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ABSTRACT OF DISSERTATION

NOVEL MACHINE LEARNING AND WEARABLE SENSOR

BASED SOLUTIONS FOR SMART HEALTHCARE MONITORING

The advent of IoT has enabled the design of connected and integrated

smart health monitoring systems. These health monitoring systems can

be utilized for monitoring the mental and physical wellbeing of a person.

Stress, anxiety, and hypertension are the major elements responsible for the

plethora of physical and mental illnesses. In this context, the older population

demands special attention because of the several age-related complications

that exacerbate the effects of stress, anxiety, and hypertension. Monitoring

stress, anxiety, and blood pressure regularly can prevent long-term damage

by initiating necessary intervention or clinical treatment beforehand. This

will improve the quality of life and reduce the burden on caregivers and the

cost of healthcare. Therefore, this dissertation explores novel technological

solutions for real-time monitoring of stress, anxiety, and blood pressure using

unobtrusive wearable sensors and machine learning techniques.

The first contribution of this dissertation is the experimental data collec-

tion of 50 healthy older adults, based on which, the works on stress detection

and anxiety detection have been developed. The data collection procedure

lasted for more than a year. We have collected physiological signals, salivary



cortisol, and self-reported questionnaire feedback during the study. Salivary

cortisol is an established clinical biomarker for physiological stress. Hence,

a stress detection model that is trained to distinguish between the stressed

and not-stressed states as indicated by the increase in cortisol level has the

potential to facilitate clinical level diagnosis of stress from the comfort of

their own home.

The second contribution of the dissertation is the development of a stress

detection model based on fingertip sensors. We have extracted features

from Electrodermal Activity (EDA) and Blood Volume Pulse (BVP) sig-

nals obtained from fingertip EDA and Photoplethysmogram (PPG) sensors

to train machine learning algorithms for distinguishing between stressed and

not-stressed states. We have evaluated the performance of four traditional

machine learning algorithms and one deep-learning-based Long Short-Term

Memory (LSTM) classifier. Results and analysis showed that the proposed

LSTM classifier performed equally well as the traditional machine learning

models.

The third contribution of the dissertation is to evaluate an integrated

system of wrist-worn sensors for stress detection. We have evaluated four

signal streams, EDA, BVP, Inter-Beat Interval (IBI), and Skin Temperature

(ST) signals from EDA, PPG, and ST sensors. A random forest classifier was

used for distinguishing between the stressed and not-stressed states. Results

and analysis showed that incorporating features from different signals was

able to reduce the misclassification rate of the classifier. Further, we have also



prototyped the integration of the proposed wristband-based stress detection

system in a consumer end device with voice capabilities.

The fourth contribution of the dissertation is the design of an anxiety

detection model that uses features from a single wearable sensor and a con-

text feature to improve the performance of the classification model. Using

a context feature instead of integrating other physiological features for im-

proving the performance of the model can reduce the complexity and cost of

the anxiety detection model. In our proposed work, we have used a simple

experimental context feature to highlight the importance of context in the

accurate detection of anxious states. Our results and analysis have shown

that with the addition of the context-based feature, the classifier was able to

reduce misclassification by increasing the confidence of the decision.

The final and the fifth contribution of the dissertation is the validation of a

proposed computational framework for the blood pressure estimation model.

The proposed framework uses features from the PPG signal to estimate the

systolic and diastolic blood pressure values using advanced regression tech-

niques.

KEYWORDS: Machine Learning, Physiological Signals, Stress, Anxiety,

Blood Pressure, Salivary Cortisol.
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Chapter 1

Introduction

The general well-being of a person plays an important role in the daily life

of an individual. Positive emotional well-being has been found to improve

work performance, the quality of personal life, and develop emotional intel-

ligence of a person [1][2][3]. However, daily stress and the associated anxiety

can negatively impact the general well-being of a person both mentally and

physically. Chronic stress is linked to the plethora of psychological and phys-

iological illnesses such as anxiety disorder and hypertension [4]. This results

in the increased cost of personal healthcare and also the burden on caregivers

[5]. According to an estimate by the American Institute of Stress, job-related

stress accounts for more than $ 300 billion per year [6].

According to a survey by American Psychological Association (APA),

about 49% of the people reported that stress has negatively affected their

behavior, and about 20% of the people reported that stress has caused ten-
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Figure 1.1: Various statistics on stress based on self-reported surveys

sion, mood swings, or anger reactions [7]. Stress is also prevalent among

all age groups. As visualized from Figure 1.1 (b), it can be seen that older

adults and adults above the age group 55 constitute the highest percentage of

stressed individuals [7]. The major stressors responsible for stress in adults

vary with the changing dynamics. For example, according to the 2020 survey,

the emergence of Covid-19 was reported as the major source of stress (80%

of the surveyed population), while according to the 2017 survey, money was

reported as the major source of stress.

Apart from the direct social and economic effects of stress, chronic stress

is also responsible for long-term anxiety and the development of high blood

pressure over time [8][9]. Anxiety and high blood pressure also contribute

negatively to the social and economic stability of the nation. Long-term

2
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Figure 1.2: Statistics on anxiety and blood pressure based on surveys

exposure to anxiety causes anxiety disorder which can manifest itself in var-

ious forms (abnormalities). Figure 1.2(a) shows the population in millions

suffering from different kinds of anxiety disorder such as social anxiety, post-

traumatic stress disorder (PTSD), general anxiety, and panic disorder.

High blood pressure is another health emergency that is closely associ-

ated with anxiety and stress. The major concern with the development of

high blood pressure is the lack of awareness of the condition, which further

escalates to other severe health conditions. A survey conducted by the Amer-

ican heart association (AHA) found that about 80% of the people who have

high blood pressure are unaware of the condition [7]. The same report states

that about 47.5% of the people don’t have their high blood pressure under

control.

3



Stress, anxiety, and high blood pressure have a strong association with

each other with some cause-and-effect relationship between them. In par-

ticular, older adults are disproportionately affected by stress. According

to a report by American Psychological Association, older adults have ex-

perienced a greater increase in their stress levels as compared to other age

groups [10]. Similarly, depression and generalized anxiety disorder are more

prevalent among older adults [11][12]. According to a study conducted in

[13], clinically significant symptoms of depression were found to be related to

hypertension in older adults. In the next section, we will discuss these three

elements in detail and discuss the association between them particularly in

the context of older adults.

1.1 Stress, Anxiety, and Hypertension

Stress is defined as the reaction to adverse environmental situations that

challenge the typical adaptive capability as perceived by an individual [14].

Although positive stress (eustress) helps the individual to stay focused to deal

with adversities, negative stress (distress) causes the activation of the HPA

(hypothalamic-pituitary-adrenocortical) axis. Repeated and prolonged acti-

vation of these pathways can increase the risk of premature aging, cognitive

impairment, and cardiovascular and infectious diseases [15]

The adverse effect of stress in conjunction with the process of aging can

result in irreparable damage to the brain and body over time [16]. Thus,

4



older adults are more susceptible to several stress-related ailments such as

hypertension and anxiety disorder [17][4]. As in the aging process, stress can

alter the functioning of the immune system [18]. Research suggests that both

acute and chronic stress can lead to significant changes in the functionality

of immune cells and this effect may worsen with age. Further, it has been

found that an older, stressed individual is more prone to deficits in vaccine

response, healing, recovery and may be more susceptible to infection-related

illness as compared to a younger stressed individual [19][20]. Inadequate

and improper management of natural episodic stress is found to adversely

influence the immune function of older adults to a greater extent than that

of relatively younger adults [21].

Anxiety is a complex emotional and behavioral response that results from

the anticipation of a negative situation (real or perceived) that is potentially

perceived as harmful to the individual [22][23]. Like stress, repeated expo-

sure to anxiety can cause psychological disorders such as clinical depression

and anxiety disorder [24]. Further, chronic anxiety has also been found to

be strongly associated with physiological abnormalities such as cardiovascu-

lar diseases, insomnia, and impaired cognitive ability [25][26][27]. Although

anxiety is a global psychological disorder affecting all population groups, a

qualitative difference has been observed between the anxiety experienced by

an older adult to that of a younger adult [28]. Statistics show that about 15%

to 20% of older adults suffer from depression [29] and 15% to 40% of older

adults suffer from anxiety [30]. The increased perception of anxiety and its
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Figure 1.3: Concept map representing of the relationship between stress,
anxiety, and hypertension and their related ailments

consequent effects in older adults is attributed to several factors prevalent

among older adults such as loneliness from retirement, decreased physical

abilities, etc. [31] [32].

Hypertension is another physiological condition that is irreversible. Ab-

normal or irregular blood pressure patterns over many years may lead to

permanent conditions like hypertension. The development of hypertension

in adults is a poorly understood topic because of several factors such as be-

havioral, genetic, and other psychosocial factors [33]. Hypertension is the

leading cause and gateway to severe health problems like heart failure, vision

loss, stroke, and complications related to kidney [34]. American Heart Asso-

ciation (AHA) estimates that about 85 million people (one in every 3 adults
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over the age of 20) in the US have high blood pressure and according to the

National Institutes of Health (NIH), about two-thirds of the people over the

age of 65 have high blood pressure [34]. Studies have shown that there is

some level of association between increased work-related load and high blood

pressure [35]. Further, it was observed that improper management of work-

life balance reflected by overburdening oneself with work can lead to a high

level of blood pressure in everyday life which can eventually become chronic

in nature [36][37].

From the above discussions on stress, anxiety, and hypertension, we can

see that these three elements have overlapping health risks. In some cases,

one health risk initiated by one element can lead to the development of an-

other element and associated complicated factors. This relation between the

three elements can be visualized with the help of the concept map in Figure

1.3. The visualization in Figure 1.3 represents some of the ailments of stress,

anxiety, and hypertension. Stress has been found to play an important role in

the development of both anxiety and hypertension [8][9]. Some studies have

also found an association between anxiety and high blood pressure [38][39].

This concept is illustrated with arrow marks in Figure 1.3. Further, some

stress-related ailments such as the development of cognitive impairment and

heart diseases can also be caused by anxiety. Hypertension can also result in

the development of heart diseases.

Hence, monitoring and managing stress and its associated effects such

as anxiety and blood pressure can reduce the chances of the development
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of chronic and irreversible health conditions later in life [40][41]. Moreover,

logging stress, anxiety, and blood pressure profiles can help the caregiver in

making an informed decision during diagnosis and early intervention can be

initiated to prevent long-term damage. Further, the health data generated

from these profiles can help the scientific community in better understanding

the relationship between different ailments and the factors that lead to the de-

velopment of such conditions. Moreover, these components can be integrated

together with wearable location detection systems fall detection systems in a

smart home environment context for providing additional context regarding

the lifestyle of a person [42][43][44].

Advancement in low-power electronics and sensor technologies facilitates

the integration of multiple wireless sensors in consumer wearable devices.

Integration of consumer electronics component on the Internet of Medical

Things (IoMT) for health monitoring using machine learning techniques is

currently a widely researched topic [40][45][46][47][48]. Comfort is an im-

portant factor to be considered when designing health monitoring systems

in a consumer electronics context [47]. Hence, a wearable system such as a

wristband-based wearable system will be suitable for long-term use and is

more likely to be used daily by the user [47].

In this dissertation, we will present novel machine learning and unobtru-

sive wearable sensor-based technological solutions to monitor stress, anxiety,

and blood pressure in real-time. We will evaluate two wearable configura-

tions for stress detection [49][50][51]. One of the wearable configurations is
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a fingertip-based wearable system where the sensors are carefully attached

to the user using velcro straps. Another configuration is a wristband-based

wearable system. A wristband-based wearable system provides more free-

dom to the user in terms of usability. The anxiety detection model has been

developed using the wristband-based wearable system [52]. Finally, a blood

pressure estimation model using machine learning techniques is also pro-

posed [53][54]. These technological solutions can facilitate real-time health

monitoring and can provide scope for managing one’s health through per-

sonalized intervention strategies and thereby take charge of one’s well-being

and reducing the need for regular intervention from a medical expert.

1.2 Contribution of Dissertation

The technical contributions of this dissertation are as follows:

1. Experimental Data Collection: Experimental data of 50 older adults

were collected during the trier social stress test (TSST) experimen-

tal protocol for developing the stress and anxiety detection models.

Physiological signals were collected using a fingertip-based wearable

device and a smart wristband-based wearable device. Salivary cortisol,

which is an established clinical biomarker for stress was collected for

the ground truth estimation of stress levels. For anxiety level ground

truth, the response from the STAI questionnaire was evaluated.

2. Stress Detection Model Based on Fingertip-Based wearable
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Device: A stress detection model using fingertip EDA and PPG sen-

sors and traditional machine learning algorithms along with a proposed

long short-term memory (LSTM) is proposed for distinguishing be-

tween stressed and not-stressed states. Experimental data of 19 older

adults were used for this work.

3. Stress Detection Model Based on Smart Wristband-BasedWear-

able Device: A stress detection model using wristband EDA, PPG,

and ST sensors was used along with a random forest classifier ma-

chine learning model to distinguish between the stressed state and not-

stressed state. Experimental data of 40 older adults were used for this

work. Further, the proposed stress detection model is prototyped in a

consumer end device with voice capabilities, so that users can receive

feedback on their vitals and stress levels by querying on voice-enabled

consumer devices such as smartphones and smart speakers.

4. Anxiety Detection Using Wearable Sensor and Context Fea-

ture: An anxiety detection model that uses a single wearable sensor

(EDA and PPG) along with an experimental context feature is pro-

posed. Experimental data of 41 older adults were used for this work.

5. Blood Pressure Estimation Using Wearable Device: A blood

pressure estimation and classification model using a PPG sensor is pro-

posed. Data used for building the blood pressure estimation model is

extracted from an online freely available MIMIC dataset.
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1.3 Outline of Dissertation

This dissertation is structured into six main chapters excluding the current

chapter that is the introduction to the dissertation. Chapter 2 will discuss

the physiological signals, wearable sensors, and machine learning techniques

for building the predictive models, the performance metrics used for evaluat-

ing the predictive models, and the related work in stress detection, anxiety

detection, and blood pressure estimation. Chapter 3 will present the tech-

nical work on developing stress detection models based on fingertip sensors

such as EDA and PPG. Chapter 4 will present the technical work on devel-

oping stress detection models based on smart wristband-based sensors such

as EDA, PPG, and ST. Chapter 5 will present the work on anxiety detec-

tion using a single physiological sensor and context feature. Chapter 6 will

present the work on blood pressure estimation and classification. Finally,

Chapter 7 will conclude the dissertation.
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Chapter 2

Background

In this chapter, we will present the background of this dissertation. This

chapter is organized as follows: Section 2.1 will discuss the fundamentals of

physiological signals for health monitoring in the context of stress detection,

anxiety detection, and blood pressure estimation. Section 2.2 will discuss

the wearable devices for health monitoring in the context of stress detection,

anxiety detection, and blood pressure estimation. Section 2.3 will discuss the

fundamentals of machine learning techniques used for predictive modeling in

the context of stress detection, anxiety detection, and blood pressure estima-

tion. Section 2.4 will discuss the performance metrics used for quantifying

the performance of the predictive models. Section 2.5 will discuss some of

the representative works on stress, anxiety, and blood pressure estimation.

Finally, section 2.6 will conclude the chapter.
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2.1 Physiological Signals for Health Monitor-

ing

In this section, we will discuss the various physiological measures that can be

used for the continuous detection of stress, anxiety, and blood pressure. Con-

tinuous recording of physiological signals using wearable sensors for monitor-

ing stress, anxiety, and blood pressure is getting attention from research com-

munity [55][56][57]. Common physiological signals that are used in the con-

text of stress, anxiety, and blood pressure are galvanic skin response (GSR)

also known as electrodermal activity (EDA), photoplethysmogram (PPG)

also known as Blood Volume Pulse (BVP), electrocardiogram (ECG), elec-

troencephalogram (EEG), skin temperature (ST), and Respiration (RESP).

Galvanic skin response (GSR) or electrodermal activity (EDA) is the

most common physiological measure for stress detection). GSR is related to

physiological and psychological arousal. Arousal in the autonomic nervous

system (ANS) increases the activity of the sweat glands resulting in increased

skin conductance. Figure 2.1 shows how GSR is related to the activation of

the ANS to aroused state and deactivation from the stressed state to relaxed

state [1]. Usually, for the best quality GSR signal, the sensors are placed on

the fingertip or foot. However, measurement using a wrist-based GSR sensor

is more practical for ambulatory purposes [58].

Photoplethysmogram (PPG) is also known as blood volume pulse (BVP)

in the literature. PPG signal provides information regarding cardiac activ-
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Figure 2.1: Variation of GSR with mental stress [1] (© 2020 IEEE)

ity. PPG signal is a periodic signal with subsequent systolic and diastolic

peaks. PPG signal has been used for stress, anxiety, and blood pressure

estimation along with combination of other signals ([59][55][51]). Electro-

cardiogram (ECG) is another periodic signal that is a measure of cardiac

activity. ECG signal has also been used for detecting stress and anxiety and

also for estimating blood pressure values in the literature [57][55][60].

Electroencephalogram (EEG) captures the brain activity signal and has

the potential to reflect the emotional arousal during stressful situations [61].

Because of this reason, the EEG signal is a popular choice for detecting

anxiety and stress [59][62]. However, capturing EEG signals requires a com-

plex acquisition setup which might not be comfortable for the user in an

ambulatory setting. Skin temperature is also another useful signal that is

associated with stress and anxiety [63]. The skin temperature signal is also
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a convenient choice because it can be captured relatively easily either by

adopting fingertip-based devices or by adopting wristband-type devices that

use thermal imaging for recording the skin temperature without remaining

in direct contact with the skin [64][65]. Respiration is also another useful

physiological signal that can detect arousal during stressful situations, which

is usually indicated by the increase in the respiration rate. Respiration sig-

nal is usually captured using breath sensors. However, the respiration signal

is relatively complicated to capture as any movement or talking associated

during recording can reduce the quality of signal [66].

2.2 Wearable Sensors for Health Monitoring

Several prototypes and implementation methods of wearable frameworks for

recording multiple physiological signal monitoring have been proposed in the

literature. In the work by Yoon et al.,[67] researchers have developed a moni-

toring patch that is capable of capturing skin temperature, skin conductance,

and pulse wave signals. In the work by Lee et al.,[68] a glovebased sensor to

capture EDA signals and pulse wave signals has been proposed. In the work

by Fletcher et al.,[69] a physiological signal monitoring and communication

system were developed by researchers from MIT Media Lab. A smart sensor

capable of capturing heart rate, skin conductance, and skin temperature was

proposed by Quazi et al.,[70]. In the work by Healey and Picard [71] a stress

monitoring system based on a body sensor network has been designed for an
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ambulatory setting. However, there are also several commercially available

devices and platforms for physiological signal acquisition and recording. Ta-

ble 2.1 lists some popular commercially available devices suitable for data

collection and analysis for research in the area of stress detection.

Table 2.1: Popular commercially available devices for research (© 2020
IEEE).

Brand Device Signals RTI Ambulant

Empatica E4 wristband PPG, GSR, HR, Yes Yes
ACC, ST

Garmin Vivosmart HR, HRV, ACC Yes Yes

Zephyr BioHarness 3.0 HR, HRV, GSR, Yes Yes
ACC, ST

iMotions Shimmer 3+ GSR GSR, PPG Yes No

BIOPAC Mobita Wearable ECG, EEG, EGG Yes No
EMG, and EOG

GSR = Galvanic Skin Response, HR = Heart Rate, ACC = Accelera-
tion, ST = Skin Temperature, HRV = Heart Rate Variability, PPG =
Photoplethysmograph, RTI = Real Time Implementation

In the next section we will discuss how machine learning techniques are

used in conjunction with signal processing techniques to quantify stress, anx-

iety, and blood pressure levels.
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2.3 Machine Learning Techniques for Health

Monitoring

Features from physiological signals represent the relationship between these

physiological signals and corresponding ground truth labels. Ground truth

labels represent the actual value of the independent variable. For example,

stress detection and anxiety detection are typically formulated as binary

classification problems, where these binary values (such as stressed or not-

stressed, anxious or not-anxious) are the ground truth labels. A machine

learning algorithm maps the features from physiological signals to the ground

truth labels and builds a classification model based on the training data. The

problem of blood pressure estimation is typically formulated as a regression

problem, where the ground truth labels are the minimum and maximum

arterial blood pressure (ABP) values that represent the systolic and diastolic

blood pressure values respectively.

Figure 2.2 shows the general machine-learning-based framework adopted

in the literature for building predictive models for stress, anxiety, and blood

pressure. The three main stages for building a machine-learning-based pre-

dictive model from physiological signals are preprocessing, feature extraction,

and training and testing. We will discuss these stages briefly in this section.
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Figure 2.2: Overview of a machine learning based framework for stress, anx-
iety, and blood pressure estimation (© 2020 IEEE).

2.3.1 Preprocessing

In this stage, the raw signals from the wearable sensors are processed to

remove noise and other outliers. Common computational steps in this stage

consist of normalization of the raw signals into some specific range. Then

usually a low-pass filter is applied to remove the high-frequency components

from the signal. The processed signal is then used for extracting features

from the physiological signals.

2.3.2 Feature Extraction

The process of feature extraction is analogous to mapping the high-dimensional

raw physiological signals into some low-dimensional feature vector. Features
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are usually computed by using a rolling windowing technique usually with

overlapping time segments. Researchers have used a combination of these sig-

nals for developing predictive models for detecting stress, anxiety, and blood

pressure. It has been observed that the sensor fusion technique (concept

of fusing information from different sensors) to develop predictive models

usually outperforms the predictive models that use a single sensor [72][73].

Features extracted from physiological signals vary significantly based on ap-

plications and also the signals used. Researchers have used a combination of

features from different signal streams such as GSR, ECG, EEG, and RESP.

Some of the common features extracted from these signals for stress detection

are represented as a taxonomical diagram in Figure 2.3
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Figure 2.3: Common features extracted from ECG, GSR, Respiration and
EEG for stress detection (© 2020 IEEE).

For anxiety detection, EEG and ECG based features are more studied

19



in the literature [46][74][59]. However, features from signals such as PPG,

eye movement, audio signals, and tri-axial acceleration have also been used

in the context of anxiety detection. For blood pressure estimation, however,

combinations of mostly cardiovascular signals such as PPG, ECG, phonocar-

diogram (PCG), and ballistocardiography (BCG). For blood pressure esti-

mation, features such as pulse transit time (PTT), pulse arrival time (PAT),

and pulse wave velocity (PWV) are computed. Along with traditional ap-

proaches, using deep learning techniques for feature extraction and prediction

has also received attention in the research community [75].

2.3.3 Training and Testing

For building the predictive model, the features are trained using a machine

learning algorithm. For problems such as stress detection and anxiety de-

tection, a classification algorithm is adopted and for problems such as blood

pressure estimation, a regression algorithm is adopted. The algorithm classi-

fies or categorizes a feature sample to a target class or target value depending

on the feature values and the classification rule. Table 2.2 shows the char-

acteristic of some popular machine learning algorithms typically used in the

context of stress detection, anxiety detection, and blood pressure estimation.

Table 2.2 shows the different attributes of machine learning algorithms

such as the decision rule used by the classifier, the training, and the test-

ing/prediction complexity. It is interesting to note that the prediction or

testing complexity of these classifiers depends on the number of features
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Table 2.2: Characteristics of popular machine learning algorithms (© 2020
IEEE).

Algorithm Classification Rule Training Testing

SVM Support Vectors O(n2p+ n3) O(nSV p)

κ-NN Distance Criteria NA O(np)

DT Decision Tree O(n2p) O(p)

LDA Dimension Reduction NA O(npt+ t3)

NB Bayes Theorem O(np) O(p)
n = number of samples, p = number of features, nSV=number of support
vectors, t = min(n, p),SVM=Support Vector Machine,κ-NN=κ Near-
est Neighbor, DT=Decision Tree, LDA=Linear Discriminant Analysis,
NB=Naive Bayes
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(p). Hence, selecting the most accurately representing features through fea-

ture selection criteria such as Pearson correlation, mutual information score

between the feature variable and target variable is a standard practice to

reduce the complexity of the learning algorithm and also to improve the per-

formance of the predictive model. Recently, quantum annealing was also used

for feature selection for stress detection as well as for some other application

domains [76][77]. In [78], the problem of stress detection has been modeled

for detecting future stress events rather than the current stress events.

Having discussed the fundamentals of building a predictive model, we will

now present the discussion on evaluating the performance of the predictive

models.

2.4 Performance Metrics

In this section, we will discuss the performance metrics used for quantify-

ing the performance of machine learning models. For classification tasks,

the performance metrics mostly used are the accuracy, F1-scores, and AUC

score. In the case of regression tasks such as blood pressure estimation, the

performance metrics used are the mean absolute error (MAE) and standard

error. We will describe these performance metrics separately in the context

of classification and regression.
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2.4.1 Classification

During binary classification tasks, the objective of the machine learning clas-

sifier is to assign a class label to the feature sample. Out of the two classes,

one class is taken as the positive class and the other negative. For example,

in the case of stress detection, the stressed (’S’) class can be thought of as the

positive class and the not-stressed (NS) class can be thought of as the nega-

tive class. Similarly for anxiety detection, anxious (’A’) is the positive class

and not-anxious (NA) is the negative class. Hence, during one prediction

task, there can be four possible outcomes, true positive (TP), true negative

(TN), false positive (FP), and false negative (FN).

In our results and analysis, the performance of the machine learning

model is quantified using three metrics: (i) macro-average f1-score, (ii) micro-

average f1-score, and (iii) Area under curve (AUC) score. If TPp, FPp and

FNp represents the true positive, false positive and false negative of the

positive class(’S’ or ’A’) and TPn, FPn and FNn denotes the same for the

negative class (’NS’ or ’NA’), then, micro-average precision is given by the

equation.

Pmicro =
TPp + TPn

TPp + TPn + FPp + FPn

(2.1)

and micro-average recall is given by the equation:

Rmicro =
TPp + TPn

TPp + TPn + FNp + FNn

(2.2)
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The resulting micro-average f1-score can be calculated as

Fmicro =
2.(Pmicro.Rmicro)

(Pmicro +Rmicro)
(2.3)

Macro-average precision is given by:

Pmacro =
2.TPp.TPn + TPp.FPn + TPn.FPp

2.(TPp + FPp).(TPn + FPn)
(2.4)

Macro-average recall is given by:

Rmacro =
2.TPp.TPn + TPp.FNn + TPn.FNp

2.(TPp + FNp).(TPn + FNn)
(2.5)

Hence, macro-average f1-score can be calculated by:

Fmacro =
2.(Pmacro.Rmacro)

(Pmacro +Rmacro)
(2.6)

Macro average weighs both the positive class and the negative class equally

while micro average favors the majority class [79]. AUC score represents the

area under the ROC (receiver operating characteristic) curve and is given by

the equation:

AUC =
1

2
.(

TP

TP + FN
+

TN

TN + FP
) (2.7)

where TP, TN, FP, FN represents true positive, true negative, false positive

and false negative of the confusion matrix.
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2.4.2 Regression

For regression tasks such as blood pressure estimation, the machine learning

model assigns a discrete value to the feature sample. The accuracy is calcu-

lated in terms of Mean Absolute Error (MAE) which quantifies how much

the predicted value deviates from the actual value on an average. Another

metric commonly used for regression tasks is the Standard Error (SE) which

quantifies the incorrectness of the regression model on an average as it pro-

vides an estimate of how far apart are the predicted values on an average

from the regression line. In other words, it is the standard deviation of the

errors observed on a set of measurements.

Mathematically MAE and SE are defined as:

MAE =
1

n

n∑
i=1

|xi − x| (2.8)

SE =

√∑
(xi − x̄)2

n− 1
(2.9)

, where xi is the predicted value and x is the observed value and n is the

number of observation.
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2.5 RelatedWork on Stress, Anxiety, and Blood

Pressure Estimation

Having discussed the fundamentals of detecting stress, anxiety, and blood

pressure, we will now explore the related works in these areas. As these

works have been conducted under different experimental conditions, we will

perform a qualitative evaluation of the related works.

2.5.1 Stress Detection

Detecting stress levels from physiological signals has been gaining immense

importance in the scientific community in recent years. However, most of the

existing works have either used younger adults or no such target group has

been specifically mentioned. Another area that has been relatively less ex-

plored is the use of cortisol as the stress reference for stress detection. Most of

the work has used stress levels quantified from self-reporting questionnaires

like DASS 21 (Depression, Anxiety and Stress Scale - 21), etc., or from other

subjective methods as the ground truth. The response obtained by such a

method may be biased due to inaccurate perceptions of stress, low levels

of objectivity, and inconsistencies in assessment [80][81]. Work done in [56]

has used cortisol as the ground reference for stress detection. However, the

target population was younger adults and the study involved a small partic-

ipant pool. Comfort is also another important factor to be considered when

designing a stress monitoring system in a consumer electronics context [82].
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For example, wrist-based acquisition devices are likely to be more comfort-

able for long-term monitoring especially for older adults. A study conducted

in [82] showed that older adults are more likely to show a positive attitude

in terms of comfort in using a wrist-worn device than younger adults and

continue to use and adapt to the device. Our work provides a novel direction

for detecting stress in older adults using cortisol as the stress reference and

using fingertip and wrist-worn sensors to monitor physiological signals.

Table 2.3: Attributes of related work on stress detection in older adults.

Work Subjects Acquisition Signals Target Stress
Points Population Reference

Kikhia et al. [83] 6 Wrist EDA Older Adults Annotation by
With Dementia Clinical Staff

Belk et al. [84] Use Case Hand/Palm EDA, IMU, ST Older Adults Annotation by
HR, Grip Force External Observer

Delmastro et al. [60] 9 Chest, Finger ECG, EDA MCI Frail Predetermined
Older Adults Stress Annotation

Cheong et al. [85] 9 Wrist ST, Step Count, HR, Humidity Older Adults Self Reported
Near Body and Air Temperature Questionnaire

Ferreira et al. [62] 17 Finger, Arm ECG, EEG Older Adults Self Reported
Chest, Head EDA Questionnaire

Our Work. [49] 19 Fingertip EDA, BVP Older Adults Salivary
Cortisol

Our Work. [51] 40 Wrist EDA, BVP, IBI, ST Older Adults Salivary
Cortisol

Table 2.3 lists some of the related work and their key attributes in the

area of stress monitoring targeting older adults. In [83], researchers have

used a wrist-based EDA sensor to detect stress levels in older adults with

dementia. The study was conducted on 6 participants and the stress refer-

ence was obtained from the annotations provided by clinical staff. In [84],
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EDA, IMU, HR, and Grip Force were used to detect stress levels in older

adults. A computer mouse equipped with the corresponding sensor was used

to record the signals. In [60], ECG signal recorded from chest and EDA signal

recorded from finger was used to detect stress. The study was performed on

9 participants who were suffering from Mild Cognitive Impairment. In [85],

a combination of skin, near-body, and air temperature along with step count

and relative humidity data were used to detect stress. In [62], researchers

have used data from Finger, Arm, Chest, and Head to record ECG, EEG, and

EDA signals. The study was conducted on 17 older adults and the ground

truth was accessed by a self-reported questionnaire. Table 2.3 also contains

the qualitative attributes of our fingertip and wristband-based work on stress

detection for comparison.

2.5.2 Anxiety Detection

Technological solutions to detect anxiety in real-time using physiological sig-

nals have recently garnered significant attention from the research commu-

nity. Unlike stress detection, anxiety detection is relatively less explored in

the context of the Internet of Medical Things (IoMT). For example, there

is a significant amount of research work available in the literature that uses

low-cost consumer electronic components to monitor stress continuously in

real-time [86][51]. However, there are very few research articles that detail

technological solutions for detecting anxiety using low-cost consumer elec-

tronic components. This work explores a novel direction for anxiety detection
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using wrist-worn sensors and a context-aware feature. Our work explores an

interesting solution towards realizing a low-cost consumer electronic system

to monitor anxiety in real-time for older adults.

Table 2.4: Attributes of related work on Anxiety detection in older adults.

Work Subjects Acquisition Signals Target Anxiety
Points Population Reference

Puli et al. [74] 15 Chest and arm ECG, ACC Children and Physiological
Youth with ASD Indicators

Wen et al. [57] 59 Wrist and ankle ECG Younger Adults Annotation by
Audience Score

Zhang et al. [59] 92 Head EEG, eye- Children and Self-report
movement Adolescents (SCARED)

Li et al. [46] 12 Head EEG Younger Predetermined
Adults levels

Zheng et al. [87] 20 Head and nose EEG, PPG Younger Adults STAI
McGinnis et al. [88] 71 NA Audio Children Self-reported

and observed
This Work [52] 41 Wrist Wrist-based signals Older Adults STAI

(EDA and BVP)

Table 2.4 presents some of the existing works in anxiety detection along

with a qualitative comparison with our proposed work. In [74], Puli et al.

proposed a Kalman-like filter approach that fuses heart rate features ex-

tracted from ECG signal along with accelerometer signals for accurate anx-

iety level detection in the presence of motion. The target population for

this work was children and youth who are clinically diagnosed with ASD

(Autism Spectrum Disorder). The experiment was performed with 15 par-

ticipants and the results and the analysis from the experiment showed that

fusing accelerometer data with heart rate features was able to reduce false

detection of anxiety to a significant level. Wen et al. [57] proposed an anx-

iety detection model that uses features from the IBI series extracted from

the ECG signal. The anxiety detection model proposed by the researchers
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uses a trained SVM model to classify samples as high or low anxiety states

based on the extracted ECG features. In [59], Zhang et al. proposed fusing

eye-movement features with EEG signals to increase the precision of anxiety

detection. The researchers used group sparse canonical correlation analy-

sis (GSCCA) to generate effective feature space containing both EEG and

eye-movement features for improved performance of the anxiety detection

model. The features were trained using SVM. Results and analysis showed

that the fusing features from eye movement and EEG were able to improve

the performance of the anxiety detection model.

In [46], Li et al. have used extensive feature set from the EEG signal

such as frequency domain, time domain, non-linear, and statistical features

to train an SVM model to distinguish anxiety in 4 levels. The experiment

was performed on 12 university students who were younger adults. A sensor

fusion approach to classify anxiety in three levels was explored by Zheng

et al. [87] using EEG and PPG signals. 20 younger adults were used in

this experiment during which the participants were required to complete

two cycling-related tasks. Results from their analysis showed that features

from both EEG and PPG performed better in detecting anxiety than when

features from a single signal was used. In [88], McGinnis et al. explored the

effectiveness of audio data in detecting anxiety among young children. Audio

features were extracted from the audio signal recorded during a 3-minute

speech task and the performance of several machine learning algorithms such

as logistic regression, random forest, and SVM were evaluated.
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2.5.3 Blood Pressure Estimation

Majority of the research on estimating blood pressure using physiological

signals focussed on the analysis of Pulse Transit Time (PTT), Pulse Arrival

Time (PAT), and Pulse Wave Velocity (PWV). However, to calculate these

quantities, either a multiple sensing modality or dual element probe is re-

quired. For example, in [89], researchers have used a dual element PPG

probe to capture PPG data which in turn calculates Pulse Wave Velocity.

Work done in [55] used pulse transit time and pulse arrival time to estimate

blood pressure values by measuring three signals, Electrocardiogram (ECG),

Phonocardiogram (PCG), and Photoplethysmogram (PPG). In [90], the au-

thors have used Ballistocardiogram (BCG) for measuring pulse transit time

which is used for estimating blood pressure values. In our work, we have ex-

plored a novel technique to estimate blood pressure values by using a single

sensor and single probe PPG-based computational framework.

2.6 Conclusion

In this chapter, we have discussed some of the common physiological signals

in the context of stress, anxiety, and blood pressure estimation. We have

also discussed the fundamentals of machine learning techniques commonly

used for building predictive models for stress, anxiety, and blood pressure.

We have presented the discussion on performance metrics used for evaluating

the machine-learning-based predictive models for stress, anxiety, and blood
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pressure. Finally, the related work in the area of stress detection, anxiety

detection, and blood pressure estimation has been discussed.
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Chapter 3

Stress Detection Using

Fingertip Sensors

In this chapter we will present the work on stress detection using fingertip

sensors. In this work, we will evaluate the effectiveness of a fingertip-based

wearable physiological stress monitoring system in distinguishing between

stressed and non-stressed state in older adults using machine learning tech-

niques. This system utilizes EDA and BVP signal to detect occurrence of

stress as indicated by salivary cortisol measurement which is a reliable ob-

jective measure of physiological stress. Data of 19 healthy older adults (11

female and 8 male) with mean age 73.15 ± 5.79 were used for this study.

EDA and BVP signals were recorded using a finger tip sensor during the

trier social stress test (TSST), which is a well known experimental protocol

to reliably induce stress in humans in a social setting. Four machine learning
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algorithms were evaluated based on their performance in classifying between

stressed and non-stressed states. The four machine learning models are Ran-

dom Forest (RF), κ-Nearest Neighbor (κ-NN), Logistic Regression (LR), and

Support Vector Machine (SVM). Further, the effectiveness of a novel deep

learning Long Short-Term Memory (LSTM) based classifier in distinguishing

between stressed and non-stressed state.

In Section 3.1, we will discuss the experimental design adopted for the

study. This section will discuss the selection criteria used for screening par-

ticipants for the study, the methods used for recording and collecting physi-

ological data and the experimental protocol. In Section 3.2, we will discuss

the signal processing and features extraction procedure used to extract fea-

tures from EDA and BVP signal. The processing of salivary cortisol samples

for stress annotation will be discussed in Section 3.3. In Section 3.4, we will

present the supervised feature selection algorithm and the machine learning

models used for correlating the features with stress classes. Section 3.5 will

present the results and analysis. Section 3.6 presents some discussion on the

proposed work and finally Section 3.7 concludes the chapter.

3.1 Experimental Study Design

The objective of this experiment is to correlate the features from EDA and

BVP signals with increase in cortisol concentration in older adults when

exposed to stressors. In this section, we will discuss the design of our experi-
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mental study. We will start our discussion with the screening criteria adopted

for recruiting participants for the study. This will be followed by a discussion

on the materials and methods used for physiological data collection. Finally,

the experimental protocol adopted for this study will be discussed.

3.1.1 Participant Screening

Healthy older adults between the ages of 60 to 80 were recruited for this study.

Participants were excluded from participation in the study if they reported

having existing heart conditions, post traumatic disorder, anxiety disorders,

unstable angina, Addison’s disease, or Cushing disease. 19 participants, 11

female and 8 male with mean age 73.15± 5.79 were enrolled in this study.

3.1.2 Physiological Data Collection

Physiological signals and salivary cortisol samples were collected during the

study. The physiological signals captured for this study were the EDA and

BVP signals. EDA also known as Galvanic Skin Response (GSR) measures

the electrical conductivity of the skin. This is measured by applying a low

and constant voltage using two electrodes to skin.

The second physiological signal considered for our study is BVP also

known as Photoplethysmogram (PPG). BVP contains information about the

cardiac activity. Although Heart Rate (HR) and Heart Rate Variability

(HRV) features are usually extracted from ECG signal for better accuracy,
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these features can also be approximated using BVP signal as Pulse Rate

Variability (PRV) is considered to be highly correlated to HRV [91]. Further,

EDA and BVP are very convenient and cost-effective to measure and require

minimum obtrusiveness.

To record EDA and BVP signal, Shimmer3 GSR+ has been used. The

EDA sensors are electrodes of roughly 1 cm2 attached to a Velcro strap

secured on the middle and ring finger. The two sensors are used as a sig-

nal/source pair for measuring conductivity (responsiveness to electricity).

The BVP sensor configuration is composed of a small (roughly 1cm2) clear

epoxy covered circuit that has a light source and detector with a Velcro strap

to which the BVP sensor is fixed. The sensor and strap are secured firmly to

the tip of the index finger. These electrodes are placed on the non dominant

hand of the participant to minimize signal distortion during the experiment.

The data captured by the sensors is transmitted in real time via a Bluetooth

connection to a dedicated software platform for storing the data for future

analysis. The signals are analyzed and processed on a computer with Intel

i5 processor and 16 GB RAM.

Saliva samples are taken five times during the study at time stamps T1,

T2, T3, T4, and T5 (Figure 3.1). T1 is taken when the participant just arrives

at the study facility. T2 is taken at the end of Pre Stress period. T3 is taken

after the stress induction period, T4 is taken after the first recovery phase

and T5 at the end of the study. Cortisol response has a lag of 20 minutes [92],

hence the samples are taken at an interval of 20 minutes. Salivary samples
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are taken using a cotton swab which the participants are instructed to put

the swab under the tongue for about 2 minutes. The swabs are then stored

at about -20 deg Celsius. The participants were instructed not to eat or

drink anything before the study as it could affect the quality of the cortisol

concentration.

3.1.3 Experimental Protocol

For the experimental protocol, the Trier Social Stress Test (TSST) has been

selected because of its capability to capture social and psychological stress

in a naturalistic environment [93, 94]. Figure 3.1 illustrates the steps in the

experimental protocol. The protocol consists of a waiting period and a Pre-

Stress (PS) period for 20 minutes (time period T1-T2), Anticipatory Stress

(AS) period of 10 minutes followed by Speech and Math task for another

10 minutes (time period T2-T3). During the waiting period, participants

have been asked to complete demographic surveys, and clarify any questions

about the study process they may have. The physiological signal recording

starts from the PS period. During the PS period, the baseline measurement

of the participant is taken which is for approximately 2 minutes. After that,

the participants are shown a topic on which they have to speak continuously

for 5 minutes while being observed. This is the AS period which lasts for 10

minutes. During this time, the participant is expected to mentally prepare

the speech. After the AS period, there are subsequent stress phases: (i) The

speech task and (ii) mental math task, each of which lasts for 5 minutes each.
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During the mental math task, participants are asked to solve simple addition

and subtraction problems mentally while being observed. The math task is

set up such that the participants must answer each question correctly before

proceeding to the next question. The difficulty level of the math equations

increases with every correct answer. The final steps in the TSST protocol

are two recovery periods which are 20 minutes each. (time period T3-T5).

Figure 3.1: Experimental Protocol (© 2021 Springer Nature Switzerland
AG)

3.2 Signal Processing and Feature Extraction

In this section, we will discuss the methods used for processing physiological

signal and feature extraction. The overview of the complete framework used

for stress classification is shown in Figure 3.2.

Features extracted from EDA and BVP signals form the backbone of the

stress detection model on which the machine learning model trains itself to

classify between stressed and not stressed states. Before extracting features,

the raw EDA signal in uS (Microsiemens) and BVP signal in mV (Millivolts)

is scaled between 0 and 1 and subsequently a low pass Butterworth filter of
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Figure 3.2: Overview of the stress classification framework used in this work.
ML models represent the models prior to weight estimation. The ML models
are trained using the stress annotation from cortisol concentration and the
training feature set. The trained models are then tested using the test feature
set (© 2021 Springer Nature Switzerland AG).

order 5 and cutoff frequency 1 Hz for EDA signal and 10 Hz for BVP signal

is used.
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Table 3.1: Description of EDA extracted features (© 2021 Springer Nature
Switzerland AG)

Symbol Description

PMEAN
amp Mean of peak amplitudes

PMEDIAN
amp Median of peak amplitudes

P SD
amp Standard deviation of peak amplitudes

PRMS
amp Root mean square of peak amplitudes

PMAX
amp Maximum of peak amplitudes

PMIN
amp Minimum of peak amplitudes

PMEAN
width Mean of peak widths

PMEDIAN
width Median of peak widths

P SD
width Standard deviation of peak widths

PRMS
width Root mean square of peak widths

PMAX
width Maximum of peak widths

PMIN
width Minimum of peak widths

PMEAN
prom Mean of peak prominence

PMEDIAN
prom Median of peak prominence

P SD
prom Standard deviation of peak prominence

PRMS
prom Root mean square of peak prominence

PMAX
prom Maximum of peak prominence

PMIN
prom Minimum of peak prominence
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3.2.1 EDA Feature Extraction

EDA is characterized by occurrence of peaks also known as SCR (skin con-

ductance response) peaks. Research evidence suggests that skin conductance

response is associated with emotional arousal [95, 96]. Research conducted

in [73] showed that the peak amplitude and instantaneous peak rate contains

information about the stress level of the person. Based on these research ev-

idence we hypothesize that observing the peak characteristic during stressed

and non stressed condition can help contribute in training a machine learning

model in classifying between the stressed and non-stressed state. We have

attempted to study three characteristic of SCR peak: (i) peak amplitude, (ii)

peak width and (iii) peak prominence. Prominence of a peak is a quantitative

measure of how much a peak is distinguished from its surrounding baseline

and is measured by the vertical line between the peak and the lowest con-

tour line. The observation of these peak characteristic was summarized by

computing statistical measures over the 90 sec running window and overlap

of 45 sec.

The peak detection algorithm [97] is applied to the first derivative of

EDA signal and the detected peaks are visualized with varying threshold. A

threshold of 0.001 seemed appropriate in accurately detecting most of the

peaks. Statistical measures such as mean, median, standard deviation, root

mean square, maximum, and minimum of peak amplitude, peak width and

the prominence of the peak were computed as features. Table 3.1 describes

the extracted features from EDA signal. The features extracted from EDA
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signal is represented by the symbol P statistics
quantity , where quantity represents what

aspect of the peak we are measuring like amplitude, width and prominence

and statistics represents what statistical measure is being computed. A total

of 18 statistical features are computed from EDA signal.

3.2.2 BVP Feature Extraction

BVP signal is characterized by two types of peaks: (i) Systolic and (ii) Dias-

tolic peaks. A single cardiac cycle is composed of both these peaks. During

stressful situations, cardiovascular arousal can result in changes in heart rate,

blood pressure etc [98]. Work done in [99] showed that the systolic and di-

astolic time changes under stressful situation. Similarly stress situations can

influence the morphology of systolic and diastolic peaks. Based on these

evidence, we have computed features based on the characterization of these

peaks in terms of amplitude, width, prominence and time difference between

consecutive peaks. In this work, we have only considered the characteriza-

tion of systolic peaks. This is because Systolic peaks can be more accurately

detected than diastolic peaks because of the relatively high amplitude of sys-

tolic peak and hence it can be easily separated from the peaks arising out of

motion artifacts.

Peak detection algorithm was applied to processed BVP signal using a

90 second running window and overlap of 45 second to detect systolic peaks.

The detected peaks were visualized under varying thresholds and a threshold

value of 0.4 seemed appropriate in accurately detecting the systolic peaks.
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Furthermore, the distance and width between two consecutive peaks is set to

fs ∗ 0.65 and fs ∗ 0.1 respectively, where fs is the sampling frequency. This

is because a typical systolic phase lasts for 0.3 second and diastolic phase

lasts for about 0.4 second [100]. Based on this, a rough assumption about

the threshold for the peak width and distance can be estimated. As period

of systole lasts for about 0.3 seconds, it can be assumed that the width of a

peak to be classified as peak should be atleast half the width of the entire

systole. Hence, the threshold for the width is set to 0.1 sec. Further, as

the time difference between two systoles is about 0.7 sec, the time difference

between two consecutive peaks should be atleast around 0.65. Hence, the

threshold for peak distance is selected to be about 0.65 seconds.

Statistical measures such as mean, median, standard deviation, root mean

square, maximum, and minimum of peak width and the prominence of the

peak were computed as features. Also, statistical measure such as mean,

standard deviation and root mean square of the time difference between two

consecutive peaks and the number of peaks appearing per minute were cal-

culated. Finally mean, standard deviation, root mean square and range of

peak amplitude is computed to form the final BVP feature set. The features

extracted from BVP signal is represented by the symbol Sstatistics
quantity , where

quantity represents what aspect of the peak we are measuring like ampli-

tude, width, prominence, and time interval and statistics represents what

statistical measure is being computed. A total of 21 statistical features are

computed from BVP signal. Table 3.2 shows the description of the extracted
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features from BVP signal.

Table 3.2: Description of BVP extracted features (© 2021 Springer Nature
Switzerland AG).

Symbol Description
Smin No. of peaks per minute

SSD
time Standard deviation of the time differences

between two consecutive peaks

SRMS
time Root mean square of the time differences

between two consecutive peaks

SMean
time Mean of the time differences

between two consecutive peaks

SRange
time Difference between the maximum and minimum

time differences between two consecutive peaks

SMEAN
width Mean of peak widths

SMEDIAN
width Median of peak widths

SSD
width Standard deviation of peak widths

SRMS
width Root mean square of peak widths

SMAX
width Maximum of peak widths

SMIN
width Minimum of peak widths

SMEAN
prom Mean of peak prominence

SMEDIAN
prom Median of peak prominence

SSD
prom Standard deviation of peak prominence

SRMS
prom Root mean square of peak prominence

SMAX
prom Maximum of peak prominence

SMIN
prom Minimum of peak prominence

SMEAN
amp Mean of peak amplitudes

SSD
amp Standard deviation of peak amplitudes

SRMS
amp Root mean square of peak amplitudes

SRange
amp Range of peak amplitudes
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3.3 Salivary Cortisol Processing and Stress

Annotation

The objective of salivary cortisol processing is to convert the continuous

cortisol values to categorical values, stressed (S) or not-stressed (NS). The

salivary samples were processed and cortisol concentration were estimated.

The assay range was 0.012-3 (ug/dL). For each participant, there were 5

cortisol samples, two of which were taken during pre- study period (T1 and

T2) and three of which were taken during the study (T3-T5). The following

preprocessing steps were implemented to classify a sample as either stressed

or not-stressed.

� Samples taken at T1 and T2 were averaged and then subtracted from

the remaining samples at taken T3, T4 and T5 for each participant.

� The three samples taken at T3, T4 and T5 for each participant were

integrated and standardized by subtracting the mean from each sample

and dividing by the standard deviation.

� A sample x was classified as stress (S) if x > µ and as not stressed

(NS) if x < µ, where µ is the population mean.

The statistics for stress class (S) is 0.31± 0.27 (ug/dL) and that of not-

stressed class (NS) is −1.17±1.64 (ug/dL) with p-value of 5.33e−7. p-value is

used to quantify the difference between the two groups. Usually a p-value less
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than 0.05 suggests strong evidence that the null hypothesis can be rejected

and the alternate hypothesis can be accepted. In this case as the p-value

is 5.33e−7, which is significantly less than 0.05, we can accept the alterna-

tive hypothesis that the stressed and non-stressed groups are significantly

different from each other.
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Figure 3.3: Example of the trend of cortisol concentration during the study
(© 2021 Springer Nature Switzerland AG).

Figure 3.3 shows an example of the trend of cortisol concentration during

the study session. We can see from Figure 3.3 that the cortisol concentration

followed an increasing trend upon participant exposure to stressors and the

relative concentration decreased during in the recovery phase. The mean and

the standard deviation of the cortisol concentration for each of the five time

stamps for the 19 participants is shown in Table 3.3.

46



Table 3.3: Mean and SD (Standard Deviation) of cortisol concentration dur-
ing each time stamps (© 2021 Springer Nature Switzerland AG).

Time Stamps Mean (ug/dL) SD (ug/dL)

T1 0.107 0.059

T2 0.149 0.145

T3 0.142 0.121

T4 0.131 0.092

T5 0.117 0.079

3.4 Feature Selection and Machine Learning

Models

In this section, we will discuss the process of feature extraction and present

discussion on the machine learning models which will be used to correlate

the EDA and BVP features to stress classified by salivary cortisol processing.
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3.4.1 Feature Selection

Table 3.4: Rank of the features selected along with the signal source (©
2021 Springer Nature Switzerland AG).

Rank Feature Source Rank Feature Source Rank Feature Source

1 SRange
amp BVP 11 PMIN

prom EDA 21 SMAX
prom BVP

2 SMEDIAN
prom BVP 12 PMIN

width EDA 22 SMEAN
amp BVP

3 SMIN
prom BVP 12 PMEAN

prom EDA 23 PMEDIAN
width EDA

4 SSD
width BVP 14 PMEAN

width EDA 24 P SD
width EDA

5 SSD
amp BVP 15 PMAX

prom EDA 25 SMIN
width BVP

6 SMEAN
prom BVP 16 PMAX

amp EDA 26 PMEAN
width EDA

7 SMAX
width BVP 17 P SD

prom EDA 27 SMEAN
time BVP

8 SSD
prom BVP 18 PMAX

width EDA 28 P SD
amp EDA

9 Smin BVP 19 PMEDIAN
prom EDA 29 SRMS

time BVP

10 PMIN
width EDA 20 SMIN

prom BVP 30 PMEAN
amp EDA

The feature set is split into train and test set in a 80-20 ratio while ensuring

that no two samples from the same participants are both in the training and

test set.

The feature selection algorithm (Algorithm 1) takes input the train data

and outputs the index of the selected features. The steps involved in the

feature selection algorithm is explained with line numbers. Line 1 and 2

denotes the assignment of training feature vector and training target vector

to X train and Y train respectively. In line 3, score for each feature is

calculated using the ANOVA F [97] value between the feature and the target

class. In line 4, the score is sorted and the duplicate scores are removed in
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Algorithm 1: Feature Selection Algorithm (© 2021 Springer Na-
ture Switzerland AG).

Input : Train Data
Output: Index of selected features

1 X train← training feature vector ;
2 Y train← training target data;
3 score← f classif(X train, Y train);
4 sorted score← sort(score);
5 sorted score← drop duplicates(score);
6 for i in (0, len(sorted score) do
7 index select feature← indexof(sorted score[i]);
8 end
9 return index select feature

line 5. Then from line 6 to line 8, index of selected features are extracted

and returned in line 9.

The feature selection algorithm returned 30 features out of the 39 features

extracted from EDA and BVP signal. Table 3.4 shows the rank of the features

according to their score and their source. The final feature set contains 15

features each from EDA and BVP.

3.4.2 Machine Learning Models

For correlating physiological features with stress, four types of machine learn-

ing algorithms are studied: (i) Decision tree based classifier, (ii) Nearest

neighbor based classifier, (iii) Probability based classifier and (iv) Kernel

based classifier. Random Forest (RF) classifier is chosen as the decision tree

based classifier, κ Nearest Neighbor (κ-NN) is chosen as nearest neighbor
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based classifier, Logistic Regression (LR) is chosen as the probability based

classifier and finally Support Vector Machine (SVM) is chosen as the kernel

based classifier.

Apart from these four standard popular machine learning classifiers, we

have also evaluated the performance of a deep learning based classifier. Long

Short-Term Memory (LSTM) is chosen as the deep learning based classi-

fier. The following section discusses the architecture of the proposed LSTM

network.

3.4.3 Proposed LSTM Network

In this section, we will present and discuss the architecture of the proposed

LSTM network.
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Figure 3.4: Schematic Layout of the Proposed LSTM Architecture. The
numbers in bracket represent the dimension of the vector output in each
layer. (BN=Batch Normalization) (© 2021 Springer Nature Switzerland
AG).

The proposed LSTM architecture consists of three stacked LSTM layers

followed by three Dense layers. Figure 3.4 shows the layout of different layers

in the network. The first layer is an LSTM layer with 100 hidden units. The

input shape for each sample is (1, 30) where 30 is the number of selected

feature and 1 is the time step. The output from the first LSTM layer is

activated by sigmoid function. The next layer is the dropout layer. In this

layer, 20% of the neurons chosen at random are dropped before propagating

to the next stage. The purpose of the dropout layer is to prevent over fitting.

The third layer is again an LSTM layer with 200 hidden units and activated
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by sigmoid function. This layer is again followed by a dropout layer which

again connects to the last LSTM layer with again 100 hidden units followed by

another dropout layer. The output from the last dropout layer is forwarded

to the first fully connected (dense) layer of the network with 1000 neurons.

The output of this dense layer is again sigmoid activated before forwarding

to the Batch Normalization layer. The output from the BN layer then is

forwarded to another dense layer with 100 neurons. the output from this

layer is again activated by sigmoid function and forwarded to the last dense

layer for classification activated by softmax function.

3.5 Results

In this section, we will discuss the results of the machine learning models in

classifying between stressed and not-stressed states.

3.5.1 Performance of RF, κ-NN, LR and SVM

To estimate the model parameters and tuning hyperparameters, k fold cross

validation technique is applied with k=5 to randomly generate training and

validation dataset. A 5 fold cross validation was deemed suitable for our

analysis, proportional to our training set with each folds having sufficient

number of training samples. Finally the trained model was tested on the test

data. Table 3.5 shows the performance of the four ML models.
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Table 3.5: Performance evaluation of ML classifiers (© 2021 Springer Nature
Switzerland AG).

ML Macro Macro Macro Micro AUC
Models Precision Recall F1-score F1-score Score

RF 0.94 0.53 0.53 0.88 0.53

LR 0.98 0.81 0.87 0.95 0.81

SVM 0.75 0.59 0.61 0.86 0.60

κ-NN 0.95 0.56 0.58 0.88 0.56

It can be seen from Table 3.5 that logistic regression model performed

the best among the other ML algorithms achieving a macro-average f1-score

of 0.87, micro-average f1-score of 0.95 and an AUC score of 0.81. The micro-

average f1-score for all the four models are significantly high, whereas, macro-

average score of RF, κ-NN, and SVM is 0.52, 0.57 and 0.61 respectively which

is significantly low when compared to that of LR model which is 0.87. This

shows that RF, κ-NN and SVM are heavily influenced by class imbalance and

hence is more biased towards the majority class. Further, the AUC score for

LR model is found to be 0.81 which is also significantly greater than those of

RF, κ-NN and SVM which is 0.53, 0.56 and 0.60 respectively. Hence, based

on AUC score, we can say that LR classification model is better at handling

false classification than RF, κ-NN or SVM.

3.5.2 Performance of LSTM Network

For training the LSTM model, the training feature set is further randomly

divided into 80-20 ratio with 20% of the data reserved for validation and 80%
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reserved for training. To avoid over fitting and optimize training time, the

robustness of the model is validated after every epoch. This is done by imple-

menting two call back criteria: (i) Early Stopping and (ii) Model Checkpoint.

The early stopping criteria monitors the validation loss and keeps track of the

minimum loss. If the loss does not improve after training for 250 epochs, the

callbacks criteria forces the training to stop. The model checkpoint criteria is

used to monitor the validation accuracy for its maximum value and updates

its model weights whenever the validation accuracy increases and the model

weights are saved. The LSTM model has been trained for 2000 epochs with

256 samples as the batch size and with categorical cross entropy as the loss

function and adam as the optimizer. Epochs refer to the number of times

the training sample is passed through the neural network. Figure 3.5 shows

the training and validation loss and accuracy with number of epochs.
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Figure 3.5: Plot of the training and validation loss and accuracy with the
number of epochs (© 2021 Springer Nature Switzerland AG).

We can see from Figure 3.5 that the validation loss and accuracy starts

to converge with the training loss and accuracy after about 250 epochs. The

validation loss stopped improving after 1250 epochs and the training was

stopped at 1500 epochs.

The weights of the best saved model is used to evaluate the performance

of the LSTM network. The LSTM model achieved a macro average f1-score

of 0.93, micro average f1-score of 0.97 and an AUC score of 0.90. When

compared to the performance of the logistic regression model, we can see that

LSTM classifier improved the macro average f1-score by 6.7%, micro average

f1-score by 2% and AUC score by 11%. The overall accuracy achieved is

97%. Table 3.6 shows the precision, recall and f1-score for both the classes.
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Results show that LSTM based classifiers could also be a potential choice

to be used for stress level classification alongside standard machine learning

models.

Table 3.6: Performance measure on test data (© 2021 Springer Nature
Switzerland AG).

Class Precision Recall F1-score
NS 0.93 0.81 0.87
S 0.98 0.99 0.98

Macro Micro AUC
F1-score F1-score Score

0.93 0.97 0.90

3.6 Discussion

The objective of this study is to evaluate the effectiveness of detecting ob-

jective stress levels as indicated by increase in salivary cortisol concentration

using only EDA and BVP signals. These signals can be recorded easily by

wrist-worn devices or fingertip sensors which makes real time monitoring of

stress convenient and unobtrusive. To the best of our knowledge this is the

only work that has evaluated the effectiveness of the features of EDA and

BVP alone to detect objective stress as defined by cortisol concentration.

Work done in [56] also used cortisol as the ground truth, however the use of

EEG signal in detecting stress may not be suitable and convenient to moni-

tor stress continuously especially for older adults as recording EEG requires

obtrusive setup of an EEG headset which may lead to the added frustration

and anxiety of older people.
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3.7 Conclusion

In this chapter, we have evaluated the effectiveness of an unobtrusive fingertip-

based wearable device system for physiological stress detection in older adults.

This system utilizes EDA and BVP signals to extract statistical measures of

the peak characteristic of EDA and BVP signal. The TSST Protocol has

been used to induce stress in 19 participants including 11 females and 8

males and with mean age 73.15 ± 5.79 The features are trained and tested

with four machine learning algorithms. Results indicated that logistic re-

gression performed the best achieving macro-average f1-score, micro-average

f1-score and AUC score of 0.87, 0.95 and 0.81 respectively. Further a deep

learning based LSTM classifier is proposed and evaluated on the test set.

Results showed that LSTM based classifier could improve the micro-average

f1-score and macro-average f1-score by 2% and 6.7% respectively from the

best performing logistic regression classifier. Further, LSTM classifier ob-

tained an AUC score of 0.90 which is about 11% higher than the AUC score

of logistic regression. This work illustrates the potential of the proposed sys-

tem in building a physiological stress detection device using EDA and BVP

signal to unobtrusively and continuously monitor stress level of an individ-

ual. Such a device could be specifically useful to closely monitor the stress

levels of older adults in the comfort of their homes, without having to rely

on clinical tests, thereby facilitating the capability of real time feedback of

stress levels. This work also will also allow for the study of personalized
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intervention techniques to counteract the harmful effects of stress on health.

Ultimately, by helping to reduce stress this work may aid in the prevention of

cognitive decline in older adults, thereby, reducing the risk of Mild Cognitive

Impairment, Alzheimer’s Disease, and other stress-related illnesses.
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Chapter 4

Stress Detection Using Smart

Wristband

In the previous chapter, we presented our work on detecting stress using

fingertip-based EDA and PPG sensors. Fingertip-based EDA and PPG sen-

sors might not be best choice for real time monitoring in an ambulatory

setting because of the associated comfort and poor signal quality due to mo-

tion artifact [58]. However, a system of wristband-based wearable sensors

is expected to be more suitable for continuous monitoring in an ambulatory

setting [58][32]. In this chapter we will explore a novel approach for detecting

stress using wristband-based sensors.

In this work, our objective is to design, develop, and evaluate the ef-

fectiveness of a stress detection model for older adults using a system of

wrist-worn sensors. Our system uses four signals, EDA, BVP, IBI, and ST
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from EDA, PPG, and ST sensors, embedded in a smart wristband, to classify

between stressed and not-stressed state. The stress reference is obtained from

salivary cortisol measurement, which is a well established clinical biomarker

for measuring physiological stress. This work is the result of year-long data

collection and analysis of 40 older adults (28 females and 12 males) and age

73.625 ± 5.39. EDA, BVP, IBI, and ST signals were collected during TSST

(Trier Social Stress Test), which is a well known experimental protocol to re-

liably induce stress in humans in a social setting. Further, we prototype the

proposed stress detection model in a consumer end device with voice capa-

bilities, so that users can receive feedback on their vitals and stress levels by

querying on voice-enabled consumer devices such as smartphones and smart

speakers.

This chapter is organized as follows, section 4.1 presents the proposed

method for stress detection. In this section, we will present the method of

feature extraction from physiological signals, processing of salivary cortisol,

calibration of salivary cortisol concentration with physiological signals, and

the training and testing procedure. Section 4.2 presents the discussion on the

experimental set up for the study. Section 4.3 presents the results and anal-

ysis of the study. Section 4.4 discusses the integration of the proposed stress

detection system in a consumer electronics framework, and finally Section

4.5 concludes the chapter.
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4.1 Proposed Method for Stress Detection
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Figure 4.1: Overview of the Proposed Method used for Stress Detection.
EDA signal is obtained from EDA sensor, BVP, and IBI are obtained using
two proprietary algorithms in the device, and ST sensor captures the skin
temperature. FEU=Feature Extraction Unit, PA=Proprietary Algorithm
(© 2021 IEEE)

The overview of the proposed method for detecting stress from four physio-

logical signals: (i) EDA (Electrodermal Activity), (ii) BVP (Blood Volume

Pulse), (iii) IBI (Inter-Beat Interval), and (iv) ST (Skin Temperature) can

be visually represented in Figure 4.1. The main components of the proposed

method are (i) Preprocessing, (ii) Feature Extraction, (iii) Processing of Sali-

vary Cortisol (iv) Training and Testing. We will discuss each of the following

components in this section.

61



4.1.1 Preprocessing

The raw EDA and BVP signals are first normalized so that the values are

in the range [0,1]. Subsequently, a low pass Butterworth filter of order 5 is

used for filtering the EDA and BVP signals. Signal components higher than

1 Hz were removed for EDA signals, and signal components higher than 10

Hz were removed for BVP signals. ST signal was also first normalized in

the range [0,1] and filtered to remove outliers or replace missing values etc.

No preprocessing on the IBI signal is performed as it is already a smoothed

signal obtained from the PPG sensor by the acquisition device.

4.1.2 Feature Extraction

Features are extracted from EDA, BVP, IBI, and ST signals after the prepro-

cessing stage. The features from all the signal streams are extracted using

a running window of 90 sec and an overlap of 45 sec. The notation of the

extracted feature and their description is presented in Table 4.1

EDA Feature Extraction Unit

This unit extracts features from the EDA signal. EDA signal captures the

electrodermal activity, which is a measure of the electrical variation of the

skin as a result of arousal. This variation is modulated by the activity of the

sweat gland which is under the control of the sympathetic nervous system

[101]. Characterization of EDA peaks or startles has been shown to contain

62



information regarding the stress level of a person [73]. Peak detection al-

gorithm [97] was applied on the first derivative of the EDA signal and the

peak amplitude, peak width, and peak prominence were computed. These

peak characteristics are summarized by computing descriptive statistics of

the peak amplitude, width, and prominence. A total of 18 features were

extracted from the EDA signal. The symbol of EDA features are repre-

sented by P statistics
quantity , where quantity represents the quantitative measure of

the peak that is being computed such as amplitude, width, or prominence

and statistics represents the statistical measure that is being computed.

BVP Feature Extraction Unit

This unit extracts features from the BVP signal. BVP signal measures car-

diovascular activity. The BVP signal is obtained from the PPG sensor.

BVP signal is associated with cardiovascular arousal which is responsible

for changes in heart rate and blood pressure during stressful situations [98].

Peak detection algorithm [97] has been used to detect systolic peaks. A total

of 17 features were extracted from the BVP signal. Similar to EDA, sta-

tistical summary of peak amplitude, width, and prominence were computed

as BVP features. Along with these, the number of systolic peaks occurring

per minute is also computed. The symbol of the features are represented as

Sstatistics
quantity
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IBI Feature Extraction Unit

This unit extracts features from the IBI signal. IBI or Inter Beat Interval is

the time difference between two consecutive beats of the heart. A total of 6

statistical features were extracted from the IBI signal all in the time domain.

ST Feature Extraction Unit

This unit extracts features from the ST signal. A total of 6 features are

computed from the ST signal. Out of the six features, four features are

statistical measures of the skin temperature and the remaining two features

are the slope and intercept of a fitted regression line.
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Table 4.1: Notation and Description of the extracted features from EDA,
BVP, IBI and ST (© 2021 IEEE).

Signal Feature Feature Signal Feature Feature
Source Notation Description Source Notation Description

EDA P x̄
amp Mean of peak amplitudes BVP S#x

min No. of peaks per minute

EDA P x̃
amp Median of peak amplitudes BVP Sx̄

width Mean of peak widths

EDA P σ
amp Standard deviation of peak amplitudes BVP Sx̃

width Median of peak widths

EDA P
√

x̄2

amp Root mean square of peak amplitudes BVP Sσx
width Standard deviation of peak widths

EDA P∨x
amp Maximum of peak amplitudes BVP S

√
x̄2

width Root mean square of peak widths

EDA P∧x
amp Minimum of peak amplitudes BVP S∨x

width Maximum of peak widths

EDA P x̄
width Mean of peak widths BVP S∧x

width Minimum of peak widths

EDA P x̃
width Median of peak widths BVP Sx̄

prom Mean of peak prominence

EDA P σ
width Standard deviation of peak widths BVP Sx̃

prom Median of peak prominence

EDA P

√
x̄2

width Root mean square of peak widths BVP Sσx
prom Standard deviation of peak prominence

EDA P∨x
width Maximum of peak widths BVP S

√
x̄2

prom Root mean square of peak prominence

EDA P∧x
width Minimum of peak widths BVP S∨x

prom Maximum of peak prominence

EDA P x̄
prom Mean of peak prominence BVP S∧x

prom Minimum of peak prominence

EDA P x̃
prom Median of peak prominence BVP Sx̄

amp Mean of peak amplitudes

EDA P σ
prom Standard deviation of peak prominence BVP Sσx

amp Standard deviation of peak amplitudes

EDA P
√

x̄2

prom Root mean square of peak prominence BVP S
√

x̄2

amp Root mean square of peak amplitudes

EDA P∨x
prom Maximum of peak prominence BVP S∨x∆∧x

amp Range of peak amplitudes

EDA P∧x
prom Minimum of peak prominence IBI IBI x̄ Mean of IBI

IBI IBI x̃ Median of IBI ST ST x̄ Mean of ST

IBI IBIσx Standard deviation of IBI ST ST x̃ Median of ST

IBI IBI
√

x̄2
Root mean square of IBI ST ST σx Standard deviation of ST

IBI IBI∨x Maximum of IBI ST ST
√

x̄2
Root mean square of ST

IBI IBI∧x Minimum of IBI ST ST a Y intercept of regression line

ST ST b slope of regression line
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4.1.3 Processing of Salivary Cortisol

The saliva samples are processed to obtain cortisol concentration values in

µg/dL. The assay range of the cortisol concentration values is between 0.012-

3 µg/dL. Salivary cortisol samples were collected a total of 5 times during

the study at time points T1, T2, T3, T4, and T5 (Figure 4.2). To categorize

the cortisol concentration values as stressed (S) or not-stressed (NS) class,

the following preprocessing steps were implemented.

� Samples at time point T1 and T2 (XT1 and XT2) were averaged and

subtracted from the remaining three samples (XT3, XT4, XT5) at time

points T1, T2 and T3 respectively.

� The three samples, XT3, XT4, XT5 from all participants were integrated

and standardized.

� A sample XT i is classified as stressed (S) class if XT i > X̄ and was

classified as not-stressed (NS) if XT i <= X̄ (i=3,4,5), where X̄ is the

population mean.
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Table 4.2: Mean and Standard Deviation of cortisol concentration during
each timestamps (© 2021 IEEE).

TimeStamps Mean (ug/dL) SD (ug/dL)

T1 0.185 0.138

T2 0.189 0.133

T3 0.172 0.105

T4 0.154 0.078

T5 0.137 0.069

The statistics for stress class are 0.508 ± 0.413 and that of not-stressed

class are -1.01 ± 1.05 with p-value 2.15e−20. The mean and the standard

deviation of the cortisol concentration for each of the five time points are

shown in Table 4.2

Calibration of Salivary Cortisol with Physiological Signals

Salivary cortisol measurements were obtained during our year-long experi-

ment from about 40 older adults. The cortisol samples were collected during

the TSST (Trier Social Stress Test) protocol [93]. The protocol consists of a

waiting period, a pre-stress period, stress period, and recovery periods (Fig-

ure 4.2). More details on the TSSST protocol is provided in Section 4.2.3.

Salivary cortisol collected from saliva samples typically has a lag of 20 min-

utes from the point of acquisition [102]. Hence, it is important to calibrate

the physiological signal with its corresponding cortisol value. The calibration

67



is performed by shifting the cortisol concentration values 20 minutes to the

left to account for the delay in cortisol response.

Figure 4.2: Experimental Protocol. Cortisol samples are collected at time
points T1, T2, T3, T4, and T5 in 20 minutes duration. Cortisol concentration
at time point Ti corresponds to the stress level at time point Ti−1 (© 2021
IEEE).

For example, in Figure 4.2, cortisol concentration collected at time point

T2 corresponds to the stress level at time point T1. Similarly, the cortisol

concentration collected at time point T3 is actually the stress level at time

point T2 and so on. This calibration technique is used for labeling a par-

ticular section as either stressed or not-stressed as evaluated from cortisol

concentration values.

4.1.4 Training and Testing

After extracting features from respective feature extraction units, the fea-

tures are aggregated and annotated with the stress labels obtained from the

processing of salivary cortisol. The feature set is first split into train and

test set in the approximate ratio of 75-25. The splitting is done such that

no two samples in the train and test set should come from the same partic-
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ipant. The p-value for the train and test set is 1.73e−17. Subsequently, a

feature selection procedure is applied on the training set to select the best

set of performing features from EDA, BVP, IBI, and ST signals. The ob-

jective of the feature selection is to evaluate the correlation of the features

with stress labels obtained from salivary cortisol concentration and thereby

select those features which are statistically significantly correlated with the

target variable. The training feature set is correlated with the stress labels

obtained from cortisol concentration using Kendall’s tau correlation [103].

The correlation coefficient (ρ) and p-value pair are obtained by computing

the feature-wise correlation. Only the features with p-values less than 0.05

have been selected. This is because features whose p-value with the target

variable is less than 0.05 provide strong evidence against the null hypothesis

and hence the alternate hypothesis that the particular feature is strongly

correlated with the target variable can be accepted with a high degree of

confidence. Figure 4.3 shows the taxonomy diagram of the selected features

from each of the signal streams.

We can see from Figure 4.3, that EDA peak amplitude and peak width are

found to be important quantities with each having 6 and 4 statistical mea-

sure respectively that correlates significantly with the target variable along

with minimum prominence of EDA peak. For BVP peak, amplitude and

prominence of the peak are found to be the most important quantities with

3 and 6 statistical features respectively. Among the statistical features from

peak width, only the median peak width is found to be useful. Furthermore,
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Figure 4.3: Selected features from EDA peak, BVP peak, IBI and ST signal
streams (© 2021 IEEE).

the number of peaks occurring per minute was also found to be significantly

correlated. From the IBI signal, the standard deviation and maximum of

IBI are found to be significantly correlated. Finally, for ST signal, mean,

median and root mean square is found to be significantly correlated with the

target variable. These final sets of features, 11 features from EDA and BVP

signal, 2 from IBI, and 3 from ST constitute the final set of features that will

be used for training and testing the machine learning classifier. In the next

section, we will present the experimental setup adopted for this study.

4.2 Experimental Setup

In this section, we will discuss the set-up for the experimental study in the

context of the inclusion criteria of participants, physiological signal recording,
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collection of salivary cortisol, and the protocol for the experiment.

4.2.1 Participant Inclusion Criteria

40 healthy older adults between the age range 60-80 were selected for this

study. The participants were screened for existing heart-related conditions,

post-traumatic disorder, anxiety disorders, unstable angina, Addison’s dis-

ease, or Cushing disease before enrolling for the study. Participants were

also excluded if they had trouble following instructions, trouble with daily

activities, thinking problems, impaired consent capacity, and diagnosis of

dementia.

4.2.2 Physiological Data Recording

Physiological signals were collected using a commercially available smart

wristband device that has EDA, PPG, and ST sensors embedded in it. Four

types of signals were estimated from the three sensors. EDA signal is recorded

using two AgCl electrodes placed at the lower wrist of the user. The PPG

sensor consists of a green and red light source and a light receiver. PPG

sensor outputs the BVP signal using a proprietary algorithm by combining

the lights reflected from both green and red light exposure. Another propri-

ety algorithm is used to remove wrong beats from a BVP signal to output

the IBI signal. Finally, the temperature signal is collected using a tempera-

ture sensor that uses the principle of infrared thermopile to measure the skin
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temperature. The sampling rate of EDA, PPG, and ST sensors embedded

in the wristband is 4 Hz, 64 Hz, and 4 Hz respectively. These signals can be

collected either in recording mode, where the data gets stored in in-device

memory and can be later synced to cloud storage for processing, or in the

streaming mode where the data is transmitted via a low-energy Bluetooth

connection to an edge-interface, such as a mobile application and can be later

synced to cloud at the end of a session. In our experiment, we have collected

the data in recording mode.

Saliva samples were collected a total of 5 times during the study at time

points T1, T2, T3, T4, and T5 (Figure 4.2). Saliva samples have been col-

lected using a cotton swab placed under the participant’s tongue for about 2

minutes. The first sample, at time point T1, is collected when the participant

first arrives at the study facility. The second sample at time point T2 has

been collected after 20 minutes from T1 and at the end of the PS (Pre-Stress)

period. The third sample is collected after the stress phase, which is at time

point T3. The fourth sample is collected at time point T4 which is after the

first recovery phase and the last sample is obtained at time point T5 which

is after the second recovery phase.

4.2.3 Experimental Protocol

The TSST (Trier Social Stress Test) protocol has been adopted to induce

stress in our study. TSST is a well established experimental protocol known

for its ability to induce stress in a naturalistic environment [93]. The phases
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involved in the experimental protocol are illustrated in Figure 4.2 (Section

4.1.3).

The TSST protocol consists of a waiting period, pre-stress period, stress

period, and recovery period. During the waiting period, the participants are

asked to complete demographic surveys and get clarified about any questions

about the study process they may have. Following the waiting period is the

pre-stress period during which baseline measurements are taken. The waiting

period and pre-stress period together is of 20 minutes duration (T1-T2). The

pre-stress period is followed by the stress period which is of 20 minutes du-

ration (T2-T3). The stress period is divided into three parts as anticipatory

stress (AS) period which is for 10 minutes, followed by subsequent speech (S)

and mental math (M) tasks for 5 minutes each. During the AS phase, the

participants are shown a topic on which they have to speak continuously for

5 minutes while being observed. During the mental math task, participants

are required to solve simple addition and subtraction problems while being

observed. The difficulty level of the mental math questions increases with

every correct answer and it’s mandatory for the participants to answer each

question correctly before moving on to the next question. Finally, the study

concludes with two recovery phase of 20 minutes each (T3-T5).
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4.3 Results and Analysis

In this section, we will report the results of the performance of the machine

learning classifier to distinguish between stressed and not-stressed states.

Random forest classifier is chosen as the machine learning model to be used

to classify between the two states. We will begin this section by first stating

the objective of our evaluation and defining the metrics we will be using to

evaluate the performance of our classifier.

4.3.1 Evaluation objective and performance metrics

Table 4.3: Performance metric for different sensor combination (© 2021
IEEE).

Sensor Signal Total Selected F1-score F1-score Macro Accuracy
Combination Combination Feature Feature Stressed Non-stressed F1-score (%)

EDA EDA 18 11 0.88 0.79 0.83 84

EDA,PPG EDA,BVP 35 22 0.91 0.81 0.86 88

EDA,PPG EDA,BVP,IBI 41 24 0.93 0.85 0.89 90

EDA,PPG,ST EDA,BVP,IBI,ST 47 27 0.95 0.90 0.92 94

The objective of our evaluation is to quantify the effectiveness of fusing dif-

ferent signal streams coming from multiple sensors in improving the classifi-

cation rate. To evaluate the performance of the classification rate, the first

metric that we will be using is the F1-score for both the individual classes,

that is F1-score for stressed class and that of not-stressed class. F1-score is

the harmonic mean of precision and recall and is a useful measure of evalu-
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ating performance especially when there is an uneven class distribution and

also when both false positives and false negatives are equally expensive. The

second metric is Macro-average F1-score. This particular metric provides an

overall performance estimate for both the classes while giving equal weight

to both the majority and minority classes. Finally, we will be using the area

under the curve (AUC) score computed using the receiver operator char-

acteristic (ROC) curve to evaluate the performance of the classifier taking

different combinations of signal streams. The ROC curve is generated by

plotting the true positive rates and false positive rates obtained by varying

the threshold used to separate the two classes based on the log probabilities

of the score for each prediction. The AUC score is the area under the ROC

curve and is a useful measure to quantify the performance of a classifier.

All these metrics will be used in conjunction with each other for a detailed

analysis of the classification performance.

4.3.2 Performance analysis

The performance of the combination of EDA, EDA-BVP, EDA-BVP-IBI,

and EDA-BVP-IBI-ST is shown in Table 4.3. The ROC curve for the same

combinations in shown in Figure 4.4. The dotted red line show the ROC

curve when random guessing is used to classify between the two classes, The

blue, yellow, green and red curves shows the ROC curve of the combination

of EDA, EDA-BVP, EDA-BVP-IBI and EDA-BVP-IBI-ST respectively.

While using only the EDA signal, the F1-score for the stressed class is
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Figure 4.4: Plot of ROC curve for different signal combination (© 2021
IEEE).

found to be 0.88. However, for the not-stressed class, the F1-score is only

0.79 and the macro-average F1-score is 0.83 and the overall accuracy is 84%.

Hence, EDA peaks which are indications of emotional arousal can detect

the occurrence of stressed class with significantly good accuracy, but also

increases the likelihood of mistakenly classifying several non-stressed states

as a stressed state.

When the PPG sensor is combined with the EDA sensor and EDA and

BVP signal streams are used in conjunction, the F1-score for the stressed

class is 0.91, and that of the not-stressed class is 0.81 which is a 3.4% and

2.53% increase respectively when only EDA signal was used. The macro

average score and overall accuracy are 0.86 and 88% respectively which is a
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3.6% and 4.8% increase than using only EDA signal. Also, it can be seen

from Figure 4.4, that the area under the curve for EDA is 0.93 and that for

EDA-BVP combination is 0.94.

When the signal streams EDA, BVP, and IBI are combined, a 2.19%

increase in the F1-score of the stressed class is observed, and about a 5%

increase in the F1-score of the not-stressed class is observed. The macro

average F1-score is also increased from 0.86 to 0.89 and the overall accuracy

increased from 88% to 90% which are 3.4% and 2.2% increase respectively.

Finally, when all the signal streams are combined, that is when using

a combination of EDA, BVP, IBI, and ST signal, we can see an increase

of 2.15% from 0.93 to 0.95 in F1-score of stressed class. The F1-score of

not-stressed increased from 0.85 to 0.90 which is a 5.88% increase. The

Marco-average F1-score increased from 0.89 to 0.92 and the total accuracy

increased to 94% which is a 4.44% increase. Further, the AUC score also

increased from 0.94 to 0.96.

The improvement of the classification performance by combining the four

different signal streams can be visualized in Figure 4.5. The stressed class

is represented as 1 and the not-stressed class as 0 and is plotted as a step

function with respect to time for the participants in the test set. The actual

classification of the stress levels obtained from cortisol concentration is shown

in red. The predictions using EDA, EDA-BVP, EDA-BVP-IBI, and EDA-

BVP-IBI-ST are shown in blue, green, magenta, and black respectively. The

number of misclassification when using only the EDA signal is 54. The
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Figure 4.5: Prediction using the four signal combination with ground truth
referenced from salivary cortisol. Stress class represented as 1 and not-
stressed class as 0 (© 2021 IEEE).

number of misclassifications reduced to 42 when a combination of EDA and

BVP is used. Using a combination of EDA, BVP, and IBI further reduced

the misclassification to 33, and to 22 when all the four signal streams EDA,

BVP, IBI, and ST are combined.
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4.4 Voice-Query Based Prototype Framework

for the Proposed Stress Detection Sys-

tem

In this section, we will discuss the voice-query based framework, prototyped

for the integration of the proposed stress detection model in consumer end

devices. The user can query for their vitals and stress levels using a voice

interface such as a mobile application, smart speaker, or any smart consumer

devices with voice assistant capabilities. The realization of the voice-based

framework is visually represented in Figure 4.6.
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Figure 4.6: Prototype framework for the integration of the proposed stress
detection system in a voice based consumer end device such as smart speaker
or mobile application. The user can initiate a voice query on either of these
devices for feedback on their vitals and stress levels (© 2021 IEEE).

The prototype consists of three main modules: (i) Edge Processing, (ii)
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Cloud Computing, and (iii) User Interaction. In edge processing, the smart

wristband records EDA, BVP, IBI, and ST signals using EDA, PPG, and ST

sensors, and transmits these signals using a low energy Bluetooth connection

to a companion app on a mobile phone. The companion app performs simple

computations on the individual signal streams such as visualizing the signal

plots and calculating instantaneous heart rate from the IBI signal. The

signal streams are then transferred to an existing cloud resource after every

session through a WiFi connection for stress level prediction. The cloud

computing module performs three main functions: (i) Core computations,

(ii) Storage, and (iii) Hosting voice enabling skills. The core computation

consists of the processing of signal streams, feature extraction, and stress level

prediction. The storage module is used for storing the intermediate data for

faster processing and as well as could store historical data for future analysis.

The third component is the voice enabling skills that communicate with the

cloud processing module, the storage module, and user endpoints such as a

smart speaker or mobile application for receiving the query, processing them,

and providing the requested feedback.

The user interaction module consists of a mobile phone that hosts the

companion app and the voice assistant application through which the user

can obtain feedback on the vitals. A smart speaker could also be used as

an endpoint for querying and receiving voice-based feedback. In our proto-

type framework, the integration of a voice interface as a means to query and

get feedback is validated by simulating voice dialogues on a voice-based web
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application hosted on a mobile phone. The voice-based web application is

capable of handling requests for checking both the vitals like heart rate, heart

rate variability, and skin temperature, and stress level. We have analyzed the

feasibility of the proposed prototype in transmitting multiple signals from a

wristband in real-time to the companion app and subsequently to the cloud

resource. This was done by simulating a data streaming scenario, where a

user wore the smart wristband and the signals were streamed continuously

for one and a half hour. After the session ended, the battery of the smart

wristband is only reduced by a small amount, and the companion app con-

sumed a negligible percent of the phone’s battery. Moreover, the wristband

used in the experiment can stream data continuously for about 20 hours in

streaming mode, and record data continuously for about 30 hours in record-

ing mode. This shows the feasibility of the proposed system for realizing

a low-power consumer electronic system for monitoring stress using only a

smart wristband.

4.5 Conclusion

In this work, four physiological signals, EDA, BVP, IBI, and ST signals from

three wrist-worn sensors, EDA, PPG, and ST were used to develop a stress

detection model for older adults. The four physiological signals along with

salivary cortisol measurement were recorded from 40 older adults (28 females

and 12 males) and age 73.625 ± 5.39 during the TSST protocol. Features
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characterizing the amplitude, width, and prominence of EDA and BVP peaks

were extracted along with statistical features from IBI and ST signal. A total

of 47 features were extracted from the four signals, out of which 18 were from

EDA, 17 from BVP, 6 from IBI, and 6 from ST. Out of the 47 features, 27

features were found to be significantly correlated with the target variable.

Out of the 27 features, 11 were from EDA and BVP each, 2 from IBI, and

3 from ST. A combination of these features was used to train and test a

random forest classifier to distinguish between the two states. Results show

that the overall accuracy increased by 4.8% when a combination of EDA and

BVP was used as opposed to using only EDA. The accuracy further increased

by 2.2% when features from IBI were combined which further increased by

another 4.4% when features from ST were also combined along with EDA,

BVP, and IBI. The fact that the prediction accuracy of the classifier increases

when sensor fusion is performed shows the promise of the proposed method

over simpler techniques such as estimating stress using just heart rate or

only one physiological parameter. Further, a voice-based consumer use case

is prototyped, where the user can query for vitals and stress levels using a

voice interface like a mobile phone or smart speaker.

The results and analysis presented in this work show its merit in being a

suitable choice for designing a stress detection model for older adults. Lever-

aging the use of such wrist-worn sensors to detect stress from physiological

signals by correlating with cortisol, which is a clinically accepted biomarker

for stress can improve the state-of-the-art stress detection model. This is
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because using cortisol as the reference to detect stress can bring clinical level

diagnosis of stress into the everyday consumer world and hence can improve

the quality of consumer health care. Such a model can be used for continu-

ous stress monitoring in an unobtrusive way, thereby enabling individuals to

manage stress by themselves which would promote well being and improve

the quality of life for older adults. As future work, the proposed method

for stress detection can be extended to design a stress monitoring and man-

agement system using the prototype voice-based framework. The prototype

framework can be used to monitor stress levels unobtrusively and on a con-

tinuous basis, and additional functionality could be added to the existing

prototype for launching personalized intervention for stress reduction.
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Chapter 5

Anxiety Detection Using

Wearable Sensor and Context

Feature

In the previous two chapters, we presented our work on detecting stress using

fingertip-based wearable sensors and wristband-based wearable sensors. In

Chapter 4, we have seen how fusing features from multiple signal streams

increases the performance of the predictive model for detecting stress. Simi-

larly, as discussed in Chapter 2, Section 2.5.2, it has been observed that fusing

features from multiple signal streams increases the performance in detecting

anxiety. Although fusing different physiological features increases the per-

formance of the anxiety detection model, the complexity of integrating and

processing multiple physiological signals in real-time could be a significant
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design challenge.

In this chapter we will present the work on detecting anxiety using a single

wearable physiological sensor and context feature. The proposed method for

anxiety detection combines features from a single physiological signal with

an experimental context-based feature to improve the performance of the

anxiety detection model. The experimental data for this work has been

obtained from a year-long experiment on 41 healthy older adults (26 females

and 15 males) in the age range 60-80 with mean age 73.36 ± 5.25 during a

TSST (Trier Social Stress Test) protocol. The anxiety level ground truth was

obtained from STAI (State-Trait Anxiety Inventory), which is regarded as

the gold standard to measure perceived anxiety. EDA and BVP signals were

recorded using a wrist-worn EDA and PPG sensor respectively. The phases

of the experimental study are encoded as unique integers to form the single

column context feature vector. A combination of features from a single sensor

with the context feature vector is used for training a machine learning model

to distinguish between anxious and not-anxious states. Further, end-to-end

processing of EDA and BVP signals was simulated for real-time anxiety level

detection.

This chapter is organized as follows, Section 5.1 will present the proposed

work for anxiety detection. Section 5.2 will present the experimental protocol

adopted for the study. Section 5.3 will present the discussion on the results

and analysis, and finally Section 5.4 will conclude the chapter.
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5.1 Proposed Method for Anxiety Detection

This section will describe the proposed method for anxiety detection. The

proposed method for anxiety detection fuses an experimental context feature

with features from a single physiological signal to train a machine learn-

ing classifier for accurately distinguishing between anxious and non-anxious

states. The overview of the proposed method for anxiety detection is shown

in Figure 5.1.
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Figure 5.1: Overview of the proposed method for anxiety detection.
RF=Random Forest Classifier, LR=Logistic Regressiom, and SVM=Support
Vector Machine. STAI=The State-Trait Anxiety Inventory

The major computational blocks of the proposed methods are: i) Signal

Processing, (ii) Feature Extraction, and (iii) ML (Machine Learning) Mod-

eling.
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5.1.1 Signal Processing

This computational unit preprocesses the raw signal before the feature ex-

traction stage. In this unit, the EDA and the BVP signals are first normalized

by scaling the sensor values in the range [0,1]. After normalization, a low-pass

Butterworth filter of order 5 was used to remove high-frequency components

from the signal, which usually occurs as a result of motion artifact. For the

EDA signal, the signal components that were higher than 1 Hz were cut off

and for the BVP signal, the signal components that were higher than 10 Hz

were cut off.

5.1.2 Feature Extraction

In this section, we will describe the physiological features extracted from

EDA, and BVP signals and the context feature used for training the machine

learning model. For analysis, 3 minutes of data from pre-stress period, and

about 15 minutes of data each from stress and relax phase were used. The

physiological features are extracted from physiological signals using a running

window of 30 seconds and an overlap of 15 seconds. On an average, 118 data

points were generated from each participant and for 41 participants, a total of

4853 data points were obtained. The notation of the extracted physiological

features from the three physiological signals are tabulated in Table 5.1
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Feature Extraction from EDA Signal

EDA signal measures the skin conductance of the skin which varies accord-

ing to the sweating produced by the sweat glands. Arousal due to stressful

situations results in the increased activity of the SNS (Sympathetic Nervous

System) which leads to various physiological changes [104]. Sweating is one

of the physiological changes that is modulated by the SNS. Hence we hy-

pothesize that using features from the EDA signal can be useful in detecting

the onset of anxiety caused due to stressful events. Previous research has

shown that the peak characteristic of the EDA signal is useful in detecting

stress levels of an individual [73] [51]. Hence, we hypothesize that perceived

anxiety due to emotional arousal resulting from stressful situations could also

be modeled using the peak features from EDA. Peak detection algorithm [97]

is used to compute the amplitude, width, prominence of peaks occurring in a

given window. Subsequently, statistical measures such as the mean, standard

deviation, median, root mean square, minimum, and the maximum of peak

amplitude, width, and prominence are computed to form the final set of 18

features.

Feature Extraction from BVP Signal

The BVP signal is a measure of cardiovascular activity. BVP signal can be

an indicator of cardiovascular arousal during exposure to stressful situations

[98]. Previous research that has used cardiovascular arousal as a measure to

detect the onset of anxiety has resulted in satisfactory results. However, most
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of the existing research has used ECG to measure cardiovascular arousal in

the context of anxiety detection. Since BVP-based features were successfully

used previously in the context of stress detection [51], we hypothesize that

BVP-based features can also be used to detect the onset of anxiety occurring

as a result of stressful situations. Similar to EDA, peak detection algorithm

[97] is used to compute the width, amplitude, and prominence of the systolic

peaks occurring in a given window. Along with statistical measures, the

frequency of systolic peaks per minute is also computed resulting in a total

of 17 features.
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Table 5.1: Notation and Description of the extracted features from EDA,
and BVP.

Signal Feature Feature Signal Feature Feature
Source Notation Description Source Notation Description

EDA P x̄
amp Mean of peak amplitudes BVP S#x

min No. of peaks per minute

EDA P x̃
amp Median of peak amplitudes BVP Sx̄

width Mean of peak widths

EDA P σ
amp Standard deviation of peak amplitudes BVP Sx̃

width Median of peak widths

EDA P
√

x̄2

amp Root mean square of peak amplitudes BVP Sσx
width Standard deviation of peak widths

EDA P∨x
amp Maximum of peak amplitudes BVP S

√
x̄2

width Root mean square of peak widths

EDA P∧x
amp Minimum of peak amplitudes BVP S∨x

width Maximum of peak widths

EDA P x̄
width Mean of peak widths BVP S∧x

width Minimum of peak widths

EDA P x̃
width Median of peak widths BVP Sx̄

prom Mean of peak prominence

EDA P σ
width Standard deviation of peak widths BVP Sx̃

prom Median of peak prominence

EDA P

√
x̄2

width Root mean square of peak widths BVP Sσx
prom Standard deviation of peak prominence

EDA P∨x
width Maximum of peak widths BVP S

√
x̄2

prom Root mean square of peak prominence

EDA P∧x
width Minimum of peak widths BVP S∨x

prom Maximum of peak prominence

EDA P x̄
prom Mean of peak prominence BVP S∧x

prom Minimum of peak prominence

EDA P x̃
prom Median of peak prominence BVP Sx̄

amp Mean of peak amplitudes

EDA P σ
prom Standard deviation of peak prominence BVP Sσx

amp Standard deviation of peak amplitudes

EDA P
√

x̄2

prom Root mean square of peak prominence BVP S
√

x̄2

amp Root mean square of peak amplitudes

EDA P∨x
prom Maximum of peak prominence BVP S∨x∆∧x

amp Range of peak amplitudes

EDA P∧x
prom Minimum of peak prominence

Context-Based Feature

The importance of context-awareness in the context of anxiety detection

was studied in [105]. The elicitation of anxious reaction due to stressful

events is a subjective perception and is significantly affected by the context
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of the event [106]. Hence, alongside features from physiological signals, using

context-based features to train a machine learning model can result in bet-

ter performance. For example, EDA measures emotional arousal and BVP

measures cardiovascular arousal. However, arousals can be positive (because

of positive stress or eustress), and negative (because of negative stress or

distress). Hence, in situations where an individual is under positive arousal

will not perceive the situation as an anxious situation. However, a machine

learning model that models anxiety simply based on arousal might result in

several false positive.

We hypothesize that encoding context information as a feature variable

with the physiological features can help to distinguish the positive arousal

from the negative arousal. To implement this, we encoded an experimental

context feature with respective experimental segments of the physiological

features. There are three distinct experimental context used in our study.

The first experimental context is during the PS (Pre-Stress) period, during

which the user is not subject to any stimulus (Figure 5.2). The second

experimental context is during the AS (Anticipatory Stress), S (Stress), and

M (Math), during which the user is subjected to stressful stimulus. The third

context is during the Recovery period, during which the user is subjected to

relaxation-based stimulus. The context feature used in our system is encoded

as −1 for the experimental session when the user was not exposed to any kind

of stimulus. The experimental session when the user is exposed to stressful

stimulus is encoded as 0. Finally, the session when the user is exposed to a
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relaxation-oriented stimulus is labeled as 1. More details on the experimental

protocol is described in Section 5.2.3.

Waiting Period PS AS MS Recovery

Physiological Signal Measurements

T3T1 T2* * *

Arrival

Minutes

0 20 40 60

* = STAI Questionnaire

Debriefing

Figure 5.2: Experimental Protocol

5.1.3 Training, Validation, and Testing

This section will describe the machine-learning-based modeling of anxiety.

Primarily we will detail the training and testing protocol of the anxiety de-

tection model adopted in this study. The three main components required

for training and testing a machine learning model to distinguish between

anxious and non-anxious states are the features from physiological signals,

the experimental context feature, and the anxiety level ground truth. After

the feature extraction, the feature samples are annotated with their respec-

tive anxiety states such as ’Anxious’ or ’Not-Anxious’ states. These anxiety

states are determined from the STAI questionnaire filled by the user after

each phase of the experimental protocol. Details on how anxiety states are

determined from the STAI questionnaire will be described in detail in Section

5.2.2.
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For modeling the anxiety states with physiological features and the con-

text feature, we have adopted a supervised machine learning approach. For

model evaluation, the entire feature set is divided into a training set (50%),

a validation set (10%), and a test set (40%). The training and the valida-

tion set will be used to select the appropriate machine learning algorithm for

anxiety states classification and hyperparameter tuning. The best perform-

ing machine learning algorithm in the training and validation phase will be

chosen for testing on the test set.

5.2 Experimental Setup

The objective of our experiment is to model the physiological changes re-

sulting because of stressful situations with perceived anxiety levels for older

adults. In this section, we will discuss the inclusion criteria for participants

in our experiment, the data recording, ground truth estimation, and finally

the experimental protocol adopted for the study.

5.2.1 Participants

The participants recruited for this experiment were 41 older adults (26 fe-

males and 15 males) in the age range 60-80 with mean age 73.36±5.25. Before

recruiting for the experiment, the participants were screened for certain ex-

isting conditions which might interfere with the results of the experiment.

These are heart-related conditions, post-traumatic disorder, anxiety disor-
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ders, unstable angina, Addison’s disease, or Cushing disease. Other than the

existing conditions, participants were not recruited if they had any trouble

with daily activities, trouble following instructions, impaired consent capac-

ity, thinking problems, and have a diagnosis of dementia.

5.2.2 Data Recording

During the experiment, three different types of data were recorded: (i)physiological

signals from wristband sensors, (ii) response to STAI questionnaire from the

user, (iii) context-based feature from the experimental protocol.

Recording of Physiological Signals

In our proposed anxiety detection, we have recorded two physiological signals

during the experimental protocol. EDA signal is recorded with the help of

two AgCl electrodes which maintains contact with the lower wrist of the user.

The AgCl electrodes are attached to the strap of the wristband. The BVP

signal is measured using the PPG sensor which uses a combination of red

and green light for estimating the blood volume. The EDA and BVP signals

were collected at a sampling rate of 4 Hz and 64 Hz respectively.

The wristband device used in our study has a form factor of 110-190 mm

and weighs around 25g. The wristband device executes the data transfer

using low energy bluetooth (streaming mode) and has a flash memory (for

recording mode) that can record upto 60 hours of data. In our experiment,

the recording of EDA and BVP signals were conducted in recording mode
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to ensure collection of better signal quality for analysis. These signals were

stored in in-device memory and were later synced to a desktop machine

through the proprietary cloud interface after the end of each experiment.

The collected physiological data did not contain any personal information

about the participants.

Recording of STAI Response

The STAI (The State-Trait Anxiety Inventory) is a commonly used self-

feedback form to measure state and trait anxiety [107]. The STAI is regarded

as the gold standard for measuring anxiety [108][109][110]. The participants

were instructed to digitally respond to the 20 items STAI questionnaire in-

tended to quantify state anxiety. Each of the participants was required to

fill up the STAI questionnaire during the time points T1, T2, and T3 (Fig-

ure 5.2). The STAI questionnaire contains question fields such as ”I feel

calm”, ”I feel upset” etc and each of these fields is weighted on a scale of

1-4. The participants were asked to weigh each field according to how much

they agree/disagree with the question fields. For example, a high level of

agreement with a particular question field, ”I feel calm” will be weighted

with 4 and a high level of disagreement for the same field will be weighted

as 1.

Scoring is done by summing all the scores of all fields. A higher score

indicates a higher level of anxiety. Before scoring, the weights of all the

question fields that are positive in nature, such as ”I feel calm,” ”I feel
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relaxed” are reversed before they are summed. Hence for those fields, a

weight of 4 will become 1, 3 becomes 2, and so on. The maximum score

possible is 80 and the minimum score possible is 20. The mean and the

standard deviation for all participants during the timestamps T1, T2, and

T3 are shown in Table 5.2.

Table 5.2: Mean and Standard Deviation of the STAI response during each
timestamps for the 41 participants

TimeStamps Mean SD
T1 26.92 8.52
T2 31.54 9.44
T3 25.40 8.52

To classify the score of a particular timestamp as anxious or non-anxious

states, scores of all the participants are integrated and standardized. Subse-

quently, samples whose score is less than the population mean of the stan-

dardized score are classified as non-anxious states. Samples whose score is

greater than the population mean are classified as anxious states. The statis-

tics of the anxious state (”A”) is 1.08± 0.801, and that of non-anxious state

(”NA”) is −0.668 ± 0.2144. The p-value between the scores of anxious and

non-anxious states is 5.29e−20 which indicates a significant statistical differ-

ence between the anxious and non-anxious states.

Recording of Context Feature

Since in this work we are evaluating a single contextual feature, the inte-

gration of context feature, based on the different phases of the experimental

96



protocol (discussed in Section 5.1.2) with physiological features is performed

manually. The context feature used in this work is predetermined based on

the experimental protocol and not on user feedback. In general, we recom-

mend environmental context-based features that can be collected unobtru-

sively without requiring intervention from the user.

5.2.3 Experimental Protocol

To induce stress-related anxiety, the TSST (Trier Social Stress Test) is adopted

because of its ability to induce stress naturally [93]. The entire protocol be-

gins with a waiting period, during which recording of demographic informa-

tion, signing of the consent form, and briefing of experiment-related tasks.

The phases of the experimental protocol after the waiting period can be di-

vided into the pre-stress period, stress period, and recovery period. During

the pre-stress period, baseline measurements are taken. The stress period

begins with an AS (Anticipatory Stress) period where the participant is re-

quired to prepare a 5-minute speech task based on a given topic. The AS

period lasts for 10 minutes, after which there is a subsequent speech and

math task for 5 minutes each. The purpose of the stress stimulus is to in-

crease the perceived feeling of anxiety in older adults in a natural way. The

high mean value of the state scores after time point T2 (Table 5.2) shows

that the experimental protocol was successful in inducing anxiety as a result

of exposure to stressful situations. The final phase is the recovery phase in

which the participants were exposed to a relaxing stimulus intended for the
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participants to return to the non-anxious state.

5.3 Results and Analysis

This section will discuss and analyze the results of the proposed anxiety

detection system. First, we will analyze the training and validation of the

machine learning models in distinguishing between anxious and non-anxious

states. We will then perform a qualitative analysis on the best-performing

machine learning model in the training and validation phase. Subsequently,

we will perform an extensive analysis of the selected model on its performance

on the test data. Finally, we will analyze the feasibility of the trained model

in classifying between anxious and non-anxious states in real-time.
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Figure 5.3: Taxonomical representation of the selected features
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5.3.1 Training and Validation

The training set, which is 50% of the entire set is first used to select signif-

icantly correlated features with the anxiety labels obtained from the STAI

score. This is done by taking Kendall’s tau correlation [103] between each

feature and the anxiety labels. The features which are only significantly cor-

related (p-value<0.05) are selected for training, validation, and testing the

machine learning classifiers. Figure 5.3 shows the taxonomical representation

of the selected features from each signal stream.

From Figure 5.3, we can see that 14 features out of the 18 features ex-

tracted from the EDA signal are found to be significantly correlated with the

anxiety labels. The 14 features include the mean, median, RMS, maximum,

and minimum of the EDA peak amplitudes along with standard deviation

and maximum of EDA peak width and prominence. Other features selected

from EDA are the minimum of EDA peak width, median, RMS, and mean

of EDA prominence. From BVP signals, only the statistical measures of

systolic peak width and amplitude were found to be significantly correlated

with anxiety labels together with the frequency of systolic peaks per minute.

The experimental context is also found to be significantly correlated with

the anxiety labels. Hence, a total of 14 features were selected from EDA,

and 10 features from BVP were selected for training the machine learning

algorithms.

We have evaluated three machine learning algorithms in the training and

validation phase. These machine learning algorithms are random forest clas-

99



sifier (RF), logistic regression (LR), and support vector machine (SVM).

Table 5.3 shows the validation score of the three different machine learning

algorithms on the validation set in distinguishing between anxious and non-

anxious states. The hyperparameters of the machine learning models are

tuned using an exhaustive grid search 5 fold cross-validation.

Table 5.3: Validation scores of different sensor combination with context-
feature for different machine learning algorithms. RF=Random Forest,
LR=Logistic Regression, SVM=Support Vector Machine, C=Context

Algorithm EDA EDA+C BVP BVP+C
RF 0.88 0.91 0.78 0.82
LR 0.51 0.61 0.53 0.61
SVM 0.37 0.58 0.45 0.61

From Table 5.3, we can see that the RF classifier performed the best

among LR and SVM in this case. RF algorithms achieved a validation score

of 0.88 with EDA features. When the context feature is fused along with the

EDA feature, the validation score increased to 0.91. Similar performance im-

provement is observed with the BVP signal when context features are fused

with those features. Figure 5.4 shows the validation scores obtained by differ-

ent hyperparameter combinations. From Figure 5.4, we can visualize that for

almost all hyperparameter combinations, the combination of context feature

and physiological features performs better than using only the physiological

features.

100



v
a

li
d

a
ti

o
n

 s
co

re
s

hyperparameter combinations

(a) EDA

(b) BVP

with context 

feature

without context 

feature

0.60

0.70

0.80

0.90

0.60

0.70

0.80

Figure 5.4: Validation scores obtained by different hyperparameter combina-
tion for EDA, and BVP signals. The red lines indicate the scores obtained
with combination of context feature and physiological features and the blue
lines indicate the score obtained with only physiological features.

Although LR and SVM did not perform as well in this dataset, the result

is still encouraging because even for those classifiers, improvement in perfor-

mance is observed when context feature is fused with the features of EDA

and BVP signals. For example, LR achieved a 19% increase in performance

when the context feature is fused with EDA feature. Similar performance

improvement is observed for the BVP signal as well. For SVM, the vali-

dation score increased by 56% when the context feature is fused with the

EDA feature. This highlights the importance of the context feature for dis-

tinguishing between anxious and non-anxious states. Since the RF model

performed the best, we will be importing the optimized model for qualitative

model evaluation and subsequently for testing and deployment.
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5.3.2 Evaluation of the Trained Random Forest Clas-

sifier

In this section, we will perform a qualitative evaluation of the trained random

forest model. Table 5.4 shows the hyperparameters of the 4 trained models

using the 4 feature combinations. Table 5.4 shows the optimized model

hyperparameters using cross-validation.

Table 5.4: Optimized hyperparameters for the six trained models using dif-
ferent feature combinations. C represents the context feature

Trained Split Maximum Number
Models Criterion Depth Estimators
EDA Gini 7 20

EDA+C Gini 7 13
BVP Gini 7 18

BVP+C Entropy 7 12

Table 5.5: Performance metrics of the trained models on the test data

Trained Number of F1-score F1-score Macro Accuracy
Models Features Anxious Not-Anxious F1-Score (%)
EDA 14 0.86 0.91 0.88 89

EDA+C 15 0.90 0.93 0.92 92
BVP 10 0.71 0.83 0.77 78

BVP+C 11 0.77 0.86 0.82 83

The RF algorithm was optimized for the split criterion, maximum depth,

and the number of estimators. The split criterion determines the quality

of a split. Random forest partitions data into different nodes for decision-

making by splitting based on feature values. The quality of the split is

determined by either of the two criteria, Gini and entropy. Maximum depth

is the maximum depth till which a decision tree is allowed to expand. The

number of estimators refers to the number of decision trees in the forest.
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From Table 5.4, we can observe that the optimized trained model that

fuses context feature with physiological features have significantly less num-

ber of estimators than the ones that use only physiological features. For

example, the trained model that uses EDA and the context feature has 35%

fewer estimators than the trained model that uses only EDA features. A sim-

ilar decrease in the number of estimators is observed for the trained models

that used BVP signal. The trained model that used the BVP and the context

feature has only 12 estimators as compared to 18 estimators of the trained

model that uses BVP features alone. This highlights the importance of the

context feature in reducing the model complexity along with increasing the

performance of the model.

5.3.3 Results on Test Data

In this section, we will discuss the performance of the trained models (Table

5.4). Table 5.5 shows the results on the test data. The performance of the

trained models are evaluated based on the models’ capacity to distinguish

between anxious (”A”) and not-anxious (”NA”) states. The performance

metrics are the F1-score of the models’ ability to detect the anxious states

and not-anxious states, average macro F1-score of overall predictions, and

overall accuracy. F1-score is the harmonic mean of precision and recall.

Macro F1-score is an estimate of the overall performance estimate of the

prediction model for both the classes. Macro average F1-score gives equal

weight to both classes and hence this metric is not affected by the presence
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of class imbalance.
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Figure 5.5: Plot of the output probabilities of the machine learning models
for EDA and EDA+C models
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From Table 5.5, we can observe that both the hybrid physiological-context-

based machine learning models-(EDA+C and BVP+C) performed better

than the machine learning models that used only physiological signals (EDA

and BVP). EDA+C model was able to increase the F1-score of the model

in detecting the anxious state and non-anxious states by 4.65% and 2.19%

respectively. The macro F1-score and overall accuracy of the EDA+C model

were 4.54% and 3.37% higher than that of the EDA model. The BVP+C

model achieved an 8.45% and 3.61% higher F1-score for the anxious and non-

anxious states respectively than the BVP model. The macro F1-score and

overall accuracy for the BVP+C model were also 6.49% and 6.41% higher
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than the BVP model respectively.

To further analyze how context-feature can improve the prediction of the

machine learning models, we visualize the output probabilities of the ma-

chine learning models on the test set. The output probabilities for EDA and

EDA+C models are shown in Figure 5.5 and that for BVP and BVP+C are

shown in Figure 5.6. To classify a particular feature sample as either anxious

or not-anxious, the random forest classifier machine learning models outputs

two probabilities, PA and PNA, where PA represents the probability of that

feature sample to be classified as the anxious state (A), and PNA represents

the probability of that feature sample to be classified as the not-anxious state.

A threshold (usually 0.5) is set which acts as the decision boundary. Hence,

for a particular sample, if PA > 0.5 then the model classifies that sample as

anxious. In the same way, If PA < 0.5 implies PNA > 0.5, and hence, in this

case, the feature sample will be classified as the not-anxious state. In other

words, if the probability of the positive class (anxious class in this case) is

closer to 1, the sample is classified as anxious and if the probability is closer

to 0, the sample is classified as not-anxious.

In Figure 5.5, the output probabilities of some of the test samples are

plotted for EDA (top of the figure) and EDA+C (bottom of the figure). The

decision boundary (P=0.5) is shown in the brown dotted line. The output

of the trained models with context (plotted in red line), and without context

(plotted in blue line) is shown along with the ground truth, the actual label

(anxious or not-anxious). The ground truth is plotted in a black line as a
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Table 5.6: Simulation results on the size of the trained models and latency
of the end-to-end processing for real-time anxiety detection

Latency (seconds)
Trained Model Data Signal Feature Total
Models Size(KB) Loading Processing Extraction Prediction Time
EDA 136 0.004 0.003 0.002 0.009 0.014

EDA+C 109 0.005 0.002 0.003 0.011 0.016
BVP 196 0.037 0.002 0.002 0.013 0.05

BVP+C 115 0.037 0.003 0.002 0.007 0.05

step function. Similar plot is also obtained for BVP and BVP+C models in

Figure 5.6.

From Figure 5.5, we can observe that, on addition of context feature, the

output probability PA either decreases or increases to increase the confidence

and hence avoid misclassification. For example, in Figure 5.5, for EDAmodel,

we see that the test samples marked between 1 and 2 are mostly classified as

(”NA”) (PA < 0.5) even though the actual label is (”A”). When the context

feature is used along with the EDA features, the output probabilities of some

of the test samples are increased above the threshold (0.5) and hence those

samples are then correctly classified as (”A”). Similarly, for the test samples

in between the region 3 and 4, the actual label is ”NA”. However the BVP

model incorrectly classifies them as ”A” (PA > 0.5). When BVP+C model

was used, the output probabilities of some of the test samples between the

region 3 and 4 reduced below the threshold (0.5) and hence, those samples

were correctly classified as ”NA”.

The same effect of the context-based feature can be visualized in Figure

5.6. For example, all the test samples between the region 1 and 2 are classified
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as ”NA” (PA < 0.5)by the BVP model. However, when BVP+C model

was used, the output probabilities of some of the test samples between the

region and 1 and 2, are increased above the threshold (0.5) and hence are

correctly classified as ”A”. Similarly, for test samples between 3 and 4, the

output probability of the BVP model is less than or equal to 0.5, even though

the actual label is ”A”. In this case, the classifier may not have enough

confidence to classify samples as ”A” or might misclassify them as ”NA”.

When BVP+C model is used, the output probabilities increased above the

threshold and hence, those samples were correctly classified as ”A”. Based

on this observations, it can be concluded that using context-based feature

along with physiological features can perform better than that using only

physiological feature. This reduces false positives and false negatives and

provides a robust model for distinguishing between anxious and non-anxious

states.

5.3.4 Real-Time Anxiety Detection

To analyze the feasibility of the proposed method in detecting anxiety in

real-time, the end-to-end process of anxiety detection is simulated for one

minute. The simulation is performed on a computer with 16 GB RAM, and

3.3 GHz processor. Python 3.7 was used to simulate the results and the

latency has been calculated using the time module of python. The end-to-

end process consists of loading the data, signal processing, feature extraction,

and prediction (Figure 5.1). The trained models (Table 5.4) are imported as
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a .pkl file. Table 5.6 shows the simulation result for all the trained models

(EDA, EDA+C, BVP, and BVP+C) in terms of latency, and the size of the

trained model in memory.

Table 5.6 shows the memory of the trained models and the latency in

seconds during each phase of the end-to-end processing. From Table 5.6, we

can observe that the size of all the trained models is just in the order of a

few hundred KB (KiloByte). Further, the latency during each phase is less

than a second. The context-based models also performed almost similar to

non-context-based models in terms of latency while occupying less in-device

memory.

5.4 Conclusion

In this chapter, a hybrid physiological-context-based machine learning model

for detecting anxiety in older adults is proposed. The proposed system uses

two physiological sensors, EDA and PPG for recording EDA and BVP sig-

nals respectively during a TSST protocol. Anxiety level ground truth was

obtained from the STAI questionnaire Features from EDA and BVP signals

were used to evaluate three machine learning models, random forest, logistic

regression, and support vector machine in the training phase. The best per-

forming random forest classifier was optimized in the training phase using

an exhaustive grid search technique for evaluation on the test data. Results

on the test data showed that the optimized context-based version of EDA
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and BVP models outperformed the non-context version of EDA and BVP

models. The machine learning models that have used the context feature

along with physiological features achieved higher F1-score for both the anx-

ious and not-anxious states. Further, the feasibility of the proposed system

for real-time anxiety detection in terms of latency, memory, and power is

discussed.

In the existing literature, ECG and EEG signals are most commonly

used for anxiety detection as these signals tend to be the most informative

about anxiety levels. However, the acquisition setup required for recording

these signals are usually complex and might be not be comfortable for daily

use. Our proposed method for anxiety detection is based on simple wearable

sensors such as EDA and PPG. These sensors can be easily integrated in low-

cost consumer electronic devices such as a smart wristband. This will allow

for continuous monitoring of anxiety levels with minimum obtrusiveness and

will add to the comfort of the user. Further, our approach uses context feature

in combination with physiological features instead of integrating features

from other physiological signals. This is expected to minimize the design

challenge faced when recording and processing information from multiple

sensors in real-time. The current state of the proposed work on anxiety

detection is suitable for controlled real-world settings where the activities

(context) are more or less well defined. For example, a nursing home setting,

or a training simulator could be some example use case for the proposed

work.
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In the future, combination of more fine-grained context features could

be studied along with the physiological features to better estimate the anx-

iety level of a person. This could be especially useful for detecting anxiety

under different activity such as walking, running etc. Investigating ways to

seamlessly incorporate different context features from environmental sensors

or activity sensors with the physiological features for anxiety detection in

uncontrolled real-world setting could be another future research direction.
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Chapter 6

Blood Pressure Estimation

In this chapter, we will present the work on blood pressure estimation using

PPG based sensor. In this work we have proposed a computational frame-

work for continuous blood pressure estimation using Photoplethysmogram

(PPG) signal. The proposed framework is evaluated on the publicly avail-

able MIMIC Database. The database contains raw PPG data for different

users and also the Arterial Blood Pressure (ABP) for calculating the systolic

and diastolic blood pressure. We hypothesize that features extracted from

the PPG signal and its derivatives can be used to estimate blood pressure

values with significantly good accuracy. In this work, we have presented

the validation of a single sensor and single probe PPG based computational

framework in estimating blood pressure.

The rest of the chapter is organized as follows. Section 6.1 discusses

the proposed framework. Section 6.2 presents the results and Section 6.3
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concludes the chapter.

6.1 Proposed Computational Framework

This section presents an overview of the proposed framework (Figure 6.1)

The implementation of the proposed framework consists of following steps:

(i) Data Extraction, (ii) Data Preprocessing, (iii) Feature Extraction, (iv)

Feature Selection and (v) Predictive Modeling
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Figure 6.1: Overview of the proposed framework (© 2020 IEEE).

6.1.1 Data Extraction

In this work, we have used the MIMIC database to build and validate our

model. The MIMIC database is a collection of multi parameter recordings of

ICU patients [111]. The dataset was downloaded from PhysioBank database
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which contains 72 complete records with varying length and sampling rate

of 500 Hz. We have selected 20 records for our analysis. Two main selection

criteria were used while selecting subjects for this study. First, only those

subjects whose records included both PPG signal streams and Arterial Blood

Pressure (ABP) signals were included. Secondly, out of the subjects whose

PPG data were available, those subjects where the missing data consisted of

more than 10% of the length of the data were filtered out. Also, the missing

values of the PPG signal were replaced by the value 0. We have downloaded

both short-term and long-term data for analysis.

For short-term analysis, we have downloaded 30 minutes of data from

each record and for long-term analysis, we have downloaded 3 hours of data

from each record. The three hours for each record were selected randomly

one hour of data towards the beginning, middle and end of the entire record.

The combined dataset consists of PPG signal and ABP signal. The ABP

data is used for calculating the ground truth. The data preprocessing step

is explained in detail in the next section.

6.1.2 Data Preprocessing

In this section, we will discuss the data preprocessing algorithm used in

our blood pressure estimation model. The preprocessing algorithm consists

of two parts: (i) Extracting PPG signal for different users and performing

calibration (ii) Aggregating PPG signal of all subjects and performing noise

removal. The proposed preprocessing algorithm is presented in Algorithm 1.
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Algorithm 2: Proposed Data Preprocessing Algorithm (© 2020
IEEE).

Input : Raw PPG signal stream
Output: Processed PPG signal stream

1 Filter Order=N;
2 Cutoff Frequency=Wn;
3 for all subjects do
4 ppg subject← extractPPGstreamforsubject;
5 ppg mean← mean(ppg subject);
6 ppg subject← ppg subject− ppg mean;

7 end
8 df pleth← concatenate(ppg subject);
9 df pleth← detrend(df pleth);

10 df npleth← normalize(df pleth);
11 df modpleth← df npleth%mean(df npleth);
12 df npleth← df npleth− df modpleth ;
13 df pleth filtered← butterworth(df npleth,N,Wn);

The data proprocessing algorithm proposed, takes as input RAW PPG

signal stream and generates processed PPG signal stream. The first and

second line of the algorithm is the parameter initialization of the filter order

and the cut off frequency represented by N and Wn respectively. In line 4, the

algorithm extracts PPG signal from individual subjects. In line 5, the mean

of the individual subject is calculated and in line 6, the mean is subtracted

from the raw PPG value in order to remove the static component associated

with the PPG signal ([112]). In line 8, the PPG signal stream obtained from

the last step from different subjects is concatenated into a single frame.

After that, the PPG signal stream is further processed to remove the

linear or static components that might still be associated with the PPG
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signal stream (line 9). In line 10, the PPG signal is normalized, so that the

data remains in the range [0,1]. This step removes any outliers which are

likely to be noise. An additional processing step in the algorithm in line

11 and 12 is done to ensure further noise removal and proper curve fitting

during regression analysis. The idea is to represent each sample point as a

factor of the mean. For example, x(t) = n.mean(x). where x is the signal

stream and x(t) is the value of the signal at any instant of time t and n is

an integer. This step is done by calculating the residue when the sample

point is divided by the mean of the signal by using the modulus operation

and then subtracting the residue from the signal stream. The last step of

the preprocessing stage is filtering of low frequency components. For, this

reason, butterworth filter is selected to filter out any signal lower than 20

Hz frequency that is the cut off frequency. In the following section, we will

discuss the feature extraction process of the proposed method.

6.1.3 Feature Extraction

Two types of features, statistical and characteristic features were extracted

from the PPG signal. Features are extracted mainly from six signal streams

one of which is the PPG signal stream and the rest five are derived from PPG

signal stream. The five signal streams are: (i) first derivative of PPG signal,

(ii) second derivative of PPG signal, (iii) frequency spectrum of PPG signal,

(iv) first derivative of the frequency spectrum and (v) second derivative of

frequency spectrum.
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Statistical Features

By extracting statistical features over a sample of the PPG signal, we aim to

obtain obtain its morphological information and map it to the target variable.

This information is obtained by extracting these following measures:

� Measure of central tendency: Mean, Median, grouped median, har-

monic mean, high median and low median.

� Measure of spread: Maximum, minimum, variance, standard devia-

tion, root mean square, population variance and population standard

deviation.

� Measure of shape: Kurtosis and skewness

For the original PPG signal and its frequency spectrum, we have extracted

all the 15 statistical measure. However, for the derivatives of PPG signal and

its frequency spectrum, we have excluded the grouped median, population

variance and population standard deviation. Hence, a total of 78 statistical

features extracted from all of the signal streams.

Characteristic Features

A total of 28 characteristic features were extracted. Out of which 16 features

were extracted from PPG signal and 12 features from the power spectrum

of the PPG signal. The 12 feature extracted from the power spectrum are

mean, maximum, minimum, root mean square, kurtosis and skewness of the
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Figure 6.2: PPG signal and components (© 2020 IEEE).

peak amplitude and frequency. The 16 features extracted from PPG signal

is described in Table 6.1 and represented in Figure 6.2.

Table 6.1: Characteristic feature description of the PPG signal (© 2020
IEEE).

Feature Name Feature Description
St Systolic time
Dt Diastolic time
Sv Systolic value
Dv Diastolic value

dSDv |Sv −Dv|
dSVt |St −Dt|
rSDv Sv/Dv

rSDt St/Dt

ReSDv |Sv − (Sv mod Dv)|
ReSDt |St − (St mod Dt)|
ReDSv |Dv − (Dv mod Sv)|
ReDSt |Dt − (Dt mod St)|
mSDt St mod Dt

mDSt Dt mod St

mSDv Sv mod Dv

mDSv Dv mod Sv
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The incorporation of the characteristic features from PPG signal into the

feature set is done with a view to generating further information about the re-

lation of the blood pressure values apart from the information obtained from

only the statistical features of the PPG signal and its derivatives. Systolic

time (St) and diastolic time (Dt) are validated in the literature to be impor-

tant parameters in co-relating with the blood pressure values [113]. Apart

from the systolic and diastolic time, we have calculated few other features

like the difference, ratio and residue of between the systolic and diastolic

time and values.

The reason for computing such parameters is important because the sys-

tolic and diastolic time alone just provides us with the absolute information

of the contraction and relaxation of heart. However, computing the above

mentioned features provides us with relative information of the systolic and

diastolic time thereby establishing a relation between the two parameters.

For instance, the difference, ratio provides us with how fast or slow the sys-

tolic time differs from that of diastolic time and by what factor.

A total of 106 features were computed from the PPG signal and its deriva-

tives out of which there are 28 characteristics feature and 78 statistical fea-

tures. The 28 characteristic feature consists of 16 purely characteristic feature

as described in Table 6.1 and 12 features computed from the power spectrum

which includes important statistical computation of the peak amplitude and

frequency of the signal.

Although the features extracted from both the data sets are same, the
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sampling window is not the same. For short-term data, features were ex-

tracted by taking a window size of 2 sec and overlap of 1 sec, For long-term

data, features were extracted by taking a window size of 10 sec and overlap

of 5 sec.

In the next section, we will discuss the feature selection module of the

framework.

6.1.4 Feature Selection

The extracted feature from the feature extraction phase is forwarded to the

feature selection unit. The feature set is first scalar transformed to map fea-

tures from higher dimension to a lower dimension. This helps in identifying

features with high multicollinearity. Two or more features with high mul-

ticollinearity gets transformed to similar features in a lower dimension and

hence can be easily detected through testing of occurrence of duplicate fea-

tures and can be removed. After scalar transformed, the feature set is split

randomly into two sets: training set (70%) and test set (30 %). The train

data which contains the training feature set and the training target data is

fed into the selection algorithm (Algorithm 2).

The feature selection algorithm takes the train data as input and outputs

the index of the selected feature. Line 1 of the algorithm denotes the max-

imum number of features that should be selected. Line 2 and 3 denotes the

assignment of training feature vector and training target vector to X train

and Y train respectively. In line 3, score for each feature is calculated using
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Algorithm 3: Feature Selection Algorithm (© 2020 IEEE).

Input : Train Data
Output: Index of selected features

1 Maximum no. of features=Kmax;
2 X train← training feature vector ;
3 Y train← training target data;
4 score← mutual info regression(X train, Y train);
5 sorted score← sort(score);
6 sorted score← drop duplicates(score);
7 for i in (0, K max) do
8 index select feature← indexof(sorted score[i]);
9 end

10 return index select feature

the mutual info regression model from scikit learn [97]. This class returns

an array containing the score of each feature based on mutual information

between the feature vector and the target data.In line 5, the score is sorted

and the duplicate scores are removed in line 7. Then from line 7 to line 9,

index of top Kmax features are extracted and returned in line 10.

6.1.5 Predictive Modeling

The continuous blood pressure prediction model estimates BP values from

the PPG signal in some time window. We have implemented three kinds of

regression model to train and test our data to estimate blood pressure values

using the feature set generated. The models implemented are: (i) Decision

Tree Regressor. (ii) Multi-layer Perceptron Regressor and (iii) Adaboost

Regressor. Before the feature set is fed into the regression model, the feature
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set is standardized using scalar transform ([97]).

6.2 Results

The training set is used to train the machine learning algorithms discussed

above and the performance of the ML algorithms in estimating continuous

blood pressure is discussed in this section. The ML algorithms are trained

and tested on both short-term and long-term data.

We will evaluate the performance of continuous blood pressure predictive

model using two metrics: Mean Absolute Error (MAE) and Standard Error

(SE).

The analysis of the result is done in two phases:

� Feature salience analysis : In this analysis, we will observe the predic-

tion accuracy in terms of mean absolute error and standard deviation

for top 80 features. This analysis will be done on both short-term and

long-term data.

� Evaluation of model performance based on selected features : In this

analysis, we will estimate the performance of the predictive model using

the selected combination of features.
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6.2.1 Feature Salience Analysis

The short-term and long-term data are trained and tested with the AdaBoost

regressor with decision tree as the base estimator with maximum depth of

30. Figure 6.3 shows the variation of mean absolute error for the 80 feature

combination for systolic and diastolic prediction. Figure 6.4 shows the vari-

ation of standard deviation for the 80 feature combination for systolic and

diastolic prediction.

Figure 6.3: Plot of mean absolute error and number of features. (Top systolic
and bottom diastolic) (© 2020 IEEE).

The following observations can be made by analyzing Figure 6.3 and

Figure 6.4.

� MAE and SD of short-term data for both systolic and diastolic predic-

123



Figure 6.4: Plot of standard deviation and number of features. (Top systolic
and bottom diastolic) (© 2020 IEEE).

tion remains more or less constant with the number of features.

� MAE and SD of long term data for systolic prediction follows an in-

creasing trend with increase in number of features. However, for dias-

tolic prediction, the MAE and SD both remains more or less constant

with number of features after an initial abrupt drop.

� For diastolic prediction with long-term analysis, the MAE and SD op-

timizes when the the number of features is 10.

From the above observations, we can conclude that to optimize the sys-

tolic and diastolic prediction, we need to have atleast 10 features.

To understand which features would contribute best to the systolic and

diastolic prediction, we identified the top 20 important features ranked by the
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selection algorithm. Out of the top 20 features, the top 8 features were the

statistical measure of the spectral characteristic of the PPG signal. These fea-

tures are the maximum, minimum, skewness, kurtosis, mean and root mean

square of the frequency and maximum and minimum of peak amplitude. The

rest 12 features were strictly statistical measures from PPG signal and its

derivatives. All of the 12 statistical feature were measure of spread, that is

standard deviation, variance, maximum and minimum. Statistical features

from fourier transform and its derivatives were not found to be important by

the selection algorithm.

It is interesting to note that maximum and minimum of PPG and its first

and second derivative were all among the 12 statistical feature and the 8 char-

acteristic features also contained maximum and minimum of frequency and

peaks. Hence, we have used the maximum and minimum of frequency, peaks,

PPG signal, PPG signal first derivative and PPG signal second derivative to

build a feature set of 10 features.

6.2.2 Evaluation of Model Performance Based on Se-

lected Feature

In this section, we will discuss the results of the performance of the four

regression models based on the selected 10 features. The performance is

evaluated using mean absolute error , standard deviation and percentage

of error less than 5 mmHg. The results for both short-term and long-term
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analysis are presented in Table 6.2 for systolic and Table 6.3 for diastolic

prediction

Table 6.2: Performance analysis for SBP prediction (© 2020 IEEE).

MLP Regressor DT Regressor AdaBoost(DT) AdaBoost(MLP)
Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term

MAE 11.29 16.20 2.34 2.56 1.69 2.07 22.05 19.59
SD 12.35 15.51 5.42 6.00 4.52 5.97 14.85 15.66

% MAE 36 23 87 86 93 91 13.8 17

Table 6.3: Performance analysis for DBP prediction (© 2020 IEEE).

MLP Regressor DT Regressor AdaBoost(DT) AdaBoost(MLP)
Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term

MAE 5.23 6.6 1.69 1.55 1.32 1.15 11.01 12.77
SD 9.12 8.51 6.74 6.41 6.40 4.05 13.89 16.38

% Error 67 54 94 93 97 96 45 39

Performance of Predictive Model on Short-term Analysis

From Table 6.2 and Table 6.3, it can be observed that AdaBoost Regressor

with Decision Tree as the base estimator performs the best both for SBP and

DBP prediction with an MAE of 1.69 and SD of 4.52 for SBP and an MAE

of 1.32 and SD of 6.40.

Performance of Predictive Model on Long-term Analysis

From Table 6.2 and Table 6.3, it can be observed that AdaBoost Regressor

with Decision Tree as the base estimator performs the best for both SBP and

DBP prediction with an MAE of 2.07 and SE of 5.97 for SBP prediction and

an MAE of 1.15 and SE of 4.05 for DBP prediction.
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6.2.3 Comparison with Existing Works

The results obtained in this work is compared with the existing works. Table

6.4 shows the comparison between the proposed work and the existing works

in terms of mean absolute error and standard deviation. As all the work were

validated on different dataset, we have also also listed the dataset used for

each of these works. From the table, we can observe that using PPG alone

performs significantly well in terms of MAE and SE.

Table 6.4: Comparison Table (© 2020 IEEE).

Work
SBP DBP Data

MAE SD MAE SD Signals Data set

[89] 9.58 NA 5.26 NA PPG, ECG Experimental
[55] 6.22 9.44 3.97 5.15 PCG, PPG Experimental
[55] 4.71 6.15 4.44 5.36 ECG, PPG Experimental
[90] 9 8.58 7 5.81 BCG, PPG Experimental
[114] 8.21 5.45 4.31 3.52 ECG, PPG MIMIC 2
This work 2.07 5.97 1.15 4.05 PPG MIMIC

6.3 Conclusion

The work presented in this chapter attempts to estimate systolic and diastolic

blood pressure. The raw PPG data was obtained across several patients from

the MIMIC database. A feature selection algorithm was proposed to select

important features that contribute the most towards optimizing systolic and

diastolic prediction error. Final feature set which consisted of only 10 features

was selected for further evaluation. Analysis was carried on both short-term

and long-term data. Different machine learning algorithm are implemented
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to estimate blood pressure from the feature set. The performance results

showed that the AdaBoost Regressor with decision tree as the base estimator

performed best in estimating blood pressure values for both short-term and

long-term data. Results indicated that the proposed model based on single

signal (PPG) and single probe approach is able to estimate systolic and

diastolic blood pressure with significantly high accuracy. A single sensor,

single probe measurement of PPG signal is ideal for wearable devices adding

convenience to the user. This approach has potential to be a good fit for

smart home environment where continuous monitoring of blood pressure in

an unobtrusive manner will facilitate long term in home care.
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Chapter 7

Conclusion and Future

Directions

Monitoring and managing stress and the accompanying anxiety and high

blood pressure regularly can prevent long-term damages and prevent these

conditions from becoming chronic. Historical health records generated from

long-term monitoring of stress, anxiety, and blood pressure can reveal inter-

esting behavior and living pattern which could also be useful for the diagnosis

of related health problems. In this dissertation, we have proposed techno-

logical solutions for detecting stress, anxiety and estimating blood pressure

values by monitoring physiological signals. We have used machine learning

models for correlating the features extracted from the physiological signals

with the ground truth for developing the predictive models. We have consid-

ered those physiological signals that can be easily recorded with minimum
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obtrusiveness such as fingertip-based sensors or wristband-based sensors.

Based on the experimental data collection of 50 healthy older adults

we have designed, developed, and validated stress detection models for a

fingertip-based wearable device and a wristband-based wearable device. The

fingertip-based wearable devices used EDA and BVP signals from EDA and

PPG fingertip sensors. A deep-learning-based LSTM classifier was proposed

for stress level classification along with benchmark machine learning classi-

fiers. Results showed that the proposed LSTM performed slightly better than

the traditional machine learning algorithms. The wristband-based wearable

devices used EDA, PPG, and ST sensors for extracting EDA, BVP, IBI,

and ST signals for stress detection. Results have shown that integrating

features from multiple signals helps improve the classification performance

significantly by reducing the number of false positives. A voice-based inter-

active system for stress level query has been prototyped and simulated for

integrating the proposed stress detection system in a consumer end device.

An anxiety detection model that uses a single wearable sensor and a

context feature has been proposed. The proposed model evaluated the com-

bination of EDA and BVP features with the experimental context feature

individually for classifying between anxious and not-anxious states. Results

on the test data showed that the optimized context-based version of EDA

and BVP models outperformed the non-context version of EDA and BVP

models. The machine learning models that have used the context feature

along with physiological features achieved higher F1-score for both the anx-
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ious and not-anxious states. Finally, a computational framework for blood

pressure estimation using a single PPG sensor is proposed. The proposed

framework is validated using a freely available online MIMIC database.

The research explored in this dissertation is an important step towards

realizing a ubiquitous health monitoring system with extensive diagnostic ca-

pabilities. Implementing the proposed designs for stress, anxiety, and blood

pressure on low-power microcontroller devices by optimizing the computa-

tions while maintaining the performance could be an interesting future re-

search direction. Another interesting research direction could be the use of

emerging computing paradigms such as quantum annealing for optimizing

the predictive model during the training phase.
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lizzi, and A. K. Dey, “Assessing real-time cognitive load based
on psycho-physiological measures for younger and older adults,” in
2014 IEEE Symposium on Computational Intelligence, Cognitive Al-
gorithms, Mind, and Brain (CCMB), pp. 39–48, IEEE, 2014.

[63] R. A. McFarland, “Relationship of skin temperature changes to
the emotions accompanying music,” Biofeedback and Self-regulation,
vol. 10, no. 3, pp. 255–267, 1985.

[64] M.-h. Lee, G. Yang, H.-K. Lee, and S. Bang, “Development stress mon-
itoring system based on personal digital assistant (pda),” in The 26th

138



Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, vol. 1, pp. 2364–2367, IEEE, 2004.

[65] P. Yuen, K. Hong, T. Chen, A. Tsitiridis, F. Kam, J. Jackman,
D. James, M. Richardson, L. Williams, W. Oxford, et al., “Emotional
& physical stress detection and classification using thermal imaging
technique,” 2009.

[66] G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki, A. Ro-
niotis, and M. Tsiknakis, “Review on psychological stress detection
using biosignals,” IEEE Transactions on Affective Computing, 2019.

[67] S. Yoon, J. K. Sim, and Y.-H. Cho, “A flexible and wearable human
stress monitoring patch,” Scientific reports, vol. 6, no. 1, pp. 1–11,
2016.

[68] Y. Lee, B. Lee, and M. Lee, “Wearable sensor glove based on conduct-
ing fabric using electrodermal activity and pulse-wave sensors for e-
health application,” Telemedicine and e-Health, vol. 16, no. 2, pp. 209–
217, 2010.

[69] R. R. Fletcher, K. Dobson, M. S. Goodwin, H. Eydgahi, O. Wilder-
Smith, D. Fernholz, Y. Kuboyama, E. B. Hedman, M.-Z. Poh, and
R. W. Picard, “icalm: Wearable sensor and network architecture
for wirelessly communicating and logging autonomic activity,” IEEE
transactions on information technology in biomedicine, vol. 14, no. 2,
pp. 215–223, 2010.

[70] M. Quazi, S. Mukhopadhyay, N. Suryadevara, and Y.-M. Huang,
“Towards the smart sensors based human emotion recognition,” in
2012 IEEE International Instrumentation and Measurement Technol-
ogy Conference Proceedings, pp. 2365–2370, IEEE, 2012.

[71] J. A. Healey and R. W. Picard, “Detecting stress during real-world
driving tasks using physiological sensors,” IEEE Transactions on in-
telligent transportation systems, vol. 6, no. 2, pp. 156–166, 2005.
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