43 research outputs found

    Maximum interpolable gap length in missing smartphone-based GPS mobility data

    Get PDF
    Passively-generated location data have the potential to augment mobility and transportation research, as demonstrated by a decade of research. A common trait of these data is a high proportion of missingness. Naïve handling, including list-wise deletion of subjects or days, or linear interpolation across time gaps, has the potential to bias summary results. On the other hand, it is unfeasible to collect mobility data at frequencies high enough to reflect all possible movements. In this paper, we describe the relationship between the temporal and spatial aspects of these data gaps, and illustrate the impact on measures of interest in the field of mobility. We propose a method to deal with missing location data that combines a so-called top-down ratio segmentation method with simple linear interpolation. The linear interpolation imputes missing data. The segmentation method transforms the set of location points to a series of lines, called segments. The method is designed for relatively short gaps, but is evaluated also for longer gaps. We study the effect of our imputation method for the duration of missing data using a completely observed subset of observations from the 2018 Statistics Netherlands travel study. We find that long gaps demonstrate greater downward bias on travel distance, movement events and radius of gyration as compared to shorter but more frequent gaps. When the missingness is unrelated to travel behavior, total sparsity can reach levels of up to 20% with gap lengths of up to 10 min while maintaining a maximum 5% downward bias in the metrics of interest. Temporal aspects can increase these limits; sparsity occurring in the evening or night hours is less biasing due to fewer travel behaviors

    Hierarchical Path Finding to Speed Up Crowd Simulation

    Get PDF
    Path finding is a common problem in computer games. Most videogames require to simulate thousands or millions of agents who interact and navigate in a 3D world showing capabilities such as chasing, seeking or intercepting other agents. A new hierarchical path finding solution is proposed for large environments. Thus, a navigation mesh as abstract data structure is used in order to divide the 3D world. Then, a hierarchy of graphs is built to perform faster path finding calculations than a common A*. The benefits of this new approach are demonstrated on large world models

    Bundle-o-graphy: improving structural connectivity estimation with adaptive microstructure-informed tractography

    Get PDF
    Tractography is a powerful tool for the investigation of the complex organization of the brain in vivo, as it allows inferring the macroscopic pathways of the major fiber bundles of the white matter based on non-invasive diffusion-weighted magnetic resonance imaging acquisitions. Despite this unique and compelling ability, some studies have exposed the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. In this work, we describe a novel method to readdress tractography reconstruction problem in a global manner by combining the strengths of so-called generative and discriminative strategies. Starting from an input tractogram, we parameterize the connections between brain regions following a bundle-based representation that allows to drastically reducing the number of parameters needed to model groups of fascicles. The parameters space is explored following an MCMC generative approach, while a discrimininative method is exploited to globally evaluate the set of connections which is updated according to Bayes' rule. Our results on both synthetic and real brain data show that the proposed solution, called bundle-o-graphy, allows improving the anatomical accuracy of the reconstructions while keeping the computational complexity similar to other state-of-the-art methods

    Study and Development of Hierarchical Path Finding to Speed Up Crowd Simulation

    Get PDF
    We propose a new hierarchical path finding solution for large environments. We use a navigation mesh as abstract data structure to partition the 3D world. Then, we build a hierarchy of graphs that allow us to perform faster path finding calculations than a common A*

    Enabling garment-agnostic laundry tasks for a Robot Household Companion

    Get PDF
    Domestic chores, such as laundry tasks, are dull and repetitive. These tasks consume a significant amount of daily time, and are however unavoidable. Additionally, a great portion of elder and disabled people require help to perform them due to lack of mobility. In this work we present advances towards a Robot Household Companion (RHC), focusing on the performance of two particular laundry tasks: unfolding and ironing garments. Unfolding is required to recognize the garment prior to any later folding operation. For unfolding, we apply an interactive algorithm based on the analysis of a colored 3D reconstruction of the garment. Regions are clustered based on height, and a bumpiness value is computed to determine the most suitable pick and place points to unfold the overlapping region. For ironing, a custom Wrinkleness Local Descriptor (WiLD) descriptor is applied to a 3D reconstruction to find the most significant wrinkles in the garment. These wrinkles are then ironed using an iterative path-following control algorithm that regulates the amount of pressure exerted on the garment. Both algorithms focus on the feasibility of a physical implementation in real unmodified environments. A set of experiments to validate the algorithms have been performed using a full-sized humanoid robot.This work was supported by RoboCity2030-III-CM project (S2013/MIT-2748), funded by Programas de Actividades I+D in Comunidad de Madrid, Spain and EU and by a FPU grant funded by Ministerio de Educación, Cultura y Deporte, Spain. It was also supported by the anonymous donor of a red hoodie used in our initial trials. We gratefully acknowledge the support of NVIDIA, United States Corporation with the donation of the NVIDIA Titan X GPU used for this research

    A Shape-Aware Model for Discrete Texture Synthesis

    Get PDF
    International audienceWe present a novel shape-aware method for synthesizing 2D and 3D discrete element textures consisting of collections of distinct vector graphics objects. Extending the long-proven point process framework, we propose a shape process, a novel stochastic model based on spatial measurements that fully take into account the geometry of the elements. We demonstrate that our approach is well-suited for discrete texture synthesis by example. Our modelenables for both robust statistical parameter estimation and reliable output generation by Monte Carlo sampling. Our numerous experiments show that contrary to current state-of-the-art techniques, our algorithm manages to capture anisotropic element distributions and systematically prevents undesirable collisions between objects

    Efficient Image Segmentation and Segment-Based Analysis in Computer Vision Applications

    Get PDF
    This dissertation focuses on efficient image segmentation and segment-based object recognition in computer vision applications. Special attention is devoted to analyzing shape, of particular importance for our two applications: plant species identification from leaf photos, and object classification in remote sensing images. Additionally, both problems are bound by efficiency, constraining the choice of applicable methods: leaf recognition results are to be used within an interactive system, while remote sensing image analysis must scale well over very large image sets. Leafsnap was the first mobile app to provide automatic recognition of tree species, currently counting with over 1.7 million downloads. We present an overview of the mobile app and corresponding back end recognition system, as well as a preliminary analysis of user-submitted data. More than 1.7 million valid leaf photos have been uploaded by users, 1.3 million of which are GPS-tagged. We then focus on the problem of segmenting photos of leaves taken against plain light-colored backgrounds. These types of photos are used in practice within Leafsnap for tree species recognition. A good segmentation is essential in order to make use of the distinctive shape of leaves for recognition. We present a comparative experimental evaluation of several segmentation methods, including quantitative and qualitative results. We then introduce a custom-tailored leaf segmentation method that shows superior performance while maintaining computational efficiency. The other contribution of this work is a set of attributes for analysis of image segments. The set of attributes is designed for use in knowledge-based systems, so they are selected to be intuitive and easily describable. The attributes can also be computed efficiently, to allow applicability across different problems. We experiment with several descriptive measures from the literature and encounter certain limitations, leading us to introduce new attribute formulations and more efficient computational methods. Finally, we experiment with the attribute set on our two applications: plant species identification from leaf photos and object recognition in remote sensing images

    ABBA: adaptive Brownian bridge-based symbolic aggregation of time series

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-05-29, accepted 2020-05-14, registration 2020-05-14, pub-electronic 2020-06-03, online 2020-06-03, pub-print 2020-07Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/50110000026; Grant(s): EP/N509565/1Abstract: A new symbolic representation of time series, called ABBA, is introduced. It is based on an adaptive polygonal chain approximation of the time series into a sequence of tuples, followed by a mean-based clustering to obtain the symbolic representation. We show that the reconstruction error of this representation can be modelled as a random walk with pinned start and end points, a so-called Brownian bridge. This insight allows us to make ABBA essentially parameter-free, except for the approximation tolerance which must be chosen. Extensive comparisons with the SAX and 1d-SAX representations are included in the form of performance profiles, showing that ABBA is often able to better preserve the essential shape information of time series compared to other approaches, in particular when time warping measures are used. Advantages and applications of ABBA are discussed, including its in-built differencing property and use for anomaly detection, and Python implementations provided
    corecore