357 research outputs found

    Exploring remote photoplethysmography signals for deepfake detection in facial videos

    Get PDF
    Abstract. With the advent of deep learning-based facial forgeries, also called "deepfakes", the feld of accurately detecting forged videos has become a quickly growing area of research. For this endeavor, remote photoplethysmography, the process of extracting biological signals such as the blood volume pulse and heart rate from facial videos, offers an interesting avenue for detecting fake videos that appear utterly authentic to the human eye. This thesis presents an end-to-end system for deepfake video classifcation using remote photoplethysmography. The minuscule facial pixel colour changes are used to extract the rPPG signal, from which various features are extracted and used to train an XGBoost classifer. The classifer is then tested using various colour-to-blood volume pulse methods (OMIT, POS, LGI and CHROM) and three feature extraction window lengths of two, four and eight seconds. The classifer was found effective at detecting deepfake videos with an accuracy of 85 %, with minimal performance difference found between the window lengths. The GREEN channel signal was found to be important for this classifcationEtäfotoplethysmografian hyödyntäminen syväväärennösten tunnistamiseen. Tiivistelmä. Syväväärennösten eli syväoppimiseen perustuvien kasvoväärennöksien yleistyessä väärennösten tarkasta tunnistamisesta koneellisesti on tullut nopeasti kasvava tutkimusalue. Etäfotoplethysmografa (rPPG) eli biologisten signaalien kuten veritilavuuspulssin tai sykkeen mittaaminen videokuvasta tarjoaa kiinnostavan keinon tunnistaa väärennöksiä, jotka vaikuttavat täysin aidoilta ihmissilmälle. Tässä diplomityössä esitellään etäfotoplethysmografaan perustuva syväväärennösten tunnistusmetodi. Kasvojen minimaalisia värimuutoksia hyväksikäyttämällä mitataan fotoplethysmografasignaali, josta lasketuilla ominaisuuksilla koulutetaan XGBoost-luokittelija. Luokittelijaa testataan usealla eri värisignaalista veritilavuussignaaliksi muuntavalla metodilla sekä kolmella eri ominaisuuksien ikkunapituudella. Luokittelija pystyy tunnistamaan väärennetyn videon aidosta 85 % tarkkuudella. Eri ikkunapituuksien välillä oli minimaalisia eroja, ja vihreän värin signaalin havaittiin olevan luokittelun suorituskyvyn kannalta merkittävä

    Quantitative Multidimensional Stress Assessment from Facial Videos

    Get PDF
    Stress has a significant impact on the physical and mental health of an individual and is a growing concern for society, especially during the COVID-19 pandemic. Facial video-based stress evaluation from non-invasive cameras has proven to be a significantly more efficient method to evaluate stress in comparison to approaches that use questionnaires or wearable sensors. Plenty of classification models have been built for stress detection. However, most do not consider individual differences. Also, the results for such models are limited by a uni-dimensional definition of stress levels lacking a comprehensive quantitative definition of stress. The dissertation focuses on building a framework that utilizes the multilevel video frame representations from deep learning and the remote photoplethysmography signals extracted from the facial videos for stress assessment. The fusion model takes the inputs of a baseline video and a target video of the subject. The physiological features such as heart rate and heart rate variability are used with the initial stress scores generated from deep learning are used to predict the stress scores in cognitive anxiety, somatic anxiety, and self-confidence. To generate stress scores with better accuracy, the signal extraction method is improved by introducing the CWT-SNR method that uses the signal-to-noise ratio to assist the adaptive bandpass filtering in the post-processing of the signals. A study on phase space reconstruction features is performed and the results show the potential for additional accuracy improvement for the heart rate variability detection. To select the best deep learning architecture, multiple deep learning architectures are tested to build the deep learning model. Support Vector Regression is used to generate the output stress score results. Testing with the data from the UBFC-Phys dataset, the fusion model shows a strong correlation between ground truth and the predicted results

    Machine learning methods for the study of cybersickness: a systematic review

    Get PDF
    This systematic review offers a world-first critical analysis of machine learning methods and systems, along with future directions for the study of cybersickness induced by virtual reality (VR). VR is becoming increasingly popular and is an important part of current advances in human training, therapies, entertainment, and access to the metaverse. Usage of this technology is limited by cybersickness, a common debilitating condition experienced upon VR immersion. Cybersickness is accompanied by a mix of symptoms including nausea, dizziness, fatigue and oculomotor disturbances. Machine learning can be used to identify cybersickness and is a step towards overcoming these physiological limitations. Practical implementation of this is possible with optimised data collection from wearable devices and appropriate algorithms that incorporate advanced machine learning approaches. The present systematic review focuses on 26 selected studies. These concern machine learning of biometric and neuro-physiological signals obtained from wearable devices for the automatic identification of cybersickness. The methods, data processing and machine learning architecture, as well as suggestions for future exploration on detection and prediction of cybersickness are explored. A wide range of immersion environments, participant activity, features and machine learning architectures were identified. Although models for cybersickness detection have been developed, literature still lacks a model for the prediction of first-instance events. Future research is pointed towards goal-oriented data selection and labelling, as well as the use of brain-inspired spiking neural network models to achieve better accuracy and understanding of complex spatio-temporal brain processes related to cybersickness

    Novel Machine Learning and Wearable Sensor Based Solutions for Smart Healthcare Monitoring

    Get PDF
    The advent of IoT has enabled the design of connected and integrated smart health monitoring systems. These health monitoring systems can be utilized for monitoring the mental and physical wellbeing of a person. Stress, anxiety, and hypertension are the major elements responsible for the plethora of physical and mental illnesses. In this context, the older population demands special attention because of the several age-related complications that exacerbate the effects of stress, anxiety, and hypertension. Monitoring stress, anxiety, and blood pressure regularly can prevent long-term damage by initiating necessary intervention or clinical treatment beforehand. This will improve the quality of life and reduce the burden on caregivers and the cost of healthcare. Therefore, this thesis explores novel technological solutions for real-time monitoring of stress, anxiety, and blood pressure using unobtrusive wearable sensors and machine learning techniques. The first contribution of this thesis is the experimental data collection of 50 healthy older adults, based on which, the works on stress detection and anxiety detection have been developed. The data collection procedure lasted for more than a year. We have collected physiological signals, salivary cortisol, and self-reported questionnaire feedback during the study. Salivary cortisol is an established clinical biomarker for physiological stress. Hence, a stress detection model that is trained to distinguish between the stressed and not-stressed states as indicated by the increase in cortisol level has the potential to facilitate clinical level diagnosis of stress from the comfort of their own home. The second contribution of the thesis is the development of a stress detection model based on fingertip sensors. We have extracted features from Electrodermal Activity (EDA) and Blood Volume Pulse (BVP) signals obtained from fingertip EDA and Photoplethysmogram (PPG) sensors to train machine learning algorithms for distinguishing between stressed and not-stressed states. We have evaluated the performance of four traditional machine learning algorithms and one deep-learning-based Long Short-Term Memory (LSTM) classifier. Results and analysis showed that the proposed LSTM classifier performed equally well as the traditional machine learning models. The third contribution of the thesis is to evaluate an integrated system of wrist-worn sensors for stress detection. We have evaluated four signal streams, EDA, BVP, Inter-Beat Interval (IBI), and Skin Temperature (ST) signals from EDA, PPG, and ST sensors. A random forest classifier was used for distinguishing between the stressed and not-stressed states. Results and analysis showed that incorporating features from different signals was able to reduce the misclassification rate of the classifier. Further, we have also prototyped the integration of the proposed wristband-based stress detection system in a consumer end device with voice capabilities. The fourth contribution of the thesis is the design of an anxiety detection model that uses features from a single wearable sensor and a context feature to improve the performance of the classification model. Using a context feature instead of integrating other physiological features for improving the performance of the model can reduce the complexity and cost of the anxiety detection model. In our proposed work, we have used a simple experimental context feature to highlight the importance of context in the accurate detection of anxious states. Our results and analysis have shown that with the addition of the context-based feature, the classifier was able to reduce misclassification by increasing the confidence of the decision. The final and the fifth contribution of the thesis is the validation of a proposed computational framework for the blood pressure estimation model. The proposed framework uses features from the PPG signal to estimate the systolic and diastolic blood pressure values using advanced regression techniques

    Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation of rPPG

    Full text link
    Remote Photoplethysmography (rPPG) is a technology that utilizes the light absorption properties of hemoglobin, captured via camera, to analyze and measure blood volume pulse (BVP). By analyzing the measured BVP, various physiological signals such as heart rate, stress levels, and blood pressure can be derived, enabling applications such as the early prediction of cardiovascular diseases. rPPG is a rapidly evolving field as it allows the measurement of vital signals using camera-equipped devices without the need for additional devices such as blood pressure monitors or pulse oximeters, and without the assistance of medical experts. Despite extensive efforts and advances in this field, serious challenges remain, including issues related to skin color, camera characteristics, ambient lighting, and other sources of noise, which degrade performance accuracy. We argue that fair and evaluable benchmarking is urgently required to overcome these challenges and make any meaningful progress from both academic and commercial perspectives. In most existing work, models are trained, tested, and validated only on limited datasets. Worse still, some studies lack available code or reproducibility, making it difficult to fairly evaluate and compare performance. Therefore, the purpose of this study is to provide a benchmarking framework to evaluate various rPPG techniques across a wide range of datasets for fair evaluation and comparison, including both conventional non-deep neural network (non-DNN) and deep neural network (DNN) methods. GitHub URL: https://github.com/remotebiosensing/rppg.Comment: 19 pages, 10 figure

    Feature Space Augmentation: Improving Prediction Accuracy of Classical Problems in Cognitive Science and Computer Vison

    Get PDF
    The prediction accuracy in many classical problems across multiple domains has seen a rise since computational tools such as multi-layer neural nets and complex machine learning algorithms have become widely accessible to the research community. In this research, we take a step back and examine the feature space in two problems from very different domains. We show that novel augmentation to the feature space yields higher performance. Emotion Recognition in Adults from a Control Group: The objective is to quantify the emotional state of an individual at any time using data collected by wearable sensors. We define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and neutral and their respective levels at any time. The generated model predicts an individual’s dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each emotional state and anxiety. We present an iterative learning framework that alters the feature space uniquely to an individual’s emotion perception, and predicts the emotional state using the individual specific feature space. Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of existing image recognition by leveraging text features from the images. As humans, we perceive objects using colors, dimensions, geometry and any textual information we can gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the textual information. This study develops and tests an approach that trains a classifier on a hybrid text based feature space that has comparable accuracy to the state of the art CNN’s while being significantly inexpensive computationally. Moreover, when combined with CNN’S the approach yields a statistically significant boost in accuracy. Both models are validated using cross validation and holdout validation, and are evaluated against the state of the art

    Camera-Based Heart Rate Extraction in Noisy Environments

    Get PDF
    Remote photoplethysmography (rPPG) is a non-invasive technique that benefits from video to measure vital signs such as the heart rate (HR). In rPPG estimation, noise can introduce artifacts that distort rPPG signal and jeopardize accurate HR measurement. Considering that most rPPG studies occurred in lab-controlled environments, the issue of noise in realistic conditions remains open. This thesis aims to examine the challenges of noise in rPPG estimation in realistic scenarios, specifically investigating the effect of noise arising from illumination variation and motion artifacts on the predicted rPPG HR. To mitigate the impact of noise, a modular rPPG measurement framework, comprising data preprocessing, region of interest, signal extraction, preparation, processing, and HR extraction is developed. The proposed pipeline is tested on the LGI-PPGI-Face-Video-Database public dataset, hosting four different candidates and real-life scenarios. In the RoI module, raw rPPG signals were extracted from the dataset using three machine learning-based face detectors, namely Haarcascade, Dlib, and MediaPipe, in parallel. Subsequently, the collected signals underwent preprocessing, independent component analysis, denoising, and frequency domain conversion for peak detection. Overall, the Dlib face detector leads to the most successful HR for the majority of scenarios. In 50% of all scenarios and candidates, the average predicted HR for Dlib is either in line or very close to the average reference HR. The extracted HRs from the Haarcascade and MediaPipe architectures make up 31.25% and 18.75% of plausible results, respectively. The analysis highlighted the importance of fixated facial landmarks in collecting quality raw data and reducing noise

    Contactless WiFi Sensing and Monitoring for Future Healthcare:Emerging Trends, Challenges and Opportunities

    Get PDF
    WiFi sensing has recently received significant interest from academics, industry, healthcare professionals and other caregivers (including family members) as a potential mechanism to monitor our aging population at distance, without deploying devices on users bodies. In particular, these methods have gained significant interest to efficiently detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems stems from its practical deployments in indoor settings and compliance from monitored persons, unlike other sensors such as wearables, camera-based, and acoustic-based solutions. This paper reviews state-of-the-art research on collecting and analysing channel state information, extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, untapped areas, and related trends.This work aims to provide an overarching view in understanding the technology and discusses its uses-cases from a perspective that considers hardware, advanced signal processing, and data acquisition

    Design of a Simulator for Neonatal Multichannel EEG: Application to Time-Frequency Approaches for Automatic Artifact Removal and Seizure Detection

    Get PDF
    The electroencephalogram (EEG) is used to noninvasively monitor brain activities; it is the most utilized tool to detect abnormalities such as seizures. In recent studies, detection of neonatal EEG seizures has been automated to assist neurophysiologists in diagnosing EEG as manual detection is time consuming and subjective; however it still lacks the necessary robustness that is required for clinical implementation. Moreover, as EEG is intended to record the cerebral activities, extra-cerebral activities external to the brain are also recorded; these are called “artifacts” and can seriously degrade the accuracy of seizure detection. Seizures are one of the most common neurologic problems managed by hospitals occurring in 0.1%-0.5% livebirths. Neonates with seizures are at higher risk for mortality and are reported to be 55-70 times more likely to have severe cerebral-palsy. Therefore, early and accurate detection of neonatal seizures is important to prevent long-term neurological damage. Several attempts in modelling the neonatal EEG and artifacts have been done, but most did not consider the multichannel case. Furthermore, these models were used to test artifact or seizure detection separately, but not together. This study aims to design synthetic models that generate clean or corrupted multichannel EEG to test the accuracy of available artifact and seizure detection algorithms in a controlled environment. In this thesis, synthetic neonatal EEG model is constructed by using; single-channel EEG simulators, head model, 21-electrodes, and propagation equations, to produce clean multichannel EEG. Furthermore, neonatal EEG artifact model is designed using synthetic signals to corrupt EEG waveforms. After that, an automated EEG artifact detection and removal system is designed in both time and time-frequency domains. Artifact detection is optimised and removal performance is evaluated. Finally, an automated seizure detection technique is developed, utilising fused and extended multichannel features along a cross-validated SVM classifier. Results show that the synthetic EEG model mimics real neonatal EEG with 0.62 average correlation, and corrupted-EEG can degrade seizure detection average accuracy from 100% to 70.9%. They also show that using artifact detection and removal enhances the average accuracy to 89.6%, and utilising the extended features enhances it to 97.4% and strengthened its robustness.لمراقبة ورصد أنشطة واشارات المخ، دون الحاجة لأي عملیات (EEG) یستخدم الرسم أو التخطیط الكھربائي للدماغ للدماغجراحیة، وھي تعد الأداة الأكثر استخداما في الكشف عن أي شذوذأو نوبات غیر طبیعیة مثل نوبات الصرع. وقد أظھرت دراسات حدیثة، أن الكشف الآلي لنوبات حدیثي الولادة، ساعد علماء الفسیولوجیا العصبیة في تشخیص الاشارات الدماغیة بشكل أكبر من الكشف الیدوي، حیث أن الكشف الیدوي یحتاج إلى وقت وجھد أكبر وھوذو فعالیة أقل بكثیر، إلا أنھ لا یزال یفتقر إلى المتانة الضروریة والمطلوبة للتطبیق السریري.علاوة على ذلك؛ فكما یقوم الرسم الكھربائي بتسجیل الأنشطة والإشارات الدماغیة الداخلیة، فھو یسجل أیضا أي نشاط أو اشارات خارجیة، مما یؤدي إلى -(artifacts) :حدوث خلل في مدى دقة وفعالیة الكشف عن النوبات الدماغیة الداخلیة، ویطلق على تلك الاشارات مسمى (نتاج صنعي) . 0.5٪ولادة حدیثة في -٪تعد نوبات الصرع من أكثر المشكلات العصبیة انتشارا،ً وھي تصیب ما یقارب 0.1المستشفیات. حیث أن حدیثي الولادة المصابین بنوبات الصرع ھم أكثر عرضة للوفاة، وكما تشیر التقاریر الى أنھم 70مرة أكثر. لذا یعد الكشف المبكر والدقیق للنوبات الدماغیة -معرضین للإصابة بالشلل الدماغي الشدید بما یقارب 55لحدیثي الولادة مھم جدا لمنع الضرر العصبي على المدى الطویل. لقد تم القیام بالعدید من المحاولات التي كانتتھدف الى تصمیم نموذج التخطیط الكھربائي والنتاج الصنعي لدماغ حدیثي الولادة, إلا أن معظمھا لم یعر أي اھتمام الى قضیة تعدد القنوات. إضافة الى ذلك, استخدمت ھذه النماذج , كل على حدة, أو نوبات الصرع. تھدف ھذه الدراسة الى تصمیم نماذج مصطنعة من شأنھا (artifact) لإختبار كاشفات النتاج الصنعيأن تولد اشارات دماغیة متعددة القنوات سلیمة أو معطلة وذلك لفحص مدى دقة فعالیة خوارزمیات الكشف عن نوبات ضمن بیئة یمكن السیطرة علیھا. (artifact) الصرع و النتاج الصنعي في ھذه الأطروحة, یتكون نموذج الرسم الكھربائي المصطنع لحدیثي الولادة من : قناة محاكاة واحده للرسم الكھربائي, نموذج رأس, 21قطب كھربائي و معادلات إنتشار. حیث تھدف جمیعھا لإنتاج إشاراة سلیمة متعدده القنوات للتخطیط عن طریق استخدام اشارات مصطنعة (artifact) الكھربائي للدماغ.علاوة على ذلك, لقد تم تصمیم نموذجالنتاج الصنعيفي نطاقالوقت و (artifact) لإتلاف الرسم الكھربائي للدماغ. بعد ذلك تم انشاء برنامج لكشف و إزالةالنتاج الصناعينطاقالوقت و التردد المشترك. تم تحسین برنامج الكشف النتاج الصناعيالى ابعد ما یمكن بینما تمت عملیة تقییم أداء الإزالة. وفي الختام تم التمكن من تطویر تقنیة الكشف الآلي عن نوبات الصرع, وذلك بتوظیف صفات مدمجة و صفات الذي تم التأكد من صحتھ. (SVM) جدیدة للقنوات المتعددة لإستخدامھا للمصنفلقد أظھرت النتائج أن نموذج الرسم الكھربائي المصطنع لحدیثي الولادة یحاكي الرسمالكھربائي الحقیقي لحدیثي الولادة بمتوسط ترابط 0.62, و أنالرسم الكھربائي المتضرر للدماغ قد یؤدي الى حدوث ھبوطفي مدى دقة متوسط الكشف عن نوبات الصرع من 100%الى 70.9%. وقد أشارت أیضا الى أن استخدام الكشف والإزالة عن النتاج الصنعي (artifact) یؤدي الى تحسن مستوى الدقة الى نسبة 89.6 %, وأن توظیف الصفات الجدیدة للقنوات المتعددة یزید من تحسنھا لتصل الى نسبة 94.4 % مما یعمل على دعم متانتھا

    Innovations and mechanisms in pacing therapy for heart failure

    Get PDF
    Despite pharmacological advances, heart failure remains a major cause of mortality and morbidity. Pacing therapy for heart failure was achieved in the 1990s with the advent of biventricular pacing (BVP). BVP shortens ventricular activation time and has thus been referred to as ‘cardiac resynchronization therapy’ (CRT). However BVP has other effects including shortening of atrioventricular delay: the contributions of its effects to its overall benefit have yet to be elucidated. Ventricular activation is not normalised by BVP, indicating scope for more effective resynchronization. This thesis explores mechanisms and innovations in pacing therapy for heart failure through measurement of haemodynamic and electrical parameters with high precision and resolution during BVP, right ventricular pacing (RVP) and His bundle pacing (HBP), where the His-Purkinje conduction system is directly stimulated. HBP offers both an innovation in pacing and a model to study conventional pacing. HBP can deliver physiological CRT by overcoming left bundle branch block (LBBB) to normalise QRS appearances but its performance relative to BVP is not known. When performed proximally, or using lower energy, HBP can preserve intrinsic LBBB. In Chapter 3, the electro-mechanical effects of conventional BVP are compared with LBBB correction by HBP. Chapter 4 uses non-invasive electrical mapping to identify mechanisms and predictors of LBBB correction by HBP, comparing it with narrow QRS. Capture of the His bundle can be alone (selective HBP) or alongside myocardial capture (non-selective): the effect of this on HBP is studied in Chapter 5. In Chapter 6, the haemodynamic effects of proximal/low-energy HBP, where LBBB is preserved but atrioventricular timing can be optimised, is compared to BVP and RVP to measure the contribution of atrioventricular delay shortening to the overall benefit of BVP. By evaluating innovative therapies and improving our understanding of existing therapies, hopefully this thesis will advance pacing therapy for heart failure.Open Acces
    corecore