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ABSTRACT OF THE DISSERTATION

WIRELESS POSITIONING AND TRACKING FOR INTERNET OF THINGS

IN GPS-DENIED ENVIRONMENTS

by

Bekir Sait Ciftler

Florida International University, 2017

Miami, Florida

Professor Ismail Guvenc, Major Professor

Wireless positioning and tracking have long been a critical technology for various

applications such as indoor/outdoor navigation, surveillance, tracking of assets and

employees, and guided tours, among others. Proliferation of Internet of Things (IoT)

devices, the evolution of smart cities, and vulnerabilities of traditional localization

technologies to cyber-attacks such as jamming and spoofing of GPS necessitate de-

velopment of novel radio frequency (RF) localization and tracking technologies that

are accurate, energy-efficient, robust, scalable, non-invasive and secure. The main

challenges that are considered in this research work are obtaining fundamental lim-

its of localization accuracy using received signal strength (RSS) information with

directional antennas, and use of burst and intermittent measurements for localiza-

tion. In this dissertation, we consider various RSS-based techniques that rely on

existing wireless infrastructures to obtain location information of corresponding IoT

devices. In the first approach, we present a detailed study on localization accuracy

of UHF RF IDentification (RFID) systems considering realistic radiation pattern of

directional antennas. Radiation patterns of antennas and antenna arrays may signif-

icantly affect RSS in wireless networks. The sensitivity of tag antennas and receiver

antennas play a crucial role. In this research, we obtain the fundamental limits of

localization accuracy considering radiation patterns and sensitivity of the antennas

vi



by deriving Cramer-Rao Lower Bounds (CRLBs) using estimation theory techniques.

In the second approach, we consider a millimeter Wave (mmWave) system with linear

antenna array using beamforming radiation patterns to localize user equipment in an

indoor environment. In the third approach, we introduce a tracking and occupancy

monitoring system that uses ambient, bursty, and intermittent WiFi probe requests

radiated from mobile devices. Burst and intermittent signals are prominent charac-

teristics of IoT devices; using these features, we propose a tracking technique that

uses interacting multiple models (IMM) with Kalman filtering. Finally, we tackle the

problem of indoor UAV navigation to a wireless source using its Rayleigh fading RSS

measurements. We propose a UAV navigation technique based on Q-learning that

is a model-free reinforcement learning technique to tackle the variation in the RSS

caused by Rayleigh fading.
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CHAPTER 1

INTRODUCTION

Wireless localization has long been a critical technology for various applications

such as indoor/outdoor navigation, surveillance, tracking of assets and employees,

and guided tours, among others. Wireless localization based on radio frequency

(RF) signal observations have therefore been studied extensively in the existing liter-

ature [1–3].

The proliferation of Internet of Things (IoT) devices, evolution of smart cities,

and vulnerabilities of traditional localization technologies to cyber-attacks such as

jamming and spoofing of GPS necessitate development of novel RF localization tech-

nologies that are accurate, energy-efficient, robust, scalable, non-invasive and secure.

The main goals of this dissertation are to address several of these challenges con-

sidering applications in emerging IoT networks, smart buildings, and GPS-denied

environments.

In this dissertation, we first introduce the concept of localization and tracking.

Then we review the trends in IoT technologies and smart cities to have a better

context on required localization techniques in such environments. We also discuss

disadvantages of GPS, and why we strongly need alternative localization techniques

that can work effectively in GPS-denied environments.

1.1 What is Localization?

Localization is the task of estimating a target node’s location using the measurements

obtained from the target node at various reference nodes. These reference nodes are

commonly referred as anchor nodes, and their locations are assumed known a priori.

There are four general types of measurements that can be used in RF localization
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systems [3,4]: received signal strength (RSS), time-of-arrival (TOA), time-difference-

of-arrival (TDOA), and angle-of-arrival (AOA).

1.2 Localization Techniques

As the name suggests, TOA is the propagation time of the signal between the target

node and the reference nodes. Assuming known positions of base nodes and a coplanar

scenario, three base nodes and three measurements of distances (TOA) are required

to localize a target node. Potential target location will lie on a circle with radius

estimated by TOA. Final target location will be the point that is the intersection of

the circles.

TDOA is the difference of arrival times between reference nodes. Similar to TOA

estimation, this method assumes that the locations of base nodes are known. Final

target location will be the point of intersection of two hyperbolas, which are formed

using two TDOA measurements with respect to the reference node.

The AOA typically requires directional antennas to detect the respective angle of

the target node to reference nodes. Potential target location will lie on a line whose

direction is determined by peak incoming energy signal using antenna array. Final

target location will be a point that passed through the intersection of two lines whose

directions are determined by peak incoming energy signals using antenna arrays at

two reference nodes.

RSS is based on signal power which is received either at the target node or reference

nodes. RSS-based localization does not require additional or sophisticated software

as others. It employs received power level to extract ranging information to locate

the target node based on reference nodes’ a priori known positions.

2
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Figure 1.1: Occupancy monitoring using various different IoT technologies. Darker
colors represent a better occupancy monitoring accuracy, and white colors represent
no occupancy monitoring in particular building zone.

1.3 Emerging Applications for Localization and Tracking

Internet of Things: According to Cisco, during 2008, the number of things con-

nected to the Internet surpassed the number of people on earth. In 2020, 50 to 200

billion devices are projected to be connected to the Internet [5]. Such proliferation of

IoT devices including smartphones, sensors, cameras, and RFIDs, bluetooth devices,

will introduce a critical need to localize and track them effectively, and will necessi-

tate development of energy efficient, accurate, and scalable localization technologies.

Connectivity aspects of IoT devices would allow use of cloud computing. Cloud is a

great enabler for scaling of the application and innovative approaches with big data.In

this dissertation, one of our focus areas is RFID-based wireless localization for IoT

technologies. Since passive RFID tags do not operate with any battery power (energy

is harvested from RFID antenna that powers the RFID tag), and since they have low

deployment cost, they are ideal candidates for localization in IoT applications.
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Smart Cities and Smart Buildings: In addition to IoT, Smart City is another

emerging paradigm, where main goals include better use of public resources, increas-

ing the quality of service offered to citizens, and reducing operational costs of public

administrators [6]. RF localization is one of the major enablers for future smart cities,

and it can support a plethora of services, such as building health inspection, waste

management, noise/air quality monitoring, traffic congestion control, city energy con-

sumption reduction, smart parking/lighting, and automation of smart buildings [7–9].

Buildings are among the largest consumers of electricity in the United States: they ac-

count for 40% of primary energy consumption and 72% of electricity consumption [6].

Occupancy tracking that relies on RF localization can help in achieving significant

energy savings in smart buildings such as by dynamically scheduling HVAC activ-

ity based on real-time building occupancy levels at different areas [10]. Effective

occupancy monitoring in smart buildings will be another major application area in

this dissertation, for which we will rely on processing of non-invasive RF localization

techniques using ambient wireless signals radiating from smart-phones of building

occupants. An example use case that considers multiple wireless technologies for

occupancy tracking in smart buildings is shown in Fig. 1.1.

GPS Denied Environments. While GPS has been extensively used for outdoor

navigation during the past decades, it does not work well in urban canyons (such as

in downtown areas) and indoor environments due to weak penetration of GPS signals

to such environments. More importantly, GPS has been recently more vulnerable

to spoofing and jamming attacks. Due to such vulnerabilities of GPS against cyber

attacks, department of defense in the United States has been looking into developing

of localization technologies that can operate effectively in the absence of GPS location

information. Study of wireless localization technologies in GPS-denied environments,

4



such as in indoor environments or under jamming attacks, will be another important

research component of this dissertation.

Not only non-line of sight situations but also jamming and spoofing attacks are a

problem for GPS. GPS signals are not encrypted, thus, it is very easy to jam or spoof

them. GPS is also susceptible to record-and-replay attacks if it is not secured with

other countermeasures. There are several measures existing in our devices though

they are still unreliable since most of their techniques are known and obsolete. It is

relatively easier after one develops a GPS emulator algorithm and uses a software-

defined radio to implement [2]. As a result, indoor and urban environments are GPS-

denied areas which require different solutions for localization and tracking problems.

A major application of wireless localization in GPS-denied environments is location-

based services in emergency and public safety applications. For example, in the case

of a 911 call, FCC requires that 80 percent of the calls should be located within 50 me-

ters by 2021. Police and firefighters also require seamless localization and tracking for

public safety applications. In case of a fire in a large building, it becomes difficult to

navigate in the building to save a victim or to find an exit. Accurate localization in

such GPS-denied indoor environments is still an open research challenge, which can

affect the lives of first responders and victims.

1.4 Organization and Contributions of this Dissertation

In previous subsection, we pointed out applications enabled with indoor localization

systems based on IoT and why we need them. This leads us to a research question,

as stated below

Starting with limited prior information, is it possible to detect, locate and track

the user equipped with Internet of Things devices?

5



1.5 Major Objectives

In this project, we developed accurate RSS-based localization and tracking techniques

in GPS-denied environments, with applications to IoT technologies and smart cities.

The performance of prior localization algorithms in such scenarios were mediocre and

far from achievable performance limits, and our goal was increasing the localization

accuracy as close as possible to achievable limits using estimation theory techniques

and machine learning methods. Based on the fundamental research problems that are

considered, the objectives of this research can be categorized into three main thrusts

as follows:

• Localization with Directional RF Transmissions: Realistic 3D path-loss

and radiation models will be used to study fundamental lower bounds on the

localization accuracy for RFID and mmWave technologies with applications

to IoT scenarios. Both these technologies are recently becoming more widely

deployed, and they both utilize directional transmissions. Comparison of differ-

ent localization algorithms for such directional transmissions will be made with

respect to fundamental lower bounds such as the CRLB.

• Ubiquitous Localization and Tracking in Indoor Environments: Us-

ing the tools of estimation theory, localization and tracking of the target nodes

will be ubiquitously available in a heterogeneous environment where number of

available anchor nodes and RF propagation parameters are dynamically varying.

Heuristic techniques and nonlinear least square estimators will be implemented

to localize the target node in smart building environments. A interacting multi-

ple Kalman Filters are developed to track the target node for occupancy track-

ing. Machine-learning techniques will be used to learn optimum propagation

and occupancy parameters and maximize localization accuracy.
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CHAPTER 2

LOCALIZATION WITH RFID TECHNOLOGIES

Radio Frequency IDentification (RFID) is a promising technology for the prolif-

eration of Internet of Things (IoT) applications, and it can be used to detect and

identify the items in the proximity [11–15]. Due to their cost effective, durable,

and energy efficient operation [16], RFID technology has been used in wide range

of applications such as asset management [17], access control [18], public safety [19],

localization [20], and tracking [21]. Among these, enabling high accuracy localization

for massively deployed IoT devices carries critical importance for a diverse set of IoT

applications [22].

Localization using radio frequency (RF) signals has been actively researched in

the literature over the past decades [23–26]. Outdoor localization is mostly han-

dled with Global Positioning System (GPS) technology whereas indoor localization

requires alternative approaches since GPS needs a line-of-sight connection between

user equipment and satellites. Moreover, massive deployment of IoT devices neces-

sitates energy and cost efficient localization methods for prolonged durations. The

RFID technology hence becomes a promising alternative for cost-effective, energy

efficient indoor identification and localization for massively deployed IoT.

An Ultra High Frequency (UHF) RFID communication is fundamentally different

from the conventional RF communication since it has two distinct links: the forward

(power-up) and the reverse (backscatter) link. The forward link powers the passive

RFID tags and the reverse link carries the information of tags. Ability to power-up

tags in the forward link enables battery-less operation of RFID tags [27], which is a

major advantage of RFID systems for low-power IoT applications. In general, there

are two configurations for UHF RFID systems: 1) monostatic configuration, and 2)

bistatic configuration. In the monostatic configuration, a single reader antenna trans-
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RFID
Antenna

RFID Tag on 
an IoT Device

Forward 
(Power-Up) 

Link 

Reverse 
(Backscatter)

Link

Figure 2.1: Passive RFID localization system with bistatic configuration. In mono-
static configuration, reverse link is available only for the RFID antenna establishes
forward link.

mits the continuous wave, which powers up the passive tag, and subsequently receives

the backscattered information signal from the tag. In the bistatic configuration the

transmission and reception are handled by different reader antennas as shown in

Fig. 2.1. These antennas might be co-located (i.e., at same location, closely spaced)

or dislocated (at separate locations). A particular challenge with both configura-

tion is that complex, directional, and three dimensional RFID propagation models

need to be explicitly taken into account to accurately characterize the real-world

forward/backward propagation channels.

In this paper, we use sophisticated and realistic 3D path-loss and radiation mod-

els to study fundamental lower bounds on the localization accuracy of Received Sig-

nal Strength (RSS) based UHF RFID localization systems for both monostatic and

bistatic configurations. The main contributions of this work are as follows: 1) Cramer-

Rao Lower Bound (CRLB) on the localization accuracy are derived in closed-form

considering an enhanced RSS model, using the directional and 3D radiation pattern

from UHF RFID reader antennas, and the concept of localization coverage; 2) Tag

and reader sensitivity is incorporated into analytic derivations both for monostatic

and bistatic scenarios, to derive localizability and localization coverage metrics; 3)

Extensive computer simulations are carried out to compare the localization accuracy
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of the maximum likelihood (ML) technique with the CRLBs, considering directional

radiation patterns and using different configurations for RFID reader antennas.

Our analysis and simulation results show that for certain scenarios, using bistatic

antenna configuration as in Fig. 2.1 may increase the average localization coverage

by 38% when compared to monostatic RFID configuration. Another important pa-

rameter in the antenna configurations is the elevation angle θ. Especially with lower

transmit powers, it affects the localization coverage and accuracy. Corner placement

of antennas for θ = π/4 with 1000 mW gives 29% localization coverage, while θ = π/3

and θ = π/2 results in 78%. Our results for the specific RFID configuration show

that it is possible to locate a tag within 1 meter error with a probability of 0.76 with

corner placement of antennas, whereas this probability drastically reduces to 0.53

when side placement is used for θ = π/4 with bistatic configuration.

The rest of this paper is organized as follows. Literature review for RSS-based

localization in passive UHF RFID systems is provided in Section 2.1. In Section 4.2,

the system model is described in detail which involves a 3D radio propagation model

for RFID systems. The concept of localizability is defined, as well as localization

coverage percentage in Section 2.3. Section 2.4 derives the CRLBs and the Maximum

Likelihood Estimator (MLE) based on the likelihood function for an RFID tag’s loca-

tion for the considered RFID scenario. Numerical results are provided in Section 2.7,

and concluding remarks are given in Section 4.7.

2.1 Literature Review

Although there are several studies in the literature that investigate RSS-based lo-

calization with RFID technology [28–32], fundamental lower bounds on RFID-based

wireless localization are relatively unexplored. In [33], authors used a mobile robot

with RFID reader antennas to generate map of an indoor environment with RFID
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(a) (b)

Figure 2.2: (a) In the monostatic configuration, the signal transmitted by reader
antenna (tilted by angle θi) powers the tag in the forward link. The backscatter link
signal, which carries the information of the tag, is received back at the same reader
antenna. (b) In the bistatic configuration, the signal transmitted by reader antenna i
(tilted by angle θi) powers the tag in the forward link. The backscatter link signal,
which caries the information of the tag, is received at reader antenna j (tilted by
angle θj).

tags on the walls. After the mapping phase, the robot may locate itself inside the

building based on the closest tag information. In the LANDMARC localization tech-

nique introduced in [34], reference RFID tags are used for implementing RSS-based

indoor localization method, where fixed-location reference tags with known locations

are used to localize the tags. In [35], authors improve LANDMARC approach to tackle

with multipath effects and RF interference. A probabilistic RFID map-based tech-

nique with Kalman filtering is used to enhance the location estimation of the RFID

tags in [36]. Another approach to localize the RFID tags is studied in [37], which uses

the phase difference information of backscattered signal of the RFID tags. In [38],

authors consider a multipath environment to derive the CRLBs on the position error

of an RFID based wireless localization system. Geometry of the deterministic multi-

path components and the interfering diffuse multipath components are considered in

the backscatter channel model.

Typically a simple path-loss model is used for RFID propagation models in the ex-

isting literature [34,39,40], which employs free-space path-loss signal strength model.

These models are not capable of accurately capturing the radiation pattern of RFID
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reader antennas since they are highly directional. There are also several experimental

studies in the literature related to RSS-based UHF RFID localization systems. In [39],

an experimentation with passive UHF RFID system is conducted to investigate the

relationship between RSS and distance. Recently in [40], CRLB of RSS-based local-

ization are derived considering a frequency dependent path-loss propagation model,

where the model explicitly depends on the transmit power level and the transmis-

sion frequency. Accuracy of several localization techniques are compared to CRLB

with given path-loss model via simulations and experiments. In [41], authors used

k-Nearest Neighbor (kNN) algorithm to estimate the location of the target tag from

RSS information. An experiment involving four antennas and seventy tags is con-

ducted, which resembles to the simulation scenario in our manuscript. It is shown

that power control techniques may significantly improve localization accuracy.

Effects of multipath propagation and signal scattering are considered in [42] for

passive UHF RFID localization, using MLE and linear least square techniques. A

localization algorithm using the differences of RSS values from various tags under

same conditions is also proposed. Its performance, which is shown to outperform

the kNN algorithm used in LANDMARC [34]. A two-parameter path-loss model for

UHF RFID systems is constructed in [43], which shows that the RSS of RFID systems

are slightly more stable than WiFi RSS values, and this yields more precise location

estimates for RFID RSS-based localization. A summary of the existing RFID-based

localization papers in the literature categorized based on the specific localization

techniques that are used is provided in Table 2.1.

In our earlier work [44], we have studied the bounds on RFID localization for

monostatic RFID configuration. In this study, our additional contributions include:

1) use of bistatic antenna configuration and different antenna placement which pro-

vides a more generalized framework, 2) use of an enhanced RSS model with lognormal
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Table 2.1: Literature for RFID-based localization systems

Category References

Time-of-Flight [28–30]
Number of readings [31]
Fingerprinting [33–36]
Phase difference [37,38]
RSS Ranging [32,34,39–43,45]

distributed noise which yields different CRLB formulations, 3) incorporation of reader

antenna and tag sensitivity into theoretical analysis, 4) study of localization coverage

for RFID tags, outside of which they can not be localized with a reasonable accu-

racy, and 5) extensive new simulations to study the effects of various parameters and

configurations.

2.2 System Model

In the rest of this paper, we consider the RFID localization scenario as shown in

Fig. 2.2. In particular, Fig. 2.2(a) illustrates a monostatic antenna configuration,

where the reader antenna is both the transmitter and the receiver. On the other

hand, the bistatic antenna configuration is shown in Fig. 2.2(b), where one antenna

transmits the power-up signal for RFID tag, and the other antenna receives the

backscattered signal from the tag. We will consider the more general case of bistatic

antenna configuration, and study the monostatic configuration as a special case. For

the considered scenario, let N RFID reader antennas be mounted on the walls, lo-

cated at a height of zi meters from the ground for the ith antenna. As shown in

Fig. 2.2(b), RFID reader antennas i and j (which are the forward and reverse anten-

nas, respectively) are tilted by an angle θi and θj, respectively, with reference to the
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azimuth plane. The goal is to localize an RFID tag, which is located at a distance

Hi below a reader antenna i.

2.2.1 Bistatic RFID Configuration

The total backscattered received power Pij at a bistatic configuration of reader an-

tenna i and antenna j, which are located at (x′i, y
′
i, z
′
i) and (x′j, y

′
j, z
′
j), respectively

while the position of the tag is (x0, y0, z0), is given by [46]:

P̃ij(x0, y0, z0) = τµTρLPTxG
2
T|Gi

RG
j
RL(di)L(dj)||hihjΓ|2, (2.1)

which can be written in logarithmic scale as

Pij(x0, y0, z0)[dBm] = 20 log10

(
τµTρLPTxG

2
T|hihjΓ|2

)
+ 20 log10

(
Gi

R

)
+ 20 log10

(
Gj

R

)
+ 20 log10

(
L(di)

)
+ 20 log10

(
L(dj)

)
, (2.2)

∀i, j ∈ {1, . . . , N} where τ is a coefficient that quantifies the specific data encoding

modulation details that can be calculated using power density distribution of the

tag’s signal.

According to the EPCglobal C1G2 specifications [47], any tag in the interrogation

zone of the reader can send back its information by reflecting the incoming continuous

wave. The power transfer efficiency µT ∈ [0, 1] in (2.2) quantifies how well the tag

is impedance-matched to the antenna. Polarization loss factor ρL captures the loss

due to the mismatch between the polarization of a transmitter antenna and a receiver

antenna. The effective isotropic radiated power (EIRP) of the RFID reader antenna

is shown as PTx, while Gi
R and GT are the gain of the RFID reader antenna i and tag

antenna, respectively, and L(di) is the channel pathloss defined by:

L(di) =

(
λ

4πdi

)2

, (2.3)
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where λ is the wavelength of the signal, and di is the distance between the tag and

the reader antenna i. The transmit power limit of RFID reader antennas, which is

critical for coverage of the reader, is 2 W in effective radiated power (ERP) as stated

in EPC Gen2 protocol for UHF RFID systems. This makes the EIRP limit for RFID

readers 35.15 dBm, which is larger than the highest transmit power of 3 W that was

used in our simulations [47,48].

The forward-link and backscatter-link channels are represented with |hi|2 and |hj|2.

The parameter Γ in (2.2) is the differential reflection coefficient of the tag which is a

function of the tag antenna gains GT, the radar cross section RCS denoted by σRCS,

and the communication wavelength λ as follows [46,48,49]:

|Γ|2 =
4π

λ2|GT|2
σRCS . (2.4)

In passive UHF RFID applications, the goal is to maximize RCS, which characterizes

the scattered power, while still absorbing sufficient power to operate the chip of the

tag. In our study, we have utilized statistical models for RCS and Γ which we obtained

from [43,48–50].

Assuming a scenario as illustrated in Fig. 2.2, and adopting the expression pro-

vided by [46], a modified directional gain of a patch antenna for a 3D propagation

environment can be expressed as follows:

Gi
R(αi, φi) = 3.136

[
tan(αi) sin

(
0.5π cos(αi)

)
× cos

(
0.5π sin(αi) sin(φi)

)]2

, (2.5)

where αi = θi−arcsin(Hi

di
), with θi and φi being the elevation and azimuthal angles of

the patch antenna i, respectively. The parameter Hi in (2.5) is the difference between

height of the reader antenna and the height of tag.
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2.2.2 Translation to Cartesian Coordinate System

Location of a tag with respect to reader antenna is defined with relative elevation

and azimuthal angles, and distance between tag and reader antenna. On the other

hand, derivation of CRLB requires translation from polar coordinate system to the

Cartesian coordinate system. Gain of patch antenna is defined in (2.5), which can be

represented in the Cartesian coordinate system as

Gi
R(xi, yi, zi, x0, y0, z0, θi, φi)

= 3.136×
(

tan θi − zi−z0
di

1− zi−z0
di

tan θi

)2

× sin2

(
π

2

(
li
di

cos θi +
zi − z0

di
sin θi

))
× cos2

(
π

2

(
li
di

sin θi −
zi − z0

di
cos θi

)
×
(

(xi − x0) cosφi + (yi − y0) sinφi
li

))
, (2.6)

where (xi, yi, zi) is coordinate of the antenna-i, and (x0, y0, z0) is the location of tag.

The distance between tag and antenna-i is defined with

di =
√

(x0 − xi)2 + (y0 − yi)2 + (z0 − zi)2, (2.7)

while its projection on the xy-plane is given with

li =
√

(x0 − xi)2 + (y0 − yi)2. (2.8)

2.2.3 Monostatic RFID Configuration

As in Fig. 2.2(a), monostatic RFID is a special case of bistatic RFID configuration,

there the transmitter and receiver antenna are identical. This makes Gi
R and Gj

R

equal (i = j). Therefore, the received power in dBm at the reader antenna with
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monostatic configuration simplifies to:

Pii(x0, y0, z0) = 20 log10

(
τµTρLPTxG

2
T|hi|4|Γ|2

)
+ 40 log10

(
Gi

R

)
+ 40 log10

(
L(di)

)
, (2.9)

for i = 1, · · · , N . Note that, for monostatic configuration, Pij = 0 when i 6= j, for all

i, j ∈ {1, . . . , N}. Therefore, monostatic configuration essentially uses a subset of the

antenna reader pairs in bistatic configuration during localization. In the rest of this

paper, bistatic configuration as defined in (2.2) will be assumed to capture measure-

ments at all pairwise combinations of antenna readers, including those corresponding

to monostatic configurations.

2.3 Tag / Reader Antenna Sensitivity and Localization Cov-

erage

In this section, we will first introduce the concepts of tag antenna sensitivity, reader

antenna sensitivity, and localization coverage of an RFID system, which corresponds

to the spatial region in which an RFID tag will be considered localizable.

2.3.1 Tag Antenna Sensitivity

The passive tags do not have an internal power structure to modulate or transmit any

signal. They use the received power to both modulate the signal with the internal

chip, and backscatter modulated signal to reader. As one can expect, RFID tags have

certain power requirements. State-of-art tags are able to modulate signals with RSS

as low as −20 dBm [51], and will not be able to detect the received signal at lower

power levels. The RSS from ith reader at tag is defined with

Pi(x0, y0, z0) = 20 log10

(
ρLPTxGTG

i
RL(di)|hi|2

)
(2.10)
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(a)

(b)

(c)

Figure 2.3: (a) Maximum achievable RSS at any possible tag location for the system.
(b) Localization coverage for monostatic configuration. (c) Localization coverage for
bistatic configuration. Areas where M ≥ 2 are considered to be localizable, and the
deployment parameters are θi = π/4, Hi = 1 meter for i = 1, 2, 3, 4, and PTx =
1000 mW.
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for i = 1, · · · , N . Note that (2.10) is a subset of (2.2) and (2.9) which characterize the

RSS after round-trip signal propagation, since (2.10) represents only the forward-link.

2.3.2 Reader Antenna Sensitivity

In either monostatic or bistatic configuration, an RFID reader must correctly de-

tect the backscattered modulation from the tag, which relies on the reader antenna

sensitivity. Therefore, the received power as in 2.2 and 2.9 must be larger than the

reader antenna sensitivity in order to be detected. The detection coverage of an

RFID configuration is defined as detectability of a tag at a certain location with that

configuration. The detectability is assumed deterministic with respect to RSS and

sensitivity of RFID reader antenna.

2.3.3 Coverage Areas for Localization

In this subsection, we investigate the impact of the sensitivity of the tag and reader

antennas on localization performance. We introduce below several new metrics for

characterizing tag/reader sensitivities and localization coverage.

Definition 1: The coverage for a given antenna pair (i, j) at a given location

(x, y) is captured by a binary deterministic parameter Cij(x, y), which is defined as:

Cij(x, y) =


1, if Pij ≥ −75 dBm and Pi ≥ −20 dBm

0, otherwise

. (2.11)

using (2.2) and (2.10).

Due to nonlinearity of antenna propagation model, in order to localize a tag, at

least two different RSS measurements from that tag at a particular position (x, y) are

needed. On the other hand, there might be some tags which are detected from only

a monostatic antenna or a bistatic antenna pair, and those tags cannot be localized
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due to limited information. Note that for monostatic configuration, Cij(x, y) = 0 if

i 6= j. Then we can define the localizability of a tag as follows.

Definition 2: A tag at a given location (x, y) is localizable if the following

condition is satisfied

M(x, y) =
N∑
i=1

N∑
j=i

Cij(x, y) ≥ 2 , (2.12)

where N is the number of antennas in the system, and M(x, y) is the total number

antenna configurations that can detect the tag at location (x, y).

Definition 3: The localization coverage of a tag at position (x, y) is defined with

L(x, y) as follows:

L(x, y) =


1, if M(x, y) ≥ 2

0, otherwise

. (2.13)

The RFID tag can be localized at position (x, y) when L(x, y) = 1, and is not

localizable when L(x, y) = 0.

Definition 4: The localization coverage percentage at a physical area A can be

formally expressed as follows:

Lp(A) =

∫∫
x,y∈A

L(x, y)dxdy∫∫
x,y∈A

dxdy
× 100% . (2.14)

Note that (2.14) defines the percentage of localizable area to total area.

In Fig. 2.3, results from an example deployed scenario for parameters θi = π/4,

Hi = 1 meter for i = 1, 2, 3, 4, and PTx = 1000 mW are shown. Maximum achievable

RSS at any possible tag location is represented in Fig. 2.3(a), while monostatic and

bistatic localization coverage are shown in Fig. 2.3(b) and Fig. 2.3(c), respectively.

The localization coverage percentage is 21% for monostatic configuration, while it

is above 50% for bistatic configuration. The number of maximum measurements

increases from 4 for monostatic configuration to 16 for bistatic configuration.
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2.4 Cramer-Rao Lower Bound and MLE

The CRLB is a bound on the variance of any unbiased estimator for an unknown

variable, such as the location of an RFID tag, based on a set of observations. In this

section, we define likelihood function, and derive the CRLB on the accuracy of RSS-

based UHF RFID localization systems as a function of various parameters of interest.

We consider both monostatic and bistatic cases for CRLB analysis. Subsequently,

the MLE for unknown RFID tag location is also defined. Comparison of CRLB and

MLE for monostatic and bistatic configurations in various scenarios will be presented

through numerical results in Section 2.7.

2.4.1 Likelihood Function for Unknown RFID Tag Localiza-

tion

When a tag is localizable, then its exact location can be estimated using the measure-

ments obtained at different antenna pairs. The probability of an RFID tag being at

a certain location can be characterized by its likelihood function [52]. Let x = [x, y]

denote the unknown location of the tag, assuming that the received power in log

scale at an RFID reader antenna is subject to Gaussian noise [23]. Consider that the

observations of received power in (2.2) from different RFID antennas mounted on the

walls are stacked in a vector p̂[dBm]. Then, this vector can be modeled as follows

p̂ = p+ω, ω = [ω11, ..., ωij, ..., ωNN ]T , ωij ∼ N (0, σ2), (2.15)

where i = 1, ..., N , j = 1, ..., N , and p is a vector of true RSS values which has

a size of N2 for a bistatic configuration, and a size of N for a monostatic config-

uration. The additive noise on received power, which is assumed independent and

identically distributed (iid), is captured by ωij, corresponding to the measurement at
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antenna couple i and j, with N (µ, σ2) denoting the Gaussian distribution with mean

µ and variance σ2. Then, for the general case of bistatic antenna configuration, the

respective likelihood function for the received power at a location x can be written

as:

L(p̂; x) =
1

(2πσ2)
N2

2

× exp

(
− 1

2σ2

N∑
i=1

N∑
j=1

Cij(x, y)
(
Pij − P̂ij

)2
)
, (2.16)

where Pij is the value of RSS for reader antennas i and j, and it depends on the

unknown tag location x = (x, y) as defined in (2.2). For the monostatic configuration,

it can be easily shown that (2.16) simplifies to the following likelihood function:

L(p̂; x) =
1

(2πσ2)
N
2

exp

(
− 1

2σ2

N∑
i=1

Cii(x, y)
(
Pii − P̂ii

)2
)
. (2.17)

2.4.2 CRLB Analysis

Based on the 3D and directional propagation model defined in (2.1)–(2.6), the lo-

calization coverage parameter Cij(x, y) defined in (2.11), and the likelihood function

defined in (2.16) the CRLB on the variance of an unbiased estimator for x can be

defined as follows.

Theorem 1. The CRLB on the root mean square error (RMSE) of an unbiased

position estimator x̂ based on the measurements model in (2.15) and the likelihood

function in (2.16) is given by:

RMSEloc(x, y) ≥
√

I−1
11 + I−1

22 , (2.18)

where [I(x)] is the Fisher Information Matrix (FIM) for x,

[I(x)] =

I11 I12

I21 I22

 , (2.19)
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whose elements are as derived in (2.20)-(2.26).

2.5 Proof of Theorem 1

In this appendix we will show derivation of CRLB through obtaining FIM. Individual

elements of the FIM in (2.19) can be calculated using the likelihood function L(p̂; x)

in (2.16) as follows [52]:

Imn = −E
[
∂2 lnL(p̂; x)

∂xm∂xn

]
, (2.20)

where Imn is the mn-th element of the FIM for m,n = 1, 2. As in [52], using (2.16)

the FIM element in (2.20) can be derived as follows. First, the natural logarithm of

the likelihood function can be calculated as:

lnL(p̂; x) = ln

(
1

(2πσ2)
N
2

)

− 1

2σ2

N∑
i=1

N∑
j=1

Cij(x, y)
(
Pij − P̂ij

)2

. (2.21)

The partial derivatives of (2.21) should be taken with respect to each unknown pa-

rameter to get individual elements of the FIM. The derivative of (2.21) with respect

to the first unknown parameter xm can be written as

∂ lnL(p̂; x)

∂xm
=

1

σ2

N∑
i=1

N∑
j=1

Cij(x, y)
(
Pij − P̂ij

) ∂P̂ij
∂xm

. (2.22)

Then, the partial derivative of (2.22) with respect to xn be calculated as

∂2 lnL(p̂; x)

∂xm∂xn
=

1

σ2

N∑
i=1

N∑
j=1

Cij(x, y)

×
(
− ∂P̂ij
∂xn

∂P̂ij
∂xm

+
(
Pij − P̂ij

) ∂2P̂ij

∂xm
2

)
. (2.23)

Getting the expectation of (2.23) with respect to x results

E

[
∂2 lnL(p̂; x)

∂xm∂xn

]
=
−1

σ2

N∑
i=1

N∑
j=1

Cij(x, y)

(
∂P̂ij
∂xm

∂P̂ij
∂xn

)
. (2.24)

22



Thus, the CRLB is a function of the first derivative of (2.2) with respect to the

unknown position parameter in logarithmic scale. Derivative of each element in re-

ceived power is calculated separately since it can be written as summation of different

functions in logarithmic scale. Partial derivative of (2.2) can be represented as

∂P̂ij
∂xm

=
∂
(
20 log10

(
τµTρLPTxG

2
T|hihjΓ|2

))
∂xm

+
∂
(
20 log10G

i
R

)
∂xm

+
∂
(
20 log10G

j
R

)
∂xm

+
∂
(
20 log10 L(di)

)
∂xm

+
∂
(
20 log10 L(dj)

)
∂xm

. (2.25)

The (unknown) location of the tag (x) does not affect the parameters τµTρLPTxG
2
T|hihjΓ|2

of received power, and hence the resulting partial derivative of (2.2) is then given by

∂P̂ij
∂xm

=
20

ln 10

(
∂Gi

R

∂xm
+
∂Gj

R

∂xm
+
∂L(di)

∂xm
+
∂L(dj)

∂xm

)
. (2.26)

2.6 Example Derivation for CRLB

In this appendix we will derive the CRLB for parameters θi = π/4 and φi = π/2

for i = 1, 2, 3, 4. The gain function in (2.6) for those particular values of θi and φi

becomes

Gi
R = 3.136 sin2

(√
2π(li + zi − z0)

4di

)
cos2

(√
2π(li − zi + z0)

4di

(yi − y0)

li

)
. (2.27)

First derivative of (2.27) with respect to xm, for m = 1, 2, is

∂Gi
R

∂xm
=

3.136

4
× ∂B

∂xm
sinA sin(2B)× ∂A

∂xm
sin(2A) cosB (2.28)

where

A =

√
2π(li + zi − z0)

4di
,

B =

√
2π(li − zi + z0)

4di

(yi − y0)

li
.
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Then for x1 = x in (2.28), ∂A
∂x

and ∂B
∂x

can be solved as

∂A

∂x
=

π

2
√

2

(
x− xi
lidi

− (x− xi)(li + z − zi)
d3
i

)
,

∂B

∂x
=
π(x− xi)(y − yi)

2
√

2lidi

(
1

li
− (li − z + zi)(l

2
i + d2

i )

l2i d
2
i

)
.

The same solution for x2 = y is given in

∂A

∂y
=

π

2
√

2

(
y − yi
lidi

− (y − yi)(li + z − zi)
d3
i

)
,

∂B

∂y
=
π(y − yi)(li − z + zi)

2
√

2lidi

×
(

1

li(li − z + zi)
− 1

l2i
− 1

d2
i

− 1

(y − yi)2

)
.

The path loss function L(di) does not change with θ and φ, and it only depends on

the distance between the reader antenna and the tag. Then, the derivative of L(di)

with respect to x and y is as follows

∂L(di)

∂x
=

λ2

(4π)2

(
x− xi
d3
i

)
,

∂L(di)

∂y
=

λ2

(4π)2

(
y − yi
d3
i

)
.

Based on these derivations, using (2.18)–(2.26), the CRLB for any location can be

calculated with known set xi and yi for i = 1, ..., N with given parameters θi = π/4

and φi = π/2. In Fig. 2.5(c) and Fig. 2.5(d), CRLB for monostatic and bistatic

configurations respectively are calculated for any possible location of tag.

2.6.1 Maximum Likelihood Estimator

While the CRLB gives a lower bound on the localization RMSE, an effective estimator

is needed to find an RFID tag’s location as accurate as possible, ideally with an RMSE

close to the CRLB. In here, we will define a simple MLE estimator for comparison
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purposes with the CRLB. Using the likelihood function defined in (2.16), the MLE

can be formulated as follows [52]

x̂ = arg max
x

L(P; x̂) . (2.29)

Having a closed form solution for the MLE in (2.29) is not mathematically tractable

due to the complexity of the directional antenna radiation pattern as captured through

(2.2)-(2.6). In particular, due to entangled sines and cosines, after equating differ-

entiation of the likelihood function as in (2.26) to zero, one cannot obtain a closed

form solution. Thus our problem could be solved with MLE grid search, which can

be represented as follows

x̂ = arg min
x

N∑
i=1

N∑
j=1

(
Pij(x, y)− P̂ij(x, y)

)2

. (2.30)

In our computer simulations in Section 2.7, we consider a densely sampled grid

of nearly 15000 uniformly spaced points. The granularity of the grid is set to 5

cm. Then, the MLE solution corresponds to the grid position that maximizes the

likelihood function in (2.16) and can be found using exhaustive search. To reduce

complexity, the MLE solution is found by a constrained search over the region that

is defined by the number of RSS measurements and corresponding antennas. When

there are only two RSS measurements available, the search is conducted only over the

positions where M(x, y) = 2. As it is stated in Section 2.3.3, a grid location with

only two RSS measurements is still localizable, although the accuracy is relatively

limited when compared to locations where more than two RSS measurements are

available. Based on our numerical results that will be shown in Section 2.7, overall

localization accuracy is still acceptable. Accuracy of the MLE will be compared with

the CRLB in various scenarios in the next section.
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Table 2.2: Passive UHF RFID system parameters.

Parameter Value

Operating Frequency 865.7 MHz
Operating Bandwidth 300 kHz
Transmit Power (PTx) (EIRP) 1000 mW to 3000 mW
Modulation Efficiency (τ) 0.5
Polarization Loss Factor (ρL) 0.5
Power Transfer Efficiency (µT) 0 to 1
Differential Reflection Coefficient (|Γ|2) 0 to 1
Tag Antenna Gain (GT) 0 dBi
Tag Antenna Sensitivity (GT) −18 dBm
Reader Antenna Sensitivity (RS) −75 dBm
Antenna Height 2 m
Tag Height 1 m
Room Width and Length 8 m x 8 m
Granularity of Simulations 1 cm
Reader Antenna Elevation Angle (θ) π/4 to π/2

2.7 Numerical Results

Numerical results are provided to validate analytic derivations with computer simula-

tions and to compare the performance of the MLE with the CRLB for RFID based IoT

localization. The simulation parameters for the passive UHF RFID system is given in

Table 2.2. As stated in Section 2.4, the received power at the RFID reader antenna is

subject to lognormal noise. The noise variance is adopted from the statistical models

in [43,53], which were derived from RFID propagation measurements.

Our computer simulation considers RFID antennas that are installed in a square

shaped room with 8 meters width, and the height of the reader antennas are 2 meters

above floor level. The channel is assumed to be frequency flat slow fading channel

in our system. There are three antenna placement configurations, first is placing the

antennas to centers of side walls which is referred as ‘Side’, the second is placing

them on the corners of the room which is referred as ‘Corner’ in figures, and the
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Figure 2.4: Localization coverage percentage for θi = π/4, π/3, π/2, and i = 1, 2, 3, 4,
(a) monostatic and (b) bistatic configurations.

third is placing them on the line of a side wall as an equally spaced array which is

referred as ’Array’ in results. The reader uses circularly polarized antennas which

have a radiation pattern as defined in (2.5), and the tag antennas are assumed to

be vertically polarized. The height of the tag is assumed to be known and 1 meter.

Elevation angles of reader antennas are defined as π/4, π/3, and π/2. Elevation

angles lower than π/4 are not considered due to lack of localization coverage for those

angles.

2.7.1 Localization Coverage

In Fig. 2.4, localization coverage percentage in (2.14) is illustrated for different eleva-

tion angles, antenna placement configurations, and transmit power levels for monos-

tatic (Fig. 2.4(a)) and bistatic (Fig. 2.4(b)) antenna configuration. The localization

coverage is below 50% for monostatic cases other than Side π/2. The coverage per-

centage for monostatic configuration increases rapidly with increasing transmit power

from 17.8% on the average for PTx = 1000 mW to 46.2% for PTx = 3000 mW
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transmit power. Localization coverage for bistatic cases show improvement with

increased transmit power as well. The mean localization coverage percentage for

PTx = 1000 mW is 56.4%, while increasing transmit power to PTx = 3000 mW

substantially boosts it to 80.2%.

The elevation angle also plays a critical role in localization coverage of the sys-

tem. In monostatic and bistatic configurations, θ = π/2 is superior to other angles

for both Corner and Side placement of antennas. In general, the coverage is increased

with increased elevation angle. Corner placement of the antennas is better in bistatic

configuration, whereas in monostatic configuration side placement has larger cover-

age area in general. The corner placement of the antennas covers 85% of the area

for bistatic configuration on the average for all available transmit powers, whereas

side placement enables to localize the tags in 59.4% of the area. Things are different

for monostatic case, where corner placement has 27% coverage, while side placement

achieves better performance with 38.9%. This is expected since side placement in-

creases the overlap possibility of monostatic antenna coverages with less distances

between antennas, whereas corner placement exploits the radiation coverage with

increased distances between antennas.

2.7.2 Localization Accuracy

In Fig. 2.5, Average MLE and CRLB RMSE for monostatic and bistatic configurations

with θ = π/4, for PTx = 1000 mW at each possible tag location is given. The

localization coverage for monostatic configuration is just above 20%, while in bistatic

configuration it is above 50% as represented in Fig. 2.4. Monostatic configuration has

localization coverage above 50% for only side placement of antennas with θ = π/2,

thus they are not represented in median localization RMSE results which they do not

have.

28



2 4 6
X-axis (m)

2

4

6
Y

-a
xi

s 
(m

)

0

0.5

1

1.5

2

RMSE (m)

(a) MLE Monostatic

2 4 6
X-axis (m)

2

4

6

Y
-a

xi
s 

(m
)

0

0.5

1

1.5

2

RMSE (m)

(b) MLE Bistatic

2 4 6
X-axis (m)

2

4

6

Y
-a

xi
s 

(m
)

0

0.5

1

1.5

2

RMSE (m)

(c) CRLB Monostatic

2 4 6
X-axis (m)

2

4

6

Y
-a

xi
s 

(m
)

0

0.5

1

1.5

2

RMSE (m)

(d) CRLB Bistatic

Figure 2.5: Average MLE and CRLB RMSE for monostatic and bistatic configura-
tions for θi = π/4, Hi = 1 meter, for i = 1, . . . , 4.

The median localization RMSE of CRLB and MLE are compared in Fig. 2.6(a),

for elevation angle of θ = π/4. Monostatic configuration is not in the results since it

does not have a coverage above 50% as in Fig. 2.4. Median RMSE of CRLB for side

placement of antennas begin with 1.07 meters at PTx = 1200 mW and gets as low

as 0.72 meters, while corner placement has lower median error in general from 0.61

meters at PTx = 1400 mW to 0.43 meters at PTx = 3000 mW. As expected, MLE

gets closer performance to the CRLB as transmit power increases. Median RMSE of

29



Figure 2.6: Deployment with θi = π/4 for i = 1, 2, 3, 4, (a) Median localization
RMSE of MLE and CRLB for various transmit powers, (b) CDF of RMSE of MLE
and CRLB with side placement, (c) CDF of RMSE of MLE and CRLB with corner
placement.

MLE for side placement of antennas begin with 1.26 meters at PTx = 1600 mW to

0.76 meters at PTx = 3000 mW, while corner placement does better with 0.73 meters

at PTx = 1400 mW, and 0.45 meters at PTx = 3000 mW.

In Fig. 2.6(b), performance of side placement, and in Fig. 2.6(c), performance of

corner placement is are shown. In Fig. 2.6(b), the localization probability of a tag

with MLE below an error of 1 meter for monostatic configuration with side placement

and PTx = 3000 mW is 0.26, while for bistatic configuration with same parameters it

gets to 0.53. The CDF values of CRLB for those are 0.31 and 0.59, respectively.

In Fig. 2.6(c), the localization probability of a tag with MLE below an error of 1

meter for monostatic configuration with corner placement and PTx = 3000 mW is 0.19,

while for bistatic configuration with same parameters it gets to 0.76. The CDF values

of CRLB for those are 0.26 and 0.92, respectively. The side placement of antennas

has better performance with monostatic MLE compared to corner placement, while

bistatic performance substantially lower.

Increasing elevation angle to θ = π/3 helps to decrease median localization RMSE

and improve localization performance. The median localization RMSE of CRLB and

MLE are compared in Fig. 2.7(a), for elevation angle of θ = π/3. As shown
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Figure 2.7: Deployment with θi = π/3 for i = 1, 2, 3, 4, (a) Median localization
RMSE of MLE and CRLB for various transmit powers, (b) CDF of RMSE of MLE
and CRLB with side placement, (c) CDF of RMSE of MLE and CRLB with corner
placement.

in Fig. 2.4, bistatic configuration is always above 50% in localization coverage. In

Fig. 2.7(a), median RMSE of CRLB for side placement of antennas begin with 1.21

meters at PTx = 1000 mW and gets as low as 0.51 meters, while corner placement has

lower median error in general from 0.32 meters to 0.3 meters at 3000 mW. Similar

to θ = π/4, MLE converges to CRLB as transmit power increases. Median RMSE

of MLE for side placement of antennas begin with 1.71 meters at PTx = 1000 mW,

which reduces to 0.78 meters at PTx = 3000 mW, while corner placement does better

with 0.63 meters and 0.34 meters, respectively.

In Fig. 2.7(b) CDF of localization RMSE for side placement is shown for side

placement with θ = π/3. The localization probabilities of a tag below an error of 1

meter for monostatic and bistatic configuration are 0.33 and 0.84, respectively, while

their CRLB are 0.44 and 0.97, respectively.

In Fig. 2.7(c), the localization probability of a tag with MLE below an error of

1 meter for monostatic configuration with corner placement and PTx = 3000 mW

are 0.41 and 0.51, while their CRLB are 0.44 and 0.58, respectively. Side placement

of antennas increase the performance of monostatic configuration while degrading

bistatic configuration performance similar to θ = π/4.
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Figure 2.8: Deployment with θi = π/2 for i = 1, 2, 3, 4, (a) Median localization
RMSE of MLE and CRLB for various transmit powers, (b) CDF of RMSE of MLE
and CRLB with side placement (PTx = 3000 mW), (c) CDF of RMSE of MLE and
CRLB with corner placement and (PTx = 3000 mW).

In Fig. 2.8(a), the median localization RMSE of CRLB and MLE are compared

for elevation angle of θ = π/2 with side and corner placement of antennas. Median

RMSE of CRLB for side placement of antennas begin with 0.89 meters at PTx =

1000 mW and gets as low as 0.25 meters, while corner placement has lower median

error in general from 0.11 meters to 0.09 meters at 3000 mW. Similar to θ = π/4 and

θ = π/3, MLE converges to CRLB as transmit power increases. Median RMSE of

MLE for side placement of antennas begin with 1.23 meters at PTx = 1000 mW and

reduce to 0.52 meters at PTx = 3000 mW, while corner placement does better with

0.67 meters and 0.33 meters, respectively.

In Fig. 2.8(b) CDF of localization RMSE for side placement is represented. The

localization probabilities of a tag below an error of 1 meter for monostatic and bistatic

configuration are 0.35 and 0.82, respectively. The CRLB for those are 0.44 and 0.97,

respectively. In Fig. 2.8(c), the localization probability of a tag with MLE and CRLB

is shown with respect to localization RMSE. The probability of having an error below

1 meter for monostatic configuration with corner placement and PTx = 3000 mW are

0.47 and 0.56, while the CDF of CRLB for those are 0.63 and 0.70, respectively. Side
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Figure 2.9: CDF of RMSE of MLE and CRLB with linear placement of antennas for
deployment with (a) θi = π/4, (b) θi = π/3, and (c) θi = π/2 for i = 1, 2, 3, 4
(PTx = 3000 mW).

placement of antennas increase the performance of monostatic configuration slightly

while degrading bistatic configuration performance substantially.

In Fig. 2.9, a linear array of antennas is considered, where RFID reader antennas

are placed equally spaced on a single side-wall of the room. The CDF of the localiza-

tion RMSE for array placement with θ = π/4 is shown in Fig. 2.9(a). The localization

probabilities of a tag below an error of 1 meter for monostatic and bistatic configu-

ration are 0.46 and 0.60, respectively. In Fig. 2.9(b), CDF of the localization RMSE

for array placement with θ = π/3 is provided. The localization coverage is increased

significantly with increasing elevation angle. The localization probabilities of a tag

below an error of 1 meter for monostatic and bistatic configuration are 0.59 and 0.74,

respectively. The CRLB for those are 0.61 and 0.77. Increasing the elevation angle

to θ = π/2 gives the best results for localization coverage and localization accuracy

as shown in Fig. 2.9(c). The localization probabilities of a tag below an error of 1

meter for monostatic and bistatic configuration are 0.70 and 0.85, respectively, and

the corresponding CRLB are 0.76 and 0.92, respectively. Array placement of anten-

nas results in a performance in between side and corner placement, and provides a

favorable alternative for lengthy and narrow areas.
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In general, configurations with larger elevation angle results better localization

coverage and lower localization RMSE. In Fig. 2.6(a), the median localization RMSE

for θ = π/4 has much higher values compared to θ = π/3 in Fig. 2.7(a) and θ = π/2

in Fig. 2.8(a), for example, at PTx = 1000 mW localization RMSE is not available

for θ = π/4 since its localization coverage is all below 50% for either corner and

side placement of antennas, while θ = π/3 and θ = π/2 have acceptable accuracies.

Especially θ = π/2 has median localization RMSE of 0.5 meters for both side and

corner configuration. At all elevation angles, corner placement of antennas has better

localization coverage for bistatic configuration at PTx = 3000 mW. Monostatic config-

uration does better with side placement of antennas, since in that case the coverage

of antennas overlaps in larger areas. Increasing transmit power not only increases

the localization coverage, but also reduces the localization error. As a conclusion, an

elevation angle larger than θ = π/3 is crucial for localization coverage and accuracy

as well as corner placement of antennas with transmit power at 3000 mW which is

the EIRP limit in EPC Gen2 protocol of UHF RFID systems.
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CHAPTER 3

RSS-BASED MMWAVE LOCALIZATION

The rapid increase in the bandwidth hungry applications for smart devices results in

a crisis because of the sparsely available spectrum [54]. Utilization of the millimeter

wave (mmWave) band is the promising solution for these bandwidth hungry future of

the communication systems. It makes use of larger bandwidths at frequencies above

30 GHz for enabling higher data rates for various applications [55]. The mmWave will

be one of the integral parts for 5G cellular networks because of the available spectrum

at the higher frequency bands, and the possibility of spatial reuse due to penetration

losses. Other than cellular considerations, it is already being used in indoor wireless

backhaul technologies for high capacity low latency connectivity [56,57]. As an exam-

ple, IEEE 802.11ad is a recent wireless mmWave-based standard, that can support

wireless HDMI connectivity or personal docking stations to allow indoor mobility

for smart devices.Beamforming is an essential component of directional communica-

tion at mmWave bands to overcome excessive path and penetration losses. The short

wavelengths of the mmwave has facilitated antenna arrays embedded into portable de-

vices with a compact form factor, making beamforming possible. IEEE 802.11ad has

directional multi-gigabit access as a core feature, which is built on multiple-antenna

beamforming with sector level sweep (SLS) in 60 GHz [58]. SLS is not only a fast

solution for beam-steering, but is also a good candidate for localization applications.

While the use of mmwave for cellular communications have recently received ex-

tensive interest, its use for localization is relatively unvisited. In [59], authors com-

pare several mmwave localization approaches considering psuedo-omnidirectional an-

tenna radiation pattern. In [60], the authors propose triangulation-validation, angle-

difference-of-arrival, and location fingerprinting. A high accuracy localization method

for assisted living systems considered in [61] using a multipath-assisted environment-
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aware technique. The beamforming capabilities with large signal bandwidth of 5G

are envisioned as a great enabler for robust and accurate indoor localization even

with a single anchor node. An RSS-based mmWave indoor localization is proposed

in [62] assuming omni-directional antennas at both ends and LOS conditions.

In this work, we study the fundamental limits of RSS-based mmWave positioning

systems using beamforming considering indoor scenarios for IEEE 802.11ad SLS. To

the best knowledge of the authors, there is no work that studies the fundamental lim-

its of RSS-based mmwave localization explicitly considering beamforming radiation

pattern. We derive the Cramer-Rao Lower Bound on the localization accuracy, and

propose a nonlinear least squares estimator (NLSE). The main contributions of this

work are as follows: 1) A realistic closed-form RSS equation is derived considering

radiation pattern based on antenna array factor; 2) Fundamental limits of localization

accuracy for RSS-based mmWave positioning system are derived in closed form with

a realistic antenna array model; 3) A NLSE is proposed for localization of the user

device and performance is compared to fundamental limits.

3.1 System Model

Consider a mmWave communication system where the base station (BS) has a linear

antenna array of N antennas and the user equipment (UE) has an omnidirectional

antenna as in Fig. 3.1. The spacing between each antenna element at BS is uniform

and denoted with ds. We assume each antenna element can be excited individually

to enable desired beams. The BS creates beams as in SLS at discrete angles based

on number of antenna elements to gather RSS measurements from the UE. The BS

is located at known position xb = [xb, yb] and UE is located at unknown position

x = [x, y] in an l × l square area of the two-dimensional plane in a room. The

distance between BS and UE is defined as d = ‖xb − x‖. RSS varies by the distance
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Figure 3.1: An omnidirectional transmitter antenna at UE and N -element receiver
antenna array at BS as IEEE 802.11ad mmWave communication system.

between BS and UE, and the gain of the antenna array. RSS is explicitly defined

by the common model of Friis’ free space path loss law [55] considering ith beam

direction as follows

P̃i(d, φi) =
PtGt(φ)Gr

L

(
λ

4πd

)2

, (3.1)

where Pt is the transmit power, Gt(φ) is the transmit gain, Gr is the receiver antenna

gain, λ is the wavelength of the signal, and L stands for losses of the mmWave system.

Considering (3.1), RSS in logarithmic scale can be written as

Pi(d, φi)[dBm] =20 log10

(
PtGrλ

2

16Lπ2

)
+ 20 log10Gt(φi)− 40 log10 d. (3.2)

Gain of an antenna is defined by the product of antenna efficiency ε and directivity

D(φ) as G(φ) = εrD(φ). The angle φ is the azimuthal angle between the direction of

the antenna array and the location of UE as shown in Fig. 3.2 and defined as

φ = cos−1

(
x− xb
d

)
. (3.3)

On the other hand, the directivity of an antenna can be defined using the Poynting

vector, which represents directional flux density and denoted by S(θ, φ) where θ and φ

representing elevation and azimuthal angles, divided by the aggregate radiated power.
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Figure 3.2: Azimuthal radiation pattern of linear antenna array and locations of BS
and UE.

Directionality of the array is given by [63] Darray(φ) = A(φ) ×Deelm(φ), where A(φ)

is the array factor for the antenna which depends on arrangement of the antenna

elements, and Delm(φ) represents the directivity of each and every element of the

antenna array. Considering N antenna elements uniformly spaced on a linear array,

the array factor can be defined as [63]

A(φ) =
N−1∑
m=0

ejmψ = 1 + ejψ + ej2ψ + · · ·+ ej(N−1)ψ, (3.4)

where ψ = kds cosφ+β, k = 2π
λ

, and β is the desired phase difference for the beam as

shown in Fig. 3.2. The magnitude of the array factor can be written in trigonometric

equation as [63]

|A(φ)| =
∣∣∣∣sin(Nψ

2
)

sin(ψ
2
)

∣∣∣∣ =

∣∣∣∣sin
(
N
2
kdS cosφ+ β

)
sin
(

1
2
kdS cosφ+ β

) ∣∣∣∣. (3.5)

3.2 Sector Level Sweeping

In IEEE 802.11ad beamforming training, virtualized sectors are used to focus antenna

gain in certain discrete directions. This process, referred to as beamforming training,

takes advantage of the discretized antenna azimuth that reduces the search space of
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Figure 3.3: Sector Level Sweeping.

possible antenna array. After a first sector matching, a second beam training stage

allows further refinement of the found sectors. During this stage, antenna weight

vectors that vary from predefined sector patterns can be evaluated to further optimize

transmissions on phased antenna arrays. In our work, we use the first stage of sector

level sweeping to localize the user equipment by measuring RSS level at each sector.

Sectors are defined by the number of antenna elements since using more antenna

elements imposes higher directionality and narrower beams. In Fig. 3.3, there are 9

sectors presented at 9 discrete azimuth angles. Each of the beams are created using

digital beamforming, and each of the RSS measurements are recorded for localization.

If the UE is not in proximity of a sector, the RSS may not reach the threshold for

detection. In such cases, we discard those sectors from measurements, and truncate

the measurement vector accordingly.

3.3 RSS-Based Localization

Under the assumption of availability of digital beamforming, the UE can locate its

own location based on RSS measurements of different sectors of beams. Let s ∈ RN×1
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be the observation vector from sector level sweeping which is given by

s = p(θ) + n, (3.6)

where n ∈ RN×1 ∼ N (0, σ2
nIN) is an additive white Gaussian noise vector, p(θ) is

the vector which contains the exact RSS information in logarithmic scale regarding

location of the UE represented by θ ∈ R2×1 = [x, y]. Unknown parameters θ1 and θ2

correspond to x and y, respectively. The log-likelihood function of the UE’s location

is expressed as

L(θ) = log p(s; θ), (3.7)

where likelihood function is given as

p(s; Θ) =
1

2πσ2
n

exp

(
− l

2σ2
n

(s− p(θ))T(s− p(θ))

)
. (3.8)

Maximum likelihood (ML) estimate of θ is formulated as

θ̂ = arg max
θ

L(P; θ̂) . (3.9)

which can be expressed as a nonlinear least squares (NLS) problem given by

θ̂ = arg min
θ

(
‖s− p(θ)‖2

2

)
. (3.10)

The nonlinear optimization problem in (3.10) can be solved by Newton-Raphson

method using the iterative approach [52]

θi+1 = θi − HT(s − p(θi)), (3.11)

where H represents Jacobian matrix of p(θ) with respect to θ, and is explicitly

given by

H =

 ∂P11

∂x
∂P21

∂x
· · · ∂PNN

∂x

∂P11

∂y
∂P21

∂y
· · · ∂PNN

∂y


T

. (3.12)
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3.4 Cramer-Rao Lower Bound

The noise term in the (3.6) is assumed to be additive white Gaussian noise (AWGN),

and it does not depend on the location of the UE. Therefore, Fisher Information

Matrix (FIM) can be calculated as [52]

J(θ) =
1

σ2
n

HTH, (3.13)

Using J(θ), CRLB of the Root Mean Square Error (RMSE) on the localization

accuracy on xy-plane which is represented with E(x, y) can be acquired as

E(x, y) ≥
√

tr(J−1(θ)). (3.14)

Please note that CRLB is derived using (3.1)-(3.5) and (3.12), hence CRLB in(3.14)

is in generalized form, and can be derived for any 2D coordinates on xy-plane and

arrangement of antenna array.

3.5 Derivation of the CRLB

In this section we will show derivation of CRLB through obtaining FIM. Using (3.1)-

(3.8), elements of Jacobian matrix of the observation vector, hence elements of FIM

and CRLB, can be derived as follows. The partial derivative of (3.1) can be repre-

sented as

∂P̂i
∂θm

=

∂

(
20 log10

(
PtGrλ

2

16Lπ2

))
∂θm

+
∂
(
20 log10Gt(φi)

)
∂θm

+
∂
(
20 log10

1
d2b

)
∂θm

. (3.15)

The parameters Pt, Gr, λ, and L do not depend on the location of the UE, and can

be considered constants. Hence the resulting partial derivative of (3.1) is given by

∂P̂i
∂θm

=
20

ln 10

(
∂Gt(φi)

∂θm
+
∂( 1

d2b
)

∂θm

)
. (3.16)
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For a special case of ds = λ/2 and assuming antenna efficiency εr = 1, the gain

function becomes

Gt(φi) =
sin(Nπ cosφi)

sin(π cosφi)
=

sin
(

Nπx√
x2+y2

)
sin
(

πx√
x2+y2

) (3.17)

First derivative of (3.17) with respect to θ1 = x is given as

∂Gt(φi)

∂x
=
πy2
(
N cos(Nψi)− cot(ψi) sin(Nψi)

)
sin(ψi)(x2 + y2)3/2

, (3.18)

where ψi = kds cosφi + βi = πx√
x2+y2

. The same solution for θ2 = y is as follows

∂Gt(φi)

∂y
=
−πxy

(
N cos(Nψi)− cot(ψi) sin(Nψi)

)
sin(ψi)(x2 + y2)3/2

. (3.19)

The path loss component does not vary with φi, and it only depends on the distance

between the BS and the UE. Then the derivative of the path loss component with

respect to θ1 = x and θ2 = y is as follows

∂(x2 + y2)−1

∂x
= − 2x

(x2 + y2)2
, (3.20)

∂(x2 + y2)−1

∂y
= − 2y

(x2 + y2)2
. (3.21)

Based on these derivations, using (3.15)-(3.21), the CRLB for any location can be

calculated with known xb with given parameters ds = λ/2.

3.5.1 Asymptotic Behavior of CRLB

In this subsection we will analyze asymptotic behavior of CRLB with respect to num-

ber of antenna elements. For very large N , the partial derivative of (3.16) becomes

∂P̂i
∂x

=
πy2
(
N cos(Nψi)

)
sin(ψi)(x2 + y2)3/2

, (3.22)

for θ1 = x, and for θ2 = y it becomes

∂P̂i
∂y

=
−πxy

(
N cos(Nψi)

)
sin(ψi)(x2 + y2)3/2

. (3.23)
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Table 3.1: Simulation parameters.

Parameter Value

Operating Frequency 60 GHz
Transmit Power (Pt) (EIRP) 30 dBm
Antenna Sensitivity −80 dBm
Room Width and Length 8 m x 8 m
Granularity of Simulations 1 cm
Number of Antenna Elements (N) 32
Antenna Element Spacing (ds) λ/2

Considering large N , the CRLB can be written as

E(x, y) ≥ G(x, y)

N2 cos2(Nψi)
, (3.24)

where G(x, y) represents the portion of CRLB which has the parameters regarding to

the location of the UE and not depending on N . The CRLB is inversely proportional

to the square of number of antenna elements (N2).

3.6 Numerical Results

In this section, we evaluate the limits of accuracy of RSS-based localization and

compare NLSE with CRLB using computer simulations. For simulation tractability,

we consider an empty room of 8 m× 8 m size. We consider a 32 element antenna

array which is located at the center of the side wall, at the same height with the UE.

Antenna elements are uniformly distributed on the array with distance ds = λ/2.

The simulation parameters are given in Table 3.1.

As in SLS, the beams are formed on discrete angles as virtual antenna sectors.

They slice the half circle into number of excited antenna elements as in Fig. 3.2. A

sample realization for N = 32 is shown in Fig. 3.4. Maximum achievable RSS for

all possible locations of UE is given in Fig. 3.4(a). There are no spots below −80

dBm since narrow and directional beams allow signal to reach further distances with

43



0 2 4 6 8
X-axis (m)

-4

-2

0

2

4

Y
-a

xi
s 

(m
)

-80

-70

-60

-50

-40

-30

RSS
(dBm)

(a)

0 2 4 6 8
X-axis (m)

-4

-2

0

2

4

Y
-a

xi
s 

(m
)

0

0.5

1

1.5

2

RMSE
(m)

(b)

0 2 4 6 8
X-axis (m)

-4

-2

0

2

4

Y
-a

xi
s 

(m
)

0

0.5

1

1.5

2

RMSE
(m)

(c)

Figure 3.4: (a) Maximum achievable RSS at any possible UE location with 32 an-
tenna elements at transmitter using SLS measurements. (b) CRLB for 32 antenna
elements based on SLS measurements. (c) NLSE for 32 antenna elements based on
SLS measurements.

44



3 8 16 24 32
Number of antenna elements

0

0.2

0.4

0.6

0.8

1

M
ed

ia
n 

Lo
ca

liz
at

io
n 

R
M

S
E

 (
m

)

CRLB
NLSE

(a)

3 8 16 24 32
Number of antenna elements

50

60

70

80

90

100

E
rr

or
 b

ou
nd

 p
er

ce
nt

ag
e

CRLB
NLSE

(b)

Figure 3.5: (a) Median Localization RMSE for various number of antenna elements.
(b) 1 meter error bound percentage for various number of antenna elements.

less attenuation. However, due to non-overlapping beams there are blindspots even

when for the locations closer than 2 meters to the BS. CRLB for the system with

N = 32 is shown in Fig. 3.4(b). The NLSE performance is given in Fig. 3.4(c) The

performance of the NLSE is close to the CRLB for shorter distances from the BS. As

the distance from the BS gets larger, the performance of the NLSE drops drastically

compared to CRLB. This is mainly due to the antenna sensitivity, which causes to

receive signals from only the antenna sectors directed towards the location of UE at

further distances from the BS.

In Fig. 3.5, the localization accuracy is benchmarked over number of antenna

elements N . In Fig. 3.5(a), median localization RMSE over defined system area is

plotted versus number of antenna elements. The median localization RMSE is higher

than 1 meter for both CRLB and NLSE for N = 3. CRLB is inversely proportional

to the square of number of antenna elements N as shown in Section 3.5. As number

of antenna elements increase, the median error for NLSE drops drastically, especially

from N = 3 to N = 8. The median localization RMSE for N = 4 is 0.87 meters for

NLSE and 0.74 meters for CRLB. Increasing number of antenna elements to N = 8
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Figure 3.6: CDF of Localization RMSE for (a) N = 8, (b) N = 16, and (c) N = 32.
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drops median localization RMSE to 0.17 meters for NLSE and to 0.11 meters for

CRLB. Note that increasing the number of antenna elements after N = 8 does not

decrease median localization RMSE significantly since localization coverage reaches

saturation.

Another performance metric for localization accuracy is error bound of 1 meter

as shown in Fig. 3.5(b). In Fig. 3.5(b) the percentages of the areas with error of 1

meter or less in the system versus number of antenna elements are given for NLSE

and CRLB. CRLB and NLSE are close to each other for lower number of antenna ele-

ments. Asymptotic behavior of CRLB and NLSE differ regarding number of antenna

elements. As number of antenna elements increase, the separation between CRLB

and NLSE gets larger. This is due to the bias of NLSE which is caused by local op-

timum cases due to nonconvex shape of radiation pattern (i.e. side lobes). CRLB is

a lower bound for variance of unbiased estimator. CRLB and NLSE are around 55%

for N = 3. NLSE saturates after N = 16 around 80%, while CRLB keeps increasing

up to 93% for N = 32.

CDF of localization RMSE is given in Fig. 3.6 for N = 8, 16 and 32. The prob-

ability of localization error of 1 meter or below is 0.58 for N = 8 , 0.73 for N = 16,

and 0.81 for N = 32 with NLSE. The CDF of localization error of 1 meter or below

is 0.65 for N = 8, 0.76 for N = 16, and 0.84 for N = 32 with CRLB. NLSE saturates

around at a certain level, which means the localization coverage probability is 0.68

for N = 8, while it is 0.81 for N = 16, and 0.90 for N = 32. Increasing number of an-

tenna elements is critical for having less blindspots and better localization accuracy.

However, due to the limitations of beamforming and beamshapes, increasing number

of antenna elements becomes ineffective for enhancing the accuracy.
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3.7 Conclusion

In this chapter, fundamental limits on the localization accuracy of mmWave system

is studied considering realistic radiation pattern of linear antenna array. Our results

show that high accuracy of localization depends on number of antenna elements,

however accuracy saturates at a certain number due to limitations of beamforming

and angles. In our simulations, NLSE diverges from CRLB as number of antenna

elements increases since side lobes become an interferer at further distances where

number of measurements are limited.
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CHAPTER 4

OCCUPANCY COUNTING USING PROBE REQUESTS

Smart cities of the future are expected to provide better use of public resources,

increase quality of service offered to citizens, and reduce operational costs of public

administrators [6]. Internet of Things (IoT) technology is a key enabler for smart

cities, and it can support a plethora of services, ranging from building health inspec-

tion, to waste management, noise/air quality monitoring, traffic congestion control,

city energy consumption reduction, smart parking/lighting, and automation of smart

buildings [7–9]. Realizing the vision of smart cities necessitate effective use of IoT

technologies for proximity detection, localization, tracking of objects and humans,

and occupancy monitoring [64,65].

Smart buildings constitute a key component of smart cities, which will benefit ex-

tensively from the use of IoT technologies for health monitoring, energy management,

public safety, and surveillance, [66]. In particular, buildings are among the largest

consumers of electricity in the United States: they account for 40% of primary energy

consumption and 72% of electricity consumption [6]. An important portion of the

electricity consumption of buildings is used for heating, ventilation, and air condition-

ing (HVAC). To this end, low cost, seamless, and accurate occupancy counting can

help in achieving significant energy savings in smart buildings, such as by dynamically

scheduling HVAC activity based on real-time building occupancy levels at different

areas [10].

Occupancy counting in smart buildings can be implemented via video processing

and camera systems or deployment of occupancy sensors throughout the building [67].

These options require installation of new equipment that are often costly to deploy.

An alternative way is to use ambient wireless signals of opportunity that uniquely

match to building occupants. While other technologies such as sensors, cameras,
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Figure 4.1: Occupancy counting using probe requests: (a) Capturing burst and in-
termittent probe requests at multiple WiFi Pineapples; (b) Zone-based real-time oc-
cupancy counting.

and RFID provide occupancy tracking at certain building zones, WiFi technology

is already available in most buildings, and can provide good occupancy monitoring

coverage. Even though several positioning solutions exist based on available WiFi

infrastructure, they typically require a connection between user equipment and WiFi

access points (APs) [67] [68].

In this work, we consider the use passive sniffing of WiFi probe requests for oc-

cupancy monitoring and tracking in smart buildings as illustrated in Fig. 4.1. Probe

requests are signals that are continuously broadcast from devices with WiFi tech-
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nology, such as smartphones, laptops, and tablets [69–73]. The probe requests are

not encrypted, and can be captured and decoded with the help of passive sniffers as

shown in Fig. 4.1(a), without connecting to a particular network. Probe requests are

also burst in nature, since they are broadcasted in the air in search of WiFi networks

to get connected, to get a list of available networks, or to handover between WiFi

APs. Frequent transmission of probe requests from mobile devices introduces an op-

portunity to track the occupancy count in different zones of a building by simply

monitoring the probe requests (see Fig. 4.1(b)). In particular, we can capture the

received signal strength (RSS) of probe requests using sniffers such as WiFi Pineapple

(WiFi-PA) [74], which can then be used for occupancy monitoring inside the building.

To the best knowledge of the authors, there are no detailed studies in the literature

that report efficiency of occupancy counting using WiFi probe requests using varying

number of reference nodes to track individual devices. In this work, we use WiFi probe

requests captured at various reference locations for occupancy monitoring in smart

buildings as summarized in Fig. 4.1. To this end, seven WiFi-PAs are deployed at

various locations within the FIU Engineering Center, and probe requests are collected

over multiple days. The burst and intermittent nature of probe requests require post

processing of the data to make it ready for the localization and tracking. Subsequently,

at every sampling window, various localization techniques are used to obtain location

estimates of each WiFi device, which are further refined using an Interacting Multiple

Model (IMM) filter for tracking user location. Position estimates are then aggregated

into one of the eight occupancy zones inside the building for real-time occupancy

counting.

The main novel contributions of this work can be summarized as follows:

• We propose an adaptive tracking algorithm, which enables to study occupancy

count with burst and intermittent measurements, as well as the varying number
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of positioning reference nodes (sniffers) during location tracking. To authors’

best knowledge, there is no similar study considering both conditions in the

literature.

• We develop estimators and heuristic methods to localize and track the target

node even with measurements from a single reference node in the worst case. In

our experiments, we observe that 47.3% of the time, probe requests are detected

by a single reference node whereas 36.9% of them are received by two reference

nodes. Thus, including them in tracking and occupancy counting is crucial for

robustly estimating occupancy count in building zones.

• We implement simulations with realistic WiFi channel models to show the oc-

cupancy detection performance of our proposed framework. We also show the

accuracy of our approach using real world data, by carrying out an experiment

with WiFi-PAs as the probe request sniffers for occupancy tracking for an indoor

university campus environment. Proposed method achieves up to 90% perfor-

mance in zone-level tracking. Our simulation results agree with experimental

results, which show close performance.

This chapter is organized as follows. In Section 4.1, a brief overview of the existing

literature related to the tracking techniques is presented. Models for the tracking

algorithm are explained in Section 4.2. Localization and initialization for user tracking

using probe request data are presented in Section 4.3, while tracking with the IMM

filters and zone-level occupancy counting are provided in Section 4.4. Subsequently,

gathering of probe requests is explained in Section 4.5 in detail. Simulation and

experimental results are presented in Section 4.6, and finally, concluding remarks and

future prospects are summarized in Section 4.7.
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4.1 Literature Review

Use of probe requests have recently received interest from researchers for various

applications. For example, they are used for load balancing in wireless networks to

find hidden and mobile nodes in [75], and to analyze the handover processes of 802.11

network in [76]. A WiFi flood attack detection system, which is a method based on

the probe request and probe response timeouts, is proposed in [77]. Privacy issues

with probe requests are evaluated in [78], where authors utilize probe requests to link

the devices by creating a table for the requested WiFi network names and comparing

them with the other devices.

Although RSS-based tracking with Kalman filters (KF) is a well-established area,

it is still an interesting research topic due to its various new applications for accu-

rate localization [79, 80]. In [81] two-slope RSS model is used with two Extended

Kalman Filters (EKF) considering an IMM framework to improve tracking accuracy.

In [82], the authors present a novel exponential-Rayleigh RSS model for device-free

localization and tracking with KF, where the main contribution is to include mul-

tipath components in RSS model for improving localization and tracking accuracy.

The accuracy is shown to increase significantly compared to the standard RSS model.

In [83], the RSS variance problem in tracking due to the hardware differences, de-

vice placement, and environmental changes are studied, and a particle filter based

solution is proposed. The results show that the tracking accuracy is more robust

against the RSS variance when the accelerometer and digital compass readings are

included in system. In [84], a novel approach based on compressive sensing is used

for the localization and tracking of WiFi devices. In particular, coarse estimates of

RSS fingerprinting are improved by the compressive sensing techniques, and KF with

map information is used to track the devices.
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In the papers mentioned above, a constant number of reference nodes are always

assumed to continuously localize and track the users. However, in practice, reference

nodes may fail to detect transmitted signal or may not be available at all times. Even

though there are several studies suggesting increased localization and tracking accu-

racy by introducing secondary reference nodes based on their location estimates in

cooperative networks [85], or self-adaptive localization techniques with a similar ap-

proach [86], they have not investigated localization with the limited and dynamically

changing number of the reference nodes.

4.2 System Model

k=0 k=1 k=2 k=3 k=4

Sampling Window (T)

(x1,y1) … (xN,yN)

(x2,y2)

Probe 

Request

Figure 4.2: Tracking by using varying number of reference nodes.

In this work, we consider an occupancy counting scenario as seen in Fig. 4.2. There

are N reference nodes R = {r1, · · · , rN} placed through the tracking zone. The

known location of ith reference node is denoted with xi = (xi, yi), and a target

node has an unknown position x′ = (x′, y′). Burst and intermittent probe requests

are broadcasted from the mobile target node as shown in Fig. 4.3. We consider a

predefined sampling window, where data from all the burst probe requests within the

window are aggregated. In particular, the kth sampling window of duration T spans

the interval between time instances between tk and tk−1. Eventually, the true location

of the target node in the sampling window k is represented with x′k = (x′k, y
′
k).
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During tracking of the mobile target node, some reference nodes may not detect

transmitted probe requests by the target node due to being far away from the target,

poor link quality, and collision of probe request packets, as illustrated in Fig. 4.2. In

such cases, we need to be able to work with RSS from the rest of the reference nodes,

which are called available measurements in sampling window k, and denoted by a set

Pk = {pi,k, . . . , pu,k}, where pi,k represents RSS value at reference node i at sampling

window k.

We refer pi,k as a representative RSS value for window k at node i, since there

might be multiple probe requests observed from a certain target node within the same

sampling window as seen in Fig. 4.3. Then, we have to extract the representative RSS

value from these burst of observations. Even though the RSS values are usually close

or equal to each other for spatio-temporally close probe requests, there might be

outliers due to the varying channel conditions. Using the mean of the RSS values

would therefore bias our results towards outliers; therefore, median value of the RSS

values within the sampling window is used as a representative RSS for that sampling

window as follows

pi,k = median {pi,k,1, . . . , pi,k,mi,k
}, (4.1)

where the ith reference node is considered to receive mi,k different probe requests

within the sampling window k. Let the RSS measurement for the probe request with

the median RSS value be defined as

pi,k = P0 − 10n log10

(
di,k
d0

)
+ w, (4.2)

where P0 is the signal strength at the reference distance d0, n is the path loss exponent

(PLE), di,k = ‖x′k−xi‖ is the Euclidian distance between the ith reference node and

the target device at sampling window k, and w ∼ N (0, σ2) is the noise modeled by

additive white Gaussian noise (AWGN) with a variance of σ2 and mean of zero.
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Figure 4.3: Burst and intermittent probe requests from a mobile device, observed at
three different WiFi-PAs within different sampling windows, with sample-and-hold
window duration L = 2.

Once the representative RSS measurements are obtained for each reference node

i within the kth sampling window, the number of the available representative RSS

measurements from the different reference nodes at sampling window k is given by

|Pk|, which is the cardinality of set Pk. Due to the intermittent nature of probe re-

quests that may result in unavailable measurements within subsequent measurement

windows, a sample-and-hold approach is used to hold RSS values for a certain num-

ber of sampling windows at different reference nodes. Otherwise, the useful ranging

information from the difference nodes would be lost. In Fig. 4.3, an example sampling

windows is given with L = 2, where L is the holding length.

Assume that the last probe request detected by the ith reference node is within

the sampling window k, and the ith reference node did not receive any probe requests

within future sampling window(s). Then, the RSS value of the ith reference node for

the samples after the sampling window k using a holding length L can be written as

pi,k+l =


pi,k+l, if mi,k+l ≥ 1

pi,k, if
∑l

s=1 mi,k+s = 0

, (4.3)
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for l = 1, · · · , L, given mi,k ≥ 1. If there is still no available signal received at the

ith reference node after the sample-and-hold window, the RSS measurement will be

removed from the set of the available RSS values Pk which represented with purple

color in Fig. 4.3.

Given this system model and framework, our main goal in this work is to determine

zone occupancy based on tracking position of WiFi devices with varying number of the

available reference nodes and intermittent transmission of the probe requests. In the

following sections, we explain the localization of the individual target nodes, IMM-

based tracking with varying conditions, and finally zone-level mapping and occupancy

counting of WiFi devices.

4.3 Localization and Initialization Techniques

In this section, RSS-based localization of the target node with varying number of

reference nodes and different levels of a priori information will be presented. The

technique used for localization changes with the number of available reference nodes

and the unknown parameters is shown in Table 4.1. Since the unknown parameters

are revealed in time, we will use them in the following sampling windows as prior

information. The novelty of our system lies in the use of any number of reference

nodes without discarding any single probe request.

Below, we will first consider heuristics and algorithms for estimating target lo-

cation when we do not know the prior location information of the target (e.g., the

target enters a building and no prior measurements available). Subsequently, in Sec-

tion 4.4 we will investigate how we can improve the localization accuracy when the

prior trajectory of the target is available.
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Figure 4.4: Tracking scenarios under the different circumstances, (a) initialization
with |Pk| = 1 and (b) Model-1, (c) initialization with |Pk| = 2 and (d) Model-2, and
(e) both Initialization with |Pk| ≥ 3 and Model-3.

4.3.1 RSS Available at Three or Less Reference Nodes

First, consider the case that the RSS measurement in the sampling window k is

available at only a single reference node (i.e. when |Pk| = 1), and P0 and n are

unknown. Since P0 and n can only be estimated when |Pk| ≥ 4 (see Section 4.3.2),

we consider that (as in [87]) P0 and n are obtained by averaging over (potentially

limited number of) ground truth measurements where the location of the target is

known.
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Table 4.1: Tracking models under various circumstances.

No Bayesian Tracking Bayesian Tracking
|Pk| = 1 Heuristic-1 Model-1 (j = 1)
|Pk| = 2 Heuristic-2 Model-2 (j = 2)
|Pk| = 3 Heuristic-3 Model-3 (j = 3)
|Pk| ≥ 4 NLS Model-3 (j = 3)

Then, the target device is assumed to be at the vicinity of the available reference

node, and we may estimate the location of the target device to be

x̂′k = median {Su − ∪Nu=1Su|u 6= i}, (4.4)

where Si is the set of possible locations in the coverage of ith reference node, consider-

ing a circular coverage area for all reference nodes. In other words, (4.4) implies that

the location is estimated to be in the median location of possible positions sampled

densely within the coverage area of the reference node. On the other hand, as shown

in Fig. 4.4(a), coverage area of several reference nodes may overlap, and the location

of the target node is assumed not to be within the coverage area of the reference

nodes that do not have the RSS measurement from the target node. Even though

the location estimate in (4.4) is relatively coarse and based solely on the coverage

area of the reference nodes, it is acceptable for the zone-level estimation, and we can

still utilize the probe request measurements even if they are available only at a single

reference node. It also allows to initialize the IMM tracking algorithm in Section 4.4

at a better location for quicker and more accurate estimation, and to avoid local

optimums.

Second, consider that the RSS information from the target node at sampling

window k is available only at two reference nodes (|Pk| = 2) and no prior information

is available on the location of the target node. Then, the location estimate x̂k for the
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sampling window k can be estimated as follows:

x̂′k = xi +

(
d̂i,k +

d̂i,k + d̂u,k − diu
2

)
xu − xi
‖xu − xi‖

, (4.5)

where dij represents the distance between the ith and uth reference nodes, and the

estimated distance between the ith reference node and the target node (d̂i,k) based

on the RSS measurements is given as

d̂i,k = 10
P0−pi,k

10n . (4.6)

In other words, as shown in Fig. 4.4(c), the target node is assumed to be on the straight

line that passes through the locations of the two reference nodes, and positioned on

the line depending on the RSS measurements at each node.

Third, consider that at sampling windows k, RSS measurements are available at

three or more reference nodes (|Pk| ≥ 3). Then, we consider a linear least squares

(LLS) solution as a low computational complexity method [26,88] that has acceptable

localization performance as shown in Fig. 4.4(e). The location of the target device

can be obtained by solving the LLS problem in the form Mxk = b with

M =


x1 −

1

N

∑N
i=1 xi y1 −

1

N

∑N
i=1 yi

...
...

xN −
1

N

∑N
i=1 xi yN −

1

N

∑N
i=1 yi

 , (4.7)

b =
1

2



(x2
1 −

1

N

∑N
i=1 x

2
i ) + (y2

1 −
1

N

∑N
i=1 y

2
i )

−(d̂2
1,k −

1

N

∑N
i=1 d̂

2
i,k)

...

(x2
N −

1

N

∑N
i=1 x

2
i ) + (y2

N −
1

N

∑N
i=1 y

2
i )

−(d̂2
N,k −

1

N

∑N
i=1 d̂

2
i,k)


, (4.8)

where M and b are defined with the known position of the reference nodes (xi, yi)

and ranging information for reference nodes using (4.6). The solution to the LLS
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problem can then be found by solving for x′k, as follows:

x̂′k = (MTM)−1MTb. (4.9)

4.3.2 RSS Available at Four or More Reference Nodes

Consider now that the RSS information is available at least at four reference nodes,

i.e., |Pk| ≥ 4. Then, adapting [89], a nonlinear least squares algorithm is used to solve

the localization problem with unknown parameters. The optimization problem is

based on the relaxation of a maximum likelihood estimator with Taylor expansions of

RSS defined in (4.2), around assumed values of unknown parameters [89]. The general

optimization problem is defined as a special type of quadratic problem, general trust

region problem, given as follows

minimize
yv

‖Zvyv − bv‖2 (4.10)

subject to yTvDvyv + 2fTv yv = 0,

where Zv is the translation matrix and yv is the vector for unknown parameters and

their derivations for case v, and bv holds the measurements regarding the unknown

parameters. The constraint yTi Diyi + 2fTi yi = 0 defines the feasible set for solution

of optimization, where Di and f i are the selection diagonal and vector, respectively.

Each of these vectors and matrices are defined and given explicitly for three different

availability level of a priori information below (i.e., estimated or unknown P0 and n).

Unknown P0 (v = 1) In the case of unknown P0 and x′k with knowledge of n,

at least three reference nodes are required to estimate P0. If the number of the

reference nodes are less than three, approaches introduced in Section 4.3.1 are used.
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The optimization problem given in (4.10) for this case is written as

Z1 ,


λ1 −2λ1a1 −1

...
...

...

λN −2λNaN −1

 ,f 1 ,

[
− 1

2
0 0 0

]T
,

b1 ,
[
− λ1‖a1‖2, · · · ,−λN

∥∥aN‖2]T ,D1 , diag(0, 1, 1, 0),

where λi , 10pi/(5n) and α = 10P0/(5n), and solution for minimization problem is

defined as y1 ,
[
‖x′k‖2 x′Tk α

]
.

Unknown n (v = 2) In the case of unknown n and x′k with knowledge of P0,

optimization matrices and vectors become

Z2 ,


1 −2a1 q1 ln q1

...
...

...

1 −2aN qN ln qN

 ,f 2 ,

[
− 1

2
0 0 0

]T
,

b2 ,
[
q1 − ‖a1‖2, · · · , qN − ‖aN‖2

]T
,D2 , diag(0, 1, 1, 0),

where qi , 10(P0−pi,k)/(5n0) and n0 is the tuning parameter of the algorithm for n. The

final solution of the optimization is defined as y2 ,
[
‖x′k‖ x′Tk δ

]
where δ , (n−n0)

n0

shows the suitability of the tuning parameter.

Unknown P0 and n (v = 3) In the worst case, which there is no prior information

on the parameters, we have to estimate both the location of the target nodes and

channel parameters with below matrices and vectors

Z3 ,


1 −2a1 −g1 g1 ln g1

...
...

...
...

1 −2aN −gN gN ln gN

 , b3 ,
[
− ‖a1‖2, · · · ,−‖aN‖2

]T
,

f 3 ,

[
− 1

2
0 0 0 0

]T
, D3 , diag(0, 1, 1, 0, 0),
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where gi , 10(P̄0−pi,k)/(5n0) and P̄0 is the tuning parameter for P0. Solution for the cor-

responding NLS to a general trust region problem is defined as y3 ,
[
‖x′k‖2 x′Tk γ γδ

]T
where γ , 10(P0−P̄0)/(5n) is a measure on P0 tuning parameter suitability. The IMM

based tracking takes the localization estimates as an input, which is explained in the

following section in details.

4.4 IMM Tracking and Occupancy Counting

In this section, we study Bayesian tracking of the individual WiFi devices by exploit-

ing prior location information of the mobile device. Probe requests are intermittent,

which means that the target device may not send any probe signals over a duration of

many sampling windows. Even when the probe requests are transmitted by the mo-

bile device, they may not always be captured at the reference node. Therefore, using

a standard Kalman filtering technique (see e.g. [90, 91]) that assumes uniform set of

system parameters will not work effectively. Considering varying system properties

such as the number of the available measurements and prior information related to the

device, we consider an IMM framework that employs multiple, interacting Kalman

filters in this study. The overall model [92] is represented with a linear system as

follows

xk = Aj
k−1xk−1 + qjk−1 (4.11)

yk = Hj
kxk + rjk, (4.12)

where xk ∈ Rn is the state of the system during sampling window k, Aj
k−1 is the tran-

sition matrix for the model order j, where the model order depends on the number of

available reference nodes (see Table 4.1). which is in effect during the sampling win-

dows k−1, and qjk−1 ∼ N (0,Qj
k−1) is the process noise which is Gaussian distributed

with zero mean and covariance Qj
k−1 for the jth model. The measurement on the
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sampling window k is denoted by yk ∈ Rm, where Hj
k is the jth measurement model

matrix, and rjk ∼ N (0,Rj
k) is the measurement noise on the step k for jth model

with Gaussian distribution of mean zero and covariance Rj
k. As explained earlier,

each model in the system has its own Kalman filter parameters, and the resulting

estimate is calculated with the selection of the correct model based on the status of

the system such as |Pk| and prior information of channel parameters.

A standard Wiener process velocity model is used for all of the models, with

varying measurement noise (rjk) and step sizes based on sampling window length

(∆tk = T ). Defining matrices of the models are given as

Aj
k =



1 0 ∆tk 0

0 1 0 ∆tk

0 0 1 0

0 0 0 1


, Hj

k =

1 0 0 0

0 1 0 0

 . (4.13)

4.4.1 Review of a Generic Kalman Filter

Kalman filtering, in general, has two steps: 1) prediction and 2) update. In the

prediction step, next state of the system is predicted with the given previous mea-

surements, and in the update step, the current state of the system is estimated with

the given measurement at that sampling window [92]. In below, first the general pro-

cedure for the prediction and update stages are mathematically summarized (model

index j will be dropped for brevity), and we will subsequently discuss how Kalman

filters with multiple models can be utilized for our scenario.

Prediction

m−k = Ak−1mk−1 , (4.14)

U−k = Ak−1Uk−1A
T
k−1 + Qk−1 , (4.15)
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where m−k and U−k are the predicted mean vector and the predicted covariance ma-

trix of the state in sampling window k, respectively, while mk−1 and Uk−1 are the

estimated mean vector and the estimated covariance matrix of the state in sampling

window k − 1. Mean and covariance of states consist of position and velocity infor-

mation of the target device.

Update

vk = yk −Hkm
−
k , (4.16)

Sk = HkU
−
k HT

k + Rk , (4.17)

Kk = U−k HT
kS−1

k , (4.18)

mk = m−k + Kkvk , (4.19)

Uk = U−k −KkSkK
T
k , (4.20)

where vk and Sk are the measurement residual and measurement prediction covari-

ance on state for sampling window k, respectively. Kalman gain Kk is the tuning

parameter, which adjusts prediction’s correction for sampling window k. Estimated

mean and covariance of the state at sampling window k with adding the measurements

are represented with mk and Uk, respectively.

4.4.2 IMM Based Kalman Tracking of Target Location

Section 4.4.1 summarized the model for a generic Kalman filter; in this section, we

consider a multi-modal Kalman filter, whose parameters change with respect to the

model order, and the models are selected based on the number of available RSS mea-

surements at different reference nodes. These models also vary by their measurement

error since the number of measurements affects the localization accuracy. Each filter
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receives a raw location estimate as an input (relying solely on measurements), and

outputs a filtered location output using a technique that varies by the model.

First, consider that the RSS of the probe request from the target mobile device is

available only at a single reference node (i.e. |Pk| = 1). Then, since we have access to

prior location estimate, a better location estimate than that was introduced in (4.4)

and Fig. 4.4(a) can be obtained, as summarized in Fig. 4.4(b) as Model-1 (j = 1).

The target node is assumed to be on the straight line between the predicted position

for sampling window k (represented by x−k ), and the position of the available reference

node (xi), utilizing ranging information from the reference node as

x̂′k = xi + d̂i,k
x′−k − xi
‖x′−k − xi‖

, (4.21)

where d̂i,k is as in (4.6). In other words, position of target node is estimated as d̂i,k

far from available reference node (from measurements), towards predicted position by

IMM. In particular, the predicted position based on previous location estimate and

trajectory are used for reducing the error of the estimation in Fig. 4.4(a) which relied

only on a single reference node measurement.

When |Pk| = 2 (probe RSS measurement available at two reference nodes), a sim-

ilar approach as illustrated in Fig. 4.4(d) called as Model-2 is followed. In particular,

we consider the predicted position of the target node (x′−k ) in (4.14) for compensating

bias with estimated location in (4.5) as

x̂′k =

x′−k + xi +

(
d̂i,k +

d̂i,k+d̂u,k−diu
2

)
xu − xi
‖xu − xi‖

2
. (4.22)

Simply, the position of the target node is first estimated as in (4.5) using the measure-

ments from the two reference nodes, and then the bias of the estimation is adjusted

with the predicted position by taking average of the estimate and the prediction.

Finally, in Model-3 (i.e. when |Pk| ≥ 3), LLS or NLS estimator is used based

on the number of reference nodes and unknown parameters. If either P0 or n is
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Figure 4.5: Map of building floor used in experiments with eight different building
zones, as well as the locations of the WiFi sniffers placed across the different zones.

unavailable, we use NLS to estimate the location as well as that parameter, as de-

scribed in Section 4.3.2. If there are no unknown parameters (i.e. all the parameters

are estimated), LLS is used to estimate the location due to its lower computational

complexity.

In each model, the 2× 2 measurement noise covariance matrix Rj
k varies with the

number of measurements as follows:

Rj
k =


diag(σ2

M/1, σ
2
M/1), if j = 1

diag(σ2
M/2, σ

2
M/2), if j = 2

diag(σ2
M/4, σ

2
M/4), if j = 3

, (4.23)

where σ2
M represents the variance of the error in the location estimates. Using the

covariance matrix as in (4.23) for different models ensures that the prediction is

weighted more when there are limited number of available reference nodes, while

measurements are weighted more when there are at least three or more available

reference nodes.
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4.4.3 Occupancy Counting

Our final goal is real-time occupancy monitoring, by counting the number of users

within coarsely defined occupancy zones in the area of interest. The IMM filtering

results lead to mapping of the each target node to a zone which is created as illustrated

in Fig. 4.1. Sum of the individual target nodes in a zone gives the occupancy count

of that zone. In this case, there might be a problem when a user switches the device’s

screen off since probe requests may not be sent for 300 seconds to 600 seconds [93].

Thus, this interval should be considered as a grace period for that individual device,

and the user should be kept within the occupancy count for that zone, until the time

threshold expires. In our experimental model, we consider the grace period to be 300

seconds, after which we remove a user from the building zone which has been last

localized.

4.5 Sniffing Probe Requests

In the experiments, seven different WiFi-PA equipment are deployed at various loca-

tions on the floor of a university campus building as in Fig. 4.5. The data captured at

WiFi-PA include absolute time stamp providing the time at which the data was cap-

tured, MAC address of the WiFi device, and the RSS of the WiFi device. Gathered

data is transferred to a server for execution of the occupancy counting.

Probe request mechanism is explained in [76]. Probe requests, which are sent by

WiFi devices to scan WiFi APs at certain channels, are active mechanisms to discover

APs around the mobile device. APs respond with probe responses and beacons. A

problem with probe requests is passing-by and static devices. For instance, there

might be people outside of the building passing by a WiFi device and it still can be

detected by the reference nodes which are close to the border. Such devices usually
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Figure 4.6: Distribution of passing-by, static and tracked devices by number of probe
requests.

send a few low power probe requests while in the vicinity of the reference node. Static

devices (such as wireless printers) send thousands of probe requests with the same

RSS value usually periodically. Passing-by and static devices are removed from the

occupancy count in our analysis using outlier detection and filtering techniques. Our

experimental results indicate that only 40% of the detected devices are in our region

of interest as shown in Fig. 4.6. In total, 33, 847 unique and legitimate MAC addresses

are detected within a period of one week.

Since probe requests are only used to discover APs, they are burst and intermittent

as shown in Fig. 4.3. After connecting to a network, probe requests are rarely sent

to search for a network with better quality or handover possibilities. Therefore, they

could be sent 50 times within a minute (i.e., burst), or do not trigger for 5 to 10

minutes (i.e., intermittent). This depends on the implementation of the IEEE 802.11
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Table 4.2: Simulation parameters of WiFi Probe Request-based tracking.

Parameter Value

WiFi protocol IEEE 802.11n
Floor width and length 40 m x 90 m
Sampling window length (T) 3 seconds
Sampling window hold length (L) 1 to 15
Occupancy grace period 5 minutes
Number of the reference nodes 7
Path loss exponent (n) 2− 6
Reference distance (d0) 1 meter
Signal strength at reference distance (P0) −35 dBm
Noise floor −90 dBm
Detection threshold −90 dBm

protocol at the device in terms of both the design of hardware and software. Due to

the mobility, WiFi device needs to send probe requests more frequently since it causes

to lose connectivity with the AP, or degrade the quality of the connection. Therefore,

probe requests can effectively facilitate localization and tracking of the WiFi devices.

4.6 Numerical Results

In this section, we will first investigate the performance of the proposed framework

with computer simulations using realistic WiFi signal propagation data. Subse-

quently, we will present our experimental results and occupancy counting based on

the measurement data that has been collected at FIU College of Engineering and

Computing building.

4.6.1 Simulation Results

The proposed framework is simulated considering an indoor environment with propa-

gation parameters and indoor channel characteristics summarized in Table 4.2. In our
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Figure 4.7: A sample simulation for a given map (Fig. 4.5).

simulations, we used a realistic multipath indoor channel model to generate the RSS

values. It is compared with the ideal flat fading channel results, where there is only a

single strong path together with the AWGN. Probe request statistics such as interar-

rival times and detection probability are included from experimental measurements

as well to increase the reliability of the results. By introducing detection probability,

detection of probe requests by single or multiple reference nodes is modeled realistic.

Also, path loss exponents and reference received powers are used from the obtained

measurements.

An example trajectory from the simulations are plotted as seen in Fig. 4.7 with

the individual position estimates before filtering, as well as the IMM output as the

estimated path. The estimated path is very close to the real path as we expect.

The mean RMSE for the estimated path is 3.83 meters in this realization, while

mean RMSE for individual localization estimates is 6.17 meters which is significantly

higher. Cumulative distribution function (CDF) of the mean tracking RMSE for bare
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Figure 4.8: CDF of mean tracking RMSE for the simulation.

localization estimates without IMM filtering (EST), and the IMM filtering results

are compared for a given scenario in Fig. 4.8. Simulations are averaged over 1000

Monte Carlo realizations with the realistic indoor channel parameters. Median RMSE

for IMM filter is 3.59 meters, whereas 4.01, 3.72, and 4.13 meters for Model-1 (M-

1), Model-2 (M-2), and Model-3 (M-3), respectively. It is also 5.97 meters for the

individual location estimates (EST), which is almost twice the RMSE obtained from

the IMM filter.

This performance is also reflected to the zone-level localization performance (i.e.,

percentage of correctly localizing a target device within the building zone where its

true location belongs) as shown in Fig. 4.9. Even though the zone-level localization

performance varies from 88% to 97% for IMM, the median performance is 92.5%.

Individual Kalman filters are very close to each other with the median performance

of 88.5% with range of 80% to 95%. Similar to the tracking RMSE, performance of
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Figure 4.9: Zone-level localization performance.

zone-level localization is much lower for individual location estimates as the median

performance is 83.2%, with a range between 76% to 87%.

4.6.2 Experimental Results

In addition to simulations, extensive experimental data are collected at FIU to vali-

date the proposed methods with real measurements. First, several experimental walks

are considered using WiFi devices to compare the simulation and experimental results

of the ground-truth data on a fixed path within the building, using the reference nodes

as shown in Fig. 4.7. The track is walked at different times of the day along with

several WiFi devices. The comparison of the zone-level localization performance is

presented in Fig. 4.10. The performance of simulations with the AWGN and realistic

indoor channel are close to each other for both the individual location estimates and

the IMM. The median performance of the individual location estimates is 84% under
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Figure 4.10: Simulation and experiment performance comparison of zone-level local-
ization with and without IMM.

ideal AWGN, whereas it is 83% under realistic indoor channel. Performance with

ground-truth data is lower with 64%. The IMM improves the median performance

to 90% in the simulation results, whereas it increases to 78% in the experimental

results with real data. The growth in the experimental performance using IMM is

substantial with 14% increase. Hence, the IMM plays a critical role in the zone-level

localization of the individual target devices.

Once we localize all the target mobile users in building zones (filtered out from

passing by users and other fixed devices as shown in Fig. 4.6) using IMM, we can

obtain the real-time occupancy count in different building zones using these location

estimates. Using experimental data, occupancy counting results over a period of

24 hours are shown in Fig. 4.11 as a sum of total occupants over all the zones in a

week day. As expected, peak hours of the occupancy in the building is between 12 PM

and 6 PM, where most of the classes are scheduled. The lowest occupancy is around

5 AM. Fig. 4.11 also shows that if we enforce the localization and occupancy counting
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Figure 4.11: Total number of occupants on a weekday for sample-and-hold window
lengths L = 1 and L = 15. Scenario with Nmin = 4 necessitates at least four reference
nodes to localize a target device, while Nmin = 1 can localize a target device within a
building zone using a single reference node.

technique to use at least Nmin = 4 reference nodes (|Pk| ≥ 4), a significant portion

of the occupancy is not detected. Therefore, the proposed techniques in Fig. 4.4 and

the IMM method can help in significantly improving the occupancy counting.

Fig. 4.11 also compares the effects of the sample-and-hold window length L on

occupancy counting results. Even though the total occupancy count with Nmin = 4

(i.e. the measurements are dropped if |Pk| ≤ 3|) at peak hours increases to 40 using a

sample-and-hold method using holding length of L = 15, this is still significantly lower

compared to when we use IMM based tracking with Nmin = 1 (i.e. measurements

are used regardless of number of available reference nodes). Use of a larger holding

window also smooths the total occupancy count when the IMM approach is used.

In Fig. 4.12 and Fig. 4.13, we provide occupancy counting results in each of the

eight individual zones over a period of one whole week day and four hours, respectively,

considering different time resolutions. Although the individual zones show similar

75



0 4 8 12 16 20 24

Time of day

0

5

10

15

20

25

N
um

be
r 

of
 to

ta
l o

cc
up

an
ts Zone-A

Zone-B
Zone-C
Zone-D
Zone-E
Zone-F
Zone-G
Zone-H

Figure 4.12: Total number of occupants within the individual zones given in Fig. 4.5
throughout a weekday.

behavior throughout the day, their peak hours are different as seen in Fig. 4.12. For

instance, Zone-E has a peak at 11 AM, while Zone-D has its peak at 5 PM. The most

common characteristic is that all of the zones have their minimum around 5 AM in

the morning. Zone-C has the highest peak among all zones, with 24 people around

3 PM. Another interesting observation is that Zone-H, which consists a student study

area and senior design laboratory, has occupants until very late hours, while Zone-C

has least occupied zone at midnight, since it consists mostly administrative offices.

In Fig. 4.13, occupancy counts of individual zones are shown within peak hours, i.e.

from 10 AM to 2 PM. The movement of people from one zone to another is more

visible in this figure.

In Fig. 4.14, percentage of occupants based on hours spent in the building is

presented. For instance, 11.5% of the people spend 2 to 3 hours in the building,

whereas the people spending less than 1 hour is less than 1%. More than half of the
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Figure 4.13: Total number of occupants within individual zones given in Fig. 4.5 at
peak hours.

occupants spend less than 6 hours in the building, with 13% of them spending 3 to 4

hours.

4.7 Conclusion

In this chapter, we proposed a new framework for real-time occupancy counting of

buildings by passively sniffing WiFi probe requests. We first differentiate the static

and passing-by devices in the building using probe request statistics, and then use

the information for the remaining users for localization, tracking, and occupancy

counting inside the building. The proposed method assures the utilization of the

probe requests regardless of the number of the available reference nodes that they are

detected, which allows to detect three times more users in the occupancy counting

process when compared to requiring at at least four reference nodes for localization.
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In our experimental results, we are able to perform zone-level occupancy tracking with

up to 90% accuracy. We are also able to determine the peak hours of the individual

zones as well as the quiet times of the building. Our future work includes use of

more advanced filtering techniques such as particle filters to further improve zone

level localization and occupancy counting performance.
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CHAPTER 5

INDOOR UAV NAVIGATION

Search and rescue, public safety, and emergency management applications may require

navigation of first responders to a victim’s location. This can be achieved by using

the signals radiated from Internet of Things (IoT) devices carried by the victims such

as mobile phones, smart watches, fitness trackers, or other smart sensors, which can

be probed to send RF signals repetitively [94, 95]. To this end, unmanned aerial

vehicles (UAVs) have been recently gaining more attention due to communication,

autonomous navigation, and video capture capabilities, and they can help in localizing

people during emergency situations. For example, they can be quickly deployed within

a building on fire to localize victims and first responders, to deliver first aid kits, and to

maintain wireless connectivity with them for enabling real-time situational awareness

through live video.

In this chapter, as shown in Fig. 5.1, we consider the problem of navigating a

UAV to a Rayleigh fading RF source. We consider a GPS-denied indoor environment

and assume that the RF source continuously radiates signals. For example, most mo-

bile equipment continuously transmit WiFi probe requests to discover nearby access

points [96], and a mobile device may also be forced by a UAV to transmit wireless

signals in case of emergency incidents. In the literature, collaborative localization of a

moving RF source is presented in [97] by a swarm of UAVs based on the D-optimality

criteria. Another study in [98] presents an optimal flying path for UAV-assisted

IoT sensor networks using a location aware multi-layer information map. It con-

siders different utility functions based on the sensor density, energy consumption,

flight time, and flying risk level, and weighted sum of multi-objective utility func-

tions is maximized using a genetic algorithm. Several other works in the literature

consider Q-learning and other reinforcement learning (RL) techniques for naviga-
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tion of robots [99, 100]. To our best knowledge, there are no studies that consider

the use of Q-learning for navigation of UAVs based on the received signal strength

(RSS) observations from a Rayleigh fading RF source. In particular, in indoor en-

vironments, Rayleigh fading signal from the source may cause significant variations

in the RSS model, and hence it can bias the navigation algorithms while deciding

on the optimum actions for the UAV. On the other hand, Q-learning is a model-free

reinforcement learning technique which avoids bias in the navigation of UAV.

In this chapter, we study the behavior of Q-learning based UAV navigation under

Rayleigh fading assumption, and investigate averaging of the RSS over different time

spans considering different UAV speeds. We also study a variable learning rate tech-

nique, which is shown to provide better convergence time in reaching to the Rayleigh

fading source when compared with a fixed learning rate technique. We compare the

proposed algorithm with an existing Reinforcement Learning (RL) technique [101].

Contributions of this work can be summarized as follows:

• A model-free Q-learning algorithm for indoor UAV navigation to a Rayleigh

fading RF source is proposed

• Proposed algorithm is compared with an existing RL based technique

• Varying and fixed learning rates are studied for convergence time

• Various UAV speeds are studied for convergence time

System Model: The RSS at a UAV from a Rayleigh fading wireless source can be

calculated using the distance between the source and the UAV as PR = PTx−PL(d)−

S, where PR is the RSS, PTx is the transmit power of the source, PL(d) is the path

loss at distance d, and S is a random variable that captures Rayleigh fading which

may cause deep fades in the RSS. In this letter, we consider 3GPP TR 36.814 path

loss model [102], given by PL(d) = 128.1 + 37.6 log10(d/1000).
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Figure 5.2: Rayleigh fading RSS for three UAV velocities.

As an example, in Fig. 5.2, we present Rayleigh fading RSS for three different UAV

velocities, considering a fixed RF source. Results show that the RSS may observe

deep fades which may cause as large as 40 dB losses for certain cases. Moreover, the

variation of the RSS increases with larger UAV speeds as shown in Fig. 5.2. Such

deep fades may bias the UAV that it may be navigating in the wrong direction, even

when the UAV may be approaching closer to the target node. In the next section, we

will present the proposed Q-learning algorithm, and discuss how the Rayleigh fading

effects as in Fig. 5.2 can be mitigated for navigation to target.
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State RSS (dBm)

s=1 PR > −40
s=2 −50 ≤ PR ≤ −40
s=3 −60 ≤ PR ≤ −50
s=4 −70 ≤ PR ≤ −60
s=5 −80 ≤ PR ≤ −70
s=6 −90 ≤ PR ≤ −80
s=7 −100 ≤ PR ≤ −90
s=8 −110 ≤ PR ≤ −100
s=9 −120 ≤ PR ≤ −110
s=10 PR < −120

Table 5.1: UAV states with respect to source RSS.

5.1 Q-Learning Based Source Tracking

We consider the use of Q-learning [103, 104] algorithm to navigate the UAV towards

the wireless source based on the RSS observations at the UAV. Q-learning is an

improved RL technique which can operate without any prior knowledge about the

environment or the model for RSS observations. It learns by trial and error, and

iteratively builds a value function of each state-action pair. The goal is to select the

action which has maximum Q-value using following update rule at each step:

Q(s, a)← Q(s, a) + α
[
r(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
,

where s′ is the state reached from state s after action a, α ∈ [0, 1] is the learning

rate to control learning speed, and r(s, a) is the immediate reward received as result

of action a. We use two different learning rate models: a fixed learning rate with α

set to a constant, 0.5, and a varying learning rate where α is dynamically modified

based on the observations. In varying learning rate model, as the quality of signal

gets better (i.e. UAV is closer to source) learning rate increases not to miss or pass

by the source. The discount factor is represented with γ ∈ [0, 1], which determines

the importance of future rewards.

Balancing of exploration and exploitation is a critical issue in RL techniques [103]

and there are several strategies to maintain this balance, such as ε-greedy and softmax
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Algorithm 1 Q-learning based indoor UAV navigation.

1: initialize all Q(s, a) table to zero
2: repeat (for each step):
3: obtain RSS and average the last three RSS
4: obtain r(s, a) and s according to averaged RSS
5: choose a from s using policy from Q using ε-greedy
6: take action a, observe r(s, a) and s′

7: check the new location using action a for obstacle(s)
8: while any obstacle at new location with action a do
9: leave a and select any other action a randomly, end
10: update Q-value according to equation (1)
11: if varying learning rate
12: update α ∈ [0, 1] values according to s′, end
13: s← s′

14: until s is terminal

approaches [105]. In here, the ε-greedy exploration strategy is used, where ε ∈ [0, 1]

is the exploration probability. While the action is generally selected at each step

according to highest Q-value for exploitation, for exploration the selection is carried

out randomly with a small probability ε. We consider that the RSS observed at the

UAV belongs to a finite set s ∈ {1, ..., 10} of 10 different states as in Table 5.1.

The pseudo-code of the Q-learning technique that we used is presented in Algo-

rithm 1. We consider two dimensional mobility and eight actions a ∈ {1, ..., 8} for a

UAV corresponding to eight uniformly-spaced directions in angular domain as shown

in Fig. 5.1. This is because we assume that the UAV flies at a fixed height, and

that the distance between the floor and the ceiling are insignificant compared to the

distance between the UAV and the RF source. The Q-values of each state-action pair

are then stored in a 10 × 8 matrix, initialized to zero at the beginning of the algo-

rithm, and populated with the value of each specific action as new observations are

obtained. The reward is set as the difference between the latest two values of the RSS,

which increases the likelihood of choosing actions that will move the UAV towards

the target. On the other hand, due to Rayleigh fading, UAV may also occasionally

choose erroneous actions.
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Figure 5.3: Map of FIU Engineering Center 3rd floor.

In order to minimize erroneous decisions due to deep fades in the RSS (see

Fig. 5.2), we average the RSS over a sampling duration TS before feeding it into

the Q-learning algorithm. While a large averaging window TS will help in minimizing

wrong decisions due to deep fades, it will also introduce delays in choosing a new ac-

tion value, and hence may delay the convergence time. On the other hand, a shorter

averaging window will enable more frequent actions, albeit with more likelihood of

RSS being subject to deep fades. Therefore, there is an optimum averaging window

duration, which will result in the fastest navigation of the UAV to the RF source.

5.2 Simulation Results and Conclusion

The map of the FIU EC 3rd Floor (75 m by 120 m) is used for simulations as shown

in Fig. 5.3. It is assumed at the beginning of the simulation that the UAV and the

RF source are positioned at the opposite corners of the floor considering a worst case

scenario. The UAV can only navigate through the aisles on the map, without crashing
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Figure 5.4: Convergence time of (a) Q-learning (varying learning rate); (b) Q-learning
(fixed learning rate); (c) RL (single state).

into any walls. If any possible crash is detected for a selected action (e.g., through

sonar sensors), the UAV tries a different action. The RSS is assumed to vary based on

Rayleigh fading caused by the velocity of UAV and path loss dictated by the distance

between the UAV and the target node.

Simulation results are obtained under several sampling durations, a variable (heuris-

tically optimized) learning rate α, and three different UAV speeds, as shown in

Fig. 5.4. In Fig. 5.4(a) shows the convergence time for Q-learning with variable

learning rate. The time it takes for the UAV to reach the vicinity of the target

(i.e., the convergence time) tends to decrease with larger sampling duration for lower

speeds. On the other hand, for high velocities, the convergence time starts increasing

for larger sampling duration, since longer distances will be traveled by the UAV in

case of wrong decisions. In general, larger velocity, at least for the considered set of

three UAV velocities in this letter, results in faster convergence to the target node.

Use of fixed learning rate has a noticeable impact on the convergence performance

of the Q-learning algorithm. In particular, Fig. 5.4(b) shows results with same UAV

and target locations, and we present the convergence performance when the learning

rate is fixed to 1. Using a fixed learning rate decreases responsiveness of the system.

Hence, the convergence time increases significantly.
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Finally, the proposed Q-learning algorithm is compared with the RL-based tech-

nique in [101]. In Fig. 5.4(c), the results for the RL-based technique is given. Although

it achieves a similar performance to our proposed algorithm at higher velocities, our

proposed algorithm performs better at lower velocities. Since the emergency situa-

tions may require delicate actions to avoid dangerous situations for a victim or first

responder, lower velocities may be preferred in most cases.

In general, our overall results prove that it is critical to use a Q-learning based

approach for avoiding the navigation bias in a Rayleigh fading environment with suffi-

ciently large window. Another observation is that a variable learning rate is preferable

compared to a fixed learning rate for increasing responsiveness of the system.
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CHAPTER 6

CONCLUDING REMARKS & FUTURE WORK

Wireless positioning and tracking systems for Internet of Things devices are ex-

pected to fulfill requirements of smart buildings and smart cities. There are many

challenges associated with positioning and tracking systems. In this research we have

studies some of the important challenges of which can be categorized into positioning

with directional RF transmission considering RFID and mmWave systems, ubiqui-

tous tracking with burst and intermittent signals considering WiFi probe requests,

and navigation to a Rayleigh fading source. In this chapter, we present the conclusions

of this research work and also identify key directions for future research.

In Chapter II, closed-form equations are derived for fundamental limits of local-

ization accuracy for UHF RFID technologies considering realistic radiation patterns.

Monostatic and bistatic configurations are compared recognizing tag and reader an-

tenna sensitivities. Our results show that high accuracy of localization does not only

depend on the transmit power, but also depends on the use of right elevation angle

and antenna placement and the use of bistatic configuration in localization system. In

our simulations it is shown that among the considered elevation angles, θ = π/2 yields

the best results for the given deployment scenario, since it maximizes the received

power, results in largest localization coverage for IoT and minimizes the localization

error. We observed that bistatic localization coverage drops with the use of side place-

ment of antennas, while it increases monostatic localization coverage. Using bistatic

configurations improves the probability of localizing the tag with higher accuracies

when compared with monostatic configurations. The best results are achieved with

bistatic configuration and side placement of the antennas. An important direction

for future research would be taking Rayleigh fading into consideration for capturing a

87



more realistic indoor channel model and studying the feasibility of the RFID system

experimentally.

In Chapter III, the fundamental limits of RSS-based mmWave positioning systems

studied using beamforming considering indoor scenarios for IEEE 802.11ad SLS. Our

results show that high accuracy of localization depends on number of antenna ele-

ments. Larger number of antenna elements gives better accuracy. However above a

certain number, the localization accuracy saturates due to limitations of beamform-

ing. In our simulations, NLSE diverges from CRLB as number of antenna elements

increases since side lobes become an interferer at further distances where number of

measurements are limited. Future research directions for this work includes study of

NLOS cases with reflections which are more prominent for indoor cases and directional

antenna arrays at both ends of the system for a more realistic system scenario.

In Chapter IV, WiFi probe requests are captured at various reference locations

for occupancy monitoring in smart buildings and their RSS values are used in posi-

tioning and tracking algorithms.The proposed method assures the utilization of the

probe requests regardless of the number of the available reference nodes that they are

detected, which allows to detect three times more users in the occupancy counting

process when compared to requiring at at least four reference nodes for localization.

In our experimental results, we are able to perform zone-level occupancy tracking

with up to 90% accuracy. It is possible to determine the peak hours of the individual

zones as well as the quiet times of the building. Future work includes use of more

advanced filtering techniques such as particle filters to further improve zone level posi-

tioning and occupancy counting performance. Another interesting research direction

for this study would be application of machine learning techniques at various stages

of localization, tracking, and occupancy counting.
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In Chapter V, the problem of navigating a UAV to a Rayleigh fading RF source

is considered. The behavior of Q-learning based UAV navigation under Rayleigh

fading assumption is studied, and averaging of the RSS over different time spans

considering different UAV speeds is investigated. Overall results prove that it is

critical to use a Q-learning based approach for avoiding the navigation bias in a

Rayleigh fading environment with sufficiently large window. Another observation

is that a variable learning rate is preferable compared to a fixed learning rate for

increasing responsiveness of the system. Future directions for research about UAV

navigation would be using a realistic simulator considering Raytracing models as well

as some experimental studies.

89



BIBLIOGRAPHY

[1] N. Patwari and A. O. Hero, III, “Using proximity and quantized RSS for sensor
localization in wireless networks,” in ACM Int. Conf. Proc. on WSNs and Appl.,
ser. WSNA ’03. NY, USA: ACM, 2003, pp. 20–29.

[2] R. Zekavat and R. M. Buehrer, Handbook of position location: Theory, practice
and advances. John Wiley & Sons, 2011, vol. 27.

[3] J. Figueiras and S. Frattasi, Mobile positioning and tracking: from conventional
to cooperative techniques. John Wiley & Sons, 2011.

[4] Z. Sahinoglu, S. Gezici, and I. Guvenc, “Ultra-wideband positioning systems,”
Cambridge, New York, 2008.

[5] The Internet of Things Infographic, Cisco. [Online]. Available: http:
//blogs.cisco.com/diversity/the-internet-of-things-infographic

[6] V. Erickson, S. Achleitner, and A. Cerpa, “POEM: power-efficient occupancy-
based energy management system,” in Proc. IEEE Information Processing in
Sensor Networks (IPSN), Apr 2013, pp. 203–216.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of
things for smart cities,” IEEE Internet of Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[8] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework
for creating a smart city through Internet of things,” IEEE Internet of Things
J., vol. 1, no. 2, pp. 112–121, Apr. 2014.

[9] P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaidonis, V. Foteinos,
G. Poulios, P. Demestichas, A. Somov, A. Biswas, and K. Moessner, “Enabling
smart cities through a cognitive management framework for the Internet of
things,” IEEE Commun. Mag., vol. 51, no. 6, pp. 102–111, June 2013.

[10] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng, “Occupancy-
driven energy management for smart building automation,” in Proc. ACM
Workshop on Embedded Sensing Systems for Energy-Efficiency in Building,
2010, pp. 1–6.

[11] L. Yan, Y. Zhang, L. Yang, and H. Ning, The Internet of Things: from RFID
to the Next-Generation Pervasive Networked Systems, ser. Wireless Networks
and Mobile Communications. Taylor & Francis, 2008.

90

http://blogs.cisco.com/diversity/the-internet-of-things-infographic
http://blogs.cisco.com/diversity/the-internet-of-things-infographic


[12] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazin-
ska, and G. Borriello, “Building the Internet of Things using RFID: the RFID
ecosystem experience,” IEEE Internet Computing, vol. 13, no. 3, pp. 48–55,
May 2009.

[13] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[14] I. Guvenc, S. Gezici, Z. Sahinoglu, and U. C. Kozat, Reliable communications
for short-range wireless systems. Cambridge University Press, 2011.

[15] K. Akkaya, I. Guvenc, R. Aygun, N. Pala, and A. Kadri, “Iot-based occupancy
monitoring techniques for energy-efficient smart buildings,” in Wireless Com-
munications and Networking Conference Workshops (WCNCW), 2015 IEEE,
March 2015, pp. 58–63.

[16] X. Jia, Q. Feng, T. Fan, and Q. Lei, “RFID technology and its applications in
internet of things (IoT),” in Proc. Int. Conf. Consumer Electronics, Communi-
cations and Networks (CECNet), Apr. 2012, pp. 1282–1285.

[17] S. Wamba and E. W. Ngai, “Importance of the relative advantage of RFID as
enabler of asset management in the healthcare: Results from a delphi study,”
in Proc. 45th Hawaii Int. Conf. System Science (HICSS), Jan. 2012, pp. 2879–
2889.

[18] M. Rieback, B. Crispo, and A. Tanenbaum, “Keep on blockin in the free world:
Personal access control for low-cost RFID tags,” in Security Protocols, B. Chris-
tianson, B. Crispo, J. Malcolm, and M. Roe, Eds. Springer Berlin Heidelberg,
2007, vol. 4631, pp. 51–59.

[19] T. D. Rty, “Survey on contemporary remote surveillance systems for public
safety,” IEEE Trans. on Syst., Man, and Cyber., vol. 40, no. 5, pp. 493–515,
Sept. 2010.

[20] M. Darianian and M. Michael, “Smart home mobile RFID-based Internet-of-
Things systems and services,” in Proc. Int. Conf. Advanced Computer Theory
and Engineering, Dec. 2008, pp. 116–120.

[21] A. Al-Ali, F. Aloul, N. Aji, A. Al-Zarouni, and N. Fakhro, “Mobile RFID track-
ing system,” in Proc. Int. Conf. Information and Communication Technologies:
From Theory to Applications, Apr. 2008, pp. 1–4.

91



[22] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects as
building blocks for the Internet of Things,” IEEE Internet Computing, vol. 14,
no. 1, pp. 44–51, Jan. 2010.

[23] N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Correal, “Lo-
cating the nodes: cooperative localization in wireless sensor networks,” IEEE
Sig. Proc. Mag., vol. 22, no. 4, pp. 54–69, July 2005.

[24] S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and
Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning
aspects for future sensor networks,” IEEE Sig. Proc. Mag., vol. 22, no. 4, pp.
70–84, July 2005.

[25] E. Alimpertis, N. Fasarakis-Hilliard, and A. Bletsas, “Community RF sensing
for source localization,” IEEE Wirel. Commun. Lett., vol. 3, no. 4, pp. 393–396,
2014.

[26] I. Guvenc, S. Gezici, and Z. Sahinoglu, “Fundamental limits and improved al-
gorithms for linear least-squares wireless position estimation,” Wireless Comm.
and Mobile Computing, vol. 12, no. 12, pp. 1037–1052, 2012.

[27] M. Merenda, C. Felini, and F. Della Corte, “Battery-less smart RFID tag
with sensor capabilities,” in Proc. IEEE Int. Conf. RFID-Technologies and
Applications (RFID-TA), Nov. 2012, pp. 160–164.

[28] R. Miesen, R. Ebelt, F. Kirsch, T. Schafer, G. Li, H. Wang, and M. Vossiek,
“Where is the tag?” IEEE Microwave Mag., vol. 12, no. 7, pp. S49–S63, Dec.
2011.

[29] L. Ni, D. Zhang, and M. Souryal, “RFID-based localization and tracking tech-
nologies,” IEEE Wireless Comm., vol. 18, no. 2, pp. 45–51, Apr. 2011.

[30] M. Bouet and A. dos Santos, “RFID tags: positioning principles and localization
techniques,” in Proc. Wireless Days, Nov. 2008, pp. 1–5.

[31] L. Geng, M. Bugallo, A. Athalye, and P. Djuric, “Real time indoor tracking
of tagged objects with a network of RFID readers,” in Proc. European Signal
Processing Conference (EUSIPCO), Aug. 2012, pp. 205–209.

[32] M. Moreno, M. Zamora, J. Santa, and A. Skarmeta, “An indoor localization
mechanism based on RFID and IR data in ambient intelligent environments,”

92



in Proc. Int. Conf. Innovative Mobile and Internet Services in Ubiquitous Com-
puting (IMIS), July 2012, pp. 805–810.

[33] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose, “Mapping and
localization with RFID technology,” in Proc. IEEE Int. Conf. Robotics and
Automation, vol. 1, Apr. 2004, pp. 1015–1020 Vol.1.

[34] L. Ni, Y. Liu, Y. C. Lau, and A. Patil, “LANDMARC: indoor location sens-
ing using active RFID,” in Proc. IEEE Int. Conf. Pervasive Computing and
Commun., Mar. 2003, pp. 407–415.

[35] Y. Zhao, Y. Liu, and L. Ni, “VIRE: Active RFID-based localization using vir-
tual reference elimination,” in Proc. Int. Conf. Parallel Processing, Sept. 2007,
pp. 56–56.

[36] A. Bekkali, H. Sanson, and M. Matsumoto, “RFID indoor positioning based
on probabilistic RFID map and Kalman filtering,” in Proc. IEEE Int. Conf.
Wireless and Mobile Computing, Oct. 2007, pp. 21–21.

[37] C. Hekimian-Williams, B. Grant, X. Liu, Z. Zhang, and P. Kumar, “Accurate
localization of RFID tags using phase difference,” in Proc. IEEE Int. Conf.
RFID, Apr. 2010, pp. 89–96.

[38] E. Leitinger, P. Meissner, M. Frohle, and K. Witrisal, “Performance bounds for
multipath-assisted indoor localization on backscatter channels,” in Proc. IEEE
Int. Radar Conf., May 2014, pp. 70–75.

[39] B. S. Ciftler, A. Kadri, and I. Guvenc, “Experimental performance evaluation
of passive uhf rfid systems under interference,” in in Proc. of IEEE Int. Conf.
on RFID Tech. and Appl. (RFID-TA), Sept. 2015, pp. 81–86.

[40] X. Zheng, H. Liu, J. Yang, Y. Chen, R. Martin, and X. Li, “A study of local-
ization accuracy using multiple frequencies and powers,” IEEE Trans. Parallel
and Distributed Syst., vol. 25, no. 8, pp. 1955–1965, Aug. 2014.

[41] J.-M. Akre, X. Zhang, S. Baey, B. Kervella, A. Fladenmuller, M. Zancanaro, and
M. Fonseca, “Accurate 2-d localization of RFID tags using antenna transmission
power control,” in Wireless Days (WD), 2014 IFIP, Nov 2014, pp. 1–6.

[42] D. Lieckfeldt, J. You, and D. Timmermann, “Exploiting RF-scatter: Human
localization with bistatic passive UHF RFID-systems,” in IEEE Int. Conf. on
Wireless and Mobile Computing, Netw. and Comm., Oct. 2009, pp. 179–184.

93



[43] M. Hasani, E.-S. Lohan, L. Sydanheimo, and L. Ukkonen, “Path-loss model
of embroidered passive RFID tag on human body for indoor positioning
applications,” in IEEE RFID Tech. and Appl. Conf. (RFID-TA), Sept. 2014,
pp. 170–174.

[44] B. S. Ciftler, A. Kadri, and I. Guvenc, “Fundamental bounds on RSS-based
wireless localization in passive UHF RFID systems,” in IEEE Wir. Comm. and
Netw. Conf. (WCNC), Mar. 2015, pp. 1356–1361.

[45] K. Chawla, C. McFarland, G. Robins, and C. Shope, “Real-time RFID local-
ization using RSS,” 2013 Int. Conf. Localization GNSS, ICL-GNSS 2013, pp.
0–5, 2013.

[46] A. Bekkali, S. Zou, A. Kadri, M. Crisp, and R. Penty, “Performance analysis
of passive UHF RFID systems under cascaded fading channels and interference
effects,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1421–1433, Mar.
2015.

[47] EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Pro-
tocol for Communications at 860 MHz - 960 MHz Version 1.0.9. EPC Global,
Tech. Rep., Jan. 2005.

[48] J. Griffin and G. Durgin, “Complete link budgets for backscatter-radio and
RFID systems,” IEEE Antennas and Propagation Magazine, vol. 51, no. 2, pp.
11–25, Apr. 2009.

[49] P. Nikitin and K. Rao, “Theory and measurement of backscattering from RFID
tags,” IEEE Antennas and Propagation Magazine, vol. 48, no. 6, pp. 212–218,
Dec. 2006.

[50] A. Bletsas, A. Dimitriou, and J. Sahalos, “Improving backscatter radio tag
efficiency,” IEEE Trans. on Microwave Theory and Techniques, vol. 58, no. 6,
pp. 1502–1509, June 2010.

[51] P. Nikitin, K. Rao, and S. Lam, “UHF RFID tag characterization: overview and
state-of-the-art,” in Antenna Measurement Techniques Association Symposium
(AMTA), 2012.

[52] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

94



[53] K. Chawla, C. McFarland, G. Robins, and C. Shope, “Real-time RFID local-
ization using RSS,” in Int. Conf. on Localization and GNSS (ICL-GNSS), June
2013, pp. 1–6.

[54] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong,
J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile commu-
nications for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349,
2013.

[55] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter
wave wireless communications. Pearson Education, 2014.

[56] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C.
Widmer, “Ieee 802.11ad: directional 60 ghz communication for multi-gigabit-
per-second wi-fi [invited paper],” IEEE Communications Magazine, vol. 52,
no. 12, pp. 132–141, December 2014.

[57] Y. Zhu, Z. Zhang, Z. Marzi, C. Nelson, U. Madhow, B. Y. Zhao, and
H. Zheng, “Demystifying 60ghz outdoor picocells,” in Proceedings of the
20th Annual International Conference on Mobile Computing and Networking,
ser. MobiCom ’14. New York, NY, USA: ACM, 2014, pp. 5–16. [Online].
Available: http://doi.acm.org/10.1145/2639108.2639121

[58] S. Kutty and D. Sen, “Beamforming for millimeter wave communications: An
inclusive survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 2, pp.
949–973, Secondquarter 2016.

[59] F. Lemic, J. Martin, C. Yarp, D. Chan, V. Handziski, R. Brodersen, G. Fet-
tweis, A. Wolisz, and J. Wawrzynek, “Localization as a feature of mmwave
communication,” in 2016 International Wireless Communications and Mobile
Computing Conference (IWCMC), Sept 2016, pp. 1033–1038.

[60] A. Olivier, G. Bielsa, I. Tejado, M. Zorzi, J. Widmer, and P. Casari,
“Lightweight indoor localization for 60-ghz millimeter wave systems,” in 2016
13th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), June 2016, pp. 1–9.

[61] K. Witrisal, P. Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufvesson,
K. Haneda, D. Dardari, A. F. Molisch, A. Conti, and M. Z. Win, “High-accuracy
localization for assisted living: 5g systems will turn multipath channels from foe
to friend,” IEEE Signal Processing Magazine, vol. 33, no. 2, pp. 59–70, March
2016.

95

http://doi.acm.org/10.1145/2639108.2639121


[62] M. Vari and D. Cassioli, “mmwaves rssi indoor network localization,” in 2014
IEEE International Conference on Communications Workshops (ICC), June
2014, pp. 127–132.

[63] F. T. Ulaby, E. Michielssen, and U. Ravaioli, “Fundamentals of applied electro-
magnetics 6e,” Boston, Massachussetts: Prentice Hall, 2010.

[64] K. Pahlavan, P. Krishnamurthy, and Y. Geng, “Localization challenges for the
emergence of the smart world,” IEEE Access, vol. 3, pp. 3058–3067, 2015.

[65] G. Pan, G. Qi, W. Zhang, S. Li, Z. Wu, and L. Yang, “Trace analysis and
mining for smart cities: issues, methods, and applications,” IEEE Commun.
Mag., vol. 51, no. 6, pp. 120–126, June 2013.

[66] S. Tadokoro, Q. shan Jia, Q. Zhao, H. Darabi, G. Huang, B. Becerik-Gerber,
H. Sandberg, and K. Johansson, “Smart building technology,” IEEE Robotics
Automation Mag., vol. 21, no. 2, pp. 18–20, June 2014.

[67] K. Akkaya, I. Guvenc, R. Aygun, N. Pala, and A. Kadri, “IoT-based occu-
pancy monitoring techniques for energy-efficient smart buildings,” in Proc.
IEEE Wireless Commun. Networking Conference Workshops (WCNCW), Mar.
2015, pp. 58–63.

[68] B. Balaji, J. Xu, A. Nwokafor, R. Gupta, and Y. Agarwal, “Sentinel:
Occupancy based HVAC actuation using existing WiFi infrastructure within
commercial buildings,” in Proc. ACM Conf. on Embedded Networked Sensor
Systems, 2013, pp. 17:1–17:14. [Online]. Available: http://doi.acm.org/10.
1145/2517351.2517370

[69] E. Vattapparamban, B. S. Ciftler, I. Guvenc, K. Akkaya, and A. Kadri, “Indoor
occupancy tracking in smart buildings using passive sniffing of probe requests,”
in Proc. IEEE International Conference on Communications Workshops (ICC),
May 2016, pp. 38–44.

[70] L. Demir, “Wi-Fi tracking: what about privacy,” Ph.D. dissertation, M2 SCCI
Security, Cryptologyand Coding of Information-UFR IMAG, 2013.

[71] J. Freudiger, “How talkative is your mobile device?: An experimental study of
Wi-Fi probe requests,” in Proc. ACM Conf. Security and Privacy in Wireless
and Mobile Networks, New York, NY, USA, 2015, pp. 8:1–8:6. [Online].
Available: http://doi.acm.org/10.1145/2766498.2766517

96

http://doi.acm.org/10.1145/2517351.2517370
http://doi.acm.org/10.1145/2517351.2517370
http://doi.acm.org/10.1145/2766498.2766517


[72] A. B. M. Musa and J. Eriksson, “Tracking unmodified smartphones using
Wi-fi monitors,” in Proc. ACM Conf. Embedded Network Sensor Systems, ser.
SenSys ’12. New York, NY, USA: ACM, 2012, pp. 281–294. [Online].
Available: http://doi.acm.org/10.1145/2426656.2426685

[73] D. Namiot and M. Sneps-Sneppe, “On the analysis of statistics of mobile visi-
tors,” Automatic Control and Computer Sciences, vol. 48, no. 3, pp. 150–158,
2014.

[74] Hak5. (2013) Wi-Fi Pineapple Mark V. [Online]. Available: http:
//hakshop.myshopify.com/products/wifi-pineapple

[75] J. Ryou, B. Lee, C. Yu, M. Kim, S.-J. Hyun, S.-M. Park, and W.-T. Kim,
“Probe request based load balancing metric with timely handoffs for wlans,”
in Proc. IEEE Int. Conf. Inf. Commun. Tech. Convergence (ICTC), Nov 2010,
pp. 346–351.

[76] A. Mishra, M. Shin, and W. Arbaugh, “An empirical analysis of the
ieee 802.11 mac layer handoff process,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 2, pp. 93–102, Apr. 2003. [Online]. Available:
http://doi.acm.org/10.1145/956981.956990

[77] J. Millikenl, V. Selis, K. M. Yap, and A. Marshall, “The effect of probe interval
estimation on attack detection performance of a WLAN independent intrusion
detection system,” in Proc. IET Int. Conf. Wireless Commun. Appl. (ICWCA),
Oct 2012, pp. 1–6.

[78] M. Cunche, M. A. Kaafar, and R. Boreli, “I know who you will meet this
evening! linking wireless devices using Wi-Fi probe requests,” in Proc. IEEE
Int. Symp. World of Wireless, Mobile and Multimedia Networks (WoWMoM),
June 2012, pp. 1–9.

[79] F. Zampella, A. R. J. Ruiz, and F. S. Granja, “Indoor positioning using efficient
map matching, RSS measurements, and an improved motion model,” IEEE
Trans. Veh. Technol., vol. 64, no. 4, pp. 1304–1317, April 2015.

[80] D. Dardari, P. Closas, and P. M. Djuri, “Indoor tracking: Theory, methods,
and technologies,” IEEE Trans. Veh. Technol., vol. 64, no. 4, pp. 1263–1278,
April 2015.

97

http://doi.acm.org/10.1145/2426656.2426685
http://hakshop.myshopify.com/products/wifi-pineapple
http://hakshop.myshopify.com/products/wifi-pineapple
http://doi.acm.org/10.1145/956981.956990


[81] J. Castro-Arvizu, J. Vila-Valls, P. Closas, and J. Fernandez-Rubio, “Simultane-
ous tracking and rss model calibration by robust filtering,” in Proc. of Asilomar
Conf. on Signals, Syst. and Comp., Nov. 2014, pp. 706–710.

[82] Y. Guo, K. Huang, N. Jiang, X. Guo, Y. Li, and G. Wang, “An exponential-
rayleigh model for rss-based device-free localization and tracking,” Mobile Com-
puting, IEEE Transactions on, vol. 14, no. 3, pp. 484–494, March 2015.

[83] Y. Kim, H. Shin, and H. Cha, “Smartphone-based wi-fi pedestrian-tracking
system tolerating the rss variance problem,” in Pervasive Computing and Com-
munications (PerCom), 2012 IEEE International Conference on, March 2012,
pp. 11–19.

[84] A. W. S. Au, C. Feng, S. Valaee, S. Reyes, S. Sorour, S. N. Markowitz, D. Gold,
K. Gordon, and M. Eizenman, “Indoor tracking and navigation using received
signal strength and compressive sensing on a mobile device,” IEEE Trans. Mo-
bile Comp., vol. 12, no. 10, pp. 2050–2062, Oct 2013.

[85] M. R. Gholami, S. Gezici, and E. G. Strom, “Improved position estimation
using hybrid TW-TOA and TDOA in cooperative networks,” IEEE Trans. Sig.
Processing, vol. 60, no. 7, pp. 3770–3785, July 2012.

[86] B. J. Dil and P. J. M. Havinga, “RSS-based self-adaptive localization in dynamic
environments,” in Proc. IEEE Int. Conf. Internet of Things, Oct. 2012, pp. 55–
62.

[87] A. Bose and C. H. Foh, “A practical path loss model for indoor WiFi posi-
tioning enhancement,” in Proc. 6th International Conference on Information,
Communications Signal Processing, Dec 2007, pp. 1–5.

[88] I. Guvenc and C.-C. Chong, “A survey on TOA based wireless localization and
NLOS mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 11, no. 3,
2009.

[89] M. R. Gholami, R. M. Vaghefi, and E. G. Strm, “Rss-based sensor localization
in the presence of unknown channel parameters,” IEEE Transactions on Signal
Processing, vol. 61, no. 15, pp. 3752–3759, Aug 2013.

[90] I. Guvenc, C. T. Abdallah, R. Jordan, and O. Dedeoglu, “Enhancements to
RSS based indoor tracking systems using Kalman filters,” in Proc. GSPx &
International Signal Processing Conference, 2003, pp. 91–102.

98



[91] J. Yim, C. Park, J. Joo, and S. Jeong, “Extended Kalman filter for wireless
LAN based indoor positioning,” Decision support systems, vol. 45, no. 4, pp.
960–971, 2008.

[92] J. Hartikainen, A. Solin, and S. Särkkä, “Optimal filtering with Kalman filters
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