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Abstract—WiFi sensing has received recent and significant
interest from academia, industry, healthcare professionals, and
other caregivers (including family members) as a potential
mechanism to monitor our aging population at a distance without
deploying devices on users’ bodies. In particular, these methods
have the potential to detect critical events such as falls, sleep
disturbances, wandering behavior, respiratory disorders, and
abnormal cardiac activity experienced by vulnerable people.
The interest in such WiFi-based sensing systems arises from
practical advantages including its ease of operation indoors as
well as ready compliance from monitored individuals. Unlike other
sensing methods, such as wearables, camera-based imaging, and
acoustic-based solutions, WiFi technology is easy to implement
and unobtrusive. This paper reviews the current state-of-the-art
research on collecting and analyzing channel state information
extracted using ubiquitous WiFi signals, describing a range of
healthcare applications and identifying a series of open research
challenges, including untapped areas of research and related
trends. This work aims to provide an overarching view in
understanding the technology and discusses its use-cases from a
perspective that considers hardware, advanced signal processing,
and data acquisition.

Index Terms—WiFi sensing, healthcare detection, machine
learning, deep learning

I. INTRODUCTION

Sensing and monitoring systems for human healthcare
have become increasingly popular, driven in part through our
knowledge economy as well as the significant improvements in
our longevity and living standards. In healthcare applications,
such systems can provide individuals with the capability of
long-term detection of daily activities and variations in vital
signs, all in the privacy of our homes. With simple, long-
term, and continuous health monitoring in the daily home
environment, it is possible to record the signs of illness and
physiological deterioration that cannot be detected during a
short formal clinical consultation. Such monitoring systems
can also be combined with deep learning and can be used to
monitor behavior, including emotional states and mental well-
being. Such information can be integrated into smart homes to
support our daily lives. In this study, we focus on a detailed
review which explores the application of WiFi sensing in such
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healthcare applications, demonstrating its relative advantages
over other monitoring systems such as sensing methods, such
as wearable sensors, camera-based imaging, and acoustic-based
solutions.

A. Comparison of WiFi RF sensing and other approaches

Broadly, current sensing and monitoring systems can be
divided into those using contact-based sensors, including
wearables [1]] and contactless systems [2], [3]. Besides wearable
devices, the contactless monitoring approaches can be divided
into visual based sensing radio frequency (RF) signals based
sensing. RF signals at frequencies between 30 kHz & 300
GHz, comprise electromagnetic waves called radio waves (as
are widely used in radar systems, including household and
commercial behavior recognition [4]). Recently, the carrier
frequency range of WiFi signals is from 2.4 GHz to 5.9 GHz,
which is covered by radio waves.

Applications of wearable devices cover a wide range of
methods, including measurements of heartbeat and respiration
rates, oxygen saturation level, electromyographic signals and
many others [5]], [6]. However, these sensors are expensive,
as it is necessary to provide a single device to each person
being monitored. Moreover, the successful capture of the health
information is dependant on the patient wearing the sensor
or keeping it close to the body, which, if forgotten, can have
severe consequences in applications such as fall detection.
There is also the challenge of the re-usability of wearable
equipment, resulting in widespread contact-transmission viruses,
such as COVID-19, if not appropriately disinfected. Generally
the adoption of the technology is problematic amongst some
of the most needy individuals, namely those who are old or
disabled.

In contactless sensing methods, camera-based sensing ap-
plications have proven their accuracy [7]. However, several
disadvantages make it difficult, in some scenarios, to rely on
such systems, which includes:

o System complexity and high cost due to computational
requirements for multiple cameras to cover areas of
activity.

o Privacy concerns due to the capturing and storage of
images, which unauthorized users can access in a low-
security system.

Compared with wearable sensing technologies, ambient RF
sensing has the advantage of reducing the risk of contact
transmission infections. Because it is capable of the contactless
measurement of vital signatures and macro-health indicators in
non-line-of-sight (NLOS) environments. In hospitals, wireless
systems can capture the signal signature of vital signs, such as
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coughing, shortness of breath, fever, and aches [8]-[10]]. Given
that these symptoms are closely linked to patient infections,
WiFi sensing has the potential to detect illness. The comparison
of WiFi sensing and other RF sensing technique is conducted
and discussed in Section

B. Specification of WiFi sensing in healthcare

At present, WiFi sensing research in healthcare is being
mostly developed for use in non-hospital environments, driven
by two trends: vital sign detection and activity detection
(see Fig. [I). Vital sign detection system aims to monitor the
movement of the lungs and heart in humans using WiFi signals
to recognize the respiration and heartbeat rate, in real-time.
For activity detection task, alarms for critical events such as
falling, and other specific actions that can cause severe and fatal
consequences to human-beings has been studied in academia,
and industry [11]].

Generally, such systems use WiFi devices alongside intel-
ligent classification algorithms to monitor and predict human
subjects’ movements. In the same context, WiFi signals are
also used to report, over the internet, the activity status and/or
vitals of the monitored subjects to the medical specialist and
families or carers. Beneficiaries of such valuable real-time
data and information are the internet of things (IoT) systems
[12]. For example, vital signs detection in a smart home can
help IoT systems adjust the temperature, humidity, and other
environmental factors automatically to improve the quality of
the user’s experience [13]], [14]. At present, WiFi sensing has
been applied in the home. For example, Linksys sells a WiFi
router and provides a service called “Linksys Aware,” which
enables WiFi devices to perceive the signals’ vibration around
the house. Although there have been numerous research studies
conducted in this field, it is difficult to replace wearable and
visualized healthcare applications due to their high reliability
and efficiency. However, as academia and industry continue to
optimize sensing technology, and as it becomes more reliable
and accurate for the healthcare monitoring of human beings,
we can expect to see changes from the current situation.

C. Contributions

There are a number of surveys of specific WiFi sensing
techniques that have been published in recent years, including
human activity recognition [[15]-[22], human identification [18]],
[21]], localization [18]], [21]], vital signs [17], [18]], [21], [22],
and imaging [21] (see Table E[) All of the studies mention
human activity recognition; few of them explore localization
and vitals estimation. The review papers discuss trends that
can be related to healthcare (human activity recognition, vitals,
localization), which is introduced in Section focusing on
the technology development, with less detail on the applications
in healthcare [18]. In comparison with existing surveys within
detailed contents of various techniques and applications, the
view of our survey is distinct, which specifically focuses on
the analysis of WiFi applications in the healthcare field.

Our paper is structured to discuss the capability of WiFi
sensing in healthcare applications, including current achieve-
ments and future expectations through a thematic analysis

review, providing a healthcare perspective to researchers. More
specifically, the contributions are as follows:

o Provide a detailed overview of the methodologies adopted
in developing healthcare monitoring systems.

e Classify healthcare related applications into different
categories, and then provide insights for distinct trends.

« Highlight challenges and their potential solutions that re-
quire further investigation for generalization of healthcare
applications based on WiFi sensing.

The paper is organized as follows: Section [[l|introduces WiFi
sensing technical background and development in healthcare
range. Section reviews different techniques applied in
WiFi sensing, including signal preprocessing techniques and
algorithms. Section concludes and analyzes the recent
healthcare related applications in different fields, including
vitals detection, localization, large-scale and small scale activity
recognition. While finally, Section [V] discusses the technical
and ethical challenges based on the recent researches. Then
provides future perspectives associated with healthcare WiFi
sensing.

II. RELATED WORK OF WIFI SENSING

This section presents the existing research studies focused
on the technical background of WiFi monitoring systems
with CSI and received signal strength indicator (RSSI) and
descriptions of different tracks of WiFi sensing technology.
Meanwhile, human activity recognition based on other RF
sensing technology is introduced.

A. Technical background of WiFi sensing

With the rapid advances in communication and network
technology, it is possible to assume the broad deployment of
WiFi devices across society. Multiple-input multiple-output
(MIMO) systems using orthogonal frequency division multi-
plexing (OFDM) technology, which supports the IEEE 802.11n
protocol, provide high throughput transmission mode to serve
the high data rate requirements. In such a system, disturbance of
physical objects is capable of bringing different extent variation
of wireless information on different subcarriers, which provided
conditions for the generalization of wireless sensing based on
WiFi signals. This section, therefore, discusses some of the
primary techniques used to perform WiFi sensing.

1) Received Signal Strength Indicator (RSSI): The RSSI
technique has been widely used for the localization of indi-
viduals. In MIMO systems, the RSSI is represented by the
superposition of the strength of all the received signals. Most
network devices can perform this task, including network
interface cards (NICs), as they are easily accessible. An RSSI-
based detection system depends on the magnitude changes of
RSSI levels caused by the activity. However, due to multi-
path fading and time dynamics, its performance under complex
conditions is significantly impacted. Early WiFi sensing systems
that have been used for commercial localization are primarily
dependent on RSSI without fine-grained information. Hence,
they cannot be used to recognize complex human behavior
[23].
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Fig. 1: Recent WiFi research used in healthcare

TABLE I: Related WiFi sensing surveys in specific track

Reference | Application Range Main topic
[[15]] human activity recognition | histogram-based techniques, deep learning methods
[16] human activity recognition | comparison of human activity recognition methods
(171 respiration estimation model-based approaches, pattern-based approaches
human activity recognition,
vitals estimation, details of various WiFi sensing techniques,
[[18] localizati . -
ocalization/tracking, applications, challenges and future trends
identification
[ 119] human gesture recognition | comparison of WiFi sensing performance
(201 human activity recognition | through-wall human activity recognition methods
[21] humqn activity recognition, details of various WiFi sensing techniques
imaging, vitals estimation
human activity recognition,
[22] vitals estimation, sensing applications in smart home
identification
human activity recognition, | details of various WiFi sensing techniques,
This paper | vitals estimation, sensing applications in healthcare,
localization technical and ethic challenges, future trends

2) Channel State Information (CSI): CSI is the channel
property of the wireless communication link. It represents
channel frequency response (CFR) for each subcarrier between
transmitter and receiver, which describes the fading factor
of the signal on every transmission path, i.e. the value of
every element in channel gain matrix H (sometimes called
channel matrix or channel fading matrix). In WiFi systems,
the CSI signals can be obtained from the physical layer on the
commercial IEEE 802.11A/G/N wireless network card based
on OFDM. For each subcarrier, the WiFi channel is modeled
by y = Hx + n, Where y stands for the received signal, X is
the transmitted signal, n is the noise component. The receiver
computes the CSI matrix with the pre-defined signal x and the
received signal y. However, in reality, WiFi systems’ estimation
of CSI is affected by multipath fading. The CSI matrix of a
given subcarrier with frequency f and time ¢ can be represented

as [24]:

Ng
H(f,t) = 2SI () + 3 a £ 0)e 2 0%) (1)

i=1

Where e 7272ft is the random phase shift due to the
hardware /software error of the WiFi system; Hy represents the

CSI signals from all the static paths (including the signals in
line of sight (LOS) areas and those reflected off the stationary
objects). The rest of the expression is the summation of signals
from all dynamic paths (including signals reflected from the
dynamic objects). N, is the index of the dynamic path, a;(f,t)
represents the complex attenuation factor and the initial phase of
the ' path; e =727 (M)A represents the phase change of i* path;
d;(t) and X are the length of the i*" path and the wavelength
of the WiFi signal, respectively. The CSI value can adapt the
communication system to the current channel conditions and
guarantee high reliability and high rate communication in multi-
antenna systems. With MIMO and OFDM technologies, the
size of the CSI matrix is constructed in 3 dimensions, with N
transmitter antennas, M receiver antennas, and /X subcarriers.
The CSI packet is transmitted as N x M x K, with the packet
index ¢ (see Fig. 2). The propagation performance of wireless
signals through both the direct path and the multiple reflection
paths will show the physical space environment, including any
object and the human body. Compared to RSSI values, the CSI
offers a fine-grained representation of activity. Hence recent
device-free WiFi sensing studies favor CSI, instead of RSSI

[20].
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Fig. 2: CSI matrices of MIMO-OFDM channels

B. Comparison with non-WiFi RF sensing

Prior to the wide use of WiFi sensing technology, consider-
able subject-identification research has been performed with
traditional radar systems due to their contactless and privacy-
preserving characteristic. For example, frequency-modulated
continuous-wave (FMCW) radar equipment was applied in
[25]-[27], while in [28]], the radar system was proven in its
accuracy through 8-meter distance monitoring of breathing and
heart rate within 5.46 - 7.25 GHz bandwidth.

In [29]], the authors use a MIMO ultra-wide-band (UWB)
transceiver system to estimate the speed of human movement
with an average accuracy of 96.33%. However, in all cases,
there is a high cost to establish a specific testbed. In [30],
a system based on SDR using USRP was proposed. The
experiment simulated an FMCW system to analyze the phase
change status caused by respiration. The achievements of these
non-wifi sensing systems are also heavily informed by WiFi
sensing due to the similarity of RF signals. However, the
key difference between the two methods is that CSI in the
WiFi communication system is designed to recover transmitted
information but not to explore the physical characteristic of
the communication channel. For example, FMCW radar has
the capability to consistently and linearly adjust the frequency.
Combined with the time of flight (ToF) algorithm, FMCW
can accurately estimate the distance information of the objects.
WiFi signals are only supposed to transmit within a shallow
frequency bandwidth, which is limited to the devices, so it
cannot be modulated to do the frequency sweep operation to
get the range bins [31]]. Nevertheless, a lot of research studies
found the potential of this technique and proposed various
researches to compensate for the shortages and improve the
feasibility in different tasks.

C. The Evolution of WiFi Sensing for healthcare

1) Hardware platform development of WiFi sensing: For the
past few years, research studies on CSI measurement from WiFi
signals have been emerging for different sensing applications.
In a WiFi system, CSI is essentially a data format used to

represent the CFR sampling of the sub-carriers granularity
in the system’s frequency band, obtained from the physical
layer of the commercial IEEE 802.11n wireless network card,
based on OFDM technology. Based on the WiFi devices, the
researchers first developed an open-source CSI tool driver
using the Intel 5300 NICs [32]. This CSI tool enables 30
subcarriers in a 20 MHz channel bandwidth for CSI collection
from commercial off-the-shelf (COTS) WiFi devices. This
driver provides a quick and low-cost method to establish the
WiFi sensing platform. In another study, the authors in [33]],
[34] have implemented their system based on the Qualcomm
Atheros NICs offered by [35], which has 114 CSI subcarriers,
hence a higher resolution compared to the Intel 5300 CSI tool.
In [34]], the results of the comparative study have shown that
the higher the number of subcarriers, the higher the sensing
accuracy. Other sensing devices include the Wi-ESP which has
a reduced cost and is smaller in size compared to the previously
mentioned COTS WiFi router [36]. Besides NICs, software-
defined radio (SDR) platforms are commonly used to measure
CSI, such as the universal software radio peripheral (USRP)
and the wireless open-access research platform (WARP) [18]],
[37], [38].

2) WiFi Sensing Applications towards Healthcare: Based
on the foundation of the open-source WiFi sensing driver’s
development demonstrated in Section researchers have
started to propose several methods and applications based
on WiFi sensing. This section provides a general overview
of WiFi sensing development trends in healthcare, and more
detailed technical analysis is demonstrated in Section |[[V] Table
shows some popular applications of WiFi sensing in recent
years. For the convenience of demonstration, different tasks
are separated into two parts, human activity recognition, and
vital signs monitoring. In this case, we define the classification
and analysis of all active motion based on torso movement
as human activity recognition. From another perspective, vital
signs are necessary to maintain regular human activity and are
therefore not directly controlled by consciousness and torso
movement for the vast majority of time. So, we differentiate it
from general human activity recognition.
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For the human activity recognition applications in healthcare,
we divide them into two types: healthcare auxiliary and
healthcare recognition, based on the aspects of monitoring
requirement of instant and long-term feedback. In case of
healthcare auxiliary applications in an indoor environment, the
literature covers daily activity recognition [24], [34], [39]-
[44], and other specific activity recognition such as falling
[45], smoking [46], sedentary behavior [47], pose estimation
[48]-[51], keystroke [52]] and mouth motion [53]]. As for the
daily activity types, most papers consider: walking, running
(or jogging), sitting, pushing and dragging, jumping, squatting,
opening the door, and other actions that people always take in
daily life. Through these instant activity monitoring methods,
the alarm of dangerous accidents like falling can be transferred
to the nearest community hospital and families to take an
instant action to prevent delayed medical attention, especially
for elderly people [54]]. At the same time, these approaches are
helpful for a disabled person to improve self-care capability
through contactless interactive smart controlling methods of
gestures recognition and pose estimation. For another range
of the healthcare, recognition approaches, it mainly covers the
detection of the diseases through long-term gait monitoring, for
paraparesis detection [55]] and Parkinson detection [56]. These
works train the specific model to learn the gait difference of
healthy people and patients for diseases recognition. Never-
theless, because datasets from disabled person are difficult to
obtain, relatively few works have been published in this field.

Vital signs estimation belongs to the range of healthcare
recognition applications, which is performed by monitoring
the motion of the chest and heart. Most papers analyze
the respiration rate [50]], [57]-[67]], some of them detect
heartbeats [50], [59], [60], [62], [64], [[67], and another paper
demonstrates the biometric estimation [[68]]. The difference
between respiration and heartbeat estimation is demonstrated
in Section [IV-B] From the perspective of potential in healthcare
applications, these systems are useful for instant monitoring
of vitals in the non-hospital environments and helpful in the
detection of long-term chronic diseases’ such as arrhythmia,
and some respiratory diseases.

Convincing results with regards to WiFi sensing for bio-
metrics estimation is still lacking in the literature compared
to radar-based systems [69], [70] which has shown good
performance. So using WiFi signals to estimate biometric
parameters can be regarded as a potential application waiting
for further development.

Further to the previously reported studies, it is crucial to
have reliable localization and tracking systems to complement
healthcare monitoring ones. For instance, monitoring vitals
during sleeping cannot be performed when the person is not in
bed [71], as the position of human is essential to the decision
making process.

Meanwhile, from the timeline shown in the Table [[I, we
can conclude the emerging trend is that the researchers are
expecting specific WiFi sensing applications like diseases
detection, biometric estimation, sedentary activity recognition,
which have more application value in healthcare. On the other
hand, as the types of perceptible activities in the traditional WiFi
sensing method are limited, the pose estimation task is proposed

to restore the human skeleton in visualization with only
WiFi signals. Combined with the state-of-the-art framework
of computer vision-based human activity recognition, it has
expected that the performance will be further improved [48]],
[49].

III. MAIN COMPONENTS OF CONTACTLESS WIFI SENSING

The development of WiFi sensing systems involves two
stages, the first is applying signal processing techniques, and the
second is the algorithm design. The signal processing stage con-
sists of three sub-stages, i.e., denoising, signal transformation,
and feature extraction. The algorithm stage explains modeling-
based and learning-based tracks, respectively. A generalized
architecture diagram of a typical WiFi sensing system is shown
in Fig. 3] Firstly, raw WiFi signals are collected by the receiver
devices, where they are denoised, transformed, and features
are extracted for the data-mining of CSI signals. Secondly,
algorithms are applied to classify/recognize/estimate the results.
Each of the stages is detailed in the following subsections.
In this section, we review various kinds of technologies and
classify them in different stages.

. .
é : / g.k \ ))g
\L Transmitter \ Subject / Receiver ’/"
Signal Processin . N\
& 8 Algorithms
= Modeling-Based
Signal Transform
Feature Extraction Leaimingl-EEEs |

Fig. 3: WiFi Sensing System Architecture

A. Signal Processing Techniques

This stage is concerned with the processing of the collected
CSI signals captured during the subject’s motion. CSI data
is processed by different methods to obtain the nature of the
information that is required by the system. The signal process-
ing of WiFi signals constitutes three phases: Noise Reduction,
Signal Transformation, and Feature Extraction, to feed noise-
free information to the algorithms (see Section
and [[II-A3)). Table [ lists the various methodologies adopted
and applied in the literature to process WiFi signals.

1) Noise Reduction: Noise components, like outliers of
CSI data, always exist, which impacts the signal and causes
a significant reduction in the recognition accuracy of the
overall system. Denoising raw data can reduce the redundant
computation of invalid information and improve efficiency and
accuracy. De-noising is performed in two stages, the first is the
removal of outliers, and the second is performing interpolation.

Outlier is the data that stands out from the rest of the data
set, leading to suspicion that no random deviations are resulting
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TABLE II: General wifi sensing applications since from 2015 to 2020

I"{fl?)liingtion Human Activity Recognition Vitals Signs Monitoring
2015 hocalisation [35), wracking (7], dety activity L respiration [57]
2016 logal.izatiqn [77], tracking [[78|], loqation and velocity [79], §rpoking 11801, sleep Vi}als monitor [|58]],
gait identification [81]], mouth motion [53|], gestures recognition [82] respiration and heart rate [|59]
2017 ]f(alhng [45]], daily activity [83], smoking [46]], location and velocity [84], respiration and heart rate [60)]
eystroke [52] -
falling [|68]], dynamic velocity [85], daily activity [34], [39], [40], respiration [|61]],
2018 localization and tracking [86], gesture recognition [68], [87], [88], respiration and heart rate [62],
sedentary behavior [47] biometrics estimation [[68|]
araparesis detection [55]], localization [33|], daily activity [41], .
2019 lP)’arkri)nson detection [5[6],] 2D pose estirr[latiz)n [48y], vl resplrat_l on [63]’. .
gesture recognition [89]], [90], pedestrian flow estimation [91] sleep vitals monitoring [64]
2020 pose estimat}on .[50], driver activity & falling [.92], o resp%ration [l65], [66],
3D pose estimation [49], gesture [93]], [94], daily activity [42] respiration and heart rate [50], [67L
TABLE III: Signal processing techniques applied in literature for wireless sensing
Reference Noise Reduction Signal Transformation | Feature Extraction Application
WiFall [45] LOF, MA N/A N/A falling detection
WiHear [53| N/A IFFT, DWT butterworth BPF mouth motion recognition
Omni-PHD [95] | N/A N/A thresholding human moving detection
Somkey l46] Hampel filter, interpolation | N/A thresholding smoking detection
Widar [79], i84] N/A STFT Butterworth BPF, PCA localization
Combination of Phase
PADS [85]], [96] | hampel filter N/A Difference and Phase human moving detection
Linear Transform
WiSee (73] Interpolation FFT band pass filter gesture recognition
Ri-2017 [97] N/A N/A signal separation by ICA | daily objects moving detection
TensorBeat [98|] I;e};lg;jeééi(l)t’erél: 0 N/A thresholding vitals
CSI-Net [68] DWT, butterworth LPF N/A N/A human activity recognition
PhaseBeat [67] DWT, hampel filter FFT N/A vitals

from entirely different mechanisms. In a WiFi system, outliers
can be caused by hardware or software errors. Moving average
(MA) is a primary method to solve the outliers, which uses
statistical methods to average the CSI values in a certain period
and connect the average values in the time range. A Hampel
filter is also used to remove the outliers, where for each sample
of the CSI datasets, the median value of the window consisting
of the sample and several surrounding samples is calculated,
and then the absolute value of the median is used to estimate
the standard deviation of the median of each sample pair. Using
the median to replace outliers is less sensitive to noise than
using mean and standard deviation [18]], [59]. The median filter
has the same principle as the Hampel filter, which traverses the
signal without outlier detection. LOF is used to find abnormal
CSI patterns calculating the local density of the points with
respect to k-nearest neighbors [99]]. The local density of the
selected point will be calculated by reach-ability distance to
neighbors and compared with other points.

On the other hand, interpolation processing ensures the
continuity of the signal in time and reliability of the experi-
mental data, especially when the data packets are collected at
a higher frequency. If packets are lost during communication,
the interpolation method would take the average of the nearest

two points to replace the unperceived data. Meanwhile, to keep
the continuity of the signals, linear interpolation is applied in
many proposed systems [46], [68], [[73].

2) Signal Transformation: The signal transformation method
targets the analysis of CSI signals in the time-frequency domain.
In the virtual environment, the wireless signal will be impacted
by high and low-frequency noise. Through frequency domain
filtering processing, these noise signals can be effectively
reduced. At the same time, the signal components of the
frequency band required by the systems can be obtained using
a band-pass filter and inverse transformation. Fast Fourier
transform (FFT) is a standard method applied in the OFDM
systems where the CSI is a sample of FFT of channel impulse
response (CIR). Short-time Fourier transform (STFT) frames
and windows the original signal first, then performs FFT on
each frame. These characteristic assists researchers in finding
the dominant frequency change in the time domain, which is
efficient for real-time sensing. However, when the length of
the frame is constant, STFT takes a poor balance of signal
restoration in the time and frequency domains. Suppose FFT
window length (for CSI signals in the time domain) gets
extremely short, it will cause inaccurate frequency analysis with
inadequate signal information. Inversely, longer window length
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brings a lower resolution of signal in the time domain. Discrete
wavelet transform (DWT) is utilized to decompose signals on
different scales to improve the performance compared with
the Fourier transform. Meanwhile, DWT is available in time-
frequency analysis to judge the signal frequency changes in
the time range, the instantaneous frequency, and amplitude at
each moment.

3) Feature Extraction: Feature extraction is the process of
obtaining information from the signal, which is the basis of a
different algorithm for classification and estimation from the
CSI data. Phase difference and phase linear transform are used
to find the relationship between the changes in the phase and
human activities.

Filtering is adequate for detection of the behavior with
constant frequency like heartbeat and respiration, even for the
detection of walking, which focuses on filtered high frequency
CSI signals out to get cleaner human-related signals, such as
the respiration and heartbeat rate [67], [98]. Butterworth filter
is widely used because the frequency response curve in the
pass-band is flat without fluctuations, while it gradually drops
to zero in the stop-band.

Thresholding is used to distinguish valid signals in the
time range based on ToF. As shown in equation [} the
ToF value of each path can be estimated by CSI data [78].
Based on the distance of transmission lines, those signals
with high ToF value are reflected more times around the
environment than others, which is meaningless for systems
and can be excluded. Last but not least, signal compression
utilizes dimensional decrease methods that generally work in
feature extraction, like principal component analysis (PCA)
and independent component correlation algorithm (ICA). PCA
is a statistical method, transforming a group of potentially
correlated variables into a group of linearly uncorrelated
variables through orthogonal transformation. This group of
variables after conversion is called the principal component.
In WiFi sensing, PCA is mainly adopted to integrate the
signals from different subcarriers to extract main components
of variance (see Fig. ). ICA is also a method to find the
hidden factors of non-Gaussian data, regarded as a powerful
method in blind signal analysis. From the previously familiar
sample-feature perspective, the prerequisite for using ICA is
that implicit factors of independent non-Gaussian distribution
generate the sample data.

B. WiFi Sensing Algorithms

The core methodology applied for detection or recognition
of activities lies in the algorithm, which is divided into either
modeling-based or learning-based. Some examples from the
literature are shown in the Table [Vl

1) Modeling-Based Algorithm: Modeling-based approaches
apply statistical or mathematical models to extract specific
features, depending on the tasks. These studies are less
dependent on training set and have more robustness compared
to the learning-based methods.

ToF and angle of arrival (AoA) models have been frequently
applied for indoor tracking and localization. When receiving
signals in the same physical path, the delay should be a constant
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Fig. 4: Example of PCA & LPF process for CSI amplitude
signals

value. However, due to the multi-path effect, which reflects
the transmitted signal, the value of ToF can be influenced.
Power delay profile (PDP) is a common approach to get
the value of ToF through inverse fast Fourier transform
(IFFT), which is popular in tracking and localization [76].
Meanwhile, AoA makes different antennas show different phase
observations. Multiple Signal Classification (MUSIC) performs
well on the AoA estimation [75[], [78]], which correlates phase
difference with the distance of multiple antennas to estimate
the transmission direction.

The phase difference is required to combine with the Fresnel
zones (see Fig. [5). The Fresnel zone is a concentric ellipse with
foci between the transmit and receiving antenna horizontally
in the WiFi system. [[100] designs the related experiments and
proves that the motion that happens in the middle of the Fresnel
zone is more efficient than happens on the boundary.

Boundary of
2¢t Fresnel Zone
Boundary of
1% Fresnel Zone

Boundary of
N Fresnel Zone

Fig. 5: Geometry of the Fresnel zone

Doppler frequency spectrum (DFS) represents frequency
shift influenced from the active motion, which is feasible to
extract the velocity of subjects. CSI itself represents the channel
frequency response, so it is convenient to do time-frequency
analysis of the WiFi signals (see Fig. [6). The authors of [84]
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TABLE IV: Feature extraction and classification techniques applied in the literature for wireless sensing

Reference Modeling-based Learning-based Application

WiFall [45] N/A KNN, One-Class SVM | falling detection

WiHear [53]] MCFS DTW mouth motion recognition
Omni-PHD 195] EMD N/A human moving detection
Smokey [46] Peak Detection Autocorrelation smoking detection

Widar [[79], 184] Doppler Shift,PLCR N/A localization

PADS [85]], [96] | N/A One-class SVM human moving detection
WiSee (73] Doppler Shift Pattern Mapping gesture recognition
CSI-Net [68] N/A Deep learning network | human activity recognition
PhaseBeat [67] Peak Detection, Root-MUSIC | N/A vitals estimation

20

-
o (=]

Frequency (Hz)

o

=20
0 1000

2000
Time (ms)

3000

Fig. 6: DFS representing human activity of leaning forward
and back

developed an algorithm to correlate static CSI values with
active multi-path gradient and utilize the Doppler frequency
change to estimate the velocity and location of the humans.
Besides, [89]] adopts the body velocity profile (BVP) algorithm
to apply the earth mover’s distance to integrate the multiple
spectrum’s characteristics to classify the gestures (see Fig. [7).
In each BVP, the velocity component is projected onto the
normal direction of a physical WiFi link and contributes to
the power of the corresponding radial velocity component in
the DFS profile. Due to the path length change of the Doppler
signal, WiFi equipment in a different position collects distinct
CSI signals. This Widar3.0 considers the location of devices
and maps DFS value into the BVP. This method reduces the
negative influence from the environment and has been tested in
unknown locations where signals are collected for the training
set.

2) Learning-Based Algorithm: Machine learning-based clas-
sification algorithms such as the k-nearest nighbors (KNN) and
support vector machines (SVM) are widely used in detection
and recognition tasks [101]. Multi-cluster/class feature selection
(MCFS) in the WiHear system [353] sets to extract the optimal
feature subset and find the correlation feature between different
subsets, using a pattern matching algorithm to avoid over-
fitting. On the other hand, with the fixed size of the dataset,
the classification process of MCFS on the testing set takes 5
seconds, which is much lower than 3 - 5 minutes taken by the
SVM algorithm. The Dynamic Time Wrapping (DTW) method
calculates the similarity between time series data by extending
and shortening the sequences widely used in fingerprint-based
learning methods. Similarly, earth mover’s distance (EMD)

defines distance measurement, which can measure the distance
between two distributions. The function of EMD and DTW
is similar in CSI based classification, which both belongs to
the range of linear regression. By contrast, DTW focus on
estimation in single dimension CSI sequence, and EMD can
be used in higher dimensions, like DFS integration shown in

Fig.

Besides ML methods, many deep neural network (DNN)
frameworks have been widely applied in WiFi sensing. With
the rapid development of neural network in recent years in
various fields, different DNN structures have been applied
in WiFi sensing, for example, convolutional neural network
(CNN), long short-term memory (LSTM) and etc. In [41]],
instead of using long short-term memory (LSTM), an attention-
based bi-directional long short-term memory (ABLSTM) neural
network is proposed to extract 2-dimensional features from
WiFi CSI data, representing human activity. In the results,
recognition of six different activities in public places, recorded
an accuracy of more than 97.5%. In [40]] the author applies
the CNN classification algorithm, which records a higher
accuracy in comparison with the SVM classifier. Similarly,
SignFi [87], and 1D-CNN [55] propose the use of different
CNN structures for WiFi sensing. The 1D-CNN performs better
than the KNN method (average 4% higher in 1D-CNN), and
SignFi improved 2% - 4% accuracy compared to the KNN-
DTW method proposed in [82], [[102]. Instead of using external
neural networks (less than five layers) as alternate nonlinear
operators, [68] proposed a novel method to extend the size of
CSI input from 30 x 1 x 1 to 6 x 224 x 224 with bi-linear
interpolation, which provided an image-like structure for further
deep learning. It offers conditions to apply different backbone
networks like AlexNet, visual geometry group (VGG) network,
inception cluster, etc. The deep learning network framework
proved that body perception of CSI sequences for WiFi could
accomplish: two body characterization problems of biometrics
estimation (including body fat, muscle, water, and bone rate)
and identification, two activity recognition: gesture recognition
and fall detection. For both traditional ML and DNN methods,
the performance suffers from the distribution shift that arises
from different circumstances/locations. To avoid the repeated
training of the model and fitting new areas, transfer learning
methods can be utilized with lower computation resources
[88]. Furthermore, the metric learning approach also helps the
model generalize to new environments for applications such
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Fig. 7: BVP methodology proposed in [89]

as gesture recognition [90]. Although all above methodologies
apply distinct network structures, the central task is the same,
which is adopt DNN to match the CSI signal with the artificial
label.

Moreover, pose estimation adopts the label from camera-
based methods, and proposes a novel DNN structure to match
the human skeleton to WiFi CSI data. In the training stage,
the skeleton of a human being can be acquired from image
processing with cameras. Afterward, the collected WiFi data
is labelled and correlated with different patterns of skeleton
coordination and trained by a neural network. The authors of
[103]] proposed a novel network to apply a fully convolutional
network (FCN) for estimation of a single person’s pose from
the collected data and annotations. This work aims to train
the specific neural network to map the CSI variance to the
human skeletons, and get the fine-grained human skeletons from
CSI signals. Furthermore, they developed another structure for
multi-persons’ pose estimation [48]]. Based on a similar theory,
[104] proposes a image-based preprocess method to get a CSI-
image for CNN framework to estimate the pose. However,
in the mentioned 2D human skeleton restoration, there are
few discussions of the robustness. Due to the sensitivity of
CSI signals, environment has the severe impact on channel
information, which means the overfitting issue is inevitable.
Because 2D pixels obviously can not map all human activities,
especially for NLOS side, with CSI variance. To improve the
reliablity, the study of [49] improves the BVP to 3D velocity
profile through changing the antennas’ height. These ideas
create the condition of more applications development with
pose estimation.

IV. WIFI SENSING APPLICATIONS FOR IN-HOME HEALTH
MONITORING

Remote healthcare monitoring systems, based on WiFi
sensing, perform two main operations of healthcare recog-
nition and healthcare auxiliary (described in Section [[I-C2)).
Healthcare recognition applications require the monitoring
system to analyse the human health for activity- and vitals-
related diseases’ detection, through the long-term monitoring
of activities and vitals. Healthcare auxiliary applications cover

the systems that are capable of providing smart detection
services for human beings, which can be further divided into
two categories based on the typical tasks. Firstly, healthcare
auxiliary depends on the real-time detection of critical events,
such as falling and irregular respiration rate, to alert the nearest
healthcare center or family member. Then, location and tracking
functions are also available in indoor healthcare auxiliary
tasks. This section reviews recent WiFi sensing healthcare
applications based on the range of supportive applications, and
discusses the efficiency and availability of different methods for
implementation in an indoor environment. Some applications
with technical details are shown in Table [V

A. Healthcare recognition applications

1) Disease detection: At present, chronic disease detection
in WiFi sensing is limited to activity recognition without vitals
analysis. Due to the action difference of identity, the current
detection strategy is to recognize the feature of the disease
while volunteers are doing the specific test.

The WiFreeze system [56]] proposes a deep learning method
to recognize Parkinson’s disease based on the walk, sit-
ting—standing and voluntary stopping activities of humans.
Freezing of gait (FOG) is an explicit characteristic of Parkin-
son’s disease infection. The authors apply the CSI amplitude
for continuous wavelet transform analysis and get the time-
frequency spectrograms. For the evaluation stage, they use
the dataset of human activities that contains FOG, walking
slow, walking fast, sit-stand, voluntary stop. For classification,
they applied a revised neural network structure from VGG-
18. The result records the FOG detection accuracy of 99.7%.
However, the average accuracy of 5 activities is much lower,
approximately 85.06%, which is not a good model for human
activity recognition and here are several points that needs to
be considered:

¢ Accounting for the phase of the CSI data and not just the
amplitude.

o The impact of decomposing wavelets from original signals
when using CWT on the overall performance of a real-time
system.
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TABLE V: WiFi sensing applications of In-home health monitoring

Reference Applications Device Type & Number | Antenna Number Performance
ID-CNN [55] Lower. extremity paraparesis COTS WiFi device NTx=1, NRx=3 Average Accuracy: 9%
detection (IRx,1Tx)
Breathine short COTS WiFi device (Tx),
Wi-COVID [105] | — corng shortage Raspberry PI 4 (Rx) NTx=1, NRx=3 Missing information
detection
(IRx,1Tx)
TS WiFi i
WiFreeze [56] Parkinson’s disease COTS WiFi device NTx=1, NRx=3 Average Accuracy: 99.7%
(1Rx,1Tx)
ESPRIT [106] Respiration rate USRP B210 NTx=1, NRx=1 0.15 bpm mean error
(1Rx,1Tx)
COTS WiFi devi 0.6b f heartbeat,
WiHealth [59] Heartbeat and Respiration rate 1 device NTx=3, NRx=3 pm of heartbea
(1Rx,1Tx) 6 bpm of respiration
0.19b in LOS,
. COTS WiFi device PITL teafl error 1 |
Tensorbeat [98] Respiration rate (IRx.ITx) NTx=1, NRx=3 0.25 & 0.26 bpm in corridor
’ and through-wall scenarios.
1.19 bpm median estimation
error of heartbeat;
0.25 bpm mean error of
TS WiFi i
PhaseBeat [67] Heartbeat and Respiration rate (C]?Q SlT l) i device NTx=1, NRx=3 respiration detetion when
x,1Tx
’ the sampling rate is
400Hz using directional
antennas.
In [50] Respiration rate COTS WiFi device NTx=1, NRx=3 Average Accuracy: 91.2%
Falli ion; TS WiFi i
CSI-Net [68] alling detection; COTS Wiki device NTx=3, NRx=3 Falling detection: 97.73%;
Biometrics estimation (1Rx,1Tx)
USRP N210
WiSee [73] Gestures Recognition (2Rx.2T) NTx=1, NRx=1-5 Average Accuracy: 94%
A A 1 90.9%
. N COTS WiFi device verage ccurac‘y 9%
Widar3.0 [89] Gestures Recognition (3-6Rx.1Tx) NTx=1, NRx=3 (Test Places not included
’ in the training set).
TS WiFi devi
WiFall [45] Human Activity Detection COTS Wi device NTx=3, NRx=3 Average Accuracy: 87%
(1Rx,1Tx)
TS WiFi i
ABLSTM [41] Human Activity Detection (C]z SlT l) i device NTx=1, NRx=3 Average Accuracy: 99%
x,1Tx
COTS WiFi device ?IT):/}];-I\;RX-:S. WiFi dev1cfes9 il;ve }-ltfhe-r 1
WiHear [53] Mouth Detection and USRP N210 or Wit devices aceuracy of Z17% WIth single
(IRx1Tx) NTx=2, NRx=2 person, 74% with less than
TR for USRP three persons.
CARIN [92] Driving Fatigue Detection (Cl?{TSI;VI)Fl device Information missing | Average F1 score: 90.9%
x,1Tx
TS WiFi devi A bsolut s
DfP [86] Localization and tracking COTS Wi device Information missing verage me?an absotute errors
(3Rx,4Tx) of four environments: 0.92m
TS WiFi i
Widar2.0 [[107] Localization and tracking (Cl(l)z SlT l) i device Information missing | Average mean absolute errors: 0.75m
x,1Tx

o The size of the training and testing datasets for DNN to
avoid overfitting the model.

The authors in [55] propose a 1D-CNN algorithm to detect
lower extremity paraparesis. The dataset contains the CSI
signal of two series of specific motion detection (Barre and
Mingazzini methods) for paraparesis detection. The 1D-CNN
system achieves an accuracy of 98% for the Barre test and
99% for the Mingazzini test respectively. This work applies
a relatively shallow network structure compared to the above
WiFreeze system. However, the dataset only contains two
classes: typical result and abnormal result based on two test
methods. This study would improve if it considers introducing
more classes like gender, ages, health status to explore more
based on WiFi sensing. Meanwhile, in a realistic environment,
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the use of the 1D-CNN and the WiFreeze system cannot
prove the reliability of multiple persons. Secondly, the setup
details, like Barre and Mingazzini test in [55[], should be more
straightforward for other researchers to repeat the experiments
because WiFi signals can be significantly affected by the
environment. Lastly, the discussion of application value is not
enough. Parkinson’s and paraparesis are chronic diseases that
should be detected in the long-term, and it has expected to do
the evaluation test using a similar system on the infected groups
for intelligent healthcare. Therefore, disease surveillance based
on WiFi sensing is a direction with development potential.

2) Vitals detection: Vitals detection of heartbeat and respira-
tion rate belongs to passive healthcare recognition because they
both are produced by the tiny and rhythmic vibration of the
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heart and chest. This section covers the theory of respiration
and heartbeat detection and related issues.

Respiration activity is crucial for the evaluation of sleep
quality and the detection of respiratory diseases. One rise and
fall of the chest is one breath, which means one inhalation
and one exhalation. The regular adult breathing rate is 12 -
20 times per minute, while children and older adults have
slightly higher rates. Breathing activity has been considered
in several research studies, such as [57]], [98]]. In [98]], the
TensorBeat system is proposed to recognize the breathing rate
of single and multiple individuals. The performance results of
two-person and three-person tests are similar, accounting for
93% accuracy, with the error in both being less than 0.5 bpm.
However, the performance is reduced to approximately 62%
when number of people increased to five people, highlighting
a correlation between number of subjects and the deterioration
in the accuracy of breathing rate estimation.

Heartbeat rate is also a significant index of human health. The
number of heartbeats per minute of a normal person in a calm
state is generally 60 to 100 beats per minute, varying among
individuals due to age, gender, or other physiological factors.
In [59]], [60], heart and respiratory rates are both measured
by their proposed system. The errors are recorded for the
WiHealth system, in [59], are 0.6 bpm, for the breathing rate,
and 6 bpm of heart rate. PhaseBeat [67]] proposes a novel task
classification method. The authors use the resolution of the
feature maps to classify detected results for different tasks,
which provides new ideas for future multi-task recognition
based on deep learning, and the errors decrease to 0.23 bpm
of respiration rate and 0.48 bpm of heartbeat rate. Besides,
[67] also provides a comparison test of the omni-directional
antenna and directional antenna on vitals detection. In the test,
the error of heartbeat rate reduces to 1.19 bpm, which proves
the efficiency of a directional antenna. For respiration rate,
the error improves from 0.23 bpm to 0.25 bpm, but it is an
acceptable performance fluctuation.
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Fig. 8: Heartbeats hidden in the breathing signal [[67]]

From the comparison of results, we can conclude that the
heartbeat is more difficult to sense. In WiFi frequency, 2.4
GHz and 5 GHz are standard, of which wavelengths are 60
mm and 125 mm. The maximum range of human chest motion
while breathing is around 10 mm and 24 mm [108]], which is
far less than the wavelength. Under this condition, the phase of
reflected signals will appear a difference (from 60 degrees to
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150 degrees for a 5 GHz signal). For heartbeat measurement,
it is more difficult because the motion of the heart is hugely
less than chest movements, as shown in Fig. [§] Directional
antennas should be used if the system requires higher accuracy
of heartbeat monitoring.

Secondly, Fresnel zones take a significant impact on this
tiny movement of the heart and chest. The Fig. [9] explains how
the Fresnel zones influence the respiration detection. When
the people are located on the boundary of the Fresnel zone,
the variance of phase is brutal to extract compared to the
center of two boundaries. Therefore, WiFi based contactless
vitals detection can achieve high performance but is severely
dependent on the implementation of devices.

B. Healthcare auxiliary applications

This section covers all the classification studies related to the
humans’ daily activities, as discussed earlier in Section [[I-C2j
Based on the methodologies, we divide the studies into activity
detection, pose estimation and localization. At the same time,
based on the movement range of human motions, the activity
detection is further separated from large-scale and small-scale,
because these tasks need to consider the specificity of actions
when designing an experiment and the movement range of each
activity class in the comparison test should be kept similar. The
different scale will influence the experiment design as well,
shown as Fig. [I0a] and Fig. [I0b} For instance, compared to the
gait recognition experiment, the distance and implementation
of gesture detection are much more specific than the position
of gait recognition.

1) Large-scale activity recognition: Large-scale recognition
methods contain falling detection, daily activity like sitting-
standing, gait recognition, human moving detection. Compared
with small-scale detection, large-scale recognition is generally
more efficient and accessible in applications because the CSI
signals can be severely affected by the extensive range motion
of limbs and torso. For instance, in the falling detection, due to
the instantaneous velocity change of the human torso, part of
the channel transmission medium and reflection and scattering
conditions of WiFi signals have changed, resulting in the
apparent doppler effect on CSI. The WiFall system, presented
in [45]], processed the amplitude of the collected CSI data to
detect falls in an indoor setting. Besides, abnormal activities
can contain health-damaged behavior like smoking, especially
in some indoor non-smoking areas. Wireless smoking behavior
testing can protect smokers’ privacy, compared to the current
camera-based detection. The WiFi wireless sensing is used
in smoking detection [46], and overcomes the blind spot in
camera-based detection systems.

2) Small-scale activity recognition: Small-scale activity
detection is specific to the tiny movement of humans, including
motion of hands and arms, with various kinds of studies. For
example, the authors of [94] propose a CSI-based classification
method to classify different movements of limbs while walking.
Gesture recognition is helpful for disabled people to feasibly
control their daily life and contact others in an emergency [110].
WiSee [73|] introduces a system that sets out to recognise
nine gestures using WiFi sensing (see Fig. [[Ta) with up

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/RBME.2022.3156810, IEEE Reviews

in Biomedical Engineering

Chest
motion in
non-
detectable
region

Fresnel zone
boundary

Detectable
region

motion in
detectable
region

7
/

Fig. 9: Phase variety of human
(Location 2) of [[17]

om

7m

RX L L TX

4.4m

RX L WTX

6.1lm

(a) Experiment setup of gesture recognition in [90]

>

Difficult to extract

AvAvAY

Easy to extract

Location 1

respiration detection in Fresnel zone boundary (Location 1) and middle region of Fresnel zone

+ A A
-5, 1. 7m>| 1.7m k—i
FA
E
N "'13 Tx
[ 4 2 Jé-,!i\. Re A
= 3 3 o
: . Track X
P 4 35
1
— 56mje—

(b) Experiment setup of gait recognition in [[109]

Fig. 10: Experiment setup comparison of small-scale gesture detection and large-scale gait recognition

to four people, set up in different scenarios (see Fig. [TTb)
with an average accuracy of 94%. For the tiny motion of
the hands, WiKey proposes a system to recognize stroked
words from general keystroke behavior [52], the accuracy
achieved was 97.5% of stroke behavior detection and 96.4% of
word recognition. However, the test environment has limited
the transceiver direction, distance change, moving speed of
typing fingers and direction, the keyboard layout, and size of
factors that affect system performance, which can be difficult
to replicate the work in a real-life scenario. To improve the
robustness, [[89] is proposed to correlate the CSI data of

more than three receivers in different directions and positions.

The result shows average accuracy above 85% for all testing
locations. Nevertheless, the good performance of the system
encourages researchers to design more applications based on
WiFi signals.

Mouth movement always represents speaking, eating, and
coughing. In the healthcare monitoring system, cough is
a significant symptom in patients infected with respiratory
diseases, including COVID-19 [111]], [[112f]. Wireless-based
activity recognition can be regarded as a suitable method for
cough detection. Recently, WiFi sensing has been applied
in many other health-related applications, other than cough
detection. On this side, [53|] presents the WiHear system
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for speech recognition using WiFi. The system establishes
a mapping dictionary from the pronunciation of vowels to
the mouth shapes to recognize a part of different types of
pronouncing and even some short words, shown in Fig. 12}
The COTS WiFi device can capture sensitive Doppler signals in
CSI. Combined with the move of the head during the coughing
process, the accuracy of cough sensing would be higher than
speaking single words. It is worth mentioning that the system
adopts directional antennas for implementation.

3) Fine-grained human pose estimation: In daily life, human
body language is extremely various that it is difficult to
categorize it with a few fixed variables. Therefore, a system
that uses limited data sets for motion classification is difficult
to deploy effectively in a non-experimental environment. Pose
estimation targets to recover the human skeleton for people
to recognize the human actions through the vision, which
is clear and intuitive. Compared to the classification studies
mentioned above, this fine-grained pose estimation is more
competitive and humanized and capable of recovering both
large-scale and small-scale activities’ pose. A fine-grained
[48]] system was firstly implemented in WiFi range with the
skeleton on the 2D images for users, shown in Fig. [I3] This
system tests processed human skeletons and achieves 0.66 of
mean intersection over union (mloU) with 1 - 5 persons. [49]]
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proposes a 3D skeleton restoration method using WiFi signals,
where the authors used the VICON motion camera system as

the ground truth 3D skeleton of the human body, shown in Fig.

[14] In this system, the skeleton represents the physical distance
instead of the pixels, which further proves that the WiFi signal
can perform fine-grained detection. The restored skeleton can
assist users in judging the performance of the sensing system
and is available for further activity recognition. Also, due to
visible skeleton restoration, these works have the exemplary
significance regarding the increase of the human activity types
without re-training the whole system. However, human skeleton
restoration is limited to the overfitting. The training set of 3D
restoration works only contains the human skeleton in constant
location, which means most predicted skeletons have limited
variance.

13

4) Human Localization: Further to the previously high-
lighted studies, WiFi sensing also shows potential in indoor
localization and tracking. At present, traditional WiFi localiza-
tion adopts RSSI signals from mobile devices, which depends
multiple access points (AP) with different media access control
address value for measurement (at least three devices). CSI
based WiFi localization can reduce the required number of
AP, and be independent on portable devices. In [I13], the
authors propose a method with location fingerprint to locate
people with RSSI fingerprints using the WiFi COTS devices
and mobile phones. In the setup shown in Fig. [I3] there are
24 APs in total equipped in a plain floor of 1610 square meter.
DeMan regards human breathing as an inherent indicator
of the human state and judges the existence of a stationary
person by detecting specific signal patterns caused by tiny chest
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(a) & (b) u © s E 1 bt —— __ : I, : 11|
’ ' L < 70m
. ‘ - a AP Locations Stairs X Corridors < Inaccessible areas
‘4_ Fig. 15: RSSI based localization implementation of [113]
@ v @1 (H m

' movements. Another work proposed a passive localization
3 ‘ indoor system using CSI with an improved Dynamic-
; ‘ \ MUSIC algorithm. The system gets the AoA value from moving

targets to establish the fingerprints of the location (see Fig.
(O (h) e @ w [T6) and records a median error of approximately 0.6 m, with
Fig. 12: Mouth motion detection in WiHear two pgir of devices, which is sufﬁcient.ff)r.localizing. children
and disabled persons. In [86], a probabilistic fingerprint-based
method is proposed and tested in four environments. Their
result demonstrates the system of the Kalman filter for tracking
objects at a fixed walking speed, which is available to analyze
the movement of monitored people with pose estimation for
early symptom detection, with 3 transmitters and four receivers.
More specifically, achieves the indoor tracking with
one pair of WiFi devices, in general office and corridor, with
the average error of 1 meter. In conclusion, contactless WiFi
sensing approach can be applied with fewer number of devices
compared to RSSI based methods, without portable devices.
However, RSSI-based method is more capable to achieve the
larger range tracking in cross-rooms environment.

V. CHALLENGES AND FUTURE DIRECTIONS

Due to the popularity and consistent upgrade of WiFi devices,
WiFi sensing is the technology with considerable potential.

I
I

8 : However, the popularisation of technology in healthcare will

L:S 1 inevitably encounter not only technical limitations as appli-

é : cations introduced but also ethical problems in Section [[V]
I Specific challenges and future directions are presented and

2/ : discussed in this section.

N I

-:;f’. \K{ : A. Challenges of WiFi sensing in healthcare

E ! Section [IV] has introduced various types of WiFi sensing

. : systems for healthcare that achieved high accuracy in a specific
1 task. However, most of the work is challenging to implement

E gl : at home simply because the environment is distinct, which

3 == I means the performance is limited with regards to different

& B ="“ | scenarios (see the comparison regarding six different factors
: in Table [VI[VII[VIIIXIX). This section discusses these issues

= [ | and gives the corresponding technical-level solutions.

i : ? ? 1) Robustness: Robustness is essential for the future devel-

E = e — = opment of WiFi healthcare sensing, resulting in whether the

experiment’s repeatability and validity can be guaranteed in
different environments. Although most learning-based methods
have good experimental results, due to the method itself
on the specific data, the performance of such methods in

Ground Truth  WiPose Ground Truth WiPose
Fig. 14: 3D restoration of human pose [49]
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(a) Meeting room

(b) Office room
Fig. 16: CSI based localization system environments of

(c) Lobby

TABLE VI: Sampling frequency versus WiFi sensing performance

Smokey [46] widar2.0 [107) DIP [86] PhaseBeat [67]

no significant change on
breathing detection,
heart rate error decreases

from 3bpm to 1.1bpm

no significant change
g & Increase 20% accuracy

Sampling frequency (1kHz-10kHz)

drop 80% (100Hz - 10Hz) | (time consumption increases

from 0.7s to 1.5s)

TABLE VII: Performing distance versus WiFi sensing performance

Human
WiFall [45 Smokey [46 recognition | WiGest [[72 Widar3.0 [|89 MaTrack RespiRadio [114; PhaseBeat [67
1) [77)
Distance 13% maximum the error increases the error increases
or drop 16% drop 33% drop 45% drop 20% difference drop 20% from 0.1bpm to from 0.27bpm to
location (1.5m - 3m) | (0.5m - 3m) (2m - 16m) | (Im - 19m) of 5 locations (Im - 9m) 1.2bpm 0.54bpm
(Tx-Rx: 2m - 10m) | (Tx-Rx: 2m - 7m)
TABLE VIII: Performing environments versus WiFi sensing performance
WiFall [45] Smokey [46] SignFi [87] Widar3.0 [89] | DfP [86]
9% maximum 19.2% maximum | 3% maximum 4.5% maximum | 0.2m maximum
Environments | difference of difference of difference of difference of error of 4
3 environments | 3 environments 3 environments | 3 environments environments

unknown scenarios cannot be promised. In the comparison
tables, most challenges are related to achieving generalization
of sensing methods under different conditions: distance or
location, environments, identity difference, and orientation of
action. These factors are discussed in the studies and show the
limitation behind the overall performance.

Therefore, sensitivity to changes in the physical environment
is a double-edged sword, which supports the high performance
of detecting specific activity but allows much noise from
surroundings to disturb the process. For example, for the
methods using DNN and ML for activity recognition, the
size of the experimental setup is kept in a limited variance of
the noise. For the complex real-world environment, the barriers
around the circumstance can take serious adverse effects on
the accuracy. For example, estimation of human respiration
rate needs to filter out the noise component of other activities.
However, even if unconscious human activity is filtered out,
conscious rhythmic activity can easily interfere with detection
results and other objects’ activities.

2) Complicated implementation of setup: Meanwhile, it is
also a challenge to set up the WiFi devices while using. In [89],
the study involves a robust system for gesture recognition using
3 - 6 receivers with the predetermined location. Objectively, it’s
not possible for each consumer to set the devices in the same
position due to the limited physical spaces or other issues.
In addition, sampling frequency’s setting has a significant
impact on performance as shown in Table which needs
experiment validation to achieve a trade-off between low power
consumption and high accuracy performance. These problems
have hindered the popularisation of the WiFi sensing technique.

3) Multiple Subjects Sensing: The performance of different
WiFi sensing systems becomes worse as the number of subjects
involved in the experiment increases, as shown in Table @
Majority of works do not mention the multiple human scenarios
due to the low angle resolution of WiFi. Although the AoA
technique based on MIMO is accurate enough to distinguish
the human and count the number of people, it is not enough
to distinguish the signal from a different person and get a
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sensing performance

Gait recognition [[115]

WiKey [52]

WiFinger [82]

SignFi [87]

Widar3.0 [89]]

widar2.0 [[107]

PhaseBeat [67]

15% maximum

14% maximum

30% maximum

13% maximum

0.2bpm maximum

Identit sionificant
di?;;rleﬁce Zzzragz;cgrﬁ}; difference of difference of difference of difference of :Ea::ggl can difference of
P 7 10 subjects 10 subjects 5 subjects 8 subjects g 4 directions
TABLE X: Orientation and Multiple human versus WiFi sensing performance
WiFall [45] Widar3.0 [89] Smokey [46] | PhaseBeat [67]
i fi
Orientations drop 30% 11% maximum difference Multiple human senarios drop 25% gr;(;r;nfrrle:‘()se()s 7rl(:mm
(10 - 110 degree) | of 5 directions p (1-4) (é 4)p -/ P

specific result. To improve the resolution of sensing, efficient
multiple subjects recognition method must be developed and
improved for more practical and real-world setups. Meanwhile,
it is challenging to track the person’s identity with specific
respiration for in-home healthcare analysis in the multiple
subjects environment.

4) Performance of WiFi Networking: CSI is collected using
NICs, which are primarily used for networking, with stable
transmitted frequency. Current drivers of WiFi device is able
to increase the frequency to meet the requirement of higher
frequency of CSI packets collection that most of the systems
rely on, which will produce empty packets for networking. In
the case where the empty package takes up more, they will
interfere with typical networking tasks. Hence, it is challenging
to operate a WiFi device to complete sensing and networking
tasks simultaneously.

5) Privacy and Security: Privacy and security are being
threatened by WiFi passive sensing technology. In state-of-the-
art methodologies, WiFi sensing can be used in the NLOS
range for human and object behavior. A well-trained system can
be used to recognize the gesture and keystrokes of the human
being. Suppose WiFi sensing is used to steal other people’s
private information due to the portability and generalization
of WiFi equipment. In that case, it is difficult for people to
recognize privacy-invasion behavior from those who collect
that private information. Fortunately, thanks to the limitations
of NIC manufacturers on channel information decoding, only a
limited number of devices can collect CSI data through open-
source drivers. However, with the miniaturization of NICs and
the maturity of sensing technology, this issue will be much
more concerning in the future.

B. Future Directions of WiFi Sensing in Healthcare

Although WiFi sensing has significant challenges for gener-
alization, there is still great potential for healthcare applications
in the real world. To overcome the issues discussed above, the
technique is expected to improve in four directions.

1) A unified framework of WiFi sensing: One of the most
challenging problems of WiFi sensing robustness is various
experimental setup and devices. Although theoretically, all
WiFi sensing methods should get the same performance as any
type of WiFi device. In practice, even the sampling rate of
WiFi can significantly influence the performance (see Table
[VI). It is necessary to follow a framework from hardware
to software of WiFi sensing system for future generalization,

which has a completely unique setup and test standard for
different methodologies to assess their performance in the
indoor environment. For example, the framework should contain
the available sampling frequency, type of antennas and NICs,
human location, distance between transmitter and receiver,
number of subjects and etc. Based on the framework, extra
modules for mobile edge computing can be incorporated in the
WiFi sensing systems [93] to accelerate the processing speed
and decrease the influence on WiFi networking system.

2) Spatial Sensing for wide applications: WiFi sensing
applications can sense ambient information regardless of
direction due to the omni-directional antennas of WiFi devices.
However, this characteristic is not helpful in some cases. If
the WiFi sensing system can monitor the vitals or activities of
individuals, for example, only detect the vital signs of people
on the fixed bed in the hospital, instead of detecting caregivers.
It will be more efficient to analyze the data without massive
ambient noise from other directions. Nevertheless, due to CSI
data collected from WiFi devices that have low resolution and
high sensitivity, it is challenging to separate signals from a
specific space. Beamforming technology with an intelligent
reflecting surface (IRS) [[116] and directional antennas [67]
are considered methods to overcome this disadvantage and
improve the performance.

With spatial sensing, WiFi sensing of human activities is
not limited to residential environments only. For instance, they
can be of great use in vehicles to detect drivers’ tiredness
levels, which is significant for the safety of the driver and
the passengers. The authors of [92] have successfully set
up the WiFi testbed in a vehicle, and eight human activities
from the driver and the passengers were accounted for in the
CARIN system, including pushing, pulling, and swiping. The
experiment results have shown an average accuracy of 90.0%
for more than 3000 real-world activity traces. Also, the vitals
detection in-cabin can be more efficient than the detection
indoor because the position of people in the traffic tools is
constant in most cases. It will not take effort to change sensing
area with spatial sensing like directional antennas are others.

3) Joint sensing in Home for Healthcare: Implementation
in real-world environments of WiFi sensing is one of the most
challenging tasks. Although many model-based algorithms
described in Section provide the approaches of human
action estimation without training, especially in vitals detection
and tracking. For activity recognition, most studies still adopt
DNN based classification method to get the result with better
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performance due to the influence of unexpected human actions.

The trends of joint sensing can be separated into two aspects,
the first one is joint training and second one is joint sensing
[L17]. Joint training will combine the WiFi signals and different
types of data from other sources like skeleton key-points from
images as ground truth datasets for the training step of the
estimation system with WiFi signals. Hence, WiFi signals can
be used in other tasks with higher resolution and more functions
in human support without label limitation. On the other hand,
DNN is available in large size of training and mining the
feature from data for multiple human sensing [48].

Joint sensing needs to establish a whole framework of general
indoor environments for the users. Due to the restriction of
performance versus WiFi devices’ setting, as demonstrated in
Section CSI data cannot be used to perform multiple
tasks within one type of implementation in complex real-world
scenarios. Extensive data analysis has been the trend for the
future healthcare [118]]. CSI signal can be integrated with data
from other sensors to monitor the health status of human beings
using artificial intelligence techniques [4]], [68]]. Cooperative
sensing with different sensors will improve the precision with
a larger size of precise data. Different kinds of radar sensors
(millimeter-wave radar, LIDAR), and other sensors like infrared
sensors, cameras, microphones, are able to provide data for
users to achieve specific tasks [S0], [119], [120]. Joint sensing
around the household environment is potential to improve the
humanization of the future healthcare monitoring system in
the whole-home range.

VI. CONCLUSIONS

Intelligent sensing based on commercial WiFi devices is
an emerging trend for next-generation healthcare monitoring
with great potential of development, due to the low-cost and
popularization of WiFi devices. Meanwhile, WiFi sensing is
capable to provide high accuracy contactless monitoring service
for the users, unlike other wearable sensors and systems that
require intimate contact. This paper presented an extensive
review of the recent techniques, open research challenges,
and development trends of non-contact WiFi sensing related
to healthcare. Different classes of healthcare applications are
demonstrated, including large-scale and small-scale activity
recognition like falling and gestures, vital signs’ detection,
and supportive localization. These clinical applications are
supportive to reduce the future pressure from the rapidly rising
aging population presents numerous societal and economic
challenges.
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