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ABSTRACT: Spawning dates and pelagic larval duration (PLD) are early life traits (ELT) crucial for
understanding life cycles, properly assessing patterns of connectivity and gathering indications
about patchiness or homogeneity of larval pools. Considering that little attention has been paid to
spatial variability in these traits, we investigated variability of ELT from the analysis of otolith
microstructure in the common two-banded sea bream Diplodus vulgaris. In the southwestern
Adriatic Sea, along ~200 km of coast (~1° in latitude, 41.2° to 40.2°N), variability of ELT was
assessed at multiple spatial scales. Overall, PLD (ranging from 25 to 61 d) and spawning dates
(October 2009 to February 2010) showed significant variability at small scales (i.e. <6 km), but not
at larger scales. These outcomes suggest patchiness of the larval pool at small spatial scales. Mul-
tiple causal processes underlying the observed variability are discussed, along with the need to
properly consider spatial variability in ELT, for example when delineating patterns of connectiv-
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INTRODUCTION

Most coastal fishes have bipartite life cycles, com-
posed of a drifting planktonic phase (eggs and larval
stages) and a relatively sedentary phase (post-
settlers to adults, Thresher et al. 1989). During
spawning (whose onset at species level has been
related to environmental features, mainly water tem-
perature, Vinagre et al. 2009) gametes are released.
After fertilization, larvae hatch from the eggs. The
larval stage lasts until the pelagic larva metamorphes
into the benthic juvenile. Metamorphosis usually
coincides with the transition-stage termed ‘settle-
ment' (Searcy & Sponaugle 2000).

The pelagic larval duration (hereinafter PLD) cor-
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responds to the period between spawning and settle-
ment and is expressed in number of days (see
Thresher et al. 1989). PLD and subsequent back-cal-
culated spawning date can be assessed through the
analysis of daily growth increments on otoliths (Pan-
nella 1971, Searcy & Sponaugle 2000). Otoliths
develop around a primordium that is formed during
the embryonic development and grow by apposition
of daily increments. PLD, therefore, can be accu-
rately assessed by counting the number of daily rings
between the primordium and the settlement mark
(i.e. the first major transitional point; for details about
otolith microstructure see Panfili et al. 2002, Green et
al. 2009). Spawning date is back-calculated, usually
in recently settled specimens, by combining informa-

© Inter-Research 2012 - www.int-res.com

d IHOpIND ‘S SaUB|d ‘Nl 0ZUSI0T IQ Y QD M UEID ‘v 0dueIA Id


information on PLD 
[5] Or utilizing information or cross-referencing information

sea bream Diplodus 
[4] Found sea bream written three different ways. Seabream, sea bream, sea-bream and two-banded with a hyphen and without.  Changing to 'two-banded sea bream' throughout ms

CORAIL'


[3] Please provide address

USR 3278 CNRS-EPHE
[2] Give these abbreviations in full as mentioned for the time?

Patterns of variability 
[1] House style: We strive for short & sweet titles. Therefore, we  deleted 'Assessing ' and the phrase 'case study'. My changes OK?


2 Mar Ecol Prog Ser B

tion on PLD and post-settlement age (i.e. the number
of days the specimen lived after the settlement) with
information on sampling date (see Di Franco &
Guidetti 2011, Di Franco et al. 2011).

Early life traits (hereinafter ELT), like e.g. PLD and
spawning date, have been proven to be crucial fea-
tures in improving our understanding of processes
potentially affecting settlement and subsequent life
stages (Williams 1983, Fontes et al. 2011). There is
widespread belief that year-class strength in fish was
determined from the success of the larval stage
(Leggett & DeBlois 1994). According to the ‘critical-
period’ and the ‘stage-duration’ hypotheses, spawn-
ing date and PLD are key parameters in shaping set-
tlement and recruitment (the phase when juvenile
fish join the adult fraction of populations) success,
because larval history and ELTs of settlers influence
individual fitness in subsequent life stages (Searcy &
Sponaugle 2000, Vigliola & Meekan 2002, Hamilton
et al. 2008).

Besides the significance of ELTs in affecting settle-
ment and subsequent life stages discussed above,
information on PLD and spawning date is also neces-
sary to model larval dispersal (Watson et al. 2010). In
order to properly simulate patterns of dispersal and
connectivity in specific regions or for different spe-
cies and populations (see Kettle & Haines 2006,
Waston et al. 2010), biophysical models need to be
fed with data on key physical dynamics and biologi-
cal traits (like spawning date and PLD). In fact, cou-
pling physical and biological features into so-called
biophysical model-based studies (e.g. Lagrangian
models) appears to be the most effective approach for
elucidating patterns of connectivity for different mar-
ine species (Siegel et al. 2003, Werner et al. 2007,
Watson et al. 2010). Connectivity, defined as the
demographic linking of local populations through the
dispersal among them of individuals as eggs, larvae,
juveniles, subadults or adults, is still a relatively little
known phenomenon in many regions and for many
species (Sale et al. 2005). However, its importance,
for example in designing effective networks of mar-
ine protected areas, has been increasingly recog-
nized (Palumbi 2003, Sale et al. 2005, Almany et al.
2009, Jones et al. 2009, McCook et al. 2009, Saenz-
Agudelo et al. 2011). From this point of view, there is
usually a potential bias in the application of biophys-
ical modeling as accurate PLD estimates are seldom
available. Many studies, in fact, are based on values
of PLD generally estimated in a single place or in a
specific year, de facto neglecting the potential vari-
ability of this ELT (Di Franco & Guidetti 2011, Di
Franco et al. 2011) and providing, potentially inap-

propriate generalizations about patterns of connec-
tivity (i.e. based on ELTs investigated elsewhere or in
different years).

This lack of information is particularly surprising
considering that larvae occur in patches, (potentially
due to both passive accumulation of larvae or active
aggregation (Kingsford & Choat 1989, Williams &
English 1992, Paris & Cowen 2004) and, from this
perspective, they potentially face different environ-
mental conditions putatively causing spatial differ-
ences in ELTs (Sponaugle et al. 2006).

For all the above reasons, it is necessary to gain fur-
ther information regarding ELTs and their potential
spatial variability. Recent studies have shown that
both PLD and spawning date can be variable at a rel-
atively small spatial scale (Di Franco & Guidetti 2011,
Kingsford et al. 2011). However, due to the pioneer-
ing nature of these studies and the limited number of
species studied so far, it is not possible to draw any
general conclusion.

Following the general approach as described by Di
Franco & Guidetti (2011), we presently aim at inves-
tigating patterns of variability of PLD and spawning
dates of the common two-banded sea bream Diplo-
dus vulgaris (Saint-Hilaire 1817) at multiple spatial
scales along the SE coast of Italy (SW Adriatic Sea).
Our study shall provide: (1) indication of local patch-
iness (i.e. in case of variability of ELTs) or homogene-
ity (i.e. in case of absence of variability) of larval
pools; (2) proper tools to further investigate processes
potentially affecting settlement and subsequent life
stages and then adequately model patterns of disper-
sal and connectivity.

MATERIALS AND METHODS

As a model species we used the two-banded sea
bream Diplodus vulgaris, a commercially and ecolog-
ically relevant coastal fish (Guidetti 2006) distributed
throughout the Mediterranean and along the eastern
Atlantic coast (from ~48° to 14° N, Bauchot & Hureau
1986). The species is among the most targeted fishes
for recreational fishing in the Mediterranean (Lloret
et al. 2008).

Juvenile Diplodus vulgaris were collected in May
2010, along ~200 km of the Apulian Adriatic coast, in
line with a north-south axis (~1°, from 41.2°N to
40.2°N; Fig. 1). Seven areas of the coast, separated
by 15 to 30 km each, were used as sampling locations
(each corresponding to ~6 km of coastline). Within
each location, 2 sites (each ~100 to 200 m of coastline
and separated by 2 to 6 km) were randomly selected.


Hureau 1986). 
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Fig. 1. Sampling locations (letters) and sites (sites) = Letters

and numbers indicate locations and sites, respectively: Al =

San Giorgio, A2 = Torre a Mare; B1 = Cala Corvina, B2 =

Porto Marzano; C1 = Hotel La Darsena, C2 — Torre Pozzella;

D1 = Punta Penna Grossa, D2 = Terza Baia; E1 Torre

Rossa, E2 = Punta Penne; F1 = Casalabate, F2 Torre
Rinalda; G1 = San Foca, G2 = San Andrea

A hand-net was used to collect 10 to 12 specimens
per site (for a total of n = 160). The number of fish
specimens within each site was set up in accordance
with recent papers dealing with spatial variability of
ELT (Di Franco & Guidetti 2011, Di Franco et al. 2011,
Kingsford et al. 2011).

Across locations, all specimens were collected
within 10 d to prevent or at least reduce temporal
bias and frozen after capture. Settlers of two-banded
sea breams usually aggregate into discrete schools
(Harmelin Vivien et al. 19995), reflecting different set-
tlement pulses, each potentially differing in ELTs.
The abundance of juveniles at our study sites was so
high that it was often impossible to detect significant
discontinuity in juvenile fish distribution. In any case,
in order to prevent the potential confounding
between inter-site variability with intra-site variabil-
ity (i.e. potentially related to different pulses), we
randomly collected juvenile individuals (10 to 12 per
site) along 100 to 200 m of coastline at each site. Sam-
pling was carried out 1 to 5 mo after the start of the
settlement period (see results section) in order to (1)
include fish derived from multiple settlement pulses
and not just from the early ones; (2) focus on success-
ful post-settlers (the ones that survived the high
early-mortality rates, Searcy & Sponaugle 2001),

these being the ones that more effectively contribute
to replenishing local populations.

Standard otolith aging by analysis of daily micro-
increment formation (growth rings) (Victor 1982,
Philibotte 2002, Di Franco & Guidetti 2011, Di Franco
etal. 2011) was used to determine PLD and spawning
date.

The daily deposition of growth rings on sagittae of
Diplodus vulgaris has been validated by both Vil-
lanueva & Moli (1997) and Vigliola (1997). Therefore,
we assumed that increments were deposited on a
daily periodicity from the first one formed at hatching
(Tsuji & Aoyama 1982) until the one formed on the
day the fish was sampled. Vigliola et al. (2000)
detected an abrupt decline in the width of successive
increments that appeared to coincide with settlement
of D. vulgaris. This description fits the criteria of the
type I settlement mark (i.e. corresponding to the set-
tlement of the planktonic larva metamorphosing into
the benthic juvenile) classified according to Wilson &
McCormick (1997) and will be used as reference to
locate the settlement mark in D. vulgaris otoliths in
the present study. By applying this ‘type I settlement
mark' to our samples, we have also assumed that the
structure of settlement mark is consistent among
individual D. vulgaris (Wilson & McCormick 1997).

Before removing the otoliths, standard lengths (SL)
of the collected juvenile Diplodus vulgaris were
measured to the nearest 1 mm. One sagittal otolith
was removed from each specimen and processed fol-
lowing a standard procedure (see Di Franco &
Guidetti 2011, Di Franco et al. 2011). The daily rings
were read using a high-powered microscope. For
each specimen, the hatching date was back-calcu-
lated by subtracting the number of growth incre-
ments from the sampling date. The spawning date
was then calculated by subtracting 2 d (correspond-
ing to the time between spawning and larval release
in D. vulgaris, Jug-Dujakovic & Glamuzina 1988)
from the previously estimated hatching date.

To test for spatial variability in PLD and spawning
dates, analysis of covariance (ANCOVA) was run,
where Location (Lo) was treated as a random factor
with 7 levels, Site (Si) was used as a random factor
nested within Lo, with 2 levels, and Standard length
(SL) as the covariate. Between 10 and 12 otoliths
(replicates) were read from each site. The test for
covariate effect was performed to prevent fish size
(possibly different from site to site) effects on spatial
comparisons of PLDs and spawning dates. In other
words, only focusing on fish size, any observed dif-
ference is attributable to ‘pure’ spatial patterns. In
order to run ANCOVA, spawning date for each fish
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was converted into an integer between 0 (indicating
20 October 2009, first spawning date recorded, see
Results) and 117 (indicating 14 February 2010,
last spawning date recorded). Before performing
ANCOVA, the data were tested for homogeneity of
dispersion using Permutational Analysis of Multivari-
ate Dispersions (PERMDISP) based on Euclidean dis-
tance, which is equivalent to Levene's test for hetero-
geneity of variances when used on univariate data
(Anderson et al. 2008). No evidence of heterogeneity
of variance was highlighted for PLD or for spawning
date data (p > 0.05 for both tests).

Linear regression analysis (DISTLM, distance-
based linear models) was used to assess the relation-
ships between (1) the spawning date (converted in an
integer as detailed above) and the PLD and (2) the SL
and the spawning date at the individual level.

Statistical analyses were run using Primer 6 PERM-
ANOVA + software package.

RESULTS

Fish size (SL) ranged from 15 to 30 mm (mean + SE
=25+ 0.2 mm. SL per site (mean + SE) varied from 19
+ 0.5 mm to 23 + 0.8 (Fig. 2a). Coefficient of variation
for each site ranged from 0.05 to 0.13. Post-settle-
ment age ranged from 37 to 154 d (mean + SE = 93.5
+ 1.6 d). The post-settlement age per site (mean + SE)
varied from 73.7 + 5 d to 107.3 = 4 d (Fig. 2b).

PLD values ranged, on the whole, from 25 to 61 d.
PLD (mean + SE) per site varied from 35.8 + 1.3 d to
52.3 + 0.7 d (Fig. 2c). Coefficient of variation for each
site ranged from 0.05 to 0.25.

Spawning dates ranged from 20 October 2009 to 14
February 2010, covering 117 d in total (including the
end date). More than 60% of spawning dates
occurred in December 2009, with a frequency for
each date in December ranging from 0.6 % to 3.7 %
(Fig. 3a). Settlement dates ranged from 1 December
2009 to 28 March 2010, covering 118 d in total
(including the end date). More than 45% of settle-
ment dates occurred in January and 40 % in Febru-
ary (Fig. 3b).

Results of ANCOVA test showed that both PLD and
spawning dates varied significantly at the scale of
sites (Si), whereas no significant differences were
detected among locations (Lo). Significant effect of
the covariate SL was detected on spawning dates,
but not on PLD (Table 1). A negative relationship (p <
0.01) between SL and spawning date was high-
lighted with larger juveniles that were spawned ear-
lier than smaller ones (Fig. 4).

26

a
24 |
22
£ 20 , '
E 18
|
D 16
14
12
10 -
A B cC D E F G
130 | p
120

Post settlement (d)

110
100 '
90 |
80
70
60
50
A B C D E F G

55

[ .
50
45 - |
40 - |
35 -
30
25
20A B C D E F G

Location
Fig. 2. (a) Standard length (SL) per site; (b) post-settlement
age per site; ¢) PLD values per site. All means + SD. Letters
indicate locations, code see Fig. 1 legend. Black and grey
bars indicate sites 1 and 2, respectively, in each location

PDL (d)

No significant relationship (p > 0.05) was recorded
between spawning date and PLD.

DISCUSSION

PLD and spawning dates of Diplodus vulgaris were
significantly variable in space at the site level (<6
km), but not at the location level (15 to 30 km). These
outcomes compliment the limited data reported by
other studies carried out within and outside the
Mediterranean Sea on other species (Di Franco &
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Fig. 3. Frequency chart for (a) spawning dates and (b) settling dates
(dd.mm.yy). Frequency was calculated in intervals of 2 d. Line = moving

average

Guidetti 2011, Kingsford et al. 2011), suggesting the
idea that PLD and spawning dates can significantly
vary at small scales (e.g. few kilometers). No signifi-
cant relationship among these 2 ELTs was high-
lighted at the individual level and spawning date
does not influence larval duration at species level in
the context of this work.

The significant variability detected in PLD and
spawning date at a scale of a few kilometers could be
an indication of local patchiness of larval pool at
small spatial scales, as observed for other fish species
(Paris & Cowen 2004). Similar patterns suggest hori-
zontal size estimates of larval patches that are
usually restricted to a few kilometers (1 to 2 or 6 km
depending on species and geographic area, Kings-
ford & Choat 1989, Williams & English 1992, Paris &
Cowen 2004). From this perspective, we could hy-
pothesize that (based on our sampling design) sites

T T T+
14.10.09 03.11.09 23.11.09 13.12.09 02.01.10 22.01.10 11.02.10 03.03.10

L

within each location (separated up to
6 km) could have been filled by dif-
ferent larval patches. Patch for-
mation and maintenance may be due
to behavior-mediated aggregation
or passive accumulation (Paris &
Cowen 2004). The observed differ-
ences in ELTs could be explained
either by small-scale variability in
environmental and oceanographic
features and processes (e.g. small ar-
eas of retention, coastal gyres, fresh-
water inputs) or in local differences
of food availability and related
growth conditions (Searcy & Sponau-
gle 2000, Sponaugle et al. 2006,
Vinagre et al. 2009). In particular,
water temperature and food avail-
ability (that are sometime correlated,
Fontes et al. 2010) may have the po-
tential to affect larval history of fish,
with warmer temperatures leading to
faster growth (Sponaugle et al. 2006)
and shorter larval duration (Sponau-
gle et al. 2006, Fontes et al. 2010). At
present, however, these are just hy-
potheses and further studies could
clarify what causal processes may
actually have a predominant role in
determining small scale variability
patterns.

Different timing in larval arrival
between sites close to each other
could also be hypothesized in order
to explain the patterns reported in
the present study: sites could be ‘filled up' by larval
replenishment (i.e. habitat saturation), once filled
they could not host more settlers, so that the next site
(e.g. down-current with respect to larval source, Pelc
et al. 2010) could then get filled with larvae born later

* 1

Table 1. ANCOVA on pelgic larval duration (PLD) and

spawning dates. Standard length (SL) was set as covariate.

ns: not significant; Res: residuals; MS: mean squares. See
text for factor labels. ***p < 0.001)

Source PLD Spawning dates
df MS  Pseudo-F MS Pseudo-F

SL 1 157.71 1.5936 ns 15468 51.335***

Lo 6 307.03 1.5162 ns 200.15 0.20378 ns

Si (Lo) 7 203.05 4.5134*** 984.78 4.2015***

Res 145 44,988

Total 159
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Fig. 4. Linear correlations of standard length (scale starts at 14 mm) versus spawning date (i.e. calendar day, dd.mm.yy)

or with larvae delaying their metamorphosis (and
then showing longer PLD). In addition to this poten-
tial effect of larval density, an effect of settler density
could also affect PLD: in a site with low settler den-
sity, larvae could ‘choose’ to settle as soon as they can
(which results in a short PLD) in order to minimize
larval mortality, since the resulting small size at set-
tlement could be further compensated by faster juve-
nile growth with reduced intraspecific competition
(Fontes et al. 2010). On the other hand, at a higher
settler density, settlement at a bigger size (resulting
in a longer PLD, Denit & Sponaugle 2004, Fontes et
al. 2011) will increase the capability of escaping
predators and successfully competing for shared
resources (Tupper & Boutilier 1995, McCormick
1999), despite having a higher larval mortality
(Fontes et al. 2010). From this perspective, PLD could
be the outcome of a trade-off among different pre-
post settlement ‘requirements’ (Cowen & Sponaugle
1997) aimed at maximizing chances of settling under
optimal conditions (Sponaugle & Cowen 1994).

Our findings refer to post-settlers which survived
the early mortality phase. Early mortality rate has
proven to be particularly high in reef fishes (Searcy &
Sponaugle 2001) and dependent on ELTs such as lar-
val growth rates (Searcy & Sponaugle 2001). Further,
larval growth rate can influence PLD (Searcy and
Sponaugle 2000). The ELTs reported here could no
longer be fully representative of the original, recently

settled juveniles or pre-settlement larvae due to post-
settlement selective mortality. However, no informa-
tion is available about selective early-mortality in
two-banded sea bream and further studies are
required to shed light on this issue.

We found an effect of fish size on spawning dates,
indicating that larger juveniles spawned earlier than
smaller ones, thus demonstrating a relationship
between fish size and total number of rings in the
otoliths. Although this covariance may seem to be
logically intuitive, it is not an invariable finding.
Specifically, results from a previous study on Diplo-
dus sargus (Di Franco & Guidetti 2011) did not show
any effect of fish SL on spawning dates, although this
output may be due to the smaller fish size sampled in
the previous study (11.1 + 0.1 mm) compared to the
present one (25 + 0.2 mm). These patterns could be
explained by the absence of a positive relationship
between PLD and size at settlement (Kingsford et al.
2011): when most of the rings in an otolith are pre-
settlement rings (as in recently settled specimens, the
ones considered in Di Franco & Guidetti 2011), there
is no evidence of a relationship between fish size and
total number of rings (i.e. the sum of PLD and age in
days after metamorphosis). This relationship is evi-
dent, on the contrary, when most of the rings in an
otolith are post-settlement increments (as in the pres-
ent study) due to the positive relationship in juvenile
fish between size and age (see Gordoa & Moli 1997

L]
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for further details). Growth rates at the larval stage
can be highly variable among larvae that experience
different environmental conditions (i.e. variable in
time) due to a prolonged spawning (and hatching)
period. Successively, growth rates of juveniles after
settlement may become less variable, progressively
smoothing the differences and providing a positive
relationship between fish size and number of rings.
The relationship among fish size and spawning date,
therefore, could be mainly affected by the timing of
the sampling rather than by bio-ecological features.

Variation in PLD has already been reported for
Diplodus vulgaris from the NW Mediterranean
(Vigliola 1998), with an average 40 d PLD (minimum
of 29 d and maximum of 58 d), that is lower than PLD
found in the present study in SE Italy. Unfortunately,
we cannot identify the source of this difference in
PLD between these 2 studies (e.g. in terms of spatial
or temporal effects) due to different sampling years
(1995 and 1996 versus 2010) and locations (NW
Mediterranean Sea versus SW Adriatic Sea). This
suggests the need to conduct similar studies in differ-
ent places and across a number of years in order to
allow reliable comparisons. As discussed above, spa-
tial or temporal variability in PLD is likely due to dif-
ferential growth rates at the larval stage related to
variability in environmental conditions. This hypoth-
esis is supported by the evidence of variability in
growth rates at the juvenile stage for the two-banded
sea bream recorded in NW Mediterranean (Planes et
al. 2000).

In our study on Diplodus vulgaris we detected the
settlement peak around January and February,
agreeing with references in the literature (Biagi et. al
1998, Vigliola et al. 1998). However, a second peak
between April and May was not observed, different
from what has been reported in other papers (Garcia
Rubies & Macpherson 1995, Bussotti & Guidetti
2011). This discrepancy could be due to the fact that
our sampling (carried out in May) could have been
done when the ‘spring’ settlement peak had just
started (especially in the case of a delayed event;
Bussotti & Guidetti 2011). However, no evidence of
any additional settlement peak was actually
observed in the same area and year investigated by
us. This could suggest that, depending on the year, 1
or 2 settlement events could take place (pers. obs.).

From spawning dates, the range from October to
February indicates that Diplodus vulgaris has an
extended spawning period. This result agrees with
the evidence arising from gonad maturation assess-
ments of D. vulgaris from the same sampling area
(Guidetti et al. 2011) and more generally, from other

sites along the Italian coast (ranging from September
to November, Barbato & Corbari 1995). In other areas
(e.g. Canarian archipelago and Portuguese coast,
both in the Atlantic Ocean), winter spawning season
is protracted (November to March, Pajuelo et al.
2006; December to March, Goncalves & Erzini 2000),
while a longer spawning season has been reported
from Portugal (from September to March, Gongalves
et al. 2003).

Patterns of dispersal and connectivity are likely to
vary greatly depending on spatio-temporal variabil-
ity of factors driving connectivity (i.e. spawning date,
PLD, water circulation regimes, that may change
annually, seasonally, spatially; Astraldi et al. 1995,
Siegel et al. 2008, Schunter et al. 2011), which may
greatly affect the outputs of connectivity or dispersal
models (Siegel et al. 2008, Watson et al. 2010). From
this perspective the outcomes of our investigation
suggest that values of PLD and spawning dates may
show specific patterns of variability that may change
in space and likely in time (e.g. from year to year).
This should be taken into account when modeling
dispersal and connectivity for Diplodus vulgaris, but
the rationale is the same for any other fish species: it
could be valuable to acknowledge the potential spa-
tial and temporal variability of ELTs and not to treat
them as constant values, invariable in space and time
as it has been done in many previous 2 studies.
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