483 research outputs found

    Selective AP-sequence Based Indoor Localization without Site Survey

    Full text link
    In this paper, we propose an indoor localization system employing ordered sequence of access points (APs) based on received signal strength (RSS). Unlike existing indoor localization systems, our approach does not require any time-consuming and laborious site survey phase to characterize the radio signals in the environment. To be precise, we construct the fingerprint map by cutting the layouts of the interested area into regions with only the knowledge of positions of APs. This can be done offline within a second and has a potential for practical use. The localization is then achieved by matching the ordered AP-sequence to the ones in the fingerprint map. Different from traditional fingerprinting that employing all APs information, we use only selected APs to perform localization, due to the fact that, without site survey, the possibility in obtaining the correct AP sequence is lower if it involves more APs. Experimental results show that, the proposed system achieves localization accuracy < 5m with an accumulative density function (CDF) of 50% to 60% depending on the density of APs. Furthermore, we observe that, using all APs for localization might not achieve the best localization accuracy, e.g. in our case, 4 APs out of total 7 APs achieves the best performance. In practice, the number of APs used to perform localization should be a design parameter based on the placement of APs.Comment: VTC2016-Spring, 15-18 May 2016, Nanjing, Chin

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    The Applicability of RFID for Indoor Localization

    Get PDF
    Chapter 11 : The applicability of RFID for indoor localizatio

    A Factor Graph Based Indoor Localization Approach for Healthcare

    Get PDF
    In healthcare facilities, indoor localization technology has a broad range of applications. Traditional Pedestrian Dead Reckoning (PDR) and WiFi fingerprint-based methods each have their limitations. To address these challenges, this study introduces a multi-source fusion indoor localization system that uses a Factor Graph to integrate inertial positioning algorithms with WiFi fingerprint-based localization. The system processes accelerometer and gyroscope data using a data-driven PDR algorithm. For WiFi localization, considering that the extensive data collection required is a significant barrier to the deployment of WiFi-based localization methods, the proposed approach applies Gaussian process regression techniques to limited WiFi fingerprint data, significantly reducing initial deployment costs and enhancing accuracy. Finally, the entire system employs a Factor Graph for the integration of the data-driven PDR and WiFi fingerprint localization results. Experimental results show that, compared to using only inertial or WiFi data for localization, this method significantly improves localization accuracy. The findings suggest that this approach could prompt the utilization of indoor localization technology in healthcare facilities.<br/

    Optical boundaries for LED-based indoor positioning system

    Get PDF
    Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS

    Facilitating wireless coexistence research

    Get PDF

    Detection of Pause in a Pedestrian’s Movement on a Linear Walkway using Bluetooth Low Energy Received Signal Strength Indicator

    Get PDF
    In recent years, Bluetooth Low Energy (BLE) has amassed significant attention in several applications. Its potential, however, remains largely unexplored for understanding pedestrian behaviour. This study focuses on investigating the potential of BLE in identifying pedestrian activity in an outdoor linear walkway. We specifically examine the likelihood of detecting pauses in the movement of pedestrians on a linear walkway using the strength of the signals obtained from a BLE device carried by the pedestrian. To accomplish this, a volunteer pedestrian intentionally pauses at selected points on the chosen walkway for varying predetermined intervals. The obtained data was conditioned using a polynomial curve to reduce the impact of anomalous data and was subsequently used to detect flatness in the trend of the signals to identify a pause. This flatness was identified using a sliding window standard deviation (SD) calculation over the curve obtained through polynomial fitting. Our results indicate a strong likelihood of detecting long pauses in a pedestrian’s journey

    Investigations of 5G localization with positioning reference signals

    Get PDF
    TDOA is an user-assisted or network-assisted technique, in which the user equipment calculates the time of arrival of precise positioning reference signals conveyed by mobile base stations and provides information about the measured time of arrival estimates in the direction of the position server. Using multilateration grounded on the TDOA measurements of the PRS received from at least three base stations and known location of these base stations, the location server determines the position of the user equipment. Different types of factors are responsible for the positioning accuracy in TDOA method, such as the sample rate, the bandwidth, network deployment, the properties of PRS, signal propagation condition, etc. About 50 meters positioning is good for the 4G/LTE users, whereas 5G requires an accuracy less than a meter for outdoor and indoor users. Noteworthy improvements in positioning accuracy can be achievable with the help of redesigning the PRS in 5G technology. The accuracy for the localization has been studied for different sampling rates along with different algorithms. High accuracy TDOA with 5G positioning reference signal (PRS) for sample rate and bandwidth hasn’t been taken into consideration yet. The key goal of the thesis is to compare and assess the impact of different sampling rates and different bandwidths of PRS on the 5G positioning accuracy. By performing analysis with variable bandwidths of PRS in resource blocks and comparing all the analyses with different bandwidths of PRS in resource blocks, it is undeniable that there is a meaningful decrease in the RMSE and significant growth in the SNR. The higher bandwidth of PRS in resource blocks brings higher SNR while the RMSE of positioning errors also decreases with higher bandwidth. Also, the number of PRS in resource blocks provides lower SNR with higher RMSE values. The analysis with different bandwidths of PRS in resource blocks reveals keeping the RMSE value lower than a meter each time with different statistics is a positivity of the research. The positioning accuracy also analyzed with different sample sizes. With an increased sample size, a decrease in the root mean square error and a crucial increase in the SNR was observed. From this thesis investigation, it is inevitable to accomplish that two different analyses (sample size and bandwidth) done in a different way with the targeted output. A bandwidth of 38.4 MHz and sample size N = 700 required to achieve below 1m accuracy with SNR of 47.04 dB

    Wireless Positioning and Tracking for Internet of Things in GPS-denied Environments

    Get PDF
    Wireless positioning and tracking have long been a critical technology for various applications such as indoor/outdoor navigation, surveillance, tracking of assets and employees, and guided tours, among others. Proliferation of Internet of Things (IoT) devices, the evolution of smart cities, and vulnerabilities of traditional localization technologies to cyber-attacks such as jamming and spoofing of GPS necessitate development of novel radio frequency (RF) localization and tracking technologies that are accurate, energy-efficient, robust, scalable, non-invasive and secure. The main challenges that are considered in this research work are obtaining fundamental limits of localization accuracy using received signal strength (RSS) information with directional antennas, and use of burst and intermittent measurements for localization. In this dissertation, we consider various RSS-based techniques that rely on existing wireless infrastructures to obtain location information of corresponding IoT devices. In the first approach, we present a detailed study on localization accuracy of UHF RF IDentification (RFID) systems considering realistic radiation pattern of directional antennas. Radiation patterns of antennas and antenna arrays may significantly affect RSS in wireless networks. The sensitivity of tag antennas and receiver antennas play a crucial role. In this research, we obtain the fundamental limits of localization accuracy considering radiation patterns and sensitivity of the antennas by deriving Cramer-Rao Lower Bounds (CRLBs) using estimation theory techniques. In the second approach, we consider a millimeter Wave (mmWave) system with linear antenna array using beamforming radiation patterns to localize user equipment in an indoor environment. In the third approach, we introduce a tracking and occupancy monitoring system that uses ambient, bursty, and intermittent WiFi probe requests radiated from mobile devices. Burst and intermittent signals are prominent characteristics of IoT devices; using these features, we propose a tracking technique that uses interacting multiple models (IMM) with Kalman filtering. Finally, we tackle the problem of indoor UAV navigation to a wireless source using its Rayleigh fading RSS measurements. We propose a UAV navigation technique based on Q-learning that is a model-free reinforcement learning technique to tackle the variation in the RSS caused by Rayleigh fading
    • …
    corecore