take events when constructing a customer history, we
have constructed training sets in which only the most recent N events are considered, for

10:3=N . When necessary, a subscript will denote the lengths of sequences allowed, so

as an example anyTR or NTR for 10:3=N .

The models constructed and trained as described above are highly sensitive to the
initialization of the model. One way of reducing this dependency on a specific initialization
is to train a number of models using different initializations, and then combine their
predictions. We have done this in a relatively simple, rank based manner. For a given
individual set of models, after calculating for each sequence the probability of churn, the
sequences are ranked in order of descending probability. For each sequence, then, we have

the ranks Nrrr ,...,= 1 where N is the number of models to be combined. We define a

function to map this vector of values onto the real numbers, and rank them again according
to this new value. We tried a variety of simple functions, and settled on an inverse square

function
2

1
=

i
i r

s  though performance is not too sensitive to the form of this function so

long as it increaces sufficiently quickly for small ir .

We then take the top N sequences as our predictions. Here we have a trade-off to decide
between. A larger N means we detect more of the actual churn events, but at a higher error
rate. This trade-off is summed up in Fig. 4. For example, if we choose to take the top 0.4%
as churn predictions (the percentage of sequences which are churn in the training set), we
can expect a correct identification rate of just over 0.3. However if we choose to take the top
0.8% as predictions, we can expect to predict more churn events correctly (about 33% more)
but at the lower recognition rate of 0.2.

Figure 4. The top line shows the combined performance using training sequences of length 3.
Average performance of individual models plotted against percentage of sequences taken as

predictions, for training sequences of length 3,4,5, and 6 are the lower plots (from top to bottom line).

As can be seen in Fig. 4, the combination method improves performance quite
significantly. This serves to illustrate that even quite simple combination methods can
provide a large benefit in real world applications. The challenge is to find the best ways of
building these ensemble methods, and to find a theoretical framework to take some of the
guesswork out of which methods will work well, and which will not, for a given problem.
The length of sequence used in the histories can also be seen to have a large impact on
performance, with shorter sequences of only the most recent historical events resulting in
much better performance. This illustrates a point that while even simple combination
methods can provide quite large performance boosts, it is still extremely important to choose
the data correctly and represent it in the most suitable way.

6 Summary

In this chapter we have looked at some of the different approaches that can be taken when
building an ensemble method. Each approach has its own distinct advantages and
disadvantages. Decision level combination schemes are often independent of the model
class used in generating the individuals (good examples of this would be bagging [6] and
boosting [7]), or can be used to combine individuals of disparate model types [36]. However
the interpretability is lost in the number of different decisions which are combined, and the
fact that many individuals must be stored and must give a decision in order for the ensemble
decision to be reached can make these methods computationally expensive. Interpretability
is especially important in industrial applications as any business decisions must be justified
and explained. Model level combination provides a way to retain some interpretability by
combining a number of models into a single model of the same type. A single model has the
advantage that it can be much more easily interpreted, and is likely to need less
computational resources to store and run. However, the combination method is highly
dependent on the specific structure of the model class used, so combination methods of this
type are usually limited to a single model class that they were designed for.

In the final section we saw that even simple combination methods hold the potential to
increase performance significantly. We also saw that the traditionally important concept of
data representation is still highly relevant in the building of an ensemble method with both
individual and combined performances being increased significantly by the use of only the
most recent, relevant data.

References

1. Bousquet, O., S. Boucheron, and G. Lugosi, Introduction to Statistical Learning Theory,
in Advanced Lectures on Machine Learning, U.v.L. Bousquet O. and G. Rätsch, Editors.
2004, Springer: Heidelberg, Germany. p. 169-207.
2. Brown, G., et al., Diversity creation methods: A survey and categorisation. Journal of
Information Fusion, 2005. 6(1).
3. Kuncheva, L.I., Combining Pattern Classifiers: Methods and Algorithms. 2004: Wiley-
Interscience.
4. Opitz, D. and R. Maclin, Popular Ensemble Methods: An Empirical Study. Journal of
Artificial Intelligence Research, 1999. 11: p. 169-198.
5. Hansen, J.V., Combining Predictors: Comparison of Five Meta Machine Learning
Methods. Information Sciences, 1999. 119(1-2): p. 91-105.
6. Breiman, L., Bagging Predictors. Machine Learning, 1996. 24(2): p. 123-140.
7. Freund, Y. and R.E. Schapire. Experiments with a new boosting algorithm. in
Proceedings of the 13th International Conference on Machine Learning. 1996: Morgan
Kaufmann.
8. Breiman, L., Random Forests. Machine Learning, 2001. 45(1): p. 5-32.
9. Hall, M., Combining Particles and Waves for Fluid Animation. 1998. p. 73.

10. Domingos, P., Knowledge discovery via multiple models. 1998.
11. Gert Lanckriet, N.C., Peter Bartlett, Laurent El Ghaoui, Michael Jordan,, Learning the
Kernel Matrix with Semi-Definite Programming.
12. Lee, S.W., S. Verzakov, and R.P. Duin. Kernel Combination Versus Classifier
Combination. in Proc. 7th Int. WOrkshop, MCS 2007. 2007.
13. Gabrys, B., Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine
or not ot Combine? Fuzzy Sets and Systems, 2004. 147: p. 39-56.
14. Utans, J., Weight averaging for neural networks and local resampling schemes. 1996.
15. Geman, S., E. Bienenstock, and R. Doursat, Neural Networks and the Bias/Variance
Dilemma. Neural Computation, 1992. 4(1): p. 1-58.
16. Tumer, K. and J. Ghosh, Error Correlation and Error Reduction in Ensemble
Classifiers. Connection Science, 1996. 8(3-4): p. 385-403.
17. Tumer, K. and J. Ghosh, Analysis of decision boundaries in linearly combined neural
classifiers. Pattern Recognition, 1996. 29(2): p. 341-348.
18. Kohavi, R. and D.H. Wolpert. Bias Plus Variance Decomposition for Zero-One Loss
Functions. in Machine Learning: Proceedings of the Thirteenth International Conference.
1996: Morgan Kaufmann.
19. Breiman, L., Bias, Variance, and Arcing Classifiers. Breiman,L. (1996) Bias, Variance,
and Arcing Classifiers, Technical Report 460, Statistics Department, University of
California, 1996.
20. Domingos, P. A Unified Bias-Variance Decomposition and its Applications. in Proc.
17th International Conf. on Machine Learning. 2000: Morgan Kaufmann, San Francisco,
CA.
21. Krogh, A. and J. Vedelsby, Neural Network Ensembles, Cross Validation, and Active
Learning. NIPS, 1995. 7: p. 231-238.
22. Liu, Y. and X. Yao, Ensemble learning via negative correlation. Neural Networks,
1999. 12: p. 1399-1404.
23. Brown, G. and J.L. Wyatt. The Use of the Ambiguity Decomposition in Neural Network
Ensemble Learning Methods. in 20th International Conference on Machine Learning
(ICML'03). 2003. Washington DC, USA.
24. McKay, R. and H. Abbass. Analyzing Anticorrelation in Ensemble Learning. in
Proceedings of 2001 Conference on Artificial Neural Networks and Expert Systems. 2001.
Otago, New Zealand.
25. Islam, M.M., X. Yao, and K. Murase, A constructive algorithm for training cooperative
neural network ensembles. IEEE Transactions on Neural Networks, 2003. 14(4): p. 820-834.
26. Eastwood, M. and B. Gabrys, The Dynamics of Negative Correlation Learning. Journal
of VLSI Signal Processing, 2007. 49: p. 251-263.
27. Quinlan, J.R., Simplifying Decision Trees, in Knowledge Acquisition for Knowledge-
Based Systems, B. Gaines and J. Boose, Editors. 1988, Academic Press: London. p. 239-
252.
28. Kearns, M. and Y. Mansour. A fast, bottom-up decision tree pruning algorithm with
near-optimal generalization. in Proc. 15th International Conf. on Machine Learning. 1998:

Morgan Kaufmann, San Francisco, CA.
29. Yan, L., et al., Improving prediction of customer behaviour in non-stationary
environments. Proc. of Int. Joint Conf. on Neural Networks, 2001: p. 2258-2263.
30. Duda, R., P. Hart, and D. Stork, Pattern Classification. 2001: John Wiley and Sons.
31. Dietterich, T.G. Machine Learning for Sequential Data: A Review. in Proceedings of the
Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern
Recognition. 2002. London, UK: Springer-Verlag.
32. Ruta, D., D. Nauck, and B. Azvine. K Nearest Sequence Method and Its Application to
Churn Prediction. in IDEAL. 2006.
33. Jaakkola, T., M. Diekhans, and D. Haussler, A discriminative framework for detecting
remote protein homologies. 1998.
34. Tamura, M., et al., Adaptation of pitch and spectrum for HMM-based speech synthesis
using MLLR. 2001.
35. Bilmes, J., A Gentle Tutorial on the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models. 1997.
36. Ruta, D. and B. Gabrys, Classifier Selection for Majority Voting. Information Fusion,
2005. 6: p. 63-81.

