prexity

e component of the classification

ble classifiers can be high. It is

mall to medium sized data sets

to be the dominant component of

e clasmcatlon error. However, bagging has emerged as a
ery good method for reducing the variance and stabilising the

nstable classifiers[1].

As it was pointed out in [2], the improved performance of
nsemble classifiers comes at a cost of vastly increased
omplexity of the classifier system which may mean a large

emory requirement and computational time for achieving the
lassification results. The example used was that of an
nsemble of 200 decision trees achieving a perfect
performance on a letter recognition task but requiring 59

egabytes of storage. The second drawback highlighted was

at of losing the transparency of the decision making process
0 often highly appreciated in decision trees or rule based
lassifiers. While a single decision tree could be often

terpreted by human users, an ensemble of 200 voting
lecision trees would be much more difficult to understand.

This paper explores an dternative way of combining

ultiple versions of a GFMM classifier generated during
epeated 2-fold splitting of the training data which addresses

e above mentioned problems of the classifier ensemble.
Rather than combining the decisions of individual classifiers
ind using multiple copies of the GFMM classifier, a single
lassifier model is generated by aggregating the multiple

odels. In other words, the combination is carried out at the
lassifiers parameter level (i.e. combining hyperbox fuzzy
etsfrom different models) rather than at the decision level (i.e.
oting/averaging the decisions of individual classifiers) as is
ommonly done. In result the improved classification
verformance and stability of the ensemble is preserved while

e model transparency and complexity (i.e. a number of
yperbox fuzzy sets used in the GFMM classifier) is
omparableto anindividual classifier obtained fromasingle 2-
old cross-validation procedure.
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The remainder of this paper is organised asfollows. Section
Il will give an overview of the GFMM NN and the
agglomerative learning algorithm. In Section Il the
description of the proposed combination approach and rational
for using repeated 2-fold splitting instead of resampling with
replacement are given. This will be followed by experimental
results. And finally the conclusionswill be presentedin thelast
section.

Il. GFMM NEURAL NETWORK CLASSIFIER

The GFMM neural network for classification constitutes a
pattern recognition approach that is based on hyperbox fuzzy
sets. A hyperbox defines aregion of the n-dimensional pattern
space, and al patterns contained within the hyperbox have full
class membership. A hyperbox is completely defined by its
min-point and its max-point. The combination of the min-max
points and the hyperbox membership function defines a fuzzy
set. Learning in the GFMM neural network for classification
consists of creating and adjusting hyperboxes in pattern space.
For more details concerning an on-line training agorithm
please refer to [8] while the summary of one of the
agglomerative learning procedures described in [6] will follow
later in this section. Oncethe network istrained the input space
is covered with hyperbox fuzzy sets. Individual hyperboxes
representing the same class are aggregated to form a single
fuzzy set class. Hyperboxes belonging to the same class are
alowed to overlap while hyperboxes belonging to different
classes are not alowed to overlap therefore avoiding the
ambiguity of an input having full membership in more than
one class. The input to the GFMM can be itself a hyperbox
(thus representing features given in aform of upper and lower
limits) and is defined as follows:

X, = [X}, X}] o)

where X'h and Xﬁ are the lower and the upper limit vectors
for the h-th input pattern. Inputs are contained within the n-
dimensional unit cube I". When X'h:Xﬁ the input represents a
point in the pattern space.

The j-th hyperbox fuzzy set, Bj is defined as follows:

foral j=1,2,....m, where Vj = (vjl, Vj2: ...,vjn) isthemin
point for the j-th hyperbox, Wj = (le, (PR an) is the

max point for the j-th hyperbox, and the membership function
for the j-th hyperbox is:

by (Xp, Vj, W) = ir:nli"r;](min([l—f(xﬁi—\Ilvji,yi)], ©)
[1—f(Vji —Xpir Y1)

where:
1 if xy>1
f(x,y) =1 xy if 0sxy<1 - two parameter ramp
0 if xy<oO
threshold  function; vy = [y}, Y, ..., Y] - sengitivity

0-7803-7278-6/02/$10.00 ©2002 | EEE

parameters governing how fast the membership values
decrease; and 0 < bj(xh, Vj, WJ-) <1.

The hyperbox membership values for each of the p classes
are aggregated using the following formula:

m
C, = max bu 4
k j:]_ i ]k ( )

where U is the binary matrix with values Ui equal to 1 if the

j-th hyperbox fuzzy set is a part of the k-th class and 0
otherwise; bj = bj(Xh, Vj,Wj) and ¢, 0[O0, 1], k=1.p,
represent the degrees of membership of the input pattern in the
k-th class. A single winning class can be found by finding the
maximum value fromall c, .

A. Agglomerative learning

The agglomerative learning for GFMM [6] initializes the
min V and max W matrices to the values of the training set

patterns lower X! and upper XY limits respectively. The
hyperboxes are then aggregated sequentially (one pair at a
time) on the basis of the maximum similarity value calculated

using the following similarity measure sj, = g(Bj,Bh)
between B,, and Bj:
s (B}, B,)= min(min([1— (v, —w,;, v))], (5)
i=1.n
[1_f(Vji Wi ¥i)1))

This similarity measure finds the smallest “gap” between
By, and Bj and resulting clustering algorithm is similar to the

conventional single link algorithm [12]. Other similarity
measures defined for hyperbox fuzzy sets are discussed in [6].
The hyperboxes with highest similarity value are only
aggregated if:
a) newly formed hyperbox does not exceed the maximum
allowable hyperbox size 0<®©<1land/or the hyperboxes
similarity value is above certain minimum threshold value

0<s,ip<1l;and
b) the aggregation does not result in an overlap with any of
the hyperboxes representing other classes; and

c) the hyperboxes By, and Bj form a part of the same class.

The above described process is repeated until there are no
more hyperboxes that can be aggregated. For the formal
detailed description of this process please refer to [6].

After the training of the GFMM using the agglomerative
learning procedure, the training set is learned perfectly and in
order to avoid overfitting a hyperbox pruning procedure hasto
be applied. The pruning procedure employed in this paper is
based on removing from the fina classifier model al the
hyperbox fuzzy sets which misclassify more input patterns
from the validation set than they classify correctly. The
pruning of hyperbox fuzzy sets can be thought of as the
opposite to the commonly used early stopping criteria when
training artificial neural networks. In the early stopping
criteria, in order to avoid the overfitting of thetraining data, the
training is stopped when the error for the validation set starts
increasing. In contrast when pruning the hyperbox fuzzy sets,



the pruning is stopped when the error for the validation set
cannot be reduced by further removal of the hyperboxes.

I11.RESAMPLING AND CLASSIFIER COMBINATION
METHODS

We have used arepeated 2-fold splitting in our experiments
for two reasons. Firstly, there is no way to use any weighing
for the training data points in the current GFMM learning
algorithm. If multiple copies of the same training sample are
present they will be reduced to one sample by aggregating
them in thefirst steps of the agglomerative a gorithm. Since no
hyperbox cardinality information is used during the
classification process (unlike in the case of using GFMM for
coping with missing data described in [4]) there is no
advantage in using sampling with replacement. Secondly, we
have found through simulation studies that the best splitting of
the datafor GFMM isthe one which can provide as much data
as possible for both training and validation at the same time.

While in this paper we concentrate on combining classifiers
obtai ned through the use of resampling techniques, in previous
publications we have aso investigated the alternative use of
multiple 2-fold splitting and cross validation in the process of
model building and selection [5], [6].

A. Bagging of GFMM classifiers- combination at the decision
level

The first of the classifier combination methods is a typical
formulation of averaging the decisions of individual classifiers
trained for different splits:

L
*_ 1
i=1
where L is the number of classifiersin the ensemble and ¢, is

the average k-th class membership value for k=1..p. The
winning class can be found by finding the maximum value of

..
B. Combination at the classifier model level

As it was mentioned in the introduction while averaging
(bagging) can produce significantly improved performance,
the complexity of (6) due to the need for using L copies of a
classifier can be high. In an attempt to reduce the complexity
of the fina model while preserving good classification
performance characteristics we have investigated the
possibility of combining the models (i.e. hyperbox fuzzy sets)
of individual classifiers rather than their decisions.

While aggregating decision trees or neural network models
would be very difficult (e.g. how would one aggregate weights
from two different neural networks?) the combination of
hyperbox fuzzy setsistrivial and has already been used in the
agglomerative training algorithm in Section I1A. The basic
idea is to use the hyperbox fuzzy sets from all models to be
combined as inputs to the same training algorithm. The
possibility of reducing the complexity of the final model while
preserving the stability and improved performance of the
ensemble is based on the observation that many of the
hyperbox fuzzy sets from different component classifiers
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would be redundant and therefore can be agglomerated since
they cover the“trivial” areas of theinput space whilethe subtly
differing (complementary) hyperboxes covering the areas near
the class boundaries or overlapping regions can be added and
refined.

Among the hyperbox fuzzy sets coming from different
component classifier models there can be and practically
always will be overlapping hyperboxes belonging to different
classes. Since this type of overlapping hyperboxes can lead to
classification ambiguity thefirst step of combining the models
isto resolve al the undesired hyperbox overlaps. A hyperbox
contraction procedure used with the on-line version of the
GFMM learning algorithm [8] has been designed to do exactly
this and is based on finding the dimension with minimal
overlap along which the hyperboxes are contracted.

Once al the undesired overlaps have been resolved the
training algorithm from Section I1A can be applied. The main
purpose of this learning algorithm is the reduction
(agglomeration) of all redundant hyperbox fuzzy sets covering
roughly the same areas of the input space. Examples of
GFMM classifiers generated in this way follow.

IV.EXPERIMENTAL RESULTS

The experimental results described in this section illustrate
the properties and performance of the proposed classifier
combination methods when applied to five non-trivial datasets
representing different classification problems.

The first two 2 dimensional, synthetic data sets represent
cases of nonlinear classification problems with highly
overlapping classes and a number of data points which can be
classified as outliers or noisy samples. Using two dimensional
problems a so offer a chance of visually examining the created
class boundaries and illustrating the process of hyperbox
agglomeration. In addition these data sets have been used in a
number of studies with tests carried out for alarge number of
different classifiers and multiple classifier systems[9],[5],[6].

The other three data sets have been obtained from the
repository of machine learning databases (http://
www.ics.uci.edu/~mlearn/ML Repository.html) and concern
the problems of classifying iris plants (IRIS data set), three
types of wine (Wine data set) and multi-spectral remotely
sensed data of satellite images (Satlmage).

The sizes and splits for training and testing for al five data
setsare shown in Table 1.

TABLE 1: THE SIZES OF DATA SETSUSED IN THE EXPERIMENTS. THE IRIS
AND WINE DATA SETS TESTED WITHIN A 10-FOLD CROSS VALIDATION

SCHEME.
No. of data points
Data set No. (t)f I\Ilo. of :

Inputs | Classes | Tptq) Train Test
Normal mixtures A Z 1250 250 TO00
Cone-torus 2 3 800 400 400
IRIS 4 3 150 135 15
Wine 13 3 178 162 16
Satimage 36 6 6435 3219 3216

A. Classification of the 2-dimensional data sets

The first 2-dimensional problem was introduced by Ripley
[10]. The training data, shown in Fig. 1a, consists of 2 classes
with 125 points in each class. Each of the two classes has



bimodal distribution and the classes were chosen in such away
asto allow the best-possible error rate of about 8%. Thetesting
has been carried out on an independent testing set of 1000
samples drawn from the same distribution.

The second 2-dimensional data set, shown in Fig. 3a, has
been introduced by Kuncheva[9]and used throughout the text
of her book to illustrate the performance of various
classification techniques. The cone-torus training data set
consists of three classes with 400 data points generated from
three differently shaped distributions: a cone, half atorus, and
a normal distribution. The prior probabilities for the three
classes are 0.25, 0.25 and 0.5. The training data and a separate
testing set consisting of further 400 samples drawn from the
same distribution are available at http://www.bangor.ac.uk/
~mas00a/.

The graphical illustrations of the generated models
(hyperbox fuzzy sets) and obtained decision boundaries for
various options of generating individual and ensembles of
GFMM classifiers for the normal mixtures data set are shown
in Fig. 1 and Fig. 2. Aswe can see from theresultsin Table 2
the combining of multiple copies of GFMM classifier both at
the decision level and the model (hyperbox) level results in
greatly improved classification which is very close to the
optimal value of 8% and at the same time the error variance is
significantly reduced in comparison to the single cross-
validation approach. The advantage of combing hyperboxes
rather than decisions is that the model complexity is
significantly reduced (on average 16 hyperboxes in
comparison to 270 for 40 combined classifiers).

While results for the cone-torus data set presented in Fig. 3
and Table 3 have not shown as spectacul ar improvement as for
the normal mixtures data set we can observe a reduction in
both the classification error and standard deviation when
compared to the models generated through a single cross-
validation approach or when no cross-validation is used. The
overall number of hyperboxesin the GFMM model generated
by combining at the model level is again significantly smaller
(42 in comparison to 684) than when combining at the decision
level.

TABLE 2: GFMM CLASSIFICATION RESULTS FOR THE NORMAL MIXTURES

DATA SET.
Average |Training set error | Testing set error
Classifier No. of no. of rate [%] rate]%o]
generation | combined|hyperboxes
procedure |classifiers|inthefinal | Mean | Standard | Mean | Standard
model error | deviation| error |deviation
No validation, T 37 0 - 2T -
training on the
full data set
2-fold crossval- 1 6.78 1348 | 154 9.64 1.03
idation
Combination at 40 270.25 13.2 0.57 8.55 0.25
the decision
level
Combination at 40 15.75 9.8 148 8.15 0.24
the model level

B. Classification of IRIS and Wine data sets

While the two datasets discussed in the previous section had
their dedicated separate testing sets, in most cases of rea
datasets there is alimited amount of data samples which have
to be used both for model generation and estimation of thefinal
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Figure 1: Normal mixtures data classification using GFMM classifier. a) The
training data, decision boundary and hyperboxes created during a single 2-
fold cross-validation; b) the decision boundary and contour plot for
¢, =20.97 , theresult of “bagging” of 40 copies of the GFMM classifier using
equation (6).

TABLE 3: GFMM CLASSIFICATION RESULTS FOR THE CONE-TORUS DATA
SET.

Average |Training set error | Testing set error
Classifier No. of no. of rate [%0] rate[ %)
generation  |combined |hyperboxes
procedure |classifiers|inthefinal | Mean | Standard | Mean | Standard
model error |deviation| error |deviation
No validation, 1 55 [0) - 15
training on the
full data set
2-fold crossval- 1 1711 1254 1.69 1478 | 157
idation
Combination at 40 684.4 1219 0.97 1353 | 0.99
the decision
level
Combination at 40 42.23 6.75 035 [13.06| 095
the model level

classifier performance. Thereis usually a conflict between the
desire to use as much of the data for the model generation and
the ability to reliably assess the classifier performance. The
IRIS and Wine data sets fall into this category. In our
experiments we have used a stratified 10-fold cross-validation
for the testing error estimation. The reported testing error has
been an average of the 10 separate runs. The results for IRIS
and Wine data sets are shown in Table 4 and Table 5
respectively.

As we can see from the results for the IRIS datain Table 4
the performance of the classifiers generated during a 2-fold
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b) Normal mixtures data

L L L L L L L L L ,
0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 2: The results of combing 40 GFMM classifier models for the
normal mixtures data. a) 262 hyperboxes after the resolving of undesired
overlaps; b) the decision boundary and remaining 11 hyperboxes after
retraining using 262 hyperboxes from a) as inputs to the training algorithm
described in Section I1A.

single cross-validation procedure is quite stable and
combination either at the decision level or the model level does
not improve the classification performance. It is consistent
with a number of other studies of ensembles of classifiers
which usually report asmall increase in the classification error
when ensembles are applied to this data set. The fact that the
dataisrelatively simple and can be successfully covered by a
small number of hyperboxesisillustrated in Table 4 where not
only the number of hyperboxes when combining at the model
level is comparable with a single 2-fold cross validation
approach but it is even significantly reduced (6 in comparison
to 16).

a) cone torusdata st

b) Cone torus data set
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Figure 3: Cone-torus data classification using GFMM classifier. a) The
training data, decision boundary and hyperboxes created during a single 2-
fold cross-validation; b) the decision boundary and hyperboxes resulting
from combining 40 copies of the GFMM classifier at the model level.

While the results for IRIS data set demonstrate that
combining is not always beneficial, the results for Wine data
set shown in Table 5 illustrate that the combination at the
model level can also result in an increased variance. It has to
be said that while the variance is increased there is aso the
largest improvement in the classification performance for the
GFMM classifiers combined at the model level. The
combination at the decision level also resulted in a significant
improvement of the classification performance in comparison
to models generated through a single 2-fold cross-validation
procedure.

TABLE 5: GFMM CLASSIFICATION RESULTS FOR THE WINE DATA SET.

Average |Training set error | Testing set error
TABLE 4: GFMM CLASSIFICATION RESULTS FOR THE |RIS DATA SET. Classifier No. of no. 80? ratg (%] ra?e[%]
— - generation  |combined|hyperboxes|
. Average |Training set error | Testing set error procedure |classifiers|inthefinal | Mean | Standard | Mean | Standard
Classifier No. of no. of rate [%0] rate]%o] model error |deviation| error |deviation
eneration | combined|hyperboxes|
%rocedure classifiers ir¥‘t)hefinal Mean | Standard | Mean | Standard NO validation, 1 16 0 - 938 -
model error |deviation| error |deviation training on the
full data set
{\r‘;r‘]’iﬂédg]'ct’ﬁé 1 22 v - aer - 2-foldcrossval-| 1 982 | 641 | 034 |828| 065
full data set I(?(?Inlﬁct)J?nati onat 40 392.1 0.48 0.27 4.63 0.56
izdgzl gncrossval— il 61 | 221 | 005 | 36 | 021 the decision
level
%Ofgb' nationat | 40 6399 | 053 02 |387| 03 Combinationat | 40 26 029 | 021 | 375| 133
} he decision the model level
Combination at 40 5.6 12 0.8 333 0 L
the mode! level As one can aso see the number of hyperboxes in different
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model generation approaches follow a similar pattern for the
normal-mixtures, cone-torus and Wine data sets. The number
of hyperboxes when trained on afull training data set without
validationislarger than for 2-fold crossvalidation signifying a
potential overfitting of the training set. On the other hand the
number of hyperboxes in the final classifier model when
combining at the model level isalso larger than for asingle 2-
fold cross-vaidation but the classification performance is
improved. It seems that the additional hyperbox fuzzy setsin
this case do not contribute to overfitting of the training data but
exploit various combinations of the training samples in the
areas around the class boundaries or overlapping regions.

C. Acceleration of learning for large data sets by combining at
the model level.

Asexplained in the introduction the main motivation behind
combining at the model level was the high model complexity
and loss of transparency of the classifier ensembles.

A dlightly different example concerning an acceleration of
learning for alarge data set by combination at the model level
is now illustrated on the basis of the Satimage data set. This
data set is 36 dimensional with 6435 samples representing 6
classes. We have split the data set into 3219 training samples
and 3216 testing samples. The training set has been further
split into 10 stratified sets. To speed up learning only 1 out of
10 sets has been used for training while the remaining 9 are
used for validation. This process has been repeated 10 timesin
order to use al the training data in generating classifier
models. The comparative results are shown in Table 6.

TABLE 6: CLASSIFICATION RESULTS FOR SATIMAGE DATA SET.

Classifier generation procedure l\éloégf?;sse hygle?bg;s er-lr-gftlrgiges[%;;]
Trained on the full training set T 566 1324
Trained on 1/10 of the training set 1 110 20.06
Combined at the decision level 10 1105 19.02
Combined at the model level 10 345 13.49

As one would expect the performance of an individual
GFMM classifier trained on a tenth of the training set is
significantly worse than the GFMM classifier trained on the
full data set. As we can see combining at the model level
results in much better performance than combining at the
decision level or by using individual component classifiers
trained on only atenth part of the available training set. It is
clear that the 1/10th of the training data does not capture the
principal properties of the data. That is why an ensemble of
GFMM networks (trained on different 1/10ths of the training
data) combined at the decision level performs almost as badly
asasingle model trained on 1/10th of the training data. On the
other hand, by their nature GFMM networks (trained on
different 1/10ths of the training data) combined at the model
level form a single GFMM network that represents aspects of
the whole data set.

This is why the GFMM networks combined at the model
level in this case perform as well as a single GFMM network
trained on the wholetraining set. What is especially interesting
from our point of view isthe fact that while the performance of
such a classifier is comparable with a classifier trained on the
full training set, the training time even on a single computer is
significantly faster. It is even more interesting since it is
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directly amenable for theimplementation on parallel machines
which should result in even further training time reductions.

V. CONCLUSIONS

An dternative approach to combination of multiple copies
of the GFMM classifier has been presented. Rather than
combining decisions of individua base classifiers, their
models in the form of hyperbox fuzzy sets are combined. This
results in a classifier with significantly reduced model
complexity while preserving the improved classification
performance and/or reliability observed in ensembles of
classifiers. However it came at the price of increased training
time since an additional training cycle had to be carried out.
This involved the use of the hyperbox fuzzy sets from the
models generated during a multiple cross-validation as inputs
to the same learning agorithm which have been used to
generate individual GFMM models. One more interesting
property of combining at the model level, introduced in this
paper, is the potential for accelerating the training for large
data sets by using only mutually exclusive subsets of the
original data set to train individual classifiers to be combined
at the model level. Sincethetraining is carried out on mutually
exclusive subsets it can be easily implemented on paralel
computers.
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