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Abstract—Automated vehicles are a desirable technology since
they have the potential to significantly increase road safety and
additionally bring several environmental benefits. To achieve
fully automated vehicles, it is imperative that an accurate
world model is available uninterruptedly. To that end, current
research focuses on efficient extraction of landmarks collected
by several on-board sensors, which can be used to localize
the ego vehicle accurately given a previously constructed map
of the environment. However, these approaches are susceptible
to unreliable (e.g. due to sensor failure or adverse weather
conditions) or outdated (e.g. due to temporary road work) sources
of information, and if a sufficient number of landmarks is not
detected, they fail to meet the stringent requirements of a typical
automated driving application. In this work, a novel method for
robust drivable space estimation from a limited number of inputs
is proposed, which ensures the availability of a minimal road
model that is consistent with the current driving situation and
that can be used for in-lane localization. To model the drivable
space, semantic information of high-level sensed objects and
assumptions based on domain knowledge are used to estimate
the drivability of the space surrounding each object. These
estimations are modeled as a probabilistic graph to account
for the uncertainty of information from different sources, and
an optimal spatial configuration of its elements is achieved via
graph-based Simultaneous Localization and Mapping (SLAM)
optimization. The robustness of the proposed method towards
missing or unreliable inputs of different qualities has been tested
extensively in a simulation environment. The results achieved
in our simulations show improved robustness towards these
challenging conditions, and the recovered drivable space allows
for accurate in-lane localization of the ego vehicle, even in
extreme cases where no prior knowledge of the road network
is available.

I. INTRODUCTION

Automated vehicles (AVs) have several benefits that have
made them a research focus in recent years. Not only do AVs
have the potential to increase road safety [1], but they also
have additional benefits such as higher traffic throughput [2],
fewer CO2 emissions and better fuel efficiency [3].

A typical AV architecture consists of three main modules:
world modeling, planning and control. To plan and carry out
the most suitable course of action while sensing the environ-
ment, it is crucial to construct a coherent world model that
accurately captures the physical environment surrounding the
vehicle. Such a world model consists of several components,
including a road model and the ego location within it. To
achieve higher levels of automation (i.e. levels 3 and higher
of the SAE scale [4]) it is of utmost importance to have an
accurate representation of the world model, and therefore an
accurate road model and ego location are required at all times.
A common approach in automated driving (AD) to achieve
the required accuracy in localization and road model is to first
build detailed maps offline, mainly considering the geometry
of road elements and surrounding static objects. Many tech-
niques are available to extract road geometry and construct
these maps, including (i) analysis of aerial images [5], (ii)
recorded GPS trajectories [6]–[9], or (iii) deployment of probe
vehicles equipped with various perception sensors such as
cameras and LiDARs [10]. After the detailed map containing
all the static features of the environment has been constructed,

detected landmarks when driving are matched against the
previously built map to locate the vehicle within it. These
approaches allow accurate localization, but have several lim-
itations. First, if the environment changes (e.g. construction
work, temporarily blocked lanes, or newly constructed roads),
the previously known map becomes outdated and another map-
ping process is required. Furthermore, depending on the level
of detail in the constructed map this might not be sufficient,
especially for urban environments in which centimeter level
localization accuracy is required. In turn, if a very detailed
map is used, this typically incurs a heavy computational and
storage burden [11] or if the map is retrieved on-the-fly, long-
lasting connectivity issues become a challenge.

Alternative map formats have been proposed to address
these limitations [12]–[15]. These map formats group all
the elements of the environment into different layers, which
allows dynamically adjusting the level of detail required by
the application and enriching static map information with
highly dynamic objects such as other road users. These map
formats rely on the assumption that the perception module
is able to provide sufficient inputs to generate the world
model. However, upon sensor failure (e.g. connectivity issues
impeding the timely retrieval of an updated map) or other
complications (e.g. adverse weather conditions complicating
the detection of nearby landmarks for localization), the AV
is unable to generate an accurate world model and cannot
continue to operate.

To overcome these limitations, this work introduces the
foundations of a novel method that allows estimation of the
drivable space from a scarce number of inputs, even when
some sources of information are unreliable or unavailable.
To estimate the surrounding drivable space, the proposed
method exploits semantic information of sensed objects and
AD domain knowledge (e.g. an observed vehicle is most likely
driving on a road, there are roads near traffic lights, etc.) to
construct a probabilistic road model from the ego point of
view. The sensed objects that are the inputs to our algorithm
are high-level landmarks resulting from the fusion of sensor
data from multiple sensors and other sources of information
(i.e. a map). Since the method estimates the drivable space
solely from already fused sensor inputs, it can be easily
incorporated in the architecture of a typical AV, as shown in
Figure 1. Introducing this component in the architecture of
the system ensures the availability of a minimal road model,
which can be used for accurate estimation of the ego position
with respect to the reference line of the lane it is currently
occupying. In this work, this lane-relative position estimation
is referred to as in-lane localization. Using the reconstructed
drivable space for accurate in-lane localization allows for
the continued automated operation of the vehicle even under
challenging conditions.

This paper is structured as follows. The remainder of this
section is dedicated to introduce the research questions and
highlight the contribution of this work. Section II presents
an overview of related techniques and required background
knowledge. Section III elaborates on the method proposed in
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Fig. 1. Typical architecture of an AV (simplified) including our proposed Domain Knowledge-based (DKB) drivable space estimation. Raw input data is
processed to construct a world model, which is used to plan and execute the most suitable course of action. Our proposed DKB drivable space estimation
ensures availability of a road model and ego localization within it, and in future work it can be used to notify the map provider of outdated road information
immediately. Note that the components depicted with a dashed line are currently not part of the pipeline in our experiments.

this work. Section IV describes in detail how the experiments
are carried out, and the different performance metrics used
to evaluate the proposed method. Section V is dedicated to
present and discuss the experiment results. Finally, Sections
VI and VII conclude on the main findings and propose
interesting research directions for future work. Additionally,
several appendices are available, which provide supplementary
material (e.g. results of all our experiments) and detailed
explanations (e.g. motivation for choice of simulator).

A. Research Questions

This work aims to develop a method that is able to combine
data from multiple sensors and sources of information with AD
domain knowledge to estimate the drivable space around the
ego and provide in-lane localization. Furthermore, this method
should be robust to sensor failures and adverse conditions
to ensure availability of the drivable space. To that end, we
investigate the following:
1) How can sensor data of different types and qualities

from the ego vehicle be incorporated with AD domain
knowledge to reconstruct the drivable space?

2) How can the ego vehicle be localized in the reconstructed
drivable space?

3) How does incorporating AD domain knowledge improve
robustness of drivable space reconstruction and ego local-
ization towards missing or unreliable information sources?

B. Contribution

The contribution of our work is threefold:
1) Building a road model not only from geometric features

of detected landmarks, but exploiting semantic information
from high-level sensed objects and AD domain knowledge
to ensure availability of a minimal drivable space which is
consistent with the current driving situation.

2) Accurate estimation of the ego position with respect to the
reference lane of the lane it is currently occupying (i.e.
in-lane localization), using the proposed drivable space
reconstruction.

3) Enhanced robustness towards missing or unreliable infor-
mation sources by not linking the position of the ego

vehicle to an existing map for localization, but building the
map online in a Simultaneous Localization and Mapping
(SLAM) framework, thus ensuring availability of a mini-
mal road model that can be used for in-lane localization.

II. BACKGROUND & RELATED WORK

This section provides an overview of techniques commonly
employed for drivable space modeling in AD. Section II-A
describes different space representations used by mobile robots
to construct a world model. Next, Section II-B elaborates on
techniques used specifically for lane-level model generation
for AD applications. Finally, in Section II-B, an overview of
SLAM is presented, which is a method that allows a robot to
navigate in unknown environments, and therefore it is robust
to situations where an up-to-date map of the environment is
not available.

A. Drivable space

Drivable (or driving) space is a minimal representation of
the world required by an AV to have an understanding of its
surroundings and plan the most suitable course of action. For
AD applications, this minimal representation must accurately
capture all the relevant elements that allow a vehicle to
operate safely, and being able to capture as much of this
information as possible in an efficient manner has been a
research focus in recent years. For example, the authors of [16]
distinguish between three types of drivable space: grid, feature
and topological space.

Grid maps segment the entire surrounding space into a grid,
and each grid cell encodes the probability of that cell being
occupied. This space representation was initially proposed by
Elfes in 1987 for robotics research [17], and it is widely
used in AV applications. Current research using uniform grids
typically considers a cell size of 20 cm [18]–[20] since it
is small enough to capture all the relevant elements in the
driving environment. The main disadvantage of this space
representation is its heavy storage and computational burden,
although alternative representations addressing this issue exist,
such as quadratic trees [21].
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On the other hand, feature maps do not cover the entire
space, and only some objects of the environment are captured,
which are typically represented by their poses and shapes.
Feature maps are often used in SLAM [22]–[25]. In AD
applications that use feature maps, the features represent traffic
elements, such as lane markings, other vehicles, or pedestrians.

Topological maps focus on the relationship between el-
ements in the map, rather than their exact positions. For
instance, from element A we can reach elements B and D,
but not C. A purely topological space is not suitable for AD,
since it does not capture the detailed geometric information of
the environment required by an AV, and extracting this geo-
metric information from a topological representation remains a
challenge. Topological representation is most commonly used
to capture the connectivity between road and lane segments
in navigation maps, or as an intermediate representation in
approaches that generate a grid or feature space, as is the case
in graph-based SLAM [26], [27].

B. Maps & Drivable Space Models for Automated Driving

An overview of drivable space estimation methods specifi-
cally designed for AD applications is provided in this section.
Section II-B1 reviews the most common sensors equipped in
an AV that are used for this task. Section II-B2 provides an
overview of how sensor data is exploited to construct detailed
lane-level road models. Finally, Section II-B3 describes how
state of the art models enrich static information from road
models with all available information about the driving envi-
ronment.

B.1 Sensors for Lane-Level Localization & Mapping

A typical AV may be equipped with several sensors that
extract information of its environment to generate a model of
the drivable space and additionally localize the vehicle in it.
The authors of [10] differentiate two categories of sensors:
position and perception sensors.

Position sensors include systems such as Global Navigation
Satellite System (GNSS) or Inertial Navigation System (INS).
GPS is a common type of GNSS which is cheap and easy to
equip in any vehicle, however, it is not sufficiently accurate
for AD applications. For instance, the U-blox EVK-6T has
meter-level accuracy [28]. On the other hand, INS sensors
are accurate (e.g. NovAtel SPAN-CPT or OXTS RT3000 are
accurate to centimeter level [29], [30]), but they are too
expensive to equip in series-production passenger vehicles.

Perception sensors include systems such as lasers scanner,
cameras and radars. Laser scanners (i.e. LiDARs) are able
to capture detailed measurements of the physical objects in
the environment, but these sensors are expensive and generate
vast amounts of raw data that need to be processed efficiently
to take advantage of them in real-time. On the other hand,
cameras are low-cost and have received much attention in
the computer vision community for many tasks in recent
years, including lane extraction [31]. However, cameras are
sensitive to weather conditions, and depending on the setup
suffer from some additional disadvantages: single camera

systems do not provide any depth information, stereo camera
systems have limited field of view and multi-camera systems
are computationally heavy [10]. Finally, radars are widely
used sensors for AD, since they are low-cost and additionally
provide accurate object detection without being affected by
weather conditions like cameras and LiDARs. However, their
lower resolution in object detection compared to LiDARs does
not make them a desirable technology for detailed lane-level
mapping.

B.2 Road Geometry Extraction for Lane-Level Mapping

Depending on the sources of information considered, the
various approaches to lane-level road geometry extraction can
be classified in three categories: trajectory-based, point cloud-
based and vision-based [10].

Trajectory-based methods extract lane centerlines from po-
sition sensors, such as single GPS trajectories [6], or multiple
crowdsourced GPS trajectories [7], [9], [32]. These methods
are computationally cheap, but have the disadvantage of reach-
ing only meter-level accuracy.

Alternatively, point cloud-based methods extract lane
boundaries instead of lane centerlines from laser sensor data.
These methods either (i) extract lane boundaries directly
from point cloud data (e.g. setting reflectivity thresholds [33],
[34] or using deep learning approaches such as convolutional
neural networks [35]); or (ii) first generate a georeferenced
feature image and apply a feature extractor such as Hough
transform [33].

Vision-based methods extract lane boundaries from camera
data using either (i) feature-based methods, which exploit lane
marking features such as color or width [36]; (ii) model-
based methods, which focus on the mathematical model of
lanes [37]; or (iii) deep learning approaches, which have
become popular in recent years due to their high lane detection
accuracy in complex scenarios [38].

Once the geometry of lanes is extracted, a lane-level road
network is modeled. Automation of lane-level road network
modeling from geometric features is a challenging task, and
it is currently a research focus [10], [39], [40]. Several
possibilities for lane modeling are available, including simple
straight lines, arc curves, or more elaborated types of curves
such as splines or clothoids. Straight lines require little com-
putation and are the preferred approximation when the road
segment is nearly straight. Arc curves are commonly used
in circle-like intersections, such as roundabouts, due to low
computational requirements compared to other curves. More
elaborated curves offer higher flexibility for irregular curves,
but it is often costly to create them.

Standards exist providing guidelines for describing elements
of the map accurately for autonomous vehicles. Some exam-
ples of such standards are OpenDRIVE [41], RNDF [42], and
NDS [43] or its reduced non-commercial release Open Lane
Model (OLM) [44]. These standards are followed to create
what is now known as HD maps. As opposed to traditional
navigation maps where road-level details suffice, HD maps
include information at the centimeter scale, and capture details
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such as lane boundaries, steepness of the road, and much more.
Despite their accuracy, HD maps typically only capture static
information, and fail to model the highly dynamic environment
in which self driving vehicles operate, hence HD maps are a
required input but not the only source of information required
by a fully automated vehicle. This topic has been a research
focus in recent years, in order to efficiently deal with a rapidly
changing environment, while still maintaining the level of
detail required for AD.

B.3 Enhancing Static Maps: Layered Models

To overcome the limitations posed by purely static maps
and create a more representative model of the environment,
numerous models extending base static maps have been pro-
posed. These models are significantly different from each
other, however, they have one common feature: their ele-
ments are grouped into layers, typically in increasing level
of complexity. For instance, HERE, a company that provides
mapping and location services, groups this information in
three main layers [12]: a base mapping layer contains detailed
road geometry information (i.e. the HD map), a dynamic
layer captures short-term changes in the environment, and
an analytics layer captures how humans typically behave
in any given road segment. Lyft is a ride-sharing company
investing in AD research, and their maps are organized into
5 layers [13]: base, geometric, semantic, map priors, and
real-time layers. The authors of [14] go one step further
and model the driving environment using seven layers: road,
traffic, road-lane, lane, map feature, dynamic and intelligent
decision support. Another good example of layered maps for
AD are Local Dynamic Maps (LDMs), resulting from the
SAFESPOT project [15], which model four layers: permanent
static, transient static, transient dynamic, and highly dynamic.
LDMs haven been widely used in later research [45].

These layered models capture the environment with a high
level of detail, however, they are heavily reliant on being able
to retrieve accurate environment information required for such
models. Upon sensor failure or any other complications (e.g.
retrieval of an up to date map due to connectivity delays,
or adverse weather conditions complicating the detection of
nearby landmarks), the reconstructed world model might not
be consistent with the current driving situation, and the AV
cannot continue to operate safely. Thus, there is still a need for
models that allow robust reconstruction of the drivable space
even when they are presented with outdated or incomplete
information about the environment.

C. Simultaneous Localization and Mapping

To robustly localize a mobile robot in a map, which could be
(partially) unknown, SLAM-based approaches are commonly
used. This section provides an overview of the foundation of
SLAM, which assumes the map is unknown a priori and it is
estimated purely from sensor measurements.

SLAM solves the problem of constructing a map of an
unknown environment at the same time as estimating the
location of a mobile robot within the constructed map. This

problem is especially challenging since localizing the robot
requires an accurate representation of the map, and to construct
an accurate map, a good estimate of the robot’s location must
be available. SLAM has received much attention in the last
few decades, and a wide variety of techniques exist to address
this problem. The different techniques can be classified into
filtering and smoothing approaches.

Filtering approaches solve what is commonly referred to
as the online SLAM problem: only the map and most recent
robot pose is estimated, as opposed to the full SLAM problem,
where estimates for both the entire robot path and the map
are obtained. Examples of filtering techniques are: Kalman
filter (KF), extended Kalman filter (EKF), unscented Kalman
filter (UKF), information filter (IF), or particle filter (PF)
[46]. Filtering techniques are not the focus of this work, thus
the curious reader is referred to [46] for a comprehensive
introduction.

On the other hand, smoothing approaches address the full
SLAM problem, i.e. the full robot trajectory and map is
estimated. Smoothing techniques used to be more common
in an offline setting, i.e. the map and trajectory estimation is
performed in batch, with all the previously measured data.
However, advances in the SLAM community allowed for
efficient incremental smoothing approaches [47] [48] that can
be run online while still estimating the entire robot trajectory.

C.1 Formulation of the (full) SLAM Problem
The SLAM problem is typically formulated probabilistically

to account for the uncertainty associated with the different
variables involved in the process. To solve the SLAM problem,
one seeks to estimate a posterior probability, p, given by

p (x1:T ,m | z1:T ,u1:T ,x0) (1)

where x1:T = {x1, ...,xT } denotes a sequence of robot states
up to the most recent time T as it moves in an unknown map
m; and u1:T = {u1, ...,uT } and z1:T = {z1, ..., zT } denote
T odometry and perceptions of the environment (i.e. measure-
ments) acquired in the process. Additionally, x0 represents an
initial estimate of the robot state required to link the robot to
the map.

Directly computing p in (1) is not tractable due to the
high dimensionality of the problem. Instead, the underly-
ing temporal and spatial structure of the SLAM process is
exploited to conveniently model it using different types of
probabilistic graphical models (PGMs). Two PGMs commonly
used to model the SLAM process are (1) Dynamic Bayesian
Networks (DBNs) [49], which highlight the temporal structure
of the SLAM process and are typically used to model filtering
approaches, and (2) factor graphs [50], which instead highlight
the spatial structure and allow the joint probability distribution
given by (1) to be decomposed as the product of several single
factors, given by

p (x1:T ,m | z1:T ,u1:T ,x0)

= p(x0)

T∏
t=1

p (xt | xt−1,ut) p (zt | xt,m) , (2)
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where p(x0) is a prior on the initial robot state, and
p (xt | xt−1,ut) and p (zt | xt,m), are given by the robot mo-
tion and sensor measurement models for any time 1 ≤ t ≤ T .

Such a factorized expression can be reformulated as a non-
linear least squares optimization problem, for which efficient
iterative techniques exist to approximate an optimal solu-
tion [47], [51].

C.2 SLAM as a Least Squares Optimization Problem

The SLAM problem can also be presented in the so-
called graph-based formulation as initially proposed by Lu
and Milios in 1997 [52]. SLAM algorithms based on this
formulation consist of two main components as shown in
Figure 2. First, a front-end processes sensor data to construct

Front-End

Feature 
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Optimizer

Data 

Association

Sensors 

Map & Trajectory 

Estimate 

Optimization 

Formulation

Fig. 2. Architecture of a typical optimization-based SLAM system. The front-
end processes data from multiple sensors to extract landmarks and establish
data associations, while the back-end receives this information and estimates
the most likely map and robot trajectory.

a graph G consisting of |N| nodes and |E| edges, where a
node n ∈ N represents either robot or landmark poses, and
an edge eij ∈ E between the ith and jth nodes of the graph, ni
and nj , represent an expected relative spatial constraint, ẑij ,
which is given by a sensor measurement z or a control input u.
Once the graph representing the optimization problem is built,
graph-based SLAM algorithms rely on a back-end optimizer
to find the configuration of nodes N∗ that is most consistent
with the provided observations (edges). That is,

N∗ = argmin
N

∑
eij∈E

εTijΩijεij , (3)

where εij denotes the deviation between the expected and
actual measurement of the ith and jth nodes, ni and nj ,
defined as

εij = ε (ni,nj) = zij − ẑij ; (4)

and Ωij denotes the information matrix of the constraint
between nodes ni and nj , which can be intuitively seen
as the certainty on the constraint. The higher the values in
the information matrix, the more confident we are about the
constraint, and therefore εij has a higher influence during the
optimization.

This formulation did not become popular in its early years
due to the complexity of the optimization problem. However,
advances in sparse linear algebra and iterative error minimiza-
tion methods provided efficient tools for solving graph-based
SLAM, and in recent years has been researched extensively.

An illustrative example of how to construct a graph repre-
senting the optimization problem is provided in Figure 3. In

this example, two vehicle states, xt−1 and xt, and a landmark,
m1 are converted into three nodes of the graph, ni, nj , and nk,
which can be related to each other by sensor measurements
or other available information. For instance, after applying

Fig. 3. Example of how a graph-based problem can be formulated from a
simple setting in which an AV observes a landmark at different times after
applying some control.

control ut to the vehicle with state xt−1, it is expected that
xt = xt−1 +ut. This expectation is introduced as a constraint
of our graph in the shape of a virtual measurement ẑij relating
ni and nj , and associated information matrix Ωij to represent
how certain one is about this constraint. However, there might
be some error with respect to this expected measurement,
εij . Minimizing the sum of squared errors, as defined in (3),
allows estimation of a map and robot trajectories that are most
consistent with the specified constraints.

C.3 (Robust) Data Association

A critical component in SLAM algorithms is data associa-
tion, which is the process of determining if an observed land-
mark has already been observed in the past. More specifically,
determining whether two measurements zk and zk′ originated
from observing the same landmark mj . This process of deter-
mining which observations originated from which landmarks
is also commonly referred to as correspondence estimation,
and is typically part of the front-end in the architecture of
any SLAM algorithm, as illustrated in Figure 2. This is a
challenging task because of the inherent uncertainty associated
with the robot trajectory and sensor measurements, and a
single erroneous association can yield a poor quality estimate
of the map and robot poses. Thus, the problem of establishing
correct data associations has been studied extensively in the
SLAM community, and many different approaches to data
association exist nowadays.

In its simplest form, individual measurements can be pro-
cessed independently to establish data associations through
Maximum Likelihood (ML) estimation [53], sometimes re-
ferred to in literature as Nearest Neighbor [54]. Through
individual compatibility tests [55], unlikely associations are
discarded to only estimate over the most likely ones.
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Alternatively, it is possible to process measurements in
batch to establish data associations. Sequential Compatibility
Nearest Neighbor [56] is similar to the methods previously
described, but it assumes mutual exclusion of measurements
(i.e. no two measurements in the same batch correspond to the
same landmark). Joint maximum likelihood seeks to find the
maximal set of data associations that maximizes the product
of the likelihoods [55]. Joint compatibility (JC) branch and
bound methods refer to specific search methods to find the
ML data association sets that are jointly compatible [55], [56].
Other approaches deal with the ambiguity of data associations
by considering all reasonable data associations (i.e. multiple
hypothesis tracking), instead of only choosing the most likely
one. The effectiveness of this approach is visible in Fast-
SLAM [57], a filtering method founded on the idea of multiple
hypothesis tracking. Further alternatives consider making the
right data associations more important than doing anything at
all, and therefore delay the decision until sufficient evidence
is available, as is the case in [58], which additionally allows
to revise past data associations.

All the methods presented in this section so far reduce
the probability of establishing false positive data associations
between different landmarks, but they can still occur and
yield a poor estimation of the map and robot trajectory. In
optimization-based SLAM algorithms, this would amount to
constructing a graph, as described in the previous section, with
the wrong topology, containing edges that are outliers. An
interesting approach to address this issue is proposed in [59],
introducing in the optimization a new variable for each data
association constraint in the graph, which determines if the
edge is a potential outlier. The main drawback of this method
is the increased computational burden introduced by adding
a new variable for each data association. The authors of [60]
generalize this idea by proposing a closed form solution that
dynamically scales the information matrix in (3) to diminish
the effects of wrong data associations, significantly increasing
convergence speed without sacrificing accuracy.

III. PROPOSED METHOD

To construct a road model and estimate the host vehicle
position within it, in a way that is resilient to erroneous infor-
mation in the inputs, this section proposes a novel method for
drivable space modeling as a probabilistic graph that accounts
for the uncertainty of the different sources of information.

As shown in Figure 4, the core of the method is to exploit
object semantic information and domain knowledge-based as-
sumptions (e.g. an observed vehicle is most likely driving on a
road) to hypothesize if the space surrounding detected objects
is drivable. These hypotheses are referred to as drivability
projections or simply projections. Next, the projections are
used to formulate a graph-based SLAM problem and obtain
the most likely configuration of the drivable space. Finally,
the individual projections are merged to obtain our estimation
of the drivable space, which can be used as a prior on the
drivable space for estimation in the future.

Objects (+Semantic Information)

Static

Dynamic

Regulatory

Future work

Graph-based SLAM

Merge projections

Drivability Projections 

Output at 

time t:            . 

Input at time t + 1

Fig. 4. Overview of the proposed method. Drivability projections are extracted
from input objects with semantic labels. Then, an optimal spatial configuration
is achieved via SLAM. Finally, the projections are merged to output a drivable
space estimation at time t. Projection colors indicate probability of drivability
of a road segment and probability of existence of a node, ranging from 0
(black) to 1 (white).

A. Drivable Space

The drivable space is modeled as an undirected graph,
G(N,E), with |N| nodes and |E| edges. Any node n ∈ N
represents a point in 2D Euclidean space and is characterized
by several attributes, as given by

n = (x, y, κ, τ, pe), (5)

where x and y denote the node’s longitudinal and lateral po-
sitions, κ ∈ {0, 1} indicates if n is a knot separating two road
segments, τ represents a relative importance used to weight n
when merged with other nodes, and pe ∈ (0, 1] represents its
probability of existence. If pe is zero for any node, such node
is not modeled in the drivable space. Furthermore, an edge
eij ∈ E between nodes ni and nj encodes the probability
that there is a drivable surface between ni and nj , probability
of drivability, pdij

eij = (ni,nj , p
d
ij). (6)

Thus, the drivable space can be characterized by N and E,
with each of their elements defined as in (5) and (6).
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To construct this drivable space model, let O denote the set
of all possible objects (e.g. other vehicles, detected camera-
based lane model, etc.) that are available to the ego vehicle,
and D the possible drivable spaces representing the envi-
ronment around the ego. The aim is to develop a robust
method which from a limited number of objects, O ⊆ O,
can construct the drivable space, G∗(N,E) ∈ D, that most
accurately represents the real drivable space. For example,
the drivable space derived from objects detected by an in-
vehicle camera sensor will be limited and incomplete. Hence,
by combining multiple sources of information, shortcomings
of one source of information are compensated by others and
a better representation of the drivable space can be recovered.

For ease of readability, this work uses some non-standard
terminology and notation, which are introduced in the sections
where they are first used. An overview of all relevant termi-
nology and notation is provided in Appendix A for clarity.

Segment

Segment

Fig. 5. Illustrative example of terminology and notation used in this work.
Filled nodes indicate knots (i.e. n1, n2 and n4), while hollow nodes (i.e. n1)
are used to preserve geometric information.

When referring to a property ψ ∈ {x, y, κ, τ, pe} of the
ith node of the drivable space, it is denoted as nψi , with one
exception in which two properties are referred simultaneously,
nxyi to denote the node coordinates. Furthermore, ēij denotes
the line segment connecting points nxyi and nxyj , while ~eij
represents the vector from nxyi to nxyj . A segment S is defined
as a subgraph of the drivable space with |SN| nodes and |SE|
edges, which represents a maximal path between two knots ni
and nj where ∀np∈SN∧i 6=p∧j 6=p(n

κ
p = 0). The two knots of

a segment S are referred to as SK, and all intermediate non-
knots S6K. Finally, for any S, a straight segment between its
two knots n1,n2 ∈ SK,n1 6= n2 is denoted SK, and the
vector from n1 to n2 is given by ~SK. A simplified example
illustrating this notation is shown in Figure 5.

B. Drivability Projections

The first step in our method is to exploit an object’s semantic
information to extract projections about the drivability of its
surroundings. To that end, projection functions fp : O 7→
Da, a ≥ 1, are defined to map each input onto one or more
drivability projections Φ = {φ1, ..., φa}.

A projection φ has the same shape as the drivable space
we seek to recover. For ease of notation, let φN, φE and
φS denote the nodes, edges and segments in φ. Although
the format of projections is the same as the drivable space,
we distinguish between two types of projections: drivable

and non-drivable. The sets of all drivable and non-drivable
projections are denoted as D+ and D−, respectively. The
following conditions are imposed to each type of projection:

φ ∈ D+ =⇒ ∀eij∈φE pdij ∈ (0, 1], and (7)

φ ∈ D− =⇒ ∀eij∈φE pdij = 0. (8)

Projection functions are defined for the five types of objects
that are considered as input to our algorithm: buildings,
vehicles, traffic lights, a lane-level road network, and the ego
vehicle’s lane. More details on how these objects are obtained
are provided in Section IV. The remainder of this section is
dedicated to elaborate on the two types of projection functions
that are defined: domain knowledge-based and empirically
extracted.

The main difference between these two projections, is that
for projections φ ∈ D+, pdij = 1 for all eij ∈ φN if φ is
domain knowledge-based, while pdij ∈ (0, 1] for all eij ∈ φN

if φ is empirically extracted, and the exact value of pdij is
determined, as the name indicates, empirically.1

B.1 Domain Knowledge-based Projections

Domain knowledge-based projections result from assump-
tions that can be made about an object given its semantic
information (e.g. the type of object it is). These projections
are defined for buildings, vehicles, roads and the ego lane, as
shown in Figure 6.

a) Vehicles: If a vehicle is observed at time t on location
vt = (xt, yt), it is reasonable to assume that vt is part of a
road and therefore drivable. Furthermore, if the next time the
same vehicle is observed on vt+∆t, it is reasonable to assume
that a vehicle can drive from vt to vt+∆t, provided that ∆t
is not too large. Thus, for each vehicle, its observed trajectory
allows us to define a drivable projection φ ∈ D+, with one
node for each observed vehicle position, and an edge between
nodes resulting from consecutive positions (Figure 6a).

b) Buildings: If a building is observed, clearly the space
it occupies is not drivable. Thus, a building’s projection func-
tion generates one φ ∈ D−. The nodes and edges of building
projections indicate the building perimeter (Figure 6b).

c) Roads: If information is available about the road
network (e.g. from a map), this knowledge is translated into
a drivable projection (Figure 6b). Since the road network
extracted from the simulator is also defined as an undirected
graph, its nodes and edges are directly considered in the
projection.

d) Ego lane: If information about the ego lane is avail-
able, a drivable projection is extracted from the subset of nodes
and edges of the road network that are part of the lane the ego
vehicle is currently occupying (Figure 6c).

1There is a mismatch in the current implementation, which also assigns
pdij = 1 to empirically extracted projections (as can be seen in Figures
8b and 10). However, this difference does not affect classification results
in our experiments, since estimation is performed for one timestep and the
classification threshold is not higher than the empirically extracted probability.
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(a) Example of projection extracted from a detected vehicle and its observed
past trajectory.

(b) Example of projection extracted from buildings and road lanes.

(c) Example of projection extracted from ego lane.

Fig. 6. Examples of domain-knowledge based projections extracted from
buildings, lanes, and vehicles.

B.2 Empirically Extracted Projections

Some domain-knowledge assumptions, as is the case with
traffic lights, are not enough to fully define the projection of an
object. If a traffic light is observed, it is reasonable to assume
that there are roads nearby that traffic light. However, it is not
possible to determine exactly the location or shape of those
roads. Nonetheless, traffic lights are located at junctions and
it is likely that the roads around them have some patterns.

Traffic lights generate two projections, one drivable and
one non-drivable. The non-drivable projection represents the
perimeter of the traffic light pole, while the drivable one
represents an average drivability around a traffic light and is
extracted as follows.

Given one traffic light l = (x, y, θ) on point (x, y) and
with heading angle θ degrees, all road segments in a 60x60m
area centered at lxy are extracted. Next, the traffic light
and all surrounding road segments are rotated −θ degrees
around lxy to ensure all the lights are oriented equally. The
space is discretized into a grid with cell resolution 3.5m (the
average lane width) and each cell assigned a value of 1 if
it intersects with a road segment, or 0 if it does not. This
process is illustrated in Figure 7 for one traffic light. After
performing this process with all the traffic lights, the cells
from all the grids are averaged to determine the probability

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001110000

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001110000

1 1 1 1 1 1 1 1 0 0001111111

1 1 1 1 1 1 1 1 0 0001111111

1 1 1 1 1 1 0 1 0 0001111111

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

1 1 1 1 1 1 0 1 0 0001111111

0 0 0 0 0 1 1 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

0 0 0 0 0 1 0 1 0 0001100000

Fig. 7. Discretization of the space nearby a traffic light. Cells intersecting
with road segments are assigned a value of 1 and are colored white, and the
rest a 0 and are colored black.

(a) Drivability grid representing the
probability of encountering a road in
the space around a traffic light.

(b) Projection resulting from the aver-
aged drivability grid.

Fig. 8. Projection extraction from average drivability grid of the space
surrounding traffic lights.

of encountering a road in that area (Figure 8a). Finally, the
averaged grid is traversed vertically and horizontally, to extract
the drivable projection for a traffic light, and only traversals
with a minimum threshold probability are considered. The
resulting projection for a single detected traffic light is shown
in Figure 8b.

If multiple traffic lights are observed simultaneously, as
is the case in intersections, the individual projections from
all the observed traffic lights would add several redundant
elements inconsistent with the shape of a road, as illustrated
in Figure 9a. To prevent this redundancy, when multiple traffic
lights are observed at the same time, the projection extraction
procedure is modified as follows.

Let L = {l1, ...ln} denote the set of detected traffic lights,
and ΦL = {φ1, ..., φn} the drivable projections resulting from
all traffic lights. To ensure a consistent orientation of the
segments, each φi ∈ ΦL is first rotated around the traffic
light from which it originated, li, by an angle r(φi), given by

r(φi) =
1

|L|
∑
lj∈L

lθj − lθi . (9)

Next, the projection segments are divided, depending on their
orientation, into V and H, the set of vertical and horizontal
segments, given by

V = {S ∈
⋃

φ∈ΦL

φS|45 ≤ θu(~SK, ~x) ≤ 135} (10)

H = {S ∈
⋃

φ∈ΦL

φS| θu(~SK, ~x) < 45 ∨ 135 ≤ θu(~SK, ~x))},

(11)
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(a) Projections resulting from two traffic lights at an intersection.
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(b) Projections are rotated around the traffic light to match the average
angle, and segments are extended to intersect with xmax, xmin, ymax,
and xmin.
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(c) Nearby segments are combined and the resulting segments are
introduced at the average node coordinates of merged nodes

Fig. 9. Illustrative example showing how multiple traffic light projections
are modified. For clarity, blue and orange illustrate the projections originating
from different traffic lights, and there is no relation between the color and the
probabilities encoded in their nodes and edges.

where θu denotes the smallest unsigned angle between two
vectors, and ~x represents the unit vector in the direction of
the x-axis. Furthermore, all segments are extended to intersect
with the vertical and horizontal lines corresponding to the
maximum and minimum lateral and longitudinal coordinate
values of segment knots, xmax, xmin, ymax and ymin. Seg-
ments S ∈ V are extended to intersect with the horizontal
lines defined by y = ymax and y = ymin, while segments
S ∈ H are extended to intersect with the vertical lines given by
x = xmax and x = xmin, as shown in Figure 9b. Finally, the
knots of segments corresponding to the same lane are merged
(Figure 9c), and the new node properties are calculated as
follows. Let ni and nj denote two knot nodes to be merged.
The new node, nf , is given by

nf =

(
nxi + nxj

2
,
nyi + nyj

2
,nκi ,n

τ
i ,max(np

e

i ,n
pj

i )

)
. (12)

An example of projections resulting from multiple traffic
lights at an intersection in our simulations is shown in Fig-

(a) Individual projections resulting
from four traffic lights

(b) Result of merging the individual
traffic light projections

Fig. 10. Projections generated from four traffic light at an intersection (left)
and resulting simplified projection after merging them (right).

ure 10. Figure 10a illustrates what the drivable space would
looks like immediately after introducing projections from four
different traffic lights. Figure 10b shows the drivable space
resulting from merging the projections of all the sensed traffic
light projections.

C. Projection Alignment via Graph-based SLAM

To obtain the most likely spatial configuration of projec-
tions, Φ∗, nodes from D− projections are treated as landmarks,
and nodes from D+ projections as possible robot paths in order
to formulate a Graph-based SLAM optimization problem. To
that end, a new graph G is constructed with nodes originating
from the projections and edges encoding spatial constraints
between them, as detailed in this section. The least squares
problem encoded in G is solved using Gauss-Newton to find
the configuration of nodes that minimizes the errors specified
by the edges.

C.1 Nodes

The nodes considered for the error minimization problem,
GN, result from all the projection nodes, and some additional
ones resulting from pairwise projection alignments, given by

GN =

⋃
φ∈Φ

φN


︸ ︷︷ ︸

All projection nodes

∪

 ⋃
φi,φj∈Φ
i 6=j

h(φi, φj)


︸ ︷︷ ︸

New nodes from pairwise
projection alignments

, (13)

with h(φi, φj) defined as

h(φi, φj) =
⋃

n∈φN
i

{g(n, φj) | nκ = 1∧P1(n, φj)∧P2(n, φj)}

(14)
and g(n, φj) denoting a function that returns the geometric
projection of nxy onto φj , as illustrated in Figure 11.

Fig. 11. Two segments and projections of their knots onto the other segment.
The projected node is indicated by the hollow circle with a dashed border.
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Furthermore, the binary predicates P1, P2 : GN×Φ 7→ {0, 1}
are Boolean-valued function to evaluate certain conditions,
given by

P1(n, φ) =

{
1 if ||g(n, φ)− nxy|| ≤ 1.75m
0 otherwise, and

(15)

P2(n, φ) =

{
1 if ¬∃n′∈φN (||n′xy − g(n, φ)|| ≤ 0.2m)

0 otherwise,
(16)

where ||v|| denotes the magnitude of vector v. Additionally,
1.75m is chosen since it is half of a typical lane width, and
a 0.2m resolution is considered sufficient detail in current
research [18]–[20].

C.2 Edges

An edge or constraint eij ∈ GE between nodes ni and nj
represents a spatial constraint between them, and is given by

eij = (ni,nj , ẑij ,Ωij , ρ), (17)

where ni,nj ∈ GN, ẑij denotes an expected measurement
between ni and nj , i.e. a relative transformation that makes the
two nodes overlap; Ωij is the information matrix representing
how confident we are about ẑij ; and ρ is an optional kernel
function used to weigh the mismatch between the expected
and actual relative configuration of the nodes, which is typ-
ically used to diminish the effect of outliers and make the
optimization more robust. To that end, (3) is replaced by

GN∗ = argmin
GN

∑
eij∈GE

F(eij), and (18)

F(eij) =

{
ρ
(
εTijΩijεij

)
if ρ is specified

εTijΩijεij otherwise.
(19)

Constraints between nodes are established based on the
semantic information of the input object from which they
originated. The remainder of this section explains the types
of constraints that are introduced, and between which nodes.

a) Pose prior: Independently of the type of object a
node n originated from, there is a current belief regarding
its location nxy , which is used to anchor n to this point.
This is the only unary constraint introduced, i.e. specifying
a constraint for a single node. All the remaining constraints
establish a relative measurement between two nodes. Prior
constraints are illustrated in Figure 12a.

b) Odometry: If nodes ni and nj in the graph originated
from the ego vehicle location at two consecutive timesteps, vt
and vt+∆t, an odometry measurement is available to relate the
two nodes, ẑij = ut. Odometry constraints are illustrated in
Figure 12b.

c) Motion models: Many models exist to describe the
motion of road users. Common vehicle motion models are
Constant Velocity (CV) and Constant Acceleration and Turn
Rate (CTRA) [61]. For simplicity, we assume the existence of
a motion modelM, which given a vehicle’s position at time t
and prediction horizon ∆t, retrieves a feasible vehicle position

(a) Pose Prior (b) Odometry

CV, CTRA… 

(c) Motion Models (d) Data Associations

Max. range

(e) Ego Measurements (f) Road Geometry

Lane 

width

(g) Lane Width

New node 

splits edge

(h) Interpolated Constraints

Fig. 12. Constraints used to construct the graph representing the graph-based
SLAM problem.

at time t+ ∆t, v̂t+∆t =M(vt,∆t), and relate two nodes ni
and nj originating from consecutive vehicle positions vt and
vt+∆t by ẑij = v̂t+∆t − vt. Motion model constraints are
illustrated in Figure 12c.

d) Data association: Data Association (DA) constraints
are established between any pair of knots, as long as they
both originate from a drivable or non-drivable projection, and
provided that they originate from different projections. That
is, a node n ∈ φN with φ ∈ Ds may only associated with
a node n′ ∈ φ

′N with φ′ ∈ Ds′ if s = s′, φ 6= φ′ and
nκ = n′κ = 1. Furthermore, DA constraints are established
when the operation g(n, φ), as defined in the previous section,
is performed. When P1(n, φ) holds, n is associated with
one of the following: (i) a new node which is inserted in φ
at g(n, φ) if ¬P2(n, φ), or (ii) the closest node to g(n, φ)
otherwise. For these constraints, ρ is as specified in the
Dynamic Covariance Scaling (DCS) approach [60] to disable
potential false positive associations during the optimization.
DA constraints are illustrated in Figure 12d.

e) Measurements: When an object is within visibility
range of the ego vehicle, measurements indicating the relative
position of this object with respect to the ego are available.
Such measurements are directly translated into a constraint
between the object and the ego location at the time the
measurement was obtained. Measurement constraints are il-
lustrated in Figure 12e.

f) Road Geometry: Clothoids are a type of curve com-
monly used to model roads [62], [63], since their linear change
of curvature with arc length allows comfortable steering in
curved road segments. If information is available about the
road network, knots are used to construct a clothoid curve as
in [64], and the rest of the nodes are constrained to diminish
deviations from such curve, as illustrated in Figure 12f.
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g) Lane Width: Nodes from adjacent lanes should be
constrained to keep their distance and avoid different lanes
erroneously merging. To that end, constraints are introduced
between nodes of adjacent lanes to maintain a separation of 3.5
meters. Currently, lane width constraints are only introduced
between nodes of traffic light projections, and introducing
them between nodes originating from the road network and
ego lane projections remains for future work (see Appendix E).
Lane width constraints are illustrated in Figure 12g.

h) Interpolated constraints: As stated earlier, when per-
forming the operation g(n, φ), a new node nn could be
introduced in φN, splitting an edge eij between nodes ni
and nj . When this occurs and a constraint ẑij already exists
relating ni and nj , two new constraints ẑin and ẑnj resulting
from a simple linear interpolation of ẑij at the point nxyn .
Interpolated constraints are illustrated in Figure 12h.

C.3 Optimization
The problem of finding the configuration of nodes that

is most consistent with the specified constraints has been
thoroughly studied in the field of robotics, and several open-
source tools are available implementing efficient algorithms to
solve the error minimization problem encoded in the graph.
An example of such tools is g2o [65], a general-purpose
optimization library commonly used for SLAM.

The optimization itself is not the focus of our work, so this
task is delegated to g2o and the optimal spatial configuration
of the drivable space is achieved using the Gauss-Newton al-
gorithm, limited to a maximum of 20 iterations. This particular
choice of algorithm and its parameters is motivated by [60],
where the same setting is used to evaluate the DCS approach.

C.4 Drivable & Non-drivable Projection Intersections
After the most likely configuration of nodes is achieved, it is

possible to encounter segments from D+ projections intersect-
ing with segments from D− projections. These situations might
occur due to obstacles on the road, or outdated information of
the road network. When ēij from a drivable projection and
ēkl from a non-drivable one intersect at point nxyb = (xb, yb),
eij is split into eib′ and eb′′ j with nxyb′ and nxyb′′ , given by

nxyb′ = nxyb + min(1.75, ||~eib||) ·
~ebi
||~ebi||

, (20)

nxy
b′′

= nxyb + min(1.75, ||~ebj ||) ·
~ebj
||~ebj ||.

(21)

The value 1.75m is arbitrarily chosen in order allow a safety
separation between a drivable and non-drivable projection.
This operation is illustrated in Figure 13.

Fig. 13. Result of a drivable (white) and a non-drivable (black) segment
intersecting after optimization. The drivable segment is split at the intersection.

D. Unification of Projections

The last step towards achieving our final estimate of the
drivable space is to merge all the optimized individual projec-
tions, Φ∗, into one unified projection, which is considered the
drivable space, G∗(N,E).

To obtain G∗(N,E), a procedure fm : D|Φ| 7→ D is defined,
consisting of two steps. First, segments are merged by merging
their knots, after which the geometry, as approximated by non-
knots, is updated, and finally the probabilities of existence and
drivability. This procedure is detailed next.

D.1 Merging Segment Knots

The first step towards obtaining a unified drivable space is
to determine which nodes of the different projections should
be merged. To that end, another graph is created with all
knots in G and edges between nodes that contain a valid data
association after optimization in order to extract C, the set of
connected components through valid data associations. A data
association is considered valid if it satisfies two conditions.
The first condition to consider a data association valid is
that its information matrix is not scaled down during the
optimization, that is s = 1 as given by the dynamic covariance
scaling technique from [60], which scales the information
matrix of a constraint by a factor s2, with s ∈ [0, 1]. The
second condition to consider an association valid is that the
distance between the nodes it connects is not larger than 1.75m
(half of a typical lane width). This situation is illustrated in
Figure 14a.

Next, the nodes of each connected component C ∈ C are
merged and replaced by a node nf with coordinates given by

nxyf =
∑
n∈C

w(n) · nxy, (22)

where w(n) is a weighting function that accounts for the
confidence we have that this node exists, and its relative
importance nτ , given by

w(n) =
npe · nτ∑

n′∈C

n′pe · n′τ
. (23)

Furthermore, the new node’s probability of existence, npef ,
is determined with the addition theorem for multiple non-
exclusive events [66], which by De Morgan’s law and under
independence assumption can be calculated as

npef = 1−
∏
n∈C

(1− npe). (24)

Once the old knots of a segment to be merged, S′K =
{no1 ,no2}, are merged resulting in the new knots, SK =
{nf1 ,nf2}, the segment geometry is updated by applying an
affine transformation A to every non-knot n ∈ S′6K, where A
is defined as

A =

 sx cos θ −sy sin θ txsx cos θ − tysy sin θ + t′x
sx sin θ sy cos θ txsx sin θ + tysy cos θ + t′y

0 0 1


(25)
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(a) First, the nodes that will be merged are retrieved by finding the connected
components (dashed ellipses) though valid data associations (white dashed
line). Invalid data (red dashed line) are discarded.
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(b) Segment knots to be merged are translated to their final coordinates and
non-knot nodes are updated accordingly. The resulting geometry does not
resemble a road.
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(c) New nodes are introduced in the segments to be merged to ensure there
is not a single dominant segment during regression.
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(d) All the resulting segment nodes are used to find a polynomial passing
through the segment knots and minimizing deviation from non-knots. The
polynomial is simplified by line segments and the resulting probability of
drivability is computed with (24).
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(e) Final segment after the merging operation.

Fig. 14. Illustrative example of two segments being merged.

and is the result of the composition of four transformation ma-
trices that make S′K fully overlap with SK: a translation given
by vector (t′x, t

′
y) = nxyo1 ; a rotation by angle θ = θs(S

′K, ~SK),
where θs(v1,v2) denotes the signed angle from vector v1 to
vector v2; a scaling by factor (sx, sy), given by

(sx, sy) =

(
nxf2 − nxf1
nxo2 − nxo1

,
nyf2 − nyf1
nyo2 − nyo1

)
; (26)

and a final translation given by vector (tx, ty) = nxyf1 . After
performing these operations, the segments of the drivable
space still do not resemble the geometry of the road due to
various edges branching out, as illustrated in Figure 14b.

D.2 Merging Segment Non-knots and Edges

To unify edges of the segments to be merged, we find a
third degree polynomial curve passing through the segment
knots and minimizing deviation from all other nodes. Before
finding this curve, new nodes are introduced in the segments
to be merged to ensure that the contribution of all segments
to the final geometry of the merged segment is equal (Fig-
ure 14c). Once the number of nodes in each segment is equal,
polynomial regression is performed with all segment nodes as
follows.

Let Si and Sj be two segments to be merged, and therefore
after merging their nodes as previously explained, SK

i =
SK
j = {nk,nl}. We seek to find a curve passing through

nxyk and nxyl , and minimizing deviation from SN
i ∪ SN

j , as
illustrated in Figure 14d. The curve, f(x), is given by

f(x) = β3x
3 + β2x

2 + β1x+ β0 (27)

and the optimal parameters β = {β0, β1, β2, β3} are obtained
by non-linear least squares optimization. This optimization is
similar to the one performed to align the nodes of the drivable
space (Section III-C), but the constraints are significantly
simpler. Thus, there is no need for an advanced library such
as g2o and we resort to SciPy [67] instead, simply setting the
certainty of the knots three orders of magnitude higher than
the rest to ensure the optimized parameters represent a curve
passing through (or extremely close to) nk and nl. All other
parameters are not modified, therefore the method employed
for optimization is the default: Levenberg–Marquardt [68]. To
aid in the convergence of the algorithm, β1 is initialized as
the slope of SK

i and SK
j , given by

β1 =
nyl − nyk
nxl − nxk

. (28)

Finally, the regression line is approximated by a polyline,
inserting nodes at the points resulting from geometry projec-
tion of the nodes used for regression, and edges connecting
consecutive nodes. The probabilities of existence and drivabil-
ity of nodes and edges is once again given by (24). The final
result of the merging operation is illustrated in Figure 14e.

IV. EXPERIMENTS

Several simulation tools were compared to assess the per-
formance of the proposed method, and the CARLA driving
simulator [69] was chosen for this task. More details about the
comparison of the simulation tools is available in Appendix C.
This section is dedicated to present the testing scenarios, how
the required data is extracted from the simulator, and finally
specify the experiments carried out to assess the method.

A. Use cases

The experiments take place in CARLA’s “Town03”, which
features an urban environment, and all the experiments are
carried out in four scenarios. The ego’s point of view in each
scenario is shown in Figure 16.
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Fig. 15. Data extraction process. We abstract away from the specific source of information of different inputs, and extract such inputs from the CARLA
driving simulator directly.

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

(d) Scenario 4

Fig. 16. Ego point of view in the four testing scenarios.

a) Scenario 1: A street with two 1-lane roads. Road visi-
bility is partially occluded due to a curved road segment
(Figure 16a).

b) Scenario 2: A street with two 2-lane roads. Road visi-
bility is partially occluded due to a curved road segment
(Figure 16b).

c) Scenario 3: A T-intersection. The road ahead is not
visible due to an elevation difference (Figure 16c).

d) Scenario 4: A X-intersection. The road ahead is not
visible due to an elevation difference (Figure 16d).

B. Data Acquisition

The input to our algorithm is a collection of processed
objects resulting form the sensor fusion of raw data acquired
by several sensors or sources of information. One of such
input objects could therefore originate from multiple sources
of information, and we abstract from this process and directly
extract the inputs from CARLA, as illustrated in Figure 15.
The extraction process for the different objects is summarized
in the remainder of this section.

a) Traffic Lights: The position and orientation of all
traffic lights is available through the Python API that CARLA
provides. Thus, ground truth for these objects is easily re-
trieved.

b) Vehicles: Using CARLA’s Python API, spawning ve-
hicles and accessing their properties at any time in the sim-
ulation is straightforward. Ground truth poses of all vehicles
are sampled at 20Hz for the duration of the entire simulation.

c) Buildings: Areas of the simulation environment where
buildings are located are specified manually. Unfortunately,
properties of many static objects already present in the map
cannot be easily accessed through the Python API.

d) Road Network: A detailed lane-level road network of
the simulation map can be easily extracted from CARLA. This
map is is processed to re-format it in a similar fashion as our
previously described projections, since the format provided
by CARLA is not suitable for our purposes. This process is
illustrated in Figure 17, and summarized as follows. First, the
road topology is extracted from CARLA, consisting of nodes
5m apart, and edges connecting consecutive nodes of the same
or subsequent lanes (Figure 17a). Next, redundant nodes from
straight road segments are removed applying Ramer-Douglas-
Peucker [70], [71] (Figure 17b). Finally, a simple rule-based
algorithm is applied to detect the nodes separating straight
and curved segments and classify them as either knots or non-
knots (Figure 17c).

e) Ego Lane: Once we have obtained all the lanes in the
simulation map, the ego lane is simply extracted at run-time
based on the ego’s location.
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(a) Evenly spaced (5m) road network directly
extracted from CARLA

(b) Simplified road network using the Ramer-
Douglas-Peucker algorithm

(c) Segments extracted from the simplified
road network. Red nodes indicate knots, and
blue nodes non-knots. Differently colored
lines are used to identify different segments.Fig. 17. Road network extraction process.

C. Experiment Setup

To demonstrate the robustness of the proposed method
towards different input qualities, different levels of additive
Gaussian noise [72] with zero mean and varying variances
are introduced to the coordinates of the input objects and
constraints between them before the optimization described
in Section III-C.

The values we use for the variances of the noise introduced
to each input are based on a recent study testing the robustness
of tracking algorithms towards noise [73] and a relative order-
ing of expected noise of the different inputs to our algorithm
(more details are provided in Appendix B). Based on these
values, for each type of input a base variance value is defined,
σ2
base, which is multiplied by a factor s ∈ {0, 0.3, ..., 2.7, 3},

where s ≤ 1 represent reasonable (based on the variances used
in [73], and s > 1 are introduced to test our proposed method
with extreme levels of noise.

To account for the randomness of the artificial noise sam-
pling, each experiment is carried out five times, and the mean
absolute error (MAE) and standard deviation (unless it is zero)
of the various performance metrics is reported.

D. Evaluation Metrics

Systematic evaluation of our proposed method is not
straightforward. The drivable space format of the novel method
proposed poses a challenge: direct comparison with the ground
truth is not possible. As shown in Figure 18a, the graphs
representing the ground truth road model and the reconstructed

space are considerably different in topology despite repre-
senting a similar drivable space geometrically. In the ground
truth graph, all the space that is not modeled as drivable is
implicitly considered non-drivable. On the other hand, the
proposed method models non-drivable areas explicitly (black
edges in Figure 18a), and the lack of graph elements in an area
means that not enough information is available to conclude
anything about its drivability. Furthermore, the topology and
number of elements in the graphs representing similar road
networks can be significantly different (white and gray nodes
and edges in Figure 18a).

Considering these differences, it is not possible to apply
standard graph similarity metrics between the reconstructed
and ground truth drivable spaces without developing an ad-
ditional procedure to make their graphs comparable. For
instance, Graph Edit Distance (GED) [74] and SimRank [75]
are two metrics commonly used to measure (dis)similarity be-
tween graphs and their elements. Applying GED to the graphs
of Figure 18a would misleadingly indicate a high disparity
between them, since several non-drivable and extraneous nodes
and edges would need to be removed from the reconstructed
drivable space to arrive to an isomorphism of the ground truth
graph. Furthermore, SimRank is simply not applicable since
it provides pairwise similarities between graph elements, but
the overall graph similitude remains unclear.
To quantify the performance of the proposed drivable space
three criteria are analyzed: drivable space classification, dis-
tance to lane center (DTLC) error, and quality of the topology.

vs.

Reconstruction Ground Truth

(a) Reconstructed drivable space (left) and ground
truth (right). Despite representing similar drivable
spaces, the two graphs differ in number of nodes and
location of edges, making it challenging to compare.

Reconstruction Ground Truth

vs.

(b) Discretization of the space into a grid. Each cell
is assigned an average drivability according to the
segments intersecting the cell, taking into account
lane width.

Reconstruction Ground Truth

vs.

(c) Each cell is classified into drivable (white) and
not drivable (black). The reconstructed and ground
truth drivable spaces can now be compared by
means of standard classification metrics.

Fig. 18. Example of drivability grid extraction from drivable space.
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Drivable Space Classification

To assess if the reconstructed graph represents a valid
drivable space, the entire continuous space is discretized into
a uniform grid of cell resolution 20cm, which is commonly
considered sufficient detail in literature [18]–[20], and inter-
secting edges representing road segments (considering a lane
width of 3.5m) are used to compute an average drivability
for each cell (Figure 18b). Finally, each cell can be classified
into drivable or non-drivable given a probability threshold, and
deviations from the true drivable space can now be quantified
by means of standard classification metrics such as accuracy
(acc.), precision (pr.), recall (re.) and F1 score [76]. This
approach can effectively assess if the reconstructed drivable
space can be used to determine the drivability of the space near
the ego vehicle, however, it does not consider if the topology
of the recovered road network is correct.

Topology Quality

The graphs representing drivable space reconstructions are
subject to visual inspection and analyzed for imperfections.
Depending on their quality, the reconstructions are assigned
one of the following labels:

1) Correct: The topology of the recovered drivable space
does not contain any error.

2) Correct near Ego: The topology of the recovered drivable
space contains some errors, but these are not located in
the ego lane 30-35 meters in front of the ego vehicle.
This safety distance is chosen, as it is considered a safe
stopping distance at maximum urban speeds [77].

3) Incorrect: The topology of the recovered drivable space
contains some error in the ego lane 30-35 meters in front
of the ego vehicle.

DTLC Error

The last criterion used to assess the proposed method is
accuracy of the estimated Distance To Lane Center (DTLC),
as illustrated in Figure 19. Let DTLC denote the true distance
to lane center, and D̂TLC denote the estimated DTLC using
the recovered drivable space and ego location. Then the DTLC
error, εDTLC is given by

εDTLC = DTLC − D̂TLC. (29)

Ego

Lane center in reconstructed 

drivable space

True lane center

Fig. 19. Illustrative example of DTLC error achieved when using the proposed
drivable space for in-lane localization.

E. Benchmark Method

For similar reasons that make the proposed method chal-
lenging to evaluate, comparing it to existing approaches is
also not straightforward. At this stage, our focus is on ensuring
the availability of a road model and ego (in-lane) localization
which is sufficiently accurate to operate autonomously, as
opposed to most research that focuses on (i) accurate road
modeling [30], [78]–[80], or (ii) incorporating semantic in-
formation with raw sensor data directly to improve landmark
detection and ensure enough inputs are available for construc-
tion of the world model [81]–[83]. Our approach does not
improve the data processing component or produce the most
accurate map. Instead, our aim is to reconstruct a minimal
representation of the world (i.e. the drivable space) required for
AD applications solely from object semantic information and
domain knowledge, to ensure robustness towards situations
where inputs are extremely scarce, missing, or wrong.

All these differences in the main purpose, assumed inputs,
and output format prevent comparison between our proposed
and existing methods, since this comparison is either not
possible or it would be significantly biased and favor one
of the methods. As such, our method is compared with the
performance achieved in drivable space reconstruction and ego
in-lane localization when using the ground truth road network
and ego location under different levels of noise and missing
inputs, as explained in Section IV-C.

V. RESULTS

The experiment results are presented in two main sections.
First, the quality of the reconstructed drivable space is eval-
uated without any positional noise, and the effect of missing
different inputs is analyzed. Second, robustness towards noise
in the inputs is evaluated. In both sections, first the topology
quality concluded from visual inspection of the reconstructions
is presented. Then, the different performance indicators (i.e.
DTLC error, accuracy, precision, recall and F1) are evaluated.
Note that in this section, only the final estimation of the
drivable space is shown. For a detailed step-by-step example
illustrating intermediate stages of the method, the reader is
referred to Appendix D. Furthermore, example reconstructions
and drivability classifications are shown only when all inputs
are present and when the road input is missing. All experiment
results, including results with other missing inputs, can be
found in Appendix F.

A. Noise-free

The quality of the topology achieved in the drivable space
reconstructions is summarized in Table I, and examples of
reconstructions with all inputs present and when missing the
road network are shown in in Figures 20 and 21.

For ease of readability, let Tq(s,m) denote the percentage
of reconstructions considered to have topology quality q ∈ Q,
with Q = {C,CE, I}, for scenario s ∈ S, with S = {1, 2, 3, 4},
when missing input m ∈ M , with M denoting the set of
possible missing inputs, including “None” to indicate that all
inputs are present. Additionally, when referring to a missing
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input only its first letter is used (e.g. N denotes None, B de-
notes Buildings, etc.). Furthermore, the change in performance
when missing an input is given by

∆Tq(s,m) = Tq(s,m)− Tq(s,N). (30)

Table I shows that Tq(1,m) = Tq(2,m), ∀q∈Q,m∈M and
Tq(3,m) = Tq(4,m), ∀q∈Q,m∈M∧m 6=R, indicating that the
topology quality achieved by reconstructions in intersection-
free scenarios is identical, and in scenarios with intersections
it is similar. When no noise is introduced to the inputs,
TC(s,N) = 100%, for s ∈ {1, 2}, indicating perfect topology
recovery in intersection-free scenarios. When s ∈ {3, 4},
TCE(s,N) = 100%, so despite containing some imperfections,
the recovered topology ensures the ego can continue operating
autonomously within the lane it is currently occupying.

Furthermore, ∆Tq(s,m) = 0 ∀q∈Q,s∈S,m∈{B,M,V}, so miss-
ing these inputs does not have any effect on the quality of
the topology. On the other hand, ∆TC(s,R) = −100% and
∆TCE(s,R) = 100% for s ∈ {1, 2}, while ∆TC(4,R) =
−100% and ∆TI(4,R) = 100%, from which we can conclude

TABLE I
DRIVABLE SPACE TOPOLOGY QUALITY UNDER NO NOISE IN THE INPUTS

Missing None Buildings Mobileye Vehicles Road Traf. Lights
Quality [%] C CE I C CE I C CE I C CE I C CE I C CE I

Scenario

1 100 - - 100 - - 100 - - 100 - - 0 100 - n/a n/a n/a
2 100 - - 100 - - 100 - - 100 - - 0 100 - n/a n/a n/a
3 - 100 - - 100 - - 100 - - 100 - - 100 - 100 0 -
4 - 100 - - 100 - - 100 - - 100 - - 0 100 100 0 -

C - Correct | CE - Correct near ego | I - Incorrect | Red indicates an increase when
an input is missing, and blue a decrease | “-” - Value is always zero independently of
missing input | 0 - Value decreased to zero when an input is missing.

that the road network input has a significant impact in the
quality of the reconstructions. However, even without any prior
knowledge about the road network, TCE(s,R) = 100% for
s ∈ {1, 2, 3}, showing that the drivable space can at least
recover the ego lane successfully. This is especially interesting
for s = 3, where the correct topology of the ego lane is
recovered (Figure 21c) after observing traffic lights and a
vehicle performing a right turn at an intersection, even if the
intersection itself is not visible from the ego’s point of view

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Fig. 20. Drivable space reconstructions achieved when all inputs are present. The color of nodes and edges represents their probability of existence and
drivability, ranging from black (probability of 0) to white (probability of 1). Blue dashed lines connect the knots of a segment. The ego position estimate
within the drivable space is denoted by a red circle.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Fig. 21. Drivable space reconstructions achieved when the road network input is missing.
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TABLE II
DTLC AND CLASSIFICATION METRICS ERROR UNDER NO NOISE IN THE INPUTS

DTLC MAE [cm] Acc. MAE [×104] Pr. MAE [×104] Re. MAE [×104] F1 MAE [×104]
Missing Input N B M V R T N B M V R T N B M V R T N B M V R T N B M V R T

Scenario

1 0 0 0.01 0 0.01 - 11 11 11 0 654 - 41 41 41 0 28 - 37 37 37 0 4456 - 39 39 39 0 2874 -
2 3.37 3.37 1.22 3.37 6.06 - 8 8 7 2 1730 - 23 23 18 10 99 - 12 12 12 0 7775 - 18 18 15 5 6366 -
3 3.1 3.1 7.67 3.1 8.95 7.68 201 304 203 198 285 7 680 1004 683 676 778 12 20 20 28 16 242 16 361 537 366 357 517 14
4 0.06 0.06 0.31 0.08 0.15 0 4 4 4 3 198 0 8 8 8 8 215 0 9 9 9 6 661 0 8 8 8 7 443 0

N - None | B - Buildings | M - Mobileye | V - Vehicles | R - Road Network | T - Traffic Lights | Red indicates an increase when an input is missing, and blue a decrease.

(Figure 16c). Unlike in scenario 3, TI(4,R) = 100%, since
the drivable space fails to capture the allowed right turn at the
intersection, despite correctly capturing the straight path the
ego may follow (Figure 21d).

Finally, projections resulting from traffic lights intro-
duce topological issues when all other inputs are present,
∆TC(s,R) = 100% for s ∈ {3, 4}, and are most beneficial
when the road network input is missing since they allow road
discovery in intersection scenarios (Figures 21c and 21d).

We now investigate the different performance metrics,
PM = {DTLC, Acc., Pr., Re, F1} of drivable space clas-
sification and ego (in-lane) localization defined previously.
Similarly to the notation defined earlier to refer to the quality
of the topology in the reconstructions, let i(s,m) denote the
value of metric i ∈ PM for scenario s ∈ S and missing input
m ∈ M . Furthermore, let εi(s,m) denote the error in metric
i ∈ PM for scenario s ∈ S and missing input m ∈ M . For
classification metrics, εi(s,m) is given by

εi(s,m) = 1− i(s,m). (31)

Finally, ∆εi(s,m) denotes the change in metric i ∈ PM
given in scenario s ∈ S when input m ∈M is missing.

Table II presents an overview of the error achieved in
drivable space classification and ego in-lane localization when
different inputs are missing. An example illustrating drivable

space classification when all inputs are present is shown in
Figure 22, and Figure 23 shows a classification when the road
input is missing. As shown in Table II, εDTLC(s,N) ≤ 0.06
cm for s = {1, 4}, indicating an almost perfect estimation
of the ego DTLC for these scenarios. However, despite this
ideal setting without any noise and all the inputs, 3.31 ≤
εDTLC(s,N) ≤ 3.37 cm for s ∈ {2, 3}. This small error is
introduced when merging segments from different projections
in the last step of the algorithm. An example of this situation is
given when the projection from a vehicle trajectory not driving
in the center of the lane is merged with the projection resulting
from the road network. In this instance, the true lane center
is slightly displaced towards the trajectory after the merging
operation.

The classification metrics when all inputs are present show
an almost perfect classification of the drivable space except
for scenario 3, in which two wrongly introduced roads cause
a portion of the space to be wrongly classified as drivable
(Figure 22c), having the highest impact on precision and sub-
sequently F1, with εpr.(3,N) = 0.068 and εF1

(3,N) = 0.0361.

Examining the effect that missing different inputs have on
the performance metrics, one can easily observe that some
inputs are more vital than others. For instance, ∆TI(s,B) = 0
∀i∈PM,s∈S∧s6=3, so buildings do not have a high impact in
most cases. When s = 3∧ i 6= DTLC, there is a small perfor-
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Fig. 22. Drivable space classification when all inputs are present. White - true positives | Black - true negatives | Red - false positives | Blue - false negatives.
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Fig. 23. Drivable space classification when all inputs are present. White - true positives | Black - true negatives | Red - false positives | Blue - false negatives.

mance decrease, since the building projection partially erases
the road segments wrongly introduced by the traffic light
projections. Furthermore, observed vehicle trajectories mainly
affect classification metrics, and ∆εDTLC(s, V ) ≤ 0.02 cm for
all s ∈ S, since the trajectories in the testing scenarios do not
overlap with the ego position at the time of estimation.

On the other hand, missing inputs such as the road network
or traffic lights can have a more significant impact in perfor-
mance metrics. Scenarios 1 and 2 do not contain any traffic
lights, and when the road network input is missing, discovery
of drivable space (and corresponding classification metrics) is
heavily dependant on the number of dynamic objects on the
road that can be observed at the time of estimation. As can be
seen in Figures 23a and 23b, when the road input is missing
the drivable space reconstruction fails to identify much of the
drivable space if few vehicles are on the road, resulting in
many false positives and having the highest impact on recall
with εre.(1,R) = 0.4456 and εre.(2,R) = 0.7775. However,
even without any information about the road network, accuracy
of the ego’s DTLC estimate does not suffer considerably, with
only ∆εDTLC(1,R) = 0.01 cm and ∆εDTLC(2,R) = 2.69 cm.

When considering testing scenarios 3 and 4, similar behav-
ior is observed. However, due to the traffic light projections
in these settings, the classification metrics do not suffer such
a significant drop, and most of the drivable space is classified
correctly (Figures 23c and 23d), although ∆εDTLC(1,R) =
5.85 cm resulting in a total εDTLC(1,R) = 8.95 cm, the highest
DTLC error in all four testing scenarios.

These results show that missing inputs can lead to errors
in the drivable space reconstruction, having a significant
influence on the road topology reconstruction at intersections.
However, even without any prior information about the road
network, it is possible to construct a road model which is
sufficiently accurate to achieve a maximum DTLC error of
under 9 cm, ensuring the ego vehicle can continue operating
safely.

B. Noise in Inputs

The effect of adding different noise levels to the inputs
is now investigated to assess the robustness of the method
towards inputs of different qualities. Table III shows the topol-
ogy quality achieved for all scenarios when different inputs are
missing and noise is injected to the remaining inputs. Similarly
to the noise-free experiments, the topology quality presents a
similar patter in scenarios with and without intersections, i.e.
TC(s,m) > TCE(s,m) ∧ TC(s,m) > TI(s,m) ∀s={1,2},m∈M .

TABLE III
DRIVABLE SPACE TOPOLOGY QUALITY WITH NOISE IN THE INPUTS

Missing None Buildings Mobileye Vehicles Road Traf. Lights
Quality [%] C CE I C CE I C CE I C CE I C CE I C CE I

Scenario

1 76 24 - 74 26 - 84 14 2 100 0 - 0 100 - n/a n/a n/a
2 90 8 2 94 6 0 76 22 2 100 0 0 0 100 0 n/a n/a n/a
3 - 74 26 - 82 18 - 70 30 - 98 2 - 72 28 82 8 10
4 26 72 2 18 80 2 14 82 4 18 82 0 0 0 100 36 56 8

C - Correct | CE - Correct near ego | I - Incorrect | Red indicates an increase when
an input is missing, and blue a decrease | “-” - Value is always zero independently
of missing input | 0 - Value decreased to zero when an input is missing.
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Fig. 24. Topology quality in the reconstructions with noisy inputs.
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On the other hand, TCE(s,m) > TC(s,m) ∧ TCE(s,m) >
TI(s,m) ∀s={3,4},m∈M∧m 6=T. Following this observation, the
effect of different levels of noise is investigated separately in
scenarios with and without intersections, as shown in Figure
24. Figure 24a shows that when s ∈ {1, 2}, the percentage
of reconstructions with perfect topology slightly decreases
linearly from 75% in the lowest noise setting to around 60%
with the highest noise levels. Despite this decrease, a majority
of the reconstructions can recover correctly at least the ego
lane, with only a small fraction of the reconstructions resulting
in incorrect topology.

On the other hand, when s ∈ {3, 4}, a majority of the
reconstructions contain imperfections, but the topology in the
drivable space is sufficiently accurate to recover the ego lane,
as shown in Figure 24b. However, a significant fraction of the
experiments yield an incorrect topology, reaching 30% when
introducing the highest levels of noise.

Furthermore, vehicle trajectories and traffic lights seem
to introduce some topological errors. The issues with vehi-
cle trajectories are especially noticeable when s = {1, 2},
where 10 ≤ ∆TC(s,V) ≤ 24%, and in scenario 3, where
∆TI(3,V) = −24%. The issues with traffic lights can be seen
by ∆TC(3,T) = 82%, where the extraneous road segments of
Figure 20c are never introduced by the traffic lights.

When considering the different performance metrics in the
noise-free scenarios, we have already seen that missing some
of the inputs does not have a significant influence in the

performance achieved in some of the testing scenarios. For
instance, buildings only affect scenario 3, while traffic lights
are not relevant at all for scenarios 1 and 2 where there
are none. For simplicity, figures reporting the performance of
noisy and missing inputs simultaneously are omitted except
for the input with the highest influence in performance: the
road network. Furthermore, as observed previously, when the
road network input is missing there is a different trend in
performance in testing scenarios with and without intersec-
tions, i.e. performance of drivable space classification drops
significantly for the intersection-free scenarios, while in those
with intersections this effect is not that visible due to the
traffic light projections. As such, the robustness towards noise
in the inputs is presented for scenarios with and without
intersections separately, and only DTLC error and one sum-
mary classification metric (F1) is included in this section.
All experiment results, including all evaluation metrics can
be found in Appendix F.

The performance using our proposed drivable space format
(blue) is compared with the performance achieved considering
the noisy inputs directly (orange). In both types of scenarios,
with and without intersections, using the proposed method
there is a significant performance improvement in DTLC error
when noise is injected to the inputs, as can be seen in Figures
25a and 26a. While employing the noisy road network and ego
position estimate for localization, the error promptly increases,
achieving a DTLC MAE of over 0.5 meters and great variance,
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Fig. 25. DTLC error and F1 score achieved under different levels of noise in scenarios without intersections. The dashed line indicates the mean performance
metric and the vertical bar the standard deviation. Drivable Space (blue) indicates the performance achieved using the proposed method, as opposed to Noisy
Inputs (orange) which represents the performance achieved using the noisy inputs directly.
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Fig. 26. DTLC error and F1 score achieved under different levels of noise in scenarios with intersections.

and a maximum DTLC error of over 1 meter. Furthermore, if
information about the road network is unavailable, localization
becomes impossible. On the other hand, the proposed drivable
space method allows maintaining the DTLC MAE under 0.31
meters and significantly lower variance in all the testing
scenarios, even under the highest noise levels and without a
prior road network. Interestingly, the maximum DTLC error
is recorded in testing scenario 3 when all inputs are present,
achieving 0.52 meters in the experiments with one of the
highest levels of noise (Figure26a), and removing the noisy
road network improves DTLC error to a maximum of 0.38
meters (Figure 26b).

When investigating the performance in drivable space clas-
sification, there is a significant difference between scenarios
with and without intersections. As summarized in Figure 25c,
the classification performance in scenarios 1 and 2 is superior
using our proposed method. However, in Figure 26c one can

observe that in intersection scenarios the proposed drivable
space no longer achieves a superior performance. This drop
in performance can be explained by the inability of the pro-
posed method to recover the correct topology in intersection
scenarios. An example of this situation was already presented
in Figure 20c, and a similar case can be seen in Figure 27,
which showcases an incorrect reconstruction affecting the final
classification performance. Nonetheless, it is still advantageous
that this classification is available even without any prior
knowledge of the road model.

Despite an imperfect reconstruction in some instances of
the intersection scenarios, the proposed method is able to
discover much of the drivable space, and even without any
prior knowledge of the road network and other inputs being
highly unreliable, it is able to reconstruct a road model that
can be used to localize the ego within its lane accurately.

(a) Scenario 4 - Drivable Space 050100150200250300
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(b) Scenario 4 - Drivability Grid

Fig. 27. Example of wrong topology in drivable space reconstruction and resulting drivability grid of scenario 4 under noise level of 1.2.
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C. Limitations

The main shortcoming of our proposed drivable space
estimation is that it is brittle in intersection scenarios due to its
inability to correctly recover the topology of the intersection.
This inability to recover the topology is partially caused by
empirically extracted projections such as traffic lights, which
do not capture an average road connectivity and geometry.
Traffic light projections were significantly simplified during
the extraction process, modeled as simple straight lines, and
their geometry cannot be easily modified in the current pro-
cedure. Despite allowing discovery of roads at intersections
when the road network is not available, they can introduce
some issues when it is, as shown by the reconstructions of
scenarios 3 and 4.

Furthermore, only subjecting the graph nodes to the opti-
mization process leads to some issues when deciding what
segments to merge, and resulting in an incorrect reconstruc-
tion, such as the example shown in Figure 27.

Finally, at the moment estimation is only being performed
once, but this estimate can be used as a prior in the shape
of another input in the drivable space estimation of a future
time-step, and increase the confidence we have in parts of the
drivable space that are supported by new sensor data, while
decreasing the confidence we have in those parts that are not
supported by other inputs.

VI. CONCLUSION

For automated vehicles to operate safely, it is required
that an accurate representation of the world is available at
all times, and that the vehicle can be accurately localized
within this representation of the world. This world modeling
and localization process must be resilient towards any kind
of complication, including sensor failure, adverse weather
conditions, or outdated information of the inputs. To that end,
we investigated how to incorporate AD domain knowledge
with ego sensor data and introduced the foundations of a novel
method to model the drivable space around the ego vehicle and
provide in-lane localization accurate enough to allow for the
safe and uninterrupted operation of an automated vehicle.

Our proposed method for drivable space modeling exploits
semantic labels of sensed high-level landmarks to estimate
the drivability of the space around such landmarks. These
estimations are referred to as projections, and they are modeled
as a probabilistic graph, which can be extracted from both
domain knowledge-based assumptions and empirical data.
Next, the nodes of the projections and its nodes are used
to formulate a SLAM optimization problem and achieve the
most likely configuration of its elements, providing a final
estimation of the drivable space.

The method provides accurate in-lane localization, and is
robust towards unreliable and missing inputs. Even if there
is no prior information available about the road network, the
proposed method achieved a maximum DTLC error of 0.09
meters if all other inputs are noise-free, and 0.38 meters
when the other inputs are extremely unreliable. However,

topology recovery is brittle in intersection scenarios, and
further research is required for these cases.

Despite some limitations, the proposed drivable space es-
timation method already shows several benefits in some sit-
uations, and has been designed in a way that can be easily
integrated in the software architecture of a typical automated
vehicle in the future.

VII. FUTURE WORK

Several interesting research directions are available to im-
prove the proposed method.

a) Extension to multiple time-steps: At the moment
estimation of the drivable space is being performed for one
time instant, but the proposed method allows to receive such
an estimate as prior in the next timestep, and it is processed
just as another drivability projection. Modeling a decay of
the nodes’ probability of existence with time would allow
incorrectly introduced elements to be automatically removed
if there is not new evidence supporting their existence.

b) Various drivability projections improvements: Driv-
ability projections that are extracted empirically would greatly
benefit from machine learning procedures, which can gen-
eralize from vast amounts of data in an automated manner
and better capture the average road geometry around de-
tected objects. For domain knowledge-based projections of
dynamic objects, currently only past and present information
(i.e. observed trajectories) is incorporated in the projections.
However, prediction models are available to anticipate these
dynamic elements’ intentions [84] and incorporate their pre-
dicted motions in the projection extraction procedure.

c) Projections from regulatory elements: Many regula-
tory elements commonly found on the road also carry infor-
mation about the existence of nearby roads. For instance, a
sign indicating a mandatory right turn could be used to extract
a projection capturing such road segment. Furthermore, the
state of a traffic light or other restricting regulatory elements
such as the direction of traffic could be used to determine the
availability of a drivable surface: there might be a drivable
surface ahead, but it is currently not drivable, or not at
all drivable for the ego vehicle. This distinction between
drivability and availability is currently not supported.

d) Subject edges to the optimization process: Currently
only graph nodes are used to build the graph that is subject
to optimization, and road segment geometry is estimated by
simple polynomial regression according to the configuration
of nodes after the optimization. If the geometry of edges were
parameterized and introduced in the optimization process,
more advanced constraints could be introduced (e.g. maximum
curvature or geometric continuity). Furthermore, by introduc-
ing an edge element in the optimization, it would allow to
establish data association constraints between edges directly
and alleviate some topology issues introduced when merging
only one segment knot.

Additionally, various implementation-specific improve-
ments are possible. An overview of these improvements is
provided in Appendix E.
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APPENDIX

A. Overview of Notation

For ease of readability, other than standard notation, non-standard terminology and notation has been introduced in this work
to refer to specific concepts of our implementation. This terminology is introduced in-text throughout the report when it is
first used. For convenience, this section provides an overview of the notation used in the report, along with a brief description
of its meaning.

x: robot state
xt: robot state at time t
x1:T : robot states at times t = {1, ..., T}
m: map
u: odometry measurement or control applied to robot (subscripts have the same meaning as for the robot state x)
z: sensor measurement (subscripts have the same meaning as for the robot state x)
ẑ: expected relative spatial constraint
ẑij : expected relative spatial constraint nodes ni and nj
n: node
ni: ith nodes
N: set of nodes
N∗: set of nodes after optimization
e: edge connecting nodes ni and nj
eij : edge
E: set of edges
Ω: information matrix
Ωij information matrix associated with a constraint relating nodes ni and nj
εij : deviation between the expected and actual measurement of the ith and jth nodes
G: Graph representing the drivable space
G: Graph encoding the optimization problem (i.e. Graph-based SLAM error minimization)
nxi : x-coordinate of the ith node
nyi : y-coordinate of the ith node
nxyi : (x, y) coordinate pair of the ith node
nκi : whether or not ith is a knot, κ ∈ {0, 1}
nτi : relative importance of the ith node
np

e

i : probability of existence of the ith node
ep

d

: probability of drivability of edge e
pdij : probability of drivability of the edge connecting nodes ni and nj
ēij : line segment connecting points nxyi and nxyj
~eij : directed vector from point nxyi to point nxyj
S: a segment of the drivable space, defined as a subgraph of the drivable space with specific properties (Section III-A).
SN: set of all nodes of segment S
SK: set of knot nodes of segment S
S6K: set of non-knot nodes of segment S
SE: set of all edges of segment S
SK: line segment between the (x, y)-coordinates of knots of segment S
~SK: directed vector between the (x, y)-coordinates of knots of segment S
φ: drivability projection
Φ: set of drivability projections
φN
i : Set of nodes of the ith projection
φE
i : Set of edges of the ith projection
φS
i : Set of segments of the ith projection

O: Set of all objects that are the input to our algorithm (i.e. high-level landmarks)
D: Set of all drivability projections
D+: Set of all drivable projections
D−: Set of all non-drivable projections
l: single traffic light
L: set of traffic lights
ΦL: set of drivable projections extracted from traffic lights
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~x: unit vector in the direction of the x-axis.
θu: operation returning the smallest unsigned angle between two vectors
Φ∗: Set of projections after optimization
h(φi, φj): Operation that aligns projections φi and φj (Section III-C)
g(n, φ): operation returning the geometric projection of nxy onto φ
cij : an edge/constraint in G between nodes ni and nj
ρ: (optional) kernel function used to weight a constraint error
||~e||: magnitude of vector ~e
G∗: Final drivable space estimation after merging the optimized projections Φ∗

w(n): weight of node n when being merged with other nodes
C: one connected component of a graph
C: set of all connected components of a graph
DTLC: distance to lane center
DTLC: true DTLC
D̂TLC: estimated DTLC
εDTLC : DTLC error
Tq(s,m): Percentage of topology reconstructions having quality q in testing scenario s when missing input m
∆Tq(s,m): Change in percentage of topology reconstructions having quality q in testing scenario s when missing input
m with respect to when all inputs are present
εi(s,m): Performance given by metric i in testing scenario s when missing input m
∆εi(s,m): Change in performance given by metric i in testing scenario s when missing input m with respect to when
all inputs are present
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B. Constants & Noise

All the base variance values used for noise sampling and constants used in the implementation are shown in Tables IV
and V respectively. As briefly explained in Section IV-C, the sampled noise results from additive Gaussian noise with varying
variances for each input, σ2 = {0 · σ2

base, 0.3 · σ2
base, ..., 2.7 · σ2

base, 3 · σ2
base}. This noise is added to the inputs both laterally

and longitudinally using the same variance.
In consultation with domain experts, we considered an expected relative noise between the different inputs to our algorithm.

The highest level of noise is considered from a map, from which we extract our road network and buildings. Next, the traffic
lights, following the sensed vehicles (and their observed trajectories) and lastly the camera-based ego lane from the Mobileye
camera. Based on this relative ordering and the study performed in [73], the different base variances are as specified in Table IV.

TABLE IV
VARIANCE VALUES FOR NOISE SAMPLING OF DIFFERENT INPUTS AND CONSTRAINTS

Variable Value Description
VAR ROAD 0.15 Base variance for error sampling added to the road network

VAR BUILDING 0.15 Base variance for error sampling added to buildings
VAR TRAF 0.1 Base variance for error sampling added to the traffic lights
VAR TRAJ 0.05 Base variance for error sampling added to vehicle trajectories

VAR MOBILEYE 0.01 Base variance for error sampling added to the ego lane
VAR VEHICLE MEASUREMENT 0.01 Base variance for error sampling added to ego-vehicle measurement constraints (see Section III-C2)

VAR ROAD MEASUREMENT 0.005 Base variance for error sampling added to ego-road measurement constraints (see Section III-C2)
VAR BUILDING MEASUREMENT 0.005 Base variance for error sampling added to ego-building measurement constraints (see Section III-C2)

VAR MOTION MODEL 0.02 Base variance for error sampling added to motion model constraints (see Section III-C2)
VAR ODOMETRY 0.001 Base variance for error sampling added to odometry constraints (see Section III-C2)

As indicated in Table V, base drivability values for drivable projections are set to 1, and for non-drivable projections to 0.
Importance values are specified for different projections relatively to control how much they contribute when merging different
nodes (i.e. prior the highest, next static objects, next vehicle trajectories since vehicles might not be driving on the lane center
and finally traffic lights, since elements from the projection are actually not observed).

TABLE V
CONSTANTS BEING USED IN THE IMPLEMENTATION

Variable Value Description
DRIVABILITY TRAJECTORY, DRIVABILITY TRAFFIC LIGHT,
DRIVABILITY MOBILEYE, DRIVABILITY ROAD

1 Base probability of drivability for nodes of drivable projections

DRIVABILITY BUILDING, DRIVABILITY TRAFFIC LIGHT POLE 0 Base probability of drivability for nodes of non-drivable projections
EXISTENCE TRAJECTORY, EXISTENCE BUILDING,
EXISTENCE MOBILEYE, EXISTENCE ROAD,
EXISTENCE TRAFFIC LIGHT POLE

1 Base probability of existence for nodes of projections originating
from different inputs

IMPORTANCE BUILDING, IMPORTANCE TRAFFIC LIGHT POLE,
IMPORTANCE MOBILEYE, IMPORTANCE ROAD

2 Relative importance of nodes from static object projections

IMPORTANCE PRIOR 3 Relative importance of nodes from prior on drivable space
IMPORTANCE TRAFFIC LIGHT 0.1 Relative importance of nodes from traffic light drivable projections
IMPORTANCE TRAJECTORY 0.5 Relative importance of nodes from trajectory projections

MOBILEYE MAX REACH, LIGHTS MAX REACH,
BUILDINGS MAX REACH, BUILDING CONSTRAINT MAX DISTANCE,
ROAD CONSTRAINT MAX DISTANCE,
VEHICLE CONSTRAINT MAX DISTANCE

50

Maximum distance from ego to consider inputs and specify ego-
input measurement constraints. Typical sensors have a longer range,
especially in the case of laser sensors (i.e. LiDAR), which can
reach up to several hundred meters [10]. However, in this work the
maximum range is kept lower to simulate challenging conditions.

Fig. 28. Example of ground truth vehicle trajectory (left) and noisy trajectory after applying noise level 1 (right)
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C. Simulators for Automated Driving

Before new techniques are implemented and tested on the road, they are first evaluated in driving simulators or general-
purpose simulators that can be used in this context. For the purpose of this work, several simulators were reviewed according
to the following criteria:

a) Open Source License: The simulator should be freely available to anyone.
b) Python scripting: In order to quickly design experiments and prototypes, the availability of a Python API or the possibility

to manipulate the simulation via simple Python scripts is a key feature.
c) Extensive documentation: Many open-source projects have the disadvantage of poor documentation or lack of support

from the community, which makes it challenging to get started with the tool, and possibly be unable to overcome some
implementation issues.

d) Advanced features: With advanced features we refer to the availability of sensors typically available in AVs (other than
LiDAR), or additional features (e.g. custom map loading) that allow extensions and make the simulator suitable for any
specific scenario a researcher might want to recreate.

Table VIIa provides an overview comparing several state of the art simulators according to the specified criteria. For a more
detailed comparison of these simulators, among others, the reader is referred to [86]–[88]. Out of the simulators considered,
only CARLA, AirSim and LGSVL satisfied the specified requirements, therefore a more extensive comparison of them was
performed. As the results summarized in Table VIIb indicate, the three simulators are quite similar in general, with LGSVL
being the most demanding in terms of GPU requirements, and CARLA having the most active community at the moment.

TABLE VI
COMPARISON OF SIMULATORS

Open Documen- Advanced
Simulator Source Python tation Features

CARLA [69] X X X X
AirSim [89] X X X X

DeepDrive [90] X X x X
LGSVL [91] X X X X
Cognata [92] x X - X
Udacity [93] X X - X

SIMLidar [94] X x x x
Helios [95] X x x x

GLIDAR [96] X x x x
Constellation [97] x X - X

Carcraft [98] x - - X
∗ Legend: X– Yes | x – No | - – Unknown or unclear

(a) Overview of the reviewed simulators according to the specified
criteria.

Feature CARLA AirSim LGSVL
Last update* 1 29 33

Update trend** Steady Lightly downwards Downwards
Physics Engine Unreal Unreal/Unity Unity

Supported Platforms Windows/Linux Windows/Linux Windows/Linux
Recommended Platform Linux - Windows

GPU requirements 4GB 4GB 8GB
GPS X X X
IMU X X X

LiDAR X X X
Radar X x X

Infrared x X x
Stereo/color Camera X X X

Depth Camera X X X
Semantic Segmentation X X X
∗Days since last commit to the main branch at the time of writing.
∗∗Change in update frequency since creation of the repository (see Figure 29)

(b) More detailed comparison of CARLA, AirSim and LGSVL.

(a) CARLA

(b) AirSim

(c) LGSVL

Fig. 29. Number of commits to the main branch since the start of the simulator’s repository
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D. Step-by-step Example Execution

This section provides an example of the drivable space estimation step by step. The scenario used for this example is scenario
2 under maximum level of noise (noise level 3) and all inputs present. Figures 30 to 33 illustrate the execution of the drivable
space estimation algorithm step by step and in 34 the final drivability grid classification is shown. In all figures illustrating
the algorithm’s execution, the left subfigure shows the entire area of the reconstruction, while the right one zooms in to show
more detail about the elements nearby the ego vehicle.
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Fig. 30. First step of the algorithm: projections from the noisy inputs are extracted. The color of nodes indicate their probability of existence and the color of
the edges their probability of drivability. The probabilities range from zero (black) to one (white). Blue dashed lines indicate a straight line segment between
the knots of a projection segment.
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Fig. 31. Projections are aligned by geometric projection of segment knots onto segments of different projections. If the result of the geometric projection is
closer than 1.75m (half of a typical lane width), a new node is introduced and data association constraint established between the nodes.
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Fig. 32. Several other constraints are established between nodes depending on their semantic labels (e.g. odometry constraints) to obtain the most likely
configuration of the drivable space. This figure illustrates the configuration of nodes after optimization is performed. Valid data association constraints between
nodes are shown with dashed gray lines.

Fig. 33. Finally, after optimization the segments with valid data association constraints between their knots are merged to generate the final drivable space,
which can can be used for accurate in-lane localization. The ego position within this space is represented by the red circle. DTLC error achieved in this
setting is 0.0641± 0.0625m.
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Fig. 34. Classification of drivable space resulting from the drivability grid. White cells are correctly classified as drivable and black cells correctly classified
as non-drivable. Red cells indicate wrongly classified cells as drivable, and blue cells wrongly classified cells as non-drivable. The different performance
metrics achieved in this reconstruction are as follows. Accuracy: 0.976± 0.012, precision: 0.94± 0.031, recall: 0.953± 0.024, and F1: 0.947± 0.027.
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E. Future Work: Overview of Implementation Improvements

There are some implementation issues or improvements that have been identified and would considerably enhance the
method, both conceptually and in terms of performance. However, they could not be implemented due to time constraints. In
this section we provide a brief overview of these improvements.

a) Efficiency: The entire method was coded without taking any care of running time. As such, there is room for massive
improvement in this regard in almost every component of the method.

b) Projection alignment order: When aligning different projections, the order in which they are processed is sometimes
relevant. Consider the following case: 3 projections (a, b, c) are being aligned in that order. First, knots from a are projected
onto b and c, and if close enough new knots are created in b and c. Next, knots of b are projected onto a and c, and it is
possible that new knots in a are introduced, which will never be projected onto c because a was already processed. These
cases should be considered, and newly introduced knots should be projected from already processed projections.

c) Intersecting edges during alignment: During alignment of projections, intersections of segments should introduce new
nodes (see slides “Meeting 2020-06-08” included in the deliverables). There is a faulty implementation of this procedure
already in the code, but it had to be discontinued to move forward in the project. Incorporating this procedure will improve
topology recovery, but might introduce some unforeseen issues in testing scenarios with intersections.

d) Mobileye simulation mismatch with road network: There is a small mismatch in the ego-lane extracted from the
simulated Mobileye information and the road network. The entire road network is extracted and simplified as specified in
IV-B. As such, nearly straight segments are simplified into a completely straight segment for the road network (which is used
as ground truth for the reconstruction), but this is not the case for the Mobileye projections. Thus, sometimes the Mobileye
projection introduces a small displacement in the drivable space reconstruction with respect to the ground truth road network
(which is the simplified road network).

e) Non-drivable projections merging: Nodes from non-drivable projections are currently being processed in the same
way as drivable projections, resulting in some nodes from different inputs being merged when they should not. For instance,
nodes from projections of traffic lights (poles) and buildings are merged when they are close enough and slightly displace
some non-drivable edges. This is not a significant issue, since it only occurs between non-drivable nodes that are 1.75m meters
away, and this space is not sufficient for a road. However, they should be treated differently to avoid displacement of these
non drivable areas.

f) Lane width constraints between road network nodes: Currently only nodes of the drivable space originating from
traffic lights are constrained to keep a distance of 3.5m between them. These constraints are not established between nodes
originating from the road network due to implementation-specific difficulties. The road network extracted from CARLA does
not readily provide information about which lanes are adjacent, and relying on the distance between them to decide what lanes
to relate is not possible since noise is being injected to the inputs in our simulations before formulating the Graph-based SLAM
optimization problem. Thus, it would require extra processing of the road network or modifying the pipeline of our method
to inject noise after these constraints are established. Introducing lane width constraints between nodes of adjacent lanes from
the road network would significantly improve the quality of the recovered road model.
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F. Extended Experiment Results

Topology Quality with Missing Inputs and Noise
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Scenario 3. Noise level 0.0. Missing input: None
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3. Optimized Projections
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DTLC MAE = 0.0 (±0.0)m

4. Merged Projections

Accuracy = 0.9989(±0.0)
Precision = 0.9959(±0.0)

Recall = 0.9963(±0.0)
F1 = 0.9961(±0.0)

Drivability Grid Classification Results

Scenario 3. Noise level 0.0. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.0 (±0.0)m

4. Merged Projections

Accuracy = 0.9989(±0.0)
Precision = 0.9959(±0.0)

Recall = 0.9963(±0.0)
F1 = 0.9961(±0.0)

Drivability Grid Classification Results
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Scenario 3. Noise level 0.0. Missing input: Mobileye
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0001 (±0.0)m

4. Merged Projections

Accuracy = 0.9989(±0.0)
Precision = 0.9959(±0.0)

Recall = 0.9963(±0.0)
F1 = 0.9961(±0.0)

Drivability Grid Classification Results

Scenario 3. Noise level 0.0. Missing input: Vehicles

20406080100120140160180
x [m]

90

100

110

120

130

140

y 
[m

]

1. Projections

20406080100120140160180
x [m]

90

100

110

120

130

140

y 
[m

]

2. Aligned Projections

20406080100120140160180
x [m]

90

100

110

120

130

140

y 
[m

]

3. Optimized Projections
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DTLC MAE = 0.0 (±0.0)m

4. Merged Projections

Accuracy = 1.0(±0.0)
Precision = 1.0(±0.0)

Recall = 1.0(±0.0)
F1 = 1.0(±0.0)

Drivability Grid Classification Results
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Scenario 3. Noise level 0.0. Missing input: Road network
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0001 (±0.0)m

4. Merged Projections

Accuracy = 0.9346(±0.0)
Precision = 0.9972(±0.0)

Recall = 0.5544(±0.0)
F1 = 0.7126(±0.0)

Drivability Grid Classification Results

Scenario 3. Noise level 0.9. Missing input: None
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3. Optimized Projections
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DTLC MAE = 0.0652 (±0.0581)m

4. Merged Projections

Accuracy = 0.9922(±0.0026)
Precision = 0.976(±0.017)
Recall = 0.9708(±0.0151)

F1 = 0.9732(±0.0089)

Drivability Grid Classification Results
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Scenario 3. Noise level 0.9. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.1555 (±0.0658)m

4. Merged Projections

Accuracy = 0.9905(±0.0023)
Precision = 0.9666(±0.0184)

Recall = 0.9689(±0.0095)
F1 = 0.9676(±0.0075)

Drivability Grid Classification Results

Scenario 3. Noise level 0.9. Missing input: Mobileye
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3. Optimized Projections

20406080100120140160180
x [m]

90

100

110

120

130

140

y 
[m

]

DTLC MAE = 0.0903 (±0.0557)m

4. Merged Projections

Accuracy = 0.9938(±0.0018)
Precision = 0.9828(±0.0063)

Recall = 0.9748(±0.0139)
F1 = 0.9787(±0.0063)

Drivability Grid Classification Results
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Scenario 3. Noise level 0.9. Missing input: Vehicles
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3. Optimized Projections
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DTLC MAE = 0.0624 (±0.0534)m

4. Merged Projections

Accuracy = 0.9911(±0.0049)
Precision = 0.9671(±0.025)

Recall = 0.9723(±0.009)
F1 = 0.9696(±0.0164)

Drivability Grid Classification Results

Scenario 3. Noise level 0.9. Missing input: Road network
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3. Optimized Projections
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DTLC MAE = 0.0261 (±0.0176)m

4. Merged Projections

Accuracy = 0.9314(±0.0003)
Precision = 0.9943(±0.0014)

Recall = 0.5339(±0.0015)
F1 = 0.6947(±0.0014)

Drivability Grid Classification Results

38



Scenario 3. Noise level 1.8. Missing input: None
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3. Optimized Projections
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DTLC MAE = 0.1208 (±0.0792)m

4. Merged Projections

Accuracy = 0.9877(±0.0067)
Precision = 0.9531(±0.0272)

Recall = 0.9639(±0.0177)
F1 = 0.9584(±0.0225)

Drivability Grid Classification Results

Scenario 3. Noise level 1.8. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.0765 (±0.0714)m

4. Merged Projections

Accuracy = 0.9914(±0.0026)
Precision = 0.973(±0.0074)

Recall = 0.968(±0.0218)
F1 = 0.9703(±0.0094)

Drivability Grid Classification Results
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Scenario 3. Noise level 1.8. Missing input: Mobileye

20406080100120140160180
x [m]

90

100

110

120

130

140

y 
[m

]

1. Projections

20406080100120140160180
x [m]

90

100

110

120

130

140

y 
[m

]

2. Aligned Projections

20406080100120140160180
x [m]

90

100

110

120

130

140

y 
[m

]

3. Optimized Projections
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DTLC MAE = 0.1668 (±0.1606)m

4. Merged Projections

Accuracy = 0.988(±0.0057)
Precision = 0.9517(±0.0218)

Recall = 0.9672(±0.0182)
F1 = 0.9593(±0.0193)

Drivability Grid Classification Results

Scenario 3. Noise level 1.8. Missing input: Vehicles
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3. Optimized Projections
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DTLC MAE = 0.0759 (±0.0763)m

4. Merged Projections

Accuracy = 0.9886(±0.0025)
Precision = 0.9763(±0.0248)

Recall = 0.9462(±0.0236)
F1 = 0.9606(±0.0085)

Drivability Grid Classification Results
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Scenario 3. Noise level 1.8. Missing input: Road network
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3. Optimized Projections
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DTLC MAE = 0.0586 (±0.0288)m

4. Merged Projections

Accuracy = 0.9309(±0.0005)
Precision = 0.9906(±0.0033)

Recall = 0.5323(±0.0021)
F1 = 0.6925(±0.0024)

Drivability Grid Classification Results

Scenario 3. Noise level 2.7. Missing input: None
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3. Optimized Projections
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DTLC MAE = 0.1271 (±0.0976)m

4. Merged Projections

Accuracy = 0.9903(±0.0012)
Precision = 0.9784(±0.0087)

Recall = 0.9548(±0.0129)
F1 = 0.9664(±0.0043)

Drivability Grid Classification Results
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Scenario 3. Noise level 2.7. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.1581 (±0.0832)m

4. Merged Projections

Accuracy = 0.992(±0.0031)
Precision = 0.9811(±0.009)

Recall = 0.964(±0.0212)
F1 = 0.9724(±0.0111)

Drivability Grid Classification Results

Scenario 3. Noise level 2.7. Missing input: Mobileye
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3. Optimized Projections
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DTLC MAE = 0.3151 (±0.1621)m

4. Merged Projections

Accuracy = 0.9878(±0.0037)
Precision = 0.9652(±0.0218)

Recall = 0.9514(±0.0104)
F1 = 0.9581(±0.0123)

Drivability Grid Classification Results
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Scenario 3. Noise level 2.7. Missing input: Vehicles
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3. Optimized Projections
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DTLC MAE = 0.1568 (±0.0617)m

4. Merged Projections

Accuracy = 0.9819(±0.0044)
Precision = 0.9394(±0.0232)

Recall = 0.9373(±0.0159)
F1 = 0.9382(±0.0147)

Drivability Grid Classification Results

Scenario 3. Noise level 2.7. Missing input: Road network
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3. Optimized Projections
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DTLC MAE = 0.0937 (±0.09)m

4. Merged Projections

Accuracy = 0.9299(±0.0007)
Precision = 0.9866(±0.0061)

Recall = 0.5276(±0.0026)
F1 = 0.6875(±0.0031)

Drivability Grid Classification Results
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Scenario 4. Noise level 0.0. Missing input: None
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3. Optimized Projections
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DTLC MAE = 0.0337 (±0.0)m

4. Merged Projections

Accuracy = 0.9992(±0.0)
Precision = 0.9977(±0.0)

Recall = 0.9988(±0.0)
F1 = 0.9982(±0.0)

Drivability Grid Classification Results

Scenario 4. Noise level 0.0. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.0337 (±0.0)m

4. Merged Projections

Accuracy = 0.9992(±0.0)
Precision = 0.9977(±0.0)

Recall = 0.9988(±0.0)
F1 = 0.9982(±0.0)

Drivability Grid Classification Results
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Scenario 4. Noise level 0.0. Missing input: Mobileye
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3. Optimized Projections
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DTLC MAE = 0.0122 (±0.0)m

4. Merged Projections

Accuracy = 0.9993(±0.0)
Precision = 0.9982(±0.0)

Recall = 0.9988(±0.0)
F1 = 0.9985(±0.0)

Drivability Grid Classification Results

Scenario 4. Noise level 0.0. Missing input: Vehicles
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3. Optimized Projections
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DTLC MAE = 0.0337 (±0.0)m

4. Merged Projections

Accuracy = 0.9998(±0.0)
Precision = 0.999(±0.0)

Recall = 1.0(±0.0)
F1 = 0.9995(±0.0)

Drivability Grid Classification Results
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Scenario 4. Noise level 0.0. Missing input: Road network
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3. Optimized Projections
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DTLC MAE = 0.0606 (±0.0)m

4. Merged Projections

Accuracy = 0.827(±0.0)
Precision = 0.9901(±0.0)

Recall = 0.2225(±0.0)
F1 = 0.3634(±0.0)

Drivability Grid Classification Results

Scenario 4. Noise level 0.9. Missing input: None
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3. Optimized Projections
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DTLC MAE = 0.0368 (±0.0214)m

4. Merged Projections

Accuracy = 0.985(±0.0045)
Precision = 0.9678(±0.0153)

Recall = 0.9648(±0.0091)
F1 = 0.9662(±0.0099)

Drivability Grid Classification Results

46



Scenario 4. Noise level 0.9. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.0509 (±0.0195)m

4. Merged Projections

Accuracy = 0.9882(±0.0032)
Precision = 0.9717(±0.0104)

Recall = 0.9751(±0.0086)
F1 = 0.9734(±0.0071)

Drivability Grid Classification Results

Scenario 4. Noise level 0.9. Missing input: Mobileye
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3. Optimized Projections
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DTLC MAE = 0.0642 (±0.0257)m

4. Merged Projections

Accuracy = 0.9861(±0.0037)
Precision = 0.9683(±0.0119)

Recall = 0.9691(±0.0057)
F1 = 0.9687(±0.0082)

Drivability Grid Classification Results
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Scenario 4. Noise level 0.9. Missing input: Vehicles
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0696 (±0.051)m

4. Merged Projections

Accuracy = 0.9855(±0.0021)
Precision = 0.9636(±0.0076)

Recall = 0.9712(±0.0022)
F1 = 0.9674(±0.0045)

Drivability Grid Classification Results

Scenario 4. Noise level 0.9. Missing input: Road network
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3. Optimized Projections
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DTLC MAE = 0.0278 (±0.0137)m

4. Merged Projections

Accuracy = 0.8251(±0.0004)
Precision = 0.988(±0.0043)

Recall = 0.2144(±0.0011)
F1 = 0.3523(±0.0017)

Drivability Grid Classification Results
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Scenario 4. Noise level 1.8. Missing input: None
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0638 (±0.1087)m

4. Merged Projections

Accuracy = 0.981(±0.0033)
Precision = 0.9638(±0.0134)

Recall = 0.9503(±0.0088)
F1 = 0.9569(±0.0073)

Drivability Grid Classification Results

Scenario 4. Noise level 1.8. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.079 (±0.072)m

4. Merged Projections

Accuracy = 0.9808(±0.0068)
Precision = 0.959(±0.0189)

Recall = 0.9543(±0.0164)
F1 = 0.9566(±0.0153)

Drivability Grid Classification Results
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Scenario 4. Noise level 1.8. Missing input: Mobileye
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2011 (±0.1693)m

4. Merged Projections

Accuracy = 0.982(±0.0034)
Precision = 0.9669(±0.0146)

Recall = 0.9517(±0.0201)
F1 = 0.959(±0.0079)

Drivability Grid Classification Results

Scenario 4. Noise level 1.8. Missing input: Vehicles
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3. Optimized Projections
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DTLC MAE = 0.0389 (±0.0266)m

4. Merged Projections

Accuracy = 0.9786(±0.0028)
Precision = 0.9557(±0.0106)

Recall = 0.9477(±0.008)
F1 = 0.9517(±0.0064)

Drivability Grid Classification Results
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Scenario 4. Noise level 1.8. Missing input: Road network
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0465 (±0.0138)m

4. Merged Projections

Accuracy = 0.8247(±0.0002)
Precision = 0.9876(±0.0027)

Recall = 0.2124(±0.0009)
F1 = 0.3495(±0.0012)

Drivability Grid Classification Results

Scenario 4. Noise level 2.7. Missing input: None
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3. Optimized Projections
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DTLC MAE = 0.0408 (±0.0551)m

4. Merged Projections

Accuracy = 0.9785(±0.0021)
Precision = 0.9557(±0.0135)

Recall = 0.9472(±0.0117)
F1 = 0.9513(±0.0047)

Drivability Grid Classification Results
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Scenario 4. Noise level 2.7. Missing input: Buildings
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3. Optimized Projections
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DTLC MAE = 0.121 (±0.0938)m

4. Merged Projections

Accuracy = 0.9816(±0.0026)
Precision = 0.9668(±0.0138)

Recall = 0.9502(±0.0209)
F1 = 0.9582(±0.0062)

Drivability Grid Classification Results

Scenario 4. Noise level 2.7. Missing input: Mobileye
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3. Optimized Projections
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DTLC MAE = 0.1204 (±0.1514)m

4. Merged Projections

Accuracy = 0.978(±0.0038)
Precision = 0.9548(±0.0099)

Recall = 0.9458(±0.0092)
F1 = 0.9503(±0.0086)

Drivability Grid Classification Results
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Scenario 4. Noise level 2.7. Missing input: Vehicles
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3. Optimized Projections
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DTLC MAE = 0.0616 (±0.0562)m

4. Merged Projections

Accuracy = 0.9763(±0.0021)
Precision = 0.9558(±0.0091)

Recall = 0.9368(±0.0132)
F1 = 0.9461(±0.0049)

Drivability Grid Classification Results

Scenario 4. Noise level 2.7. Missing input: Road network
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3. Optimized Projections

50100150200250
x [m]

160

170

180

190

200

210

220

y 
[m

]

DTLC MAE = 0.0634 (±0.0443)m

4. Merged Projections

Accuracy = 0.8245(±0.0007)
Precision = 0.9847(±0.0077)

Recall = 0.2124(±0.0016)
F1 = 0.3494(±0.0026)

Drivability Grid Classification Results
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Scenario 5. Noise level 0.0. Missing input: None
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.031 (±0.0)m

4. Merged Projections

Accuracy = 0.9799(±0.0)
Precision = 0.932(±0.0)

Recall = 0.998(±0.0)
F1 = 0.9639(±0.0)

Drivability Grid Classification Results

Scenario 5. Noise level 0.0. Missing input: Buildings
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.031 (±0.0)m

4. Merged Projections

Accuracy = 0.9696(±0.0)
Precision = 0.8996(±0.0)

Recall = 0.998(±0.0)
F1 = 0.9463(±0.0)

Drivability Grid Classification Results
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Scenario 5. Noise level 0.0. Missing input: Mobileye
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0767 (±0.0)m

4. Merged Projections

Accuracy = 0.9797(±0.0)
Precision = 0.9317(±0.0)

Recall = 0.9972(±0.0)
F1 = 0.9634(±0.0)

Drivability Grid Classification Results

Scenario 5. Noise level 0.0. Missing input: Vehicles
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.031 (±0.0)m

4. Merged Projections

Accuracy = 0.9802(±0.0)
Precision = 0.9324(±0.0)

Recall = 0.9984(±0.0)
F1 = 0.9643(±0.0)

Drivability Grid Classification Results
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Scenario 5. Noise level 0.0. Missing input: Road network
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1. Projections
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0895 (±0.0)m

4. Merged Projections

Accuracy = 0.9715(±0.0)
Precision = 0.9222(±0.0)

Recall = 0.9758(±0.0)
F1 = 0.9483(±0.0)

Drivability Grid Classification Results

Scenario 5. Noise level 0.0. Missing input: Traffic lights
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0768 (±0.0)m

4. Merged Projections

Accuracy = 0.9993(±0.0)
Precision = 0.9988(±0.0)

Recall = 0.9984(±0.0)
F1 = 0.9986(±0.0)

Drivability Grid Classification Results
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Scenario 5. Noise level 0.9. Missing input: None
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0751 (±0.1003)m

4. Merged Projections

Accuracy = 0.9645(±0.0026)
Precision = 0.9063(±0.0012)

Recall = 0.9675(±0.0121)
F1 = 0.9359(±0.0051)

Drivability Grid Classification Results

Scenario 5. Noise level 0.9. Missing input: Buildings
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0134 (±0.0012)m

4. Merged Projections

Accuracy = 0.9603(±0.0021)
Precision = 0.8942(±0.0032)

Recall = 0.9664(±0.0045)
F1 = 0.9289(±0.0038)

Drivability Grid Classification Results
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Scenario 5. Noise level 0.9. Missing input: Mobileye
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1. Projections
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2872 (±0.0321)m

4. Merged Projections

Accuracy = 0.969(±0.0025)
Precision = 0.9231(±0.0103)

Recall = 0.9647(±0.0026)
F1 = 0.9434(±0.0041)

Drivability Grid Classification Results

Scenario 5. Noise level 0.9. Missing input: Vehicles
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2397 (±0.0184)m

4. Merged Projections

Accuracy = 0.9654(±0.0083)
Precision = 0.9063(±0.0272)

Recall = 0.9718(±0.0016)
F1 = 0.9378(±0.0138)

Drivability Grid Classification Results
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Scenario 5. Noise level 0.9. Missing input: Road network
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1. Projections
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.1102 (±0.0681)m

4. Merged Projections

Accuracy = 0.9505(±0.0206)
Precision = 0.8866(±0.0277)

Recall = 0.9348(±0.0505)
F1 = 0.91(±0.0385)

Drivability Grid Classification Results

Scenario 5. Noise level 0.9. Missing input: Traffic lights
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.1735 (±0.0133)m

4. Merged Projections

Accuracy = 0.9764(±0.006)
Precision = 0.9491(±0.008)

Recall = 0.9635(±0.0145)
F1 = 0.9562(±0.0112)

Drivability Grid Classification Results
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Scenario 5. Noise level 1.8. Missing input: None
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2. Aligned Projections
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3. Optimized Projections

130135140145150155160165
x [m]

170

160

150

140

130

120

110

y 
[m

]

DTLC MAE = 0.175 (±0.2139)m

4. Merged Projections

Accuracy = 0.9681(±0.0003)
Precision = 0.9157(±0.0094)

Recall = 0.9706(±0.0134)
F1 = 0.9423(±0.0013)

Drivability Grid Classification Results

Scenario 5. Noise level 1.8. Missing input: Buildings
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2381 (±0.0299)m

4. Merged Projections

Accuracy = 0.9565(±0.0013)
Precision = 0.8822(±0.0113)

Recall = 0.967(±0.0217)
F1 = 0.9225(±0.0037)

Drivability Grid Classification Results
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Scenario 5. Noise level 1.8. Missing input: Mobileye
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2651 (±0.1674)m

4. Merged Projections

Accuracy = 0.9596(±0.0082)
Precision = 0.8994(±0.0069)

Recall = 0.9563(±0.0252)
F1 = 0.9269(±0.0155)

Drivability Grid Classification Results

Scenario 5. Noise level 1.8. Missing input: Vehicles
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.1221 (±0.0337)m

4. Merged Projections

Accuracy = 0.9433(±0.0061)
Precision = 0.8569(±0.0023)

Recall = 0.9464(±0.0238)
F1 = 0.8994(±0.012)

Drivability Grid Classification Results
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Scenario 5. Noise level 1.8. Missing input: Road network
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1. Projections
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0917 (±0.0513)m

4. Merged Projections

Accuracy = 0.9555(±0.0236)
Precision = 0.9004(±0.0375)

Recall = 0.9377(±0.0503)
F1 = 0.9186(±0.0436)

Drivability Grid Classification Results

Scenario 5. Noise level 1.8. Missing input: Traffic lights
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2818 (±0.0064)m

4. Merged Projections

Accuracy = 0.9839(±0.0012)
Precision = 0.9717(±0.0122)

Recall = 0.9682(±0.0176)
F1 = 0.9699(±0.0028)

Drivability Grid Classification Results
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Scenario 5. Noise level 2.7. Missing input: None

130135140145150155160165
x [m]

170

160

150

140

130

120

110

y 
[m

]

1. Projections
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2632 (±0.0915)m

4. Merged Projections

Accuracy = 0.96(±0.0041)
Precision = 0.8935(±0.0133)

Recall = 0.9662(±0.0009)
F1 = 0.9284(±0.0068)

Drivability Grid Classification Results

Scenario 5. Noise level 2.7. Missing input: Buildings
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0677 (±0.0912)m

4. Merged Projections

Accuracy = 0.9581(±0.004)
Precision = 0.8814(±0.0222)

Recall = 0.9758(±0.015)
F1 = 0.926(±0.0055)

Drivability Grid Classification Results
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Scenario 5. Noise level 2.7. Missing input: Mobileye
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1. Projections
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2401 (±0.0463)m

4. Merged Projections

Accuracy = 0.9589(±0.0136)
Precision = 0.9078(±0.009)

Recall = 0.9424(±0.0449)
F1 = 0.9246(±0.0263)

Drivability Grid Classification Results

Scenario 5. Noise level 2.7. Missing input: Vehicles
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.1435 (±0.033)m

4. Merged Projections

Accuracy = 0.9553(±0.0029)
Precision = 0.89(±0.0016)
Recall = 0.9508(±0.0102)

F1 = 0.9194(±0.0056)

Drivability Grid Classification Results
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Scenario 5. Noise level 2.7. Missing input: Road network
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2. Aligned Projections
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3. Optimized Projections

130135140145150155160165
x [m]

170

160

150

140

130

120

110

y 
[m

]

DTLC MAE = 0.1636 (±0.0433)m

4. Merged Projections

Accuracy = 0.9662(±0.0021)
Precision = 0.919(±0.0054)

Recall = 0.9585(±0.0017)
F1 = 0.9383(±0.0036)

Drivability Grid Classification Results

Scenario 5. Noise level 2.7. Missing input: Traffic lights
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.2914 (±0.2297)m

4. Merged Projections

Accuracy = 0.971(±0.0035)
Precision = 0.9826(±0.0059)

Recall = 0.9079(±0.0075)
F1 = 0.9438(±0.0068)

Drivability Grid Classification Results
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Scenario 6. Noise level 0.0. Missing input: None
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0006 (±0.0)m

4. Merged Projections

Accuracy = 0.9996(±0.0)
Precision = 0.9992(±0.0)

Recall = 0.9991(±0.0)
F1 = 0.9992(±0.0)

Drivability Grid Classification Results

Scenario 6. Noise level 0.0. Missing input: Buildings
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0006 (±0.0)m

4. Merged Projections

Accuracy = 0.9996(±0.0)
Precision = 0.9992(±0.0)

Recall = 0.9991(±0.0)
F1 = 0.9992(±0.0)

Drivability Grid Classification Results

66



Scenario 6. Noise level 0.0. Missing input: Mobileye
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0031 (±0.0)m

4. Merged Projections

Accuracy = 0.9996(±0.0)
Precision = 0.9992(±0.0)

Recall = 0.9991(±0.0)
F1 = 0.9992(±0.0)

Drivability Grid Classification Results

Scenario 6. Noise level 0.0. Missing input: Vehicles
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0008 (±0.0)m

4. Merged Projections

Accuracy = 0.9997(±0.0)
Precision = 0.9992(±0.0)

Recall = 0.9994(±0.0)
F1 = 0.9993(±0.0)

Drivability Grid Classification Results

67



Scenario 6. Noise level 0.0. Missing input: Road network
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0015 (±0.0)m

4. Merged Projections

Accuracy = 0.9802(±0.0)
Precision = 0.9785(±0.0)

Recall = 0.9339(±0.0)
F1 = 0.9557(±0.0)

Drivability Grid Classification Results

Scenario 6. Noise level 0.0. Missing input: Traffic lights
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0 (±0.0)m

4. Merged Projections

Accuracy = 1.0(±0.0)
Precision = 1.0(±0.0)

Recall = 1.0(±0.0)
F1 = 1.0(±0.0)

Drivability Grid Classification Results
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Scenario 6. Noise level 0.9. Missing input: None
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2. Aligned Projections
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3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.0548 (±0.048)m

4. Merged Projections

Accuracy = 0.9891(±0.0029)
Precision = 0.9721(±0.0127)

Recall = 0.9807(±0.0038)
F1 = 0.9763(±0.0062)

Drivability Grid Classification Results

Scenario 6. Noise level 0.9. Missing input: Buildings
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0908 (±0.0782)m

4. Merged Projections

Accuracy = 0.989(±0.0031)
Precision = 0.974(±0.0113)

Recall = 0.978(±0.0029)
F1 = 0.976(±0.0066)

Drivability Grid Classification Results
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Scenario 6. Noise level 0.9. Missing input: Mobileye
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2. Aligned Projections
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3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.0541 (±0.0486)m

4. Merged Projections

Accuracy = 0.9866(±0.0017)
Precision = 0.9673(±0.0159)

Recall = 0.9747(±0.0159)
F1 = 0.9708(±0.0036)

Drivability Grid Classification Results

Scenario 6. Noise level 0.9. Missing input: Vehicles
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2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections
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DTLC MAE = 0.0902 (±0.0879)m

4. Merged Projections

Accuracy = 0.9867(±0.0046)
Precision = 0.9716(±0.0194)

Recall = 0.9706(±0.0039)
F1 = 0.971(±0.0097)

Drivability Grid Classification Results
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Scenario 6. Noise level 0.9. Missing input: Road network
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2. Aligned Projections
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3. Optimized Projections
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DTLC MAE = 0.0509 (±0.0271)m

4. Merged Projections

Accuracy = 0.978(±0.0004)
Precision = 0.9774(±0.0026)

Recall = 0.9255(±0.0031)
F1 = 0.9507(±0.001)

Drivability Grid Classification Results

Scenario 6. Noise level 0.9. Missing input: Traffic lights
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2. Aligned Projections
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3. Optimized Projections
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150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.076 (±0.0442)m

4. Merged Projections

Accuracy = 0.9877(±0.0049)
Precision = 0.9824(±0.0076)

Recall = 0.9637(±0.0203)
F1 = 0.9729(±0.0111)

Drivability Grid Classification Results
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Scenario 6. Noise level 1.8. Missing input: None

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.1351 (±0.0425)m

4. Merged Projections

Accuracy = 0.9858(±0.0026)
Precision = 0.9725(±0.0115)

Recall = 0.9656(±0.0145)
F1 = 0.9689(±0.0058)

Drivability Grid Classification Results

Scenario 6. Noise level 1.8. Missing input: Buildings

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.1169 (±0.1443)m

4. Merged Projections

Accuracy = 0.9818(±0.005)
Precision = 0.9538(±0.0204)

Recall = 0.9678(±0.0093)
F1 = 0.9607(±0.0105)

Drivability Grid Classification Results

72



Scenario 6. Noise level 1.8. Missing input: Mobileye

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.1187 (±0.1143)m

4. Merged Projections

Accuracy = 0.9774(±0.0039)
Precision = 0.9377(±0.0121)

Recall = 0.9656(±0.0083)
F1 = 0.9514(±0.0082)

Drivability Grid Classification Results

Scenario 6. Noise level 1.8. Missing input: Vehicles

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.1011 (±0.1019)m

4. Merged Projections

Accuracy = 0.9795(±0.0092)
Precision = 0.9537(±0.0309)

Recall = 0.9576(±0.0082)
F1 = 0.9555(±0.0195)

Drivability Grid Classification Results
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Scenario 6. Noise level 1.8. Missing input: Road network

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.0463 (±0.0428)m

4. Merged Projections

Accuracy = 0.9792(±0.0008)
Precision = 0.9778(±0.0026)

Recall = 0.9303(±0.005)
F1 = 0.9534(±0.0019)

Drivability Grid Classification Results

Scenario 6. Noise level 1.8. Missing input: Traffic lights

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.106 (±0.1048)m

4. Merged Projections

Accuracy = 0.9813(±0.0047)
Precision = 0.9576(±0.0199)

Recall = 0.961(±0.0019)
F1 = 0.9592(±0.0098)

Drivability Grid Classification Results
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Scenario 6. Noise level 2.7. Missing input: None

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.1012 (±0.1082)m

4. Merged Projections

Accuracy = 0.977(±0.0044)
Precision = 0.9479(±0.0199)

Recall = 0.9522(±0.0058)
F1 = 0.9499(±0.009)

Drivability Grid Classification Results

Scenario 6. Noise level 2.7. Missing input: Buildings

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.0704 (±0.0825)m

4. Merged Projections

Accuracy = 0.9779(±0.0088)
Precision = 0.9428(±0.0196)

Recall = 0.9621(±0.0215)
F1 = 0.9523(±0.0191)

Drivability Grid Classification Results
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Scenario 6. Noise level 2.7. Missing input: Mobileye

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.1028 (±0.137)m

4. Merged Projections

Accuracy = 0.9783(±0.0049)
Precision = 0.9507(±0.0157)

Recall = 0.9549(±0.0091)
F1 = 0.9527(±0.0105)

Drivability Grid Classification Results

Scenario 6. Noise level 2.7. Missing input: Vehicles

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.083 (±0.062)m

4. Merged Projections

Accuracy = 0.976(±0.0061)
Precision = 0.9454(±0.0244)

Recall = 0.9507(±0.0174)
F1 = 0.9478(±0.0127)

Drivability Grid Classification Results
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Scenario 6. Noise level 2.7. Missing input: Road network

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.0524 (±0.0427)m

4. Merged Projections

Accuracy = 0.9767(±0.0005)
Precision = 0.9778(±0.0047)

Recall = 0.9191(±0.0043)
F1 = 0.9475(±0.0012)

Drivability Grid Classification Results

Scenario 6. Noise level 2.7. Missing input: Traffic lights

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

1. Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

2. Aligned Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

3. Optimized Projections

405060708090100
x [m]

160

150

140

130

120

110

100

y 
[m

]

DTLC MAE = 0.1705 (±0.1205)m

4. Merged Projections

Accuracy = 0.977(±0.0059)
Precision = 0.9643(±0.014)

Recall = 0.9341(±0.0129)
F1 = 0.9489(±0.013)

Drivability Grid Classification Results
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Scenario 3 - DTLC Error

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

DT
LC

 M
AE

 [m
]

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.2

0.4

0.6

0.8

DT
LC

 M
AE

 [m
]

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

DT
LC

 M
AE

 [m
]

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.5

1.0

DT
LC

 M
AE

 [m
]

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.05

0.10

0.15

DT
LC

 M
AE

 [m
]

Missing input: Road network
Drivable Space
Noisy Signals

Scenario 3 - Accuracy

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

Missing input: Road network

Drivable Space
Noisy Signals
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Scenario 3 - Precision

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.980

0.985

0.990

0.995

Pr
ec

isi
on

Missing input: Road network

Drivable Space
Noisy Signals

Scenario 3 - Recall

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.90

0.95

1.00

Re
ca

ll

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.2

0.4

Re
ca

ll

Missing input: Road network

Drivable Space
Noisy Signals
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Scenario 3 - F1

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.69

0.70

0.71

F1

Missing input: Road network
Drivable Space
Noisy Signals

Scenario 4 - DTLC Error

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

DT
LC

 M
AE

 [m
]

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

DT
LC

 M
AE

 [m
]

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.5

1.0

DT
LC

 M
AE

 [m
]

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

DT
LC

 M
AE

 [m
]

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.000

0.025

0.050

0.075

0.100

DT
LC

 M
AE

 [m
]

Missing input: Road network
Drivable Space
Noisy Signals
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Scenario 4 - Accuracy

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.78

0.80

0.82

Ac
cu

ra
cy

Missing input: Road network

Drivable Space
Noisy Signals

Scenario 4 - Precision

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.925

0.950

0.975

1.000

Pr
ec

isi
on

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.98

0.99

Pr
ec

isi
on

Missing input: Road network

Drivable Space
Noisy Signals
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Scenario 4 - Recall

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.05

0.10

0.15

0.20

Re
ca

ll

Missing input: Road network

Drivable Space
Noisy Signals

Scenario 4 - F1

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

F1

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

F1

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

F1

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

F1

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.345

0.350

0.355

0.360

F1

Missing input: Road network
Drivable Space
Noisy Signals
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Scenario 5 - DTLC Error

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.5

1.0

DT
LC

 M
AE

 [m
]

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.5

1.0

DT
LC

 M
AE

 [m
]

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.5

1.0

DT
LC

 M
AE

 [m
]

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.2

0.4

0.6

DT
LC

 M
AE

 [m
]

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.2

0.4

DT
LC

 M
AE

 [m
]

Missing input: Road network
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

DT
LC

 M
AE

 [m
]

Missing input: Traffic lights
Drivable Space
Noisy Signals

Scenario 5 - Accuracy

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.96

0.98

1.00

Ac
cu

ra
cy

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.8

0.9

Ac
cu

ra
cy

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.96

0.98

1.00

Ac
cu

ra
cy

Missing input: Traffic lights

Drivable Space
Noisy Signals
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Scenario 5 - Precision

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.86

0.88

0.90

0.92

0.94

Pr
ec

isi
on

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

Pr
ec

isi
on

Missing input: Traffic lights

Drivable Space
Noisy Signals

Scenario 5 - Recall

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.80

0.85

0.90

0.95

1.00

Re
ca

ll

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

Re
ca

ll

Missing input: Mobileye

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.85

0.90

0.95

1.00

Re
ca

ll

Missing input: Traffic lights

Drivable Space
Noisy Signals
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Scenario 5 - F1

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.90

0.95

1.00

F1
Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.88

0.90

0.92

0.94

0.96

F1

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

F1

Missing input: Traffic lights

Drivable Space
Noisy Signals

Scenario 6 - DTLC Error

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

DT
LC

 M
AE

 [m
]

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.2

0.4

0.6

DT
LC

 M
AE

 [m
]

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.0

0.5

1.0

DT
LC

 M
AE

 [m
]

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

DT
LC

 M
AE

 [m
]

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.000

0.025

0.050

0.075

0.100

DT
LC

 M
AE

 [m
]

Missing input: Road network
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

1.00

DT
LC

 M
AE

 [m
]

Missing input: Traffic lights
Drivable Space
Noisy Signals
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Scenario 6 - Accuracy

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Missing input: Traffic lights
Drivable Space
Noisy Signals

Scenario 6 - Precision

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Missing input: None

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.900

0.925

0.950

0.975

1.000

Pr
ec

isi
on

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.970

0.975

0.980

0.985

Pr
ec

isi
on

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Missing input: Traffic lights

Drivable Space
Noisy Signals
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Scenario 6 - Recall

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Re
ca

ll

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Re
ca

ll

Missing input: Buildings

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Re
ca

ll

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

Re
ca

ll

Missing input: Vehicles

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.00

0.25

0.50

0.75

Re
ca

ll

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

Missing input: Traffic lights
Drivable Space
Noisy Signals

Scenario 6 - F1

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

F1

Missing input: None
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

F1

Missing input: Buildings
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

F1

Missing input: Mobileye
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

F1

Missing input: Vehicles
Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.90

0.92

0.94

0.96

F1

Missing input: Road network

Drivable Space
Noisy Signals

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Noise level

0.94

0.96

0.98

1.00

F1

Missing input: Traffic lights
Drivable Space
Noisy Signals
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