
Data Mining and Knowledge Discovery (2020) 34:1175–1200
https://doi.org/10.1007/s10618-020-00689-6

ABBA: adaptive Brownian bridge-based symbolic
aggregation of time series

Steven Elsworth1 · Stefan Güttel1

Received: 29 May 2019 / Accepted: 14 May 2020 / Published online: 3 June 2020
© The Author(s) 2020

Abstract
A new symbolic representation of time series, called ABBA, is introduced. It is based
on an adaptive polygonal chain approximation of the time series into a sequence of
tuples, followed by a mean-based clustering to obtain the symbolic representation. We
show that the reconstruction error of this representation can be modelled as a random
walk with pinned start and end points, a so-called Brownian bridge. This insight
allows us to make ABBA essentially parameter-free, except for the approximation
tolerance which must be chosen. Extensive comparisons with the SAX and 1d-SAX
representations are included in the form of performance profiles, showing that ABBA
is often able to better preserve the essential shape information of time series compared
to other approaches, in particular when time warping measures are used. Advantages
and applications of ABBA are discussed, including its in-built differencing property
and use for anomaly detection, and Python implementations provided.

Keywords Time series · Symbolic aggregation · Dimension reduction · Brownian
bridge

1 Introduction

Symbolic representations of time series are an active area of research, being useful
for many data mining tasks including dimension reduction, motif and rule discovery,
prediction, and clustering of time series. Symbolic time series representations allow
for the use of algorithms from text processing and bioinformatics, which often take

Responsible editor: Panagiotis Papapetrou.

B Stefan Güttel
stefan.guettel@manchester.ac.uk

Steven Elsworth
steven.elsworth@manchester.ac.uk

1 Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/429666787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-020-00689-6&domain=pdf
http://orcid.org/0000-0003-1494-4478

1176 S. Elsworth, S. Güttel

Fig. 1 Illustrative example time series T used throughout the paper

advantage of the discrete nature of the data. Our focus in this work is to develop a
symbolic representation which is dimension reducing whilst preserving the essential
shape of the time series. Our definition of shape is different from the one commonly
implied in the context of time series: we focus on representing the peaks and troughs
of the time series in their correct order of appearance, but we are happy to slightly
stretch the time series in both the time and value directions. In other words, our focus
is not necessarily on approximating the time series values at the correct time points,
but on representing the local up-and-down behavior of the time series and identifying
repeated motifs. This is obviously not appropriate in all applications, but we believe
it is close to how humans summarize the overall behavior of a time series, and in that
our representation might be useful for trend prediction, anomaly detection, and motif
discovery.

To illustrate, let us consider the time series shown in Fig. 1. This series is sampled
at equidistant time points with values t0, t1, . . . , tN ∈ R, where N = 230. There are
various ways of describing this time series, for example:

(a) It is exactly representable as a high-dimensional vector T = [t0, t1, . . . , tN] ∈
R

N+1.
(b) It starts at a value of about −3, then climbs up to a value of about 0 within 25

time steps, then it stays at about 0 for 100 time steps, after which it goes up to a
value of about 3 within 25 time steps, and so on.

(c) It starts at a value of about −3, then goes up rapidly by about 3 units, followed
by a longer period with almost no change in value, after which it again goes up
rapidly by about 3 units, and so on.

Note how in (a) and (b) the emphasis is on the actual values of the time series,
whereas in (c) we mainly refer to trends in the time series in relation to previously
observed trends. High-level information might be difficult to extract from (a) directly,
while (b) could be seen as putting too much emphasis on the time series values instead
of the overall shape. The symbolic representation developed in this paper, called adap-
tive Brownian bridge-based aggregation (ABBA), adaptively reduces T to a shorter
sequence of symbolswith an emphasis on the shape information. The resulting descrip-
tion will be conceptually similar to (c) from the examples above.

123

ABBA: adaptive Brownian bridge-based symbolic… 1177

To formalize the discussion and introduce notation, we consider the problem of
aggregating a time series T = [t0, t1, . . . , tN] ∈ R

N+1 into a symbolic represen-
tation S = [s1, s2, . . . , sn] ∈ A

n , where each s j is an element of an alphabet
A = {a1, a2, . . . , ak} of k symbols. The sequence S should be of considerably lower
dimension than the original time series T , that is n � N , and it should only use a
small number of meaningful symbols, that is k � n. The representation should also
allow for the approximate reconstruction of the original time series with a controllable
error, with the shape of the reconstruction suitably close to that of the original. Both
n, the length of the symbolic representation, and k, the number of symbols, should be
chosen automatically without parameter tuning required.

This paper is organized as follows. In Sect. 2 we give an overview of existing sym-
bolic representations and other algorithms which are conceptually similar to ABBA.
To evaluate the approximation accuracy of ABBA, we must compare the shape of
the original time series and the reconstruction from its symbolic representation. Sec-
tion 3 reviews existing distance measures for this purpose and discusses howwell they
perform in measuring shape. Sections 4–7 contain the key contributions of this paper:

– Section 4 introduces ABBA, our novel dimension-reducing symbolic time series
representation which aims to preserve the shape of the original time series. We
explain in detail how ABBA’s compression and reconstruction procedures work.

– In Sect. 5we show that the error of theABBA reconstruction behaves like a random
walkwith pinned start and end values. This observation appears to be novel in itself
and allows us to balance the error of the piecewise linear approximation with that
of the digitization procedure, thereby allowing the method to choose the number
of symbols k automatically.

– Section 6 contains performance comparisons of ABBA with other popular sym-
bolic representations using various distance measures, with a particular emphasis
on the compression versus accuracy relation. Aside from verifying that ABBA can
represent time series to higher accuracy than SAX and 1d-SAX using a compara-
ble number of symbols k and string length n, we also find that SAX outperforms
1d-SAX when the same number of symbols k is used for both.

– In Sect. 7 we discuss some practical applications of ABBA including the handling
of linear trends, anomaly detection, and VizTree visualization.

Finally, we conclude in Sect. 8 with an outlook on future work.

2 Background and related work

Despite the large number of dimension-reducing time series representations in the
literature, very few are symbolic. Most techniques are numeric in the sense that they
reduce a time series to a lower-dimensional vector with its components taken from a
continuous range; see Bettaiah and Ranganath (2014), Fu (2011), Lin et al. (2007) for
reviews. Here we provide an overview of existing symbolic representations relevant
to ABBA.

The construction of symbolic time series representations typically consists of two
parts. First, the time series is segmented, with the length of each segment being either

123

1178 S. Elsworth, S. Güttel

specified by the user or found adaptively via a bottom-up, top-down, or slidingwindow
approach (Keogh et al. 2001). The segmentation procedure intrinsically controls the
degree of dimension reduction. The second part, the discretization process, assigns a
symbol to each segment.

SymbolicAggregate approXimation (SAX), a very popular symbolic representation,
consists of a piecewise approximation of the time series followed by a symbolic
conversion using Gaussian breakpoints (Lin et al. 2007). SAX starts by partitioning T
into segments of constant length len, and then represents each segment by the mean
of its values (i.e., a piecewise constant approximation). The means are converted into
symbols using breakpoints that partition a Gaussian bell curve into k equally-sized
areas. In addition to its simplicity, an attractive feature of SAX is the existence of
distance measures that serve as lower bounds for the Euclidean distance between the
original time series. On the other hand, both the segment length len and the number
of symbols k must be specified in advance. SAX is designed such that each symbol
appears with equal probability, which works best when the time series values are
approximately normally distributed.

The literature on applications of SAX is extensive and many variants have been
proposed. Most variants modify the symbolic representation to incorporate the slope
of the time series on each segment. This is often justified by applications in finance,
where the extreme values of time series provide valuable informationwhich is lost with
the piecewise constant approximation used in SAX. The modifications often come at
the cost of losing the lower bounds on distance measures. We now provide a brief
overview of some of these variants.

Trend-based and Valued-based Approximation (TVA) uses SAX to symbolically
represent the time series values, enhanced with U, D, or S symbols to represent an
upwards, downwards, or straight trend, respectively (Esmael et al. 2012). The TVA
representation alternates between value symbols and slope symbols, making the sym-
bolic representation twice as long as a SAX representation with the same number
of segments. A similar approach is Trend-based SAX (TSAX) which uses two trend
symbols per segment (Zhang et al. 2018).

Extended SAX (ESAX) represents each segment by the minimum, maximum, and
mean value of the time series ordered according to their appearance in the segment,
defining the mean to appear in the center of the segment (Lkhagva et al. 2006). This
results in a symbolic representation three times longer than the corresponding SAX
representation with the same number of segments. ENhanced SAX (EN-SAX) forms
a vector for each segment consisting of the minimum, maximum and mean value. The
vectors are then clustered and a symbol is allocated to each cluster (Barnaghi et al.
2012). Time-Weighted Average for SAX (TWA_SAX) uses the time weighted average
for each segment instead of the mean (Benyahmed et al. 2015). This can encapsulate
important patterns which are missed by the mean.

Trend-based Symbolic approximation (TSX) represents each segment by four sym-
bols (Li et al. 2012). The first symbol corresponds to the SAX representation. The
following three symbols correspond to the slopes between the first, last, most peak
and most dip points, which are defined in terms of vertical distance from the trend
line (the straight line connecting the end point values of a segment). The slopes are

123

ABBA: adaptive Brownian bridge-based symbolic… 1179

converted to symbols using a lookup table. This results in a symbolic representation
four times longer than the SAX representation with the same number of segments.

The 1d-SAX algorithm uses linear regression to fit a straight line to each segment
(Malinowski et al. 2013). Each segment is then represented by the gradient and the
average value of the line. Two sets ofGaussian breakpoints are used to provide symbols
for both the averages and the slopes. It is unclear how many breakpoints should be
allocated for the averages, and how many should be allocated for the slopes. The total
number of symbols is the product of the respective number of breakpoints.

Using the same number of segments, the above SAX variants result in an increase
in the length of the symbolic representation by some factor. It is unclear whether any
of these approaches performs better than SAX when the SAX segment length len is
decreased by the same factor (keeping the overall length of the symbolic representation
constant). As with the original SAX approach, all of these variants require the user to
specify the segment length len and the number of symbols k in advance.

In many time series applications, the assumption that the values of the normalized
time series follow a normal distribution is a strong one. To overcome this, the adaptive
SAXalgorithm (aSAX)uses k-means clustering tofind the breakpoints for the symbolic
conversion (Pham et al. 2010). However, as piecewise constant approximations are
used, the aSAX approach fails to represent the extreme points of the time series.

SAX’s digitization procedure based on Gaussian breakpoints allows its extension
to a multi-resolution symbolic representation known as indexable SAX (iSAX) (Shieh
andKeogh 2008). This clever indexing procedure allowsmining of datasets containing
millions of time series. At the heart of the algorithm is a SAX representation where
each window uses Gaussian breakpoints with 2c regions, where c can change from
segment to segment.

The sensorPCA algorithm overcomes the fixed window length problem by using
a sliding window to start a new segment when the standard deviation of the approxi-
mation exceeds some prespecified tolerance (Ganz et al. 2013). However, Ganz et al.
(2013) does not provide a method to convert the mean values and window lengths to
a symbolic representation.

Symbolic Aggregate approXimation Optimized by data (SAXO) is a data-driven
approach based on a regularized Bayesian coclustering method called minimum opti-
mized description length (Bondu et al. 2016; Boullé 2006). The discretization of the
time series is optimized using Bayesian statistics. The number of symbols and the
underlying distribution change for each time interval. The computational complexity
of SAXO is far greater than that of SAX.

Mörchen and Ultsch (2006) take a completely different approach based on the per-
sistence of a time series. A persistent time series is one where the value at a certain
point is closely related to the previous value; see also Kim (2000). The authors pro-
vide “persist”, a symbolic representation based on the Kullback–Leibler divergence
between the marginal and the self-transition probability distributions of the discretiza-
tion symbols.

Symbolic Polynomial (SP) is a symbolic representation designed to detect local
patterns (Grabocka et al. 2014). It is constructed by an overlapping sliding window of
lengthw and stepsize 1. For eachwindow, one computes the coefficients of a regression
polynomial of degree d. The coefficients of each order are collected and allocated a

123

1180 S. Elsworth, S. Güttel

symbol using an equi-area discretization. This symbolic representation provides no
dimensional reduction as each window is represented by d symbols.

Baydogan and Runger (2015) introduce a symbolic representation of multivariate
time series called SMTS. They construct a data table consisting of time index, time
values, and first differences of the time series. A tree learner is trained on the data
and each of the leaf nodes is allocated a symbol. Their approach allows multiple tree
learners, which in the univariate case results in a symbolic representation much larger
than the original.

Piecewise linear approximations of time series have been used for many years. The
lengths of the linear pieces (segments) can be prespecified or chosen adaptively. Each
segment is approximated using either linear interpolation or linear regression (Keogh
et al. 2001). Luo et al. (2015) describe how the linear segments can be stitched so
that each piece is represented by two parameters rather than three. An example of a
piecewise linear approximation algorithm is the Ramer–Douglas–Peucker algorithm,
an iterative endpoint fitting procedure which uses adaptive linear interpolation with
a prespecified tolerance. These methods provide an effective shape-preserving and
dimension-reducing representation but not a symbolic representation.

3 Distancemeasures

The accuracy of a symbolic time series representation S can be assessed by the distance
between the original time series T and its reconstruction ̂T from S. We note that the
original time series should first be normalized to have zero mean and unit variance.
This ensures that distance measures are comparable across different time series; see
Keogh and Kasetty (2003) for a discussion of the importance of normalization.

A detailed overview of time series distance measures and their applications can be
found inAghabozorgi et al. (2015). Distancemeasures for time series typically fall into
two main categories: lock-step alignment and elastic alignment (Abanda et al. 2019).
Lock-step alignment refers to the element-wise comparison of time series, i.e., the i-th
element of one time series is compared to the i-th element of another. Such measures
can only compare time series of equal length. The most popular lock-step distance is
the Euclidean distance. The Euclidean distance is a poor measure of shape similarity
in two particular cases: if the time series have the same shape but are stretched in
value (see Fig. 2a), or if the time series have the same shape but are warped in time
(see Fig. 2b). The first issue can be mitigated by differencing the time series before
measuring the distance. The second issue is intrinsic to lock-step alignment distance
measures.

Elastic alignment distance measures construct a nonlinear mapping between time
series elements, effectively allowing for one value in a time series to be compared to
multiple consecutive values in another. The most popular elastic alignment method is
Dynamic Time Warping (DTW), originally proposed in Berndt and Clifford (1994).
TheDTWdistancemeasure corresponds to the Euclidean distance between twoDTW-
aligned time series. This distance measure can be used to compare time series of
different lengths but it has a quadratic computational complexity in both time and
space; for further details see Keogh and Ratanamahatana (2005). Many methods have

123

ABBA: adaptive Brownian bridge-based symbolic… 1181

(a) These time series have essentially the same shape but there is
a value shift on the intervals [20,40] and [60,80].

(b) These time series have essentially the same shape but they are
warped in the time direction.

Fig. 2 The time series in these plots have the same essential shape according to our interpretation. Euclidean
distance is a poor measure of shape for a and b, whereas DTW distance is a poor measure of shape for (a).
A differencing of the time series in (a) would make DTW a suitable shape distance

been proposed to either approximate the DTW distance at a reduced cost or calculate
bounds to avoid computing the DTW alignment altogether. Keogh and Pazzani (2001)
notice that DTW may pair a rising trend in one time series with a falling trend in
another, and they overcome this problem by a variant known as Derivative Dynamic
Time Warping (DDTW). The elastic alignment allows DTW to overcome the issues
when two time series have the same shape but are warped in time (see Fig. 2b), but
DTW is still a poor measure of shape similarity if the time series have the same shape
but are vertically stretched (see Fig. 2a). Again, this can be mitigated by differencing
the time series before measuring their DTW distance.

It is because of these advantages and drawbacks of the Euclidean andDTWdistance
measures and their differenced counterparts thatwewill test the performance ofABBA
with all these distance measures in Sect. 6.

4 Adaptive Brownian bridge-based aggregation

Wenow introduceABBA, a symbolic representation of time series where the symbolic
length n and the number of symbols k are chosen adaptively. TheABBA representation
is computed in two stages.

1. Compression The original time series T is approximated by a piecewise linear and
continuous function, with each linear piece being chosen adaptively based on a
user-specified tolerance. The result is a sequence of tuples (len,inc) consisting
of the length of each piece and its increment in value.

2. Digitization A near-optimal alphabet A is identified via mean-based clustering,
with each cluster corresponding to a symbol. Each tuple (len,inc) is assigned
a symbol corresponding to the cluster in which it belongs.

The reconstruction of a time series from its ABBA representation involves three
stages.

1. Inverse-digitization Each symbol of the symbolic representation is replaced with
the center of the associated cluster. The length values of the centers may not
necessarily be integers.

2. Quantization The lengths of the reconstructed segments are re-aligned with an
integer grid.

123

1182 S. Elsworth, S. Güttel

Table 1 Summary of notation

Original time series: T = [t0, t1, . . . , tN] ∈ R
N+1

After compression: [(len1,inc1), (len2,inc2), . . . , (lenn ,incn)] ∈ R
2×n

After digitization: S = [s1, s2, . . . , sn] ∈ A
n with A = {a1, a2, . . . , ak }

After inverse-digitization: [(l̃en1, ĩnc1), (l̃en2, ĩnc2), . . . , (l̃enn , ĩncn)] ∈ R
2×n

After quantization: [(l̂en1, înc1), (l̂en2, înc2), . . . , (l̂enn , încn)] ∈ R
2×n

After inverse-compression: ̂T = [̂t0, t̂1, . . . , t̂N] ∈ R
N+1

3. Inverse-compression The piecewise linear continuous approximation is converted
back to a pointwise time series representation using a stitching procedure.

Both the computation of the ABBA representation and the reconstruction are inex-
pensive. It is essential that the digitization process uses incremental changes in value
rather than slopes. This way, ABBA consistently works with increments in both the
time and value coordinates. Only in this case a mean-based clustering algorithm will
identifymeaningful clusters in both coordinate directions.Aswewill explain inSect. 5,
the error of the ABBA reconstruction behaves like a random walk pinned at zero for
both the start and the end point of the time series. But first, we provide a more detailed
explanation of the key parts of ABBA. For clarity, we summarize the notation used
throughout this section in Table 1.

4.1 Compression

The ABBA compression is achieved by an adaptive piecewise linear continuous
approximation of T . Given a tolerancetol, themethod adaptively selects n+1 indices
i0 = 0 < i1 < · · · < in = N so that the time series T = [t0, t1, . . . , tN] is approx-
imated by a polygonal chain going through the points (i j , ti j) for j = 0, 1, . . . , n.
This gives rise to a partition of T into n pieces Pj = [ti j−1 , ti j−1+1, . . . , ti j], each
of length len j := i j − i j−1 ≥ 1 in the time direction. We ensure that the squared
Euclidean distance of the values in Pj from the straight polygonal line is bounded by
(len j − 1) · tol2. More precisely, starting with i0 = 0 and given an index i j−1, we
find the largest possible i j such that i j−1 < i j ≤ N and

i j
∑

i=i j−1

⎛

⎜

⎜

⎜

⎝

ti j−1+(ti j −ti j−1) · i − i j−1

i j − i j−1
︸ ︷︷ ︸

straight line approximation

− ti
︸︷︷︸

actual value

⎞

⎟

⎟

⎟

⎠

2

≤ (i j − i j−1 − 1) · tol2. (1)

Note that the first and the last values ti j−1 and ti j are not counted in the distance
measure as the straight line approximation passes exactly through them. If required,
one can restrict the maximum length of each segment by imposing an upper bound
i j ≤ i j−1 + max_len with a given integer max_len ≥ 1.

123

ABBA: adaptive Brownian bridge-based symbolic… 1183

Fig. 3 Result of the ABBA
compression. The time series is
now represented by n = 7 tuples
of the form (inc,len) and the
starting value t0

Each linear piece Pj of the resulting polygonal chain ˜T is described by a tuple
(len j ,inc j), where inc j = ti j − ti j−1 is the increment in value (not the slope!). As
the polygonal chain is continuous, the first value of a segment can be inferred from the
end value of the previous segment. Hence the whole polygonal chain can be recovered
exactly from the first value t0 and the tuple sequence

(len1,inc1), (len2,inc2), . . . , (lenn,incn) ∈ R
2. (2)

An example of theABBA compression procedure applied to the time series in Fig. 1
is shown in Fig. 3. Here a tolerance of tol = 0.4 has been used, resulting in n = 7
pieces. As the approximation error on each piece Pj satisfies (1), the polygonal chain
˜T also has a bounded Euclidean distance from T :

euclid(T , ˜T)2 ≤ [(i1 − i0 − 1) + (i2 − i1 − 1) + · · ·
+(in − in−1 − 1)] · tol2 (3)

= (N − n) · tol2.

Hence we are sure that the ABBA approximation ˜T (red dashed curve) in Fig. 3 has
a Euclidean distance of at most

√
223 × 0.4 ≈ 6.0 from the original time series T

(black solid curve).
Let us comment on the computational complexity of this compression phase.

Assuming that all pieces have an average length len, the evaluation of (1) for each
i j = i j−1 + 2, i j−1 + 3, . . . , i j−1 + len involves a sum of 1, 2, . . . ,len− 1 terms,
respectively. (Recall that the straight line approximation passes through the end points
and hence the corresponding terms in the sum need not be evaluated.) Therefore, the
overall number of summands to be evaluated and added up is 1+2+· · ·+len−1 =
O(len

2
) per piece. Under the natural assumption that the average piece length len

is independent of the length N of the time series, we have N ∝ n · len. Hence, the
compression phase has a linear complexity of O(N) = O(n).

123

1184 S. Elsworth, S. Güttel

4.2 Digitization

Digitization refers to the assignment of the tuples in (2) to k clusters S1, S2, . . . , Sk .
Before clustering, we separately normalize the tuple lengths and increments by their
standard deviations σlen and σinc, respectively. We use a further scaling parameter
scl to assign different weight (“importance”) to the length of each piece in relation
to its increment value. Hence, we effectively cluster the scaled tuples

(

scl
len1
σlen

,
inc1
σinc

)

,

(

scl
len2

σlen
,
inc2

σinc

)

, . . . ,

(

scl
lenn
σlen

,
incn
σinc

)

∈ R
2.

(4)
If scl = 0, then clustering is performed on the increments alone, while if scl = 1,
we cluster in both the length and increment dimension with equal weighting. The
cluster assignment is performed by (approximately) minimizing the within-cluster-
sum-of-squares

WCSS =
k

∑

i=1

∑

(len,inc)∈Si

∥

∥

∥

∥

(

scl
len

σlen
,
inc

σinc

)

− μi

∥

∥

∥

∥

2

,

with each 2d cluster centerμi = (μlen
i , μinc

i) corresponding to themean of the scaled
tuples associated with the cluster Si . In certain situations one may want to cluster only
on the lengths of the pieces and ignore their increments, formally setting scl = ∞.
In this case, the cluster assignment is performed by (approximately) minimizing

WCSS =
k

∑

i=1

∑

(len,inc)∈Si

∣

∣

∣

∣

len

σlen
− μlen

i

∣

∣

∣

∣

2

,

where μlen
i is the mean of the scaled lengths in the cluster Si .

Given a clustering of the n tuples into clusters S1, . . . , Sk we use the unscaled
cluster centers μi

μi = (μlen
i , μinc

i) = 1

|Si |
∑

(len,inc)∈Si
(len,inc)

to define the maximal cluster variances in the length and increment directions as

Varlen = max
i=1,...,k

1

|Si |
∑

(len,inc)∈Si

∣

∣len − μlen
i

∣

∣

2
,

Varinc = max
i=1,...,k

1

|Si |
∑

(len,inc)∈Si

∣

∣inc − μinc
i

∣

∣

2
,

123

ABBA: adaptive Brownian bridge-based symbolic… 1185

Fig. 4 Result of the ABBA
digitization with scaling
parameter scl = 0. The tuples
(len,inc) are converted to the
symbol sequence abbacab

respectively. Here, |Si | is the number of tuples in cluster Si . We seek the smallest
number of clusters k such that

max(scl · Varlen,Varinc) ≤ tol2s (5)

with a tolerance tols . This tolerance will be specified in Sect. 5 as a function of
the user-specified tolerance tol and is therefore not a free parameter. (In the case of
scl = ∞, we seek the smallest k such that Varlen ≤ tol2

s .) Once the optimal k
has been found, each cluster S1, . . . , Sk is assigned a symbol a1, . . . , ak , respectively.
Finally, each tuple in the sequence (2) is replaced by the symbol of the cluster it
belongs to, resulting in the symbolic representation S = [s1, s2, . . . , sn].

Ifscl = 0 orscl = ∞, a 1d clusteringmethod can be usedwhich takes advantage
of sorting algorithms; see the review by Grønlund et al. (2017). We use the ckmeans
algorithm (Wang and Song 2011), an order O(n log n + kn) dynamic programming
algorithm which optimally clusters the data by minimizing the WCSS in just one
dimension. We have modified the algorithm to choose the smallest k such that the
maximal cluster variance is bounded by tol2

s .
For nonzero finite values of scl, k-means clustering is used. This algorithm has an

average complexity of O(kn) per iteration [see also Arthur and Vassilvitskii (2006)
for an analysis of the worst case complexity] and might of course result in a sub-
optimal clustering. In our ABBA implementation the user can specify an interval
[min_k, . . . ,max_k] and we search for the smallest k in that interval such that (5)
holds. If no such k exists, we set k = max_k.

By default, we set scl = 0 as we believe this corresponds most naturally to
preserving the up-and-down behavior of the time series. In other words, we ignore the
lengths of the pieces and only cluster the value increments. With the value increments
represented accurately, the errors in lengths correspond to horizontal stretching in the
time direction.

An illustration of the digitization process on the pieces from Fig. 3 can be seen in
Fig. 4 with scl = 0 (our default parameter choice), Fig. 5 with scl = 1, and Fig. 6
with scl = ∞.

123

1186 S. Elsworth, S. Güttel

Fig. 5 Result of the ABBA
digitization with scl = 1. The
tuples (len,inc) are converted
to the symbol sequence
abbacab

Fig. 6 Result of the ABBA
digitization with scl = ∞. The
tuples (len,inc) are converted
to the symbol sequence
abcaaab

4.3 Inverse digitization and quantization

When reversing the digitization process, each symbol of the alphabet is replaced by
the center (leni ,inci) of the corresponding cluster given as

(leni ,inci) = 1

|Si |
∑

(len,inc)∈Si
(len,inc).

Note that the mean-based clustering for digitization is performed on the scaled tuples
(4), but the cluster centers used for the inverse digitization are computed with the
unscaled tuples (2). The inverse digitization process results in a sequence of n tuples

(l̃en1, ĩnc1), (l̃en2, ĩnc2), . . . , (l̃enn, ĩncn) ∈ R
2,

where each tuple is a cluster center, that is (l̃eni , ĩnci)∈{(len1,inc1), (len2,inc2),

. . . , (lenk,inck)}.

123

ABBA: adaptive Brownian bridge-based symbolic… 1187

The lengths l̃eni obtained from this averaging are not necessarily integer values
as they were in the compressed representation (2). We therefore perform a simple
quantization procedure which realigns the cumulated lengths with their closest inte-
gers. We start with rounding the first length, l̂en1 := round(l̃en1), keeping track
of the rounding error e := l̃en1 − l̂en1. This error is added to the second length
l̃en2 := l̃en2 + e, which is then rounded to l̂en2 := round(l̃en2) with error
e := l̃en2 − l̂en2, and so on. As a result we obtain a sequence of n tuples

(l̂en1, înc1), (l̂en2, înc2), . . . , (l̂enn, încn) ∈ R
2 (6)

with integer lengths l̂eni . (The increments remain unchanged but we rename them
for consistency: înci := ĩnci .)

5 Error analysis

During the compression procedure, we construct a polygonal chain ˜T going through
selected points {(i j , ti j)}nj=0 of the original time series T , with a controllable Euclidean
distance (3). After the digitization, inverse digitization, and quantization, we obtain a
new tuple sequence (6) which can be stitched together to a polygonal chain ̂T going
through the points {(̂i j , t̂ j)}nj=0, with (̂i0, t̂0) = (0, t0). Our aim is to analyze the

distance between ̂T and ˜T , and then balance it with the distance between ˜T and T .
We first note that

(̂i j , t̂i j) =
⎛

⎝

j
∑

�=1

l̂en�, t0 +
j

∑

�=1

înc�

⎞

⎠ , j = 0, . . . , n.

As all the lengths l̂en� and increments înc� correspond to cluster centers (aver-
ages of all the points in a cluster, consistently rounded during quantization), we
have the interesting property that the accumulated deviations from the true lengths
and increments exactly cancel out at the right endpoint of the last piece Pn , that is:
(̂in, t̂in) = (in, tin) = (N , tN). In other words, the polygonal chain ̂T starts and ends
at the same values as ˜T (and hence T).

We now analyze the behavior of ̂T in between the start and endpoints, focusing on
the case that scl = 0 and assuming for simplicity that all cluster centers Si have the
same mean length μlen

i = N/n. (This is not a strong assumption as in the dynamic
time warping distance the lengths of the pieces is irrelevant.) We compare ̂T with the
polygonal chain ˜T time-warped to the same regular length grid as ̂T , which will give
an upper bound on dtw(̂T , ˜T). Denoting by d� := înc� − ĩnc� the local deviation
of the increment value of ̂T on piece P� from the true increment of ˜T , we have that

t̂i j − ti j =
j

∑

�=1

d� =: ei j , j = 0, . . . , n.

123

1188 S. Elsworth, S. Güttel

Recall from Sect. 4.2 that we have controlled the variance of the increment values
in each cluster to be bounded by tol2

s . As a consequence, the increment deviations
d� have bounded variance tol2s , and mean zero as they correspond to deviations
from their respective cluster center. It is therefore reasonable to model the “global
increment errors” ei j as a random process with fixed values ei0 = ein = 0, expectation
E(ei j) = 0, and variance

Var(ei j) = tol2
s · j(n − j)

n
, j = 0, . . . , n.

In the case that the d� are i.i.d. normally distributed, such a process is known as a
Brownian bridge. See also Fig. 7 for an illustration.

Note that so far we have only considered the variance of the global increment errors
ei j at the left and right endpoints of each piece Pj , but we are actually interested in
analyzing the error of the reconstruction ̂T on the fine time grid. To this end, we now
consider a “worst-case” realization of ei j which stays s standard deviations away from
its zero mean. That is, we consider a realization

ei j = s · tols ·
√

j(n − j)

n
, j = 0, . . . , n.

By piecewise linear interpolation of these errors from the coarse time grid i0, i1, . . . , in
to the fine time grid i = 0, 1, . . . , N (in accordance with the linear stitching procedure
used in ABBA), we find that

ei ≤
√

n

N
· s · tols ·

√

i(N − i)

N
, i = 0, . . . , N ,

using that the interpolated quadratic function on the right-hand side is concave. We
can now bound the squared Euclidean norm of this fine-grid “worst-case” realization
as

N
∑

i=0

e2i ≤ n · s2 · tol2s
N 2 ·

N
∑

i=0

i(N − i) = n · s2 · tol2s
N 2 · N

3 − N

6
≤ n · s2 · tol2s · N

6
.

This is a probabilistic bound on squared Euclidean error caused by a “worst-case”
realization of the Brownian bridge, and thereby a probabilistic bound on the error
incurred from the digitization procedure. Equating this bound with the bound (3) on
the accuracy of the compression, we find that we should choose

tols = tol

s

√

6(N − n)

Nn
,

with the user-specified tolerance tol. We have experimentally determined that s =
0.2 typically gives a good balance between the compression accuracy and the number
of clusters determined using this criterion.

123

ABBA: adaptive Brownian bridge-based symbolic… 1189

Fig. 7 Example of the ABBA
reconstruction error forming a
Brownian bridge. The blue line
is the actual error, the grey lines
are 50 other realizations of the
random walk, and the red bounds
indicate one standard deviation
above and below the zero mean

Fig. 8 ABBA representation of a
time series from a heat
exchanger in an ethylene
cracker. With tol = 0.1 and
scl = 0, the time series is
reduced from 7128 points to 123
tuples using 14 symbols

Example:We now illustrate the above analysis on a challenging real-world example.
Consider a time series T (N = 7127) consisting of temperature readings off a heat
exchanger in an ethylene cracker. We use tol = 0.1 to compress this time series,
resulting in a polygonal chain ˜T with n = 123 pieces and an approximation error of
euclid(T , ˜T) = 5.3 ≤ √

N − n · tol ≈ 8.4. See Fig. 8 for a plot of the original
time series T and its reconstruction ˜T after compression.

We then run the ABBA digitization procedure with scaling parameter scl = 0,
resulting in a symbolic representation S of length n using k = 14 symbols. In Fig. 7
we show the “global increment errors” ei j of the reconstruction ̂T on each piece Pj ,
that is, the increment deviation of ̂T from T at the endpoints of Pj , j = 1, . . . , n.
Note how this error is pinned at zero at j = 0 and j = n, and how it resembles a
random walk in between.

The reconstruction̂T on the fine time grid is also shown in Fig. 8. The reconstruction
error measured in the time warping distance is dtw(˜T , ̂T) = 9.5 and the overall
error is dtw(T , ̂T) = 10.8, both of which are approximately of the same order as√
N − n · tol ≈ 8.4. Note that the ABBA reconstruction ̂T visually deviates a lot

fromT due to the rather high tolerancewehave chosen for illustration, but nevertheless,
the characteristic up-and-down behavior of T is well represented in ̂T , despite the high
compression rate of 123/7128 ≈ 1.7%.

123

1190 S. Elsworth, S. Güttel

6 Discussion and performance comparison

A Python implementation of ABBA, along with codes to reproduce the figures and
performance comparisons in this paper, can be found at https://github.com/nla-group/
ABBA

When the scaling parameter is scl = 0 or scl = ∞, our implementation calls an
adaptation of the univariate k-means algorithm from theRpackageCkmeans.1d.dp
written in C++. We use SWIG, the open-source “Simplified Wrapper and Interface
Generator”, to call C++ functions from Python. If scl ∈ (0,∞), we use the k-means
algorithm from the Python sklearn library (Pedregosa et al. 2011).

ABBA uses the lengths and increments of a polygonal chain on each segment to
construct its symbolic time series representation. Symbolic Polynomial (Grabocka
et al. 2014) with d = 1 and 1d-SAX (Malinowski et al. 2013), on the other hand,
use linear regression to fit a polynomial to a window of fixed pre-specified length.
As we discussed in Sect. 2, Symbolic Polynomial provides no dimensional reduction
and was specifically designed for time series classification problems. Most other SAX
variants increase the length of the symbolic representation by enhancing the string
with additional characters to capture shapes and trends. It is not clear whether these
representations outperformSAXwith a reducedwidth parameter to compensate for the
increased string length. A comparison of thiswould be interesting but is independent of
ABBA’s performance and out of the scope of this paper. SMTS (Baydogan and Runger
2015) and aSAX (Pham et al. 2010) usemachine learning techniques to discretize their
representation. SMTS is primarily designed for multivariate time series and provides
no dimensional reduction. EN-SAX (Barnaghi et al. 2012) and aSAX suffer from a
loss of the trend information in their compression step.

For these reasons, we focus on profiling the reconstructions errors of the ABBA,
SAX (Lin et al. 2007), and 1d-SAX (Malinowski et al. 2013) algorithms, as these are
most closely related and easily comparable. Note that none of the representations were
primarily designed as compression algorithms. ABBA was designed to be adaptive
in both the segment length and alphabet cardinality, whereas SAX and 1d-SAX have
many other benefits such as being hashable (Chiu et al. 2003), indexable (Shieh and
Keogh 2008), and permitting lower bounding distance measures. Our test set consists
of all time series in the UCR Time Series Classification Archive (Dau et al. 2018) with
a length of at least 100 data points. There are 128, 978 such time series from a variety of
applications. Although the archive is primarily intended for benchmarking time series
classification algorithms, our primary focus in this paper is on the approximation
performance of the symbolic representations. Our experiment consists of converting
each time series T = [t0, t1, . . . , tN] into its symbolic representation S = [s1, . . . , sn],
and then measuring the distance between the reconstruction ̂T = [̂t0, t̂1, . . . , t̂N] and
T in the (differenced) Euclidean and DTW norms, respectively.

Recall fromSect. 2 that bothSAXand1d-SAXrequire a choice for thefixed segment
length. In order to provide a fair comparison, we first run the ABBA compression with
an initial tolerance tol = 0.05. This returns n, the number of required pieces to
approximate T to this tolerance. If n turns out to be larger than N/5, we successively
increase the tolerance by 0.05 and rerun until a compression rate of at least 20% is
achieved. If a time series cannot be compressed to at least 20% even at the rather

123

https://github.com/nla-group/ABBA
https://github.com/nla-group/ABBA

ABBA: adaptive Brownian bridge-based symbolic… 1191

Table 2 Tolerance used for the compression and the number of time series to which it was applied

Tolerance tol 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

nr of time series 75417 9247 7786 5855 2972 2236 1910 1670 2146 2650

crude tolerance of tol = 0.5, we consider it as too noisy and exclude it from the
test. We also exclude all time series which, after ABBA compression, result in fewer
than nine pieces: this is necessary because we want to use k = 9 symbols for all
compared methods. Table 2 shows how many of the 111, 889 remaining time series
were compressed at what tolerance. The table gives evidence that most of these time
series can be compressed reasonably well while maintaining a rather high accuracy.
The average compression rate is 10.3%.

After the number of pieces n has been specified for a given time series T , we
determine the fixed segment length len =
(N + 1)/n� to be used in the SAX and
1d-SAX algorithms. We then apply SAX and 1d-SAX to the first n · len points of
T . This guarantees that all three algorithms (SAX, 1d-SAX, and ABBA) produce a
symbolic representation of with n pieces. If N + 1 is not divisible by n, SAX and
1d-SAX are applied to slightly shorter time series than ABBA. The number of sym-
bols used for the digitization is k = 9 for all three methods. In the case of 1d-SAX
this means that three symbols are used for the mean value, and three symbols are
used for the slope on each piece. Each algorithm produces a symbolic representa-
tion of length n using an alphabet of cardinality k = 9. SAX and 1d-SAX requires
the value of w and k for the reconstruction, whereas ABBA requires the 2k num-
bers representing the lengths and increments of each cluster. In total, ABBA requires
more storage to represent a time series using a string of length n and alphabet of
cardinality k, but is able to represent the whole time series more accurately without
truncation.

To visualize the results of our comparison we use performance profiles (Dolan
and Moré 2002). Performance profiles allow to compare the relative performance
of multiple algorithms over a large set of test problems. Each algorithm is repre-
sented by a non-decreasing curve in a θ–p graph. The θ -axis represents a tolerance
θ ≥ 1 and the p-axis corresponds to a fraction p ∈ [0, 1]. If a curve passes
through a point (θ, p) it means that the corresponding algorithm performed within
a factor θ of the best observed performance on 100 · p% of the test problems. For
θ = 1 one can read off on what fraction of all test problems each algorithm was
the best performer, while as θ → ∞ all curves approach the value p → 1 (unless
an algorithm has failed on a fraction of the test problems, which is not the case
here).

In Figs. 9a–10dwe present eight performance profiles for theABBA scaling param-
eters scl = 0 and scl = 1, respectively, and with four different distance measures:
Euclidean and DTW distances and their differenced counterparts, respectively. Fig-
ure 9a shows the performance profile for scl = 0, with the distance between T and ̂T
measured in the Euclidean norm. As expected, SAX consistently outperforms ABBA
because the Euclidean distance is very sensitive to horizontal shifts in the time direc-
tion, which ABBA has completely ignored due to the scl = 0 parameter. However,

123

1192 S. Elsworth, S. Güttel

(a) Euclidean distance (b) DTW distance

(c) Euclidean distance (differenced) (d) DTW distance (differenced)

Fig. 9 Performance profiles for the reconstruction errors of SAX, 1d-SAX, and ABBA with scaling param-
eter scl = 0. a, b compare ABBA (scl = 0) with SAX and 1d-SAX using Euclidean and Dynamic Time
Warping distance, respectively. c, d compare ABBA (scl = 0) with SAX and 1d-SAX using Euclidean
and Dynamic Time Warping distance of the differenced time series, respectively

it is somewhat surprising that SAX also outperforms 1d-SAX. When k = 9, 1d-SAX
allocates 3 symbols for the slopes and 3 symbols for the averages. To represent all
possible combinations of slopes and averages, 9 unique symbols are needed. It appears
that the use of the slope information in 1d-SAX is detrimental to the approximation
accuracy and, if the number of symbols is kept constant, they should better be used to
represent the averages rather than the slopes.

The performance changes when we use the DTW distance, thereby allowing for
shifts in time. In this case, ABBA outperforms SAX and 1d-SAX significantly; see
Fig. 9b. This is because ABBA has been tailored to preserve the up-and-down shape
of the time series, at the cost of allowing for small errors in the lengths of the pieces
which are easily corrected by time warping. Again SAXwith k = 9 symbols performs
better than 1d-SAX with k = 9 symbols.

The performance gain of ABBA becomes even more pronounced when we differ-
ence the data before computing the Euclidean and DTW distances; see Fig. 9c, d,
respectively. Moreover, we observe that when differencing is used, 1d-SAX performs
slightly better than SAX. Computing the Euclidean and DTW distances of the differ-
enced data amounts to comparing the gradients of the time series, rather than their
values. The gradient information is better captured when we allocate some symbols

123

ABBA: adaptive Brownian bridge-based symbolic… 1193

(a) Euclidean distance (b) DTW distance

(c) Euclidean distance (differenced) (d) DTW distance (differenced)

Fig. 10 Performance profiles for the reconstruction errors of SAX, 1d-SAX, and ABBA with scaling
parameter scl = 1. a, b compare ABBA (scl = 1) with SAX and 1d-SAX using the Euclidean and
Dynamic Time Warping distance, respectively. c, d compare ABBA (scl = 1) with SAX and 1d-SAX
using the Euclidean and Dynamic Time Warping distance of the differenced time series, respectively

for the slope information (as in 1d-SAX) rather than allocating all symbols for the
averages (as in SAX). This explains the slight advantage of 1d-SAX over SAX with
differenced distance measures.

In the next four tests we set scl = 1, so the ABBA clustering procedure considers
both the increments and lengths equally. Figure 10a, b show the resulting performance
profiles using the Euclidean and DTW distance measures, respectively. As expected,
ABBA becomes more competitive even for the Euclidean distance measure. Com-
putationally, however, this comes at the cost of not being able to use a fast optimal
1d-clustering algorithm. Finally, Fig. 10c, d show the performance profiles for the
Euclidean and DTW distance measures on the differenced data, respectively. As in the
casescl = 0, differencing helps to improve the performance of ABBA in comparison
to SAX and 1d-SAX even further.1

1 Visual comparisons of the three algorithms on the first time series in each dataset of the UCR Time
Series Classification Archive, as well as codes and CSV files with all numerical results used to produce
the performance profiles, can be downloaded from https://github.com/nla-group/ABBA/tree/master/paper/
performance_profiles.

123

https://github.com/nla-group/ABBA/tree/master/paper/performance_profiles
https://github.com/nla-group/ABBA/tree/master/paper/performance_profiles

1194 S. Elsworth, S. Güttel

Fig. 11 Comparison of SAX and ABBA on a noisy sine wave with a gradual linear trend. (i) The original
time series is shown in blue and the SAX representation is shown in orange. (ii) The differenced version
of the original time series is shown in blue and the its SAX representation is shown in orange. (iii) The
original time series is given in blue and the cumulative sum of the SAX representation from (ii) is shown
in orange. (iv) The original time series is shown in blue and its ABBA representation is shown in orange

7 Further discussion and applications

Section 6 demonstrated that ABBA provides high compression rates while guarantee-
ing that the time series reconstruction is still close to the original. The high compression
is a consequence of the stitching procedure during the compression stage. Section 5
showed how errors are accumulated piece by piece in the stitching process.We believe
that this property prevents ABBA from admitting lower bounding distance measures
as are available for SAX. SAX’s lower bounding measure and indexability make it
suitable for applications where multiple time series have to be compared (like time
series classification). ABBA, on the other hand, appears best suited for applications
where information has to be extracted from a single time series, such as anomaly
detection, motif discovery, and trend prediction. As the output of ABBA is simply a
string sequence, it can be combined with existing algorithms that previously used, e.g.,
a SAX representation. Below we discuss various aspects and applications of ABBA.
In-built differencing.Working with the increments (instead of slopes) allows ABBA to
capture linear trends in time series without preprocessing. In Fig. 11 we consider the
simple test problem of a sine wave with a gradual linear trend in the presence of noise.
After normalization, SAX is able to accurately represent the time series as shown in
Fig. 11(i). If we used the symbolic representation for trend prediction, however, the
SAX representationwould be unsuitable for continuing the linear trend as new symbols

123

ABBA: adaptive Brownian bridge-based symbolic… 1195

would need to be introduced. Of course, this problem could be overcome by removing
the linear trend through differencing the time series. A SAX representation of the
differenced time series is shown in Fig. 11(ii). Unfortunately, differencing the noisy
time series amplifies the noise. Figure 11(iii) compares the original time series against
the reconstructed time series from the SAX representation of the differenced data.
As we can see, the increased noise level renders the SAX representation extremely
inaccurate. ABBA, on the other hand, does not require any differencing as it works
with increments by default. As a consequence, the ABBA reconstruction shown in
Fig. 11(iv) stays very close to the original time series, capturing both the gradual
linear trend as well as the characteristic up-and-down behavior.

Anomaly detection refers to the problem of finding points or intervals in time series
which display surprising or unexpected behavior. Recent literature reviews of existing
anomaly detection algorithms are given in Gupta et al. (2013), Atluri et al. (2018). The
ABBA representation can be used for anomaly detection in a variety of ways. Trend
anomalies can be detected in the digitization procedure via k-means clustering of the
lengths and increments. The alphabet is ordered such that ‘a’ is the most frequent
symbol followed by ‘b’ and so forth. If the kth cluster contains very few elements
relative to the other clusters, then this might be considered a trend anomaly.

TARZAN. Keogh et al. (2002) is a popular anomaly detection algorithm with linear
time and space complexity (Pelkonen et al. 2015). The algorithm requires two time
series, a reference time series R containing normal behavior and the test time series
X . Both time series are converted to a symbolic representation and stored in a suffix
tree (McCreight 1976). An anomaly score is computed by comparing the frequency of
a substring in X to an expected frequency computed from R. SAX can be used for the
discretization process in TARZAN and has been shown to outperform other symbolic
representations with no dimensional reduction (Lin et al. 2007).

If both symbolic representations are short and X contains a symbol that does not
appear in R, then the TARZAN score can suffer through lack of perspective. For
example, suppose the expected frequency of the substring ‘abc’ is 4.2 and ‘abc’
appears 3 times in X , then the anomaly score is 3− 4.2 = −1.2. Suppose the symbol
‘d’ does not appear in R but ‘ada’ appears in X . The expected frequency of the
substring ‘ada’ is 0 and ‘ada’ appears only once, so the anomaly score is 0−1 = −1.
This implies that ‘abc’ is more of an anomaly than ‘ada’. This issue can be overcome
by dividing the anomaly score by the largest of the expected/actual frequency.

In Figs. 12, 13 we consider a simple experiment comparing SAX, 1d-SAX, and
ABBA as discretization procedures for TARZAN with the modified anomaly score.2

The reference time series R is a simple sine wave where each period spans 25 time
samples. The time series X has a full wave replaced by a flat line of 22 time points. The
SAX and 1d-SAX representations use a window length w = 5 and k = 9 symbols,
whereasABBAuses a tolerance tuned to give a symbolic representation of equal length
and k is bounded by 9. The time series R and X and their symbolic reconstructions are
shown in Fig. 12. If the length of the anomaly does not align with the window length
w, then SAX and 1d-SAX tend to represent the sine wave following the anomaly as a

2 A Python implementation of TARZAN which supports the use of SAX, 1d-SAX, and ABBA can be
downloaded from https://github.com/nla-group/TARZAN.

123

https://github.com/nla-group/TARZAN

1196 S. Elsworth, S. Güttel

Fig. 12 A visual comparison of the symbolic representations of two time series. Here, R is the reference
time series, a simple sine wave, while X is the test time series, a sine wave with a flat region that is three
time points shorter than one wave period

different substring. The adapted TARZAN score is required as certain symbols appear
in X that do not appear in R. Figure 13 shows the resulting TARZAN anomaly scores.
Both SAX and 1d-SAX suffer from the fixed window length, returning high anomaly
scores throughout time following the anomaly, whereas TARZAN using ABBA is able
to recover almost immediately after the anomaly due to the adaptive segment lengths.

VizTree We finally mention the possibility of representing an ABBA output as a
VizTree, a time series pattern discovery and visualization tool based on suffix trees
(Lin et al. 2004a, b, 2005). The authors use SAX to discretize the time series before
building a suffix tree. Each branch of the suffix tree represents a substring and the
thickness of that branch represents the frequency of the substring in the symbolic
representation. In principle, SAX pairs well with the visualization as the Gaussian
breakpoints should ensure that each symbol appears equally likely. In practice, this
is often not the case. One could use ABBA’s discretization process instead of SAX
by relating the thickness of each line to the frequency of the symbols determined
in the clustering procedure. A poor choice of the window length w in the piecewise
aggregate approximation in SAX could lead to missing motifs if the distance between
is not near a multiple of w. Furthermore, SAX might fail to detect motifs if time
warping has occurred, whilst VizTree via ABBA should be able to better capture time-
warped motifs as the segment lengths are chosen adaptively. A further exploration of
this application will be the subject of future work.

123

ABBA: adaptive Brownian bridge-based symbolic… 1197

Fig. 13 A comparison of the TARZAN anomaly detection algorithm using the SAX, 1d-SAX, and ABBA
representations, respectively. The first time series R is the reference, while the second time series X is to
be tested. The final three plots show the adapted TARZAN anomaly scores for the SAX, 1d-SAX, and
ABBA representations, respectively. The black dashed lines indicate tolerances that could be used define
the anomalies

8 Conclusions and future work

We introduced ABBA, an adaptive symbolic time series representation which aims to
preserve the essential shape of a time series.We have shown that theABBA representa-
tionhas favorable approximationproperties compared to other popular representations,
in particular, when the dynamic time warping distance is used. Furthermore, we
demonstrated the use of ABBA in some important data mining applications, including
trend prediction and anomaly detection. Future research will be devoted to an online
streaming version ofABBAwith the necessary adaptations of the theBrownian bridge-
based error analysis, as well as a more in-depth study of VizTree visualizations. Our
recent work Elsworth and Güttel (2020) explores ABBA’s potential for time series
forecasting.

Acknowledgements This work was supported by the UK’s Engineering and Physical Sciences Research
Council (EPRSC) under the grant EP/N509565/1. We thank Sabisu (now AspenTech) and the EPSRC for
providing SE with a CASE PhD studentship. SG acknowledges support from the Alan Turing Institute
under the EPSRC Grant EP/N510129/1. We thank Timothy D. Butters for his help with C++ and SWIG,
and are grateful to Eamonn Keogh and all other contributors to the UCR Time Series Classification Archive.
We also thank the three anonymous referees and the editor for their helpful comments which significantly
improved the paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123

1198 S. Elsworth, S. Güttel

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abanda A, Mori U, Lozano JA (2019) A review on distance based time series classification. Data Min
Knowl Discov 33(2):378–412. https://doi.org/10.1007/s10618-018-0596-4

Aghabozorgi S, Shirkhorshidi AS,WahTY (2015) Time-series clustering—a decade review. Inf Syst 53:16–
38. https://doi.org/10.1016/j.is.2015.04.007

Arthur D, Vassilvitskii S (2006) How slow is the k-means method? In: Symposium on computational
geometry, ACM, New York, vol 6, pp 1–10

Atluri G, Karpatne A, Kumar V (2018) Spatio-temporal data mining: a survey of problems and methods.
ACM Comput Surv (CSUR) 51(4):83

Barnaghi PM, Bakar AA, Othman ZA (2012) Enhanced symbolic aggregate approximation method for
financial time series data representation. In: 6th International conference on new trends in information
science, service science and data mining (ISSDM2012), IEEE, pp 790–795

Baydogan MG, Runger G (2015) Learning a symbolic representation for multivariate time series classifi-
cation. Data Min Knowl Discov 29(2):400–422

Benyahmed Y, Bakar AA, Hamdan AR, Abdullah SMS (2015) A time-weighted average-based PAA rep-
resentation for time series symbolization. Int J Adv Soft Comput Appl 7(3):1–15

Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD Workshop
10:359–370

Bettaiah V, Ranganath HS (2014) An analysis of time series representation methods: data mining appli-
cations perspective. In: Proceedings of the 2014 ACM Southeast Regional Conference, ACM, pp
16:1–16:6. https://doi.org/10.1145/2638404.2638475

Bondu A, Boullé M, Cornuéjols A (2016) Symbolic representation of time series: a hierarchical coclus-
tering formalization. In: International workshop on advanced analysis and learning on temporal data,
Springer, pp 3–16

Boullé M (2006) MODL: a Bayes optimal discretization method for continuous attributes. Mach Learn
65(1):131–165. https://doi.org/10.1007/s10994-006-8364-x

Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: Proceedings of the
ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp
493–498

DauHA,Keogh E, Kamgar K, YehCCM, ZhuY, Gharghabi S, Ratanamahatana CA,Yanping, HuB, Begum
N, Bagnall A, Mueen A, Batista G (2018) The UCR time series classification archive. https://www.
cs.ucr.edu/~eamonn/time_series_data_2018/. Accessed 14 Mar 2019

Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program
91(2, Ser. A):201–213. https://doi.org/10.1007/s101070100263

ElsworthS,Güttel S (2020)Time series forecastingusingLSTMnetworks: a symbolic approach.Manchester
Institute for Mathematical Sciences, The University of Manchester, UK. arXiv:2003.05672

Esmael B, Arnaout A, Fruhwirth RK, Thonhauser G (2012) Multivariate time series classification by
combining trend-based andvalue-based approximations. In: International conferenceon computational
science and its applications, Springer, pp 392–403

Fu T (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181. https://doi.org/10.
1016/j.engappai.2010.09.007

Ganz F, Barnaghi P, Carrez F (2013) Information abstraction for heterogeneous real world internet data.
IEEE Sensors J 13:3793–3805. https://doi.org/10.1109/JSEN.2013.2271562

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10618-018-0596-4
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1145/2638404.2638475
https://doi.org/10.1007/s10994-006-8364-x
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1007/s101070100263
http://arxiv.org/abs/2003.05672
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1109/JSEN.2013.2271562

ABBA: adaptive Brownian bridge-based symbolic… 1199

Grabocka J, Wistuba M, Schmidt-Thieme L (2014) Scalable classification of repetitive time series through
frequencies of local polynomials. IEEE Trans Knowl Data Eng 27(6):1683–1695

Grønlund A, Larsen KG, Mathiasen A, Nielsen JS (2017) Fast exact k-means, k-medians and Bregman
divergence clustering in 1D. arXiv:1701.07204

Gupta M, Gao J, Aggarwal CC, Han J (2013) Outlier detection for temporal data: a survey. IEEE Trans
Knowl Data Eng 26(9):2250–2267

Keogh E, Pazzani MJ (2001) Derivative dynamic time warping. In: Proceedings of the 2001 SIAM inter-
national conference on data mining, pp 1–11

Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical
demonstration. Data Min Knowl Discov 7(4):349–371. https://doi.org/10.1023/A:1024988512476

Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping. Knowl Inf Syst 7(3):358–
386. https://doi.org/10.1007/s10115-004-0154-9

Keogh E, Chu S, Hart D, Pazzani M (2001) An online algorithm for segmenting time series. In: Proceedings
of the 2001 IEEE international conference on datamining, pp 289–296. https://doi.org/10.1109/ICDM.
2001.989531

Keogh E, Lonardi S, Chiu B (2002) Finding surprising patterns in a time series database in linear time and
space. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery
and data mining, ACM, pp 550–556

Kim JY (2000) Detection of change in persistence of a linear time series. J Econom 95(1):97–116. https://
doi.org/10.1016/S0304-4076(99)00031-7

Li G, Zhang L, Yang L (2012) TSX: a novel symbolic representation for financial time series. In: PRICAI
2012: trends in artificial intelligence, Springer, pp 262–273

Lin J, Keogh E, Lonardi S, Lankford JP, NystromDM (2004a) Visuallymining andmonitoringmassive time
series. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery
and data mining, ACM, pp 460–469

Lin J, Keogh E, Lonardi S, Lankford JP, Nystrom DM (2004b) Viztree: a tool for visually mining and
monitoring massive time series databases. In: Proceedings of the 30th international conference on
very large data bases, vol 30 (VLDB ’04), VLDB Endowment, pp 1269–1272

Lin J, Keogh E, Lonardi S (2005) Visualizing and discovering non-trivial patterns in large time series
databases. Inf Vis 4(2):61–82

Lin J, Keogh E,Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series.
Data Min Knowl Discov 15(2):107–144. https://doi.org/10.1007/s10618-007-0064-z

Lkhagva B, Suzuki Y, Kawagoe K (2006) New time series data representation ESAX for financial applica-
tions. In: 22nd international conference on data engineering workshops (ICDEW’06), pp x115–x115.
https://doi.org/10.1109/ICDEW.2006.99

Luo G, Yi K, Cheng SW, Li Z, Fan W, He C, Mu Y (2015) Piecewise linear approximation of streaming
time series data with max-error guarantees. In: 2015 IEEE 31st international conference on data
engineering, pp 173–184. https://doi.org/10.1109/ICDE.2015.7113282

Malinowski S, Guyet T, Quiniou R, Tavenard R (2013) 1d-SAX: a novel symbolic representation for time
series. In: Advances in intelligent data analysis XII, Springer, pp 273–284

McCreight EM (1976) A space-economical suffix tree construction algorithm. J ACM (JACM) 23(2):262–
272

Mörchen F, Ultsch A (2006) Finding persisting states for knowledge discovery in time series. In: From data
and information analysis to knowledge engineering, Springer, pp 278–285

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Pelkonen T, Franklin S, Teller J, Cavallaro P, Huang Q, Meza J, Veeraraghavan K (2015) Gorilla: a fast,
scalable, in-memory time series database. Proc VLDB Endow 8(12):1816–1827

Pham ND, Le QL, Dang TK (2010) HOT aSAX: a novel adaptive symbolic representation for time series
discords discovery. In: Proceedings of the second international conference on intelligent information
and database systems: part I, Springer, pp 113–121

Shieh J, Keogh E (2008) iSAX: indexing and mining terabyte sized time series. In: Proceedings of the 14th
ACM sigkdd international conference on knowledge discovery and data mining, ACM, pp 623–631

Wang H, Song M (2011) Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic pro-
gramming. R J 3(2):29–33

123

http://arxiv.org/abs/1701.07204
https://doi.org/10.1023/A:1024988512476
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.1109/ICDM.2001.989531
https://doi.org/10.1109/ICDM.2001.989531
https://doi.org/10.1016/S0304-4076(99)00031-7
https://doi.org/10.1016/S0304-4076(99)00031-7
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1109/ICDEW.2006.99
https://doi.org/10.1109/ICDE.2015.7113282

1200 S. Elsworth, S. Güttel

Zhang K, Li Y, Chai Y, Huang L (2018) Trend-based symbolic aggregate approximation for time series
representation. In: 2018 Chinese control and decision conference, IEEE, pp 2234–2240. https://doi.
org/10.1109/CCDC.2018.8407498

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1109/CCDC.2018.8407498
https://doi.org/10.1109/CCDC.2018.8407498

	ABBA: adaptive Brownian bridge-based symbolic aggregation of time series
	Abstract
	1 Introduction
	2 Background and related work
	3 Distance measures
	4 Adaptive Brownian bridge-based aggregation
	4.1 Compression
	4.2 Digitization
	4.3 Inverse digitization and quantization

	5 Error analysis
	6 Discussion and performance comparison
	7 Further discussion and applications
	8 Conclusions and future work
	Acknowledgements
	References

