
Abstract - In this paper a combination of neuro-fuzzy
classifiers for improved classification performance and reliability
is considered. A general fuzzy min-max (GFMM) classifier with
agglomerative learning algorithm is used as a main building
block. An alternative approach to combining individual classifier
decisions involving the combination at the classifier model level is
proposed. The resulting classifier complexity and transparency is
comparable with classifiers generated during a single cross-
validation procedure while the improved classification
performance and reduced variance is comparable to the ensemble
of classifiers with combined (averaged/voted) decisions. We also
illustrate how combining at the model level can be used for
speeding up the training of GFMM classifiers for large data sets.

I. INTRODUCTION

Combining classifiers, also known under many other names
like classifier fusion, classifier ensembles, mixtures of experts,
decision committees etc., has been shown to offer a significant
classification improvement for some non-trivial pattern
recognition problems [9]. It has also been shown that in order
to gain the highest improvement from combining component
classifiers the classifiers to be combined should be diverse and
as accurate as possible at the same time. The techniques for
combining classifiers range from simple aggregation or voting
to more complex combination techniques (i.e. fuzzy integrals,
Dempster-Shafer combination etc.) which can be trained in a
similar way to the base classifiers [11]. Another aspect of
combining classifiers is that some techniques are used for
combination of outputs from different classifiers (i.e k-nearest
neighbour, decision tree etc.) while others concentrate on
generation of multiple copies of the same classifier (i.e.
decision tree) through the use of resampling techniques. The
latter will be the subject of our analysis with the general fuzzy
min-max (GFMM) neural network, which can be viewed as a
mixture of hyperbox fuzzy sets, used as a base classifier [7].

Among the ensemble generation techniques based on
resampling methods the most popular and widely known are
bagging and boosting [1],[3]. Both techniques rely on selective
resampling of the training set in order to generate multiple
copies of the classifier by repeatedly applying the base
learning algorithm to different subsets of the original training
set. There have been a number of excellent comparison studies
of bagging, boosting and their variants illustrating their
effectiveness in improving the performance and reliability of a
derived classifier ensemble in comparison to individual
classifier components [3]. Bagging has been especially
effective when applied to the so called “unstable” learning
methods, examples of which are decision trees, rule learning
algorithms or neural networks. The GFMM classifier to be
used in this study is also an example of such an unstable

algorithm and, as will become apparent from its description,
has a lot in common with decision trees and rule based
classifiers.

Similarly to unpruned decision trees, rule based systems or
neural networks with sufficient number of hidden nodes,
GFMM belongs to a group of powerful classification methods
which can learn training data perfectly (i.e. with zero
resubstitution error rate). This leads to the problems of
overfitting and poor generalisation. There is therefore a need
for a mechanism controlling the complexity of the models and
ensuring good generalisation performance. This could be
achieved to a certain extent through pruning methods,
regularization approaches, or cross-validation when applied to
individual classifier models. Even with model complexity
control in place the variance component of the classification
error for such highly flexible classifiers can be high. It is
especially important for small to medium sized data sets
because the variance tends to be the dominant component of
the classification error. However, bagging has emerged as a
very good method for reducing the variance and stabilising the
unstable classifiers [1].

As it was pointed out in [2], the improved performance of
ensemble classifiers comes at a cost of vastly increased
complexity of the classifier system which may mean a large
memory requirement and computational time for achieving the
classification results. The example used was that of an
ensemble of 200 decision trees achieving a perfect
performance on a letter recognition task but requiring 59
megabytes of storage. The second drawback highlighted was
that of losing the transparency of the decision making process
so often highly appreciated in decision trees or rule based
classifiers. While a single decision tree could be often
interpreted by human users, an ensemble of 200 voting
decision trees would be much more difficult to understand.

This paper explores an alternative way of combining
multiple versions of a GFMM classifier generated during
repeated 2-fold splitting of the training data which addresses
the above mentioned problems of the classifier ensemble.
Rather than combining the decisions of individual classifiers
and using multiple copies of the GFMM classifier, a single
classifier model is generated by aggregating the multiple
models. In other words, the combination is carried out at the
classifiers’ parameter level (i.e. combining hyperbox fuzzy
sets from different models) rather than at the decision level (i.e.
voting/averaging the decisions of individual classifiers) as is
commonly done. In result the improved classification
performance and stability of the ensemble is preserved while
the model transparency and complexity (i.e. a number of
hyperbox fuzzy sets used in the GFMM classifier) is
comparable to an individual classifier obtained from a single 2-
fold cross-validation procedure.

Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability

Bogdan Gabrys
Applied Computational Intelligence Research Unit
Division of Computing and Information Systems

University of Paisley, High Street, Paisley PA1 2BE
Scotland, United Kingdom

E-mail: gabr-ci0@paisley.ac.uk

0-7803-7278-6/02/$10.00 ©2002 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/75766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The remainder of this paper is organised as follows. Section
II will give an overview of the GFMM NN and the
agglomerative learning algorithm. In Section III the
description of the proposed combination approach and rational
for using repeated 2-fold splitting instead of resampling with
replacement are given. This will be followed by experimental
results. And finally the conclusions will be presented in the last
section.

II. GFMM NEURAL NETWORK CLASSIFIER

The GFMM neural network for classification constitutes a
pattern recognition approach that is based on hyperbox fuzzy
sets. A hyperbox defines a region of the n-dimensional pattern
space, and all patterns contained within the hyperbox have full
class membership. A hyperbox is completely defined by its
min-point and its max-point. The combination of the min-max
points and the hyperbox membership function defines a fuzzy
set. Learning in the GFMM neural network for classification
consists of creating and adjusting hyperboxes in pattern space.
For more details concerning an on-line training algorithm
please refer to [8] while the summary of one of the
agglomerative learning procedures described in [6] will follow
later in this section. Once the network is trained the input space
is covered with hyperbox fuzzy sets. Individual hyperboxes
representing the same class are aggregated to form a single
fuzzy set class. Hyperboxes belonging to the same class are
allowed to overlap while hyperboxes belonging to different
classes are not allowed to overlap therefore avoiding the
ambiguity of an input having full membership in more than
one class. The input to the GFMM can be itself a hyperbox
(thus representing features given in a form of upper and lower
limits) and is defined as follows:

(1)

where and are the lower and the upper limit vectors
for the h-th input pattern. Inputs are contained within the n-

dimensional unit cube In. When = the input represents a
point in the pattern space.

The j-th hyperbox fuzzy set, is defined as follows:

(2)

for all j=1,2,...,m, where is the min

point for the j-th hyperbox, is the

max point for the j-th hyperbox, and the membership function
for the j-th hyperbox is:

(3)

where:

- two parameter ramp

threshold function; - sensitivity

parameters governing how fast the membership values
decrease; and .

The hyperbox membership values for each of the p classes
are aggregated using the following formula:

(4)

where U is the binary matrix with values equal to 1 if the

j-th hyperbox fuzzy set is a part of the k-th class and 0
otherwise; and , k=1..p,

represent the degrees of membership of the input pattern in the
k-th class. A single winning class can be found by finding the
maximum value from all .

A. Agglomerative learning

The agglomerative learning for GFMM [6] initializes the
min V and max W matrices to the values of the training set
patterns lower Xl and upper Xu limits respectively. The
hyperboxes are then aggregated sequentially (one pair at a
time) on the basis of the maximum similarity value calculated

using the following similarity measure

between and :

(5)

This similarity measure finds the smallest “gap” between
and and resulting clustering algorithm is similar to the

conventional single link algorithm [12]. Other similarity
measures defined for hyperbox fuzzy sets are discussed in [6].

The hyperboxes with highest similarity value are only
aggregated if:

a) newly formed hyperbox does not exceed the maximum
allowable hyperbox size and/or the hyperboxes
similarity value is above certain minimum threshold value

; and

b) the aggregation does not result in an overlap with any of
the hyperboxes representing other classes; and

c) the hyperboxes and form a part of the same class.

The above described process is repeated until there are no
more hyperboxes that can be aggregated. For the formal
detailed description of this process please refer to [6].

After the training of the GFMM using the agglomerative
learning procedure, the training set is learned perfectly and in
order to avoid overfitting a hyperbox pruning procedure has to
be applied. The pruning procedure employed in this paper is
based on removing from the final classifier model all the
hyperbox fuzzy sets which misclassify more input patterns
from the validation set than they classify correctly. The
pruning of hyperbox fuzzy sets can be thought of as the
opposite to the commonly used early stopping criteria when
training artificial neural networks. In the early stopping
criteria, in order to avoid the overfitting of the training data, the
training is stopped when the error for the validation set starts
increasing. In contrast when pruning the hyperbox fuzzy sets,
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the pruning is stopped when the error for the validation set
cannot be reduced by further removal of the hyperboxes.

III. RESAMPLING AND CLASSIFIER COMBINATION
METHODS

We have used a repeated 2-fold splitting in our experiments
for two reasons. Firstly, there is no way to use any weighing
for the training data points in the current GFMM learning
algorithm. If multiple copies of the same training sample are
present they will be reduced to one sample by aggregating
them in the first steps of the agglomerative algorithm. Since no
hyperbox cardinality information is used during the
classification process (unlike in the case of using GFMM for
coping with missing data described in [4]) there is no
advantage in using sampling with replacement. Secondly, we
have found through simulation studies that the best splitting of
the data for GFMM is the one which can provide as much data
as possible for both training and validation at the same time.

While in this paper we concentrate on combining classifiers
obtained through the use of resampling techniques, in previous
publications we have also investigated the alternative use of
multiple 2-fold splitting and cross validation in the process of
model building and selection [5], [6].

A. Bagging of GFMM classifiers - combination at the decision
level

The first of the classifier combination methods is a typical
formulation of averaging the decisions of individual classifiers
trained for different splits:

(6)

where L is the number of classifiers in the ensemble and is
the average k-th class membership value for k=1..p. The
winning class can be found by finding the maximum value of

.

B. Combination at the classifier model level

As it was mentioned in the introduction while averaging
(bagging) can produce significantly improved performance,
the complexity of (6) due to the need for using L copies of a
classifier can be high. In an attempt to reduce the complexity
of the final model while preserving good classification
performance characteristics we have investigated the
possibility of combining the models (i.e. hyperbox fuzzy sets)
of individual classifiers rather than their decisions.

While aggregating decision trees or neural network models
would be very difficult (e.g. how would one aggregate weights
from two different neural networks?) the combination of
hyperbox fuzzy sets is trivial and has already been used in the
agglomerative training algorithm in Section IIA. The basic
idea is to use the hyperbox fuzzy sets from all models to be
combined as inputs to the same training algorithm. The
possibility of reducing the complexity of the final model while
preserving the stability and improved performance of the
ensemble is based on the observation that many of the
hyperbox fuzzy sets from different component classifiers

would be redundant and therefore can be agglomerated since
they cover the “trivial” areas of the input space while the subtly
differing (complementary) hyperboxes covering the areas near
the class boundaries or overlapping regions can be added and
refined.

Among the hyperbox fuzzy sets coming from different
component classifier models there can be and practically
always will be overlapping hyperboxes belonging to different
classes. Since this type of overlapping hyperboxes can lead to
classification ambiguity the first step of combining the models
is to resolve all the undesired hyperbox overlaps. A hyperbox
contraction procedure used with the on-line version of the
GFMM learning algorithm [8] has been designed to do exactly
this and is based on finding the dimension with minimal
overlap along which the hyperboxes are contracted.

Once all the undesired overlaps have been resolved the
training algorithm from Section IIA can be applied. The main
purpose of this learning algorithm is the reduction
(agglomeration) of all redundant hyperbox fuzzy sets covering
roughly the same areas of the input space. Examples of
GFMM classifiers generated in this way follow.

IV. EXPERIMENTAL RESULTS

The experimental results described in this section illustrate
the properties and performance of the proposed classifier
combination methods when applied to five non-trivial data sets
representing different classification problems.

The first two 2 dimensional, synthetic data sets represent
cases of nonlinear classification problems with highly
overlapping classes and a number of data points which can be
classified as outliers or noisy samples. Using two dimensional
problems also offer a chance of visually examining the created
class boundaries and illustrating the process of hyperbox
agglomeration. In addition these data sets have been used in a
number of studies with tests carried out for a large number of
different classifiers and multiple classifier systems [9],[5],[6].

The other three data sets have been obtained from the
repository of machine learning databases (http://
www.ics.uci.edu/~mlearn/MLRepository.html) and concern
the problems of classifying iris plants (IRIS data set), three
types of wine (Wine data set) and multi-spectral remotely
sensed data of satellite images (SatImage).

The sizes and splits for training and testing for all five data
sets are shown in Table 1.

A. Classification of the 2-dimensional data sets

The first 2-dimensional problem was introduced by Ripley
[10]. The training data, shown in Fig. 1a, consists of 2 classes
with 125 points in each class. Each of the two classes has
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TABLE 1: THE SIZES OF DATA SETS USED IN THE EXPERIMENTS. THE IRIS
AND WINE DATA SETS TESTED WITHIN A 10-FOLD CROSS VALIDATION

SCHEME.

Data set No. of
inputs

No. of
classes

No. of data points

Total Train Test

Normal mixtures 2 2 1250 250 1000
Cone-torus 2 3 800 400 400
IRIS 4 3 150 135 15
Wine 13 3 178 162 16
SatImage 36 6 6435 3219 3216
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bimodal distribution and the classes were chosen in such a way
as to allow the best-possible error rate of about 8%. The testing
has been carried out on an independent testing set of 1000
samples drawn from the same distribution.

The second 2-dimensional data set, shown in Fig. 3a, has
been introduced by Kuncheva [9]and used throughout the text
of her book to illustrate the performance of various
classification techniques. The cone-torus training data set
consists of three classes with 400 data points generated from
three differently shaped distributions: a cone, half a torus, and
a normal distribution. The prior probabilities for the three
classes are 0.25, 0.25 and 0.5. The training data and a separate
testing set consisting of further 400 samples drawn from the
same distribution are available at http://www.bangor.ac.uk/
~mas00a/.

The graphical illustrations of the generated models
(hyperbox fuzzy sets) and obtained decision boundaries for
various options of generating individual and ensembles of
GFMM classifiers for the normal mixtures data set are shown
in Fig. 1 and Fig. 2. As we can see from the results in Table 2
the combining of multiple copies of GFMM classifier both at
the decision level and the model (hyperbox) level results in
greatly improved classification which is very close to the
optimal value of 8% and at the same time the error variance is
significantly reduced in comparison to the single cross-
validation approach. The advantage of combing hyperboxes
rather than decisions is that the model complexity is
significantly reduced (on average 16 hyperboxes in
comparison to 270 for 40 combined classifiers).

While results for the cone-torus data set presented in Fig. 3
and Table 3 have not shown as spectacular improvement as for
the normal mixtures data set we can observe a reduction in
both the classification error and standard deviation when
compared to the models generated through a single cross-
validation approach or when no cross-validation is used. The
overall number of hyperboxes in the GFMM model generated
by combining at the model level is again significantly smaller
(42 in comparison to 684) than when combining at the decision
level.

B. Classification of IRIS and Wine data sets

While the two datasets discussed in the previous section had
their dedicated separate testing sets, in most cases of real
datasets there is a limited amount of data samples which have
to be used both for model generation and estimation of the final

classifier performance. There is usually a conflict between the
desire to use as much of the data for the model generation and
the ability to reliably assess the classifier performance. The
IRIS and Wine data sets fall into this category. In our
experiments we have used a stratified 10-fold cross-validation
for the testing error estimation. The reported testing error has
been an average of the 10 separate runs. The results for IRIS
and Wine data sets are shown in Table 4 and Table 5
respectively.

As we can see from the results for the IRIS data in Table 4
the performance of the classifiers generated during a 2-fold

TABLE 2: GFMM CLASSIFICATION RESULTS FOR THE NORMAL MIXTURES
DATA SET.

Classifier
generation
procedure

No. of
combined
classifiers

Average
no. of

hyperboxes
in the final

model

Training set error
rate [%]

Testing set error
rate[%]

Mean
error

Standard
deviation

Mean
error

Standard
deviation

No validation,
training on the
full data set

1 37 0 - 12.1 -

2-fold cross val-
idation

1 6.78 13.48 1.54 9.64 1.03

Combination at
the decision
level

40 270.25 13.2 0.57 8.55 0.25

Combination at
the model level

40 15.75 9.8 1.48 8.15 0.24

TABLE 3: GFMM CLASSIFICATION RESULTS FOR THE CONE-TORUS DATA
SET.

Classifier
generation
procedure

No. of
combined
classifiers

Average
no. of

hyperboxes
in the final

model

Training set error
rate [%]

Testing set error
rate[%]

Mean
error

Standard
deviation

Mean
error

Standard
deviation

No validation,
training on the
full data set

1 55 0 - 15 -

2-fold cross val-
idation

1 17.11 12.54 1.69 14.78 1.57

Combination at
the decision
level

40 684.4 12.19 0.97 13.53 0.99

Combination at
the model level

40 42.23 6.75 0.35 13.06 0.95
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Figure 1: Normal mixtures data classification using GFMM classifier. a) The
training data, decision boundary and hyperboxes created during a single 2-
fold cross-validation; b) the decision boundary and contour plot for

, the result of “bagging” of 40 copies of the GFMM classifier using
equation (6).
ck
* 0.97≥

a)

b)
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single cross-validation procedure is quite stable and
combination either at the decision level or the model level does
not improve the classification performance. It is consistent
with a number of other studies of ensembles of classifiers
which usually report a small increase in the classification error
when ensembles are applied to this data set. The fact that the
data is relatively simple and can be successfully covered by a
small number of hyperboxes is illustrated in Table 4 where not
only the number of hyperboxes when combining at the model
level is comparable with a single 2-fold cross validation
approach but it is even significantly reduced (6 in comparison
to 16).

While the results for IRIS data set demonstrate that
combining is not always beneficial, the results for Wine data
set shown in Table 5 illustrate that the combination at the
model level can also result in an increased variance. It has to
be said that while the variance is increased there is also the
largest improvement in the classification performance for the
GFMM classifiers combined at the model level. The
combination at the decision level also resulted in a significant
improvement of the classification performance in comparison
to models generated through a single 2-fold cross-validation
procedure.

As one can also see the number of hyperboxes in different

TABLE 4: GFMM CLASSIFICATION RESULTS FOR THE IRIS DATA SET.

Classifier
generation
procedure

No. of
combined
classifiers

Average
no. of

hyperboxes
in the final

model

Training set error
rate [%]

Testing set error
rate[%]

Mean
error

Standard
deviation

Mean
error

Standard
deviation

No validation,
training on the
full data set

1 22 0 - 4.67 -

2-fold cross val-
idation

1 16.1 2.21 0.05 3.6 0.21

Combination at
the decision
level

40 639.9 0.53 0.2 3.87 0.3

Combination at
the model level

40 5.6 1.2 0.8 3.33 0
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Figure 2: The results of combing 40 GFMM classifier models for the
normal mixtures data. a) 262 hyperboxes after the resolving of undesired
overlaps; b) the decision boundary and remaining 11 hyperboxes after
retraining using 262 hyperboxes from a) as inputs to the training algorithm
described in Section IIA.

TABLE 5: GFMM CLASSIFICATION RESULTS FOR THE WINE DATA SET.

Classifier
generation
procedure

No. of
combined
classifiers

Average
no. of

hyperboxes
in the final

model

Training set error
rate [%]

Testing set error
rate[%]

Mean
error

Standard
deviation

Mean
error

Standard
deviation

No validation,
training on the
full data set

1 16 0 - 9.38 -

2-fold cross val-
idation

1 9.82 6.11 0.34 8.28 0.65

Combination at
the decision
level

40 392.1 0.48 0.27 4.63 0.56

Combination at
the model level

40 26 0.29 0.21 3.75 1.33
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Figure 3: Cone-torus data classification using GFMM classifier. a) The
training data, decision boundary and hyperboxes created during a single 2-
fold cross-validation; b) the decision boundary and hyperboxes resulting
from combining 40 copies of the GFMM classifier at the model level.

a)

b)
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model generation approaches follow a similar pattern for the
normal-mixtures, cone-torus and Wine data sets. The number
of hyperboxes when trained on a full training data set without
validation is larger than for 2-fold cross validation signifying a
potential overfitting of the training set. On the other hand the
number of hyperboxes in the final classifier model when
combining at the model level is also larger than for a single 2-
fold cross-validation but the classification performance is
improved. It seems that the additional hyperbox fuzzy sets in
this case do not contribute to overfitting of the training data but
exploit various combinations of the training samples in the
areas around the class boundaries or overlapping regions.

C. Acceleration of learning for large data sets by combining at
the model level.

As explained in the introduction the main motivation behind
combining at the model level was the high model complexity
and loss of transparency of the classifier ensembles.

A slightly different example concerning an acceleration of
learning for a large data set by combination at the model level
is now illustrated on the basis of the SatImage data set. This
data set is 36 dimensional with 6435 samples representing 6
classes. We have split the data set into 3219 training samples
and 3216 testing samples. The training set has been further
split into 10 stratified sets. To speed up learning only 1 out of
10 sets has been used for training while the remaining 9 are
used for validation. This process has been repeated 10 times in
order to use all the training data in generating classifier
models. The comparative results are shown in Table 6.

As one would expect the performance of an individual
GFMM classifier trained on a tenth of the training set is
significantly worse than the GFMM classifier trained on the
full data set. As we can see combining at the model level
results in much better performance than combining at the
decision level or by using individual component classifiers
trained on only a tenth part of the available training set. It is
clear that the 1/10th of the training data does not capture the
principal properties of the data. That is why an ensemble of
GFMM networks (trained on different 1/10ths of the training
data) combined at the decision level performs almost as badly
as a single model trained on 1/10th of the training data. On the
other hand, by their nature GFMM networks (trained on
different 1/10ths of the training data) combined at the model
level form a single GFMM network that represents aspects of
the whole data set.

This is why the GFMM networks combined at the model
level in this case perform as well as a single GFMM network
trained on the whole training set. What is especially interesting
from our point of view is the fact that while the performance of
such a classifier is comparable with a classifier trained on the
full training set, the training time even on a single computer is
significantly faster. It is even more interesting since it is

directly amenable for the implementation on parallel machines
which should result in even further training time reductions.

V. CONCLUSIONS

An alternative approach to combination of multiple copies
of the GFMM classifier has been presented. Rather than
combining decisions of individual base classifiers, their
models in the form of hyperbox fuzzy sets are combined. This
results in a classifier with significantly reduced model
complexity while preserving the improved classification
performance and/or reliability observed in ensembles of
classifiers. However it came at the price of increased training
time since an additional training cycle had to be carried out.
This involved the use of the hyperbox fuzzy sets from the
models generated during a multiple cross-validation as inputs
to the same learning algorithm which have been used to
generate individual GFMM models. One more interesting
property of combining at the model level, introduced in this
paper, is the potential for accelerating the training for large
data sets by using only mutually exclusive subsets of the
original data set to train individual classifiers to be combined
at the model level. Since the training is carried out on mutually
exclusive subsets it can be easily implemented on parallel
computers.
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TABLE 6: CLASSIFICATION RESULTS FOR SATIMAGE DATA SET.

Classifier generation procedure No. of base
classifiers

No. of
hyperboxes

Testing set
error rate [%]

Trained on the full training set 1 566 13.24
Trained on 1/10 of the training set 1 110 20.06
Combined at the decision level 10 1105 19.02
Combined at the model level 10 345 13.49
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