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a b s t r a c t 

Tractography is a powerful tool for the investigation of the complex organization of the brain in vivo, as it al- 

lows inferring the macroscopic pathways of the major fiber bundles of the white matter based on non-invasive 

diffusion-weighted magnetic resonance imaging acquisitions. Despite this unique and compelling ability, some 

studies have exposed the poor anatomical accuracy of the reconstructions obtained with this technique and chal- 

lenged its effectiveness for studying brain connectivity. In this work, we describe a novel method to readdress 

tractography reconstruction problem in a global manner by combining the strengths of so-called generative and 

discriminative strategies. Starting from an input tractogram, we parameterize the connections between brain 

regions following a bundle-based representation that allows to drastically reducing the number of parameters 

needed to model groups of fascicles. The parameters space is explored following an MCMC generative approach, 

while a discrimininative method is exploited to globally evaluate the set of connections which is updated ac- 

cording to Bayes’ rule. Our results on both synthetic and real brain data show that the proposed solution, called 

bundle-o-graphy , allows improving the anatomical accuracy of the reconstructions while keeping the computa- 

tional complexity similar to other state-of-the-art methods. 
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. Introduction 

First tractography algorithms for inferring the macroscopic fiber tra-

ectories, called streamlines, of the white matter (WM) were based on

local ” integration procedures of the fiber orientations estimated in each

oxel from the measured diffusion-weighted magnetic resonance imag-

ng data (DW-MRI). This approach is very fast but also rather sensitive

o estimation errors of the local orientations ( Mori et al., 1999 ). Maier-

ein et al. (2017) showed that such algorithms tend to follow the easiest

ath available in crossing regions, which represent the majority of WM

oxels ( Jeurissen et al., 2012 ), and thus fail to reconstruct some anatom-

cal bundles, i.e. false negatives. To deal with this inadequacy of trac-

ography to explore the whole space of brain connections, probabilistic

lternatives were proposed that use probability distributions estimated

n each voxel to allow uncertainty in the propagation of the trajectories.

hese methods have demonstrated their ability to recover hard-to-track

onnections and to cover the WM more adequately ( Côté et al., 2013 );

owever, this improved capability of exploring brain anatomy leads also

o the reconstruction of implausible fascicles that do not anatomically

xist, i.e. false positives. The effects of such false-negative and false-

ositive connections in tractography reconstructions has been recently
∗ Corresponding author. 

E-mail address: matteo.battocchio@univr.it (M. Battocchio) . 

ttps://doi.org/10.1016/j.neuroimage.2022.119600 . 

eceived 27 April 2022; Received in revised form 26 July 2022; Accepted 1 Septemb

053-8119/© 2022 Published by Elsevier Inc. This is an open access article under th
nvestigated and, in particular, Zalesky et al. (2016) have demonstrated

hat these spurious connections are detrimental to the study of brain

onnectivity networks and they can heavily bias all analyses based on

his technique. 

The advent of the so called “global ” tractography algorithms marked

n important milestone on the road to significantly improve the qual-

ty of the reconstructions. These approaches introduced the use of

lobal optimization to reconstruct the set of streamlines, i.e. trac-

ogram, that are most consistent with the acquired DW-MRI data and,

ndeed, the resulting reconstructions showed improved anatomical ac-

uracy ( Christiaens et al., 2015; Close et al., 2015; Fillard et al., 2009;

reher et al., 2008; Mangin et al., 2013 ; Reisert et al., 2011 ; ). First

olutions were based on Monte Carlo Markov Chain (MCMC) stochas-

ic procedures for constructing the optimal set of streamlines, but this

trategy turned out to be computationally very heavy given the large

mount of parameters that need to be optimized and do not ensure the

iological plausibility of the reconstructed connections ( Girard and De-

coteaux, 2012; Smith et al., 2012 ). 

One major step to reduce the complexity of this generative strategy,

hile keeping a global approach, was made with the introduction of

iscriminative approaches. The idea behind these methods is to iden-
er 2022 
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Fig. 1. Bundle-o-graphy workflow. Given an input tractogram the first step aims to reduce the number of streamlines needed to represent pathways between pairs 

of regions. Additionally, each streamline is parameterized using a subset of the initial points to approximate their trajectory. The second step is characterized by 

the shift from streamline to bundle-based representation. Here a volume is assigned to each streamline, allowing to mimic the contribution of a set of aligned fibers 

centered around the original trajectory. Finally the bundle-based configuration is optimized by adapting their shape and geometry following a MCMC optimization 

approach. 
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ify the optimal subset of streamlines from a pre-computed set of can-

idates, constructed using standard tractography algorithms, that are

ost compatible with the measured DW-MRI data; for this reason, they

re sometimes referred to as filtering methods ( Daducci et al., 2016 ).

ifferent formulations exist; for instance, in SIFT/SIFT2 ( Smith et al.,

013; 2015 ) streamlines are selected based on the agreement between

heir trajectories and the local fiber orientation distributions, whereas

he full measured DW-MRI data is considered in COMMIT/COMMIT2

nd LiFE ( Daducci et al., 2015; Pestilli et al., 2014; Schiavi et al., 2020 ).

hese discriminative methods allowed reducing the computational cost

equired to perform global tractography dramatically, and showed great

otential to further improve the quality of the reconstructions, notably

lleviating the problem of false positives as well as improving the bio-

ogical interpretability of the tractograms ( Jbabdi and Johansen-Berg,

011; Schiavi et al., 2020; Smith et al., 2020 ). However, unlike gen-

rative methods, they assume a static input configuration, i.e. shape /

osition of the candidate streamlines is fixed and cannot be modified,

hich means that the quality of the reconstructions remains indissol-

bly bounded to the quality of the algorithm used to build the candidate

athways. 

In this work, we present a hybrid method which allows inheriting

he strengths of both generative and discriminative approaches. Our so-

ution tackles tractography reconstruction from a different perspective:

he idea is to move away from streamline-based tracking with the aim to

irectly reconstruct bundles of them; for this reason we call it bundle-o-

raphy . Thanks to a convenient parameterization, we can model groups

f coherent streamlines using a minimal set of parameters which, in

urn, allows us to extend a state-of-the-art discriminative method, i.e.

OMMIT ( Daducci et al., 2015 ), with the possibility of efficiently adapt-

ng the configuration of the bundles as in generative approaches. Our

xperiments conducted both on synthetic and real data clearly indicate

he potential of our solution for improving the anatomical accuracy of

he reconstructions. 

. Methods 

The general structure of the algorithm is presented in Fig. 1

nd the general workflow takes inspiration from our previous

ork ( Battocchio et al., 2021 ). Bundle-o-graphy takes as input a trac-

ogram that can be the computed using any tractography algorithm, or it

an be the combination of different reconstructions. As first step, we di-

ide the input tractogram based on a GM parcellation. Each connection

s then clustered to reduce the number of streamlines by keeping only

he most representative ones, which are parameterized using splines. As

econd step, the resulting fibers are used as prior to represent fascicles
2 
f coherent streamlines aligned along each pathway, hence introducing

he concept of bundle-based representation. The set of bundles consti-

utes the configuration to optimize using an MCMC iterative approach,

hat allows to adapt their shape and extent along with the possibility to

dd and remove entire connections. The configuration is globally eval-

ated and the process is driven by a Bayesian framework to find the

ptimal configuration that best explains the observed signal. 

In the following, we provide more details about each stage of the

lgorithm. 

.1. Streamline reduction and simplification 

Streamline reduction is performed based on hierarchical clustering,

ollowing the approach implemented by Schiavi et al. (2020) . We first

ivide the streamlines with respect to anatomical information, in par-

icular based on the regions they connect given a cortical and sub-

ortical brain parcellation ( Fig. 2 A). Secondly, each group of stream-

ines is clustered based on geometrical criterion, in our case represented

y their average euclidean distance. To this aim, we exploit QuickBun-

le ( Garyfallidis et al., 2012 ) ( Fig. 2 B) to reduce the number of stream-

ines needed to represent connections between regions. The clustering

hreshold can be manually chosen by the user and for our tests, we set it

o 3 mm. Thanks to this procedure we can simplify the bundle represen-

ation and reduce the tractogram complexity. In particular, by removing

nwanted redundancy we are able to downsize the input tractogram us-

ng, on average, only the 2% of the initial set of streamlines. 

The resulting streamlines are then simplified to minimize the num-

er of parameters needed to represent each trajectory, as in the work

f Lemkaddem et al. (2014) , using the Douglas-Peucker reduction algo-

ithm ( Douglas and Peucker, 1973 ), which selects the minimal subset

f coordinates given an approximation threshold ( Fig. 2 C). We reduce

he number of coordinates to represent each streamline using between

 and 6 control points, in line with previous works ( Jbabdi et al., 2007;

emkaddem et al., 2014 ). The set of points is then interpolated using

 particular class of cubic B-splines, named Catmull-Rom ( Catmull and

om, 1974 )( Fig. 2 D), characterized by several desirable properties. First

f all, they preserve the starting and ending points, i.e. the first and last

oints remain the original ones, meaning that the original connectivity is

reserved giving the fact that the reduced streamlines connect the same

egions. Secondly, the interpolated trajectories intersect all the control

oints, which permits a better supervision of their spatial position and

o avoid the reconstruction of pathways outside white matter regions. 
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Fig. 2. Streamline reduction workflow: the first step implies separating the input tractogram into subsets based on a cortical and subcortical regions segmentation. 

Fig. 2 A is an example showing a set of projection fibers segmented based on Freesurfer atlas. Each connection is than clustered ( Fig. 2 B) keeping only the representative 

streamlines for each cluster. These are simplified using Ramer-Douglas-Peucker algorithm ( Fig. 2 C) which reduces the number of points needed to approximate the 

streamline trajectories. Finally these coordinates are interpolated using cubic b-splines ( Fig. 2 D). 
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.2. Bundle representation 

Once the input tractogram has been reduced and simplified, we as-

ign a volume to each streamline by exploiting a feature embedded in

OMMIT. In particular, each tract is considered as the centroid of a

ylinder, with constant radius, extending along the whole trajectory.

ollowing COMMIT formulation, the signal contribution of a streamline

an be computed based on the trajectory, i.e the voxel it traverses, and

he response function adopted. To extend the contribution of a stream-

ine to the neighbor voxels we create a set of replicas displaced equidis-

antly over concentric circles of increasing radius centered around each

oint of the fiber. These are computed internally, meaning that no fur-

her streamlines are added to the configuration. Starting in correspon-

ence of the initial point, all circles lie on a plane that is always or-

hogonal to the streamline direction. Each point of the replicas is then

omputed based on Frenet-Serret frames ( Frenet, 1852; Serret, 1851 )

hich allows to compute the displacement of the replicas’ following

oints along the streamline trajectory. The circles discretization, i.e.,

he number of replicas created, and the number of circles used to sample

he space are empirically fixed. The signal contribution corresponding

o the bundle is computed considering all the voxels traversed by the

entroid and its replicas. While the signal contribution is constant along

he trajectory, it can vary as we move outward from the center to take

are of uncertainty at the boundaries of the bundle. To do so we imple-

ented a blurring function , used to radially scale the signal contribution,

hown in Fig. 3 and defined as follows: 

 ( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 if 𝑥 < 𝜎𝐶 , 

exp 
( 

− 

( 𝑥 − 𝜎𝐶 ) 2 

2 𝜎2 
𝐺 

) 

otherwise. 
(1)

Based on Eq. 1 , the signal contribution of the bundle core, which

xtent is modulated by the parameter 𝜎𝐶 , is not scaled, while the signal

orresponding to the replicas falling farther is exponentially reduced

epending on the distance 𝑥 from the center according to a Gaussian

amping function regulated by 𝜎𝐺 . A more detailed description of the

undle creation process can be found in Daducci et al. (2021) . Following
3 
his implementation, bundle simulation turns into modeling the space

f influence of a streamline which requires only the parameter 𝜎𝐶 while

𝐺 is empirically fixed. 

.3. Optimization 

The resulting set of bundles constitutes the initial configuration to

dapt. More specifically, the collection of control points representing

ach bundle trajectory, along with their corresponding blur extent, con-

rolled by 𝜎𝐶 , represent the parameters to optimize. In particular, the

hape and the volume of each bundle is adapted following a generative

pproach, based on MCMC, which permits to exploit global information

o better adapt the reconstruction with respect to the underlying WM

tructure. Given the observed data 𝑑 and a set of competing models for

he data { 𝑀 𝑖 |𝑖 = 1 , 2 , 3 ... } , each defined by a set of parameters 𝜃𝑖 , we

an compute the posterior probability distribution function following

he Bayes’ theorem: 

 ( 𝑀 𝑖 |𝑑 ) = 

𝑝 ( 𝑑 |𝑀 𝑖 ) 𝑝 ( 𝑀 𝑖 ) 
𝑝 ( 𝑑 ) 

, (2)

here 𝑝 ( 𝑑|𝑀 𝑖 ) represents the likelihood of observing the experimental

ata given the model 𝑀 𝑖 , 𝑝 ( 𝑀 𝑖 ) is the prior probability of the model

arameters and 𝑝 ( 𝑑) is a normalizing constant. 

In this context, 𝑀 𝑖 represents the parametric representation of a set

f bundles defined by 𝜃𝑖 control points coordinates in the 3D space along

ith the corresponding blur extent 𝜎𝐶 , and 𝑝 ( 𝑑|𝑀 𝑖 ) scores how well the

onfiguration 𝑀 𝑖 explain the measured diffusion data 𝑑. 

At iteration 𝑖 , the probability of a given configuration is defined by

he following distribution: 

 𝑇 ( 𝑀 𝑖 ) = exp 
( 

− 

𝐸 𝐷 ( 𝑀 𝑖 , 𝑑) 
𝑇 𝑖 

) 

exp 
( 

− 

𝐸 𝑃 ( 𝑀 𝑖 ) 
𝑇 𝑖 

) 

, (3)

here, in our case, 𝑓 𝑇 represents the non-normalized joint distribution

 ( 𝑑|𝑀 𝑖 ) 𝑝 ( 𝑀 𝑖 ) ∝ 𝑝 ( 𝑀 𝑖 |𝑑) . (4)
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Fig. 3. Bundle simulation: the contribution of each original streamline can be modeled as a cylinder centered along the trajectory. The volume can be radially 

adapted using a blurring function to allow uncertainty as we move outward from the central pathway. The two parameters, 𝜎𝐶 and 𝜎𝐺 regulate the extent of the core 

and the Gaussian dumping respectively. 
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In particular, the first term, 𝑒 
− 𝐸 𝐷 ( 𝑀 𝑖 ,𝑑) 

𝑇 𝑖 , defines the likelihood func-

ion, while the second is independent from the measured data and de-

nes the prior probability. Finally 𝑇 𝑖 is the system temperature at it-

ration 𝑖 , a parameter used to speed up the convergence. The likeli-

ood function scores how well the bundles configuration explains the

bserved data. This is computed as the differences between the original

nd the reconstructed signal computed based on a local forward model.

n our case, instead of the full DW signal, we choose to fit the Intra-

ellular (IC) signal fraction using a simple forward model that assigns

 contribution, i.e., volume or cross-sectional area, to each bundle 𝑖 of

he input tractogram proportionally to its length 𝐿 𝑖 inside each voxel 𝑣 .

he voxel-wise signal can be expressed as: 

 𝑣 = 

𝑁 ∑
𝑖 =1 

𝑥 𝑖 𝐿 𝑖 , (5)

here 𝑁 is the number of bundles passing through the voxel and 𝑥 𝑖 rep-

esents the actual contributions of the bundle 𝑖 , estimated with COM-

IT, needed to explain the acquired data 𝑑. Based on Eq. 5 , the likeli-

ood becomes 

 𝐷 ( 𝑀 𝑖 , 𝑑) = 

√ √ √ √ 

( 1 
𝑉 

) 𝑉 ∑
𝑣 =1 

( 𝑆 𝑣 − 𝑑 𝑣 ) 2 , (6)

here 𝑉 is the number of voxels in the WM volume and 𝑑 𝑣 the measured

oxel signal. 

Our prior knowledge is represented by 𝐸 𝑃 ( 𝑀 𝑖 ) as follows: 

 𝑃 ( 𝑀 𝑖 ) = 𝜆|𝐵 𝑖 | + 𝛽|𝑀 𝑖 |, (7)

here |𝐵 𝑖 | represents the number of connections, in the configuration

 𝑖 , between pairs of regions of the cortical and subcortical parcellation

nd |𝑀 𝑖 | the total number of blurred streamlines, i.e. bundles, consti-

uting these connections. Finally, 𝜆 and 𝛽 are fixed parameters to con-

rol the regularization terms to balance likelihood and priors in the cost

unction. 

To maximize the posterior probability we adopted a MCMC

etropolis-Hastings-Green ( Green, 1995; Hastings, 1970; Metropolis

t al., 1953 ) sampling approach and Simulated Annealing ( Perrin et al.,

005 ) optimization to explore the space of parameters (see Fig. S1 in

he supplementary details for further details on the sampling efficiency

nd convergence). 

Given the current configuration 𝑀 𝑖 , a new configuration 𝑀 𝑖 +1 is ac-

epted with probability: 

 accept = 𝑚𝑖𝑛 (1 , 𝑅 ) (8)

here 𝑅 is the Green’s ratio 

 = 

𝑓 𝑇 ( 𝑀 𝑖 +1 ) 
𝑓 ( 𝑀 ) 

𝑝 ( 𝑀 𝑖 |𝑀 𝑖 +1 ) 
𝑝 ( 𝑀 |𝑀 ) 

𝑞( 𝑀 𝑖 +1 ) 
𝑞( 𝑀 ) 

, (9)

𝑇 𝑖 𝑖 +1 𝑖 𝑖 

4 
ith 𝑝 describing the probability density functions associated to the pro-

osal to move from configuration 𝑀 𝑖 to configuration 𝑀 𝑖 +1 , and 𝑞 is the

robability to choose one among the four proposals listed below: 

1. add connection 

2. remove connection 

3. refine trajectory 

4. change blur extent 

Regarding the first proposal, a new connection is added to the con-

guration by drawing randomly and uniformly from the set of connec-

ions 𝐴 ,which is composed by all the connections removed from 𝑀 dur-

ng the optimization. The associated probability density takes the form

 ( 𝑀 𝑖 +1 |𝑀 𝑖 ) = |𝐴 |−1 where |𝐴 | is the number of connections in 𝐴 . Con-

ersely, the removal of a connection from the configuration is equal to

he probability of uniformly sampling from the current configuration

 𝑖 , meaning 𝑝 ( 𝑀 𝑖 |𝑀 𝑖 +1 ) = |𝐵 𝑖 |−1 . The corresponding Green’s ratio be-

omes: 

 = 

𝑓 𝑇 ( 𝑀 𝑖 +1 ) 
𝑓 𝑇 ( 𝑀 𝑖 ) 

|𝐵 𝑖 |−1 |𝐴 |−1 𝑞 𝑟 𝑞 𝑎 
, (10)

here 𝑞 𝑟 and 𝑞 𝑎 are, respectively, the probabilities for choosing the Re-

ove and the Add transitions. 

While, for the first and second proposals, the probability density

unctions are asymmetric, meaning that 𝑝 ( 𝑀 𝑖 |𝑀 𝑖 +1 ) ≠ 𝑝 ( 𝑀 𝑖 +1 |𝑀 𝑖 ) , refin-

ng the trajectory and change the blur extent rely on normal probability

ensity functions, which are symmetric. In particular, the trajectory can

e adapted in two ways: by moving a single control point or by moving

he whole bundle. The first consists in sampling the plane orthogonal

o the bundle direction from a normal distribution of points centered

round the coordinates of each control point. For the movement of an

ntire bundle we use the same sampling approach, but extended to all

he control points. The last proposal randomly picks a bundle from 𝑀

nd adapts its blur extent, i.e the bundle cross-sectional area, by sam-

ling the new value of 𝜎𝐶 from a normal distribution. Given these sym-

etric proposals, the acceptance probability becomes proportional to

ow likely each of the current state 𝑀 𝑖 and the proposed state 𝑀 𝑖 +1 are

nder the full joint density. Hence, the Green’s ratio for these proposals

s given by: 

 = 

𝑓 𝑇 ( 𝑀 𝑖 +1 ) 
𝑓 𝑇 ( 𝑀 𝑖 ) 

. (11)

Based on the simulated annealing approach, at the beginning, the

ystem is characterized by a high temperature ( 𝑇 ), which decreases as

he process advances. High values of 𝑇 imply that “bad ” configurations

re accepted, allowing the system to explore a wider range of configu-

ations. In previous works, it has been shown how a geometric lowering
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chedule of the temperature ensures the convergence ( Lieshout, 1994;

errin et al., 2005 ) and, at the same time, improves the chances to sam-

le from maxima of 𝑃 ( 𝑀 𝑖 |𝐷) . Starting from a model 𝑀 𝑖 =0 , the space of

ts parameters is explored by altering the configuration. 

To better asses convergence we run two separate optimizations. In

he first case, the system is allowed only to add or remove connections

hile, in the second, all four proposals are adopted. 

.4. Data and Experiments 

To show the effectiveness of the method, we tested it on both syn-

hetic and real data. 

Synthetic data. We used the dataset provided for the IEEE Interna-

ional Symposium on Biomedical Imaging (ISBI) 2013 Reconstruction

hallenge ( Caruyer et al., 2014 ), which simulates an acquisition pro-

ocol with 64 directions at 𝑏 -value = 3000 s/mm 

2 , 1 mm isotropic voxel

nd signal-to-noise ratio of 30. This dataset consists of 27 fascicles ar-

anged in a configuration mimicking most of the challenging bundle

onfigurations that can be found in the brain, like bundles with various

iameters branching, kissing and crossing at different angles. From the

ignal reconstruction point of view, the phantom reproduces both par-

ial volume effects, given by the presence of multiple fiber compartments

ithin the same voxel and cerebrospinal fluid (CSF) contamination. We

erformed streamline reconstruction with three different tractography

lgorithms iFOD2 ( Tournier et al., 2010 ), SD_Stream ( Tournier et al.,

012 ), Trekker ( Aydogan and Shi, 2021 ), generating 1 million stream-

ines using default parameters for each. We divide the tractograms into

undles based on the parcellation provided with the dataset and then

erformed clustering to reduce the number of streamlines used to rep-

esent each connection. 

In vivo brain data. We also evaluated bundle-o-graphy on in vivo

uman data from the HCP test-retest dataset ( Van Essen et al., 2013 ).

e downloaded the preprocessed diffusion data corresponding to sub-

ect 172332 and the structural T1-weighted image with the correspond-

ng standard Desikan-Killiany ( Desikan et al., 2006 ) parcellation in

5 gray matter ROIs performed with FreeSurfer ( Fischl et al., 2004 ).

o do so, we first segment the T1-weighted image using FMRIBs au-

omated segmentation tool ( Zhang et al., 2001 ) to derive the multi-

issue image. This allowed performing the tissue-informed multi-shell

pherical deconvolution and to recover the fiber orientation distribu-

ions ( Jeurissen et al., 2014 ). We performed three whole brain recon-

tructions, using SDStream, iFOD2 and Trekker. For the deterministic

nd probabilistic methods we perform anatomically constrained tractog-

aphy ( Smith et al., 2012 ) with default parameters, generating 3 million

treamlines, while, for Trekker, we used the white matter mask as the

eed region for the tracking, generating 1 million streamlines. 

.5. Evaluation metrics 

For each dataset we computed the IC signal fraction maps in

ach voxel. Different models can be used for the estimation, as stan-

ard models like neurite orientation dispersion and density imag-

ng (NODDI) ( Zhang et al., 2012 ) or spherical mean technique

SMT) ( Kaden et al., 2016 ), implemented as open-source available at 1 .

e believe that the choice of the model to use does not affect the va-

idity of our method and, in our case, we arbitrarily decided to use the

MT. 

For the synthetic dataset we processed the three input tractograms

nd computed the total white-matter overlap based on the correspond-

ng IC maps, i.e., the total percentage of WM volume covered by the

treamlines. For all the reconstructions, we investigated the connectiv-

ty, reporting the strength and the L1- and L2-distances between esti-

ated and ground-truth (GT) connectivity matrices. In our case, a ma-
1 https://github.com/ekaden/smt 

t  
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5 
rix entry reflects the connectivity strength between two regions, de-

ned as the sum of the bundles cross-sectional area each multiplied by

he corresponding weight estimated by COMMIT from the fiber den-

ity map. We assessed the number of true positive connections (TPCs),

.e., number of connections between pair of regions known to be con-

ected and the false positives connections (FPCs), i.e., the number of

hose connecting regions known to be disconnected. We also reported

he connectivity estimation focusing on a well known hard-to-track con-

ection along with the WM coverage computed by segmenting the the

M mask to isolate that specific connection. Then, we carried the same

nalysis on the resulting configuration showing the effects of bundle-o-

raphy optimization. 

For the in vivo brain dataset, we compared the estimated IC maps

omputed by COMMIT and the signal fitting root-mean-square-error

RMSE) corresponding to the three reconstruction before and after the

pplication of bundle-o-graphy. We also carried out analysis focusing on

hree major connections, Corpus Callosum (CC), Pyramidal Tract (PyT)

nd Arcuate Fasciculus (AF), reporting the corresponding estimated IC

aps before and after the optimization along with their WM coverage. 

. Results 

A visual inspection of the impact of bundle-o-graphy is shown in

ig. 4 . The first row shows the IC maps estimated by COMMIT from

he static reconstructions, performed with the three tractography algo-

ithms, of a well known hard-to-track connection. We also reported the

espective connectivity strength and WM overlap. On the second row the

orresponding results of the optimization with bundle-o-graphy. Start-

ng from an underrepresented connection, the method is able to better

istribute the streamlines inside the WM volume and adapt their spatial

xtent, converging to the same connectivity value across tractograms

omputed with different methods. Table 1 is a summary of the results on

he synthetic dataset. Quantitatively, bundle-o-graphy allows to reach

ull coverage of WM using less then 2 % of the input streamlines. The

mpact is particularly notable on the hard-to-track connection between

egion 5 and 6, where the WM coverage increases by almost three fold

or SD _ STREAM after the adaptation. This, in turn, allows to better esti-

ate its connectivity strength, which converges to similar values across

he three adapted configurations. At global level, the presented method

rastically reduces the number of false positives while all the true posi-

ives connections are preserved (see Fig. 5 ), which, in turn, is reflected

y the decrease in L1 and L2 connectivity distances with respect to the

T. 

Results on in vivo dataset are shown in Fig. 6 and Fig. 7 . The first

hows a comparison between the signal fitting error associated to the

hree input tractograms before (first row) and after bundle-o-graphy op-

imization (second row). In all three optimized tractograms, the reduc-

ion in the RMSE is coupled with an improved streamlines density esti-

ation, as can be see in Fig. 7 (second row). Thanks to bundle-o-graphy

e are able to increase the overall WM coverage while improving den-

ity homogeneity at the same time. Fig. 8 shows the results focusing on

hree specific tracts, comparing the reconstructions before and after the

pplication of bundle-o-graphy. For each connection we computed the

C maps using COMMIT, reporting in the first row those corresponding

o the input and in the second row the adapted configurations. The bun-

les adaptation allows to improve the tracts WM coverage while better

epresenting the underlying anatomy, converging to connections that

hares similar signal density patterns along their trajectories. For the

eterministic tractogram, bundle-o-graphy increases the tracts volume

y three folds, while, for the input tract recovered using iFOD2 and

rekker, the improvement is by two folds on average. As for the syn-

hetic dataset, bundle-o-graphy complexity reduction allows to achieve

hese results using a fraction of the initial number of streamlines, in par-

icular around 7% for SD _ STREAM, 32% for iFOD2 and 16% for Trekker.

inally, Fig. 9 shows the comparison between the cortical surface projec-

ions of the CC tract corresponding to the input reconstruction (first row)



M. Battocchio, S. Schiavi, M. Descoteaux et al. NeuroImage 263 (2022) 119600 

Fig. 4. Impact of the optimization on different reconstruction algorithms on the synthetic phantom. On the first and second row are the intra-cellular signal fraction 

maps corresponding to the vertical hard-to-track connection of the input and optimized configurations respectively, viewed from two different perspectives. 

Table 1 

Summary table of the comparison between SD _ STREAM, iFOD2 and Trekker reconstructions before and after the optimization on the synthetic dataset.The size 

corresponds to the number of input streamlines for the static case, where only those connecting were kept, while it refers to the number of bundles for the adaptive 

one. The metrics include the total WM overlap and the one corresponding to a hard-to-track connection along with its estimated connectivity strength. Bundle-o- 

graphy improves overall white matter coverage and improves connection-specific and global connectivity estimation. The optimized tractograms present a reduced 

number of FPCs, while keeping all the TPCs. 
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nd the respective optimized connections. The results show how sub-

ortical WM volume coverage is coupled with a significantly improved

ortical projection extent. 

. Discussion 

Results on both synthetic and real data show the impact of our

undle-based approach. Bundle-o-graphy is able to improve the sen-
6 
itivity/specificity trade-off of tractography by considering two funda-

ental observations, as previously done by Schiavi et al. (2020) , about

rain anatomy to drive the adaptation process: (i) Streamlines can be

quantified ” based on the underlying microstructure, and (ii) the WM

tructure is organized into bundles ( Rheault et al., 2019; Schilling et al.,

020; Wasserthal and Neher, 2018; Wasserthal et al., 2019 ). To achieve

hat we exploit two priors: the first, |𝐵 𝑖 |, minimizing the total num-

er of connections and the second, |𝑀 𝑖 |, to specifically leverage the
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Fig. 5. Impact of the optimization on the removal of false positives connections. The connectivity graphs show in red the connections between pair of regions if they 

represent false positives connections or in green if they correspond to true positive ones. In the first row are the connectivity graphs of the input tractograms, while 

on the second row are the connectivity evaluated after bundle-o-graphy optimization. 

Fig. 6. Comparison between the voxel-wise RMSE maps corresponding to the input tractograms computed with the three different reconstruction algorithms (first 

row) and the adapted configurations (second row). 

7 
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Fig. 7. Comparison between the estimated IC maps of the input tractograms (first row) and the adapted configurations (second row). 
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bility of the blur to reduce the complexity of the problem. In fact,

he empirical image data can be equally explained using a configura-

ion with many streamlines without blur, or using a configuration with

ewer streamlines which have a blur associated to them (i.e. bundles).

learly, this configuration requires less parameters to be estimated, and

his second priors promotes this type of solutions (see Fig. S2 in the sup-

lementary materials for further details on the impact of the priors in

he optimization process). In this context, it’s important to notice that

dding/removing a connection and changing the 𝜎𝐶 value of a bundle

oes not have the same effect because they act at two different levels.

he first allows for the addition or removal of the whole set of bun-

les representing a connection between two regions, while the second

dapts the extent of an already existing bundle. For instance, a missing

onnection can be recovered only by adding a bundle, because the over-

ap between bundles belonging to a neighbor connection is limited and

oes not cover the whole extent of a connection. 

With COMMIT2, Schiavi et al. (2020) achieve notable results by us-

ng a linear optimization approach but, differently from their work and

iscriminative methods in general, bundle-o-graphy is capable of im-

roving tractography reconstructions by adapting the shape and the

osition of each bundle. The adaptation performed by the presented

ethod has many benefits, both qualitatively and quantitatively. The

rst advantage is crucial in the case of WM pathways poorly recon-

tructed and hence underrepresented, as shown in Fig. 4 , where, thanks

o bundle-o-graphy, we were able to isolate and improve the recon-

truction of the connection. In the second case, the removal of invalid

onnections and the bundles adaptation in terms of geometry and ex-

ent, allows to be remarkably independent from the tractography al-

orithm used to compute the initial set of streamlines, converging to

imilar connectivity estimates. Moreover, the possibility to represent

roups of streamlines as set of packed and aligned fascicles leads to a

ore homogeneous and smooth tract density (see Fig. 7 ), which reduces

he variability introduced by tracking algorithms. This is particularly

vident for connections going through or passing by hard-to-track re-

ions, where tractography algorithms are known to have challenges (see

ig. 6 ). 
8 
The idea of direct modeling groups of streamlines has been already

xplored in previous works, as in Close et al. (2015) . However these

ethods often rely on many empirically tuned parameters to shape the

eometry of the bundle and to compute the corresponding signal as well

s the fact that the initial setup for each bundle need to be manually

efined and they cannot reconstruct multiple bundles at once. 

In our case, we don’t aim to represent complex configurations with

ingle bundles but, instead, modeling groups of streamlines by adopting

 convenient parameterization. Following our approach, a connection

etween two regions is reconstructed using a set of bundles that, in the

ase of complex architecture, e.g fanning, allows to properly represent

he whole extent of the tract, as shown in figure S6. One of the crucial

tep to reducing the number of parameters is represented by the stream-

ines reduction, described in section 2.1 , coupled with the blur function

hat allows us to model groups of similar streamlines with much fewer

arameters. The amount of streamlines kept, constituting the configura-

ion we need to adapt, is influenced by three main factors: the input trac-

ogram, the parcellation used and the clustering threshold applied. The

mount of pathways reconstructed, either true or false positives, highly

epends from the tracking algorithm used to compute the inital trac-

ogram (see Fig. 5 first row). This fact, along with the adoption of atlases

ith different parcellation resolution, affects the initial total number of

onnections. Lastly, the clustering threshold used affects the number of

epresentative streamlines extracted for each connection. In our exper-

ments, using standard Desikan-Killiany atlas and clustering threshold

f 3 mm, we reported a drop of 98% in the number of streamlines. The

eduction in the number of coordinates to represent the streamlines is

nother fundamental step. This is combined with the interpolation using

olynomial curves that closely follow the original anatomical trajectory.

n Supplementary Fig. S4 we show how the fitting error changes with

espect to the number of control points used to simplify the input stream-

ines on the synthetic phantom. In particular, we can see how the fitting

rror increases exponentially as we progressively reduce the number of

ontrol points. In our case, we chose an average number of 6 control

oints per streamline, shown by the blue vertical line, which represents

 good trade-off between fitting error and parameters reduction. Control
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Fig. 8. Comparison between the IC maps, estimated with COMMIT, corresponding to the CC, PyT and AF reconstructed with the three different tractography 

algorithms. For each method, the first row shows the the connection segmented from the input tractogram while the second reports the connection segmented from 

the adapted one. The last column shows the corresponding visual inspection of the volume and geometry of the tracts. The visualization is performed in the same 

way and the thickness is related to the blur extent regulated by 𝜎𝐶 . 

9 
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Fig. 9. Comparison between the cortical projections of the CC tracts segmented 

from the input tractograms computed with the three different reconstruction 

algorithms (first row) and the respectively adapted connections (second row). 

p  

p  

t  

g  

fi  

r  

𝜆  

u  

a  

w  

i  

t  

t  

a  

t  

t

 

s  

c  

F  

t  

i  

fi  

fi  

o  

c  

p  

i  

t  

r  

i  

i  

p  

o  

t  

t  

d  

t  

a  

d  

s  

b  

t  

i  

n  

p  

a  

e  

a  

fi  

t  

t  

i  

d  

c

5

 

o  

a  

c  

o  

c  

t  

g  

t  

s  

t

 

t  

a

A

 

i

S

 

t

R

A  

A  

 

B  

 

 

C  

 

C  

 

C  

 

C  

 

 

C  

 

 

oint reduction is crucial for bundles trajectory adaptation. In fact, the

ossibility to model a pathway with few control points reduces notably

he parameters space that need to be explored, speeding up the conver-

ence. To furthermore reduce the computational cost, we empirically

xed some of the parameters. In particular, the Gaussian dumping, rep-

esented by 𝜎𝐺 , the two parameters controlling the regularization terms

and 𝛽 and the initial system temperature 𝑇 . The first is used to model

ncertainty on the borders of a bundle and, if set to zero it means that

ll the segments within the extent of the bundle contribute in the same

ay. The parameters 𝜆 and 𝛽 are used to balance likelihood and priors

n the cost function, while the initial temperature 𝑇 is used to regulate

he speed of convergence of the optimization process. Although moving

o a simplified parametric representation of the input tractogram could

ffect the quality of the reconstruction, our results show how, thanks to

he bundle simulation and adaptation, we were able to equivalently fit

he data (see Fig. 6 and 7 ). 

While the reconstruction method used to compute the initial set of

treamlines still influences the performances, our approach allows to

onverge to similar connectivity and WM density patterns as shown in

ig. 4 and 8 . The differences between the resulting bundles configura-

ions can be explained by two main factors: initial number of false pos-

tive connections and reconstruction quality of the valid ones.While the

rst mostly impact the computational time, requiring more iterations to

lter out the implausible connections, the second can affect the quality

f the reconstruction. In our case, iFOD2 has a better initial coverage

ompared to SD _ STREAM but its polluted by a greater amount of false

ositives, while true positives connections are still poorly reconstructed

n correspondence of hard-to-track regions. In the case of valid connec-

ions particularly underrepresented, this implies that to cover the WM

egions some of the invalids need to be kept to explain the signal, even

f this is notably alleviated thanks to the adaptation and consequent

mprovement of the true positives coverage. The input tractogram com-

uted using Trekker, although being characterized by a huge amount

f false positives, provides a better support by properly recovering the

rue positives connections, allowing the algorithm to successfully iden-

ify and discard all the false ones. This is possible thanks to a global

iscriminative approach that allows to evaluate the bundle configura-

ion as it is adapted throughout the optimization process. In our case we

dopted COMMIT framework but bundle-o-graphy supports any global
10 
iscriminative method that returns a fitness measure between the recon-

tructed and the observed signal. Moreover, thanks to its formulation,

undle-o-graphy facilitates the embedding of prior information to drive

he reconstruction. For instance, these information can be exploited to

ntroduce hierarchies between streamlines belonging to the same con-

ection, as in COMMIT2tree Ocampo-Pineda et al. (2021) , further im-

roving our ability to filter out false positives connections. Currently, the

lgorithm starts from a large precomputed set of streamlines. Although

fficient, this approach requires that the initial configuration contains

ll the true positive connections, a condition that is not always satis-

ed. A solution is to combine reconstructions computed with different

echniques to avoid false negatives or to add a module that performs on-

he-fly tracking, as the one implemented by Aydogan et al. (2021) . This

s part of future works, including the exploitation of priors coming from

ifferent imaging modalities, as in the work of Schiavi et al. (2022) , that

an be integrated in different ways. 

. Conclusions 

Although tracking algorithms have shown a notable evolution, state-

f-the-art streamline reconstructions are still anatomically inaccurate

nd difficult to reproduce, limiting their potential to study white matter

onnectivity which is fundamental to characterize the healthy structure

f the human brain, as well as its perturbation in disease. Thanks to a

onvenient parameterization, bundle-o-graphy allows to combine both

he potential of filtering techniques with the flexibility of generative

lobal optimization approaches. We demonstrated the feasibility and

he effectiveness of bundle-o-graphy both on synthetic and in vivo data,

howing how bundle-o-graphy can improve the biological accuracy of

he reconstruction regardless the input data. 

We believe that our method could represent a step forward in charac-

erizing and quantifying the structural connectivity by combining micro

nd macro-structure information. 
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