42 research outputs found

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    2015 Oil Observing Tools: A Workshop Report

    Get PDF
    Since 2010, the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have provided satellite-based pollution surveillance in United States waters to regulatory agencies such as the United States Coast Guard (USCG). These technologies provide agencies with useful information regarding possible oil discharges. Unfortunately, there has been confusion as to how to interpret the images collected by these satellites and other aerial platforms, which can generate misunderstandings during spill events. Remote sensor packages on aircraft and satellites have advantages and disadvantages vis-à-vis human observers, because they do not “see” features or surface oil the same way. In order to improve observation capabilities during oil spills, applicable technologies must be identified, and then evaluated with respect to their advantages and disadvantages for the incident. In addition, differences between sensors (e.g., visual, IR, multispectral sensors, radar) and platform packages (e.g., manned/unmanned aircraft, satellites) must be understood so that reasonable approaches can be made if applicable and then any data must be correctly interpreted for decision support. NOAA convened an Oil Observing Tools Workshop to focus on the above actions and identify training gaps for oil spill observers and remote sensing interpretation to improve future oil surveillance, observation, and mapping during spills. The Coastal Response Research Center (CRRC) assisted NOAA’s Office of Response and Restoration (ORR) with this effort. The workshop was held on October 20-22, 2015 at NOAA’s Gulf of Mexico Disaster Response Center in Mobile, AL. The expected outcome of the workshop was an improved understanding, and greater use of technology to map and assess oil slicks during actual spill events. Specific workshop objectives included: •Identify new developments in oil observing technologies useful for real-time (or near real-time) mapping of spilled oil during emergency events. •Identify merits and limitations of current technologies and their usefulness to emergency response mapping of oil and reliable prediction of oil surface transport and trajectory forecasts.Current technologies include: the traditional human aerial observer, unmanned aircraft surveillance systems, aircraft with specialized senor packages, and satellite earth observing systems. •Assess training needs for visual observation (human observers with cameras) and sensor technologies (including satellites) to build skills and enhance proper interpretation for decision support during actual events

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    Monitoring marine plastic pollution using radar: from source to sea

    Get PDF
    Marine plastic pollution poses a significant threat to ocean ecosystems worldwide, necessitating effective monitoring and management strategies. The use of remote sensing plays a vital role in providing large-scale, frequently-timed data for monitoring this issue. A multi-modal system has been deemed the most appropriate for tackling the monitoring of marine debris and pollution. Synthetic Aperture Radar (SAR) can provide a wealth of data by taking advantage of the systems ability to acquire in near all-weather conditions, night and daytime. However, research in radar and SARs capability in monitoring marine plastic pollution is lacking. This thesis aims to provide an insight into these capabilities. This is through a series of experiments and investigations into the responses of SAR / Radar to marine plastic litter. Chapter two presents a real-world scenario of plastic accumulation within a river environment. The use of SAR imagery is employed to identify plastic accumulations in two separate study locations. A hypothesis of SAR backscattering interactions with plastic debris is presented. A suite of detectors are subsequently implemented to understand how to best utilise the SAR signal for marine debris detection in these test cases, with the best detector used to create heatmaps of debris accumulation within our test sites. The following chapter provides the results of two rigorous measurement campaigns, where C- and X-band radar data are exploited in a lab experiment. Backscatter and statistical analysis are undertaken across multiple tests involving differing plastic items, concentrations, and wave conditions. From this, interactions between plastic size, shape, and wave conditions are explored. A new interaction for backscatter interactions with plastic debris is also presented. The final data chapter investigates the potential use of a proxy for plastic pollution. Two measurement campaigns are conducted which utilise plastisphere based surfactants, and their interactions for wave dampening, to understand if this is detectable in radar data. For the first time, detailed analysis of backscatter values from differing plastic items and concentrations are presented, as well as the utilisation of real-world test cases. The results obtained in this thesis provide novel insights and additions to recent literature that contributes to our understanding of the capabilities of radar for marine plastic pollution monitoring, as well as new information that can be used in the planning for future missions and studies on the remote sensing of marine plastic pollution

    Fourth Airborne Geoscience Workshop

    Get PDF
    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Descriptive indicators for surface conditions

    Get PDF

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied

    OIL SPILL ALONG THE TURKISH STRAITS SEA AREA; ACCIDENTS, ENVIRONMENTAL POLLUTION, SOCIO-ECONOMIC IMPACTS AND PROTECTION

    Get PDF
    The Turkish Straits Sea Area (TSSA) is a long water passage that is consisted of the Sea of Marmara, an inland sea within Turkey's borders, and two narrow straits connected to neighboring seas. With a strategic location between the Balkans and Anatolia, the Black Sea and the Mediterranean, and dominated by the continental climate, the region hosted many civilizations throughout the centuries. This makes the region among the busiest routes in the world, with sea traffic three times higher than that in the Suez Canal. The straits are the most difficult waterways to navigate and witnessed many hazardous and important collisions and accidents throughout history. In addition, this area has vital roles as a biological corridor and barrier among three distinctive marine realms. Therefore, the region is rather sensitive to damages of national and international maritime activities, which may cause severe environmental problems. This book addresses several key questions on a chapter basis, including historical accidents, background information on main dynamic restrictions, oil pollution, oil spill detection, and clean-up recoveries, its impacts on biological communities, socioeconomic aspects, and subjects with international agreements. This book will help readers, public, local and governmental authorities gain a deeper understanding of the status of the oil spill, mostly due to shipping accidents, and their related impacts along the TSSA, which needs precautionary measures to be protected.CONTENTS INTRODUCTION CHAPTER I - HISTORY OF ACCIDENTS AND REGULATIONS Remarkable Accidents at the Istanbul Strait Hasan Bora USLUER and Saim OĞUZÜLGEN …………………………………...... 3 History of Regulations before Republican Era along the Turkish Straits Sea Area Ali Umut ÜNAL …………………………………………………………………….. 16 Transition Regime in the Turkish Straits during the Republican Era Osman ARSLAN ……….……………………………………………………….……26 26 The Montreux Convention and Effects at Turkish Straits Oktay ÇETİN ………………………………………………………………….…….. 33 Evaluation of the Montreux Convention in the Light of Recent Problems Ayşenur TÜTÜNCÜ ………………………………………………………………… 44 A Historical View on Technical Developments on Ships and Effects of Turkish Straits Murat YAPICI ………………………………………………………………………. 55 CHAPTER II - GEOGRAPHY, BATHYMETRY AND HYDRO-METEOROLOGICAL CONDITIONS Geographic and Bathymetric Restrictions along the Turkish Straits Sea Area Bedri ALPAR, Hasan Bora USLUER and Şenol AYDIN ……………………..…… 61 Hydrodynamics and Modeling of Turkish Straits Serdar BEJİ and Tarkan ERDİK ………………………………………………….… 79 Wave Climate in the Turkish Sea of Marmara Tarkan ERDİK and Serdar BEJİ …………………………………………………..… 91 CHAPTER III - OIL POLLUTION, DETECTION AND RECOVERY Oil Pollution at Sea and Coast Following Major Accidents Selma ÜNLÜ ……………………………………………………………………….101 Forensic Fingerprinting in Oil-spill Source Identification at the Turkish Straits Sea Area Özlem ATEŞ DURU ……………………………………………………………… 121 xi Oil Spill Detection Using Remote Sensing Technologies-Synthetic Aperture Radar (SAR) İbrahim PAPİLA, Elif SERTEL, Şinasi KAYA and Cem GAZİOĞLU ……..……. 140 The Role of SAR Remote Sensing to Detect Oil Pollution and Emergency Intervention Saygın ABDIKAN, Çağlar BAYIK and Füsun BALIK ŞANLI ……….….……….. 157 Oil Spill Recovery and Clean-Up Techniques Emra KIZILAY, Mehtap AKBAŞ and Tahir Yavuz GEZBELİ …………………… 176 Turkish Strait Sea Area, Contingency Planning, Regulations and Case Studies Emra KIZILAY, Mehtap AKBAŞ and Tahir Yavuz GEZBELİ …………………... 188 Dispersant Response Method to Incidental Oil Pollution Dilek EDİGER, Leyla TOLUN and Fatma TELLİ KARAKOÇ ………………….... 205 CHAPTER IV - THE EFFECTS / IMPACTS OF OIL SPILL ON BIOLOGICAL COMMUNITIES – INCLUDING SAMPLING AND MONITORING Marine Microorganisms and Oil Spill Sibel ZEKİ and Pelin S. ÇİFTÇİ TÜRETKEN …………...………………………… 219 Estimated Effects of Oil Spill on the Phytoplankton Following “Volgoneft-248” Accident (Sea of Marmara) Seyfettin TAŞ ………………………………..…………………………………….... 229 Interactions between Zooplankton and Oil Spills: Lessons Learned from Global Accidents and a Proposal for Zooplankton Monitoring İ. Noyan YILMAZ and Melek İŞİNİBİLİR ……………………………………..….. 238 The Effects of Oil Spill on the Macrophytobenthic Communities Ergün TAŞKIN and Barış AKÇALI …………………………….…………….……. 244 Potential Impacts of Oil Spills on Macrozoobenthos in the Turkish Straits System Güley KURT-ŞAHİN …………………………………………………………….… 253 The Anticipated Effects of Oil Spill on Fish Populations in Case of an Accident along the Turkish Straits System – A review of Studies after Several Incidents from the World M. İdil ÖZ and Nazlı DEMİREL …………………………………………………….261 Estimated Impacts of an Oil Spill on Bird Populations along the Turkish Straits System Itri Levent ERKOL …………………………………………………………….…… 272 The Effect of Oil Spills on Cetaceans in the Turkish Straits System (TSS) Ayaka Amaha ÖZTÜRK ………………………………………………………….. 277 Changes in the Ichthyoplankton and Benthos Assemblages following Volgoneft-248 Oil Spill: Case Study Ahsen YÜKSEK and Yaprak GÜRKAN …………………………………….……. 280 Assessing the Initial and Temporal Effects of a Heavy Fuel Oil Spill on Benthic Fauna Yaprak GÜRKAN, Ahsen YÜKSEK ………………………………………..…….. 287 CHAPTER V - SOCIO-ECONOMIC ASPECTS Socio-economic Aspects of Oil Spill Özlem ATEŞ DURU and Serap İNCAZ ……………………………………….…… 301 Effects of Oil Spill on Human Health Türkan YURDUN ………………………………………………………………..…. 313 Crisis Management of Oil Spill, A Case Study: BP Gulf Mexico Oil Disaster Serap İNCAZ and Özlem ATEŞ DURU …………………………….………….……324 CHAPTER VI - CONVENTIONS RELATING TO PREVENTION OF OIL SPILL International Convention for the Prevention of Pollution of the Sea by Oil (OILPOL), 1954 and its Situation Related with Turkey Emre AKYÜZ, Metin ÇELİK and Ömer SÖNER …………………………...……... 334 International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto and by the Protocol of 1997 (MARPOL) Özcan ARSLAN, Esma UFLAZ and Serap İNCAZ ………………………….……. 342 Applications of MARPOL Related with Oil Spill in Turkey Emre AKYÜZ, Özcan ASLAN and Serap İNCAZ ………………………………… 356 Ship Born Oil Pollution at the Turkish Straits Sea Area and MARPOL 73/78 Duygu ÜLKER and Sencer BALTAOĞLU………………………….…………….. 363 International Convention Relating to Intervention on the High Seas in Cases of Oil Pollution Casualties (INTERVENTION 1969) and its Applications Related with Oil Spill in Turkey Şebnem ERKEBAY ……………………………….……………………………….. 371 International Convention on Oil Pollution Preparedness, Response and Co-operation (OPRC) 1990 and its Applications Related with Oil Spill in Turkey Kadir ÇİÇEK ………………………………………………………………………. 381 Protocol on Preparedness, Response and Co-operation to Pollution Incidents by Hazardous and Noxious Substances, 2000 (OPRC-HNS Protocol) and its Effects in Turkey Aydın ŞIHMANTEPE and Cihat AŞAN ……………….…………………………. 392 The International Convention on Salvage (SALVAGE) 1989 Related with Oil Spill in Turkey İrşad BAYIRHAN ……………………………………….………………..……….. 408 CHAPTER VII - CONVENTIONS COVERING LIABILITY AND COMPENSATION RELATED WITH OIL SPILL International Convention on Civil Liability for Oil Pollution Damage (CLC), 1969 and its Applications Serap İNCAZ and Pınar ÖZDEMİR ……………………………………..………… 416 1992 Protocol to the International Convention on the Establishment of an International Fund for Compensation for Oil Pollution Damage (FUND 1992) and its Applications Related with Oil Spill in Turkey Ali Umut ÜNAL and Hasan Bora USLUER …………………………….………… 424 International Convention on Liability and Compensation for Damage in Connection with the Carriage of Hazardous and Noxious Substances by Sea (HNS), 1996 (and its 2010 Protocol) and its Applications Related with Oil Spill in Turkey Bilun ELMACIOĞLU ……………………………………………………………… 437 Bunkering Incidents and Safety Practices in Turkey Fırat BOLAT, Pelin BOLAT and Serap İNCAZ …………………………………... 447 "Nairobi International Convention on the Removal of Wrecks 2007" and its Effects on Turkey Şafak Ümit DENİZ and Serap İNCAZ ……………………….……………………. 457
    corecore