97,237 research outputs found

    Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal

    Get PDF
    Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of similar to 30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting similar to 38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning.Electricity of Portugal (Fundo EDP para a Biodiversidade); FCT - Portuguese Science Foundation [PTDC/MAR-EST/6053/2014, EXTANT-EXCL/AAG-GLO/0661/2012, SFRH/BPD/111003/2015

    Patterns of variability in early life traits of a Mediterranean coastal fish

    Get PDF
    Spawning dates and pelagic larval duration (PLD) are early life traits (ELT) crucial for understanding life cycles, properly assessing patterns of connectivity and gathering indications about patchiness or homogeneity of larval pools. Considering that little attention has been paid to spatial variability in these traits, we investigated variability of ELT from the analysis of otolith microstructure in the common two-banded sea bream Diplodus vulgaris. In the southwestern Adriatic Sea, along ~200 km of coast (∌1° in latitude, 41.2° to 40.2°N), variability of ELT was assessed at multiple spatial scales. Overall, PLD (ranging from 25 to 61 d) and spawning dates (October 2009 to February 2010) showed significant variability at small scales (i.e. <6 km), but not at larger scales. These outcomes suggest patchiness of the larval pool at small spatial scales. Multiple causal processes underlying the observed variability are discussed, along with the need to properly consider spatial variability in ELT, for example when delineating patterns of connectivity. Copyright © 2013 Inter-Research

    Biological processes and links to the physics

    Get PDF
    Analysis of the temporal and spatial variability of biological processes and identification of the main variables that drive the dynamic regime of marine ecosystems is complex. Correlation between physical variables and long-term changes in ecosystems has routinely been identified, but the specific mechanisms involved remain often unclear. Reasons for this could be various: the ecosystem can be very sensitive to the seasonal timing of the anomalous physical forcing; the ecosystem can be contemporaneously influenced by many physical variables and the ecosystem can generate intrinsic variability on climate time scales. Marine ecosystems are influenced by a variety of physical factors, e.g., light, temperature, transport, turbulence. Temperature has a fundamental forcing function in biology, with direct influences on rate processes of organisms and on the distribution of mobile species that have preferred temperature ranges. Light and transport also affect the physiology and distribution of marine organisms. Small-scale turbulence determines encounter between larval fish and their prey and additionally influences the probability of successful pursuit and ingestion. The impact of physical forcing variations on biological processes is studied through long-term observations, process studies, laboratory experiments, retrospective analysis of existing data sets and modelling. This manuscript reviews the diversity of physical influences on biological processes, marine organisms and ecosystems and their variety of responses to physical forcing with special emphasis on the dynamics of zooplankton and fish stocks

    The effect of diabetes on fracture repair : alterations in angiogenesis and apoptosis

    Full text link
    Thesis (MSD)--Boston University, Goldman School of Dental Medicine, 2007 (Endodontics).Includes bibliographical references: leaves 56-65.An abundance of evidence has emerged demonstrating a close link between diabetes and significantly impaired fracture healing. Previous studies have determined that repair of fractures in diabetic animals is characterized by calluses with decreased size and bone formation. To further investigate the possible reasons for the decreased callus size we undertook a detailed histologic and immunohistochemical analysis focusing on the apoptosis of bone cells and angiogenesis that occurs during fracture healing. Angiogenesis was determined in the fractures by quantitative immunohistochemical analysis using the antibody to CD34. Cells expressing CD34 are found in the endothelial lining of blood vessels. Apoptotic cells were stained using the Apoptag Peroxidase In Situ Apoptosis Detection Kit. The decision to target these two parameters was based on the concept that enhanced cell death and decreased angiogenesis may limit the repair process. We used a well characterized type 1 diabetic animal model; the streptozotocin induced diabetic mouse (n=8), and a nondiabetic control group (n=7). Three weeks after establishing diabetes, tibia fractures were induced. The mice were euthanized 12, 16 and 22 days after fracture. The 16 day samples were processed, embedded, sectioned and stained for analysis. The size of the fracture callus, and the amount of new bone and cartilage were determined using slides stained with H&E, masson trichrome and safranin-O/fast green, respectively. The results showed that the diabetic groups have statistically two fold more apoptotic cells per callus (p<0.05). We also found that the number of vessels located in the areas of immature new bone were twice as high in the normal group [TRUNCATED

    The evolution of oscillatory behavior in age-structured species

    Get PDF
    A major challenge in ecology is to explain why so many species show oscillatory population dynamics and why the oscillations commonly occur with particular periods. The background environment, through noise or seasonality, is one possible driver of these oscillations, as are the components of the trophic web with which the species interacts. However, the oscillation may also be intrinsic, generated by density-dependent effects on the life history. Models of structured single-species systems indicate that a much broader range of oscillatory behavior than that seen in nature is theoretically possible. We test the hypothesis that it is selection that acts to constrain the range of periods. We analyze a nonlinear single-species matrix model with density dependence affecting reproduction and with trade-offs between reproduction and survival. We show that the evolutionarily stable state is oscillatory and has a period roughly twice the time to maturation, in line with observed patterns of periodicity. The robustness of this result to variations in trade-off function and density dependence is tested

    Controlling the Biological Invasion of a Commercial Fishery by a Space Competitor: A Bioeconomic Model with Reference to the Bay of St-Brieuc Scallop Fishery

    Get PDF
    This paper presents a bioeconomic model of a commercial fishery facing biological invasion by an alien species acting as a space competitor for the native species. The model is illustrated in a case study of the common scallop fishery of the Bay of St-Brieuc (France), where biological invasion by a slipper-limpet (Crepidula fornicata) is now addressed by a control program. First we present the model, which combines the dynamics of the two competing stocks. We then use the model to analyze the equilibrium of the fishery under various assumptions concerning invasive species control, and to assess the social cost of the invasion. Finally we propose a set of dynamic simulations concerning the ongoing program, emphasizing the influence of its starting date on its overall economic results.aquatic invasive species, biological invasion control, common scallop, ecosystemic fisheries management, plurispecies bioeconomic modeling, slipper-limpet, Resource /Energy Economics and Policy,

    Evolution of complex flowering strategies: an age- and size-structured integral projection model

    Get PDF
    We explore the evolution of delayed age- and size-dependent flowering in the monocarpic perennial Carlina vulgaris, by extending the recently developed integral projection approach to include demographic rates that depend on size and age. The parameterized model has excellent descriptive properties both in terms of the population size and in terms of the distributions of sizes within each age class. In Carlina the probability of flowering depends on both plant size and age. We use the parameterized model to predict this relationship, using the evolutionarily stable strategy (ESS) approach. Despite accurately predicting the mean size of flowering individuals, the model predicts a step-function relationship between the probability of flowering and plant size, which has no age component. When the variance of the flowering-threshold distribution is constrained to the observed value, the ESS flowering function contains an age component, but underpredicts the mean flowering size. An analytical approximation is used to explore the effect of variation in the flowering strategy on the ESS predictions. Elasticity analysis is used to partition the agespecific contributions to the finite rate of increase (u) of the survival-growth and fecundity components of the model. We calculate the adaptive landscape that defines the ESS and generate a fitness landscape for invading phenotypes in the presence of the observed flowering strategy. The implications of these results for the patterns of genetic diversity in the flowering strategy and for testing evolutionary models are discussed. Results proving the existence of a dominant eigenvalue and its associated eigenvectors in general size- and age-dependent integral projection models are presented

    Variation in habitat choice and delayed reproduction: Adaptive queuing strategies or individual quality differences?

    Get PDF
    In most species, some individuals delay reproduction or occupy inferior breeding positions. The queue hypothesis tries to explain both patterns by proposing that individuals strategically delay breeding (queue) to acquire better breeding or social positions. In 1995, Ens, Weissing, and Drent addressed evolutionarily stable queuing strategies in situations with habitat heterogeneity. However, their model did not consider the non - mutually exclusive individual quality hypothesis, which suggests that some individuals delay breeding or occupy inferior breeding positions because they are poor competitors. Here we extend their model with individual differences in competitive abilities, which are probably plentiful in nature. We show that including even the smallest competitive asymmetries will result in individuals using queuing strategies completely different from those in models that assume equal competitors. Subsequently, we investigate how well our models can explain settleme! nt patterns in the wild, using a long-term study on oystercatchers. This long-lived shorebird exhibits strong variation in age of first reproduction and territory quality. We show that only models that include competitive asymmetries can explain why oystercatchers' settlement patterns depend on natal origin. We conclude that predictions from queuing models are very sensitive to assumptions about competitive asymmetries, while detecting such differences in the wild is often problematic.
    • 

    corecore