
Universitat Politènica de Catalunya

Master Thesis

Study and Development of Hierarchical
Path Finding to Speed Up Crowd

Simulation

Student:

Carlos Fuentes Paredes

Advisor:

Nuria Pelechano Gómez

A thesis submitted in fulfilment of the requirements

for the degree of Master in Innovation and Research in Informatics

in the

Facultat d’Informàtica de Barcelona

November 2014

http://www.upc.edu/?set_language=en
Department or School Web Site URL Here (include http://www.fib.upc.edu/en.html)

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1

1.1 Introduction . 1

1.2 Objectives . 2

1.3 Contribution . 2

1.4 Organization . 2

2 State of the Art 4

2.1 Environment Division . 5

2.1.1 Regular Grids . 5

2.1.2 Roadmaps . 6

2.1.3 Navigation Meshes . 8

2.1.3.1 Triangular NavMeshes . 9

2.1.3.2 Convex polygon decomposition 9

2.2 Path finding Algorithms . 10

2.2.1 Introduction . 11

2.2.2 Dynamic Search . 12

2.3 Environment-Aware Navigation . 14

2.3.1 Dynamic Search on the GPU . 17

2.3.2 Planning in Complex Domains . 19

2.4 Hierarchical Path finding . 22

2.5 Conclusion . 25

3 Our Approach 27

3.1 Introduction . 27

3.1.1 Voxelize the polygons. 28

3.1.2 Build navigable space from solid voxels. 28

3.1.3 Build watershed partitioning and filter out unwanted regions. . . . 29

3.1.4 Trace and simplify region contours. 29

3.1.5 Triangulate the region polygons and build triangle connectivity. . . 29

3.2 Hierarchical Subdivision . 32

3.3 Path finding Computation . 36

3.3.1 Find S and G al certain level . 37

i

Contents ii

3.3.2 Connect S and G to the graph . 37

3.3.3 Search for a path between S and G at the highest level 38

3.3.4 Obtain optimal subpaths . 38

3.3.5 Delete temporal nodes . 38

4 Results and Discussion 41

4.1 Performance test . 41

4.1.1 Number of Nodes . 41

4.1.2 Time execution . 43

4.1.2.1 Find S and G al certain level 47

4.1.2.2 Connect S and G to the graph 48

4.1.2.3 Search for a path between S and G at the highest level . 49

4.1.2.4 Obtain optimal subpaths 49

4.1.2.5 Delete S and G . 51

4.2 Discussion . 51

5 Conclusions and Future Work 54

5.1 Conclusions . 54

5.2 Future Work . 55

A Performance Test 56

Bibliography 71

List of Figures

2.1 Regular Grid Extraction with two states: 3D environment (a). Extracted
graph (b). 5

2.2 Limitations of Grid Methods: Walkable and obstacle area inside the same
cell (a). Restricted movement (fixed angles)(b). 6

2.3 Probabilistic Roadmap Planner: Connect Start and Goal node to the
roadmap. 7

2.4 Voronoi-Based Roadmaps: Retract PRM (nodes and edges) to the medial
axis. 7

2.5 The Constrained Delaunay Triangulation: O(n) conformal cell decompo-
sition. 9

2.6 NEOGEN subdivision. From left to right we can see the original scene,
the result of the layer extraction step after the coarse voxelization,the 2D
floor plan of each layer, and finally the near optimal navigation mesh. . . 10

2.7 Representations of the environment division. Empty map a). Regular
Grid map b). Roadmap c). NavMesh d) 11

2.8 Minimal memory abstract graph. 13

2.9 Movement behaviour: Set of possible actions. 14

2.10 Hybrid discretization: Blue edges represent the grid portion of the graph
while red edges represent the highways . 15

2.11 Static and Dynamic Constraints) . 16

2.12 Density Based Path Planning . 17

2.13 Algorithm: Propagate state inconsistency 18

2.14 Different scenarios: (a) Agents crossing a highway with fast moving ve-
hicles in both directions. (b) 4 agents solving a deadlock situation at a
4-way intersection. (c) 20 agents distributing themselves evenly in a nar-
row passage, to form lanes both in directions. (d) A complex environment
requiring careful foot placement to obtain a solution. 19

2.15 Domain Representations: (a) Problem definition with initial configura-
tion of agent and environment. (b) Global plan in static navigation mesh
domain Σ1 accounting for only static geometry. (c) Global plan in dy-
namic navigation mesh domain Σ2 accounting for cumulative effect of
dynamic objects. (d) Grid plan in Σ3. (e) Space-time plan in Σ4 that
avoids dynamic threats and other agents. 20

2.16 Characters exhibiting two cooperative behaviours: Two actors hide while
a third lures a guard away (a), then sneak past once the guard is distracted
(b). An actor lures the guards towards him (c), while a second presses a
button to activate a trap (d). 22

2.17 Upper graph level with different subdivision: 100 clusters (a). 25 clusters
(b). 16 clusters (c). 4 clusters (d). (Model: map (1000 nodes) 23

iii

List of Figures iv

2.18 Abstract Graph: Black cells represent obstacles and walls. Entrances are
blue cells. Green cell is the start and the red one is the goal. Path between
them is with orange color. 23

2.19 HPA* in Recast tool: Cluster division (purple). Entrances (red). Inter
and intra edges (blue). Optimal path (black). 24

2.20 Clearance Values: (a)-(d) Computing clearance; the square is expanded
until a hard obstacle is encountered. (e)-(g) Clearance values for different
capabilities . 25

3.1 Recast Tool software. (Model: Tropical Islands (12666 polygons)). 28

3.2 Build navigable space from solid voxels: Voxelization with walkable cells
marked (a) and walkable cells overlayed on top of input geometry (b). . . 28

3.3 Build watershed partitioning and filter out unwanted regions: The catch-
ment basins become the centers of the regions. (White areas represent
lower region). 29

3.4 Ramer-Douglas-Peucker algorithm: Initial vertices at region edges (a);
Find vertex with maximum error, and subdivide (b); Iterate untill certain
error criteria is met (c). 30

3.5 Contours: Traced contours (a); Simplified contours(b). 30

3.6 Triangulation . 31

3.7 Recast steps (from left to right): Input mesh and the five steps of Recast
process. (Model: Scifi City (2090 polygons)). 31

3.8 Recast tool: Unreachable walkable areas. (Model: Scifi City (2090 poly-
gons)). 32

3.9 Hierarchical Subdivision: The NavMesh triangulation of the model (a).
The graph of the lowest level (level 0) (b). Nodes are painted in different
colors. Edges connects a node with its neighbours (Model: Dungeon (120
polygons)). 33

3.10 The three phases of multilevel k-way graph partitioning. G0 is the input
graph, which is the finest graph. Gi+1 is the next level coarser graph of
Gi. G4 is the coarsest graph . 34

3.11 Hierarchical Subdivision: (Simple map, numMergedNodes = 5, levels =
5). Portals are presented with red dots. IntraEdges are painted with
yellow lines. Partitions are exposed with black, blue and red separation
lines respectively. Level 0 = 76 nodes (a), Level 1 = 12 nodes (b), Level
2 = 3 nodes (c). (Model: Simple Map (76 polygons)). 36

3.12 Hierarchical Graphs: (City Islands, numMergedNodes = 3, levels = 10).
Level 0 = 5151 nodes (a), Level 1 = 1469 nodes (b), Level 2 = 316 nodes
(c), Level 3 = 72 nodes (d), Level 4 = 17 nodes(e), Level 5 = 4 nodes (f).
(Model: City Islands (5515 polygons)). 36

3.13 Connect Start node to the graph: Red circles are portals of the orange
partition. White lines are the computed intraedges. Gray polygons are
obstacles or no walkable areas. 37

3.14 Hierarchical Subdivision: The graphs in the hierarchy from the lowest
level (From (a) to (e)). The start and goal nodes are written in white. . . 38

3.15 Path finding Computation: S and G are linked to their partitions at level
2 (a). Sub paths are calculated until level 0 is reached. (Level 1 (b) and
Level 0 (c)). The final result of the shortest path between S and G at
level 2 (d). 39

List of Figures v

3.16 Path finding Computation: (Serpentine Islands, numMergedNodes =
4, levels = 10) Path finding at level 0 (3908 nodes) (a). Path finding at
level 0 where each node has a different color (b). Path finding at level 3
(28 nodes) (c). 40

4.1 Sample maps: (Dungeon (a). City Colony (b). Serpentine City (c). City
Islands (d). Tropical Islands (e). Sirus City (f). 42

4.2 Level vs Number of Nodes (Sirus City). 43

4.3 Level vs Execution Time (Map). 44

4.4 Map model (a). Shortest path (numMergedNodes = 2, level = 2) (b) . . 44

4.5 Level vs Execution Time (City Colony). 45

4.6 City Colony model (a). Shortest path (numMergedNodes = 5, level = 2)
(b) . 45

4.7 Level vs Execution Time (Tropical Islands). 46

4.8 Tropical Islands model (a). Shortest path (numMergedNodes = 16, level =
2) (b) . 46

4.9 Get S and G Time vs Level . 48

4.10 Link S and G Time vs Level . 49

4.11 A* Time vs Level . 50

4.12 Obtain optimal subpaths. The map model has two nodes at level 3. No
intermediate paths are calculated . 50

4.13 Time vs Level . 51

4.14 Special case: Start partition has 18 portals (red points) and end partition
has 10 (blue points) . 52

List of Tables

4.1 Sample maps . 42

4.2 Number of portals (Sirus city) . 48

A.3 City Colony (2615 Nodes) . 57

A.4 Serpentine City (3908 Nodes) . 59

A.5 City Islands (5515 Nodes) . 61

A.6 Tropical Islands (12666 Nodes) . 63

A.7 Sirus City (18738 Nodes) . 66

A.1 Dungeon (120 Nodes) . 69

A.2 Map (208 Nodes) . 70

vi

Chapter 1

Introduction

1.1 Introduction

Path finding is a common problem in computer games. Most videogames require to

simulate thousands or millions of agents who interact and navigate in a 3D world showing

capabilities such as chasing, seeking or intercepting other agents. This behaviour is

solved using path finding. A* is the most commonly used method to determine the

shortest path between two points. It expands the nodes in the graph representation of

the environment with the smallest estimated solution cost first; however the cost of this

search can grow exponentially with the size of the terrain and the allocated memory is

very limited. Therefore, a hierarchical subdivision of the world environment is necessary

under those restraints.

Hierarchical path finding has been studied in the last decade, it allows to compute the

shortest and optimal route between two locations in large terrains based on a hierarchical

graph. This significantly decreases the execution time and memory footprint in crowd

simulation environments. Many of these approaches only have one abstract graph to

work on. It means, the searches are just done on one abstract level of the environment

subdivision. These approaches have been only applied in 3D environments based on

regular grids.

The work presented in this master thesis proposes a new hierarchical path finding so-

lution for big environments. We use a navigation mesh as abstract data structure to

partition the 3D world. Then, we extract the graph representation and consider it as

the level 0 in a hierarchical tree. After, many subdivisions are created by recursively

partitioning a lower level graph into a specific number of nodes. The number of nodes

is a parameter. The partition is performed until the graph of the latest level can’t be

1

Chapter 1. Introduction 2

divided. Thus, a particular path planning search can be executed in any level of this

hierarchical tree. The higher the level of the hierarchy, the fewer the number of nodes

to search in. This approach allows faster path finding calculations than a common A*

without any hierarchy.

1.2 Objectives

The execution time of planning the shortest path from one point to another becomes

slower in big scenarios. The graph that represents the environment division could be

oversize due to the number of nodes and edges. That size makes calculating traditional

shortest-path algorithms too slow for a real application. Therefore, the main purpose

of this thesis is to speed up the shortest path time execution applying a hierarchical

subdivision of the environment with many levels.

In order to achieve our goal, we first studied the state of the art not only in path finding

algorithms but also in spatial division and hierarchical approaches. We focused more

specifically on the work based on hierarchical methods and partitioning.

1.3 Contribution

The main contribution of this thesis is a new hierarchical path finding subdivision

method to speed up crowd simulation that works on navigation meshes as opposed

to previous work based on regular grids. Our approach divides the environment in a

hierarchy of graphs in order to minimize the complexity of the problem. It basically has

two steps: firstly, it creates the hierarchy tree based on a recursively partition (prepro-

cessing step). This partition is made by taking into account the number of connector

edges. Secondly, we insert the start and goal nodes into the current graph at certain

level and search the optimal path with common A* between them. Once the high level

path is calculated, we compute the low path level within the higher level start and goal

nodes (online step).

1.4 Organization

The rest of this work is organized as follows. In the next chapter, we discuss about

the State of the Art on path finding algorithms, spatial environment subdivisions and

hierarchical approaches. In chapter 3, we do a brief description of the tool we use for

Chapter 1. Introduction 3

partitioning as well as the explanation of our approach. Here we will describe how the

graph partition is done as well as a deep description of the preprocessing and online

steps required by our method. The comparison and results are explained in the chapter

4 together with a discussion. Finally, we present conclusions and future work.

Chapter 2

State of the Art

Many path finding algorithms have been studied for more than a decade, all of which

attempt to balance the inherent tradeoff between two criteria, namely the path planning

runtime computation and the resulting path quality.

The computational cost depends on how the scenario is divided (based on grids, way-

points or navigation meshes) and whether the navigation environment is fully static or

dynamic, where a complex replanning may be required on the fly in order to get the

correct path. This cost can be significantly reduced by using GPU calculation.

At present, a hierarchy of graphs is applied to reduce the computational calculation

known as hierarchical path finding, where the idea is to decompose the search problem

into multiple searches on smaller graphs and to cache information about path segments

that are shared by many routes. The higher the level the graph belongs to, the smaller

the number of nodes the graph has.

In order to understand the current state of the art on path finding techniques, this

chapter starts with a short summary about static and dynamic path planning algorithms

and spatial environment subdivision techniques in computer games. These techniques

allow robust and efficient computation of paths regardless of the kind of surrounding

area in the interactive virtual world.

Then, we proceed with a compilation of some of the most important approaches on path

finding, based on GPU, multi-domain planning and hierarchical subdivisions. Finally,

the report is completed with some conclusions.

4

Chapter 2. State of the Art 5

2.1 Environment Division

In videogames and artificial intelligence fields, the 3D world environment could be char-

acterized as a weighted direct graph. There are well known structures suitable for fast

path planning calculation. These spatial divisions allow fast searches for collision-free

paths, but which are not necessarily globally the shortest ones. The most common

environment representations are regular grids and navigation meshes (NavMesh).

2.1.1 Regular Grids

Regular grids are the simplest way to represent the 3D world. This regular cell grid is

commonly used both global and local paths of agents. The scenario is divided into a two

dimensional square cells with the same size. Each cell can have two states: opened or

blocked. An opened cell is the space where the character can stand or move in, a blocked

one is not accessible for the character because there are obstacles or walls. However,

more than two states can be stored in a cell such as density, percentage of occupancy,

etc. In the method proposed by Loscos [1], they store more than two states in each cell

of a regular grid. Each cell has local information for collision of the environment and

agents in order to improve the realism of the simulation. It also can be extended for

creating more complex agent-environment behaviours using different layers [2], [3].

A navigation graph can be extracted from the regular grid by using the connectivity

information between cells. Each node in the graph represents a cell and an edge the link

between two cells.(See Fig. 2.1)

Figure 2.1: Regular Grid Extraction with two states: 3D environment (a). Extracted
graph (b).

If the virtual world is small and grid-like, this technique is useful. Also, this approach

is ideal for 2D terrains where the height of the character is not relevant. Moreover, the

resolution of the grid determines how accurate it represents the walkable space. However,

Chapter 2. State of the Art 6

the memory cost becomes unacceptable when the number of cells is extremely high for

a regular grid with enough resolution. The idea of partitioning the world representation

in cells with big sizes in order to mitigate this problem could affect the path quality.

Other limitation of working on grids is the coarse coverage of underlying terrain, it

means that one big cell could cover both walkable and obstacle area. It should classified

as either walkable or obstacle under some criterion. Also, the paths don’t look realistic

because of the agent movement is only restricted to do fixed angle turns. Motions created

by grid search tend to be unnatural because, in general, for grid searches a smooth path

needs to be created in the post-processing phase resulting in expensive queries. See Fig.

2.2

Figure 2.2: Limitations of Grid Methods: Walkable and obstacle area inside the same
cell (a). Restricted movement (fixed angles)(b).

Therefore, using large grids that are composed for thousand of cells could easily exceed

the memory requirements of the current high-end hardware provides. Moreover the

preprocessing time of calculating the extracted graph becomes impractically large with

the growing number of cells.

All of these limitation make a grid representation not suitable for big environments.

2.1.2 Roadmaps

The Probabilistic Roadmap Planner (PRM) [4], [5] is a planner that can compute

collision-free paths. The PRM consists of two phases: a construction phase (off-line) and

a query phase (on-line).In the construction phase, a roadmap is built, it consists of com-

puting a very simplified representation of the free space by sampling configurations at

random. Then the sampled configurations are tested for collision and each collision-free

configuration is retained as a ”milestone”. Each milestone is linked by straight paths to

its k -nearest neighbours. Finally the collision-free links will form the PRM.

Chapter 2. State of the Art 7

Sampled configurations and connections are added to the roadmap until the roadmap is

dense enough. A roadmap is normally represented as a graph in which the nodes corre-

spond to placements of the entity and the edges represent collision-free paths between

these placements.

In the query phase, the start and goal configurations are connected to the roadmap.

Then, the path can be obtained by a Dijkstra’s shortest path query. See Fig. 2.3

Figure 2.3: Probabilistic Roadmap Planner: Connect Start and Goal node to the
roadmap.

A roadmap can also use a Voronoi diagram classifier [6]. The Voronoi diagram is one of

the most popular structure for spatial partitioning. Given seed points, it will partition

the plane in cells such that for each seed there will be a corresponding cell consisting of

all points closer to that seed than to any other.

In order to calculate the seeds, a random sample is picked of the entity (placement) in

each iteration. Then, the placement is checked whether is collision free from the entity.

If so, it is retracted to the Voronoi diagram using binary interpolation. Finally, the edges

are also retracted until every part of the edge is at least some pre-specified distance away

from the obstacles. See Fig. 2.4.

Figure 2.4: Voronoi-Based Roadmaps: Retract PRM (nodes and edges) to the medial
axis.

Chapter 2. State of the Art 8

Unfortunately, the PRM method leads to low quality roadmaps, consisting of straight

line segments, that require a lot of time-consuming smoothing in order to be useful for

virtual world applications. This is due to the random nature of the PRM method. Also,

it lead to larger graphs when many milestones are needed.

2.1.3 Navigation Meshes

Navigation Meshes (NavMesh) is a data structure that is specifically designed for sup-

porting path planning and navigation computations. It encodes a convex decomposition

of the scene where each convex polygon (nodes) is a walkable area and they are con-

nected using links (edges) that provide the connection between cells for agents to walk

through. This representation has fewer nodes which contain more accurate information

about the 3D environment.

The main function of a navigation mesh is to represent the free environment efficiently

in order to allow path queries to be computed in optimal times and to support other

spatial queries useful for navigation. NavMesh has some properties that are listed below:

• Linear number of cells. A navigation mesh should represent the environment

with O(n) number of cells or nodes (n) for efficient path calculations. This is

critical for path search to run in optimal times.

• Quality paths. A navigation mesh should facilitate the computation of quality

paths. At least, locally shortest paths should be provided.

• Arbitrary clearance. A navigation mesh should provide an efficient mechanism

for computing paths with arbitrary clearance from obstacles. No pre-computed

clearance valued should be known.

• Representation robustness. A navigation mesh should be robust to degenera-

cies in the description of the environment. Each description of obstacles should be

handled such as intersections, overlaps, etc.

• Dynamic updates. A navigation mesh should efficiently update itself to accom-

modate dynamic changes in the environment.

An example of the world representations are shown the Fig. 2.7 1.

1The 3D model representations were performed using the Recast navigation Tool. [7]

Chapter 2. State of the Art 9

2.1.3.1 Triangular NavMeshes

Most of the path finding approaches use the Constrained Delaunay Triangulation (CDT)

[8], [9] in a planar surface. It can be defined as follows. Given a set P of n points in

the plane, the Delaunay triangulation of P, is the rectilinear dual graph of the Voronoi

Diagram (See Fig. 2.5). CDT has the following characteristics:

• Two points pi, pjεP form a Delaunay edge if and only if there exists a circle through

pi and pj which does not contain any point of P in its interior.

• Three points pi, pj , pk form a Delaunay triangle (in general, are vertices of a face) if

and only if the circle through them does not contain any point of P in its interior.

Figure 2.5: The Constrained Delaunay Triangulation: O(n) conformal cell decompo-
sition.

CDT maximizes the minimum internal angle of its triangles and is the dual of Voronoi

diagram. It is widely used to represent the free environment, for navigation and path

planning.

Other approach based on NavMeshes is explained by Kallmann [9]. He proposes a

Local Clearance Triangulations (LCT) which is a refinement strategy for CDTs allowing

clearance information to be stored in the triangulation and well address dynamic updates

and robustness. It degenerates input such as when obstacles intersect or overlap during

dynamic movements. This reduce the run-time clearance determination to a simple

value comparison tests during path search.

2.1.3.2 Convex polygon decomposition

Most of the spatial structures try to reduce the number of nodes in the virtual represen-

tation. NEOGEN structure [10] provides a near optimal NavMesh from a 3D world. It

Chapter 2. State of the Art 10

is based on large almost-convex cells partitioning the free region of a given terrain. This

GPU based method generates a Cell-and-PortalGraph(CPG) [11] for a given 3D scenes

(with slopes, steps and other obstacles).

This approach computes a GPU voxilization of the geometry in order to obtain a first

approximation of the walkable area. Then, the potentially walkable area is subdivided

into layers, using an ordered flooding where each layer is refined by using the fragment

shader at higher resolution and the NavMesh is computed using [12]. Finally, all those

individual NavMeshes are merged into a single one, that represents the walkable space

of the entire scene. See Fig. 2.6 .The coarser cell decomposition allows to reduce the

number of nodes and makes the path finding faster.

Figure 2.6: NEOGEN subdivision. From left to right we can see the original scene,
the result of the layer extraction step after the coarse voxelization,the 2D floor plan of

each layer, and finally the near optimal navigation mesh.

Other method which automatically generate navigation meshes from a 3D scene is pro-

posed by [7]. It is accompanied with Detour, path-finding and spatial reasoning toolkit.

Recast tool offers simple static navigation mesh which is suitable for many simple cases,

as well as tiled navigation mesh which allows us to plug in and out pieces of the mesh.

Recast is the program we use to test our method and it will be explained in detail in

the next chapter.

Other approaches for navigation meshes have also been proposed for example to allow

the interconnection of floor plans in multi-layer and non-planar environments, in order

to address 3D scenes. [13], [14], [15].

2.2 Path finding Algorithms

Current state-of-the-art real time path finding algorithms try to improve the performance

measures described in (Russell and Norvig, 2003, page 71) in order to guarantee a

constant bound on response time. These measures are:

• Completeness: Whether or not a route is found, if one exists.

• Optimality. Whether or not the best path is found.

Chapter 2. State of the Art 11

Figure 2.7: Representations of the environment division. Empty map a). Regular
Grid map b). Roadmap c). NavMesh d)

• Time complexity: Number of iterations to reach the goal.

• Space complexity: Maximum number of nodes stored in memory at each iteration.

2.2.1 Introduction

In order to do path planning, the representation of the environment need to be discretized

to facilitate efficient path finding queries. Then, efficient planning algorithms need to

be developed in order to be able to generate solutions with strict time constraints for

extremely large and complex problem domains.

The most known and popular dynamic search algorithm is A* search [16], It is robust and

simple to implement, with strict guarantees on optimality and completeness of solution.

Hence, it represents a popular and widely used method for path planning in virtual

environments. The A* algorithm uses a heuristic to restrict the number of states that

must be evaluated before finding the true optimal path. It guarantees to expand an

equal number or fewer states than any other algorithm using the same heuristic. A*

may be too slow. Its memory use is also variable and may be high depending on the

size of its opened and closed lists and the heuristic function used.

Also, Anytime Planning algorithms find the best suboptimal plan and iteratively im-

prove this plan while reusing previous plan efforts. One of the most popular A∗ is

called Anytime Repairing A* (ARA*) [17]. It performs a series of repeated weighted

A* searches while iteratively decreasing a loose bound (ε). Then, it iteratively improves

Chapter 2. State of the Art 12

the solution by reducing ε and reusing previous plan efforts to accelerate subsequent

searches. The key to reusing previous plan efforts is keeping track of over-consistent

states. ARA* solution no longer guaranteed to be optimal.

Furthermore, Incremental planning algorithms try to reuse the results of the previous

plan calculation in order to reduce the planning effort. It also helps to compute the new

plan when there is a small change in the environment. One common replanning method

is presented in [18]. D* Lite performs A* to generate an initial solution, and repairs

its previous solution to accommodate world changes by reusing as much of its previous

search efforts as possible. D* can correct ”mistakes” without re-planning from scracth

but requires more memory.

Finally, Anytime Dynamic A* (AD*) [19] combines the properties of D* and ARA* to

provide a planning solution that meets strict time constraints. It efficiently updates

its solutions to accommodate dynamic changes in the environment. These updates are

performed by series of repeated searches by iteratively decreasing the inflation factor.

AD* cannot handle dynamic changes in goal.

2.2.2 Dynamic Search

DBA* algorithm [20] combines the memory-efficient sector abstraction developed for [21]

and the path database used by [22] in order to improve space complexity and optimality.

Basically, it performs an off-line pre-processing step where computes a minimal memory

abstract map [21] with regions, sectors and the database path between adjacent regions.

Sectors are further divided into regions.

Each region has walkable and reachable nodes within a sector. These nodes are identi-

fied by performing a BFS (Breadth-first search). Edges between sectors are added by

comparing each pair of values between adjacent sectors and regions as shown in the Fig.

2.8. Sectors (0, 1, 2, 3), regions (0a, 0b; 1a, 1b; 2a, 2b, 2c; 3a, 3b).

The next step is to construct a database of optimal paths for each edge using a simple

A* [16]. Many sequences of subgoals are stored in a compressed format. Each subgoal

can be reached using an optimal local search called hill-climbing agent [23]. These paths

are used to populate a R2 path matrix where R is the number of regions. Dynamic

programming is performed on the matrix to compute the cost and next hop region for

all pairs of regions.

The final step performs an online search. The start and goal regions are identified

performing a BSF for each region. The complete path is found by iterating several steps

Chapter 2. State of the Art 13

Figure 2.8: Minimal memory abstract graph.

where each sub path is obtained by looking into the path matrix to find the next hop

to navigate from the start region to the goal region.

Finally, a path refinement is performed by path trimming and increasing the neighbour-

hood depth. The approach does not handle dynamic updates to the environment and it

is only limited for grid based 3D worlds.

Path finding is not only focused on agents with individual targets, but also on groups of

characters who have a common goal and where the lateral and longitudinal dispersion

between them is important. A new approach is introduced by Huang [24] that presents

a path planning method for coherent and persistent groups in arbitrarily complex nav-

igation mesh environments. The group is modeled as a deformable and splittable area

preserving shape. The efficiency of the group search is determined by three factors: path

length, deformation minimization, and spitting minimization.

The problem is defined as:

Σ = 〈S,A, c(s, s′), h(s)〉 (2.1)

Where,

• S is the state space of the group. It means the collection of triangles which contain

one head and the tail.

• A is the set of possible movement behaviour of each subgroup: LEFT, RIGHT,

SPLIT, PAUSE, and MERGE (See Fig. 2.9)

• c(s,s’) is the cost of transition from s to s’. It is composed by the distance cost,

the deformation cost and the split penalty.

Chapter 2. State of the Art 14

• h(s) is the heuristic estimate of reaching the goal. It computes the straight line

distance to the goal and deformation cost from the current state of the group to

the goal.

Paths to given goals are computed with a three-tuple cost vector of distance, deforma-

tion, and split costs. The distance cost is calculated by the Euclidean distance between

the centers of the traversal exit edges of the heads of the subgroup. The deformation cost

is only intended to consider the head of each group. It measures the group dispersion

while passing through the environment corridors.

Finally the split penalty is the cost for the group to split and it only happens when the

deformation cost is too high. For more details, please refer to [24].

Figure 2.9: Movement behaviour: Set of possible actions.

These two techniques are focused on finding the shortest and optimal path regardless of

how dynamic the environment is.

2.3 Environment-Aware Navigation

Most of the research regarding path finding algorithms are motivated by reaching an

optimal solution and improving the measures describes in the section 2.2. However, in

order to achieve a real time planning, the agents should be aware in their surrounding

area while they are advancing towards their goal.

In a dynamic environment, there are many things to consider such as moving obstacles,

the size of the corridors or even the crowd density information of the 3D world in order

to avoid congested routes that could lead to traffic jams.

Chapter 2. State of the Art 15

There is little work that explores the satisfaction of spatial constraints between objects

and agents at the global navigation layer. The planning framework [25] enables agents

to be more aware of the environment. It satisfies multiple special constraints imposed

on the path. These constraints could be: Stay behind a building, walking along walls or

avoiding the line of sight of other agents.

The obstacles and agents in the world are annotated with additional objects to allow

for more detail in behaviour specifications.

A hybrid discretization of the environment is used to represent the 3D world. It bal-

ances computational efficiency while still ensuring that it has enough expressive power

to accommodate both static and dynamic constraints. It is represented as a grid-like

graph with extra ”highway” edges added in, allowing the planner to find better subop-

timal paths at ”any-time”.(See Fig. 2.10). It benefits from the computational speed of

triangulations, and the uniform grid ensures enough resolution for dynamic constraints.

Figure 2.10: Hybrid discretization: Blue edges represent the grid portion of the graph
while red edges represent the highways

The dynamic constraints can be represented as a continuous potential field [26] which

can be easily superimposed to calculate the total effect in the same region and can be

easily found during search exploration. These constraints can be:

• Hard constraints: Use to avoid invalid transitions in the search graph.

• Soft constraints: Have an effect on the cost of choosing a transition.

Hard constraints have two fields that allow defining an area of influence of the constraint

where all the transitions are forbidden, while the soft constraints have three fields:

• Prepositions: (NEAR, IN): Define the boundaries of the region of influence.

• Annotations: (BACK, FRONT, LEFT, RIGHT, LINEOFSIGHTOF, BETWEEN).

Define the area of influence of the constraint, relative to the position of the object.

Chapter 2. State of the Art 16

• Weight: Define the influence of a constraint to another one (+/-). For instance.

W = 1 is a weak attractor whilst W = -5 would be a strong repeller. It allows to

set priorities between them and having multiple constraint in the same area.

For instance, a solution with static constrains could be ”In Between (B, C), Not In

Grass” shown in the Fig. 2.11a. But if a dynamic constraint is added to the problem

such as an agent, the preposition would be ”In Between (B, C), Not In Grass, Not In

LineOfSightOf(Agent)” (Fig. 2.11b and 2.11c).

In this case, a plan repair would be released to satisfy all the constraints.

Figure 2.11: Static and Dynamic Constraints)

An Anytime Dynamic A* (AD*) [19] is used as a planner. This algorithm not only

finds a suboptimal plan but also can quickly repair its plan in the case of environment

changes.

This approach is a goal-directed navigation system that satisfies multiple spatial con-

straints imposed on the path. It’s suitable for static and dynamic objects.

Other method proposed in [27] that is aware of crowd density information in a dynamic

environment at certain time. Not always the shortest path is the fastest one.

This approach takes into account the number of characters in a specific region. It allows

the agents to naturally spread out among the available routes inside a navigation mesh.

(See Fig. 2.12).

Chapter 2. State of the Art 17

Figure 2.12: Density Based Path Planning

The density value is equal to the total area occupied by the characters inside the walkable

region divided by the total area of the walkable region. Each agent has a disk with a

constant radius which is independent of their height.

The navigation mesh is based on a medial axis of the polygonal world and the Explicit

Corridor Map (ECM)[27] which allows to have no overlapping regions and each of them

share just one edge with the medial axis.

The density value of each walkable region will be used to weigh the medial axis edge

that touches this region. The resulting medial axis serves as a weighted graph. Each

density value is constantly updated so that the characters can periodically re-plan their

routes when it is necessary.

A modified A* is adapted to compute the path through the weighted graph of the medial

axis.

2.3.1 Dynamic Search on the GPU

Kapadia et al. [25] in his method provides a wave-front based search technique that can

efficiently handle world changes and agent movement, while reusing previous efforts, and

is amenable to massive parallelization. This approach can also be extended to handle

any number of moving agents, at no additional computational cost.

The method sets up a grid-based discretization of the environment on the GPU where

each cell has a cost value = -1 (needs to be updated) and obstacles = ∞. Two copies

of the map are created in device memory for only read and write operations. They are

updated and swapped during the computation of the plan.

The planner kernel is independently executed for each thread which maps to every grid

cell in the environment. Each thread reads values from its neighbour cells in order to

compute the cost value of its grid cell using the appropriate read or write map. This

ensures that the map we are reading from will not change we are executing the kernel.

Chapter 2. State of the Art 18

Each thread is responsible for computing and maintaining its least cost predecessor and

its cost as the sum of predecessors cost and the cost of the transition as follows:

g(s) = min(s′∈succ(s)
∧

g(s′)≥0)(c(s, s
′) + g(s′)), 0 ≤ c(s, s′) ≤ ∞ (2.2)

Each computation of the plan is performed by a loop until the cost values of all the

states converges to the minimum cost of reaching the goal where the g value of the goal

was initially set to 0. Once the planner has finished executing, an agent can simply

generate its plan by following the path of least cost from the goal to its position.

There is an extension of this algorithm to handle dynamic environments where obstacle

changes may invalidate plans that are currently being executed. Invalidate plans mean

inconsistent states. A state is inconsistent if its predecessor is not the neighbour with

lowest cost or if any of its successors are inconsistent. The algorithm (See Fig. 2.13)

shows the steps to fix the invalid plans. It can be appended to the end of getting the

optimal solution to guarantee that node inconsistency is propagated and resolved in the

entire map.

Figure 2.13: Algorithm: Propagate state inconsistency

The technique explained above has an extension to handle multiple agents. The kernel

is executed until all agent states have been reached, and the maximum g-value of a state

that is occupied by an agent is less than the g-value of any other state. The number of

iterations for convergence depend on the distance from the goal to the farthest agent.

This framework is currently limited to a small number of target locations, since a sep-

arate map needs to be maintained for each target, resulting in a significant memory

overhead.

The size of grid-based discretization of the environment is really important in the per-

formance of the whole path planning because the main limitation is memory overhead.

This discretization can be adapted to different resolutions quads, using finer resolution

only where necessary. This significant produces memory savings and time benefits as

state space is reduced.

Chapter 2. State of the Art 19

In an adaptive environment representation on the GPU, it is necessary to use a quadcode

scheme for performing efficient indexing, update, and neighbour finding operations and

efficiently handling dynamic environment changes by performing local repair operations

on the quad tree. For more details, please refer to [28].

2.3.2 Planning in Complex Domains

In dynamic scenarios, where the autonomous agents interact with objects and other

agents could be extremely high-dimensional and continuous, a trade-off between action

fidelity and scalability is needed. Kapadia presents a multi-domain anytime dynamic

planning framework [29] which can efficiently work across multiple domains, by using

plans in one domain to accelerate and focus searches in more complex domains. It

explores different domain relationships including the use of waypoints and tunnels. Fig.

2.14 illustrates some of the challenging scenarios and their solutions.

Figure 2.14: Different scenarios: (a) Agents crossing a highway with fast moving
vehicles in both directions. (b) 4 agents solving a deadlock situation at a 4-way in-
tersection. (c) 20 agents distributing themselves evenly in a narrow passage, to form
lanes both in directions. (d) A complex environment requiring careful foot placement

to obtain a solution.

In order to showcase the ability of this framework to efficiently work across heteroge-

neous domains, 4 domains are described to provide a nice balance between global static

navigation and fine-grained space-time control of agents in dynamic environments.

• Static Navigation Mesh Domain (Σ1). Uses a triangulated representation of free

space and only considers static immovable geometry. The agent is modelled as a

point mass, and valid transitions are between connected free spaces, represented as

polygons. The cost function is the straight line distance between the center points

of two free spaces and the heuristic function is the Euclidean distance between a

state and the goal.

• Dynamic Navigation Mesh Domain (Σ2). Uses a triangulated representation of free

space and coarsely accounts for dynamic properties of the environment by storing

a time-varying density field, which contributes to the cost of choosing a triangle for

Chapter 2. State of the Art 20

navigation. The time-varying density field stores the density of moveable objects

(agents and obstacles) for each polygon in the triangulation at some point of

time t. The presence of objects and agents in polygons at future timesteps can

be estimated by querying their plans (if available). The space-time positions of

deterministic objects can be accurately queried while the future positions of agents

can be approximated based on their current computed paths, assuming that they

travel with constant speed along the path without deviation. The resolution of the

triangulation may be kept finer than 1 to increase the resolution of the dynamic

information in this domain. Hence, a set of global waypoints are chosen in this

domain which avoids crowded areas or other high cost regions.

• Uniform Grid Domain (Σ3). Discretizes the environment into grid cells where a

valid transition is considered between adjacent cells that are free. This domain

only accounts for the current position of dynamic obstacles and agents, and cannot

predict collisions in space-time. An agent is modelled as a point with a radius

(orientation and agent speed is not considered in this domain). The cost and

heuristic are distance functions that measure the Eucledian distance between grid

cells.

• Space Time Domain (Σ4). Accounts for all obstacles (static and dynamic) and

other agents. Transition validity queried in space-time by checking to see if move-

able obstacles and agents occupy that position at that particular point of time, by

using their published paths.

The different domain representations for a given environment can be illustrated in Fig.

2.15

Figure 2.15: Domain Representations: (a) Problem definition with initial configu-
ration of agent and environment. (b) Global plan in static navigation mesh domain
Σ1 accounting for only static geometry. (c) Global plan in dynamic navigation mesh
domain Σ2 accounting for cumulative effect of dynamic objects. (d) Grid plan in Σ3.

(e) Space-time plan in Σ4 that avoids dynamic threats and other agents.

Chapter 2. State of the Art 21

Tunnels [30] are used to connect each of the 4 domains mentioned before, ensuring that

a complete path from the agents initial position to its global target is computed at all

levels. A tunnel is described as follows

Planning Subpace:

τ(Σhd,Π(Σld), tw) (2.3a)

Heuristic:

ht(S, Sstart) = h(S, Sstart) + |d(s,Π(Σ))| (2.3b)

Tunnels are a sub graph in the high dimensional space such that the distance of all

states in the tunnel from the low dimensional plan is less than the tunnel width tw.

Furthermore, node expansion can be prioritized to states that are closer to the path by

modifying the heuristic. Also, d is the perpendicular distance between s and the line

segment connecting the two nearest states. d will return a two-tuple value for spatial

distance as well as temporal distance. Finally, node expansion can be prioritized to

states that are closer to the path by modifying the heuristic function.

Planners are most certainly not only limited to navigation problems but also interaction

between virtual characters. It helps to personify the characters and make the simulation

more realistic.

One approach [31] proposes an event-centric planning framework for directing interac-

tive narratives in complex 3D environment. They gives a series of tools that are defined

by preconditions, postconditions, costs, and a centralized behaviour structure that si-

multaneously manages multiple participating actors and objects.

The problem domain is abstracted so that the planner does not have to deal with complex

motion planning problems and have to worry about the articulation of the joints of an

animated character. It just generates plans in the space of pre-authored narratively

significant logical interactions between any number of characters.

This makes the planning problem much more tractable allowing the automated synthesis

of stories in 3D virtual worlds. For example, if the user changes the world e.g. locks

a door, or moves the guards – the planner is able to easily repair the narrative to

accommodate user agency. Another example is shown in Fig. 2.16.

Chapter 2. State of the Art 22

Figure 2.16: Characters exhibiting two cooperative behaviours: Two actors hide while
a third lures a guard away (a), then sneak past once the guard is distracted (b). An
actor lures the guards towards him (c), while a second presses a button to activate a

trap (d).

2.4 Hierarchical Path finding

The cost of determining the shortest path between two points can grow exponentially

with the size of the terrain and the allocated memory is very limited. Therefore, a

hierarchical subdivision of the world environment is necessary under those restraints.

Hierarchical path finding has been studied in the last decade, it allows to compute the

shortest and optimal route between two locations in large terrains based on a hierarchical

graph. This significantly decreases the execution time and memory footprint in crowd

simulation environments.

There has been some research recently focused on hierarchical path finding techniques

using the A star algorithm such as HPA* [32] which is based on grid maps and clustering.

HPA* creates an abstract graph from a grid in order to minimize the complexity of the

problem. This abstract graph is built by dividing the environment into squares clusters

connected by entrances. Basically, the algorithm has two steps: the pre-processing step

where the grids are grouped in a cluster with a user defined size. These clusters will

be the nodes of the high level graph. Then, the entrances (connections between two

clusters) are placed with one or two transitions.

The clusters are connected with inter-edges with cost 1.0 and the cost of intra-edges are

calculated running regular A* [16] searches inside each cluster, for all pairs of abstract

nodes that shared the same cluster. (See Fig. 2.17).

The second step is the online search which inserts the start and goal nodes into the

abstract graph and searches the optimal path with A* between them. The low level

graph is much smaller than the original one. This approach is only based on grids. See

Fig. 2.18.

Chapter 2. State of the Art 23

Figure 2.17: Upper graph level with different subdivision: 100 clusters (a). 25 clusters
(b). 16 clusters (c). 4 clusters (d). (Model: map (1000 nodes)

Figure 2.18: Abstract Graph: Black cells represent obstacles and walls. Entrances
are blue cells. Green cell is the start and the red one is the goal. Path between them

is with orange color.

Chapter 2. State of the Art 24

Finally, HPA* smoothes the path in an attempt to undo some of the error introduced

with the merging of cluster border vertices. Hovewer, the final path is still not optimal.

(See Fig. 2.19).

Figure 2.19: HPA* in Recast tool: Cluster division (purple). Entrances (red). Inter
and intra edges (blue). Optimal path (black).

Since the abstract graph is much smaller than the original graph, search problems can

be greatly simplified by using the abstract graph instead of the low level one. This

algorithm is the based for the hierarchical approaches. However it only works on grids.

Another similar method based in HPA* but taking into account the size of the agents

and terrain traversal capabilities is Hierarchical Annotated A* (HAA*) [33]. Basically,

it is an extension of HPA* which allow multi-size agents to efficiently plan high quality

paths in heterogeneous-terrain environments.

Each agent has a size property and a capability (ability to walk in a certain type of

terrain). The clearance values (See Fig. 2.20) which is the size of maximum traversal

area at each octile (cell in the grid) is calculated for each capability. The clearance

values for different type of terrain are shown in the Fig. 2.20.

In order to find the shortest path, an adaptable A* is performed by taking into account

the size and capability of each agent. It means the nodes with a clearance value greater

than the size will be expanded.

The path planning is done over an abstract graph which is created in the same way

as HPA* [32]. The entrances between clusters, inter-edges, intra-edges are calculated

considering the agent properties.

Other interesting implementation is called DT-HPA* [34] where a decision tree is used

to create a hierarchical subdivision instead of a normal clustering.

Chapter 2. State of the Art 25

Figure 2.20: Clearance Values: (a)-(d) Computing clearance; the square is expanded
until a hard obstacle is encountered. (e)-(g) Clearance values for different capabilities

This algorithm keeps in mind the terrain distribution in order to do the partition. The

map is divided into small rectangular clusters which correspond to a leaf in the node

of the tree. The classification algorithm considers each cell of the grid as a sample, the

horizontal and vertical coordinates as a condition and if a cell is walkable or not as a

category attribute for the classifier.

The decision tree has the following stop criteria:

• Entropy of the map is zero. A cluster only contains one type of terrain.

• Size of the map is less than a certain threshold. Number of clusters in the map.

Once the subdivision is created, the online path finding is performed in the same way

as HPA* does.

2.5 Conclusion

In this chapter, we have reviewed the current state-of-the-art in path finding algorithms

for crowd simulation. We have discussed the different terrain representations, subdivi-

sions and dynamic searches on them, techniques for static and dynamic environments

and hierarchical approaches based on weighted direct graphs; all of them try to improve

a set of performance measures: completeness, optimality, time complexity and space

complexity. We also have presented a GPU approach [25] where the path planning time

has been reduced significantly but the synchronization between two maps is still a hard

task to deal with.

The analysis of the current methods indicates a clear trend towards hierarchical subdi-

visions [32] [33] [34]. There has been a large research in the artificial intelligence and

Chapter 2. State of the Art 26

videogames industry the last years. However those techniques are only based in grid

subdivision.

One interesting direction of research in the hierarchical path finding would be applying

the idea of hierarchical abstraction also to any kind of navigation mesh because, as this

report explained, NavMeshes are the best suitable subdivision for complex environments

[35].

Furthermore, after studying the previous work in this field, one can conclude that the

combination of HPA algorithms in dynamic-aware environment constraints [25] [27] could

give more realism to the behaviour of thousands of agents.

Finally, the discussion of techniques in this chapter has revealed that path finding re-

mains a computational expensive and complicated problem because of the calculations

in real time applications using large and detailed virtual worlds and character count.

Therefore any research towards improving performance to solve path finding can be a

useful contribution to this field.

Chapter 3

Our Approach

3.1 Introduction

Based on our conclusions over the current state of the art in path finding algorithms, we

aim at using hierarchical approaches to speed up path planning in large scenarios. In

order to apply our new method, we need an initial discretization of the 3D world. As we

have explained in the state of the art methods for spatial subdivision, navigation meshes

are the most accurate and used for that purposes. Another important of navigation

meshes in comparison with grid approaches, is that the number of cells is much smaller

and thus we are already starting with a significantly smaller graph for path finding.

Many tools have been proposed for a NavMesh subdivision. Recast Tool is an automatic

open-source navigation mesh generator toolset for games [7]. The automatic NavMesh

generation is done via Watershed Partitioning which creates a robust triangulation with-

out overlaps and holes. This method used by Recast is inspired by the work by Haumont

[11]. It is automatic, which means that we can input any geometry and it will output

a robust mesh. It is also fast which means swift turnaround times for level designers.

Recast tool also provides an optimized A* implementation into Detour project classes

[7]. Fig. 3.1 shows the tool 1.

Recast tool generate a NavMesh from a triangle soup. It receives an arbitrary polygon

soup with triangles marked as walkable. All of this part is done in the preprocessing

step and has five steps to construct the navigation mesh as follows:

1All the test models were obtained using http://tf3dm.com/

27

Chapter 3. Our Approach 28

Figure 3.1: Recast Tool software. (Model: Tropical Islands (12666 polygons)).

3.1.1 Voxelize the polygons.

The voxel mold is build from the input triangle mesh by rasterizing the triangles into a

multi-layer heightfield. This process makes the method robust against degeneracies of

the model (such as interpenetrating geometry, cracks or holes) as well as simplifies the

furniture of the scene.

3.1.2 Build navigable space from solid voxels.

Some simple filters are applied to the voxel mold to prune out locations where the

character would not be able to move, for instance: too steep slopes, too low places, etc.

This is done by calculating the distance and the slope in each voxel. (See Fig. 3.2).

Figure 3.2: Build navigable space from solid voxels: Voxelization with walkable cells
marked (a) and walkable cells overlayed on top of input geometry (b).

Chapter 3. Our Approach 29

3.1.3 Build watershed partitioning and filter out unwanted regions.

The Watershed Transform [36] finds the catchment basins by building distance the trans-

form of the input areas. It starts from the highest distance one slide at time. Then,

it finds any new catchment basins and it fills them with a new ID. Finally, it expands

existing regions. The catchment basins become the centers of the regions (See Fig. 3.3).

Then, a filter pass is applied to remove small unconnected regions and merge small re-

gions together. The result is set of nonoverlapping simple regions that can be used as

basis for generating waypoint graphs.

Figure 3.3: Build watershed partitioning and filter out unwanted regions: The catch-
ment basins become the centers of the regions. (White areas represent lower region).

3.1.4 Trace and simplify region contours.

It searches the contours by finding a starting point to start tracing (region edge cell).

Then it traces around the boundaries of the regions. The cell corner points which

will form the polygon and the neighbour region ID are stored. Finally, the contours

are simplified using Ramer-Douglas-Peucker algorithm [37]. The algorithm finds initial

segments and locks vertices which are between two different regions, if the the region

is not connected, it locks two extrema vertices. The algorithm iterates through all

simplified segments and subdivides the segment at the point with maximum distance

error between the vertex and the segment. The initial vertices allow later to find common

edges between the polygons. (See Fig. 3.4). The result is a set of simple polygons. (See

Fig. 3.5).

3.1.5 Triangulate the region polygons and build triangle connectivity.

Recast uses a modified algorithm from Computational Geometry in C for the triangula-

tion of the polygons. The final step is to combine the triangles and find edge connectiv-

ity. The resulting polygons are finally converted to convex polygons which makes them

Chapter 3. Our Approach 30

Figure 3.4: Ramer-Douglas-Peucker algorithm: Initial vertices at region edges (a);
Find vertex with maximum error, and subdivide (b); Iterate untill certain error criteria

is met (c).

Figure 3.5: Contours: Traced contours (a); Simplified contours(b).

perfect for pathfinding and spatial reasoning about the level Fig. 3.6.

These five steps are illustrated in the Fig. 3.7. Recast is suitable for complex indoors

and outdoors scenes with many levels. However, it generates walkable areas where

the agents cannot even reach (see. Fig. 3.8). This is due to Recast only taking into

account the characteristics of the geometry enclosed by the voxels. It does not consider

the connectivity between potentially walkable polygons. This is a problem because the

resulting navigation mesh is consider as the initial graph located in the lowest level of

the hierarchy. All of these unreachable regions are deleted during the preprocessing step

in our approach. This development will be explained in detail in the description of our

method.

Once the spatial partition has been done by the Recast tool, we need to create the initial

graph of our hierarchy scheme. Our approach has mainly two steps.

Chapter 3. Our Approach 31

Figure 3.6: Triangulation

Figure 3.7: Recast steps (from left to right): Input mesh and the five steps of Recast
process. (Model: Scifi City (2090 polygons)).

Chapter 3. Our Approach 32

Figure 3.8: Recast tool: Unreachable walkable areas. (Model: Scifi City (2090 poly-
gons)).

• Hierarchical Subdivision. This is done in the preprocessing part. We create a

hierarchy of graphs. The graph in the lowest level is given by the Triangulation in

the Recast tool.

• Path finding computation. Given any level in the precomputed hierarchy, we

calculate the path finding over the graph in that level.

3.2 Hierarchical Subdivision

The first step is to built the framework for hierarchical searches that is defined as a tree

of graphs. We start to compute the lowest graph of the hierarchy (G0 = (V0, E0)) by

searching the polygons in the Recast triangulation. Each polygon becomes a new node

of the graph. For each near polygon that shares the common border, we create an edge

between them. See Fig 3.9.

Once the lowest level graph is created, we recursively build the upper levels of the

hierarchy by partitioning each level until it reaches the minimum number of the nodes

Chapter 3. Our Approach 33

Figure 3.9: Hierarchical Subdivision: The NavMesh triangulation of the model (a).
The graph of the lowest level (level 0) (b). Nodes are painted in different colors. Edges

connects a node with its neighbours (Model: Dungeon (120 polygons)).

in a graph or certain threshold (maximum number of levels). The number of nodes

which will be merged in each step is defined by the user.

In order to obtain an efficient subdivision of each graph, a graph partitioning algorithm

is used to reduces the size of the graph by collapsing vertices and edges. We use the

k-way multilevel algorithm (MLkP) [38] which is faster than others multilevel recursive

bisection algorithms. The process is described as follows:

First of all, a series of successively smaller graphs is derived from the input graph, this

is called ”coarsening phase”. Here, the size of the graph is successively decreased. Each

graph is constructed from the previous graph by collapsing together a maximal size set

of adjacent pairs of vertices. In order to have a good partitions, the weight of a new

vertex should be equal to the sum of its previous vertices. Also, the new edges are the

union of the edges of the its previous vertices to preserve the connectivity information

in the coarser graph. The coarsening phase ends when the coarsest graph has a small

number of vertices or if the reduction in the size of successively coarser graphs becomes

too small.

After the coarsening phase, a k-way partitioning of the smallest graph is computed

(initial partitioning phase). It is performed by using a multilevel bisection algorithm [38].

Each partition contains roughly |V0|/k vertex weight of the original. graph. The division

is done by Kernighan–Lin (KL) partitioning algorithm [39] which finds a partition of

a node into two disjoint subsets of equal size, such that the sum of the weights of the

edges between those subsets is minimized.

Finally, in the uncoarsening phase, the partitioning of the smallest graph is projected to

the successively larger graphs by refining the partitioning at each intermediate level. It

Chapter 3. Our Approach 34

assigns the pairs of vertices that were collapsed together to the same partition as that

of their corresponding collapsed vertex. After each projection step, the partitioning is

refined using various heuristic methods to iteratively move vertices between partitions as

long as such moves improve the quality of the partitioning solution. The uncoarsening

phase ends when the partitioning solution has been projected all the way to the original

graph.

The three phases of the multilevel paradigm are illustrated in Fig. 3.10.

Figure 3.10: The three phases of multilevel k-way graph partitioning. G0 is the input
graph, which is the finest graph. Gi+1 is the next level coarser graph of Gi. G4 is the

coarsest graph

The procedure allows us to have partitions which ensures high quality edge-cuts. An

edge-cut of the partition is defined as the number of edges whose incident vertices belong

to different partitions. All of this operations make the algorithm more complex and

hard to implement. We use an external implementation called METIS library 2. It is

a software package for partitioning unstructured graphs. It implements a collection of

multilevel partitioning algorithms and is free only for educational and research purposes.

The algorithm 1 shows the steps of partitioning for each graph at each level in the

hierarchy.

The iteration is done until either it reaches the maximum number of levels in the hierar-

chy (variable levels) or the graph cannot be subdivided. The number of merged nodes

per level to create a new partition is defined by the variable numMergedNodes. The

PartGraphKway function splits the parent graph into k parts using a multilevel k-way

partitioning. The k parameter is given by the numParts variable. This function returns

2METIS has been developed at the Department of Computer Science and Engineering at the
University of Minnesota and is freely distributed. Its source code can downloaded directly from
http://www.cs.umn.edu/˜metis, and is also included in numerous software distributions for Unix-like
operating systems such as Linux and FreeBSD.

Chapter 3. Our Approach 35

Algorithm 1 Hierarchical subdivision algorithm

1: procedure buildHierarchy(numMergedNodes,levels)
2: repeat
3: numParts← parentGraph.numNodes/numMergedNodes
4: if (numParts < 2) then return

5: partitions←METISPartGraphKway(parentGraph.numNodes, numParts)
6: partitions← checkPartitions(partitions, parentGraph.numNodes, numParts)
7: currentGraph← buildGraph(partitions)
8: parentGraph← currentGraph
9: numLevels+ +

10: until numLevel < levels

the partitions in which the parent graph has been divided and that will become in the

new nodes of the current graph. These partitions need to be checked before being part

of the new graph. It means that for each partition, its subnodes must be linked and

must have edges. Otherwise the current partition will not be taken into account for the

next iterations. The new graph is created in the buildGraph function. The algorithm 2

illustrates the steps required to build a graph for each level.

Algorithm 2 Build Graph algorithm

procedure buildGraph(partitions)
2: for i← 1, partitions do

currentGraph.AddNode(i)

4: for i← 1, partitions do
nodes← findNodes(p)

6: for node← 1, nodes do
for neighbour ← 1, node.numEdges do

8: if node.partition 6= neighbour.partition then
currentGraph.AddEdge(node.parentNode, neighbour.parentNode)

10: portals.Add(node)

for j ← 1, portals do
12: for k ← 1, portals do

if j 6= k then
14: cost← findPath(j, k)

currentGraph.AddIntraEdge(node, j, k, cost)

16: portals.Clear()

Once we have the partitions, the new nodes and edges between partitions are created.

Each partition has a set of portals which depends of the number of edges. A portal is

the middle point in a common edge between to partitions. So, for each pair of portals in

the partition, we run an A* between them in order to get the cost and the shortest path.

This is called an IntraEdge. Each partition has stored the subpath and cost for reaching

from one portal to another. In the Fig. 3.11, the partitions, portal and intraedges are

illustrated.

Chapter 3. Our Approach 36

Figure 3.11: Hierarchical Subdivision: (Simple map, numMergedNodes =
5, levels = 5). Portals are presented with red dots. IntraEdges are painted with yellow
lines. Partitions are exposed with black, blue and red separation lines respectively.
Level 0 = 76 nodes (a), Level 1 = 12 nodes (b), Level 2 = 3 nodes (c). (Model: Simple

Map (76 polygons)).

As an example of our process, we show a complex model with 5515 polygons to create

the hierarchical subdivision performed during preprocessing. It is presented in Fig. 3.12.

Figure 3.12: Hierarchical Graphs: (City Islands, numMergedNodes = 3, levels =
10). Level 0 = 5151 nodes (a), Level 1 = 1469 nodes (b), Level 2 = 316 nodes (c), Level
3 = 72 nodes (d), Level 4 = 17 nodes(e), Level 5 = 4 nodes (f). (Model: City Islands

(5515 polygons)).

3.3 Path finding Computation

Once the hierarchical subdivision is created in the preprocessing step, the path finding

computation can be done at any level of the hierarchy. The second step consists in

searching the shortest path between and start node (S) to the goal node (G) in a

Chapter 3. Our Approach 37

specific graph. This online seach brings a performance improvement as any graph in the

hierarchy is smaller than the one in level 0. (See Fig. 3.16).

The path finding computation has the following five phases:

3.3.1 Find S and G al certain level

The first phase of this step gets S and G in a certain level in the hierarchy. This level

is specified by the user in the Recast Tool. The algorithm receives an initial and end

positions in the NavMesh environment. Then, we obtain S and G nodes in the graph at

level 0 by searching for their positions. Finally, we recursively look for their parents by

passing through all the levels in between until reach the desired level. If S and G nodes

are in the same partition, we just run a normal A* between them and the path finding

is completed.

3.3.2 Connect S and G to the graph

To be able to search for paths in a graph at certain level, Start and Goal nodes have to

be part of the graph. We connect a temporal Start node to each portal in the partition

that contains it. Then, we compute a normal A* between S and the center of each

portal in the partition. The path nodes and costs are stored for each portal. Finally, we

add a new intraedge between the start node the the portal inside the current partition.

This step is repeated for G in its respective partition. (See Fig. 3.13).

Figure 3.13: Connect Start node to the graph: Red circles are portals of the orange
partition. White lines are the computed intraedges. Gray polygons are obstacles or no

walkable areas.

For each search, S and G should change and the cost of inserting and deleting them is

added to the total cost of finding a solution.

Chapter 3. Our Approach 38

3.3.3 Search for a path between S and G at the highest level

Once the S and G are temporally linked to the graph. We perform a normal A* in

the current graph. The time execution becomes faster because the number of nodes is

significantly smaller than the graph at level 0.

3.3.4 Obtain optimal subpaths

The path planning computation give us all the partitions which are part of the optimal

solution. For each of them, we recursively get the path nodes for each lower level until

we reach the lowest level in the hierarchy. At the end, we obtain the full path to go from

S to G at the level 0.

3.3.5 Delete temporal nodes

The nodes S, G and their edges are eliminated from the current graph.

The preprocessing step is shown in the Fig. 3.14 where a hierarchical subdivision has

been applied on a map model. The S and G positions are denoted in white letters. In

this sample, we find the shortest path from S to G at level 2. The online step is shown

in Fig. 3.15. The start and goal nodes are connected to their respective portals and run

a common A* at that level. Finally the sub paths are found until level 0 is reached.

Figure 3.14: Hierarchical Subdivision: The graphs in the hierarchy from the lowest
level (From (a) to (e)). The start and goal nodes are written in white.

Chapter 3. Our Approach 39

Figure 3.15: Path finding Computation: S and G are linked to their partitions at
level 2 (a). Sub paths are calculated until level 0 is reached. (Level 1 (b) and Level 0

(c)). The final result of the shortest path between S and G at level 2 (d).

The complete path from the start to the end position in the navigation mesh is achieved

in a faster way than computing a normal path finding at the level 0. The comparison

and results of our method in different and large challenging models are presented in the

next chapter.

Chapter 3. Our Approach 40

Figure 3.16: Path finding Computation: (Serpentine Islands, numMergedNodes =
4, levels = 10) Path finding at level 0 (3908 nodes) (a). Path finding at level 0 where

each node has a different color (b). Path finding at level 3 (28 nodes) (c).

Chapter 4

Results and Discussion

On this chapter, we show the results obtained in different models with a variety of sizes

to measure the improvement achieved with the proposed method. The comparison is

based on the speed time for calculating path finding between the start and goal node.

Furthermore, we analyse how the time taken for each of the steps we explained in

Chapter 3 affects the total time. Also, we examine the impact of varying the number

of merged nodes for the different levels on the performance of path finding with our

suggested method. Our performance results have been tested on an Intel R© CoreTM i7

processor with NVIDIA R© GeForce R© 610M graphics card and 8 GB of RAM. Detailed

information of the output that we obtained in our experiments for each model is shown

in Appendix A.

4.1 Performance test

Our performance tests are based on: the number of nodes in each level of the hierarchy

and the measure of the execution time (milliseconds) of path queries. We performed our

approach in different sample models 1 as shown in Table 4.1 and Fig. 4.1.

4.1.1 Number of Nodes

We compared the number of resulting nodes per level in the hierarchy as we increase

the number of merged nodes from one level to the next one. As we expected the higher

the level, the lower the number of nodes. As an example, the Fig. 4.2 shows the results

obtained for the Sirus City. The chart shows number of nodes falls steadily over the

1All the test models were obtained for free in http://tf3dm.com/

41

Chapter 4. Results and Discussion 42

Table 4.1: Sample maps

Map Name Number of Nodes

Dungeon 120
Map 208

City Colony 2615
Serpentine City 3908

City Islands 5515
Tropical Islands 12666

Sirus City 18738

Figure 4.1: Sample maps: (Dungeon (a). City Colony (b). Serpentine City (c). City
Islands (d). Tropical Islands (e). Sirus City (f).

upper levels in the hierarchy until either one partition cannot be divided any more or

the maximum level has been reached.

The division does not only depend on the numMergedNodes parameter. As we ex-

plained in Chapter 3, every time that a partition is created, we check whether this

partition has connections (edges) with other partitions. If not, then this new nodes are

not taken into account for the next level, as they cannot be any further merged. Thus,

the consecutive subdivisions do not have an exact segmentation depending exclusively

on with the numMergedNodes parameter.

Chapter 4. Results and Discussion 43

Figure 4.2: Level vs Number of Nodes (Sirus City).

4.1.2 Time execution

Firstly, we have analysed the total time taken by the path finding computation by our

approach at different levels against the execution time of performing path planning in

level 0 (i.e without any hierarchy). We showed three different samples to compare the

advantages and disadvantages for each case.

The first scenario is a simple map created with Blender tool [40]. It has an initial graph

with 208 nodes. An A* was run over the graph. The total time was 0.347ms as we

present in the Fig. 4.3. This line chart compares the total execution time per level in

the hierarchy. Each line represents the number of merged polys from one level to the

next one. It is clear that the execution time for two merged nodes decreases until it

reaches the lowest time in level two (0.14ms). This time is twice faster than the level 0

time. Merging more than two nodes for this scenario does not offer any further speed

up. The gray line (numMergedNodes = 4) rise sharply after the level two. This time

(2.122ms) is six times worse than execution time at level 0.

Note that hierarchical path finding benefits from performing A* in graphs with smaller

number of nodes, but we also introduce new steps that can impact performance depend-

ing on the caracteristics of the scenario. We will evaluate each of this steps in detail in

the following sections.

Fig. 4.4. shows that the path found in the shortest time which was reached by the level

two of mergedPolys = 2. At this level, the graph only contains 24 nodes (See Appendix

A Table A.2), which allows to have a faster search to the goal.

Chapter 4. Results and Discussion 44

Figure 4.3: Level vs Execution Time (Map).

Figure 4.4: Map model (a). Shortest path (numMergedNodes = 2, level = 2) (b)

The next scenario is a bigger map with 2615 nodes. To begin, the Fig. 4.5 show the

computation time over City Colony. It can be seen clearly that the execution time

dramatically falls in the first level of the hierarchy. Afterwards, there is a slowly im-

provement depending on the number of merged nodes 2, 4, and 5 at level two. The

other cases have a gentle upward trend but still lower than the computation time at

level 0. The highest value reached is 1.43ms with numMergedNodes = 14 at level two.

In contrast, the fastest time is 0.142ms (six time faster) for the case of 5 merged nodes

in level 2. (See Fig. 4.6).

The last case is the largest scenario, the Tropical Islands sample with 12666 nodes in its

Chapter 4. Results and Discussion 45

Figure 4.5: Level vs Execution Time (City Colony).

Figure 4.6: City Colony model (a). Shortest path (numMergedNodes = 5, level = 2)
(b)

Chapter 4. Results and Discussion 46

initial graph. It follows the same pattern as the two previous samples showed before.

There is a slowly plunge until it reaches the highest level in the hierarchy. On the other

hand, The time when numMergedNodes = 2 decreased slightly over all levels. (See

Figs. 4.7 and 4.8. The fastest time is 1.625 (four times faster) for the case of 16 merged

nodes in level 2.

Figure 4.7: Level vs Execution Time (Tropical Islands).

Figure 4.8: Tropical Islands model (a). Shortest path (numMergedNodes =
16, level = 2) (b)

The rest of the models illustrated in the Table 4.1 have the same expected behaviour

regarding the number of nodes and computation time at certain level. For more infor-

mation, we refer the reader to the tables in Appendix A.

Chapter 4. Results and Discussion 47

To better understand where the bottlenecks of our algorithm appear, we compare the

partial times for computing the entire online step (described in Section 3.1.2) for each

level in the hierarchy. The online search has been divided in five steps in order to analyse

the partial times in this process. See pseudo-code 3.

Algorithm 3 Online Search Pseudo-code

procedure onlineSearch(startNodeId, startNodePos, endNodeId, endNodePos, level)
Find S and G al certain level:

3: sNode← getNode(startNodeId)
gNode← getNode(endNodeId)
if level == 0 then

6: path← findPath(startNodeId, startNodePos, endNodeId, endNodePos, 0)
return path

Connect S and G to the graph:
9: linkStartToGraph(sNode)

linkGoalToGraph(gNode)
Search for a path between S and G at the highest level:

12: tempPath← findPath(sNode.id, startNodePos, gNode.id, endNodePos, level)
Obtain optimal subpaths:

for all subpath ∈ temPath do
15: path← getSubpath(subpath, level − 1)

Delete S and G:
deleteNode(sNode)

18: deleteNode(eNode)
return path

In particular, we choose the Sirus City model to be evaluated. Each partial time is

plotted in order to discuss the possible disadvantages in the next section. Detailed

information of the partial times we have obtained for Sirus city model is shown in table

7 in Appendix A.

4.1.2.1 Find S and G al certain level

The Fig. 4.9 illustrates the time of getting the partitions to which Start and Goal nodes

respectively belong to a certain level. Those partitions are getting by recursively search

S and G positions in the upper levels of the hierarchy until they reach a predetermined

level. Overall, the time has a gradual rise in the entire hierarchy. This was expected as

the higher the level we want to reach, the more time is consumed. Notice that the total

time for this step is not significant in the total time (values less than 0.005ms).

Chapter 4. Results and Discussion 48

Figure 4.9: Get S and G Time vs Level

4.1.2.2 Connect S and G to the graph

The chart shows the time of connecting S and G to each of the portals in their respective

partitions. S and G are linked by performing an A* from those nodes to each portal in

the current partition. Then, the path nodes and cost are stored by adding an intraedge.

The figure shows an upward trend throughout the levels of the hierarchy. The figure

exposes a particular strong growth in the highest levels due to the number of portals

being bigger in the upper levels. (See Fig. 4.10). This particular behaviour is due to the

fact that we have to execute as many A* searches as the number of portals the partition

has. The table below shows the number of portals in S and G for the two worst cases

in Sirus City model.

Table 4.2: Number of portals (Sirus city)

Merged Polys Level Number Portals in S Number Portals G Connect S and G time

2 1 3 6 0.077
2 2 3 5 0.067
2 3 6 4 0.189
2 4 13 8 0.986
2 5 10 7 1.436
2 6 16 8 7.124
2 7 21 36 17.546

10 1 3 5 0.058
10 2 5 3 0.195
10 3 18 10 14.381

Chapter 4. Results and Discussion 49

The worst times are highlighted in red. For the case when mergedPolys = 2 and

level = 7, only the partial time is four time slower than performing an A* al level 0

(17.546ms). This time spends almost the 92.5% of the total time. In the rest of the

cases, the partial time is not relevant. Please see table 7 in Appendix A for further

information.

Figure 4.10: Link S and G Time vs Level

4.1.2.3 Search for a path between S and G at the highest level

Regarding the path finding calculation, an A* computation is faster when the searching

is done in a higher level in the hierarchy. A regular A* is performed between the start

and goal nodes at certain level. The Fig. 4.11 shows the general gradual decline for all

the cases. The lower the number of nodes, the faster the exploration is. The number

of nodes in a specific level highly depends on how many nodes were merged in its lower

level. For instance, for the case when mergedPolys = 2 and level = 10, the number of

nodes was 22. The partial time was 1.333ms. When mergedPolys = 10 and level = 3,

the number of nodes was 11 with a partial time 0.287ms.

4.1.2.4 Obtain optimal subpaths

The chart 4.13 shows the time of getting the subpaths for each level. The subpaths are

obtained by recursively get the stored paths in each nodes of the lower levels until we

Chapter 4. Results and Discussion 50

Figure 4.11: A* Time vs Level

reach the level 0. Those subpaths has the nodes which become the optimal path at level

0.

As an overall trend, the time of getting subpaths increased fairly slowly until the penul-

timate level of the hierarchy. Then, this time gradual decline in the highest level. This

is due to there are no nodes between S and G. Also, there are not intermediate paths

between them. Fig. 4.12 illustrates this scenario.

Figure 4.12: Obtain optimal subpaths. The map model has two nodes at level 3. No
intermediate paths are calculated

Therefore, the execution time is really low and strictly depends on the map environment

and the number of merged nodes.

Chapter 4. Results and Discussion 51

Figure 4.13: Time vs Level

4.1.2.5 Delete S and G

Deleting temporal S and G nodes have an insignificant time compare to other partial

times during the online process. Those times are below 0.001ms as we can see in the

Appendix A.

4.2 Discussion

Our performance tests have been applied over different models size. Due to the number of

nodes in each level of the hierarchy, our technique allow us to reduce the number of nodes

successively for higher levels of the hierarchy thus reducing path finding calculations.

Regarding execution time, the results shown above give us a clear view about the special

cases in our approach. Firstly, the total time of connecting S and G becomes extremely

high as the number of portals in the partition increases. This represents a significant

increase in the total time. The cost of linking the Start and Goal node becomes critical

when the partition has a lot of edges. The number of edges per partition grows as we

increase the level in the hierarchy. Also, the number of portals in a specific partition

depends on the quality of the partition. Some examples of very large times when con-

necting nodes can been seen in the table A5 (Merged Polys = 3, level = 5; Merged Polys

= 5, level = 4) and table A7 (Merged Polys = 2, level = 7; Merged Polys = 10, level =

3) of Appendix A.

Chapter 4. Results and Discussion 52

The time of getting the sub paths had relatively low values. This happens because

there are no intermediate paths between the Start and End nodes. Those sub paths

are already stored in each partition respectively. Therefore, it is not necessary to get

recursively intermediate paths.

The Fig. 4.14 clearly illustrates these two cases. In the Sirus model, for the case of

numMergedNodes = 10 and level = 3 the time of connecting S and G is 14.38ms

(three times slower than a basic A* in level 0). We can see in the figure how the number

of portals is 18 for the start partition and 10 for the end one. This division is not a

good one for this path. Also, the time of getting the subpaths (0.021ms) is really small

because there are not intermediate paths between start and end partitions.

Figure 4.14: Special case: Start partition has 18 portals (red points) and end partition
has 10 (blue points)

As we have seen in our results, the overall execution times depend strongly on the

partition and the path we are looking for. Even thought there are particular cases for

which the overall time can be slower than just A* in level 0, our approach gives better

results in most cases for large and complex 3D world representations.

Chapter 4. Results and Discussion 53

Our final conclusion of this work, is that having hierarchical path finding over navigation

meshes can drastically reduce path finding calculations. But it is necessary for each

particular scenario to run a few test cases (different values when merging cells between

levels) to determine which values can offer the speed up for your particular scenario.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

With the booming growth of video games, there is a great demand on path finding al-

gorithms. In this master thesis, we presented a hierarchical path finding framework to

speed up crowd simulation for large 3D environments. The approach has two steps: Pre-

processing and online search. Preprocessing step builds the hierarchy of levels whereas

that online process deals with the path finding search. Our method has a tree hierarchy

of graphs where the searching can be performed at any level.

The main contributions of our approach are:

• A path planning algorithm for arbitrary graph types that could be applied in any

kind of 3D world representation.

• A recursive partition of a graph based on reducing the connector edges.

• A hierarchy of graphs to find the fastest time execution for path planning.

Our evaluation has shown a significant improvement in path finding time execution.

The method has better results when the path planning is performed in big world rep-

resentations(5 or 6 times faster). For small models, a common A* is enough. The

trade-off between the chosen level and the size of partitions is important. Also, our

approach shows better performance in non widespread environments such as Serpentine

city where our solution is six times faster than a normal A*.

The framework presented in this dissertation inspired by HPA* approach but we also

provide multi-level search and present a new algorithm that works over any kind of

environment division.

54

Chapter 5. Conclusions and Future Work 55

5.2 Future Work

Despite our improvements, there is still a large amount of work that could be done to

obtain either fast path finding searches or good path quality. Some of the enhancements

that could be incorporated with our current framework. For instance, the improvement

of linking Start and Goal node to the current graph. This is an important issue to

address in the future. A way of reducing link-time would be to replace A* with a version

of Dijkstra’s algorithm that does not flush the pool of visited vertices between searches.

Also, those nodes could be somehow stored in order to reduce the time execution of

connecting and deleting.

It would also be interesting to study if some steps of the online search could be paral-

lelized using a GPU implementation. For example, the process of linking S and G could

be performed in separated threads for each portal as well as getting the subtpath for each

partition. Also, our approach could be extended to work under dynamic environments

where the replanning could be done only at certain level of the hierarchy.

Appendix A

Performance Test

In this appendix, we provide all the results for the different sample maps. The output

show the execution time for each level at different number of merged nodes. The fastest

time is highlighted with blue color. Each column is described as follows:

• Merged Polys. Number of polygons which have been merged to create a new node.

• Level. Number of level in the hierarchy. The original graph is at the level 0.

• Number Nodes. Number of nodes in that level.

• Get S and G. Time in milliseconds to get Start and Goal Node at that level.

• Connect S and G. Time in milliseconds to link the Start and End position with

the portals of the partition respectively.

• A*. Time in milliseconds to get the optimal path at that level.

• Subpaths. Time in milliseconds to recursively get the nodes at the level 0.

• Total Time. Sum of the previous times.

Table A.3: City Colony (2615 Nodes)

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

0 0 2615 0 0 0.839 0 0 0.839

3 1 868 0.002 0.028 0.261 0.025 0 0.316

3 2 288 0.003 0.048 0.118 0.042 0 0.211

3 3 71 0.003 0.088 0.037 0.047 0.001 0.176

3 4 14 0.004 0.408 0.02 0.022 0 0.454

3 5 4 0 0 0.849 0 0 0.849

4 1 711 0.001 0.016 0.192 0.021 0.001 0.231

4 2 173 0.004 0.114 0.08 0.036 0 0.234

4 3 27 0.003 0.416 0.042 0.038 0 0.499

4 4 5 0.004 0.332 0.005 0.001 0 0.342

5 1 602 0.001 0.028 0.154 0.017 0 0.2

5 2 125 0.004 0.044 0.05 0.044 0 0.142

5 3 11 0.002 0.626 0.012 0.001 0 0.641

6 1 530 0.001 0.035 0.135 0.014 0 0.185

6 2 101 0.003 0.126 0.045 0.028 0 0.202

6 3 7 0.002 0.295 0.005 0.001 0.001 0.

7 1 467 0.002 0.048 0.119 0.015 0.001 0.185

7 2 79 0.003 0.363 0.042 0.025 0 0.433

7 3 5 0 0 0.806 0 0 0.806

8 1 433 0.001 0.039 0.105 0.013 0 0.158

Continuation of Table A.3

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

8 2 68 0.002 0.439 0.043 0.022 0 0.506

8 3 5 0 0 0.819 0 0 0.819

9 1 398 0.001 0.059 0.109 0.011 0.001 0.181

9 2 53 0.002 0.741 0.037 0.026 0 0.806

9 3 4 0 0 0.862 0 0 0.862

10 1 368 0.002 0.052 0.108 0.009 0.001 0.172

10 2 44 0.003 0.876 0.016 0.001 0.001 0.897

10 3 4 0 0 0.8 0 0 0.8

12 1 338 0.001 0.096 0.088 0.009 0 0.194

12 2 29 0.002 0.675 0.014 0.009 0.001 0.701

12 3 3 0 0 0.846 0 0 0.846

14 1 325 0.001 0.049 0.084 0.009 0.001 0.144

14 2 25 0.003 1.408 0.018 0.001 0 1.43

16 1 304 0.002 0.082 0.085 0.009 0.001 0.179

16 2 19 0.003 0.32 0.005 0.001 0.001 0.33

18 1 296 0.001 0.088 0.072 0.009 0 0.17

18 2 17 0.002 0.323 0.005 0.001 0 0.331

20 1 289 0.003 0.314 0.066 0.008 0 0.391

20 2 16 0 0 0.835 0 0 0.835

End of Table

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
59

Table A.4: Serpentine City (3908 Nodes)

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

0 0 3908 0 0 4.692 0 0 4.692

2 1 1357 0.002 0.029 1.734 0.128 0 1.893

2 2 466 0.003 0.069 1.085 0.222 0 1.379

2 3 127 0.003 0.287 0.852 0.314 0 1.456

2 4 49 0.006 0.689 0.747 0.399 0 1.841

2 5 15 0.004 1.425 0.475 0.397 0 2.301

2 6 4 0.005 5.087 0.199 0.529 0 5.82

2 7 1 0.007 0 4.41 0 0 4.417

3 1 1200 0.003 0.024 1.595 0.091 0 1.713

3 2 361 0.002 0.142 1.028 0.176 0.001 1.349

3 3 76 0.003 0.355 0.784 0.265 0.001 1.408

3 4 18 0.004 0.759 0.477 0.271 0 1.511

3 5 5 0.004 4.105 0.151 0.173 0.001 4.434

4 1 1001 0.002 0.033 1.396 0.089 0 1.52

4 2 229 0.003 0.045 0.896 0.17 0 1.114

4 3 28 0.003 0.325 0.657 0.264 0 1.249

4 4 7 0.003 1.775 0.148 0.205 0 2.131

5 1 867 0.002 0.05 1.263 0.085 0.001 1.401

5 2 145 0.003 0.162 0.854 0.223 0 1.242

5 3 17 0.003 0.499 0.64 0.318 0 1.46

5 4 3 0.003 4.951 0.041 0.146 0 5.141

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
60

Continuation of Table A.7

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

6 1 787 0.002 0.043 1.164 0.073 0 1.282

6 2 99 0.003 0.228 0.718 0.138 0 1.087

6 3 11 0.003 1.63 0.594 0.181 0 2.408

7 1 713 0.002 0.073 1.078 0.075 0 1.228

7 2 62 0.002 0.467 0.687 0.133 0 1.289

7 3 7 0.003 1.734 0.431 0.123 0 2.291

8 1 672 0.002 0.055 1.058 0.057 0 1.172

8 2 40 0.003 0.417 0.572 0.139 0.001 1.132

8 3 4 0.002 1.723 0.041 0.07 0 1.836

9 1 650 0.002 0.117 0.973 0.06 0 1.152

9 2 38 0.003 0.917 0.557 0.106 0.001 1.584

9 3 4 0.003 1.437 0.087 0.093 0 1.62

10 1 617 0.001 0.056 0.935 0.073 0 1.065

10 2 24 0.003 0.631 0.444 0.091 0.001 1.17

10 3 2 0.002 6.447 0.011 0.001 0 6.461

12 1 582 0.002 0.072 0.857 0.05 0 0.981

12 2 16 0.003 1.252 0.404 0.083 0.001 1.743

14 1 562 0.002 0.112 0.834 0.047 0.001 0.996

14 2 11 0.003 1.326 0.572 0.097 0 1.998

16 1 542 0.002 0.123 0.782 0.047 0 0.954

16 2 8 0.002 3.629 0.201 0.062 0 3.894

Continuation of Table A.7

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

18 1 538 0.002 0.083 0.777 0.041 0.001 0.904

18 2 8 0.003 1.822 0.095 0.046 0.001 1.967

20 1 524 0.001 0.129 0.749 0.046 0 0.925

20 2 6 0.003 0.987 0.087 0.064 0 1.141

End of Table

Table A.5: City Islands (5515 Nodes)

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

0 0 5515 0.001 0 6.325 0 0 6.326

2 1 2025 0.003 0.278 4.062 0.118 0.001 4.462

2 2 781 0.003 0.312 2.931 0.178 0 3.424

2 3 342 0.006 0.55 2.64 0.265 0 3.461

2 4 141 0.003 0.498 2.546 0.345 0.001 3.393

2 5 49 0.005 0.871 2.362 0.432 0.001 3.671

2 6 12 0.005 4.276 1.03 0.546 0 5.857

3 1 1783 0.002 0.165 3.805 0.055 0 4.027

3 2 519 0.003 0.127 2.676 0.102 0 2.908

3 3 151 0.004 0.696 2.574 0.155 0 3.429

3 4 35 0.005 1.971 2.21 0.202 0 4.388

3 5 11 0.005 17.413 2.284 0.264 0.001 19.967

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
62

Continuation of Table A.5

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

4 1 1469 0.002 0.159 3.304 0.046 0 3.511

4 2 316 0.003 0.1 2.335 0.089 0 2.527

4 3 72 0.004 0.218 2.691 0.134 0 3.047

4 4 17 0.004 2.301 2.313 0.207 0 4.825

4 5 4 0.007 6.301 0.308 0.106 0.001 6.723

5 1 1272 0.002 0.075 3.085 0.041 0.001 3.204

5 2 224 0.003 0.291 2.436 0.098 0 2.828

5 3 46 0.006 3.32 2.053 0.163 0 5.542

5 4 10 0.005 13.684 1.889 0.326 0 15.904

6 1 1126 0.002 0.043 2.829 0.065 0 2.939

6 2 144 0.002 0.413 2.44 0.091 0 2.946

6 3 24 0.003 1.517 2.553 0.136 0.001 4.21

7 1 1017 0.003 0.112 2.755 0.043 0 2.913

7 2 111 0.002 0.41 2.443 0.08 0.001 2.936

7 3 15 0.004 6.56 1.903 0.071 0.001 8.539

8 1 945 0.002 0.074 2.619 0.038 0.001 2.734

8 2 82 0.003 1.238 2.198 0.069 0 3.508

8 3 9 0.003 4.06 0.863 0.071 0 4.997

9 1 891 0.001 0.216 2.585 0.04 0 2.842

9 2 65 0.003 0.654 2.687 0.08 0.001 3.425

10 1 842 0.002 0.257 2.534 0.033 0 2.826

Continuation of Table A.5

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

10 2 53 0.003 3.054 2.152 0.084 0 5.293

12 1 765 0.002 0.064 2.402 0.04 0 2.508

12 2 34 0.004 2.686 2.248 0.203 0 5.141

14 1 728 0.002 0.181 2.4 0.031 0 2.614

14 2 28 0.003 2.463 1.64 0.07 0 4.176

16 1 690 0.002 0.176 2.41 0.039 0 2.627

16 2 22 0.003 3.868 1.835 0.089 0 5.795

18 1 672 0.001 0.35 2.311 0.037 0.001 2.7

18 2 20 0.002 6.966 1.981 0.057 0.001 9.007

20 1 645 0.002 0.212 2.304 0.032 0 2.55

20 2 13 0.004 3.397 0.818 0.177 0 4.396

End of Table

Table A.6: Tropical Islands (12666 Nodes)

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

0 0 12666 0 0 6.536 0 0 6.536

2 1 4868 0.003 0.033 5.147 0.108 0 5.291

2 2 2074 0.005 0.037 4.697 0.233 0.001 4.973

2 3 832 0.004 0.184 3.465 0.286 0.001 3.94

2 4 314 0.005 1.009 2.472 0.599 0.001 4.086

2 5 132 0.004 0.899 1.651 0.708 0.001 3.263

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
64

Continuation of Table A.6

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

2 6 53 0.005 1.572 0.989 0.551 0 3.117

2 7 24 0.005 1.886 0.658 0.77 0 3.319

3 1 4257 0.004 0.039 5.083 0.27 0 5.396

3 2 1550 0.004 0.05 4.44 0.375 0.001 4.87

3 3 464 0.005 0.192 3.103 0.26 0 3.56

3 4 154 0.005 0.771 2.167 0.777 0 3.72

3 5 48 0.005 7.356 1.298 0.642 0 9.301

4 1 3382 0.003 0.061 4.962 0.088 0 5.114

4 2 1014 0.005 0.074 3.607 0.413 0 4.099

4 3 182 0.004 0.448 2.3 0.411 0 3.163

4 4 44 0.004 1.76 1.227 0.411 0 3.402

4 5 9 0.004 14.577 0.362 0.291 0 15.234

5 1 2841 0.002 0.037 5.19 0.084 0 5.313

5 2 769 0.002 0.151 3.008 0.223 0 3.384

5 3 103 0.003 0.49 1.762 0.083 0.001 2.339

5 4 20 0.004 1.948 0.664 0.094 0.001 2.711

6 1 2469 0.003 0.036 5.118 0.12 0 5.277

6 2 573 0.003 0.261 2.554 0.341 0 3.159

6 3 64 0.005 4.976 1.206 0.401 0 6.588

6 4 8 0.005 7.219 0.518 0.307 0 8.049

7 1 2121 0.002 0.029 4.605 0.07 0 4.706

Continuation of Table A.6

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

7 2 421 0.003 0.449 2.284 0.12 0.001 2.857

7 3 38 0.004 6.577 0.866 0.148 0.001 7.596

8 1 1876 0.003 0.035 4.343 0.07 0 4.451

8 2 314 0.003 0.245 2.386 0.137 0 2.771

8 3 30 0.003 1.342 0.537 0.159 0 2.041

9 1 1718 0.002 0.041 4.165 0.023 0 4.231

9 2 227 0.003 0.227 1.973 0.139 0.001 2.343

10 1 1524 0.002 0.036 3.918 0.022 0 3.978

10 2 160 0.003 3.82 1.971 0.14 0 5.934

12 1 1388 0.002 0.054 3.826 0.067 0.001 3.95

12 2 126 0.002 3.289 1.39 0.142 0.001 4.824

14 1 1263 0.002 0.056 3.421 0.068 0 3.547

14 2 107 0.002 1.614 1.16 0.125 0 2.901

16 1 1188 0.002 0.05 3.422 0.069 0.001 3.544

16 2 84 0.003 0.524 0.996 0.102 0 1.625

18 1 1107 0.002 0.071 3.133 0.052 0.001 3.259

18 2 69 0.003 10.36 1.473 0.119 0 11.955

20 1 1058 0.002 0.081 3.231 0.063 0 3.377

20 2 58 0.002 14.791 0.997 0.053 0 15.843

End of Table

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
66

Table A.7: Sirus City (18738 Nodes)

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

0 0 18738 4.606 0 0 4.606

2 1 7274 0.003 0.077 3.685 0.122 0 3.887

2 2 2746 0.003 0.067 2.259 0.258 0.001 2.588

2 3 1021 0.004 0.189 1.686 0.209 0 2.088

2 4 367 0.007 0.986 1.285 0.258 0.001 2.537

2 5 142 0.005 1.436 1.183 0.272 0 2.896

2 6 56 0.005 7.124 1.196 0.155 0 8.48

2 7 22 0.006 17.546 1.333 0.308 0 19.193

3 1 6638 0.002 0.07 3.351 0.061 0 3.484

3 2 1989 0.004 0.142 1.925 0.109 0.001 2.181

3 3 533 0.004 0.201 1.488 0.19 0.001 1.884

3 4 148 0.004 0.357 1.033 0.255 0 1.649

3 5 49 0.005 4.577 0.91 0.123 0 5.615

4 1 5424 0.002 0.043 2.837 0.052 0 2.934

4 2 1115 0.003 0.113 1.557 0.11 0 1.783

4 3 188 0.003 0.474 1.305 0.107 0 1.889

4 4 36 0.004 1.288 1.156 0.11 0.001 2.559

5 1 4714 0.002 0.056 2.513 0.049 0.001 2.621

5 2 778 0.003 0.091 1.425 0.115 0 1.634

5 3 106 0.005 1.167 1.004 0.133 0 2.309

5 4 15 0.004 4.05 0.904 0.07 0.001 5.029

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
67

Continuation of Table A.7

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

6 1 4277 0.002 0.045 2.467 0.043 0.001 2.558

6 2 580 0.003 0.186 1.243 0.088 0 1.52

6 3 67 0.004 1.916 0.836 0.074 0 2.83

7 1 3816 0.003 0.029 2.04 0.042 0 2.114

7 2 418 0.003 0.188 1.152 0.109 0 1.452

7 3 38 0.004 7.735 0.858 0.05 0 8.647

8 1 3625 0.002 0.056 2.024 0.042 0 2.124

8 2 346 0.003 0.627 1.206 0.067 0 1.903

8 3 24 0.003 3.245 0.531 0.045 0 3.824

9 1 3446 0.002 0.035 1.824 0.036 0.001 1.898

9 2 288 0.003 0.364 1.083 0.06 0 1.51

9 3 18 0.005 10.243 0.958 0.036 0 11.242

10 1 3302 0.002 0.058 1.851 0.034 0 1.945

10 2 243 0.003 0.195 0.995 0.052 0 1.245

10 3 11 0.004 14.381 0.287 0.021 0.001 14.694

12 1 3101 0.002 0.081 1.612 0.026 0 1.721

12 2 186 0.002 0.521 0.899 0.048 0 1.47

14 1 2962 0.002 0.061 1.596 0.027 0 1.686

14 2 137 0.002 2.398 0.779 0.032 0 3.211

16 1 2871 0.002 0.062 1.494 0.024 0 1.582

16 2 117 0.003 1.042 0.863 0.046 0.001 1.955

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
68

Continuation of Table A.7

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

18 1 2802 0.001 0.057 1.483 0.026 0.001 1.568

18 2 98 0.004 4.883 0.776 0.113 0 5.776

20 1 2753 0.002 0.066 1.363 0.027 0 1.458

20 2 86 0.003 4.468 0.741 0.04 0 5.252

End of Table

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
69

Table A.1: Dungeon (120 Nodes)

Parameters Time Execution (ms)

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

0 0 120 0 0 0.226 0 0 0.226

2 1 56 0.002 0.046 0.088 0.036 0 0.172
2 2 26 0.003 0.027 0.046 0.043 0.001 0.12
2 3 10 0.002 0.022 0.022 0.049 0.001 0.096
2 4 5 0.003 0.122 0.011 0.027 0 0.163
2 5 2 0.004 0.122 0.005 0.001 0 0.132

3 1 49 0.001 0.017 0.088 0.014 0.001 0.121
3 2 15 0.003 0.013 0.028 0.028 0.001 0.073
3 3 5 0.004 0.172 0.015 0.025 0.001 0.217

4 1 36 0.002 0.025 0.054 0.01 0 0.091
4 2 9 0.003 0.039 0.016 0.02 0 0.078

5 1 28 0.001 0.009 0.051 0.009 0 0.07
5 2 5 0.003 0.103 0.011 0.012 0.001 0.13

6 1 21 0.001 0.013 0.033 0.007 0 0.054
6 2 3 0.003 0.093 0.007 0.005 0 0.108

7 1 20 0.001 0.021 0.031 0.007 0 0.06
7 2 2 0.002 0.125 0.005 0.001 0 0.133

8 1 18 0.001 0.024 0.026 0.005 0 0.056
8 2 2 0.002 0.127 0.005 0.001 0 0.135

9 1 17 0.002 0.026 0.027 0.007 0.001 0.063

10 1 15 0.002 0.034 0.023 0.006 0 0.065

12 1 13 0.001 0.032 0.02 0.005 0 0.058

14 1 11 0.001 0.026 0.014 0.003 0 0.044

16 1 11 0.001 0.036 0.015 0.003 0 0.055

18 1 9 0.001 0.044 0.014 0.003 0.001 0.063

20 1 9 0.001 0.043 0.011 0.002 0.001 0.058

A
p

p
en

d
ix

A
.

P
erfo

rm
a
n

ce
T

est
70

Table A.2: Map (208 Nodes)

Parameters Time Execution (ms)

Merged Polys Level Number Nodes Get S and G Connect S and G A* Subpaths Delete S and G Total time

0 0 208 0 0 0.347 0 0 0.347

2 1 66 0.002 0.018 0.129 0.013 0.001 0.163
2 2 24 0.002 0.025 0.088 0.025 0 0.14
2 3 10 0.003 0.078 0.055 0.036 0 0.172
2 4 4 0 0 0.343 0 0 0.343
2 5 1 0 0 0.331 0 0 0.331

3 1 63 0.001 0.237 0.121 0.01 0 0.369
3 2 16 0.003 0.701 0.082 0.028 0 0.814
3 3 5 0.002 0.917 0.045 0.023 0.001 0.988

4 1 52 0.002 0.244 0.109 0.009 0 0.364
4 2 13 0.002 0.708 0.07 0.018 0 0.798
4 3 2 0.003 2.076 0.041 0.002 0 2.122

5 1 46 0.001 0.232 0.1 0.009 0.001 0.343
5 2 7 0.002 1.133 0.064 0.019 0.001 1.219

6 1 40 0.001 0.428 0.089 0.007 0 0.525
6 2 6 0.002 0.545 0.046 0.012 0.001 0.606

7 1 37 0.001 0.489 0.088 0.008 0 0.586
7 2 4 0.002 1.154 0.061 0.002 0.001 1.22

8 1 33 0.002 0.468 0.085 0.007 0 0.562
8 2 4 0.002 1.375 0.041 0.025 0.001 1.444

9 1 30 0.001 0.665 0.081 0.005 0 0.752
9 2 3 0.002 1.053 0.017 0.001 0 1.073

10 1 28 0.001 0.674 0.08 0.004 0 0.759
10 2 2 0 0 0.333 0 0 0.333

12 1 26 0.002 0.506 0.078 0.004 0.001 0.591
12 2 2 0 0 0.336 0 0 0.336

14 1 23 0.002 1.119 0.075 0.006 0.001 1.203

16 1 21 0.001 1.134 0.067 0.004 0.001 1.207

18 1 22 0.002 1.297 0.064 0.004 0 1.367

20 1 19 0.001 0.696 0.059 0.003 0 0.759

Bibliography

[1] Céline Loscos, David Marchal, and Alexandre Meyer. Intuitive crowd behaviour

in dense urban environments using local laws. TPCG, pages 122–129, 2003. URL

http://dblp.uni-trier.de/db/conf/tpcg/tpcg2003.html#LoscosMM03.

[2] Y. Chrysanthou F. Tecchia, C. Loscos. Visualizing crowds in real-time. Computer

Graphics forum, December 2002.

[3] Franco Tecchia, Céline Loscos, Ruth Conroy, and Yiorgos Chrysanthou. Agent

behaviour simulator (abs): A platform for urban behaviour development. In

GTEC’2001, pages 17–21, 2001.

[4] Lydia Kavraki, Petr Svestka, Jean claude Latombe, and Mark Overmars. Prob-

abilistic roadmaps for path planning in high-dimensional configuration spaces.

IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMA-

TION, pages 566–580, 1996.

[5] A.; Mooijekind M.; Overmars M.H. Nieuwenhuisen, D.; Kamphuis. Creating small

roadmaps for solving motion planning problems. IEEE International Conference

on Methods and Models in Automation and Robotics, pages 531–536, 2005.

[6] R. Geraerts and M.H. Overmars. Automatic construction of high quality roadmaps

for path planning. Utrecht University: Information and Computing Sciences, 2004.

[7] Mikko Mononen. Navigation-mesh toolset for games. GitHub Recast and Detour,

November 2014. URL https://github.com/memononen/recastnavigation.

[8] L. P. Chew. Constrained delaunay triangulations. Proceedings of the Third Annual

Symposium on Computational Geometry, pages 215–222, 1987. doi: 10.1145/41958.

41981. URL http://doi.acm.org/10.1145/41958.41981.

[9] Marcelo Kallmann. Dynamic and robust local clearance triangulations. ACM

Trans. Graph., 33(5):161:1–161:17, September 2014. ISSN 0730-0301. doi: 10.

1145/2580947. URL http://doi.acm.org/10.1145/2580947.

71

http://dblp.uni-trier.de/db/conf/tpcg/tpcg2003.html#LoscosMM03
https://github.com/memononen/recastnavigation
http://doi.acm.org/10.1145/41958.41981
http://doi.acm.org/10.1145/2580947

Bibliography 72

[10] Ramon Oliva and Nuria Pelechano. A generalized exact arbitrary clearance tech-

nique for navigation meshes. ACM SIGGRAPH conference on Motion in Games,

2013.

[11] D. Haumont, Olivier Debeir, and François X. Sillion. Volumetric cell-and-portal

generation. Comput. Graph. Forum, 22(3):303–312, 2003. URL http://dblp.

uni-trier.de/db/journals/cgf/cgf22.html#HaumontDS03.

[12] Ramon Oliva and Nuria Pelechano. Automatic generation of suboptimal navmeshes.

7060:328–339, 2011. URL http://dblp.uni-trier.de/db/conf/mig/mig2011.

html#OlivaP11.

[13] F. Lamarche. TopoPlan: a topological path planner for real time human navigation

under floor and ceiling constraints. Computer Graphics Forum (Proc of Eurograph-

ics 2009), 28(2), 2009.

[14] Carl-Johan Jorgensen and Fabrice Lamarche. From geometry to spatial

reasoning : automatic structuring of 3D virtual environments. Motion

In Games, 2011. URL http://www.irisa.fr/mimetic/Fabrice.Lamarche/

Articles/MIG2011-spatial-reasonning.pdf.

[15] Ramon Oliva and Nuria Pelechano. Neogen: Near optimal generator of navigation

meshes for 3d multi-layered environments. Computer & Graphics, 37(5):403–412,

2013.

[16] N. J. Nilsson P. E. Hart and B. Raphael. A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE Transactions on Systems, Science, and

Cybernetics, SSC-4(2):100–107, 1968.

[17] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. Ara* : Anytime

a* with provable bounds on sub-optimality. Advances in Neural Information Pro-

cessing Systems 16, pages 767–774, 2004. URL http://papers.nips.cc/paper/

2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf.

[18] Sven Koenig and Maxim Likhachev. D*lite. Eighteenth National Conference on

Artificial Intelligence, pages 476–483, 2002. URL http://dl.acm.org/citation.

cfm?id=777092.777167.

[19] Maxim Likhachev, David Ferguson , Geoffrey Gordon, Anthony (Tony) Stentz,

and Sebastian Thrun. Anytime dynamic a*: An anytime, replanning algorithm.

Proceedings of the International Conference on Automated Planning and Scheduling

(ICAPS), June 2005.

http://dblp.uni-trier.de/db/journals/cgf/cgf22.html#HaumontDS03
http://dblp.uni-trier.de/db/journals/cgf/cgf22.html#HaumontDS03
http://dblp.uni-trier.de/db/conf/mig/mig2011.html#OlivaP11
http://dblp.uni-trier.de/db/conf/mig/mig2011.html#OlivaP11
http://www.irisa.fr/mimetic/Fabrice.Lamarche/Articles/MIG2011-spatial-reasonning.pdf
http://www.irisa.fr/mimetic/Fabrice.Lamarche/Articles/MIG2011-spatial-reasonning.pdf
http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
http://dl.acm.org/citation.cfm?id=777092.777167
http://dl.acm.org/citation.cfm?id=777092.777167

Bibliography 73

[20] William Lee and Ramon Lawrence. Trading space for time in grid-based path find-

ing. AAAI, 2013. URL http://dblp.uni-trier.de/db/conf/aaai/aaai2013.

html#LeeL13.

[21] Nathan R. Sturtevant. Memory-efficient abstractions for pathfinding. AIIDE, pages

31–36, 2007. URL http://www.aaai.org/Papers/AIIDE/2007/AIIDE07-006.pdf.

[22] Ramon Lawrence and Vadim Bulitko. Database-driven real-time heuristic search in

video-game pathfinding. IEEE Trans. Comput. Intellig. and AI in Games, 5(3):227–

241, 2013. URL http://dblp.uni-trier.de/db/journals/tciaig/tciaig5.

html#LawrenceB13.

[23] Vadim Bulitko, Yngvi Björnsson, and Ramon Lawrence. Case-Based Subgoaling

in Real-Time Heuristic Search for Video Game Pathfinding. Journal of Artificial

Intelligence Research (JAIR), 39:269–300, 2010.

[24] Norman I. Badler Tianyu Huang, Mubbasir Kapadia and Marcelo Kallmann. Path

planning for coherent and persistent groups. Proceedings of the IEEE International

Conference on Robotics and Automation, 2014.

[25] Mubbasir Kapadia, Kai Ninomiya, Francisco Garcia, , and Norman I. Badler.

Constraint-aware navigation in dynamic environments. Motion on Games, 2013.

[26] C.W. Warren. Global path planning using artificial potential fields. Robotics

and Automation, 1989. Proceedings., 1989 IEEE International Conference on,

1:316 – 321, 1989. URL http://ieeexplore.ieee.org/xpl/login.jsp?tp=

&arnumber=100007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_

all.jsp%3Farnumber%3D100007.

[27] Wouter G. van Toll, Atlas F. Cook, IV, and Roland Geraerts. Real-time density-

based crowd simulation. Comput. Animat. Virtual Worlds, 23(1):59–69, February

2012. ISSN 1546-4261. doi: 10.1002/cav.1424. URL http://dx.doi.org/10.1002/

cav.1424.

[28] Mubbasir Kapadia Francisco Garcia and Norman I. Badler. Gpu-based dynamic

search on adaptive resolution grids. Proceedings of the IEEE International Confer-

ence on Robtics and Automation, 2014.

[29] Cory D. Boatright Mubbasir Kapadia, Francisco Garcia and Norman I. Badler.

Dynamic search on the gpu. Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2013.

[30] Kalin Gochev, Benjamin J. Cohen, Jonathan Butzke, Alla Safonova, and Maxim

Likhachev. Path planning with adaptive dimensionality. SOCS, 2011. URL http:

//dblp.uni-trier.de/db/conf/socs/socs2011.html#GochevCBSL11.

http://dblp.uni-trier.de/db/conf/aaai/aaai2013.html#LeeL13
http://dblp.uni-trier.de/db/conf/aaai/aaai2013.html#LeeL13
http://www.aaai.org/Papers/AIIDE/2007/AIIDE07-006.pdf
http://dblp.uni-trier.de/db/journals/tciaig/tciaig5.html#LawrenceB13
http://dblp.uni-trier.de/db/journals/tciaig/tciaig5.html#LawrenceB13
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=100007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D100007
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=100007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D100007
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=100007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D100007
http://dx.doi.org/10.1002/cav.1424
http://dx.doi.org/10.1002/cav.1424
http://dblp.uni-trier.de/db/conf/socs/socs2011.html#GochevCBSL11
http://dblp.uni-trier.de/db/conf/socs/socs2011.html#GochevCBSL11

Bibliography 74

[31] Alexander Shoulson, Max L. Gilbert, Mubbasir Kapadia, and Norman I. Badler.

An event-centric planning approach for dynamic real-time narrative. Proceedings

of Motion on Games, pages 99:121–99:130, 2013. doi: 10.1145/2522628.2522629.

URL http://doi.acm.org/10.1145/2522628.2522629.

[32] Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical path-

finding. Journal of Game Development, 1:7–28, 2004.

[33] Daniel Harabor and Adi Botea. Hierarchical path planning for multi-size agents

in heterogeneous environments. CIG, pages 258–265, 2008. URL http://dblp.

uni-trier.de/db/conf/cig/cig2008.html#HaraborB08.

[34] Yan Li, Lan-Ming Su, and Wen-Liang Li. Hierarchical path-finding based on de-

cision tree. RSKT, 7414:248–256, 2012. URL http://dblp.uni-trier.de/db/

conf/rskt/rskt2012.html#LiSL12.

[35] Marcelo Kallmann and Mubbasir Kapadia. Navigation meshes and real-time dy-

namic planning for virtual worlds. ACM SIGGRAPH 2014 Courses, pages 3:1–

3:81, 2014. doi: 10.1145/2614028.2615399. URL http://doi.acm.org/10.1145/

2614028.2615399.

[36] Jos B.T.M. Roerdink and Arnold Meijster. The watershed transform: Definitions,

algorithms and parallelization strategies. Fundam. Inf., 41(1,2):187–228, April 2000.

ISSN 0169-2968. URL http://dl.acm.org/citation.cfm?id=2372488.2372495.

[37] David P. Luebke. A developer’s survey of polygonal simplification algorithms. IEEE

COMPUTER GRAPHICS AND APPLICATIONS, 21:24–35, 2001.

[38] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December

1998. ISSN 1064-8275. doi: 10.1137/S1064827595287997. URL http://dx.doi.

org/10.1137/S1064827595287997.

[39] B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. The Bell Systems Technical Journal, 49(2), 1970.

[40] Blender 2.72. 3D creation for everyone, free to use for any purpose., November

2014. URL http://www.blender.org/.

http://doi.acm.org/10.1145/2522628.2522629
http://dblp.uni-trier.de/db/conf/cig/cig2008.html#HaraborB08
http://dblp.uni-trier.de/db/conf/cig/cig2008.html#HaraborB08
http://dblp.uni-trier.de/db/conf/rskt/rskt2012.html#LiSL12
http://dblp.uni-trier.de/db/conf/rskt/rskt2012.html#LiSL12
http://doi.acm.org/10.1145/2614028.2615399
http://doi.acm.org/10.1145/2614028.2615399
http://dl.acm.org/citation.cfm?id=2372488.2372495
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://www.blender.org/

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Objectives
	1.3 Contribution
	1.4 Organization

	2 State of the Art
	2.1 Environment Division
	2.1.1 Regular Grids
	2.1.2 Roadmaps
	2.1.3 Navigation Meshes
	2.1.3.1 Triangular NavMeshes
	2.1.3.2 Convex polygon decomposition

	2.2 Path finding Algorithms
	2.2.1 Introduction
	2.2.2 Dynamic Search

	2.3 Environment-Aware Navigation
	2.3.1 Dynamic Search on the GPU
	2.3.2 Planning in Complex Domains

	2.4 Hierarchical Path finding
	2.5 Conclusion

	3 Our Approach
	3.1 Introduction
	3.1.1 Voxelize the polygons.
	3.1.2 Build navigable space from solid voxels.
	3.1.3 Build watershed partitioning and filter out unwanted regions.
	3.1.4 Trace and simplify region contours.
	3.1.5 Triangulate the region polygons and build triangle connectivity.

	3.2 Hierarchical Subdivision
	3.3 Path finding Computation
	3.3.1 Find S and G al certain level
	3.3.2 Connect S and G to the graph
	3.3.3 Search for a path between S and G at the highest level
	3.3.4 Obtain optimal subpaths
	3.3.5 Delete temporal nodes

	4 Results and Discussion
	4.1 Performance test
	4.1.1 Number of Nodes
	4.1.2 Time execution
	4.1.2.1 Find S and G al certain level
	4.1.2.2 Connect S and G to the graph
	4.1.2.3 Search for a path between S and G at the highest level
	4.1.2.4 Obtain optimal subpaths
	4.1.2.5 Delete S and G

	4.2 Discussion

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	A Performance Test
	Bibliography

